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Web Similarity
Andrew R. Cohen and Paul M.B. Vitányi

Abstract—Normalized web distance (NWD) is a similarity or
normalized semantic distance based on the World Wide Web or
another large electronic database, for instance Wikipedia, and a
search engine that returns reliable aggregate page counts. For sets
of search terms the NWD gives a common similarity (common
semantics) on a scale from 0 (identical) to 1 (completely different).
The NWD approximates the similarity of members of a set
according to all (upper semi)computable properties. We develop
the theory and give applications of classifying using Amazon,
Wikipedia, and the NCBI website from the National Institutes of
Health. The last gives new corrolations between health hazards.
The earlier NGD gives a numerical value solely for the features
a pair has in common. Different pairs may have the same NGD’s
but related to different features. In contrast, the NWD accounts
for the features all members of a set have in common. This makes
the NWD more effective for many classification questions.

Index Terms— Normalized web distance, pattern recognition,
data mining, similarity, classification, Kolmogorov complexity,

I. INTRODUCTION

Certain objects are computer files that carry all their proper-
ties in themselves. For example the scanned handwritten digits
in the MNIST database [21]. However, there are also objects
that are given by name, such as ‘red,’ ‘three,’ ‘Einstein,’ or
‘chair.’ Such objects acquire their meaning from the common
knowledge of mankind. We can give objects either as the
object itself or as the name of that object, such as the literal
text of the work “Macbeth by Shakespeare” or the name
“Macbeth by Shakespeare.” We focus on the name case and
provide semantics using the background information of a
large data base such as the World Wide Web or Wikipedia,
and a search engine that produces reliable aggregate page
counts. The frequencies involved enable us to compute a
distance for each set of names. This is the web distance
of that set or more properly the web diameter of that set.
The normalized form of this distance expresses similarity,
that is, the semantics (properties, features) the names in the
set have in common. Insofar as the distance or diameter
of the set as discovered by this process approximates the
common semantics of the objects in the set in human society,
the above distance expresses this common semantics. The
term “name” is used here synonymously with “word” “search
term” or “query.” The normalized distance above is called the
normalized web distance (NWD). To compute NWD(X) of
a set X = {name1, . . . , namen} we just use the number of
web pages returned on the query “name1 . . . namen,” the
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minimum number of web pages returned on the query for a
name in X , the maximum number of web pages returned on
the query for a name in X , and the total number of web pages
capable of being returned.

A. Goal

Suppose we want to classify a new object in the most
appropriate one of several classes of objects. The objects
in each class have a certain similarity to one another. For
example all the objects may be red, flowers, and so on. We
are talking here of properties which all the objects in a class
share. Intuitively the new object should go into the class of
which the similarity changes as little as possible under the
insertion. Among those we should choose the class of maximal
similarity. A red flower may go into the class in which all the
objects are red flowers. To achieve this goal we need to define
a measure of similarity between the objects of a class. This
similarity measure is associated with the class and to compare
different classes it should be relativized. Namely, if in class C1

all objects are 1% the same and in class C2 all objects are 50%
the same while all objects in C1 are 1000 times larger than
all objects in C2, then in absolute terms the objects in C1 are
more the same than the objects in C2. Therefore the measure
of similarity of a class should be relative and expressed by a
number between 0 and 1. The NWD proposed here is such a
measure of similarity.

B. Semantics

The NWD is an extension to sets of the Normalized Google
Distance (NGD) [6] which computes a distance between two
names. Since we deal with names it may be appropriate to
equate “similarity” with relative semantics for a pair of names
and common semantics for a set of more than two names. For
example, the common semantics of {red, green, blue, yellow}
comprises the notion “color” and the common semantics of
{one, two, three, four} comprises the notion “number.” A
theory of common semantics of a set of objects as we develop
it here is based on (and unavoidably biased by) a background
contents consisting of a database and a search engine. An
example is the set of pages constituting the world-wide-web
and a search engine like Google. Linguists judge the accuracy
of Google counts trustworthy enough: In [17] (see also the
many references to related research) it is shown that web
searches for rare two-word phrases correlated well with the
frequency found in traditional corpora, as well as with human
judgments of whether those phrases were natural. The common
semantics relations between a set of objects is distilled from
the web pages by just using the number of web pages in which
the names of the objects occur, singly and jointly (irrespective
of location or multiplicity). Therefore the common semantics
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is that of a particular database (World Wide Web, Wikipedia,
Amazon, Pubnet) and an associated search engine. Insofar as
the effects of a database-search engine pair approximates the
utterances of a particular segment of human society we can
identify the NWD associated with a set of objects with the
(normalized) common semantics of that set in that segment of
human society.

C. NWD Can Not Be Obtained From NGDs

It is impossible in general to use combinations of NGD’s
to compute the common semantics of a set of more than two
names. This is seen as follows. The only thing one can do
using the NGD is to compute the NGD’s between all pairs
of members in the set and take the minimum, the maximum,
the average, or something else. This means that one uses the
relative semantics between all pairs of members of the set but
not the semantics that all members of the set have in common.
For example, each pair may have a lot of relative semantics
but possibly different relative semantics for each pair. That
these semantcs are different may not be inferrable from the
NGD’s. The conclusion may be that the members of the set
have a lot in common. But in actual fact the set may have
little or no semantics in common at all.

The common semantics of all names in the set is accounted
for by the NWD. Therefore using the NWD may give very
different results from using the NGD’s. An example using
Google counts is given by homonyms such as “grave,” “iron,”
and “shower.” On 30 March 2016 Google gave “grave iron
shower” 904.000 results indicating that this triple of words
have little in common. But “grave iron” got 107.000.000
results, “iron shower” got 126.000.000 results, and “grave
shower” got 9.240.000 results indicating that each of these
three word pairs have more in common than the word triple.
We defer giving a formal example until the necessary formal
tools are in place and then give Example III.1.

D. Classification

In classification we use the semantics the objects in a class
have in common. Up till now this was replaced by other
measures such as distances in Euclidean space. The NWD
of a class expresses directly (possibly an approximation of)
the common semantics of the objects in the class. According
to Section I-B this cannot be achieved by combinations of
the relative semantics between pairs of objects in the class.
Therefore classification using the NGD’s alone may be inferior
to using the NWD’s which take crucial information into
account. Again the necessary formal tools are required to
present Example III.1. It shows that we require the NWD
notion and that the method using NGD’s while being deficient
also has a much larger computational complexity, Section III.

E. Background

To develop the theory behind the NWD we consider the
information in individual objects. These objects are finite
and expressed as finite binary strings. The classic notion
of Kolmogorov complexity [18] is an objective measure for

the information in a single object, and information distance
measures the information between a pair of objects [3].
To develop the NWD we use the new notion of common
information between many objects [24], [11].

F. Related Work

To determine word similarity or word associations has been
topical in cognitive psychology [20], linguistics, natural lan-
guage processing, search engine theory, recommender systems,
and computer science. One direction is to use word (phrases)
frequencies in text corpora to develop measures for word
similarity or word association, see the surveys in [36], [35].
A successful approach is Latent Semantic Analysis (LSA)
[20] that appeared in various forms in a great number of
applications. LSA and its relation to the present approach
(rather the NGD approach) is discussed in [6]. As with LSA,
many other previous approaches of extracting corollations
from text documents are based on text corpora that are many
order of magnitudes smaller, and that are in local storage, and
on assumptions that are more refined, than what we propose.
Another recently succesful approach is [28] which uses the
large text corpora available at Google to compute so-called
word-vectors of two types: predicting the context or deducing
the word from the context. This brute-force approach yields
word analogies and other desirable phenomena. For example,
the word vector of “king” minus that of “man” plus that of
“woman” gives a word vector near that of “queen.” However,
just as the other methods mentioned above and below it
gives no common semantics of a set of words but only a
distance between two words like the NGD. Counterexamples
to the NGD as in Example III.1 work here too: large relative
semantics between every pair of words of a set may not imply
large common semantics of these words. One needs a relation
between all the objects like the NWD does. Another difference
is that to compute word vectors we require even larger corpora
of words in local storage than LSA does.

In contrast, [7], [2] and the many references cited there, use
the web and Google counts to identify lexico-syntactic patterns
or other data. Again, the theory, aim, feature analysis, and
execution are different from ours, and cannot meaningfully be
compared. Essentially, the NWD method below automatically
extracts semantic relations between sets of arbitrary objects
from the web in a manner that is feature-free, up to the data
base and search-engine used, and computationally feasible.

The similarity or relative semantics between pairs of search
terms was defined in [6] and demonstrated in practice by using
the World Wide Web as database and Google as search engine.
The proposed normalized Google distance (NGD) works for
any search engine that gives an aggregate page count for
search terms. See for example [4], [13], [40], [39], [5] and
the many references to [6] in Google scholar. In [24] the
notion is introduced of the information required to go from
any object in a finite multiset (a set where a member can
occur more than once) of objects to any other object in the
set. Let X denote a finite multiset of n finite binary strings
defined by {x1, . . . , xn}, the constituting elements ordered
length-increasing lexicographic. The information distance in
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X is defined by Emax(X) = min{|p| : U(xi, p, j) = xj for
all xi, xj ∈ X} (see Appendix C for the undefined notions).
For instance, with X = {x, y} the quantity Emax(X) is the
least number of bits in a program to transform x to y and y to
x. In [37] the mathematical theory is developed further and the
difficulty of normalization is shown. In [11] the normalization
is given, justified, and many applications are given of using
compression to classify objacts given as computer files, for
example related to the MNIST data base of hand written digits
and to stem cell classification.

G. Results

The NWD is a similarity (a common semantics) between all
search terms in a set. (We use set rather than multiset as in [11]
since a set seems more appropriate than multiset in the context
of search terms.) The NWD can be thought of as a diameter
of the set. For sets of cardinality two this diameter reduces
to a distance between the two elements of the set. The NWD
can be used for the classification of an unseen item into one
of several classes (sets of names or phrases). This is required
in constructing classes of more than two members while the
NGD’s as in [6] suffice for classes of two members.

The basic concepts like the web events, web distribution,
and web code are given in Section II. These are similar to
what is used in [6] for the NGD. The remaining derivation
and results are of necessity new and different. We determine
the length of a single shortest binary program to compute from
any web event of a single member in a set to the web event
associated with the whole set (Theorem II.5). The mentioned
length is an absolute information distance associated with
the set. It is incomputable (Lemma II.4). It can be large
while a set has similar members and small when the set has
dissimilar members. This depends on the relative size of the
difference between members. Therefore we normalize to ex-
press the relative information distance which we associate with
similarity between members of the set. We approximate the
incomputable normalized version with the computable NWD
(Definition II.6). In Section III we compare the NWD and
the earlier NGD with respect to the computational complexity
(expressed in required number of queries) and accuracy. The
NWD method requires less queries compared to the NGD
method while the latter usually also yields inferior results.
In Section IV we present properties of the NWD such as
the range of the NWD (Lemma IV.1), whether and how it
changes under adding members (Lemma IV.3), and that it
does not satisfy the triangle inequality and hence is not metric
(Lemma IV.6). Theorem IV.8 and Corollary IV.9 show that the
NWD approximates the common similarity of the queries in a
set of search terms (that is, a common semantics). We subse-
quently apply the NWD to various data sets based on search
results from Amazon, Wikipedia and the National Center for
Biotechnology Information (NCBI) website from the U.S.
National Institutes of Health in Section V. We treat strings and
self-delimiting strings in Appendix A, computability notions
in Appendix B, Kolmogorov complexity in Appendix C, and
metric of sets in Appendix D. The proofs are deferred to
Appendix E.

II. WEB DISTRIBUTION AND WEB CODE

We give a derivation that holds for idealized search engines
that return reliable aggregate page counts from their idealized
data bases. For convenience we call this the “web” consisting
of “web pages.” Subsequently we apply the idealized theory
to real problems using real search engines on real data bases.

A. Web Event

The set of singleton search terms is denoted by S, a set of
search terms is X = {x1, . . . , xn} with xi ∈ S for 1 ≤ i ≤ n,
and X denotes the set of such X . Let the set of web pages
indexed (possible of being returned) by the search engine be
Ω.

Definition II.1. We define the web event e(X) ⊆ Ω by the
set of web pages returned by the search engine doing a search
for X such that each web page in the set contains occurrences
of all elements from X .

If x, y ∈ S and e(x) = e(y) then x ∼ y and the equivalence
class [x] = {y ∈ S : y ∼ x}. Unless otherwise stated,
we consider all singleton search terms that define the same
web event as the same term. Hence we deal actually with
equivalence classes [x] rather than x. However, for ease of
notation we write x in the sequel and consider this to mean
[x].

If x ∈ S then the frequency of x is f(x) = |e(x)|; if
X = {x1, . . . , xn}, then e(X) = e(x1)

⋂
· · ·
⋂
e(xn) and

f(X) = |e(X)|. The web event e(X) embodies all direct
context in which all elements from X simultaneously occur in
these web pages. Therefore web events capture in the outlined
sense all background knowledge about this combination of
search terms on the web.

B. The Web Code

It is natural to consider code words for web events. We
base those code words on the probability of the event. De-
fine the probability g(X) of X as g(X) = f(X)/N with
N =

∑
X∈X f(X). This probability may change over time,

but let us imagine that the probability holds in the sense of
an instantaneous snapshot. A derived notion is the average
number of different sets of search terms per web page α. Since
α =

∑
X∈X f(X)/|Ω| we have N = α|Ω|.

A probability mass function on a known set allows us to
define the associated prefix-code word length (information
content) equal to unique decodable code word length [19],
[26]. Such a prefix code is a code such that no code word is a
proper prefix of any other code word. By the ubiquitous Kraft
inequality [19], if l1, l2, . . . is a sequence of positive integers
satisfying ∑

i

2−li ≤ 1, (II.1)

then there is a set of prefix-code words of length l1, l2, . . . .
Conversely, if there is a set of prefix-code words of length
l1, l2, . . . then these lengths satisfy the above displayed equa-
tion. By the fact that the probabilities of a discrete set sum to
at most 1, every web event e(X) having probability g(X) can
be encoded in a prefix-code word.
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Definition II.2. The length G(X) of the web code word for
X ∈ X is

G(X) = log 1/g(X), (II.2)

or ∞ for g(X) = 0. The case |X| = 1 gives the length of the
web code word for singleton search terms. The logarithms are
throughout base 2.

The web code is a prefix code. The code word associated
with X and therefore with the web event e(X) can be viewed
as a compressed version of the set of web pages constituting
e(X). That is, the search engine compresses the set of web
pages that contain all elements from X into a code word of
length G(X). (In the following Definition II.3 we use the
notion of U and the prefix Kolmogorov complexity K as in
Appendix C.)

Definition II.3. Let p ∈ {0, 1}∗ and X ∈ X \ S. The
information EGmax(X) to compute event e(X) from event
e(x) for any x ∈ X is defined by EGmax(X) = minp{|p| :
for all x ∈ X we have U(e(x), p) = e(X)}.

In this way EGmax(X) corresponds to the length of a single
shortest self-delimiting program to compute output e(X) from
an input e(x) for all x ∈ X .

Lemma II.4. The function EGmax is upper semicomputable
but not computable.

Theorem II.5. EGmax(X) = maxx∈X{K(e(X)|e(x))}
up to an additive logarithmic term
O(log maxx∈X{K(e(X)|e(x))}) which we ignore in
the sequel.

To obtain the NWD we must normalize EGmax. Let us give
some intuition first. Suppose X,Y ∈ X with |X|, |Y | ≥ 2. If
the web events e(x)’s are more or less the same for all x ∈ X
then we consider the members of X very similar to each other.
If the web events e(y)’s are very different for different y ∈ Y
then we consider the members of Y to be very different from
one another. Yet for certain such X and Y depending on the
cardinalities of X and Y and the cardinalities of the web events
of the members of X and Y we can have EGmax(X) =
EGmax(Y ). That is to say, the similarity is dependent on size.
Therefore, to express similarity of the elements in a set X we
need to normalize EGmax(X) using the cardinality of X and
the events of its members. Expressing the normalized values
allows us to express the degree in which all elements of a set
are alike. Then we can compare truly different sets.

Use the symmetry of information law (A.1) to rewrite
EGmax(X) as K(e(X)) − minx∈X{K(e(x))} up to a log-
arithmic additive term which we ignore. Since G(X) is
computable prefix code for e(X), while K(e(X)) is the
shortest computable prefix code for e(X), it follows that
K(e(X)) ≤ G(X). Similarly K(e(x)) ≤ G(x) for x ∈ X .
The search engine G returns frequency f(X) on query X
(respectively frequency f(x) on query x). These frequencies
are readily converted into G(X) (respectively G(x)) using
(II.2). Replace K(e(X)) by G(X) and minx∈X{K(e(x))}
by minx∈X{G(x)} in EGmax(X). Subsequently use as nor-
malizing term maxx∈X{G(x)}(|X| − 1) which gives the best

classification results in Section V among several possibilities
tried. This yields the following.

Definition II.6. The normalized web distance (NWD) of X ∈
X with G(X) <∞ (equivalently f(X) > 0)) is

NWD(X) =
G(X)−minx∈X{G(x)}
maxx∈X{G(x)}(|X| − 1)

(II.3)

=
maxx∈X{log f(x)} − log f(X)

(logN −minx∈X{log f(x)})(|X| − 1)
,

otherwise NWD(X) is undefined.

The second equality in (II.3), expressing the NWD in
terms of frequencies, is seen as follows. We use (II.2).
The numerator is rewritten by G(X) = log 1/g(X) =
log(N/f(X)) = logN − log f(X) and minx∈X{G(x)} =
minx∈X{log 1/g(x)} = logN − maxx∈X{log f(x)}.
The denominator is rewritten as maxx∈X{G(x)}(|X| −
1) = maxx∈X{log 1/g(x)}(|X| − 1) = (logN −
minx∈X{log f(x)})(|X| − 1).

Example II.7. Although Google gives notoriously unreliable
counts it serves well enough for an illustration On our scale
of similarity, if NWD(X) = 0 then the search terms in
the set X are identical, and if NWD(X) = 1 then the
search terms in X are as different as can be. On 19 August
2014 searching for “Shakespeare” gave 124,000,000 hits;
searching for “Macbeth” gave 22,400,000 hits; searching for
“Hamlet” gave 51,300,000 hits; searching for “Shakespeare
Macbeth” gave 7,730,000 hits; searching for “Shakespeare
Hamlet” gave 18,500,000 hits; and searching for “Shakespeare
Macbeth Hamlet” gave 663,000 hits. The number of web pages
which can potentially be returned by Google was estimated by
searching for “the” as 25,270,000,000. Using this number as N
we obtain by (II.3) the NWD({Shakespeare,Macbeth}) ≈
0.395, NWD({Shakespeare,Hamlet}) ≈ 0.306 and
NWD({Shakespeare,Macbeth,Hamlet}) ≈ 0.372. We
conclude that Shakespeare and Hamlet have a lot in common,
Shakespeare and Macbeth have a lot in common, and the com-
monality of Shakespeare, Hamlet, and Macbeth is intermediate
between the two. (In this example it is apparent that Google
gives unreliable counts—the algorithms are tweaked for
user satisfaction—since NWD({Shakespeare,Macbeth})−
NWD({Shakespeare,Macbeth,Hamlet}) is slightly pos-
itive in contradiction to the analysis in Section III-B. Since
NWD(X) = 0 means that the elements of X are identical
and NWD(X) = 1 that they are as different as can be, the
positivity of the above difference means that the items in this
subset are less similar than the items in the total set, which
should be impossible.) ♦

Remark II.8. In Definition II.6 it is assumed that f(X) > 0
which, since it has integer values, means f(X) ≥ 1. The case
f(X) = 0 means that there is an x ∈ X such that e(x)

⋂
e(X\

{x}) = ∅. That is, query x is independent of the set of queries
X \ {x}, x has nothing in common with X \ {x} since there
is no common web page. Hence the NWD is undefined. The
other extreme is that e(x) = e(y) (x ∼ y) for all x, y ∈ X . In
this case the NWD(X) = 0. ♦
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III. COMPARING NWD AND NGD
The NGD (see Footnote 1) is a distance between two names.

The NWD is an extension of the NGD to sets of names
of finite cardinality. It is shown that the NWD has far less
computational complexity than the NGD. Moreover, the NWD
uses information to which the NGD is blind, that is, the
common similarity determined by the NWD is far better than
that determined by the NGD.

A. Computational Complexity

The number of queries needed for using the NWD is usually
much less than that using the NGD. 1 We ignore the cost of
the arithmetic operations (which is larger anyway in the NGD
case) and of determining N which has to be done in both
cases. There are two tasks we consider.

Computing the common similarity of a set. The computa-
tional complexity of computing the common similarity using
the NGD with a set of n terms is as follows. One has to
use the search engine on the data base to determine the
search term frequencies. This requires n +

(
n
2

)
frequency

computations, namely the frequencies of the singletons and
of the pairs. To computational complexity of computing the
common similarity of the same set of n terms by the NWD
requires n queries to determine the singleton frequencies and
1 query to determine the frequency of pages containing the
entire set, that is, n + 1 times computing frequencies. Hence
computational complexity using the NGD is much higher for
large n than that using the NWD.

Classifying. Let n be the total number of elements divided
over classes A1, . . . , Am of cardinalities n1, . . . , nm, respec-
tively, with

∑m
i=1 ni = n. We classify a new item x into one of

the m classes according to which class achieves the minimum
common similarity (CS) difference CS(A

⋃
{x}) − CS(A).

If there are more than one such classes we select a class of
maximal CS. We compute the CS using the NGD or the NWD.
Using the NGD we require n+

∑m
i=1

(
ni

2

)
queries to determine

CS(A1), . . . , CS(Am). (Trivially
∑m
i=1

(
ni

2

)
≤
(
n
2

)
). To de-

termine subsequently CS(A1

⋃
{x}), . . . , CS(Am

⋃
{x}) we

require 1 query extra to determine f(x) and n queries extra
to determine f(x, y) for every item y among the original n
elements. Altogether there are 2n + 1 +

∑m
i=1

(
ni

2

)
queries

required using the NGD.
Using the NWD requires

∑m
i=1(ni+1) = n+m queries to

determine the NWD of A1, . . . , Am. To subsequently deter-
mine the NWDs of A1

⋃
{x}, . . . , Am

⋃
{x} we extra require

f(x) and each of f({y : y ∈ Ai}
⋃
{x}) for 1 ≤ i ≤ m. That

is, 1 +m queries. So in total n+ 2m+ 1 queries.
To classify many new items we may consider training cost

and testing cost. Training cost is to pre-compute all the queries
required for classifying a new element—without the costs for
the new element. This is only done once. Testing cost is how
many queries are required for each new item that comes along.
Above we combined these two in the case of one new element.

1Defined in [6, Eq. (6) in Section 3.4 ] as

NGD(x, y) =
max{log f(x), log f(y)} − log f(x, y)

logN −min{log f(x), log f(y)}
.

The training cost for the NGD is up to n+
(
n
2

)
. The testing

cost for each new item is n+ 1.
The training cost for the NWD is n + m. The testing cost

for each new item is m+ 1.

B. NWD Versus NGD

Let A,B be two sets of queries and B ⊂ A. Then the
common similarity of the queries in A \ B may or may not
agree with the common similarity of the queries in B but
adding A \B to B to obtain A will not increase the common
similarity of the queries in A above that in B. Therefore the
common similarity in A is at most that in B. This is generally
followed by the NWD without the normalizing factor |X| − 1
in the denominator, see Lemma IV.3, except in the pathological
case when (IV.1) does no hold.

Assume that A = {a1, . . . , an} and B = {b1, b2} with
b1, b2 ∈ A. Then NWD(A) ≤ minb1,b2∈ANWD(B) =
minb1,b2∈ANGD(b1, b2). Only in this sense using the NGD
to determine the common similarity in a set A gives an upper
bound on NWD(A). All formulas using only NGD’s use a
subset of the f(ai)’s and the f(ai, aj)’s (1 ≤ i, j ≤ n). The
NWD uses the f(ai)’s and f(a1, . . . , an). For given f(ai)
and the f(ai, aj) (1 ≤ i, j ≤ n) the values of f(a1, . . . , an)
can be any value in the interval [0,minb1,b2∈ANGD(b1, b2)].
Hence the NWD can vary a lot (and therefore the common
similarity) for most fixed values of the NGD’s.

Example III.1. Firstly, we give an example where the com-
mon similarity computed from NGD’s is different from that
computed by the NWD. Let f(x) = f(y) = f(z) = N1/4

be the cardinalities of the sets of web pages containing occur-
rences of the term x, the term y, and the term z, respectively.
The quantity N is the total number of webpages multiplied
by the appropriate constant α as in Section II-B. Let further,
f(x, y) = f(x, z) = f(y, z) = N1/8 and f(x, y, z) = N1/16.
Here f(x, y) is the number of pages containing both terms x
and y, and so on. Computing the NGD’s gives NGD(x, y) =
NGD(x, z) = NGD(y, z) = 1/6. Using for the set {x, y, z}
either the minimum NGD, the maximum NGD, or the average
NGD, will always give the value 1/6. Using the NWD as in
(II.3) we find NWD({x, y, z}) = 1/8. This shows that in this
example the common similarity determined using the NGD
is smaller than the common similarity determined using the
NWD. (Recall that the common similarity is 0 if it is maximal
and 1 if it is minimal.)

Secondly, we give an example of a difference in clas-
sification between the NGD and the NWD. The class is
selected where the absolute difference in common similarity
with and without inserting the new item is minimal. If more
than one class is selected we choose a class with maximal
common similarity. The frequencies of x, y, z and the pairs
(x, y), (x, z), (y, z) are as above. For the terms u, v and the
pairs (u, v), (u, z), (v, z) the frequencies are f(u) = f(v) =
N1/4 and f(u, v) = f(u, z) = f(v, z) = N1/9. Suppose we
classify the term z into classes A = {x, y} and B = {u, v}
using a computation with the NGD’s. Then the class B will be
selected. Namely, the insertion of z in class A will induce new
NGD’s with all exactly having the values of 1/6 (as above).
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Since NGD(u, v) = NGD(u, z) = NGD(v, z) = 5/36
insertion of z into the class B = {u, v} will give the
NGD’s of all resulting pairs (u, v), (u, z), (v, z) values of
5/36. The choice being between classes A and B we see
that in neither class the common similarity according to the
NGD’s is changed. Therefore we select the class where all
NGD’s are least (that is, the most common similarity) which
is B = {u, v}. Next we select according to the NWD. Assume
f(u, v, z) = N1/10. Then NWD(u, v, z) = 1/4. Then
NWD({u, v, z}) −NWD({u, v})(= NGD(u, v)) = 1/4 −
5/36 = 4/36. Since NWD({x, y, z}) − NWD({x, y})(=
NGD(x, y)) = 1/8 − 1/6 = −1/24 and selection according
to the NWD chooses the least absolute difference we select
class A = {x, y}. ♦

IV. THEORY

Let X = {x, y} ∈ X . The NGD distance between x and y
in Footnote 1 equals NWD(X) up to a constant. For sets of
cardinality greater or equal to two the following holds.

Lemma IV.1. Let X ∈ X \ S and N > |X|. Then
NWD(X) ∈ [0, (log|X|(N/|X|))/(|X| − 1)].

(In practice the range is from 0 to 1; the higher values
are theoretically possible but seem not to occur in real situa-
tions.) We determine bounds on how the NWD may change
under addition of members to its argument. These bounds are
necessary loose since the added members may be similar to
existing ones or very different. In Lemma IV.3 below we shall
distinguish two cases related to the minimum frequencies. The
second case divides into two subcases depending on whether
the Equation IV.1 below holds or not:

f(y1)f(X)

f(x1)f(Y )
≥
(
f(x0)

f(y0)

)(|X|−1)NWD(X)

, (IV.1)

where x0 = arg minx∈X{log f(x)}, y0 =
arg miny∈Y {log f(y)}, x1 = arg maxx∈X{log f(x)},
and y1 = arg maxy∈Y {log f(y)}.

Example IV.2. Let |X| = 5, f(x0) = 1, 100, 000, f(y0) =
1, 000, 000, f(x1) = f(y1) = 2, 000, 000, f(X) = 500,
f(Y ) = 100, and NWD(X) = 0.5. The righthand side
of the inequality (IV.1) is 1.12 = 1.21 while the lefthand
side is 5. Therefore (IV.1) holds. It is also possible that
inequality (IV.1) does not hold, that is, it holds with the ≥ sign
replaced by the < sign. We give an example. Let |X| = 5,
f(x0) = 1, 100, 000, f(y0) = 1, 000, 000, f(x1) = f(y1) =
2, 000, 000, f(X) = 110, f(Y ) = 100, and NWD(X) = 0.5.
The righthand side of the inequality (IV.1) with ≥ replaced by
< is 1.12 = 1.21 while the lefthand side is 1.1. ♦

Lemma IV.3. Let X,Z ⊆ Y , X,Y, Z ∈ X \ S, and
minz∈Z{f(z)} = miny∈Y {f(y)}.

(i) If f(y) ≥ minx∈X{f(x)} for all y ∈ Y then
(|X| − 1)NWD(X) ≤ (|Y | − 1)NWD(Y ). (ii) Let f(y) <
minx∈X{f(x)} for some y ∈ Y . If (IV.1) holds then
(|X| − 1)NWD(X) ≤ (|Y | − 1)NWD(Y ). If (IV.1) does
not hold then (|X| − 1)NWD(X) > (|Y | − 1)NWD(Y ) ≥
(|Z| − 1)NWD(Z).

Example IV.4. Consider the Shakespeare–Macbeth–Hamlet
Example II.7. Let X = {Shakespeare,Macbeth},
Y = {Shakespeare,Macbeth,Hamlet}, and Z =
{Shakespeare,Hamlet}. Then inequality (IV.1) for X ver-
sus Y gives (124, 000, 000 × 7, 730, 000/(124, 000, 000 ×
663, 000) ≥ (22, 400, 000/22, 400, 000)0.395 (that is 11.659 ≥
1), and for Z versus Y gives 18, 500, 000/663, 000 ≥
(51, 300, 000/22, 400, 000)0.306 (that is 27.903 ≥ 1.289). In
the first case Lemma IV.3 item (i) is applicable since the
frequency minima of X and Y are the same. (In this case
inequality (IV.1) is not needed.) Therefore NWD(X)(|X| −
1)/(|Y | − 1) ≤ NWD(Y ) which works out as 0.395/2 ≤
0.372. In the second case Lemma IV.3 item (ii) is applicable
since the frequency minima of Z and Y are not the same. Since
inequality (IV.1) holds this gives NWD(Z)(|Z| − 1)/(|Y | −
1) ≤ NWD(Y ) which works out as 0.306/2 ≤ 0.372. ♦

Remark IV.5. To interpret Lemma IV.3 we give the following
intuition. Under addition of a member to a set there are two
opposing tendencies on the NWD concerned. First, the range
of the NWD decreases by Lemma IV.1 and the definition (II.3)
of the NWD shows that addition of a member tends to decrease
the value of the NWD, that is, it moves closer to 0. Second,
the common similarity and hence the similarity of queries in a
given set as measured by the NWD is based on the number of
properties all members of a set have in common. By adding a
member to the set clearly the number of common properties
does not increase and generally decreases. This diminishing
tends to cause the NWD to possibly increase—move closer
to the maximum value of the range of the new set (which is
smaller than that of the old set). The first effect may become
visible when (|X| − 1)NWD(X) > (|Y | − 1)NWD(Y ),
which happens in the case of Lemma IV.3 item (ii) for the
case when the frequencies do not satisfy (A.2). The second
effect may become visible when (|X|−1)NWD(X) ≤ (|Y |−
1)NWD(Y ), which happens in Lemma IV.3 item (i), and item
(ii) with the frequencies satisfying (A.2). ♦

For every set X we have that the NWD(X) is invariant
under permutation of X: it is symmetric. The NWD is also
positive definite as in Appendix D (where equal members
should be interpreted as saying that the set has only one
member). However the NWD does not satisfy the triangle
inequality and hence is not a metric. This is natural for a
common similarity or semantics: The members of a set XY
(shorthand for X

⋃
Y ) can be less similar (have greater NWD)

then the similarity of the members of XZ plus the similarity
of the members of ZY for some set Z.

Lemma IV.6. The NWD violates the triangle inequality.

It remains to formally prove that the NWD expresses in the
similarity of the search terms in the set. We define the notion
of a distance on these sets using the web as side-information.
For a set X a distance (or diameter) of X is denoted by d(X).
We consider only distances that are upper semicomputable,
that is, the distance can be computably approximated from
above (Appendix B). A priori we allow asymmetric distances,
but we exclude degenerate distances such as d(X) = 1/2 for
all X ∈ X containing a fixed element x. That is, for every d
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we want only finitely many sets X 3 x such that d(X) ≤ d.
Exactly how fast we want the number of sets we admit to go
to ∞ is not important; it is only a matter of scaling.

Definition IV.7. A web distance function (quantifying the
common properties or common features) d : X → R+ is
admissible if d(X) is (i) a nonnegative total real function
and is 0 iff X ∈ S; (ii) it is upper semicomputable from the
e(x)’s with x ∈ X and e(X); and (iii) it satisfies the density
requirement: for every x ∈ S∑

X3x, |X|≥2

2−d(X) ≤ 1.

We give the gist of what we are about to prove. Let X =
{x1, x2, . . . , xn}. A feature of a query is a property of the
web event of that query. For example, the frequency in the
web event of web pages containing an occurrence of the word
“red.” We can compute this frequency for each e(xi) (1 ≤
i ≤ n). The minimum of those frequencies is the maximum
of the number of web pages containing the word “red” which
surely is contained in each web event e(x1), . . . , e(xn). One
can identify this maximum with the inverse of a distance in
X . There are many such distances in X . The shorter a web
distance is, the more dominant is the feature it represents. We
show that the minimum admissible distance is EGmax(X). It
is the least admissible web distance and represents the shortest
of all admissible web distances in members of X . Hence the
closer the numerator of NWD(X) is to EGmax(X) the better
it represents the dominant feature all members of X have in
common.

Theorem IV.8. Let X ∈ X . The function G(X) −
minx∈X{G(x)} is a computable upper bound on EGmax(X).
The closer it is to EGmax(X), the better it approximates the
shortest admissible distance in X . The normalized form of
EGmax(X) is NWD(X).

The normalized least admissible distance in a set is the least
admissible distance between its members which we call the
common admissible similarity. Therefore we have:

Corollary IV.9. The function NWD(X) is the common
admissible similarity among all search terms in X . This
admissible similarity can be viewed as semantics that all
search terms in X have in common.

V. APPLICATIONS

The approach presented here requires the ability to query a
database for the number of occurrences and co-occurrences of
the elements in the set that we wish to analyze. One challenge
is to find a database that has sufficient breadth to contain
a meaningful numbers of co-occurrences for related terms.
As discussed previously, an example of one such database
is the World Wide Web, with the page counts returned by
Google search queries used as an estimate of co-occurrence
frequency. There are two issues with using Google search page
counts. The first issue is that Google limits the number of
programmatic searches in a single day to a maximum of 100
queries, and charges for queries in excess of 100 at a rate of

up to $50 per thousand. The second issue with using Google
web search page counts is that the numbers are not exact,
but are generated using an approximate algorithm that Google
has not disclosed. For the questions considered previously [6]
we found that these approximate measures were sufficient
at that time to generate useful answers, especially in the
absence of any a priori domain knowledge. It is possible to
implement internet based searches without using search engine
API’s, and therefore not subject to daily limit. This can be
accomplished by parsing the HTML returned by the search
engine directly. The issue with google page counts in this study
being approximate counts based on a non-public algorithm was
more concerning as changes in the approximation algorithm
can influence page count results in a way that may not reflect
true changes to the underlying distributions. Since any internet
search that returns a results count can be used in computing
the NWD, we adopt the approach of using web sites that return
exact rather than approximate page counts for a given query.

Here we describe a comparison of the NWD using the
set formulation based on web-site search result counts with
the pairwise NWD formulation. The examples are based on
search results from Amazon, Wikipedia and the National
Center for Biotechnology Information (NCBI) website from
the U.S. National Institutes of Health. The NCBI website
exposes all of the NIH databases searchable from a single
web portal. We consider example classification questions that
involve partitioning a set of words into underlying categories.
For the NCBI applications we compare various diseases using
the loci identified by large genome wide association stud-
ies (GWAS). For the NWD set classification, we determine
whether to assign element x to class A or class B (both
classes pre-existing) by computing NWD(Ax) −NWD(A)
and NWD(Bx) − NWD(B) and assigning element x to
whichever class achieves the minimum difference. A com-
bination of pairwise NGD’s for each class suffers in many
cases from shortcomings as pointed out before and formally
in Example III.1. Therefore, with the aim of doing better,
for the pairwise NWD we use an approach based on spec-
tral clustering. Rather than using a combination of simple
pairwise information distances (NGD’s), the spectral approach
constructs a representation of the objects being clustered using
an eigen-decomposition. In previous work we have found such
spectral approaches to be most accurate when working with
compression-based distance measures [9], [10], [15]. Mapping
from clusters to classes for the pairwise analysis is done
following the spectral clustering step by using a majority vote.

We now describe results from a number of sample appli-
cations. For all of these applications, we use a single im-
plementation based on co-occurrence counts. For each search
engine that we used, including Amazon, Wikipedia and NCBI
a custom MATLAB script was developed to parse the search
count results. We used the page counts returned using the
built in search from each website for the frequencies, and
following the approach in [6] choose N as the frequency
for the search term ’the’. The results described were not
sensitive to the choice of search term used to establish N ,
for example identical classification results were obtained using
the counts returned by the search term ’N’ as the normalizing
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factor. Following each classification result below, we include
in parenthesis the 95% confidence interval for the result,
computed as described in [38]

The first three classification questions we considered used
the wikipedia search engine. These questions include clas-
sifying colors vs. animals, classifying colors vs. shapes and
classifying presidential candidates by political party for the
US 2008 U.S. presidential election. For colors vs animals
and shapes, both pairwise and multiset NWD classified all of
the elements 100% correctly (0.82,1.0). For the presidential
candidate classification by party, the pairwise NWD formu-
lation performed poorly, classifying 58% correctly (0.32,0.8),
while the set formulation obtained 100% correct classification
(0.76,1.0). Table I shows the data used for each question,
together with the pairwise and set accuracy and the total
number of website queries required for each method.

search engine: wikipedia
Multisets 
Correct

Pairwise 
Correct

 Number of queries 
(pairwise)

Number of queries 
(multisets)

{red, orange, yellow, green, blue, indigo}

{lion, tiger, bear, monkey, zebra, 
elephant, aardvark, lamb, fox, ape, dog}

{red, orange, yellow, green, blue, indigo, 
violet, purple, cyan, white}
{square,circle,rectangle,ellipse,triangle, 
rhombus}

{Barack Obama, Hillary Clinton, John 
Edwards, Joe Biden, Chris Dodd, Mike 
Gravel} 
{John McCain, Mitt Romney, Mike 
Huckabee, Ron Paul, Fred Thompson, 
Alan Keyes}

100% 58% 78 38

100% 100% 153 53

100% 100% 136 50

TABLE I
CLASSIFICATION RESULTS USING WIKIPEDIA.

The next classification question considered used page counts
returned by the Amazon website search engine to classify
book titles by author. Table II summarizes the sets of novels
associated with each author, and the classification results for
each author as a confusion matrix. The Multiset NWD (top)
misclassified one of the Tolstoy novels (’War and Peace’)
to Stephen King, but correctly classified all other novels
correctly, 96% accurate (0.83,0.99). The pairwise NWD per-
formed significantly more poorly, achieving only 79% accu-
racy (0.6,0.9).

The final application considered is to quantify similarities
among diseases based on the results of genome wide as-
sociation studies (GWAS). These studies scan the genomes
from a large population of individuals to identify genetic
variations occurring at fixed locations, or loci that can be
associated with the given disease. Here we use the the NIH
NCBI database to search for similarities among diseases,
comparing loci identified by recent GWAS results for each
disease. The diseases included Alzheimers [16], Parkinsons
[34], Amyotrophic lateral sclerosis (ALS) [1], Schizophrenia
[31], Leukemia [33], Obesity [30], and Neuroblastoma [25].
The top of Table III lists the loci used for each disease. The
middle panel of Table III shows at each location (i, j) of
the distance matrix the NWD computed for the combined
counts for the loci of disease i concatenated with disease
j. The diagonal elements (i, i) show the NWD for the loci
of disease i. The bottom panel of Table III shows the NWD
for each element with the diagonal subtracted, (i, j) − (i, i).

Shakespeare = {Macbeth, The Tempest, Othello, King Lear, Hamlet, The Merchant of Venice, A Midsummer Nights 
Dream, Much Ado About Nothing, Taming of the Shrew, Twelfth Night}   

King = {Carrie, Salems Lot, The Shining, The Stand, The Dead Zone, Firestarter, Cujo}    

Twain = {Adventures of Huckleberry Finn, A Connecticut Yankee in King Arthurs Court, Life on the Mississippi, 
Puddnhead Wilson}  

Hemingway = {The Old Man and The Sea, The Sun Also Rises, For Whom the Bell Tolls, A Farewell To Arms} 

Tolstoy = {Anna Karenina, War and Peace, The Death of Ivan Ilyich}  

Multiset NWD

Shakespeare King Twain Hemingway Tolstoy

Shakespeare 10 0 0 0 0

King 0 7 0 0 1

Twain 0 0 4 0 0

Hemingway 0 0 0 4 0

Tolstoy 0 0 0 0 2

Correct: 96%

Pairwise NWD

Shakespeare King Twain Hemingway Tolstoy

Shakespeare 10 0 0 1 1

King 0 6 0 0 0

Twain 0 0 4 0 0

Hemingway 0 1 0 3 3

Tolstoy 0 0 0 0 0

Correct: 79%

Predicted 
Class

True Class

True Class

Predicted 
Class

 

TABLE II
CLASSIFYING NOVELS BY AUTHOR USING AMAZON

Schizophrenia = {'rs1702294', 'rs11191419', 'rs2007044', 'rs4129585', 'rs35518360'} 

Leukemia = {'rs17483466', 'rs13397985', 'rs757978', 'rs2456449', 'rs735665', 'rs783540', 'rs305061', 'rs391525', 
'rs1036935', 'rs11083846'} 

Alzheimers={'rs4420638', 'rs7561528', 'rs17817600', 'rs3748140', 'rs12808148', 'rs6856768', 'rs11738335', 
'rs1357692'}; 

Obesity={'rs10926984', 'rs12145833', 'rs2783963', 'rs11127485', 'rs17150703', 'rs13278851'}; 

Neuroblastoma = {'rs6939340', 'rs4712653', 'rs9295536', 'rs3790171', 'rs7272481'}; 

Parkinsons={'rs356219', 'rs10847864', 'rs2942168', 'rs11724635'} 

ALS = {'rs2303565', 'rs1344642', 'rs2814707', 'rs3849942', 'rs2453556',  'rs1971791',  'rs8056742'}; 

Alzheimers Parkinsons ALS Schizophrenia Leukemia Obesity Neuroblastoma

Alzheimers 1.29E-02 2.43E-02 1.38E-02 1.55E-02 1.23E-02 1.49E-02 1.61E-02

Parkinsons 2.43E-02 1.80E-02 1.83E-02 1.58E-02 1.68E-02 1.53E-02 2.23E-02

ALS 1.38E-02 1.83E-02 9.76E-03 1.19E-02 1.46E-02 9.96E-03 1.75E-02

Schizophrenia 1.55E-02 1.58E-02 1.19E-02 1.38E-02 1.13E-02 1.60E-02 1.93E-02

Leukemia 1.23E-02 1.68E-02 1.46E-02 1.13E-02 7.54E-03 1.15E-02 1.61E-02

Obesity 1.49E-02 1.53E-02 9.96E-03 1.60E-02 1.15E-02 1.23E-02 1.51E-02

Neuroblastoma 1.61E-02 2.23E-02 1.75E-02 1.93E-02 1.61E-02 1.51E-02 1.51E-02

Alzheimers Parkinsons ALS Schizophrenia Leukemia Obesity Neuroblastoma

Alzheimers 0 1.14E-02 9.20E-04 2.64E-03 -6.08E-04 1.98E-03 3.22E-03

Parkinsons 6.26E-03 0 2.77E-04 -2.28E-03 -1.28E-03 -2.76E-03 4.26E-03

ALS 4.04E-03 8.57E-03 0 2.11E-03 4.87E-03 2.00E-04 7.75E-03

Schizophrenia 1.75E-03 2.01E-03 -1.90E-03 0 -2.44E-03 2.20E-03 5.56E-03

Leukemia 4.73E-03 9.23E-03 7.09E-03 3.78E-03 0 3.99E-03 8.53E-03

Obesity 2.57E-03 3.01E-03 -2.33E-03 3.69E-03 -7.58E-04 0 2.78E-03

Neuroblastoma 1.01E-03 7.23E-03 2.43E-03 4.25E-03 9.92E-04 -1.04E-05 0

NWD(i,j)

NWD(i,j)-NWD(i,i)

 

TABLE III
GWAS LOCI USED AS INPUT TO NWD FOR QUANTIFYING DISEASE

SIMILARITY USING THE NIH NCBI WEBSITE.

This is equivalent to the NWD(Ax)−NWD(A) value used
in the previous classification problems. The two minimum
values in the bottom panel, showing the relationships between
Parkinsons and Obesity, as well as between Schizophrenia and
Leukemia were surprising. The hypothesis was that neuro-
logical disorders such as Parkinsons, ALS and Alzheimers,
would be more similar to each other. After these findings we
found that there actually have been recent findings of strong
relationships between both Schizophrenia and Leukemia [14]
as well as between Parkinsons and Obesity [8], relationships
that have also been identified by clinical evidence not relating
to GWAS approaches.

VI. CONCLUSION

Consider queries to a search engine using a data base
divided in chunks called web pages. On each query the search
engine returns a set of web pages. Let n be the cardinality
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of a query set and N the number of web pages in the data
base multiplied by the average number of search terms per
web page. We propose a method, the normalized web distance
(NWD) for sets of queries that quantifies in a single number
between 0 and (logn(N/n))/(n − 1) the way in which the
queries in the set are similar: 0 means all queries in the set are
the same (the set has cardinality one) and (logn(N/n))(n−1)
means all queries in the set are maximally dissimilar to each
other. The similarity among queries uses the frequency counts
of web pages returned for each query and the set of queries.
The method can be applied using any big data base and
a search engine that returns reliable aggregate page counts.
Since this method uses names for the objects, and not the
objects themselves, we can view the common similarity of the
names as a common semantics between those names (words or
phrases). The common similarity between a finite nonempty
set of queries can be viewed as a distance or diameter of
this set. We show that this distance ranges in between 0 and
(logn(N/n))/(n− 1), how it changes under adding members
to the set, that it does not satisfy the triangle property, and that
the NWD formally and provably expresses common similarity
(common semantics).

To test the efficacy of the new method for classification we
experimented with small data sets of queries based on search
results from Wikipedia, Amazon, and the National Center
for Biotechnology Information (NCBI) website from the U.S.
National Institutes of Health. In particular we compared classi-
fication using pairwise NWDs (the NGDs) with classification
using set NWD. The last mentioned performed consistently
equal or better, sometimes much better.

APPENDIX

A. Strings and the Self-Delimiting Property
We write string to mean a finite binary string, and ε denotes

the empty string. (If the string is over a larger finite alphabet
we recode it into binary.) The length of a string x (the number
of bits in it) is denoted by |x|. Thus, |ε| = 0. The self-
delimiting code for x of length n is x̄ = 1|x|0x of length
2n + 1, or even shorter x′ = 1x̄0x of length n + 2 log n + 1
(see [23] for still shorter self-delimiting codes). Self-delimiting
code words encode where they end. The advantage is that if
many strings of varying lengths are encoded self-delimitingly
using the same code, then their concatenation can be parsed
in their constituent code words in one pass going from left
to right. Self delimiting codes are computable prefix codes.
A prefix code has the property that no code word is a proper
prefix of any other code word. The code-word set is called
prefix-free.

We identify strings with natural numbers by as-
sociating each string with its index in the length-
increasing lexicographic ordering according to the scheme
(ε, 0), (0, 1), (1, 2), (00, 3), (01, 4), (10, 5), (11, 6), . . . . In this
way the Kolmogorov complexity can be about finite binary
strings or natural numbers.

B. Computability Notions
A pair of integers such as (p, q) can be interpreted as the

rational p/q. We assume the notion of a function with rational

arguments and values. A function f(x) with x rational is
upper semicomputable if it is defined by a rational-valued
total computable function φ(x, k) with x a rational number
and k a nonnegative integer such that φ(x, k + 1) ≤ φ(x, k)
for every k and limk→∞ φ(x, k) = f(x). This means that f
can be computed from above (see [23], p. 35). A function
f is lower semicomputable if −f is semicomputable from
above. If a function is both upper semicomputable and lower
semicomputable then it is computable.

C. Kolmogorov Complexity

The Kolmogorov complexity is the information in a single
finite object [18]. Informally, the Kolmogorov complexity of
a finite binary string is the length of the shortest string from
which the original can be lossless reconstructed by an effective
general-purpose computer such as a particular universal Turing
machine. Hence it constitutes a lower bound on how far a
lossless compression program can compress. For technical
reasons we choose Turing machines with a separate read-
only input tape that is scanned from left to right without
backing up, a separate work tape on which the computation
takes place, an auxiliary tape inscribed with the auxiliary
information, and a separate output tape. All tapes are divided
into squares and are semi-infinite. Initially, the input tape
contains a semi-infinite binary string with one bit per square
starting at the leftmost square, and all heads scan the leftmost
squares on their tapes. Upon halting, the initial segment p of
the input that has been scanned is called the input program
and the contents of the output tape is called the output.
By construction, the set of halting programs is prefix free
(Appendix A), and this type of Turing machine is called
a prefix Turing machine. A standard enumeration of prefix
Turing machines T1, T2, . . . contains a universal machine U
such that U(i, p, y) = Ti(p, y) for all indexes i, programs p,
and auxiliary strings y. (Such universal machines are called
“optimal” in contrast with universal machines like U ′ with
U ′(i, pp, y) = Ti(p, y) for all i, p, y, and U ′(i, q, y) = 1
for q 6= pp for some p.) We call U the reference universal
prefix Turing machine. This leads to the definition of prefix
Kolmogorov complexity.

Formally, the conditional prefix Kolmogorov complexity
K(x|y) is the length of the shortest input z such that the
reference universal prefix Turing machine U on input z
with auxiliary information y outputs x. The unconditional
Kolmogorov complexity K(x) is defined by K(x|ε) where ε is
the empty string. In these definitions both x and y can consist
of strings into which finite sets of finite binary strings are
encoded. Theory and applications are given in the textbook
[23].

For a finite set of strings we assume that the strings
are length-increasing lexicographic ordered. This allows us
to assign a unique Kolmogorov complexity to a set. The
conditional prefix Kolmogorov complexity K(X|x) of a set
X given an element x is the length of a shortest program
p for the reference universal Turing machine that with input
x outputs the set X . The prefix Kolmogorov complexity
K(X) of a set X is defined by K(X|ε). One can also
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put set in the conditional such as K(x|X) or K(X|Y ). We
will use the straightforward laws K(·|X,x) = K(·|X) and
K(X|x) = K(X ′|x) up to an additive constant term, for
x ∈ X and X ′ equals the set X with the element x deleted.

We use the following notions from the theory of Kol-
mogorov complexity. The symmetry of information property
[12] for strings x, y is

K(x, y) = K(x) +K(y|x) = K(y) +K(x|y), (A.1)

with equalities up to an additive term O(log(K(x, y))).

D. Metricity

A distance function d on X is defined by d : X → R+

where R+ is the set of nonnegative real numbers. If X,Y, Z ∈
X , then Z = XY if Z is the set consisting of the elements
of the sets X and Y ordered length-increasing lexicographic.
A distance function d is a metric if

1) Positive definiteness: d(X) = 0 if all elements of X are
equal and d(X) > 0 otherwise. (For sets equality of all
members means |X| = 1.)

2) Symmetry: d(X) is invariant under all permutations of
X .

3) Triangle inequality: d(XY ) ≤ d(XZ) + d(ZY ).

E. Proofs

Proof. of Lemma II.4.
Run all programs dovetailed fashion and at each time instant

select a shortest program that with inputs e(x) for all x ∈ X
has terminated with the same output e(X). The lengths of
these shortest programs gets shorter and shorter, and in for
growing time eventually reaches EGmax(X) (but we do not
know the time for which it does). Therefore EGmax(X) is up-
per semicomputable. It is not computable since for X = {x, y}
we have EGmax(X) = max{K(e(x)|e(y)),K(e(y)|e(x))}+
O(1), the information distance between e(x) and e(y) which
is known to be incomputable [3].

Proof. of Theorem II.5.
(≤) We use a modification of the proof of [24, Theorem

2]. According to Definition II.1 x = y iff e(x) = e(y). Let
X = {x1, . . . , xn} and k = maxx∈X{K(e(X)|e(x)}. A set of
cardinality n in S is for the purposes of this proof represented
by an n-vector of which the entries consist of the lexicographic
length-increasing sorted members of the set. For each 1 ≤
i ≤ n let Yi be the set of computably enumerated n-vectors
Y = (y1, . . . , yn) with entries in S such that K(e(Y )|e(yi)) ≤
k for each 1 ≤ i ≤ n. Define the set V =

⋃n
i=1 Yi. This

V is the set of vertices of a graph G = (V,E). The set of
edges E is defined by: two vertices u = (u1, . . . , un) and
v = (v1, . . . , vn) are connected by an edge iff there is 1 ≤
j ≤ n such that uj = vj . There are at most 2k self-delimiting
programs of length at most k computing from input e(uj) to
different e(v)’s with uj in vertex v as jth entry. Hence there
can be at most 2k vertices v with uj as jth entry. Therefore,
for every u ∈ V and 1 ≤ j ≤ n there are at most 2k vertices
v ∈ V such that vj = uj . The vertex-degree of graph G is
therefore bounded by n2k. Each graph can be vertex-colored

by a number of colors equal to the maximal vertex-degree.
This divides the set of vertices V into disjoint color classes
V = V1

⋃
· · ·
⋃
VD with D ≤ n2k. To compute e(X) from

e(x) with x ∈ X we only need the color class of which e(X)
is a member and the position of x in n-vector X . Namely,
by construction every vertex with the same element in the jth
position is connected by an edge. Therefore there is at most a
single vertex with x in the jth position in a color class. Let x
be the jth entry of n-vector X . It suffices to have a program
of length at most log(n2k) +O(log nk) = k+O(log nk) bits
to compute e(X) from e(x). From n and k we can generate
G and given log(n2k) bits we can identify the color class Vd
of e(X). Using another log n bits we define the position of
x in the n-vector X . To make such a program self-delimiting
add a logarithmic term. In total k + O(log k) suffices since
O(log k) = O(log n+ log nk).

(≥) That EGmax(X) ≥ maxx∈X{K(e(X)|e(x)} follows
trivially from the definitions.

Proof. of Lemma IV.1.
(≥ 0) Since f(X) ≤ f(x) for all x ∈ X the numerator of

the right-hand side of (II.3) is nonnegative. Since the denom-
inator is also nonnegative we have NWD(X) ≥ 0. Example
of the lower bound: if maxx∈X{log f(x)} = log f(X), then
NWD(X) = 0.

(≤ (log|X|(N/|X|))/(|X| − 1)) Write n = |X|, xM =
arg maxx∈X f(x) and xm = arg minx∈X f(x). Rewrite (II.3)
as (n − 1)NWD(X) = log(f(xM )/f(X))/ log(N/f(xm)).
This expression can only reach its maximum if f(X) is
as small as possible which can be achieved independent of
the other parameters. To this end the web events e(x) for
x ∈ X satisfy

⋂
x∈X e(x) is a singleton set which means that

f(X) = 1. (For f(X) = 0 we have
⋂
x∈X e(x) = ∅ and

NWD(X) is undefined.) For f(X) = 1 the expression can
be rewritten as (n − 1)NWD(X) = logN/f(xm) f(xM ) = α
where α is determined by (N/f(xm))α = f(xM ). The side
conditions which must be satisfied are f(xm) ≤ f(xM ) and
(n − 1)f(xm) + f(xM ) ≤ N . For any fixed f(xM ) the
value of α is maximal if f(xm) is as large as possible which
means that f(xm) = f(xM ). Then f(xM ) = Nα/(α+1). With⋃
x∈X e(x) = Ω and

⋂
x∈X e(x) is a singleton set we have

f(xM ) = (N−1)/n+1. It follows that log((N+n−1)/n) =
(α/(α+ 1)) logN . Rewriting yields first 1− logN ((N + n−
1)/n) = 1/(α + 1) and then α = (1/(1 − logN ((N + n −
1)/n))) − 1 = (1/ logN (Nn/(N + n − 1))) − 1. Hence
NWD(X) ≤ (1/ logN (Nn/(N + n − 1)) − 1)/(n − 1) <
(1/ logN n− 1)/(n− 1) = (logn(N/n))/(n− 1).

Proof. of Lemma IV.3.
(i) Since X ⊆ Y and because of the condition of item (i) we

have miny∈Y {log f(y)} = minx∈X{log f(x)}. From X ⊆ Y
also follows maxy∈Y {log f(y)} ≥ maxx∈X{log f(x)}, and
log f(X) ≥ log f(Y ). Therefore the numerator of NWD(Y )
is at least as great as that of NWD(X), and the denominator
of NWD(Y ) equals (|Y |−1)/(|X|−1) times the denominator
of NWD(X).

(ii) We have minx∈Y log f(y) < minx∈X{log f(x)}. If
NWD(X) is maximal then NWD(Y ) is maximal (in both
cases there is least common similarity of the members of the
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set). Item (ii) follows vacuously in this case. Therefore assume
that NWD(X) is less than maximal. Write NWD(X) = a/b
with a equal to the numerator of NWD(X) and b equal to
the denominator. If c, d are real numbers satisfying c/d ≥ a/b
then bc ≥ ad. Therefore ab+ bc ≥ ab+ ad which rearranged
yields (a + c)/(b + d) ≥ a/b. If c/d < a/b then by similar
reasoning (a+ c)/(b+ d) < a/b.

Assume (IV.1) holds. We take the logarithms of both
sides of (IV.1) and rearrange it to obtain log f(X) −
maxx∈X{log f(x)} − log f(Y ) + maxy∈Y {log f(y)} ≥
(minx∈X{log f(x)} − miny∈Y {log f(y)})(|X| −
1)NWD(X). Let the lefthand side of the inequality be
c and the righthand side of the inequality be dNWD(X).
Then

NWD(X) =
maxx∈X{log f(x)} − log f(X)

(logN −minx∈X{log f(x)})(|X| − 1)
(A.2)

≤ maxy∈Y {log f(y)} − log f(Y )

(logN −miny∈Y {log f(y)})(|X| − 1)

=
|Y | − 1

|X| − 1
NWD(Y ).

The inequality holds by the rewritten (IV.1) and the a, b, c, d
argument above since c/d ≥ NWD(X) = a/b.

Assume (IV.1) does not hold, that is, it holds
with the ≥ sign replaced by a < sign. We take
logarithms of both sides of this last version and
rewrite it to obtain log f(X) − maxx∈X{log f(x)} −
log f(Y ) + maxy∈Y {log f(y)} < (minx∈X{log f(x)} −
miny∈Y {log f(y)})(|X|−1)NWD(X). Let the lefthand side
of the inequality be c and the righthand side dNWD(X).
Since c/d < NWD(X) = a/b we have a/b > (a+c)/(b+d)
by the a, b, c.d argument above. Hence (A.2) holds with
the ≤ sign switched to a > sign. It remains to prove that
NWD(Y ) ≥ NWD(Z)(|Z| − 1)/(|Y | − 1). This follows
directly from item (i).

Proof. of Lemma IV.6.
The following is a counterexample. Let X = {x1},

Y = {x2}, Z = {x3, x4}, maxx∈XY {log f(x)} = 10,
maxx∈XZ{log f(x)} = 10, maxx∈ZY {log f(x)} = 5,
log f(XY ) = log f(XZ) = log f(ZY ) = 3,
minx∈XY {log f(x)} = minx∈XZ{f(x)} =
minx∈ZY {log f(x)} = 4, and logN = 35. This arrangement
can be realized for queries x1, x2, x3, x4. (As usual we assume
that e(xi) 6= e(xj) for 1 ≤ i, j ≤ 4 and i 6= j.) Computation
shows NWD(XY ) > NWD(XZ) + NWD(ZY ) since
7/31 > 7/62 + 1/62.

Proof. of Theorem IV.8.
We start with the following:

Claim A.1. EGmax(X) is an admissible web distance func-
tion and EGmax(X) ≤ D(X) for every computable admissi-
ble web distance function D.

Proof. Clearly EGmax(X) satisfies items (i) and (ii) of Defi-
nition IV.7. To show it is an admissible web distance it remains

to establish the density requirement (iii). For fixed x consider
the sets X 3 x and |X| ≥ 2. We have∑

X:X3x & |X|≥2

2−EGmax(X) ≤ 1,

since for every x the set {EGmax(X) : X 3
x & EGmax(X) > 0} is the length set of a binary prefix
code and therefore the summation above satisfies the Kraft
inequality [19] given by (II.1). Hence EGmax is an admissible
distance.

It remains to prove minorization. Let D be a computable
admissible web distance, and the function f defined by
f(X,x) = 2−D(X) for x ∈ X and 0 otherwise. Since D
is computable the function f is computable. Given D, one
can compute f and therefore K(f) ≤ K(D) + O(1). Let m
denote the universal distribution [23]. By [23, Theorem 4.3.2]
cDm(X|x) ≥ f(X,x) with cD = 2K(f) = 2K(D)+O(1), that
is, cD is a positive constant depending on D only. By [23,
Theorem 4.3.4] we have − logm(X|x) = K(X|x) + O(1).
Altogether, for every X ∈ X and for every x ∈ X holds
log 1/f(X,x) ≥ K(X|x)+log 1/cD+O(1). Hence D(X) ≥
EGmax(X) + log 1/cD +O(1).

By Lemma II.4 the function EGmax is upper semi-
computable but not computable. The function G(X) −
minx∈X{G(x)} is a computable and an admissible func-
tion as in Definition IV.7. By Claim A.1 it is an upper
bound on EGmax(X) and hence EGmax(X) < G(X) −
minx∈X{G(x)}. Every admissible property or feature that is
common to all members of X is quantized as an upper bound
on EGmax(X). Thus, the closer G(X) − minx∈X{G(x)}
approximates EGmax(X), the better it approximates the com-
mon admissible properties among all search terms in X .
This G(X)−minx∈X{G(x)} is the numerator of NWD(X).
The denominator is maxx∈X{G(x)}(|X| − 1), a normalizing
factor.

REFERENCES

[1] A.K. Ahmeti et al. Age of onset of amyotrophic lateral sclerosis is
modulated by a locus on 1p34.1, Neurobiology of Aging 34:1(2013),
357.e357-357.e319.

[2] J.P. Bagrow, D. ben-Avraham, On the Google-fame of scientists and
other populations, AIP Conference Proceedings 779:1(2005), 81–89.
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[33] F.C.M. Sillé, et al., Post-GWAS Functional Characterization of Sus-
ceptibility Variants for Chronic Lymphocytic Leukemia, PLoS One,
7:1(2012), e29632.

[34] A.I. Soto-Ortolaza, A. I. et al., GWAS risk factors in Parkinson’s disease:
LRRK2 coding variation and genetic interaction with PARK16, Am. J.
Neurodegener Dis. 2:4(2013), 287–299.

[35] P.-N. Tan, V. Kumar, J. Srivastava, Selecting the right interestingness
measure for associating patterns. Proc. ACM-SIGKDD Conf. Knowledge
Discovery and Data Mining, 2002, 491–502.

[36] E. Terra, C.L.A. Clarke, Frequency estimates for statistical word
similarity measures, 37/162 in Human Language Theory Conference
(HLT/NAACL 2003), Edmonton, Alberta, 2003.
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