|dentification of Probabilities of Language’s

Paul M.B. Vitanyi and Nick Chater

Abstract

We consider the problem of inferring the probability distriion associated with a language, given
data consisting of an infinite sequence of elements of thguige. We do this under two assumptions on
the algorithms concerned: (i) like a real-life algorothnhits round-off errors, and (ii) it has no round-
off errors. Assuming (i) we (a) consider a probability massction of the elements of the language if
the data are drawn independent identically distributddi(j, provided the probability mass function is
computable and has a finite expectation. We give an effeptiseedure to almost surely identify in the
limit the target probability mass function using the Strdrayv of Large Numbers. Second (b) we treat
the case of possibly incomputable probabilistic mass fanstin the above setting. In this case we can
only pointswize converge to the target probability massciam almost surely. Third (¢) we consider
the case where the data are dependent assuming they aral figri@t least one computable measure
and the language is finite. There is an effective proceduidentify by infinite recurrence a nonempty
subset of the computable measures according to which tteeislaypical. Here we use the theory of
Kolmogorov complexity. Assuming (ii) we obtain the weakesult for (a) that the target distribution is
identified by infinite recurrence almost surely; (b) stays s$ame as under assumption (i). We consider

the associated predictions.

I. INTRODUCTION

In cognition and science one learns by observation. The peraksystem of an individual person, or
the data-gathering resources of a scientific communityementally gathers empirical data, and attempts
to find the structure in that data. The question arises: undet wbnditions is it possibl@reciselyto
infer the structure underlying those observations? Oasteely, under what conditions could a machine
learning algorithm potentially precisely recover thisusture? We can model this problem as having

Vitanyi is with the national research institute for mathematics and computercecia the Netherlands (CWI) and the
University of Amsterdam. Address: CWI, Science Park 123, 1098 X@sterdam, The Netherlands. Emahul v@wi . nl .

Chater is with the Behavioural Science Group. Address: Warwick Bssirgchool, University of Warwick, Coventry,

CV4 7AL, UK. Email: Ni ck. Chat er @ws. ac. uk. Chater was supported by ERC Advanced Grant “Cognitive and Social
Foundations of Rationality.”

DRAFT

the following form: given a semi-infinite sequence of samgfiesn a probability distribution, under
what conditions is it possible precisely to recover thidriistion? Moreover, we can focus on the case
where each observation is coded in a language—that is, easdrnation corresponds to an element
of a countable set of sentences. Then the problem at hand ecéwear the probability induced by the
language.

In the context of the cognitive processes of an individuafipimation from the senses is presumed to
be coded in the brain to some finite precision (indeed, neumagfis discrete, [19]). Linguistic input, in
particular, can be coded in a hierarchy of discrete symhelizesentations, as described by generative
grammar (for example, [12]). And, in the context of the opieraof the scientific community, data is
digitally coded to finite precision in symbolic codes. There at least three reasons for scepticism that
precisely recovering the probability of possible obseorat is possible.

First, as observed by Popper [17], however much data has beenrgered, any theory or model can
be falsified by the very next piece of data. However many whitans are observed, there is always
the possibility that the very next swan will be black, or somere unlikely color. If, in the case of
a child learning a language, however often the child en@sntentences following a particular set of
grammatical rules, it is always possible that the very nexitence encountered will violate these rules
(for example [16]). Thus, however, much data been encouttéltere is no point at which the learner can
announce a particular probability as correct with any ¢etyaBut this does not rule out the possibility
that the learner might learn to identify the correct probgbin the limit. That is, perhaps the learner
might make a sequence of guesses, finally locking on to coprettability and sticking to it forever—
even though the learner can never know for sure that it hagtifekel the correct probability successfully.
We shall therefore consider identification in the limit bel@allowing, for example, [5], [8], [16]).

Second, in conventional statistics, probabilistic modets tgpically idealized as having continuous
valued parameters; and hence there is an uncountable nuwhpessible probabilities, from which the
correct probability is to be recovered. In general it is isgble that a learner can make a sequence of
guesses that precisely locks on to the correct values ofreanis parameters. This, since the possible
strategies of learners are effective in the sense of Tu@®y §nd thus countable. This assumption is,
of course, obeyed by any practical machine learning alyoriand we assume also by the brain. The
set of such strategies can express only a countable numbpossible hypotheses. From this mild
assumption, it is, of course, immediately evident that tkenehelming majority of a continuum of

hypotheses cannot be represented, let alone learned. Wordbere is a particularly natural restriction

concerning the set of probabilites from which the learneyoges: it must beomputable(these notions
are made precise below). This seems a reasonable restribtitim in cognitive science and scientific
methodology. After all, the assumption that individual lamminformation processing is computable is a
founding assumption of cognitive science (see for exanip8d); and the same constraint arguably applies
to every practically usable scientific theory (although weetthis holds is discussed in [2]). We shall
see below that restricting ourselves to the computable |8iegpthe problem of precisely reconstructing
the correct probability from the observed data. For examiile computability of the set of possible
probabilities means that these can be enumerated; and itheaybe possible to gradually home in the
correct probability, by successively eliminating earlgres in the enumerated list. As we see below, it
is also possible to provide approximation results if the patability restriction is dropped.

A third reason for initial scepticism also concerns compilitg—this time for thelearner, not just
the probability to be recovered. Even if there is, in pringjpbufficient data to pin down the correct
probability precisely, there remains the question of whethere is a feasible computational procedure
that can reliably map from data to a sequence of guesseswvatiually lock on to the correct probability.
Real-life computational procedures are finite and alway® aund-off errors. We outline positive results

that can be obtained for computable learners with or witlsueh round-off errors.

A. Preliminaries

A language is a set of sentences. The learnability of a larguatder various computational
assumptions is the subject of an immensely influential ambroa [4] and especially [5]. But surely
in the real world the chance of one sentence of a languageg losied is different from another one. For
example, many short sentences have a larger chance ofduupithan very long sentences. Thus, the
elements of a given language are distributed in a certain Wagre arises the problem of identifying or
approximating this distribution.

We first introduce some terminology. A function e®@mputable if there is a Turing machine (or
any other equivalent computational device such as a uriv@®gramming language) that maps the
arguments to the values. We say that identify a function f in the limit if we effectively produce an
infinite sequencef, fo, ... of functions andf; = f for all but finitely manyi. This corresponds to the
notion of “identification in the limit” in [5]. Weidentify a function f by infinite recurrencef f; = f for
infinitely manyi. A sequence of functionsonverges ta function f pointswizeif lim; . fi(a) = f(a)

for all a in the domain off. The functions we are interested in are versions of the pibilyalnass

functions.

The restriction to computable probability mass functions Iftore generally any restriction to a
countable set of probability mass functions) is both cagely realistic (if we assume language is
generated by a computable process) and dramatically diespthe problem of language identification.

This is also the case for the use of algorithms with round-ofbre.

B. Related work

In [1] (citing previous more restricted work) a target prbllidy mass function was identified in the
limit when the data are drawn independent identically isted (i.i.d.) in the following setting. Let the
target probability mass functignbe an element of a ligt, g9, . . . subject to the following conditions: (i)
everyq; : NV — R is a probability mass function wheyé andR ™ denote the positive natural numbers
and the positive real numbers, respectively; (ii) there tetal computable functio (i, x, €) = r such
that (¢;(z) — r) < e with r,e > 0 are rational numbers. The technical means used are the Laweof th
Iterated Logarithm and the Kolmogorov-Smirnov test. The allgors used have no round-off errors.
However, the listqy, g2, ... cannot contain all computable probability mass functidremma 4.3.1 in
[14].

C. Results

In Section Il we deal with probability mass functions. Fortieical reasons we introduce a weaker form
thereof called “semiprobability mass functions.” Consideprobability mass function satisfying (A.1)
below associated with a language. The data consist of an afiequence of elements of this language that
are drawn i.i.d. The aim is to identify the probability masadtion given the data. (In contrast to [1] we
allow all computable probability mass functions.) In SectibA we consider algorithms without round-
off errors. Then, we identify the target distribution by infenrecurrence almost surely. In Section II-B
the identification algorithm is subject to round-off errorsdawe identify the target distribution in the
limit almost surely (underpinning the result announced/if).[In Section Il we treat the case of possibly
uncomputable probability mass functions. Then we can onbyvgbointswize convergence almost surely.
This result holds both with or without round-off errors. Thehrical tool in these sections is the Strong
Law of the Large Numbers. In all these results the languageeroad can be infinite. In Section IV
we consider the case where the data are dependent assumyngréhtypical (Definition 9) for at least

one computable measure. In contrast to the i.i.d. case,pbssible that the data are typical for many

measures. The language concerned is finite and the identificaligorithm has round-off errors. Then,
we identify by infinite recurrence (possibly a subset) of cataple measures for which the data are
typical. The technical tool is Kolmogorov complexity. Finalln Section V we consider the associated

predictions. We defer the proofs of the theorems to Apperdix

II. COMPUTABLE PROBABILITY MASSFUNCTIONS

Most known probability mass functions are computable mteslitheir parameters are computable. In
order that it is computable we only require that the proligbihass function is finitely describable and
there is an effective process producing it [20].

It is known that the overwhelming majority of real numbere arot computable. An example of
an incomputable probability mass function therefore is @he associated with a biased coin with an
incomputable probability of outcome heads and probability— p of outcome tailsp < p < 1. On the
other hand, ifp is lower semicomputable, then we can effectively find nontiegantegersa;, ao, . . .
andby, by, ... such thata,, /b, < ap+1/bpy1 @andlim,,_ a, /b, = p. Let us generalize this observation.

DerINITION 1: If a function has as values pairs of nonnegative integarsh as(a, b), then we can
interpret this value as the rationafb. This leads to the notion of a computable function with redion
arguments and real values. A real functigfiz) with = rational is semicomputable from belovf it
is defined by a rational-valued total and computable functiom, k) with x a rational number and
k a nonnegative integer such thatxz,k + 1) > ¢(z, k) for every k and limy_.o, ¢(z, k) = f(z).
This means thatf can be computably approximated arbitrary close from belsee ([14], p. 35). A
function f is semicomputable from above— f is semicomputable from below. If a real function is both
semicomputable from below and semicomputable from aboga this computable A function f is a
semiprobabilitymass function ify " f(x) < 1 and it is aprobability mass function ify | f(z) = 1. It
is customary to writep(z) for f(x) if the function involved is a semiprobability mass function

We cannot effectively enumerate all computable probgbititass functions (this is a consequence
of Lemma 4.3.1 in [14]). However, it is possible to enumerdteaad only the semiprobability mass
functions that are lower semicomputable. This is done by fixingeffective enumeration of all Turing
machines of the so-callgarefix type. (Such an enumeration is quite the same as effectivelgnerating
all programs in a conventional computer programming lagguthat is computationally universal and
were the programs are prefix-free—a set is prefix-free if no eferis a proper prefix of any other. Most,

if not all, conventional computer programming languagetssfsathese requirements.) It is possible to

change every Turing machine description in the enumeratittnone that computes a semiprobability
mass function that is computable from below, Theorem 4.3[14 (originally in [21], [13]). The result
is

QZQlaQQ?"'a (”1)

a list containing all and only semiprobability mass funotidhat are semicomputable from below. Without
loss of generality every element ¢f is over the alphabeL.

DEFINITION 2: There is a total and computable functigiti, z,t) = ¢!(x) such thaté(i,z,t) <
d(i,x, t + 1) andlimy_. ¢} (x) = gi(x).
Every probability mass function is a semiprobability masscfion, and every computable probability
mass function is semicomputable from below. Therefore,yesemputable probability mass function is in
list Q. Indeed, every such function will be in the list infinitely eft, which follows simply from the fact
that there are infinitely many computer programs that comgugfigen function. If a lower semicomputable
semiprobability mass function is a probability mass fumrctithen it must be computable, [14] Example
4.3.2. Therefore, every probability mass function in theiscomputable. It is important to realize that,
although the description of every computable probabilitgssrfunction is in listQ, it may be there in

lower semicomputable format and we may not know it is conigeta

A. Algorithms Without Round-Off Errors

DEFINITION 3: Letz = x1, 29, ... be an infinite sequence of elements of the languagéed. drawn
according to a computable probability mass functionLet Q(p) be defined as the set of indices of
elements ofQ that are copies op.

THEOREM1: COMPUTABLE |.I.D. PROBABILITY IDENTIFICATION (NO ROUND-OFF) Let L be a
language{ai, a9, ...} (a countably finite or infinite set) with a computable probapilnass function
p. Without loss of generality we assume that everg L is a finite integer. Let the mean @f exist
(> qcr ap(a) < oc0). The algorithm in the proof takes as input an infinite sequence 1, o, ... of
elements ofZ drawn i.i.d. according tg. After processinge, the algorithm computes as output the
index i,, of a semiprobability mass function in the enumerat@nDefine -, as the set of indices of
elements inQ that appear infinitely often in the sequence produced by therighm. Then,

() Qs # @ almost surely;

(i) if 7 € Qo theni € Q(p) almost surely; and

(iii) almost surelylim inf,,_, i, = min Q(p).

B. Algorithms With Round-Off Errors

We will want to computationally separate probability masadtionsp for which)" p(z) = 1 from
semiprobability mass functiongfor which >~ _¢(x) < 1 in the list Q.

DEFINITION 4: To deal with truncation errors in the above (in)equalditie use the following notation.
The truncation error is a known additive terta, ¢ > 0, and we denote (in)equalities up to this truncation
error by%, § i, 2 and ; Every function that satisfies the probability mass functignadity within
the round-off error is viewed as a probability mass function
Let L be a languagéas, as, ...}, #a(z1, 22, ..., x,) be the number of elements in, zo, . .., z, equal

a € L, andk’ be the least index of an elemeptin the list Q such that
n

Jim, 2

j=1

THEOREM2: COMPUTABLE |.I.D. PROBABILITY IDENTIFICATION (ROUND-OFF) Let L be a lan-

_ #a(z1,22, ., 20) | 4
n

gi(a;)"

guage{aj,as,...} (a countably finite or infinite set) with a computable probaypilnass functionp.
Without loss of generality we assume that every= L is a finite integer. Let the mean of exist
(> 4cr ap(a) < o). The algorithm in the proof takes as input an infinite sequence 1, s, ... of
elements ofL drawn i.i.d. according tg. After processinge,, the algorithm computes as output the
index i,, of a semiprobability mass function in the enumerat@nThere exists aV such thati,, = &’

for all n > N. We havek’ < k with k as in Theorem 1.

Ill. GENERAL PROBABILITY MASSFUNCTIONS

Can we get rid of the restriction that the probability magsction be computable? Above we used the
computability to consider a well-ordered countable listlafier semicomputable semiprobability mass
functions, and pin-pointed the least occurrence of theetarg the list. We use the fact that we have a
guarantee that the target is in the list. If we have no suchiagiee (possibly there is no list), we can
still converge pointswise to thempirical probability mass function of the languadebased on the data
x1,x2,.... We do this by an algorithm computing the probabilit:) in the limit for all a € L.

Note that this is quite different from Theorems 1, 2. There wdicated (the least occurrence of)
precisely in a well-ordered list even though the result drdids “almost surely.” In contrast, here we find
p(a) for all a € L in the limit only. Moreover, this holds also “almost suréllowever, the probability

mass functions considered here consistlbfprobability mass functions oh—computable or not.

THEOREM3: |.1.D. PROBABILITY APPROXIMATIONWITH AN ALGORITHM WITHOUT ROUND-OFF
ERRORLet L be a languagéa, as, ...} (a countably finite or infinite set) with a computable probaili
mass functiorp. Without loss of generality we assume that everg L is a finite integer. Let the mean
of p exist ¢, ap(a) < 00). The algorithm in the proof takes as input an infinite sequence:, ...
of elements ofL drawn i.i.d. according te. After processingr,, the algorithm computes as output a
probability mass functiom,,. Almost surely for alla € L the lim,, .o pn(a) = p(a).

With round-off error this theorem is about the same.

REMARK 1: Can this result be strengthened to a form of dependenahlas? It all depends on

whether the Strong Law of Large Numbers holds. We know from [3474, that the Strong Law of

Large Numbers holds for stationary ergodic sources with fiegected value. O

IV. COMPUTABLE MEASURES

This time let the languagé = {a1,aq, ..., a,} be afinite set, andy, x9, . .. the data consisting of an
infinite sequence of elements fram We drop the requirement of independency of the differesmneints
in the data. Thus, we assume that our data sequence, ... is possibly dependent. This implies that
the probability model for is more general than i.i.d.. In fact, we will allow all compbte measures on
the infinite sequences of elements fradmThus, the probability model used includes stationary gees,
ergodic processes, Markov processes of any order, and otbéels, provided they are computable.

Given a finite sequence= z1, xo, . . ., ¢, Of elements of the basic sét we consider the set of infinite
sequences starting with The set of all such sequences is writterl'as the cylinder of z. We associate
a probability u(I';) with the event that an element ®f, occurs. Here we abbrieviatg(I',) to u(x).
The transitive closure of the intersection, union, complemand countable union of cylinders gives a
set of subsets of.*>°. The probabilities associated with these subsets are defiven the probabilities

of the cylinders in standard ways [9]. #emimeasurg satisfies the following:

p(e) <1 (IvV.1)
p(z) > xa,
a€el
and if equality holds instead of each inequality we calla measure Using the above notation, a
semimeasurey is lower semicomputabléf it is defined by a rational-valued computable function

¢(z, k) with x € L* and k a nonnegative integer such thatz,k + 1) > ¢(z, k) for every k and

limy . ¢(x, k) = p(x). This means that can be computably approximated arbitrary close from below
for each argument € L*.

To separate measures from semimeasures that are not neeasuing an algorithm subject to round-off
errors, we have to deal with truncation errors in the (sem@sare (in)equalities. This truncation error
is a known additive termkte, € > 0. Again we use Definition 4: (in)equalities up to this trunoatierror
are denoted bg, E i, 2 and ;

In the argument below we want to effectively enumerate athpotable measures. By Lemma 4.5.1
of [14], if a lower semicomputable semimeasure is a meagshen it is computable. Thus it suffices
to effectively enumerate all lower semicomputable measuBy Lemma 4.5.2 of the cited reference
this is not possible. But if we effectively enumerate all @wsemicomputable semimeasures, then this
enumeration includes all lower semicomputable measurashwdwre a fortiori computable measures.
This turns out to be possible (originally in [21], [13]). Just in the case of lower semicomputable
semiprobabilities, but with a little more effort, we can ezffively enumerate all and only lower
semicomputable semimeasures, as is described in the grobkorem 4.5.1 of [14]. This goes by taking
a standard enumeration of all Turing machifigs 75, ... of the so-callednonotonetype. Subsequently
we transform every Turing machine in the list to one that logemicomputes a semimeasure. Also, it

is shown that all lower semicomputable semimeasures areeiist. The result is
Mzﬂl,ug,.... (|V2)

This list contains all and only semimeasures that are sengatable from below. It is important to
realize that, although the description of every computatdasure is in listM, it may be there in lower
semicomputable format and we may not know it is computable.

DEFINITION 5: There is a total and computable functigiti, z,t) = pl(x) such thate(i,z,t) <
(i, t + 1) andlimy_oo pk(x) = pi(z).

REMARK 2: Let our data be, xs, Possibly there are none or more than one computable measures
that have these data as a “typical” sequence. Here we us&dtip’ according to the Definition 9
below. Such typical infinite sequences are also called “rarideitih respect to the measure involved.
For instance, let the data sequencéb Then this is a typical sequence of the computable measure
wi, that gives measure 1 to every initial segment of this dataessce. But if we consides;, that gives
measure% to every initial segment 0,0, ... and also measuré to every initial segment of, 1, ...,

then the considered data sequence is also a typical seqoéngg Similarly, it is a typical sequence

of the measuregy;, that gives measure/k to every initial segment 06,0, ... throughk — 1,k —1,...
(k < 00).

Hence our task is not to identify the measure according tachvifie data sequence was generated as
a typical sequnce, but to identify measures whichuld have generated the data sequence as a typical
sequence. Note that we have reduced our task from idergityia computable measure generating the
data, which is not possible, omecomputable measures thaduld have generated the data as a typical
sequence. <&

REMARK 3: We assume here thdt is finite. This is no genuine restriction since all real natural
artificial languages that ever existed contain less than,1$a%° elements. This is supported by the fact
that 10'°° far exceeds the number of atoms currently believed to erishé observable universe. We
assume that. is finite since it makes the computation »f,_; za for x € L* effective.

Where appropriate, we shall use the (in)equalities acngrtth Definition 4. This has bad and good
effects. The bad effect is that semimeasures that violatentesure equalities by at most the truncation
error are counted as measures. The good effects are, besidpstationally verifiable (in)equalities, that
in the infinite processes to construct lower semicomputadhirmeasures (the proof of Theorem 4.5.1
of [14]) we only need to consider finite initial segments. &

Let L be a language with a computable measuren the infinite sequences of its elements. We recall
the notion that an infinite sequeneeis “typical” for pu.

DEFINITION 6: Letx = x1, z2,... be an infinite sequence of elements of the languag€he infinite
sequence is typical or randomfor a computable measuyeif it passes all effective sequential tests for
randomness with respect toin the sense of Martin-&f [15]. The set of such sequences haveeasure
one. We definel/ (z) as the set of indices of elements of the list that are computable measures
such thatz is typical for .

THEOREM4: COMPUTABLE MEASUREIDENTIFICATION BY ALGORITHMS WITH ROUND-OFF ER-
RORsSLet L = {aj,as,...,an}, m < oo, be alanguage and let, =, . .. with z; € L be an infinite data
sequence. Assume that the data sequence is typical forsitdea computable measure. The algorithm
in the proof takes as input the infinite sequengex,, After processinge,, the algorithm computes
as output the index, of an element ofM. Define M, as the set of indices of elements v that
appear infinitely often in the sequence produced by the dlgoriThen,M,, C M(x), M, # &, and

|Mso| < 00.

10

V. PREDICTION

In Sections Il and Ill the data are drawn i.i.d. according torabpbility mass functiorp on the
elements ofL. Givenp, we can predict the probability(a|z1,...,z,) that the next draw results in an
elementa when the previous draws resultedin, ..., z,. (The same holds in appropriate form for a
good pointswise approximatigh of p.)

For measures as in Section IV, allowing dependent data, thatisin is quite different. In the first
place there can be many measures that hawer;, s, ... as typical (random) data. In the second place,
different of these measures may give different probabpitgdictions using the same initial segment of
xX.

Let us give a simple example. Suppose the data-sa, a, This data is typical for the measurg
defined byu; (z) = 1 for everyx consisting of a finite or infinite string af's and 11 () = 0 otherwise.
But the data is also typical fqia which gives probabilityuq(x) = % for every string consisting of am
followed by a finite or infinite string of’s, or a followed by a finite or infinite string ob’s.

Firstly, u1 is not equal tous, even thoughe is typical for both of them. Secondly;; (a|a) = 1. But
p2(ala) = pa(bla) = 1. In fact, ju (yla) = 1 for everyy consisting of a finite or infinite string of’s,
and0 otherwise. The conditional probability»(y|a) is 3 for y consisting of a finite or infinite string of
a’'s or y consisting of a finite or infinite string dfs, and0 otherwise. Thus, different measures for which
the data is typical may give very different predictions. Miiespect to predictions we can only proceed
as follows: (i) find one or more measures for which the datapg#f, and (ii) predict according to one
of these measures that we select.

It does not seem make sense to make a weighted predictiondaugdo the measures for which the
data is typical. There may not be a single measure among thedingntihat prediction. Moreover, the
consecutive data resulting from many predictions may naypial with respect to any of the original
measures.

The question arises how the i.i.d. case and the measure dageteeone another. The answer is as
follows. For ease of writing we will ignore the adjective foputable.” It is clear that the i.i.d. probabilities
are a subset of the more general case of measures. ContairsmEnoper since there is a measure that
is not an infinite sequence of i.i.d. draws according to a fridtya mass function. An example is given
below.

Moreover, an infinite sequence of data can be typical for muae bne measure, even though if such

a sequence is typical for an infinite sequence of i.i.d. drafvany probability mass function, then it

11

is typical for an infinite sequence of i.i.d. draws of only thisgle probability mass function. Thus, if
the data is typical for different measures, then only onehefrheasures involved is a probability mass
function.

Let us give an example. The measpreabove has a single typical sequence a, a, This measure
results from infinitely many i.i.d. draws aof according to the probability mass functigiia) = 1 and
p(z) =0for z € L\ {a}. Butz is also typical foruz, a measure which has no i.i.d. case that corresponds
to it. This can be seen as follows. The measurdas also the typical sequenge- a,b,b, ..., a sequence
such that no infinite number of i.i.d. draws of any probabilitgss function corresponds to it. Namely, the
probability of « andb must both be non-zero to yield the sequegcéience a typical infinite sequence
must contain (in the i.i.d. case) infinitelys andb’s. But y does not do so.

Thus, the i.i.d. case is a proper subset of the measure cadaglg mfinite sequence can be typical
for many (infinitely many) measures, even though if it is tgbifor an i.i.d. case it is typical for only a
single one of the probability mass functions. But there afmite sequences that are typical for many
measures but not typical for any case of infinitely many i.ddaws according to a probability mass

function.

APPENDIX

Proof: oF THEOREM 1. Our data is, by assumption, generated by i.i.d. drawsrdoap to a
computable probability mass functignsatisfying (A.1). Formally, the data;, xo, ... is generated by a
sequence of random variablés, X5, ..., each of which is a copy of a single random variallewith
probability mass functiorP?(X = a) = p(a) for everya € L. Without loss of generality(a) > 0 for
all @ € L. The mean ofX exists by (A.1).

REMARK 4: In probability theory the statemeatmost surelymeans “with probability one.” Let us
illustrate this notion. It is possible that a fair coin geates an infinite sequendk0, ... even though
the probability of 1 at each trial i%. The uniform measure of the set of infinite sequences, such that
the relative frequency of 1's goes to the Iin%it is one. Call sequences in that gsteudo typical The
probability that an infinite sequence is pseudo typical is emen though there are infinite sequences (like
in the example above) that are not pseudo typical. Thus, “stsarely” may not mean “with certainty.”

<&

The Strong Law of Large Numbers (originally in [10]) states tliaté perform the same experiment

a large number of times, then almost surely the average ofethdts goes to the expected value. That

12

is, if a mild condition is satisfied. We require that our seaqueeaf random variableX, X5, ... satisfies

Kolmogorov's criterion that

N2

A
whereo? is the variance ofY; in the sequence of mutually independent random variaklgsXs,
Since all X;’s are copies of a singl&, all X;’s have a common distributiop. In this case we use the
theorem on top of page 260 in [6]. To apply the Strong Law in tlaisecit suffices that the mean &f
exists. (We denote this mean fpy not to be confused with the notation of measyrég we use below.)

That is, we require that

= Zap(a) < 0. (A1)

Then, the Strong Law states that

. 1g
Pr (nh—{gon;Xl:#> =1,

or (1/n) 3 " ; X; converges almost surely o asn — oc.

To determine the probability of am € L we consider the related random variablég with just two
outcomes{a, a}. This X, is a Bernoulli proces$q, 1 — q) whereq = p(a) is the probability ofa and
1 =g =2 4er\(ay P(b) is the probability ofa. If we seta = min (L \ {a}) while the probability ofa is
1—q =23 4er\(a} P(b), then the meam, of X, is

e = aq+a(l —q) < p.

REMARK 5: Recall thatL, may be infinite, that isL = {a1,as,...,}. Then a priori it could be that
lim; o ptq, = oo. But we have just proved that not only this does not happeneben ji,, < p for
everyj. &

Thus, everya € L incurs a random variablé&', for which the equivalent of (A.1) applies. Therefore,

n

according to the cited theorem the quanfityn) """ ,(X,); converges almost surely {a, asn — oc.

Therefore, almost surely

n

Jm, 2

=1

#aj(.Tthw"?‘Tn) —0. (AZ)

n

p(aj) —

With ¢ # p substituted forp in the lefthand side of (A.2), we have that this left-handesid almost

surely unequab. Using some probability theory, we can rewrite the Strong Lamg only the finite

13

Algorithm (z1, 22, ...):

Step Ifor n =1,2,... execute Steps 2 through 4.

Step 2Setl := @, for i:=1,2,...,n execute Step 3.

Step 3sety;, :=1; Lt if 377 [qi'(ay) — #aj(z1, 22, s 20) /0| < 1/7in
then (’Yi,n = Yin + 1; goto L) else Yin = Yin T 1;
if Yin > Yin—1,...,%,1 then I := T U{i}.

Step 4if I # @ then i, :== min [else i, := i,_1; outputi,.

Fig. 1. Algorithm 1a
initial segment of the infinite sequence of (copies of) the-bmtcome random variables. We use ([6], p

258 ff). For every pairc > 0 andd > 0, there is an/NV such that there is a probability— ¢ or better

that for everyr > 0 all r 4+ 1 inequalities:

pla) — — <e, (A.3)

with n = NN + 1,..., N + r will be satisfied with probability at least — §. That is, we can say,

informally, that with overwhelming probability the lefand part of (A.3) remains small for all > N .

Since we deal with all infinite outcomes of i.i.d. draws from #et L according top, for some sequences

that are not pseudo-typical (Remark 4) the inequality (Al8®s not hold. For example, always drawing

a; while p(a1) = % Therefore, the Strong Law holds “almost surely” and cannod Heith certainty.”
DEFINITION 7: Let k be the least index of an element & such thatg, = p. For everyi with

1 <i < k, maxqer |gr(a) — ¢i(a)| > 0 (this follows from the minimality ofk). Define

o = min max|g(a) = gi(a)l-

Then,a > 0. Let a’ be thea that reaches the maximum imax,cy |qp(a) — ¢;(a)| for 1 < i < k,
and 8 = maxi<i<k{j : a; € L & a; = a'}. For everyi with 1 < i < k, let t; be least such that
¢i(aj) — ¢t (aj) < a/2 for everyt > t; andj < (3. Definer by 7 = max;<;<j t;.

The sequence of outputs of the algorithmiisio, ... such that possibly; < 41, ¢; > ij41, OF
ij = 1j4+1. Recall thatQ, = {i : 4,, = i for infinitely manyn}.

CLAIM 1: (i) Qo # @ almost surely; (i) ifi € Q theni € Q(p) almost surely; (iii) almost surely

liminf, . i, = min Q(p).

Proof: The algorithm outputs a sequenégis,.... For ng > 3max{k,3,7} > k+ § + 7 the
algorithm has considered somewhere aleng 1,...,nq the approximationsaf{1 (ab),.. .g,@’f{(a’f—l)

14

in Step 3. By Definition 7 these lower approximations are withjf2 of the final value of they;(a?)
(1 <i < k). Moreover, again by Definition 7, these final values differedst bya from the values of
p = qx for all argumentsa!, ... a*~1, respectively. Hence the approximatiogiga),. .., ¢t ,(a*1)
differ at least bya/2 from g (a'),...,qx(a*"1), respectively, for every > 7. However, Algorithm 1
(Figure 1) does not knowk. We have to show how the algorithm handles this information.

Since
#a(xi,T9,...,T
dh(a) - U2)

=0

lim
n—oo

almost surely for every, € L by (A.2), it follows from the above that

lim
n—oo

dt(ai) — #ai(fcl,a:;, ceeyTp)

>

oo

)

almost surely { < i < k). This means that for large enoughwe have almost surely thay~; , > a/3
(with o« > 0 a constant) in Step 3 of the algorithth € i < k). Then,v;,, < 3/a and there is am; such
that for alln > n; we havey;,, < vin—1,...,%,1 (1 <@ <k). Thus, for large enough and1 <i < k
almost surely we haved I in Step 3.

Almost surely we havey, ,, > Vk.n—1,- - ., V1 for infinitely manyn in Step 3 sincéim,, .o 1/7%,, = 0
almost surely by (A.2). Namelyy. is the probability mass function according to which z,, . .. is i.i.d.
drawn from L. This means that almost suretyis put in [for infinitely manyn in Step 3. Moreover,
almost surelyi ¢ I for everyn > n; and1 < i < k as we have seen above. Thus, for infinitely many
we havek = min I and the output in Step 4 i5, = k, almost surely. Therefork €), almost surely.
For 1 < i < k almost surely; ¢ Q., by the above argument. Hence, almost sufel min Q. and
k = liminf, .. i,. This shows item (i) and, together with Definition 7, item (iii)

For everyi > k such that there are infinitely many for which ~;,, > ~in—1,...,7,1 in Step 3
we havelim, . 1/7;» = 0. This again means that is almost surely the probability mass function
according to whichzy, zo, ... is i.i.d. drawn fromL. Hencei € Q(p) almost surely. Clearly; is put
in I for infinitely manyn. If there are also infinitely many such thati = min 7, theni € Q. Thus
Q- C Q(p) almost surely. This shows item (ii).]

[|
Proof: oF THEOREM 2. Up to, and exclusive of Definition 7, we follow the proof of Tnem 1.

Sincelim, . ¢'(a;) = ¢;(a;) for everyi, j > 1, by (A.2) almost surely

15

Algorithm (z1, 22, ...):
Step Ifor n =1,2,... execute Steps 2 and 3.
Step 2Setl := g, for i:=1,2,...,n:

it S0 g (aj) — #taj (w1, @2, ..., x) /n] = 0 then T :=IJ{i}.
Step 3f I # @ then i, := min [else i, := i,_1; outputi,.

Fig. 2. Algorithm 1b

Algorithm (z1, 29, ...):
Step Ifor n:=1,2,... execute Step 2.
Step Zor everya € L occurring inxzy, xo, ..., T, Setp,(a) := #a(x1, x2, ..., 2pn)/n.

Fig. 3. Algorithm 2

n

Jim >

J=1

B #Haj(x1,2,...,2Tn) +g
n

Qe (az)"”

)

for a k' satisfyingk’ < k. Almost surely, the above displayed equation does not hmld 1 < i < /)

by similar reasoning as in the proof of Theorem 1. Hence thermni/N such that for alln > N we

havek’ € I andi # I for everyi (1 < i < k') in Step 2 of Algorithm 1b. Consequently, in Step 3 of

the algorithmi,, = &’ for all n > N. [|
Proof: oF THEOREM 3.

Algorithm 2 (Figure 3) together with the Strong Law of Large Numsbghows thatim,, .. p,(a) =
p(a) almost surely for everys € L. Herep is the probability mass function of based on the data
sequencery, zo,.... Note that in Algorithm 2 the different values @f, sum to precisely 1 for every
n=12.... |

Proof: oF THEOREM 4. We need the theory of Kolmogorov complexity [14] (oridlgan [11] and
the prefix version we use here in [13]). A prefix Turing machineng with a one-way read-only input
tape with an distinguished tape cell called tirgin, a working tape that is a two-way read-write tape on
which the computation takes place, and a write-only outppet At the start of the computation the input
tape is infinitely inscribed from the origin onwards, and thput head is on the origin. The machine
operates with binary input. If the machine halts then thaiitpad has scanned a segment of the input
tape from the origin onwards. We call this initial segmerg piogram

By this definition the set of programs is a prefix code: no progiara proper prefix of any other

program. Consider a standard enumeration of all prefix TunvaghinesTy, T», Let U denote a

16

universal Turing machine such that for everg {0,1}* andi: > 1 we haveU (i, z) = T;(z). That is, for
all finite binary stringsz and every machine index> 1, we have thal/’s execution on inputg and z
results in the same output as that obtained by execWtirmg inputz. There are infinitely many sudh’s.
Fix one such & (and with some abuse of notation denote iCakenceforth) and define that conditional
prefix complexityK (z|y) for all z,y € {0,1}* by K(z|y) = min,{|p| : p € {0,1}* andU(p,y) = x}.
For the samel/, define thetime-bounded conditional prefix complexify’(z|y) = min,{|p| : p €
{0,1}*andU(p,y) = z in t stepg. To obtain the unconditional versions of the prefix complesitset
y = A where) is theemptyword (the word with no letters).

By definition the sets over which the minimum is taken are cabietand not empty. It can be shown
that K (z|y) is incomputable. Clearly<(z|y) is computable ift is computable. Moreoverds® (z|y) <

K'(z|y) for everyt’ > t, andlim;_~, K'(z|y) = K(z|y). Since everything is discrete, there is a least

timet,), < oo such thatk**v(z|y) = K (x|y), even though the functiofi(z, y) defined byf (z, y) = t,,,
for all z,y € {0,1}* may be incomputable.

DEFINITION 8: The languagd. = {aq, as, ..., ax} is finite. We viewa € L as an integer and < oc.
If 1,29,...,2, is a data sequence with, € L (1 < i < n), thenK(z1...z,]y) = miny{[p| : p €

{0,1}* andU(p,y) = x1.,} Wherex;., is an agreed-upon binary encoding®frs . .. z,. Similarly we
define K'(zy ... z,|y).

We now turn to the theory of semicomputable semimeasurggriicular we exhibit a formal criterium
that an infinite sequence is “typical” or “random” in Martirél’s sense [15].

DEFINITION 9: Let 4 be a computable measure on the set of infinite sequences oérerinom L.

A particular infinite sequence = 1, x9,... € L is typical or randomfor y if

sup{log i —K(z1...2,|p)} < 00,

X1...Ty)
In [14] the definition is different, but is equivalent to theoab one by Corollary 4.5.2 there. The measure
w in the conditional ofK (-|-) means a finite number of bits that constitute a program thatritbes ..
Clearly, K(u) < oo sincep is computable. Moreover, according to [14] we ha¥éz|y) > K(z) —
K(y)+0(1) for every finitex andy. Therefore K (z1 ... z,)—K(u)+0(1) < K(x1 ... 2,|u)+0(1) <

K(xi...zy)+ O(1). Hence we can replace the last displayed formula by

sgp{log i —K(x1...2,)} < 00. (A.4)

Ti...Tp)

Our data is, by assumption, typical (equivalently randoon)sbme computable measyteThat is, the

17

dataz,, zo, . .. satisfies (A.4) with respect to. We can effectively enumerate all and only semimeasures
that are semicomputable from below as the elements listedfinf (IV.2).

REMARK 6: We stress that the data is possiplyandom and.’-random for different measurgsand
1. In general it can be so for many measures\vih Therefore we cannot speak of the true measure, but
only of a measure for which the data is typical. &

To eliminate the undesirable lower semicomputable sensorea among;, io ... we sieve out the
ones that are not measures, and among the measures the ands ttot showr, x5, ... random to it.

To do so, we conduct for elements 8f a test for both properties. Since the test is computational we
need the (in)equality relationg, E =y 2 < of Definition 4. In particular this is needed in the properties
in Claim 3. These properties are used in Step 3 of Algorithm 3uffeigh).

DEFINITION 10: Since the algorithms have a round-off error, we can telt én0 or not = 0.
Consequently, we count semimeasures as measures if thefy $at.1) but deviate from equalities by a
very small additive term only. More precisely; in the list M is counted as @emimeasure but not as
a measuref p;(z) — > cp pi(za) Lo 1i(2) = D qer MHi(za) £ 0 then we viewy; as ameasure

CLAIM 2: Assume thati,; in M is a semimeasure but not a measure according to Definition Eh, Th
there is a least € L* and a leash; such thatu}(z) — > o, 1i'(za) L0 for everyn > n,.

Proof: Sincey; is lower semicomputable and.| < oo, for everyz € L* there is am, such that

for everyn > n, we have

0 < pi(z) — ul(2) =0

and for everya € L we have

0<> pilza) = > i (za) = 0.

a€L a€L
Therefore,
+
pi(2) = D p(za) = (=) = Y pilza) > 0. (A5)
a€l a€Ll

|

DEFINITION 11: Let u; be an element ofM. Assume that for alln we havei,j > 0 andi +

j =mn. DefineZ;, = {z € L*: 2] <j, pj(2) = D ,er ki (za) L 0} and A;,, = max{A :
Zij-nan-a N Zijn # D}

REMARK 7: The setZ; ;,, contains all stringss € L* of at least lengthj such thati + j = n and

+ , . , ,
i (2) = Y ger 1i(za) > 0. The intersectionZ; ;A n-a()---(1Zijn is the set of all strings: of

18

length at leastj — A that witness that the approximatiomg?‘A, ..., are all semimesures but not
measures. The quantit; , is the maximum number of approximations before and inclydire nth
approximation ofi;; such that the same e L* of length at leasyj — A, ,, with i 4+ 7 = n witnesses that
all these approximations are semimeasure but not measujtes) < > acr 1Y (za) for everyn’ such
thatn — A;, <n' <n. O

CLAIM 3: Lety; be an element of the list1 andn; be as in Claim 2. If; is not a measure according
to Definition 10, then for every. > n; we haveA,;,, > n—n,; for all n > n; andA; , = A;,—1 + 1 for
all n > n,;. If u; is a measure according to Definition 10, then for evetyere is a greatest< oo such
that A; , < n —c andc goes toco with growingn. We haveA; , < max{A(i,n—1),...,A(,1)} +1
for infinitely manyn iff p; is a measure.

Proof: If 4; is not a measure then by Claim 2 there is @ L* such thay}'(z) — >, 13 (za) <0
for all n > n;. This z will never leave the setg; ; ,, (|z| < j = n—i) for n > n;. Therefore A, ,, > n—n;
andA;, = A; -1 + 1 for all n > n,.

If u; is @ measure thelim,, .. (1" (2) — > ,cr 13 (2a)) = 0. Therefore, for every there is a least
ni. < oo such thatui(z) — >, wi'(za) £ 0 for all n > n, .. Hence, for everyj and everyz € L*
with |z| < j we havez ¢ Z; ;, for all n > n; .. Thus, every finite string irZ; ; , is not a member
of Z; j1n—nn any more for everyn’ > n. Therefore, for every: there is a greatest < co such that

A;, <n—candc goes tooco with growing n. This implies that
Ay <max{A(i,n—1),...,A(,1)} +1

for infinitely manyn. In view of the above property of semimeasures that are naisares according to
Definition 10, i1; is a measure iff the last displayed equation holds.]

REMARK 8: To make everything effective (computable) for Algoriti8n(Figure 4) we do not use
prefix complexity as in (A.4) but the time-bounded analog andd. By using dovetailing, that is,
n = 1,2,... with all combinations ofi,j > 0 such thati + j = n andn is the number of steps, as
in Definition 11, with growingn every u!*(z) with |z| < j for every particulari, j,n is computed and
considered.

In Algorithm 3 one wants to determine the indexesf elementsy; in the list M such thatu; is a
measure. This happens in Steps 2 and 3 as follows. For growithge fact that index is selected to
go in I means thay; is possibly a measure. Eventually,rifis large anough this possibility will turn

into a certainty. Moreover, this will hold for every measuyrg Thus, for everyi with growing n, but

19

not computably, it is decided that; is a measure or not. If it is a measure, then it keeps on figuring i
the second part of the algorithm, if it is decided not to be asnee then it will not figure in the second
part of the algorithm.

This second part of the algorithm determines for which messthie datarq, xo, . . . is random. Note
that this part initially also may consider nonmeasures. \Bitih growing n, because of the first part of
the algorithm, for every index it will consider only measures but not nonmeasutgsIf for some
n the index: is selected then in Step 5 the algorithm computes rthepproximationsp(i, 7', n) =
logl/p?(zy...xj) — K™(x1...25) (1 <4 <j, j=n—1). This in order to obtain approximations to
the elements constituting the initial segment of the sege@h which equation (A.4) takes the supremum.
In Step 6 the algorithm takes the maximuri, n, j') := max{p(7, 7”,n) : 1 < 57 < j'} over the initial
segments of this initial segment. In Step 7 it determines ¥eryeu; concerned how long the longest flat
plateau of this sequence of maxima is.

Supposey; is a measure for whiclx,zo,... is random. If there exists &y such that theng-
approximation ofp(i, jo,n9) has reached the supremum in (A.4), then for every jo andn > ng
we have thap(i, j,n) reaches this supremum. (Reaching means “is within a urii@"select au; one
looks for thep(i, -, -) that gives the longest flat plateau, that is, has reached trersum in (A.4) the
soonest in terms of the initial segmentof, zo, Thus, in Step 7 the algorithm compares the length
of the flat plateau with the top score, and changes the lattigrisfexceeded. In Step 8 the algorithm
either selects the index resulting in a new or equal top soorgoes with the index of approximation
n — 1. Note that with growing: nonmeasures are excluded in the first part of the algorithms,Tith
growingn, the measure; that reaches (A.4) soonest and has the longest flat plateaanhadex; that
is not (eventually) excluded by the first part of the algorithm &

DEFINITION 12: Lety; in list M be a measure according to Definition 10 andzs, . .. be an infinite
sequence of elements from By (A.4) we haveu; € M(z) iff there is ao; < co such that

Ui:max{{logl—K(xl...xj)J —1} (A.6)
j pi(z1 ... x)
for 1 < j < . Definem; as the leasy for which o; is reached.

REMARK 9: In Definition 12 we have replaced “measure” by “measure iatiog to Definition 10.”
We have replaced thestip” in (A.4) by “max” by rounding down. Moreover, by rounding down and
subtracting 1 we have taken care that < oco. O

(Proof of the theorem continued.) The sequence of outputs gbrRhm 3 are indexes$, io, ... of

20

Algorithm (z1, 22, ...):

Step Im :=0; for n=1,2,... execute Steps 2 through 8.

Step 2 := @; for everyi,j > 0 satisfyingi + j = n, computed; ,, (note j = n — i) and execute
Steps 3 through 7.

Step 3f A;,, < max{A(i,n—1),...,A(3,1)} +1 then I := I'|J{i} (by Claim 3, € I for infinitely
manyn iff u; is a measure).

Step 4if I # @ then execute Steps 5 through 7 for everg I.

Step Sfor j/:=1,...,j setp(i,j',n) :==logl/pl(z1...25) — K™(x1...25).

Step 6for j' :=1,...,j seto(i,n, ;') := max{p(i, 7", n) : 1 < 7" < j'}.

Step 7s(i,n) := max{s : |o(i,n,r)] —1 =+ = |o(i,n,r+3)] =1, 1 <r <r+s < j}if
s(i,n) < mthen I := & else m := s(i, n).

Step 8f I # @ then i, := min{i : s(i,n) = m} else iy, := i,_1; outputi,.

Fig. 4. Algorithm 3

lower semicomputable semimeasuresAi, such that possibly; < i;41, 7; > 441, O i; = i;41. By
Claim 3, for every measure (Definition 1Q) in M we havei € I in Step 3 of the algorithm for
infinitely manyn. For large enough indexi ¢ I of a nonmeasurg,. So for every index there is a
large anoug such thati € I only if u; is a measure. These measures are treated in Steps 4 through 8.
By assumption the data= x1, xs, ... is random (typical) for some measure M. Let this be measure
i

Let us look at long plateaus(i, n) for measureg:; such that either = x;,x9,... is not random to
it or m; > n (with m; as in Definition 12). For a measurg such thatr = x1, zo, ... is not random to
it, s(i,n) can be any constamt However the lefthand side of (A.4) goes to infinity in this €aso we
know thats(i,n’) = 1 for somen’ > n. Since the data: = 1, x9, ... is random touy, for all n that are
large enoughs(k,n) = s(k,n—1)+1 by Claim 3. Hence, for large enoughwe haves(k,n) > s(i,n),
sinces(k,n) — oo with n — co. For a measurg; with j # k such thatr = x1, z», ... is random to it,
s(j,n) can be a constant< o; while n < m;. That is, the maximum in (A.6) has not yet been reached.
Again we know thats(j,n’) = 1 for somen’ > n. Hence without loss of generality we can exclude
cases like measurgs and ;. Let us consider only measurg@s and steps:, such thatr = x;, zo, ...
is random toy; andn > m.

Without loss of generality we can assume that we compyien) for every measure:; in M and
every n according to Steps 6 and 7, and not just whiea I. In particular we can do so foti;. By
Claim 3, for everyn that is large enough we havék, n) < s(i,k—1)+1 ands(k,n) = s(k,n—1)+1.

Let ¢ satisfy my, < i. Then,s(i,my) = 0 (the set over whichs(i,my) is maximized in Step 7 equals

21

@). Sinces(i,n) < s(i,n) + 1 for all n, we haves(i,n) < s(k,n) < m (with m as in Step 7) for all
n > my. Hencei,, # i in Step 8 ifn is large enough. Led be the set of measures with i < my.
Then|A| < my and My, C A. Hence| M| < my < 0.

Since| M| < my, and by Steps 5,6,7 the output of Algorithm 3 is an infinite seqaé,, is, ..., we
have that someé, < my occurs infinitely often in this sequence. Henkg, # <.

Let the index: of a measureg:; occur in M. Thens(i,n) is larger thanm in Step 7 for infinitely
many n. (It is impossible that,, = i,,_; for an infinitely long run ofn’s sincem — oo with n — co.
The latter statement is a consequence(@f n) growing with n.) Sincem — oo with n — oo we have
s(i,n) — oo with n — oco. By the definition ofs(-,) and (A.6), the data = z;, x9, ... is random with

respect to the measufg. Hence,M., C M(x). This proves the theorem.]

REFERENCES

[1] D. Angluin, Identifying languages from stochastic examples, Yalesémsity, Dept. of Computer Science, Technical report,
New Haven, Conn., USA, 1988.

[2] S.B. Cooper, P. Odifreddi (2003). Incomputability in nature, PR7—160 in S. B. Cooper and S. S. Goncharov, Eds.,
Computability and Models: Perspectives East and Wekinum, New York, 2003.

[3] T.M. Cover and J.A. Thomagilements of Information Thearyiley, New York, 1991.

[4] E.M. Gold, Limiting recursionJ. Symb. Logic30(1965), 28-48.

[5] E.M. Gold, Language identification in the limitpform. Contr, 10(1967), 447—-474.

[6] W. Feller, An Introduction to Probability Theory and Its Applicatigndl. 1, Wiley, New York, 1968 (third edition).

[7] A. Hsu, N. Chater and P.M.B. \anyi, The probabilistic analysis of language acquisition: Theoretical, atatipnal, and
experimental analysigCognition120(2011), 380-390.

[8] S. Jain, D.N. Osherson, J.S. Royer, A. Shar@ywstems that LeayMIT Press, Cambridge, Mass., 1999 (second edition).

[9] A.N. Kolmogorov, Grundbegriffe der Wahrscheinlichkeitsrechnu®pringer-Verlag, Berlin, 1933.

[10] A.N. Kolmogorov, Sur la loi forte des grandes nombré&s,r. Acad. Sci. Paris 191(1930), 910-912. See also A.N.
Kolmogorov, Grundbegriffe der Wahrscheinlichkeitsrechnyu®@pringer-Verlag, Berlin, 1933. See also F.P. Cantelli, Sulla
probabili& come limite della frequenz&endiconti della R. Academia dei Lincei, Classe di scienze fisische atatieen
e naturale, Seri®, 26(1917), 39-45.

[11] A.N. Kolmogorov, Three approaches to the quantitative definitiéninfbormation, Problems Inform. Transmissipn
1:1(1965),1-7.

[12] M. Kracht, The Mathematics of Languagklouton & de Gruyter, Berlin, 2003.

[13] L.A. Levin, Laws of information conservation (non-growth) aasbects of the foundation of probability theoRroblems
Inform. Transmission10(1974), 206—-210.

[14] M. Li and P.M.B. Vitanyi, An Introduction to Kolmogorov Complexity and Its Applicatiop&pringer-Verlag, New York,
2008 (third edition).

[15] P. Martin-Lof, The definition of random sequencésform. Contro| 9:6(1966), 602—619.

22

[16] S. Pinker, Formal models of language learni@ggnition 7(1979), 217—-283.

[17] K.R. Popper,The Logic of Scientific DiscoveriHutchinson, London, 1959.

[18] Z.W. Pylyshyn, Z. W.,Computation and CognitigrMIT Press, Cambridge, Mass., 1984.

[19] F. Rieke, D. Warland, R. de Ruyter van Steveninck, W. Bialek97)9Spikes: Exploring the Neural Cod®IT Press,
Cambridge, Mass., 1997.

[20] A.M. Turing, On computable numbers, with an application to the EmisitingsproblemProc. London Mathematical
Society?2, 42(1936), 230-265, "Correction”, 43(1937), 544-546.

[21] A.K. Zvonkin and L.A. Levin, The complexity of finite objects and tdevelopment of the concepts of information and
randomness by means of the theory of algorithRigssian Math. Survey25:6(1070), 83—124.

23

