Web Similarity

Andrew R. Cohen and Paul M.B. Vitányi

Abstract

Normalized web distance (NWD) is a similarity or normalized semantic distance based on the World Wide Web or another large electronic database, for instance Wikipedia, and a search engine that returns reliable aggregate page counts. For sets of search terms the NWD gives a common similarity (common semantics) on a scale from 0 (identical) to 1 (completely different). The NWD approximates the similarity of members of a set according to all (upper semi)computable properties. We develop the theory and give applications of classifying using Amazon, Wikipedia, and the NCBI website from the National Institutes of Health. The last gives new corrolations between health hazards. The earlier NGD gives a numerical value solely for the features a pair has in common. Different pairs may have the same NGD's but related to different features. In contrast, the NWD accounts for the features all members of a set have in common. This makes the NWD more effective for many classification questions.

Index Terms- Normalized web distance, pattern recognition, data mining, similarity, classification, Kolmogorov complexity,

I. Introduction

Certain objects are computer files that carry all their properties in themselves. For example the scanned handwritten digits in the MNIST database [21]. However, there are also objects that are given by name, such as 'red,' 'three,' 'Einstein,' or 'chair.' Such objects acquire their meaning from the common knowledge of mankind. We can give objects either as the object itself or as the name of that object, such as the literal text of the work "Macbeth by Shakespeare" or the name "Macbeth by Shakespeare." We focus on the name case and provide semantics using the background information of a large data base such as the World Wide Web or Wikipedia, and a search engine that produces reliable aggregate page counts. The frequencies involved enable us to compute a distance for each set of names. This is the web distance of that set or more properly the web diameter of that set. The normalized form of this distance expresses similarity, that is, the semantics (properties, features) the names in the set have in common. Insofar as the distance or diameter of the set as discovered by this process approximates the common semantics of the objects in the set in human society, the above distance expresses this common semantics. The term "name" is used here synonymously with "word" "search term" or "query." The normalized distance above is called the normalized web distance (NWD). To compute $N W D(X)$ of a set $X=\left\{\right.$ name $_{1}, \ldots$, name $\left._{n}\right\}$ we just use the number of web pages returned on the query "name ${ }_{1} \ldots$ name $_{n}$," the

Andrew Cohen is with the Department of Electrical and Computer Engineering, Drexel University. Address: A.R. Cohen, 312040 Market Street, Suite 313, Philadelphia, PA 19104, USA. Email: acohen@coe.drexel.edu

Paul Vitányi is with the national research center for mathematics and computer science in the Netherlands (CWI), and the University of Amsterdam. Address: CWI, Science Park 123, 1098XG Amsterdam, The Netherlands. Email: Paul.Vitanyi@cwi.nl.
minimum number of web pages returned on the query for a name in X, the maximum number of web pages returned on the query for a name in X, and the total number of web pages capable of being returned.

A. Goal

Suppose we want to classify a new object in the most appropriate one of several classes of objects. The objects in each class have a certain similarity to one another. For example all the objects may be red, flowers, and so on. We are talking here of properties which all the objects in a class share. Intuitively the new object should go into the class of which the similarity changes as little as possible under the insertion. Among those we should choose the class of maximal similarity. A red flower may go into the class in which all the objects are red flowers. To achieve this goal we need to define a measure of similarity between the objects of a class. This similarity measure is associated with the class and to compare different classes it should be relativized. Namely, if in class C_{1} all objects are 1% the same and in class C_{2} all objects are 50% the same while all objects in C_{1} are 1000 times larger than all objects in C_{2}, then in absolute terms the objects in C_{1} are more the same than the objects in C_{2}. Therefore the measure of similarity of a class should be relative and expressed by a number between 0 and 1 . The NWD proposed here is such a measure of similarity.

B. Semantics

The NWD is an extension to sets of the Normalized Google Distance (NGD) [6] which computes a distance between two names. Since we deal with names it may be appropriate to equate "similarity" with relative semantics for a pair of names and common semantics for a set of more than two names. For example, the common semantics of $\{$ red, green, blue, yellow $\}$ comprises the notion "color" and the common semantics of \{one, two, three, four\} comprises the notion "number." A theory of common semantics of a set of objects as we develop it here is based on (and unavoidably biased by) a background contents consisting of a database and a search engine. An example is the set of pages constituting the world-wide-web and a search engine like Google. Linguists judge the accuracy of Google counts trustworthy enough: In [17] (see also the many references to related research) it is shown that web searches for rare two-word phrases correlated well with the frequency found in traditional corpora, as well as with human judgments of whether those phrases were natural. The common semantics relations between a set of objects is distilled from the web pages by just using the number of web pages in which the names of the objects occur, singly and jointly (irrespective of location or multiplicity). Therefore the common semantics
is that of a particular database (World Wide Web, Wikipedia, Amazon, Pubnet) and an associated search engine. Insofar as the effects of a database-search engine pair approximates the utterances of a particular segment of human society we can identify the NWD associated with a set of objects with the (normalized) common semantics of that set in that segment of human society.

C. NWD Can Not Be Obtained From NGDs

It is impossible in general to use combinations of NGD's to compute the common semantics of a set of more than two names. This is seen as follows. The only thing one can do using the NGD is to compute the NGD's between all pairs of members in the set and take the minimum, the maximum, the average, or something else. This means that one uses the relative semantics between all pairs of members of the set but not the semantics that all members of the set have in common. For example, each pair may have a lot of relative semantics but possibly different relative semantics for each pair. That these semantcs are different may not be inferrable from the NGD's. The conclusion may be that the members of the set have a lot in common. But in actual fact the set may have little or no semantics in common at all.

The common semantics of all names in the set is accounted for by the NWD. Therefore using the NWD may give very different results from using the NGD's. An example using Google counts is given by homonyms such as "grave," "iron," and "shower." On 30 March 2016 Google gave "grave iron shower" 904.000 results indicating that this triple of words have little in common. But "grave iron" got 107.000.000 results, "iron shower" got 126.000 .000 results, and "grave shower" got 9.240 .000 results indicating that each of these three word pairs have more in common than the word triple. We defer giving a formal example until the necessary formal tools are in place and then give Example III.1.

D. Classification

In classification we use the semantics the objects in a class have in common. Up till now this was replaced by other measures such as distances in Euclidean space. The NWD of a class expresses directly (possibly an approximation of) the common semantics of the objects in the class. According to Section I-B this cannot be achieved by combinations of the relative semantics between pairs of objects in the class. Therefore classification using the NGD's alone may be inferior to using the NWD's which take crucial information into account. Again the necessary formal tools are required to present Example III.1. It shows that we require the NWD notion and that the method using NGD's while being deficient also has a much larger computational complexity, Section III.

E. Background

To develop the theory behind the NWD we consider the information in individual objects. These objects are finite and expressed as finite binary strings. The classic notion of Kolmogorov complexity [18] is an objective measure for
the information in a single object, and information distance measures the information between a pair of objects [3]. To develop the NWD we use the new notion of common information between many objects [24], [11].

F. Related Work

To determine word similarity or word associations has been topical in cognitive psychology [20], linguistics, natural language processing, search engine theory, recommender systems, and computer science. One direction is to use word (phrases) frequencies in text corpora to develop measures for word similarity or word association, see the surveys in [36], [35]. A successful approach is Latent Semantic Analysis (LSA) [20] that appeared in various forms in a great number of applications. LSA and its relation to the present approach (rather the NGD approach) is discussed in [6]. As with LSA, many other previous approaches of extracting corollations from text documents are based on text corpora that are many order of magnitudes smaller, and that are in local storage, and on assumptions that are more refined, than what we propose. Another recently succesful approach is [28] which uses the large text corpora available at Google to compute so-called word-vectors of two types: predicting the context or deducing the word from the context. This brute-force approach yields word analogies and other desirable phenomena. For example, the word vector of "king" minus that of "man" plus that of "woman" gives a word vector near that of "queen." However, just as the other methods mentioned above and below it gives no common semantics of a set of words but only a distance between two words like the NGD. Counterexamples to the NGD as in Example III. 1 work here too: large relative semantics between every pair of words of a set may not imply large common semantics of these words. One needs a relation between all the objects like the NWD does. Another difference is that to compute word vectors we require even larger corpora of words in local storage than LSA does.

In contrast, [7], [2] and the many references cited there, use the web and Google counts to identify lexico-syntactic patterns or other data. Again, the theory, aim, feature analysis, and execution are different from ours, and cannot meaningfully be compared. Essentially, the NWD method below automatically extracts semantic relations between sets of arbitrary objects from the web in a manner that is feature-free, up to the data base and search-engine used, and computationally feasible.

The similarity or relative semantics between pairs of search terms was defined in [6] and demonstrated in practice by using the World Wide Web as database and Google as search engine. The proposed normalized Google distance (NGD) works for any search engine that gives an aggregate page count for search terms. See for example [4], [13], [40], [39], [5] and the many references to [6] in Google scholar. In [24] the notion is introduced of the information required to go from any object in a finite multiset (a set where a member can occur more than once) of objects to any other object in the set. Let X denote a finite multiset of n finite binary strings defined by $\left\{x_{1}, \ldots, x_{n}\right\}$, the constituting elements ordered length-increasing lexicographic. The information distance in
X is defined by $E_{\max }(X)=\min \left\{|p|: U\left(x_{i}, p, j\right)=x_{j}\right.$ for all $\left.x_{i}, x_{j} \in X\right\}$ (see Appendix C for the undefined notions). For instance, with $X=\{x, y\}$ the quantity $E_{\max }(X)$ is the least number of bits in a program to transform x to y and y to x. In [37] the mathematical theory is developed further and the difficulty of normalization is shown. In [11] the normalization is given, justified, and many applications are given of using compression to classify objacts given as computer files, for example related to the MNIST data base of hand written digits and to stem cell classification.

G. Results

The NWD is a similarity (a common semantics) between all search terms in a set. (We use set rather than multiset as in [11] since a set seems more appropriate than multiset in the context of search terms.) The NWD can be thought of as a diameter of the set. For sets of cardinality two this diameter reduces to a distance between the two elements of the set. The NWD can be used for the classification of an unseen item into one of several classes (sets of names or phrases). This is required in constructing classes of more than two members while the NGD's as in [6] suffice for classes of two members.

The basic concepts like the web events, web distribution, and web code are given in Section II. These are similar to what is used in [6] for the NGD. The remaining derivation and results are of necessity new and different. We determine the length of a single shortest binary program to compute from any web event of a single member in a set to the web event associated with the whole set (Theorem II.5). The mentioned length is an absolute information distance associated with the set. It is incomputable (Lemma II.4). It can be large while a set has similar members and small when the set has dissimilar members. This depends on the relative size of the difference between members. Therefore we normalize to express the relative information distance which we associate with similarity between members of the set. We approximate the incomputable normalized version with the computable NWD (Definition II.6). In Section III we compare the NWD and the earlier NGD with respect to the computational complexity (expressed in required number of queries) and accuracy. The NWD method requires less queries compared to the NGD method while the latter usually also yields inferior results. In Section IV we present properties of the NWD such as the range of the NWD (Lemma IV.1), whether and how it changes under adding members (Lemma IV.3), and that it does not satisfy the triangle inequality and hence is not metric (Lemma IV.6). Theorem IV. 8 and Corollary IV. 9 show that the NWD approximates the common similarity of the queries in a set of search terms (that is, a common semantics). We subsequently apply the NWD to various data sets based on search results from Amazon, Wikipedia and the National Center for Biotechnology Information (NCBI) website from the U.S. National Institutes of Health in Section V. We treat strings and self-delimiting strings in Appendix A, computability notions in Appendix B, Kolmogorov complexity in Appendix C, and metric of sets in Appendix D. The proofs are deferred to Appendix E.

II. Web Distribution and Web Code

We give a derivation that holds for idealized search engines that return reliable aggregate page counts from their idealized data bases. For convenience we call this the "web" consisting of "web pages." Subsequently we apply the idealized theory to real problems using real search engines on real data bases.

A. Web Event

The set of singleton search terms is denoted by \mathcal{S}, a set of search terms is $X=\left\{x_{1}, \ldots, x_{n}\right\}$ with $x_{i} \in \mathcal{S}$ for $1 \leq i \leq n$, and \mathcal{X} denotes the set of such X. Let the set of web pages indexed (possible of being returned) by the search engine be Ω.

Definition II.1. We define the web event $e(X) \subseteq \Omega$ by the set of web pages returned by the search engine doing a search for X such that each web page in the set contains occurrences of all elements from X.

If $x, y \in S$ and $e(x)=e(y)$ then $x \sim y$ and the equivalence class $[x]=\{y \in S: y \sim x\}$. Unless otherwise stated, we consider all singleton search terms that define the same web event as the same term. Hence we deal actually with equivalence classes $[x]$ rather than x. However, for ease of notation we write x in the sequel and consider this to mean $[x]$.

If $x \in S$ then the frequency of x is $f(x)=|e(x)|$; if $X=\left\{x_{1}, \ldots, x_{n}\right\}$, then $e(X)=e\left(x_{1}\right) \bigcap \cdots \bigcap e\left(x_{n}\right)$ and $f(X)=|e(X)|$. The web event $e(X)$ embodies all direct context in which all elements from X simultaneously occur in these web pages. Therefore web events capture in the outlined sense all background knowledge about this combination of search terms on the web.

B. The Web Code

It is natural to consider code words for web events. We base those code words on the probability of the event. Define the probability $g(X)$ of X as $g(X)=f(X) / N$ with $N=\sum_{X \in \mathcal{X}} f(X)$. This probability may change over time, but let us imagine that the probability holds in the sense of an instantaneous snapshot. A derived notion is the average number of different sets of search terms per web page α. Since $\alpha=\sum_{X \in \mathcal{X}} f(X) /|\Omega|$ we have $N=\alpha|\Omega|$.

A probability mass function on a known set allows us to define the associated prefix-code word length (information content) equal to unique decodable code word length [19], [26]. Such a prefix code is a code such that no code word is a proper prefix of any other code word. By the ubiquitous Kraft inequality [19], if l_{1}, l_{2}, \ldots is a sequence of positive integers satisfying

$$
\begin{equation*}
\sum_{i} 2^{-l_{i}} \leq 1 \tag{II.1}
\end{equation*}
$$

then there is a set of prefix-code words of length l_{1}, l_{2}, \ldots. Conversely, if there is a set of prefix-code words of length l_{1}, l_{2}, \ldots then these lengths satisfy the above displayed equation. By the fact that the probabilities of a discrete set sum to at most 1 , every web event $e(X)$ having probability $g(X)$ can be encoded in a prefix-code word.

Definition II.2. The length $G(X)$ of the web code word for $X \in \mathcal{X}$ is

$$
\begin{equation*}
G(X)=\log 1 / g(X) \tag{II.2}
\end{equation*}
$$

or ∞ for $g(X)=0$. The case $|X|=1$ gives the length of the web code word for singleton search terms. The logarithms are throughout base 2 .

The web code is a prefix code. The code word associated with X and therefore with the web event $e(X)$ can be viewed as a compressed version of the set of web pages constituting $e(X)$. That is, the search engine compresses the set of web pages that contain all elements from X into a code word of length $G(X)$. (In the following Definition II. 3 we use the notion of U and the prefix Kolmogorov complexity K as in Appendix C.)

Definition II.3. Let $p \in\{0,1\}^{*}$ and $X \in \mathcal{X} \backslash S$. The information $E G_{\max }(X)$ to compute event $e(X)$ from event $e(x)$ for any $x \in X$ is defined by $E G_{\max }(X)=\min _{p}\{|p|:$ for all $x \in X$ we have $U(e(x), p)=e(X)\}$.

In this way $E G_{\max }(X)$ corresponds to the length of a single shortest self-delimiting program to compute output $e(X)$ from an input $e(x)$ for all $x \in X$.

Lemma II.4. The function $E G_{\max }$ is upper semicomputable but not computable.
Theorem II.5. $E G_{\max }(X)=\max _{x \in X}\{K(e(X) \mid e(x))\}$ up to an additive logarithmic term $O\left(\log \max _{x \in X}\{K(e(X) \mid e(x))\}\right)$ which we ignore in the sequel.

To obtain the NWD we must normalize $E G_{\max }$. Let us give some intuition first. Suppose $X, Y \in \mathcal{X}$ with $|X|,|Y| \geq 2$. If the web events $e(x)$'s are more or less the same for all $x \in X$ then we consider the members of X very similar to each other. If the web events $e(y)$'s are very different for different $y \in Y$ then we consider the members of Y to be very different from one another. Yet for certain such X and Y depending on the cardinalities of X and Y and the cardinalities of the web events of the members of X and Y we can have $E G_{\max }(X)=$ $E G_{\max }(Y)$. That is to say, the similarity is dependent on size. Therefore, to express similarity of the elements in a set X we need to normalize $E G_{\max }(X)$ using the cardinality of X and the events of its members. Expressing the normalized values allows us to express the degree in which all elements of a set are alike. Then we can compare truly different sets.

Use the symmetry of information law (A.1) to rewrite $E G_{\max }(X)$ as $K(e(X))-\min _{x \in X}\{K(e(x))\}$ up to a logarithmic additive term which we ignore. Since $G(X)$ is computable prefix code for $e(X)$, while $K(e(X))$ is the shortest computable prefix code for $e(X)$, it follows that $K(e(X)) \leq G(X)$. Similarly $K(e(x)) \leq G(x)$ for $x \in X$. The search engine G returns frequency $f(X)$ on query X (respectively frequency $f(x)$ on query x). These frequencies are readily converted into $G(X)$ (respectively $G(x)$) using (II.2). Replace $K(e(X))$ by $G(X)$ and $\min _{x \in X}\{K(e(x))\}$ by $\min _{x \in X}\{G(x)\}$ in $E G_{\max }(X)$. Subsequently use as normalizing term $\max _{x \in X}\{G(x)\}(|X|-1)$ which gives the best
classification results in Section V among several possibilities tried. This yields the following.

Definition II.6. The normalized web distance (NWD) of $X \in$ \mathcal{X} with $G(X)<\infty$ (equivalently $f(X)>0$)) is

$$
\begin{align*}
N W D(X) & =\frac{G(X)-\min _{x \in X}\{G(x)\}}{\max _{x \in X}\{G(x)\}(|X|-1)} \tag{II.3}\\
& =\frac{\max _{x \in X}\{\log f(x)\}-\log f(X)}{\left(\log N-\min _{x \in X}\{\log f(x)\}\right)(|X|-1)}
\end{align*}
$$

otherwise $N W D(X)$ is undefined.
The second equality in (II.3), expressing the NWD in terms of frequencies, is seen as follows. We use (II.2). The numerator is rewritten by $G(X)=\log 1 / g(X)=$ $\log (N / f(X))=\log N-\log f(X)$ and $\min _{x \in X}\{G(x)\}=$ $\min _{x \in X}\{\log 1 / g(x)\}=\log N-\max _{x \in X}\{\log f(x)\}$. The denominator is rewritten as $\max _{x \in X}\{G(x)\}(|X|-$ $1)=\max _{x \in X}\{\log 1 / g(x)\}(|X|-1)=(\log N-$ $\left.\min _{x \in X}\{\log f(x)\}\right)(|X|-1)$.

Example II.7. Although Google gives notoriously unreliable counts it serves well enough for an illustration On our scale of similarity, if $N W D(X)=0$ then the search terms in the set X are identical, and if $N W D(X)=1$ then the search terms in X are as different as can be. On 19 August 2014 searching for "Shakespeare" gave 124,000,000 hits; searching for "Macbeth" gave 22,400,000 hits; searching for "Hamlet" gave 51,300,000 hits; searching for "Shakespeare Macbeth" gave 7,730,000 hits; searching for "Shakespeare Hamlet" gave 18,500,000 hits; and searching for "Shakespeare Macbeth Hamlet" gave 663,000 hits. The number of web pages which can potentially be returned by Google was estimated by searching for "the" as 25,270,000,000. Using this number as N we obtain by (II.3) the $N W D(\{$ Shakespeare, Macbeth $\}) \approx$ $0.395, N W D(\{$ Shakespeare, Hamlet $\}) \approx 0.306$ and $N W D(\{$ Shakespeare, Macbeth, Hamlet $\}) \approx 0.372 . \mathrm{We}$ conclude that Shakespeare and Hamlet have a lot in common, Shakespeare and Macbeth have a lot in common, and the commonality of Shakespeare, Hamlet, and Macbeth is intermediate between the two. (In this example it is apparent that Google gives unreliable counts-the algorithms are tweaked for user satisfaction-since $N W D(\{$ Shakespeare, Macbeth $\})$ $N W D(\{$ Shakespeare, Macbeth, Hamlet $\})$ is slightly positive in contradiction to the analysis in Section III-B. Since $N W D(X)=0$ means that the elements of X are identical and $N W D(X)=1$ that they are as different as can be, the positivity of the above difference means that the items in this subset are less similar than the items in the total set, which should be impossible.)

Remark II.8. In Definition II. 6 it is assumed that $f(X)>0$ which, since it has integer values, means $f(X) \geq 1$. The case $f(X)=0$ means that there is an $x \in X$ such that $e(x) \bigcap e(X \backslash$ $\{x\})=\varnothing$. That is, query x is independent of the set of queries $X \backslash\{x\}, x$ has nothing in common with $X \backslash\{x\}$ since there is no common web page. Hence the NWD is undefined. The other extreme is that $e(x)=e(y)(x \sim y)$ for all $x, y \in X$. In this case the $N W D(X)=0$.

III. Comparing NWD and NGD

The NGD (see Footnote 1) is a distance between two names. The NWD is an extension of the NGD to sets of names of finite cardinality. It is shown that the NWD has far less computational complexity than the NGD. Moreover, the NWD uses information to which the NGD is blind, that is, the common similarity determined by the NWD is far better than that determined by the NGD.

A. Computational Complexity

The number of queries needed for using the NWD is usually much less than that using the NGD. ${ }^{1}$ We ignore the cost of the arithmetic operations (which is larger anyway in the NGD case) and of determining N which has to be done in both cases. There are two tasks we consider.

Computing the common similarity of a set. The computational complexity of computing the common similarity using the NGD with a set of n terms is as follows. One has to use the search engine on the data base to determine the search term frequencies. This requires $n+\binom{n}{2}$ frequency computations, namely the frequencies of the singletons and of the pairs. To computational complexity of computing the common similarity of the same set of n terms by the NWD requires n queries to determine the singleton frequencies and 1 query to determine the frequency of pages containing the entire set, that is, $n+1$ times computing frequencies. Hence computational complexity using the NGD is much higher for large n than that using the NWD.

Classifying. Let n be the total number of elements divided over classes A_{1}, \ldots, A_{m} of cardinalities n_{1}, \ldots, n_{m}, respectively, with $\sum_{i=1}^{m} n_{i}=n$. We classify a new item x into one of the m classes according to which class achieves the minimum common similarity (CS) difference $C S(A \bigcup\{x\})-C S(A)$. If there are more than one such classes we select a class of maximal CS. We compute the CS using the NGD or the NWD. Using the NGD we require $n+\sum_{i=1}^{m}\binom{n_{i}}{2}$ queries to determine $C S\left(A_{1}\right), \ldots, C S\left(A_{m}\right)$. (Trivially $\sum_{i=1}^{m^{2}}\binom{n_{i}}{2} \leq\binom{ n}{2}$). To determine subsequently $C S\left(A_{1} \bigcup\{x\}\right), \ldots, C S\left(A_{m} \bigcup\{x\}\right)$ we require 1 query extra to determine $f(x)$ and n queries extra to determine $f(x, y)$ for every item y among the original n elements. Altogether there are $2 n+1+\sum_{i=1}^{m}\binom{n_{i}}{2}$ queries required using the NGD.

Using the NWD requires $\sum_{i=1}^{m}\left(n_{i}+1\right)=n+m$ queries to determine the NWD of A_{1}, \ldots, A_{m}. To subsequently determine the NWDs of $A_{1} \bigcup\{x\}, \ldots, A_{m} \bigcup\{x\}$ we extra require $f(x)$ and each of $f\left(\left\{y: y \in A_{i}\right\} \bigcup\{x\}\right)$ for $1 \leq i \leq m$. That is, $1+m$ queries. So in total $n+2 m+1$ queries.

To classify many new items we may consider training cost and testing cost. Training cost is to pre-compute all the queries required for classifying a new element-without the costs for the new element. This is only done once. Testing cost is how many queries are required for each new item that comes along. Above we combined these two in the case of one new element.

[^0]The training cost for the NGD is up to $n+\binom{n}{2}$. The testing cost for each new item is $n+1$.

The training cost for the NWD is $n+m$. The testing cost for each new item is $m+1$.

B. NWD Versus NGD

Let A, B be two sets of queries and $B \subset A$. Then the common similarity of the queries in $A \backslash B$ may or may not agree with the common similarity of the queries in B but adding $A \backslash B$ to B to obtain A will not increase the common similarity of the queries in A above that in B. Therefore the common similarity in A is at most that in B. This is generally followed by the NWD without the normalizing factor $|X|-1$ in the denominator, see Lemma IV.3, except in the pathological case when (IV.1) does no hold.

Assume that $A=\left\{a_{1}, \ldots, a_{n}\right\}$ and $B=\left\{b_{1}, b_{2}\right\}$ with $b_{1}, b_{2} \in A$. Then $N W D(A) \leq \min _{b_{1}, b_{2} \in A} N W D(B)=$ $\min _{b_{1}, b_{2} \in A} N G D\left(b_{1}, b_{2}\right)$. Only in this sense using the NGD to determine the common similarity in a set A gives an upper bound on $N W D(A)$. All formulas using only NGD's use a subset of the $f\left(a_{i}\right)$'s and the $f\left(a_{i}, a_{j}\right)$'s $(1 \leq i, j \leq n)$. The NWD uses the $f\left(a_{i}\right)$'s and $f\left(a_{1}, \ldots, a_{n}\right)$. For given $f\left(a_{i}\right)$ and the $f\left(a_{i}, a_{j}\right)(1 \leq i, j \leq n)$ the values of $f\left(a_{1}, \ldots, a_{n}\right)$ can be any value in the interval $\left[0, \min _{b_{1}, b_{2} \in A} N G D\left(b_{1}, b_{2}\right)\right]$. Hence the NWD can vary a lot (and therefore the common similarity) for most fixed values of the NGD's.

Example III.1. Firstly, we give an example where the common similarity computed from NGD's is different from that computed by the NWD. Let $f(x)=f(y)=f(z)=N^{1 / 4}$ be the cardinalities of the sets of web pages containing occurrences of the term x, the term y, and the term z, respectively. The quantity N is the total number of webpages multiplied by the appropriate constant α as in Section II-B. Let further, $f(x, y)=f(x, z)=f(y, z)=N^{1 / 8}$ and $f(x, y, z)=N^{1 / 16}$. Here $f(x, y)$ is the number of pages containing both terms x and y, and so on. Computing the NGD's gives $\operatorname{NGD}(x, y)=$ $N G D(x, z)=N G D(y, z)=1 / 6$. Using for the set $\{x, y, z\}$ either the minimum NGD, the maximum NGD, or the average NGD, will always give the value $1 / 6$. Using the NWD as in (II.3) we find $N W D(\{x, y, z\})=1 / 8$. This shows that in this example the common similarity determined using the NGD is smaller than the common similarity determined using the NWD. (Recall that the common similarity is 0 if it is maximal and 1 if it is minimal.)
Secondly, we give an example of a difference in classification between the NGD and the NWD. The class is selected where the absolute difference in common similarity with and without inserting the new item is minimal. If more than one class is selected we choose a class with maximal common similarity. The frequencies of x, y, z and the pairs $(x, y),(x, z),(y, z)$ are as above. For the terms u, v and the pairs $(u, v),(u, z),(v, z)$ the frequencies are $f(u)=f(v)=$ $N^{1 / 4}$ and $f(u, v)=f(u, z)=f(v, z)=N^{1 / 9}$. Suppose we classify the term z into classes $A=\{x, y\}$ and $B=\{u, v\}$ using a computation with the NGD's. Then the class B will be selected. Namely, the insertion of z in class A will induce new NGD's with all exactly having the values of $1 / 6$ (as above).

Since $\operatorname{NGD}(u, v)=\operatorname{NGD}(u, z)=\operatorname{NGD}(v, z)=5 / 36$ insertion of z into the class $B=\{u, v\}$ will give the NGD's of all resulting pairs $(u, v),(u, z),(v, z)$ values of $5 / 36$. The choice being between classes A and B we see that in neither class the common similarity according to the NGD's is changed. Therefore we select the class where all NGD's are least (that is, the most common similarity) which is $B=\{u, v\}$. Next we select according to the NWD. Assume $f(u, v, z)=N^{1 / 10}$. Then $N W D(u, v, z)=1 / 4$. Then $N W D(\{u, v, z\})-N W D(\{u, v\})(=N G D(u, v))=1 / 4-$ $5 / 36=4 / 36$. Since $N W D(\{x, y, z\})-N W D(\{x, y\})(=$ $N G D(x, y))=1 / 8-1 / 6=-1 / 24$ and selection according to the NWD chooses the least absolute difference we select class $A=\{x, y\}$.

IV. Theory

Let $X=\{x, y\} \in \mathcal{X}$. The NGD distance between x and y in Footnote 1 equals $N W D(X)$ up to a constant. For sets of cardinality greater or equal to two the following holds.
Lemma IV.1. Let $X \in \mathcal{X} \backslash S$ and $N>|X|$. Then $N W D(X) \in\left[0,\left(\log _{|X|}(N /|X|)\right) /(|X|-1)\right]$.
(In practice the range is from 0 to 1 ; the higher values are theoretically possible but seem not to occur in real situations.) We determine bounds on how the NWD may change under addition of members to its argument. These bounds are necessary loose since the added members may be similar to existing ones or very different. In Lemma IV. 3 below we shall distinguish two cases related to the minimum frequencies. The second case divides into two subcases depending on whether the Equation IV. 1 below holds or not:

$$
\begin{equation*}
\frac{f\left(y_{1}\right) f(X)}{f\left(x_{1}\right) f(Y)} \geq\left(\frac{f\left(x_{0}\right)}{f\left(y_{0}\right)}\right)^{(|X|-1) N W D(X)} \tag{IV.1}
\end{equation*}
$$

where $\quad x_{0}=\quad \arg \min _{x \in X}\{\log f(x)\}, \quad y_{0}=$ $\arg \min _{y \in Y}\{\log f(y)\}, \quad x_{1}=\arg \max _{x \in X}\{\log f(x)\}$, and $y_{1}=\arg \max _{y \in Y}\{\log f(y)\}$.
Example IV.2. Let $|X|=5, f\left(x_{0}\right)=1,100,000, f\left(y_{0}\right)=$ $1,000,000, f\left(x_{1}\right)=f\left(y_{1}\right)=2,000,000, f(X)=500$, $f(Y)=100$, and $N W D(X)=0.5$. The righthand side of the inequality (IV.1) is $1.1^{2}=1.21$ while the lefthand side is 5 . Therefore (IV.1) holds. It is also possible that inequality (IV.1) does not hold, that is, it holds with the \geq sign replaced by the $<$ sign. We give an example. Let $|X|=5$, $f\left(x_{0}\right)=1,100,000, f\left(y_{0}\right)=1,000,000, f\left(x_{1}\right)=f\left(y_{1}\right)=$ $2,000,000, f(X)=110, f(Y)=100$, and $N W D(X)=0.5$. The righthand side of the inequality (IV.1) with \geq replaced by $<$ is $1.1^{2}=1.21$ while the lefthand side is 1.1 .

Lemma IV.3. Let $X, Z \subseteq Y, X, Y, Z \in \mathcal{X} \backslash S$, and $\min _{z \in Z}\{f(z)\}=\min _{y \in Y}\{f(y)\}$.
(i) If $f(y) \geq \min _{x \in X}\{f(x)\}$ for all $y \in Y$ then $(|X|-1) N W D(X) \leq(|Y|-1) N W D(Y)$. (ii) Let $f(y)<$ $\min _{x \in X}\{f(x)\}$ for some $y \in Y$. If (IV.1) holds then $(|X|-1) N W D(X) \leq(|Y|-1) N W D(Y)$. If (IV.1) does not hold then $(|X|-1) N W D(X)>(|Y|-1) N W D(Y) \geq$ $(|Z|-1) N W D(Z)$.

Example IV.4. Consider the Shakespeare-Macbeth-Hamlet Example II.7. Let $X=$ \{Shakespeare, Macbeth\}, $Y=$ Shakespeare, Macbeth, Hamlet\}, and $Z=$ \{Shakespeare, Hamlet\}. Then inequality (IV.1) for X versus Y gives $(124,000,000 \times 7,730,000 /(124,000,000 \times$ $663,000) \geq(22,400,000 / 22,400,000)^{0.395}$ (that is $11.659 \geq$ 1), and for Z versus Y gives $18,500,000 / 663,000 \geq$ $(51,300,000 / 22,400,000)^{0.306}$ (that is $27.903 \geq 1.289$). In the first case Lemma IV. 3 item (i) is applicable since the frequency minima of X and Y are the same. (In this case inequality (IV.1) is not needed.) Therefore $N W D(X)(|X|-$ 1) $/(|Y|-1) \leq N W D(Y)$ which works out as $0.395 / 2 \leq$ 0.372. In the second case Lemma IV. 3 item (ii) is applicable since the frequency minima of Z and Y are not the same. Since inequality (IV.1) holds this gives $N W D(Z)(|Z|-1) /(|Y|-$ $1) \leq N W D(Y)$ which works out as $0.306 / 2 \leq 0.372$.
Remark IV.5. To interpret Lemma IV. 3 we give the following intuition. Under addition of a member to a set there are two opposing tendencies on the NWD concerned. First, the range of the NWD decreases by Lemma IV. 1 and the definition (II.3) of the NWD shows that addition of a member tends to decrease the value of the NWD, that is, it moves closer to 0 . Second, the common similarity and hence the similarity of queries in a given set as measured by the NWD is based on the number of properties all members of a set have in common. By adding a member to the set clearly the number of common properties does not increase and generally decreases. This diminishing tends to cause the NWD to possibly increase-move closer to the maximum value of the range of the new set (which is smaller than that of the old set). The first effect may become visible when $(|X|-1) N W D(X)>(|Y|-1) N W D(Y)$, which happens in the case of Lemma IV. 3 item (ii) for the case when the frequencies do not satisfy (A.2). The second effect may become visible when $(|X|-1) N W D(X) \leq(|Y|-$ 1) $N W D(Y)$, which happens in Lemma IV. 3 item (i), and item (ii) with the frequencies satisfying (A.2).

For every set X we have that the $N W D(X)$ is invariant under permutation of X : it is symmetric. The NWD is also positive definite as in Appendix D (where equal members should be interpreted as saying that the set has only one member). However the NWD does not satisfy the triangle inequality and hence is not a metric. This is natural for a common similarity or semantics: The members of a set $X Y$ (shorthand for $X \bigcup Y$) can be less similar (have greater NWD) then the similarity of the members of $X Z$ plus the similarity of the members of $Z Y$ for some set Z.

Lemma IV.6. The $N W D$ violates the triangle inequality.
It remains to formally prove that the NWD expresses in the similarity of the search terms in the set. We define the notion of a distance on these sets using the web as side-information. For a set X a distance (or diameter) of X is denoted by $d(X)$. We consider only distances that are upper semicomputable, that is, the distance can be computably approximated from above (Appendix B). A priori we allow asymmetric distances, but we exclude degenerate distances such as $d(X)=1 / 2$ for all $X \in \mathcal{X}$ containing a fixed element x. That is, for every d
we want only finitely many sets $X \ni x$ such that $d(X) \leq d$. Exactly how fast we want the number of sets we admit to go to ∞ is not important; it is only a matter of scaling.

Definition IV.7. A web distance function (quantifying the common properties or common features) $d: \mathcal{X} \rightarrow \mathcal{R}^{+}$is admissible if $d(X)$ is (i) a nonnegative total real function and is 0 iff $X \in S$; (ii) it is upper semicomputable from the $e(x)$'s with $x \in X$ and $e(X)$; and (iii) it satisfies the density requirement: for every $x \in S$

$$
\sum_{X \ni x,|X| \geq 2} 2^{-d(X)} \leq 1
$$

We give the gist of what we are about to prove. Let $X=$ $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. A feature of a query is a property of the web event of that query. For example, the frequency in the web event of web pages containing an occurrence of the word "red." We can compute this frequency for each $e\left(x_{i}\right)(1 \leq$ $i \leq n$). The minimum of those frequencies is the maximum of the number of web pages containing the word "red" which surely is contained in each web event $e\left(x_{1}\right), \ldots, e\left(x_{n}\right)$. One can identify this maximum with the inverse of a distance in X. There are many such distances in X. The shorter a web distance is, the more dominant is the feature it represents. We show that the minimum admissible distance is $E G_{\max }(X)$. It is the least admissible web distance and represents the shortest of all admissible web distances in members of X. Hence the closer the numerator of $N W D(X)$ is to $E G_{\max }(X)$ the better it represents the dominant feature all members of X have in common.

Theorem IV.8. Let $X \in \mathcal{X}$. The function $G(X)-$ $\min _{x \in X}\{G(x)\}$ is a computable upper bound on $E G_{\max }(X)$. The closer it is to $E G_{\max }(X)$, the better it approximates the shortest admissible distance in X. The normalized form of $E G_{\max }(X)$ is $N W D(X)$.

The normalized least admissible distance in a set is the least admissible distance between its members which we call the common admissible similarity. Therefore we have:

Corollary IV.9. The function $N W D(X)$ is the common admissible similarity among all search terms in X. This admissible similarity can be viewed as semantics that all search terms in X have in common.

V. Applications

The approach presented here requires the ability to query a database for the number of occurrences and co-occurrences of the elements in the set that we wish to analyze. One challenge is to find a database that has sufficient breadth to contain a meaningful numbers of co-occurrences for related terms. As discussed previously, an example of one such database is the World Wide Web, with the page counts returned by Google search queries used as an estimate of co-occurrence frequency. There are two issues with using Google search page counts. The first issue is that Google limits the number of programmatic searches in a single day to a maximum of 100 queries, and charges for queries in excess of 100 at a rate of
up to $\$ 50$ per thousand. The second issue with using Google web search page counts is that the numbers are not exact, but are generated using an approximate algorithm that Google has not disclosed. For the questions considered previously [6] we found that these approximate measures were sufficient at that time to generate useful answers, especially in the absence of any a priori domain knowledge. It is possible to implement internet based searches without using search engine API's, and therefore not subject to daily limit. This can be accomplished by parsing the HTML returned by the search engine directly. The issue with google page counts in this study being approximate counts based on a non-public algorithm was more concerning as changes in the approximation algorithm can influence page count results in a way that may not reflect true changes to the underlying distributions. Since any internet search that returns a results count can be used in computing the NWD, we adopt the approach of using web sites that return exact rather than approximate page counts for a given query.
Here we describe a comparison of the NWD using the set formulation based on web-site search result counts with the pairwise NWD formulation. The examples are based on search results from Amazon, Wikipedia and the National Center for Biotechnology Information (NCBI) website from the U.S. National Institutes of Health. The NCBI website exposes all of the NIH databases searchable from a single web portal. We consider example classification questions that involve partitioning a set of words into underlying categories. For the NCBI applications we compare various diseases using the loci identified by large genome wide association studies (GWAS). For the NWD set classification, we determine whether to assign element x to class A or class B (both classes pre-existing) by computing $N W D(A x)-N W D(A)$ and $N W D(B x)-N W D(B)$ and assigning element x to whichever class achieves the minimum difference. A combination of pairwise NGD's for each class suffers in many cases from shortcomings as pointed out before and formally in Example III.1. Therefore, with the aim of doing better, for the pairwise NWD we use an approach based on spectral clustering. Rather than using a combination of simple pairwise information distances (NGD's), the spectral approach constructs a representation of the objects being clustered using an eigen-decomposition. In previous work we have found such spectral approaches to be most accurate when working with compression-based distance measures [9], [10], [15]. Mapping from clusters to classes for the pairwise analysis is done following the spectral clustering step by using a majority vote.
We now describe results from a number of sample applications. For all of these applications, we use a single implementation based on co-occurrence counts. For each search engine that we used, including Amazon, Wikipedia and NCBI a custom MATLAB script was developed to parse the search count results. We used the page counts returned using the built in search from each website for the frequencies, and following the approach in [6] choose N as the frequency for the search term 'the'. The results described were not sensitive to the choice of search term used to establish N, for example identical classification results were obtained using the counts returned by the search term ' N ' as the normalizing
factor. Following each classification result below, we include in parenthesis the 95% confidence interval for the result, computed as described in [38]

The first three classification questions we considered used the wikipedia search engine. These questions include classifying colors vs. animals, classifying colors vs. shapes and classifying presidential candidates by political party for the US 2008 U.S. presidential election. For colors vs animals and shapes, both pairwise and multiset NWD classified all of the elements 100% correctly $(0.82,1.0)$. For the presidential candidate classification by party, the pairwise NWD formulation performed poorly, classifying 58% correctly $(0.32,0.8)$, while the set formulation obtained 100% correct classification ($0.76,1.0$). Table I shows the data used for each question, together with the pairwise and set accuracy and the total number of website queries required for each method.

search engine: wikipedia	Multisets Correct	Pairwise Correct	Number of queries (pairwise)	Number of queries (multisets)
\{red, orange, yellow, green, blue, indigo\}	100%	100%	153	53
\{lion, tiger, bear, monkey, zebra, elephant, aardvark, lamb, fox, ape, dog\}				
\{red, orange, yellow, green, blue, indigo, violet, purple, cyan, white\} \{square,circle,rectangle,ellipse,triangle, rombus\}	100%	100%	136	50
\{Barack Obama, Hillary Clinton, John				
Edwards, Joe Biden, Chris Dodd, Mike Gravel\} \{John McCain, Mitt Romney, Mike Huckabee, Ron Paul, Fred Thompson, Alan Keyes\}	100%	58%	78	38

TABLE I
CLASSIFICATION RESULTS USING WIKIPEDIA.

The next classification question considered used page counts returned by the Amazon website search engine to classify book titles by author. Table II summarizes the sets of novels associated with each author, and the classification results for each author as a confusion matrix. The Multiset NWD (top) misclassified one of the Tolstoy novels ('War and Peace') to Stephen King, but correctly classified all other novels correctly, 96% accurate $(0.83,0.99)$. The pairwise NWD performed significantly more poorly, achieving only 79% accuracy ($0.6,0.9$).

The final application considered is to quantify similarities among diseases based on the results of genome wide association studies (GWAS). These studies scan the genomes from a large population of individuals to identify genetic variations occurring at fixed locations, or loci that can be associated with the given disease. Here we use the the NIH NCBI database to search for similarities among diseases, comparing loci identified by recent GWAS results for each disease. The diseases included Alzheimers [16], Parkinsons [34], Amyotrophic lateral sclerosis (ALS) [1], Schizophrenia [31], Leukemia [33], Obesity [30], and Neuroblastoma [25]. The top of Table III lists the loci used for each disease. The middle panel of Table III shows at each location (i, j) of the distance matrix the NWD computed for the combined counts for the loci of disease i concatenated with disease j. The diagonal elements (i, i) show the NWD for the loci of disease i. The bottom panel of Table III shows the NWD for each element with the diagonal subtracted, $(i, j)-(i, i)$.
King $=\{$ Carrie, Salems Lot, The Shining, The Stand, The Dead Zone, Firestarter, Cujo \}
Twain =\{Adventures of Huckleberry Finn, A Connecticut Yankee in King Arthurs Court, Life on the Mississippi, Puddnhead Wilson\}
Hemingway = \{The Old Man and The Sea, The Sun Also Rises, For Whom the Bell Tolls, A Farewell To Arms \}
Tolstoy $=\{$ Anna Karenina, War and Peace, The Death of Ivan Ilyich $\}$

	Multiset NWD	True Class				
Predicted Class		Shakespeare	King	Twain	Hemingway	Tolstoy
	Shakespeare	10	0	0	0	0
	King	0	7	0	0	1
	Twain	0	0	4	0	0
	Hemingway	0	0	0	4	0
	Tolstoy	0	0	0	0	2

TABLE II
CLASSIFYING NOVELS BY AUTHOR USING AMAZON

Schizophrenia $=$ \{'rs1702294', 'rs11191419', 'rs2007044', 'rs4129585', 'rs35518360'\}							
```Leukemia = {'rs17483466', 'rs13397985', 'rs757978', 'rs2456449', 'rs735665',' 'rs783540','rs305061', 'rs391525', 'rs1036935', 'rs11083846'}```							
Alzheimers=\{'rs4420638', 'rs7561528', 'rs17817600', 'rs3748140', 'rs12808148', 'rs6856768', 'rs11738335', 'rs1357692');							
Obesity=\{'rs10926984', 'rs12145833', 'rs2783963', 'rs11127485', 'rs17150703', 'rs13278851'\};							
Neuroblastoma = 'rs6939340', 'rs4712653', 'rs9295536', 'rs3790171', 'rs7272481'\};							
Parkinsons=\{'rs356219', 'rs 10847864', 'rs2942168', 'rs11724635'\}							
ALS $=\{$ 'rs2303565', 'rs1344642', 'rs2814707', 'rs3849942', 'rs2453556', 'rs1971791', 'rs8056742'\};							
NWD(i,j)							
	Alzheimers	Parkinsons	ALS	Schizophrenia	Leukemia	Obesity	Neuroblastoma
Alzheimers	$1.29 \mathrm{E}-02$	$2.43 \mathrm{E}-02$	$1.38 \mathrm{E}-02$	$1.55 \mathrm{E}-02$	$1.23 \mathrm{E}-02$	1.49E-02	$1.61 \mathrm{E}-02$
Parkinsons	$2.43 \mathrm{E}-02$	$1.80 \mathrm{E}-02$	$1.83 \mathrm{E}-02$	$1.58 \mathrm{E}-02$	$1.68 \mathrm{E}-02$	$1.53 \mathrm{E}-02$	$2.23 \mathrm{E}-02$
ALS	$1.38 \mathrm{E}-02$	$1.83 \mathrm{E}-02$	9.76E-03	1.19E-02	$1.46 \mathrm{E}-02$	9.96E-03	$1.75 \mathrm{E}-02$
Schizophrenia	$1.55 \mathrm{E}-02$	$1.58 \mathrm{E}-02$	1.19E-02	$1.38 \mathrm{E}-02$	1.13E-02	$1.60 \mathrm{E}-02$	$1.93 \mathrm{E}-02$
Leukemia	$1.23 \mathrm{E}-02$	$1.68 \mathrm{E}-02$	1.46E-02	$1.13 \mathrm{E}-02$	$7.54 \mathrm{E}-03$	1.15E-02	$1.61 \mathrm{E}-02$
Obesity	$1.49 \mathrm{E}-02$	$1.53 \mathrm{E}-02$	$9.96 \mathrm{E}-03$	$1.60 \mathrm{E}-02$	$1.15 \mathrm{E}-02$	$1.23 \mathrm{E}-02$	$1.51 \mathrm{E}-02$
Neuroblastoma	$1.61 \mathrm{E}-02$	$2.23 \mathrm{E}-02$	1.75E-02	$1.93 \mathrm{E}-02$	$1.61 \mathrm{E}-02$	$1.51 \mathrm{E}-02$	$1.51 \mathrm{E}-02$
	NWD(i, ${ }^{\text {j }}$-NWD $(\mathbf{i}, \mathrm{i})$						
	Alzheimers	Parkinsons	ALS	Schizophrenia	Leukemia	Obesity	Neuroblastoma
Alzheimers	0	$1.14 \mathrm{E}-02$	$9.20 \mathrm{E}-04$	$2.64 \mathrm{E}-03$	-6.08E-04	$1.98 \mathrm{E}-03$	$3.22 \mathrm{E}-03$
Parkinsons	$6.26 \mathrm{E}-03$	0	2.77E-04	-2.28E-03	-1.28E-03	-2.76E-03	$4.26 \mathrm{E}-03$
ALS	$4.04 \mathrm{E}-03$	8.57E-03	0	$2.11 \mathrm{E}-03$	$4.87 \mathrm{E}-03$	$2.00 \mathrm{E}-04$	$7.75 \mathrm{E}-03$
Schizophrenia	$1.75 \mathrm{E}-03$	$2.01 \mathrm{E}-03$	-1.90E-03	0	-2.44E-03	$2.20 \mathrm{E}-03$	$5.56 \mathrm{E}-03$
Leukemia	$4.73 \mathrm{E}-03$	$9.23 \mathrm{E}-03$	7.09E-03	$3.78 \mathrm{E}-03$	0	3.99E-03	$8.53 \mathrm{E}-03$
Obesity	$2.57 \mathrm{E}-03$	$3.01 \mathrm{E}-03$	-2.33E-03	$3.69 \mathrm{E}-03$	-7.58E-04	0	$2.78 \mathrm{E}-03$
Neuroblastoma	$1.01 \mathrm{E}-03$	$7.23 \mathrm{E}-03$	$2.43 \mathrm{E}-03$	$4.25 \mathrm{E}-03$	$9.92 \mathrm{E}-04$	-1.04E-05	0
				BLE III			
GWAS LOCI USED AS INPUT TO NWD FOR QUANTIFYING DISEASE similarity using the NIH NCBI website.							

This is equivalent to the $N W D(A x)-N W D(A)$ value used in the previous classification problems. The two minimum values in the bottom panel, showing the relationships between Parkinsons and Obesity, as well as between Schizophrenia and Leukemia were surprising. The hypothesis was that neurological disorders such as Parkinsons, ALS and Alzheimers, would be more similar to each other. After these findings we found that there actually have been recent findings of strong relationships between both Schizophrenia and Leukemia [14] as well as between Parkinsons and Obesity [8], relationships that have also been identified by clinical evidence not relating to GWAS approaches.

## VI. Conclusion

Consider queries to a search engine using a data base divided in chunks called web pages. On each query the search engine returns a set of web pages. Let $n$ be the cardinality
of a query set and $N$ the number of web pages in the data base multiplied by the average number of search terms per web page. We propose a method, the normalized web distance (NWD) for sets of queries that quantifies in a single number between 0 and $\left(\log _{n}(N / n)\right) /(n-1)$ the way in which the queries in the set are similar: 0 means all queries in the set are the same (the set has cardinality one) and $\left(\log _{n}(N / n)\right)(n-1)$ means all queries in the set are maximally dissimilar to each other. The similarity among queries uses the frequency counts of web pages returned for each query and the set of queries. The method can be applied using any big data base and a search engine that returns reliable aggregate page counts. Since this method uses names for the objects, and not the objects themselves, we can view the common similarity of the names as a common semantics between those names (words or phrases). The common similarity between a finite nonempty set of queries can be viewed as a distance or diameter of this set. We show that this distance ranges in between 0 and $\left(\log _{n}(N / n)\right) /(n-1)$, how it changes under adding members to the set, that it does not satisfy the triangle property, and that the NWD formally and provably expresses common similarity (common semantics).

To test the efficacy of the new method for classification we experimented with small data sets of queries based on search results from Wikipedia, Amazon, and the National Center for Biotechnology Information (NCBI) website from the U.S. National Institutes of Health. In particular we compared classification using pairwise NWDs (the NGDs) with classification using set NWD. The last mentioned performed consistently equal or better, sometimes much better.

## APPENDIX

## A. Strings and the Self-Delimiting Property

We write string to mean a finite binary string, and $\epsilon$ denotes the empty string. (If the string is over a larger finite alphabet we recode it into binary.) The length of a string $x$ (the number of bits in it) is denoted by $|x|$. Thus, $|\epsilon|=0$. The selfdelimiting code for $x$ of length $n$ is $\bar{x}=1^{|x|} 0 x$ of length $2 n+1$, or even shorter $x^{\prime}=1^{\bar{x}} 0 x$ of length $n+2 \log n+1$ (see [23] for still shorter self-delimiting codes). Self-delimiting code words encode where they end. The advantage is that if many strings of varying lengths are encoded self-delimitingly using the same code, then their concatenation can be parsed in their constituent code words in one pass going from left to right. Self delimiting codes are computable prefix codes. A prefix code has the property that no code word is a proper prefix of any other code word. The code-word set is called prefix-free.

We identify strings with natural numbers by associating each string with its index in the lengthincreasing lexicographic ordering according to the scheme $(\epsilon, 0),(0,1),(1,2),(00,3),(01,4),(10,5),(11,6), \ldots$ In this way the Kolmogorov complexity can be about finite binary strings or natural numbers.

## B. Computability Notions

A pair of integers such as $(p, q)$ can be interpreted as the rational $p / q$. We assume the notion of a function with rational
arguments and values. A function $f(x)$ with $x$ rational is upper semicomputable if it is defined by a rational-valued total computable function $\phi(x, k)$ with $x$ a rational number and $k$ a nonnegative integer such that $\phi(x, k+1) \leq \phi(x, k)$ for every $k$ and $\lim _{k \rightarrow \infty} \phi(x, k)=f(x)$. This means that $f$ can be computed from above (see [23], p. 35). A function $f$ is lower semicomputable if $-f$ is semicomputable from above. If a function is both upper semicomputable and lower semicomputable then it is computable.

## C. Kolmogorov Complexity

The Kolmogorov complexity is the information in a single finite object [18]. Informally, the Kolmogorov complexity of a finite binary string is the length of the shortest string from which the original can be lossless reconstructed by an effective general-purpose computer such as a particular universal Turing machine. Hence it constitutes a lower bound on how far a lossless compression program can compress. For technical reasons we choose Turing machines with a separate readonly input tape that is scanned from left to right without backing up, a separate work tape on which the computation takes place, an auxiliary tape inscribed with the auxiliary information, and a separate output tape. All tapes are divided into squares and are semi-infinite. Initially, the input tape contains a semi-infinite binary string with one bit per square starting at the leftmost square, and all heads scan the leftmost squares on their tapes. Upon halting, the initial segment $p$ of the input that has been scanned is called the input program and the contents of the output tape is called the output. By construction, the set of halting programs is prefix free (Appendix A), and this type of Turing machine is called a prefix Turing machine. A standard enumeration of prefix Turing machines $T_{1}, T_{2}, \ldots$ contains a universal machine $U$ such that $U(i, p, y)=T_{i}(p, y)$ for all indexes $i$, programs $p$, and auxiliary strings $y$. (Such universal machines are called "optimal" in contrast with universal machines like $U^{\prime}$ with $U^{\prime}(i, p p, y)=T_{i}(p, y)$ for all $i, p, y$, and $U^{\prime}(i, q, y)=1$ for $q \neq p p$ for some $p$.) We call $U$ the reference universal prefix Turing machine. This leads to the definition of prefix Kolmogorov complexity.

Formally, the conditional prefix Kolmogorov complexity $K(x \mid y)$ is the length of the shortest input $z$ such that the reference universal prefix Turing machine $U$ on input $z$ with auxiliary information $y$ outputs $x$. The unconditional Kolmogorov complexity $K(x)$ is defined by $K(x \mid \epsilon)$ where $\epsilon$ is the empty string. In these definitions both $x$ and $y$ can consist of strings into which finite sets of finite binary strings are encoded. Theory and applications are given in the textbook [23].

For a finite set of strings we assume that the strings are length-increasing lexicographic ordered. This allows us to assign a unique Kolmogorov complexity to a set. The conditional prefix Kolmogorov complexity $K(X \mid x)$ of a set $X$ given an element $x$ is the length of a shortest program $p$ for the reference universal Turing machine that with input $x$ outputs the set $X$. The prefix Kolmogorov complexity $K(X)$ of a set $X$ is defined by $K(X \mid \epsilon)$. One can also
put set in the conditional such as $K(x \mid X)$ or $K(X \mid Y)$. We will use the straightforward laws $K(\cdot \mid X, x)=K(\cdot \mid X)$ and $K(X \mid x)=K\left(X^{\prime} \mid x\right)$ up to an additive constant term, for $x \in X$ and $X^{\prime}$ equals the set $X$ with the element $x$ deleted.

We use the following notions from the theory of Kolmogorov complexity. The symmetry of information property [12] for strings $x, y$ is

$$
\begin{equation*}
K(x, y)=K(x)+K(y \mid x)=K(y)+K(x \mid y) \tag{A.1}
\end{equation*}
$$

with equalities up to an additive term $O(\log (K(x, y)))$.

## D. Metricity

A distance function $d$ on $\mathcal{X}$ is defined by $d: \mathcal{X} \rightarrow \mathcal{R}^{+}$ where $\mathcal{R}^{+}$is the set of nonnegative real numbers. If $X, Y, Z \in$ $\mathcal{X}$, then $Z=X Y$ if $Z$ is the set consisting of the elements of the sets $X$ and $Y$ ordered length-increasing lexicographic. A distance function $d$ is a metric if

1) Positive definiteness: $d(X)=0$ if all elements of $X$ are equal and $d(X)>0$ otherwise. (For sets equality of all members means $|X|=1$.)
2) Symmetry: $d(X)$ is invariant under all permutations of $X$.
3) Triangle inequality: $d(X Y) \leq d(X Z)+d(Z Y)$.

## E. Proofs

Proof. of Lemma II. 4.
Run all programs dovetailed fashion and at each time instant select a shortest program that with inputs $e(x)$ for all $x \in X$ has terminated with the same output $e(X)$. The lengths of these shortest programs gets shorter and shorter, and in for growing time eventually reaches $E G_{\max }(X)$ (but we do not know the time for which it does). Therefore $E G_{\max }(X)$ is upper semicomputable. It is not computable since for $X=\{x, y\}$ we have $E G_{\max }(X)=\max \{K(e(x) \mid e(y)), K(e(y) \mid e(x))\}+$ $O(1)$, the information distance between $e(x)$ and $e(y)$ which is known to be incomputable [3].

## Proof. of Theorem II.5.

$(\leq)$ We use a modification of the proof of [24, Theorem 2]. According to Definition II. $1 x=y$ iff $e(x)=e(y)$. Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$ and $k=\max _{x \in X}\{K(e(X) \mid e(x)\}$. A set of cardinality $n$ in $S$ is for the purposes of this proof represented by an $n$-vector of which the entries consist of the lexicographic length-increasing sorted members of the set. For each $1 \leq$ $i \leq n$ let $\mathcal{Y}_{i}$ be the set of computably enumerated $n$-vectors $Y=\left(y_{1}, \ldots, y_{n}\right)$ with entries in $S$ such that $K\left(e(Y) \mid e\left(y_{i}\right)\right) \leq$ $k$ for each $1 \leq i \leq n$. Define the set $V=\bigcup_{i=1}^{n} \mathcal{Y}_{i}$. This $V$ is the set of vertices of a graph $G=(V, E)$. The set of edges $E$ is defined by: two vertices $u=\left(u_{1}, \ldots, u_{n}\right)$ and $v=\left(v_{1}, \ldots, v_{n}\right)$ are connected by an edge iff there is $1 \leq$ $j \leq n$ such that $u_{j}=v_{j}$. There are at most $2^{k}$ self-delimiting programs of length at most $k$ computing from input $e\left(u_{j}\right)$ to different $e(v)$ 's with $u_{j}$ in vertex $v$ as $j$ th entry. Hence there can be at most $2^{k}$ vertices $v$ with $u_{j}$ as $j$ th entry. Therefore, for every $u \in V$ and $1 \leq j \leq n$ there are at most $2^{k}$ vertices $v \in V$ such that $v_{j}=u_{j}$. The vertex-degree of graph $G$ is therefore bounded by $n 2^{k}$. Each graph can be vertex-colored
by a number of colors equal to the maximal vertex-degree. This divides the set of vertices $V$ into disjoint color classes $V=V_{1} \bigcup \cdots \bigcup V_{D}$ with $D \leq n 2^{k}$. To compute $e(X)$ from $e(x)$ with $x \in X$ we only need the color class of which $e(X)$ is a member and the position of $x$ in $n$-vector $X$. Namely, by construction every vertex with the same element in the $j$ th position is connected by an edge. Therefore there is at most a single vertex with $x$ in the $j$ th position in a color class. Let $x$ be the $j$ th entry of $n$-vector $X$. It suffices to have a program of length at most $\log \left(n 2^{k}\right)+O(\log n k)=k+O(\log n k)$ bits to compute $e(X)$ from $e(x)$. From $n$ and $k$ we can generate $G$ and given $\log \left(n 2^{k}\right)$ bits we can identify the color class $V_{d}$ of $e(X)$. Using another $\log n$ bits we define the position of $x$ in the $n$-vector $X$. To make such a program self-delimiting add a logarithmic term. In total $k+O(\log k)$ suffices since $O(\log k)=O(\log n+\log n k)$.
$(\geq)$ That $E G_{\max }(X) \geq \max _{x \in X}\{K(e(X) \mid e(x)\}$ follows trivially from the definitions.

## Proof. of Lemma IV.1.

( $\geq 0$ ) Since $f(X) \leq f(x)$ for all $x \in X$ the numerator of the right-hand side of (II.3) is nonnegative. Since the denominator is also nonnegative we have $N W D(X) \geq 0$. Example of the lower bound: if $\max _{x \in X}\{\log f(x)\}=\log f(X)$, then $N W D(X)=0$.
$\left(\leq\left(\log _{|X|}(N /|X|)\right) /(|X|-1)\right)$ Write $n=|X|, x_{M}=$ $\arg \max _{x \in X} f(x)$ and $x_{m}=\arg \min _{x \in X} f(x)$. Rewrite (II.3) as $(n-1) N W D(X)=\log \left(f\left(x_{M}\right) / f(X)\right) / \log \left(N / f\left(x_{m}\right)\right)$. This expression can only reach its maximum if $f(X)$ is as small as possible which can be achieved independent of the other parameters. To this end the web events $e(x)$ for $x \in X$ satisfy $\bigcap_{x \in X} e(x)$ is a singleton set which means that $f(X)=1$. (For $f(X)=0$ we have $\bigcap_{x \in X} e(x)=\varnothing$ and $N W D(X)$ is undefined.) For $f(X)=1$ the expression can be rewritten as $(n-1) N W D(X)=\log _{N / f\left(x_{m}\right)} f\left(x_{M}\right)=\alpha$ where $\alpha$ is determined by $\left(N / f\left(x_{m}\right)\right)^{\alpha}=f\left(x_{M}\right)$. The side conditions which must be satisfied are $f\left(x_{m}\right) \leq f\left(x_{M}\right)$ and $(n-1) f\left(x_{m}\right)+f\left(x_{M}\right) \leq N$. For any fixed $f\left(x_{M}\right)$ the value of $\alpha$ is maximal if $f\left(x_{m}\right)$ is as large as possible which means that $f\left(x_{m}\right)=f\left(x_{M}\right)$. Then $f\left(x_{M}\right)=N^{\alpha /(\alpha+1)}$. With $\bigcup_{x \in X} e(x)=\Omega$ and $\bigcap_{x \in X} e(x)$ is a singleton set we have $f\left(x_{M}\right)=(N-1) / n+1$. It follows that $\log ((N+n-1) / n)=$ $(\alpha /(\alpha+1)) \log N$. Rewriting yields first $1-\log _{N}((N+n-$ $1) / n)=1 /(\alpha+1)$ and then $\alpha=\left(1 /\left(1-\log _{N}((N+n-\right.\right.$ 1) $/ n))-1=\left(1 / \log _{N}(N n /(N+n-1))\right)-1$. Hence $N W D(X) \leq\left(1 / \log _{N}(N n /(N+n-1))-1\right) /(n-1)<$ $\left(1 / \log _{N} n-1\right) /(n-1)=\left(\log _{n}(N / n)\right) /(n-1)$.

## Proof. of Lemma IV.3.

(i) Since $X \subseteq Y$ and because of the condition of item (i) we have $\min _{y \in Y}\{\log f(y)\}=\min _{x \in X}\{\log f(x)\}$. From $X \subseteq Y$ also follows $\max _{y \in Y}\{\log f(y)\} \geq \max _{x \in X}\{\log f(x)\}$, and $\log f(X) \geq \log f(Y)$. Therefore the numerator of $N W D(Y)$ is at least as great as that of $N W D(X)$, and the denominator of $N W D(Y)$ equals $(|Y|-1) /(|X|-1)$ times the denominator of $N W D(X)$.
(ii) We have $\min _{x \in Y} \log f(y)<\min _{x \in X}\{\log f(x)\}$. If $N W D(X)$ is maximal then $N W D(Y)$ is maximal (in both cases there is least common similarity of the members of the
set). Item (ii) follows vacuously in this case. Therefore assume that $N W D(X)$ is less than maximal. Write $N W D(X)=a / b$ with $a$ equal to the numerator of $N W D(X)$ and $b$ equal to the denominator. If $c, d$ are real numbers satisfying $c / d \geq a / b$ then $b c \geq a d$. Therefore $a b+b c \geq a b+a d$ which rearranged yields $(a+c) /(b+d) \geq a / b$. If $c / d<a / b$ then by similar reasoning $(a+c) /(b+d)<a / b$.

Assume (IV.1) holds. We take the logarithms of both sides of (IV.1) and rearrange it to obtain $\log f(X)-$ $\max _{x \in X}\{\log f(x)\}-\log f(Y)+\max _{y \in Y}\{\log f(y)\} \geq$ $\left(\min _{x \in X}\{\log f(x)\} \quad-\quad \min _{y \in Y}\{\log f(y)\}\right)(|X| \quad-$ 1) $N W D(X)$. Let the lefthand side of the inequality be $c$ and the righthand side of the inequality be $d N W D(X)$. Then

$$
\begin{align*}
N W D(X) & =\frac{\max _{x \in X}\{\log f(x)\}-\log f(X)}{\left(\log N-\min _{x \in X}\{\log f(x)\}\right)(|X|-1)} \\
& \leq \frac{\max _{y \in Y}\{\log f(y)\}-\log f(Y)}{\left(\log N-\min _{y \in Y}\{\log f(y)\}\right)(|X|-1)} \\
& =\frac{|Y|-1}{|X|-1} N W D(Y)
\end{align*}
$$

The inequality holds by the rewritten (IV.1) and the $a, b, c, d$ argument above since $c / d \geq N W D(X)=a / b$.

Assume (IV.1) does not hold, that is, it holds with the $\geq$ sign replaced by a $<$ sign. We take logarithms of both sides of this last version and rewrite it to obtain $\log f(X)-\max _{x \in X}\{\log f(x)\}-$ $\log f(Y)+\max _{y \in Y}\{\log f(y)\}<\left(\min _{x \in X}\{\log f(x)\}-\right.$ $\left.\min _{y \in Y}\{\log f(y)\}\right)(|X|-1) N W D(X)$. Let the lefthand side of the inequality be $c$ and the righthand side $d N W D(X)$. Since $c / d<N W D(X)=a / b$ we have $a / b>(a+c) /(b+d)$ by the $a, b, c . d$ argument above. Hence (A.2) holds with the $\leq$ sign switched to a $>$ sign. It remains to prove that $N W D(Y) \geq N W D(Z)(|Z|-1) /(|Y|-1)$. This follows directly from item (i).

## Proof. of Lemma IV.6.

The following is a counterexample. Let $X=\left\{x_{1}\right\}$, $Y=\left\{x_{2}\right\}, Z=\left\{x_{3}, x_{4}\right\}, \max _{x \in X Y}\{\log f(x)\}=10$, $\max _{x \in X Z}\{\log f(x)\}=10, \max _{x \in Z Y}\{\log f(x)\}=5$, $\log f(X Y)=\log f(X Z)=\log f(Z Y)=3$, $\min _{x \in X Y}\{\log f(x)\}=\min _{x \in X Z}\{f(x)\}=$ $\min _{x \in Z Y}\{\log f(x)\}=4$, and $\log N=35$. This arrangement can be realized for queries $x_{1}, x_{2}, x_{3}, x_{4}$. (As usual we assume that $e\left(x_{i}\right) \neq e\left(x_{j}\right)$ for $1 \leq i, j \leq 4$ and $i \neq j$.) Computation shows $N W D(X Y)>N W D(X Z)+N W D(Z Y)$ since $7 / 31>7 / 62+1 / 62$.

## Proof. of Theorem IV.8.

We start with the following:
Claim A.1. $E G_{\max }(X)$ is an admissible web distance function and $E G_{\max }(X) \leq D(X)$ for every computable admissible web distance function $D$.

Proof. Clearly $E G_{\text {max }}(X)$ satisfies items (i) and (ii) of Definition IV.7. To show it is an admissible web distance it remains
to establish the density requirement (iii). For fixed $x$ consider the sets $X \ni x$ and $|X| \geq 2$. We have

$$
\sum_{X: X \ni x \&|X| \geq 2} 2^{-E G_{\max }(X)} \leq 1
$$

since for every $x$ the set $\left\{E G_{\max }(X): X \quad \ni\right.$ $\left.x \& E G_{\max }(X)>0\right\}$ is the length set of a binary prefix code and therefore the summation above satisfies the Kraft inequality [19] given by (II.1). Hence $E G_{\max }$ is an admissible distance.

It remains to prove minorization. Let $D$ be a computable admissible web distance, and the function $f$ defined by $f(X, x)=2^{-D(X)}$ for $x \in X$ and 0 otherwise. Since $D$ is computable the function $f$ is computable. Given $D$, one can compute $f$ and therefore $K(f) \leq K(D)+O(1)$. Let $\mathbf{m}$ denote the universal distribution [23]. By [23, Theorem 4.3.2] $c_{D} \mathbf{m}(X \mid x) \geq f(X, x)$ with $c_{D}=2^{K(f)}=2^{K(D)+O(1)}$, that is, $c_{D}$ is a positive constant depending on $D$ only. By [23, Theorem 4.3.4] we have $-\log \mathbf{m}(X \mid x)=K(X \mid x)+O(1)$. Altogether, for every $X \in \mathcal{X}$ and for every $x \in X$ holds $\log 1 / f(X, x) \geq K(X \mid x)+\log 1 / c_{D}+O(1)$. Hence $D(X) \geq$ $E G_{\max }(X)+\log 1 / c_{D}+O(1)$.

By Lemma II. 4 the function $E G_{\max }$ is upper semicomputable but not computable. The function $G(X)-$ $\min _{x \in X}\{G(x)\}$ is a computable and an admissible function as in Definition IV.7. By Claim A. 1 it is an upper bound on $E G_{\max }(X)$ and hence $E G_{\max }(X)<G(X)-$ $\min _{x \in X}\{G(x)\}$. Every admissible property or feature that is common to all members of $X$ is quantized as an upper bound on $E G_{\max }(X)$. Thus, the closer $G(X)-\min _{x \in X}\{G(x)\}$ approximates $E G_{\max }(X)$, the better it approximates the common admissible properties among all search terms in $X$. This $G(X)-\min _{x \in X}\{G(x)\}$ is the numerator of $N W D(X)$. The denominator is $\max _{x \in X}\{G(x)\}(|X|-1)$, a normalizing factor.

## REFERENCES

[1] A.K. Ahmeti et al. Age of onset of amyotrophic lateral sclerosis is modulated by a locus on 1p34.1, Neurobiology of Aging 34:1(2013), 357.e357-357.e319.
[2] J.P. Bagrow, D. ben-Avraham, On the Google-fame of scientists and other populations, AIP Conference Proceedings 779:1(2005), 81-89.
[3] C.H. Bennett, P. Gács, M. Li, P.M.B. Vitányi, and W. Zurek, Information distance, IEEE Trans. Inform. Theory, 44:4(1998), 1407-1423.
[4] D. Bollegala, M. Yutaka, and I. Mitsuru, Measuring semantic similarity between words using web search engines, Proc. WWW., Vol. 766, 2007.
[5] P.-I. Chen and S.-J. Lin, Automatic keyword prediction using Google similarity distance, Expert Systems with Applications, 37:3(2010), 19281938.
[6] R.L. Cilibrasi, P.M.B. Vitányi, The Google similarity distance, IEEE Trans. Knowledge and Data Engineering, 19:3(2007), 370-383.
[7] P. Cimiano, S. Staab, Learning by Googling, SIGKDD Explorations, 6:2(2004), 24-33.
[8] H. Chen, et al., Obesity and the risk of Parkinson's disease, Am. J. Epidemiol., 159:6(2004), 547-555.
[9] A.R. Cohen, C. Bjornsson, S. Temple, G. Banker and B. Roysam, Automatic Summarization of Changes in Biological Image Sequences using Algorithmic Information Theory, IEEE Trans. Pattern Anal. Mach. Intell. 31(8):(2009) 1386-1403.
[10] A.R. Cohen, F. Gomes, B.Roysam, and M. Cayouette, Computational prediction of neural progenitor cell fates, Nature Methods, 7:3(2010), 213-218.
[11] A.R. Cohen and P.M.B. Vitányi, Normalized compression distance of multisets with applications, IEEE Trans. Pattern Analysis Machine Intelligence, 37:8(2015), 1602-1614.
[12] P. Gács, On the symmetry of algorithmic information, Soviet Math. Doklady, 15:1477-1480, 1974. Correction, Ibid., 15(1974), 1480.
[13] R. Gligorov, W. ten Kate, Z. Aleksovski and F. van Harmelen, Using Google distance to weight approximate ontology matches, Proc. 16th Intl Conf. World Wide Web, ACM Press, 2007, 767-776.
[14] H.S. Huang, et al.. Prefrontal dysfunction in schizophrenia involves mixed-lineage leukemia 1-regulated histone methylation at GABAergic gene promoters, J. Neuroscience 27:42(2007), 11254-11262.
[15] R.Joshi, W. Mankowski, M. Winter, J.S. Saini, T.A. Blenkinsop, J.H. Stern, S. Temple, A.R. Cohen, Automated measurement of cobblestone morphology for characterizing stem cell derived retinal pigment epithelial cell cultures, J. Ocular Pharmacology Therapeutics, 32:5(2016),331-339.
[16] M.I. Kamboh, et al. Genome-wide association study of Alzheimer's disease ,Translational Psychiatry - Nature 2 (2012): e117.
[17] F Keller, M Lapata, Using the web to obtain frequencies for unseen bigrams, Computational Linguistics, 29:3(2003), 459-484.
[18] A.N. Kolmogorov, Three approaches to the quantitative definition of information, Problems Inform. Transmission 1:1(1965), 1-7.
[19] L.G. Kraft, A device for quantizing, grouping, and coding amplitude modulated pulses, MS Thesis, EE Dept., Massachusetts Institute of Technology, Cambridge. Mass., USA, 1949.
[20] T. Landauer and S. Dumais, A solution to Plato's problem: The latent semantic analysis theory of acquisition, induction and representation of knowledge, Psychol. Rev., 104(1997), 211-240.
[21] Y. LeCun, C. Cortes, C.J.C. Burges, The MNIST database of hanwritten digits, http://yann.lecun.com/exdb/mnist/
[22] L.A. Levin, Laws of information conservation (nongrowth) and aspects of the foundation of probability theory, Probl. Inform. Transm., 10(1974), 206-210.
[23] M. Li and P.M.B. Vitányi. An Introduction to Kolmogorov Complexity and its Applications, Springer-Verlag, New York, Third edition, 2008.
[24] C. Long, X. Zhu, M. Li, B. Ma, Information shared by many objects, Proc. 17th ACM Conf. Information and Knowledge Management, 2008, 1213-1220.
[25] J.M. Maris, Chromosome 6p22 Locus Associated with Clinically Aggressive Neuroblastoma, New England Journal of Medicine 358:24(2008), 2585-2593.
[26] B. McMillan, Two inequalities implied by unique decipherability, IEEE Trans. Information Theory, 2:4(1956), 115-116.
[27] J.-B. Michel, Y.K. Shen, A.P. Aiden, A. Veres, M.K. Gray, T.G.B. Team, et al., Quantitative Analysis of Culture Using Millions of Digitized Books, Science, 331(2011), 176-182, (January 14 2011).
[28] T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient estimation of word representations in vector space, ICLR Workshop, 2013. Also arXiv:1301.3781.
[29] A.Y. Ng, M. Jordan, Y. Weiss, On Spectral Clustering: Analysis and an algorithm, Advances Neural Informat. Process. Systems, 14, (2002).
[30] A. Scherag, et al., Two New Loci for Body-Weight Regulation Identified in a Joint Analysis of Genome-Wide Association Studies for Early-Onset Extreme Obesity in French and German Study Groups, PLoS Genetics, 6:4(2010), e1000916.
[31] Schizophrenia Working Group of the Psychiatric Genomics Consortium, Biological insights from 108 schizophrenia-associated genetic loci, Na ture 511(7510), 2014, 421-427.
[32] C.E. Shannon, The mathematical theory of communication, Bell System Tech. J., 27(1948), 379-423, 623-656.
[33] F.C.M. Sillé, et al., Post-GWAS Functional Characterization of Susceptibility Variants for Chronic Lymphocytic Leukemia, PLoS One, 7:1(2012), e29632.
[34] A.I. Soto-Ortolaza, A. I. et al., GWAS risk factors in Parkinson's disease: LRRK2 coding variation and genetic interaction with PARK16, Am. J. Neurodegener Dis. 2:4(2013), 287-299.
[35] P.-N. Tan, V. Kumar, J. Srivastava, Selecting the right interestingness measure for associating patterns. Proc. ACM-SIGKDD Conf. Knowledge Discovery and Data Mining, 2002, 491-502.
[36] E. Terra, C.L.A. Clarke, Frequency estimates for statistical word similarity measures, $37 / 162$ in Human Language Theory Conference (HLT/NAACL 2003), Edmonton, Alberta, 2003.
[37] P.M.B. Vitányi, Information distance in multiples, IEEE Trans. Inform. Theory, 57:4(2011), 2451-2456.
[38] I.H. Witten, E. Frank, Data Mining: Practical Machine Learning Tools and Techniques, 2005.
[39] W.L. Woon, S. Madnick, Asymmetric information distances for automated taxonomy construction, Knowl. Inf. Systems, 21(2009), 91-111.
[40] Z. Xian, K. Weber, D.R. Fesenmaier, Representation of the online tourism domain in search engines, J. Travel Research, 47:2(2008), 137150.


Andrew R. Cohen received his Ph.D. from the Rensselaer Polytechnic Institute in May 2008. He is currently an associate professor in the department of Electrical \& Computer Engineering at Drexel University. Prior to joining Drexel, he was an assistant professor in the department of Electrical Engineering and Computer Science at the University of Wisconsin, Milwaukee. He has worked as a software design engineer at Microsoft Corp. on the Windows and DirectX teams and as a CPU Product Engineer at Intel Corp. His research interests include 5-D image sequence analysis for applications in biological microscopy, algorithmic information theory, spectral methods, data visualization, and supercomputer applications. He is a senior member of the IEEE.


Paul M.B. Vitányi received his Ph.D. from the Free University of Amsterdam (1978). He is a CWI Fellow at the national research institute for mathematics and computer science in the Netherlands, CWI, and Professor of Computer Science at the University of Amsterdam. He served on the editorial boards of Distributed Computing, Information Processing Letters, Theory of Computing Systems, Parallel Processing Letters, International journal of Foundations of Computer Science, Entropy, Information, Journal of Computer and Systems Sciences (guest editor), and elsewhere. He has worked on cellular automata, computational complexity, distributed and parallel computing, machine learning and prediction, physics of computation, Kolmogorov complexity, information theory, quantum computing, publishing more than 200 research papers and some books. He received a Knighthood (Ridder in de Orde van de Nederlandse Leeuw) and is member of the Academia Europaea. Together with Ming Li they pioneered applications of Kolmogorov complexity and co-authored "An Introduction to Kolmogorov Complexity and its Applications," Springer-Verlag, New York, 1993 (3rd Edition 2008), parts of which have been translated into Chinese, Russian and Japanese.


[^0]:    ${ }^{1}$ Defined in [6, Eq. (6) in Section 3.4 ] as

    $$
    N G D(x, y)=\frac{\max \{\log f(x), \log f(y)\}-\log f(x, y)}{\log N-\min \{\log f(x), \log f(y)\}}
    $$

