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Abstract. Let V be an n-dimensional complex inner product space and let T :=
T (V )⊗T (V ∗) be the mixed tensor algebra over V . We characterize those subsets A
of T for which there is a subgroup G of the unitary group U(n) such that A = TG.
They are precisely the nondegenerate contraction-closed graded ∗-subalgebras of T .
While the proof makes use of the First Fundamental Theorem for GL(n, C) (in the
sense of Weyl), the characterization has as direct consequences First Fundamental
Theorems for several subgroups of GL(n, C). Moreover, a Galois correspondence
between linear algebraic ∗-subgroups of GL(n, C) and nondegenerate contraction-
closed graded ∗-subalgebras of T is derived. We also consider some combinatorial
applications, viz. to self-dual codes and to combinatorial parameters.

1 Introduction

Let V be an n-dimensional complex inner product space, with inner product
〈., .〉 and with dual space V ∗. (The inner product is C-linear in the first
variable, and conjugate linear in the second variable.) Denote, as usual,

(1) T (V ) :=
∞

⊕

k=0

V ⊗k and T (V ∗) :=
∞

⊕

k=0

V ∗⊗k,

where V ⊗k and V ∗⊗k denote the tensor product of k copies of V and V ∗

respectively. Set

(2) T := T (V ) ⊗ T (V ∗) ∼=

∞
⊕

k,l=0

V ⊗k ⊗ V ∗⊗l.

This is the mixed tensor algebra over V (cf. [5]). (The multiplication is the
usual tensor product of the rings T (V ) and T (V ∗), governed by the rule
(x⊗ y)⊗ (x′ ⊗ y′) = (x⊗ x′)⊗ (y ⊗ y′) for x, x′ ∈ T (V ) and y, y′ ∈ T (V ∗).)

Fixing an orthonormal basis e1, . . . , en of V , we can identify V with C
n

(with the inner product 〈a, b〉 = b
T
a). For any U ∈ GL(n, C), let z 7→ zU be
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the linear right action of U on T , which is the unique algebra endomorphism
on T satisfying xU = U−1x and yU (x) = y(Ux) for x ∈ V and y ∈ V ∗. For
any G ⊆ GL(n, C) and A ⊆ T , denote

(3) AG := {z ∈ A | zU = z for all U ∈ G} and GA := {U ∈ G | zU =
z for all z ∈ A}.

In this paper we characterize those subsets A of T for which there exists
a subgroup G of the unitary group U(n) such that A = TG. They turn out
to be precisely the graded ∗-subalgebras of T that are nondegenerate and
contraction-closed (for definitions, see Section 2). Our proof is based on the
Stone-Weierstrass theorem, the First Fundamental Theorem (in the sense of
Weyl [12]) for GL(n, C), and the existence of a Haar measure on U(n).

As consequences we derive the First Fundamental Theorem for a number
of subgroups of GL(n, C). Indeed, our theorem directly implies that if some
subgroup G of GL(n, C) satisfies G = GS for some subset S of T with
S = S∗, then TG is equal to the smallest nondegenerate contraction-closed
graded subalgebra of T containing S. This often directly yields a spanning
set for (V ⊗k ⊗ V ∗⊗l)G for all k, l. That is, it implies a First Fundamental
Theorem for G (the tensor version, which is equivalent to the polynomial
version — cf. Goodman and Wallach [4] Section 4.2.3). We describe this in
Section 5.

A subgroup G of GL(n, C) is called a ∗-subgroup if G = G∗ := {U∗ |
U ∈ G} (where U∗ is the conjugate transpose of U). The following char-
acterization is well-known: A linear algebraic subgroup G ⊆ GL(n, C) is a
∗-subgroup if and only if G is reductive and G∩U(n) is a maximal compact
and hence Zariski-dense subgroup. In Section 4 we show that if G is any
∗-subgroup of GL(n, C) and we set A := TG, then GL(n, C)A is equal to the
smallest linear algebraic subgroup of GL(n, C) containing G. Together with
the characterization above, this implies a Galois correspondence between lin-
ear algebraic ∗-subgroups of GL(n, C) and nondegenerate contraction-closed
graded ∗-subalgebras of T .

In Sections 6 and 7 we give combinatorial applications of our theorem,
viz. to self-dual codes and to combinatorial parameters. For the sake of
exposition, we restrict ourselves to describing the most elementary of these
applications. The application to combinatorial parameters in fact was our
main motivation to prove Theorem 1.
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2 Preliminaries

For any A ⊆ T and k, l ≥ 0, denote

(4) Ak
l := A ∩ (V ⊗k ⊗ V ∗⊗l).

A subalgebra A of T is called graded if A =
⊕∞

k,l=0 Ak
l .

For any x ∈ V , let x∗ ∈ V ∗ be defined by x∗(z) = 〈z, x〉 for all z ∈
V . This extends to a unique function x 7→ x∗ on T satisfying (x∗)∗ = x,
(λx)∗ = λx∗, (x + y)∗ = x∗ + y∗, and (x⊗ y)∗ = y∗ ⊗ x∗ for all x, y ∈ T and
λ ∈ C. A subalgebra A of T is called a ∗-subalgebra if A∗ = A.

e∗1, . . . , e
∗
n is equal to the usual dual basis of e1, . . . , en. The inner product

〈., .〉 on V extends uniquely to an inner product on T for which all products

(5) ei1 ⊗ · · · eik ⊗ e∗j1 ⊗ · · · e∗jl

form an orthonormal basis, where k, l range over all nonnegative integers
and where i1, . . . , ik and j1, . . . , jl range over 1, . . . , n. (The inner product
is independent of the choice of e1, . . . , en.) For all x, y ∈ T ,

(6) 〈x∗, y∗〉 = 〈y, x〉 = 〈x, y〉.

Moreover, (zU )∗ = (z∗)U∗−1

for z ∈ T and U ∈ GL(n, C). If we identify

V ⊗ V ∗ with End(V ) and with the n × n matrices, then U∗ = U
T
. For

U ∈ U(n) we have U∗−1 = U , hence

(7) (z∗)U = (zU )∗ for all U ∈ U(n) and z ∈ T .

Also,

(8) 〈x, yU 〉 = 〈xU∗
, y〉 for all U ∈ GL(n, C) and x, y ∈ T .

The identity matrix I in V ⊗ V ∗ is equal to

(9) I :=
n

∑

i=1

ei ⊗ e∗i .
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For k, l ∈ N and 1 ≤ i ≤ k and 1 ≤ j ≤ l, the contraction Ck,l
i,j is the

unique linear transformation V ⊗k ⊗ V ∗⊗l → V ⊗k−1 ⊗ V ∗⊗l−1 satisfying

(10) Ck,l
i,j (x1 ⊗ · · · ⊗ xk ⊗ y1 ⊗ · · · ⊗ yl) =

yj(xi)(x1⊗· · ·⊗xi−1⊗xi+1⊗· · ·⊗xk⊗y1⊗· · ·⊗yj−1⊗yj+1⊗· · ·⊗yl)

for all x1, . . . , xk ∈ V and y1, . . . , yl ∈ V ∗. It is useful to observe that, for
any k, l ∈ N, the function (x, y) 7→ 〈x, y〉 on T k

l × T k
l is equal to a series of

k + l contractions applied to the tensor x ⊗ y∗ (which belongs to T k+l
k+l ).

A graded subalgebra A of T is called contraction-closed if Ck,l
i,j (Ak

l ) ⊆

Ak−1
l−1 for all k, l ∈ N and 1 ≤ i ≤ k and 1 ≤ j ≤ l. The following is basic,

and follows from the fact that yU (xU ) = y(x) for x ∈ V , y ∈ V ∗:

(11) if z ∈ T and U ∈ GL(n, C) satisfy zU = z, then wU = w for any
contraction w of z.

So TG is contraction-closed for any G ⊆ GL(n, C).
We call A ⊆ T nondegenerate if there is no proper subspace W of V such

that A ⊆ T (W )⊗T (W ∗). (Here T (W ∗) is taken as subspace of T (V ∗) with
respect to the chosen inner product, which gives an orthogonal complement
to W : it yields a natural isomorphism between W ∗ and {w∗ | w ∈ W},
hence a natural embedding W ∗ →֒ V ∗.) It follows from the proof of (13)
below that a contraction-closed graded ∗-subalgebra A of T is nondegenerate
if and only if I ∈ A.

We call a tensor z ∈ T k
l a mutation of a tensor y ∈ T k

l if z arises from
y by permuting contravariant factors and permuting covariant factors. A
useful observation is:

(12) Any contraction-closed graded ∗-subalgebra of T containing I is
closed under taking mutations.

Indeed, any mutation of a tensor z ∈ T k
l can be obtained by applying a

series of m contractions to z ⊗ I⊗m (for some m).
Most background on tensors, invariant theory, and linear algebraic groups

can be found in the books of Goodman and Wallach [4] and Kraft [6] and
in the survey article of Springer [10].
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3 The characterization

Theorem 1. Let n ≥ 1 and A ⊆ T . Then there is a subgroup G of U(n)
with A = TG if and only if A is a nondegenerate contraction-closed graded

∗-subalgebra of T .

Proof. Necessity being direct, we show sufficiency. Let A be a nondegen-
erate contraction-closed graded ∗-subalgebra of T .

Consider again the elements of V ⊗ V ∗ as elements of End(V ), or as the
corresponding n × n matrices. Then A1

1 is a subalgebra of End(V ), since if
y, z ∈ A1

1 then the matrix product yz belongs to A1
1, as it is a contraction of

y ⊗ z. We first show:

(13) I ∈ A.

As A1
1 is a finite-dimensional C∗-algebra, it contains an identity element e.

In order to prove that e = I, it suffices to show that A1
1 is nondegenerate

as an operator algebra, that is, that A1
1V = V , since then ev = v for each

v ∈ V , as v = av = eav = ev for some a ∈ A1
1.

Define W := A1
1V . Then for (13) it suffices to show:

(14) A ⊆ T (W ) ⊗ T (W ∗),

since it implies W = V as A is nondegenerate.
To prove (14), we can assume that W ∩ {e1, . . . , en} is a basis of W , say

it is {e1, . . . , em}. Express any x ∈ Ak
l in the basis (5). If x 6∈ W⊗k ⊗W ∗⊗l,

then we may assume (by the fact that A = A∗) that x uses a basis element
(5) with it > m for some t ∈ {1, . . . , k}; say it = m + 1. Then there is a
contraction of x⊗ x∗ to an element y of A1

1 which uses em+1 ⊗ e∗m+1. Hence
A1

1em+1 uses em+1, contradicting the fact that A1
1em+1 ∈ W .

This proves (14), and hence (13). It implies:

(15) TU(n) ⊆ A.

Indeed, the First Fundamental Theorem for U(n) (cf. [4]) states that, for
each k, l ∈ N, if k 6= l then (T k

l )U(n) is equal to {0}, and if k = l then it is
spanned by all mutations of I⊗k. By (12), A contains all mutations of I⊗k,
hence (T k

l )U(n) ⊆ A, and we have (15).
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Define G := U(n)A. To prove the theorem, it suffices to show A = TG,
where A ⊆ TG is direct.

Let X := U(n)/G be the set of right cosets of G, with the quotient
topology. As U(n) is compact, X is compact. For a ∈ A and b ∈ T , define
a continuous function φa,b : X → C by

(16) φa,b(GU) := 〈aU , b〉

for U ∈ U(n). This is well-defined, since if GU ′ = GU , then U ′U−1 ∈ G,
hence aU ′U−1

= a, and therefore aU ′
= aU .

Let F be the linear space spanned by the functions φa,b with a ∈ A and
b ∈ T . So F is in fact spanned by those φa,b with a ∈ Ak

l and b ∈ T k
l for

some k, l. We show

(17) F = C(X)

(with respect to the sup-norm topology on C(X)), using the Stone-Weierstrass
theorem (cf. for instance [1] Corollary 18.10). To this end, we check the con-
ditions of the Stone-Weierstrass theorem.

First, F is a subalgebra of C(X) (with respect to pointwise multiplica-
tion). For let a, b ∈ T k

l and a′, b′ ∈ T k′

l′ with a, a′ ∈ A. Then for each
U ∈ U(n):

(18) φa,b(GU)φa′,b′(GU) = φa⊗a′,b⊗b′(GU).

So φa,bφa′,b′ = φa⊗a′,b⊗b′ . Moreover, F is self-conjugate: if φ ∈ F , also φ ∈ F
(as φa,b = φa∗,b∗ , by (6) and (7)).

Finally, F is strongly separating. Indeed, for U, U ′ ∈ U(n) with GU 6=
GU ′ there exists a ∈ A with aU ′U−1

6= a (as U ′U−1 6∈ G). So aU ′
6= aU , and

therefore 〈aU ′
, b〉 6= 〈aU , b〉 for some b ∈ T . Hence φa,b(GU ′) 6= φa,b(GU). If

U ∈ U(n), let a be a nonzero element in A (for instance, a = I — here we
use n ≥ 1). Then 〈aU , b〉 6= 0 for some b ∈ T , hence φa,b(GU) 6= 0. This
proves (17).

Now suppose that TG 6⊆ A. So there exist k, l such that (T k
l )G 6⊆ Ak

l .
Hence there exists a nonzero z ∈ (T k

l )G orthogonal to Ak
l . As z is nonzero

and 〈zU , z〉 = 〈z, zU 〉,

(19)

∫

U(n)
〈zU , z〉〈z, zU 〉dµ(U) > 0,
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where µ is a U(n)-invariant Haar measure on U(n).
The function ψ : X → C defined by ψ(GU) := 〈zU , z〉 for U ∈ U(n)

is continuous (and well-defined, as if GU ′ = GU , then U ′U−1 ∈ G, hence
zU ′U−1

= z (as z ∈ TG), therefore zU ′
= zU ). So by (17), F contains

functions arbitrarily close to ψ (in the sup-norm topology). With (19) this
implies that there exist k′, l′ and a ∈ Ak′

l′ and b ∈ T k′

l′ such that

(20)

∫

U(n)
φa,b(GU)〈z, zU 〉dµ(U) > 0.

Hence, by definition of φa,b, and using (8),

(21) 0 6=

∫

U(n)
〈aU , b〉〈z, zU 〉dµ(U) =

∫

U(n)
〈a, bU∗

〉〈zU∗
, z〉dµ(U) =

∫

U(n)
〈a, bU 〉〈zU , z〉dµ(U) =

〈

∫

U(n)
〈a, bU 〉zUdµ(U), z

〉

.

We will show that however

(22)

∫

U(n)
〈a, bU 〉zUdµ(U) ∈ A,

which implies that (21) gives a contradiction, as z is orthogonal to A.
To show (22), note that (as observed above) 〈a, bU 〉 can be obtained by

an appropriate series of k′ + l′ contractions from a ⊗ (bU )∗ (this last tensor
belongs to T k′+l′

k′+l′ ). Hence

(23) 〈a, bU 〉zU = C(a ⊗ (bU )∗ ⊗ zU ),

where C : T k′+l′+k
k′+l′+l → T k

l consists of a series of k′ + l′ contractions. Define

(24) w :=

∫

U(n)
((bU )∗ ⊗ zU )dµ(U).

Then w belongs to TU(n) (as (bU )∗ = (b∗)U by (7)), and hence, by (15), to
A. Therefore,

(25)

∫

U(n)
〈a, bU 〉zUdµ(U) =

∫

U(n)
C(a⊗ (bU )∗⊗zU )dµ(U) = C(a⊗w)
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belongs to A, as a, w ∈ A and as A is contraction-closed. This proves (22),
and hence the theorem.

4 A Galois correspondence and other corollaries

We formulate a few consequences of Theorem 1. The first consequence is
implicit in the proof of Theorem 1, but it is convenient to state it explicitly.

Corollary 1a. Let A be a nondegenerate contraction-closed graded ∗-subalgebra

of T . Then

(26) TU(n)A

= A.

Proof. Here ⊇ is direct, while ⊆ follows from the fact that if A = TG for
some ∗-subgroup G, then G ⊆ U(n)A, hence TU(n)A

⊆ TG ⊆ A.

For any G ⊆ GL(n, C), let G be the Zariski closure of G.

Corollary 1b. For any ∗-subgroup G of GL(n, C):

(27) GL(n, C)T G

= G.

Proof. Set A := TG. Then A is a nondegenerate contraction-closed graded
∗-subalgebra of T . So by (26), TU(n)A

= A = TG.
Now, for any two groups G, H ⊆ GL(n, C), TG = TH implies G = H

(cf. [6] or [10]). Hence

(28) G = U(n)A = GL(n, C)A ∩ U(n) = GL(n, C)A.

The latter equality follows from the fact that for any Zariski-closed ∗-
subgroup H of GL(n, C) one has H ∩ U(n) = H. Now (28) gives (27).

Theorem 1 and Corollary 1b imply that the relation G ↔ TG gives a one-
to-one correspondence between the lattice of linear algebraic ∗-subgroups
G of GL(n, C) and the lattice of nondegenerate contraction-closed graded
∗-subalgebras of T . It is a Galois correspondence: it reverses inclusion.
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The following corollary is useful in deriving First Fundamental Theorems
(as we do in Section 5).

Corollary 1c. Let S ⊆ T and let G be a ∗-subgroup of GL(n, C) with

U(n)S ⊆ G ⊆ GL(n, C)S. Then TG is equal to the smallest contraction-

closed graded ∗-subalgebra of T containing S ∪ {I}.

Proof. Let A be the smallest contraction-closed graded ∗-subalgebra of
T containing S ∪ {I}. So A consists of those elements of T obtainable
from S ∪ S∗ ∪ {I} by a series of linear combinations, tensor products, and
contractions. Hence U(n)S = U(n)A =: H. Now TG is a contraction-closed
graded ∗-subalgebra containing S ∪ {I} (TG is a ∗-subalgebra as G is a
∗-subgroup). So A ⊆ TG. As G ⊇ H this implies

(29) A ⊆ TG ⊆ TH = A,

by Corollary 1a. (A is nondegenerate as I ∈ A.) Therefore, we have equality
throughout in (29), which proves the corollary.

Incidentally, this corollary implies that each contraction-closed graded ∗-
subalgebra A of T is finitely generated as a contraction-closed algebra. That
is, there is a finite subset S of A such that each element of A can be obtained
from S by a series of linear combinations, tensor products, and contractions:

Corollary 1d. Each contraction-closed graded ∗-subalgebra A of T is finitely

generated as a contraction-closed algebra.

Proof. We may assume that A is nondegenerate. Let G := U(n)A, and for
each z ∈ A, let Gz := U(n){z}. So G =

⋂

z∈A Gz. As each Gz is determined
by polynomial equations, by Hilbert’s finite basis theorem we know that
G =

⋂

z∈S Gz for some finite subset S of A. So G = U(n)S . Hence

(30) A = TG = TU(n)S

.

We can assume that S∗ = S (otherwise add S∗ to S). Therefore, by Corol-
lary 1c, A is the smallest contraction-closed graded subalgebra of T contain-
ing S ∪ {I}.
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5 Applications to FFT’s

We now apply Theorem 1 (more precisely, Corollary 1c) to derive a First
Fundamental Theorem (FFT) in the sense of Weyl [12] for a number of
subgroups of GL(n, C). The following lemma, which is straightforward to
prove, will turn out to be useful. (An element z of T is homogeneous if
z ∈ T k

l for some k, l ∈ N.)

Lemma 1. Let S ⊆ T be a set of homogeneous elements and let A be

the linear space spanned by all mutations of tensor products of elements of

S ∪ {I}. Then A is a graded subalgebra of T , and A is contraction-closed if

each contraction of any element of S and of the tensor product of any two

elements of S belongs to A.

Proof. Easy. Note that any contraction of z ⊗ I is equal to z′ ⊗ I for some
contraction z′ of z, or is n · z, or is a mutation of z. Similarly for I ⊗ z.

FFT for SL(n, C) = {U ∈ GL(n, C) | detU = 1} (the special linear group).
Define det ∈ V ∗⊗n by

(31) det :=
∑

π∈Sn

sgn(π)e∗π(1) ⊗ · · · ⊗ e∗π(n).

(We can consider det as element of (V ⊗n)∗, and then det(x1 ⊗ · · · ⊗ xn) is
equal to the usual determinant of the matrix with columns x1, . . . , xn.)

One straighforwardly checks that detU = det(U) · det for any U ∈
GL(n, C). So GL(n, C){det} = SL(n, C). Hence by Corollary 1c, T SL(n,C)

is equal to the smallest contraction-closed subalgebra of T containing det,
det∗, and I. Lemma 1 then implies that T SL(n,C) is equal to the linear space
A spanned by all mutations of tensor products of det, det∗, and I.

Indeed, set S := {det, det∗}. As det and det∗ have only covariant or
only contravariant factors, they cannot be contracted. Moreover, det⊗det∗

is a linear combination of mutations of I⊗n, as it belongs to TGL(n,C) (since
detU = det(U) · det and (det∗)U = det(U)−1 · det∗). So any contraction of
det⊗det∗ belongs to A.

FFT for SLk(n, C) = {U ∈ GL(n, C) | det Uk = 1}. The proof scheme is
the same as for the FFT for SL(n, C) above. Since (det⊗k)U = (det U)k ·

det⊗k, we know GL(n, C){det⊗k} = SLk(n, C). So by Corollary 1c, T SLk(n,C)

is equal to the smallest contraction-closed subalgebra of T containing det⊗k,
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det∗⊗k, and I. With Lemma 1 applied to S := {det⊗k, det∗⊗k}, this again
gives that T SLk(n,C) is spanned by mutations of tensor products of det⊗k,
det∗⊗k, and I.

FFT for Sn(C) = set of matrices in GL(n, C) with precisely one nonzero
in each column (hence also in each row). For each k, let

(32) jk :=
n

∑

i=1

(ei ⊗ e∗i )
⊗k

and define

(33) J := {jk | k ≥ 1}.

Then GL(n, C){j2} = Sn(C). Indeed, let U = (ui,j) satisfy jU
2 = j2. Choose

a column index t and row indices k 6= l. Then, as 〈ei ⊗ ei, ek ⊗ el〉 = 0 for
each i, we have

(34) 0 =
n

∑

i=1

〈ei ⊗ ei ⊗ e∗i ⊗ e∗i , ek ⊗ el ⊗ e∗U
∗−1

t ⊗ e∗U
∗−1

t 〉 =

n
∑

i=1

〈eU
i ⊗ eU

i ⊗ e∗Ui ⊗ e∗Ui , ek ⊗ el ⊗ e∗U
∗−1

t ⊗ e∗U
∗−1

t 〉 =

n
∑

i=1

uk,iul,iδi,t = uk,tul,t.

So U ∈ Sn(C). The reverse implication follows more directly.
Consequently, TSn(C) is the smallest contraction-closed graded subalge-

bra of T containing j2 and I (= j1). Now the contractions of tensor powers
of j2 are precisely the mutations of tensor products of elements of J . Hence
GL(n, C)J = Sn(C), and by taking S := J in Lemma 1 it follows that TSn(C)

is spanned by mutations of tensor products of elements of J .

FFT for Sp(n, C) = set of matrices U ∈ GL(n, C) with UPUT = P , where

(35) P =

(

0 Im

−Im 0

)

,

for m := 1
2n (assuming n to be even) (the symplectic group). Here Im

11



denotes the m × m identity matrix. Define

(36) p :=
m

∑

i=1

(ei ⊗ em+i − em+i ⊗ ei).

Then GL(n, C){p} = Sp(n, C) (by definition of Sp(n, C)). Any contraction
of p ⊗ p∗ is equal to ±I. Hence T Sp(n,C) is spanned by mutations of tensor
products of p, p∗, and I.

FFT for O(n, C) = {U ∈ GL(n, C) | UUT = I} (the orthogonal group).
Define

(37) f :=
n

∑

i=1

ei ⊗ ei.

Then GL(n, C){f} = O(n, C). So TO(n,C) is equal to the smallest contraction-
closed algebra containing f , f∗, and I. Taking S := {f, f∗} in Lemma 1, and
observing that any contraction of f ⊗ f∗ is equal to I, we see that TO(n,C)

is spanned by mutations of tensor products of f , f∗, and I.
Note that this implies that T (V )O(n,C) is spanned by mutations of tensor

powers of f . Since O(n, C) ∩ U(n) = O(n, R) (the real orthogonal group),
we have as in Corollary 1c TO(n,R) = TO(n,C).

In describing the FFT for subgroups of O(n, C), it is convenient to in-
troduce the concept of a ‘flip’. A flip of an element z ∈ T k

l is obtained
by applying the C-linear transformation ei 7→ e∗i (i = 1, . . . , n) to some (or
none) of the contravariant factors of z, and the reverse transformation to
some (or none) of the covariant factors of z. (So z is also flip of itself.)

Then f and f∗ are flips of I. Hence another way of stating the FFT for
O(n, C) is that TO(n,C) is spanned by mutations of tensor products of flips
of I. Note that for any G ⊆ GL(n, C),

(38) G ⊆ O(n, C) ⇐⇒ TG is invariant under taking flips,

since G ⊆ O(n, C) ⇐⇒ f ∈ TG. We can also formulate a lemma analogous
to Lemma 1:

Lemma 2. Let S ⊆ T be a set of homogeneous elements and let A be the

linear space spanned by all mutations of tensor products of flips of elements
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of S∪{I}. Then A is a graded ∗-subalgebra of T , and A is contraction-closed

if each contraction of any flip of any element of S and of the tensor product

of flips of any two elements of S belongs to A.

Proof. Here note that any contraction of z ⊗ g where g is a flip of I, is
equal to z′ ⊗ g for some contraction z′ of z, or is n · z, or is a mutation of a
flip of z. Similarly for g ⊗ z.

FFT for SO(n, C) = O(n, C) ∩ SL(n, C) (the special orthogonal group).
Now GL(n, C){f,det} = SO(n, C) (as it is the intersection of O(n, C) and
SL(n, C)). So by Corollary 1c, T SO(n,C) is equal to the smallest contraction-
closed ∗-algebra containing f , det, and I. Taking S := {det} in Lemma 2,
we see that T SO(n,C) is spanned by mutations of tensor products of flips of
det and I.

FFT for Sn = set of n × n permutation matrices (the symmetric group).
For each k, let

(39) hk :=

n
∑

i=1

e⊗k
i

and define

(40) H := {hk | k ≥ 1}.

Then GL(n, C)H = Sn. Hence (again with Corollary 1c and Lemma 2,
taking S := H) TSn is equal to the linear space A spanned by mutations of
tensor products of flips of elements of H. (Any contraction of a flip of hk or
of hk ⊗ hl belongs to A.)

A second (but now finite), and more familiar, set of spanning tensors
can be derived from it. For each k, define

(41) gk :=
∑

i1,...,ik

ei1 ⊗ · · · ⊗ eik ,

where the sum ranges over all distinct i1, . . . , ik ∈ {1, . . . , n}. (So gk = 0 if
k > n.) Then

(42) gk =
∑

f :{1,...,k}→{1,...,n}

∑

π∈Sk
f◦π=f

sgn(π)ef(1) ⊗ · · · ⊗ ef(k) =

13



∑

π∈Sk

sgn(π)
∑

f :{1,...,k}→{1,...,n}
f◦π=f

ef(1) ⊗ · · · ⊗ ef(k).

Now, in the last expression, for each fixed π ∈ Sk, the inner sum is a
mutation of hi1 ⊗ · · · ⊗ hit , where i1, . . . , it are the orbit sizes of π. So gk

belongs to TSn .
Moreover, hk itself occurs when π has precisely one orbit. As this holds

for each k, it follows inductively that each hk is spanned by mutations of
tensor products of g0, . . . , gk. This gives

(43) TSn = [linear space spanned by mutations of tensor products of
flips of h1, h2, . . .] ⊆ [linear space spanned by mutations of
tensor products of flips of g0, . . . , gn] ⊆ TSn .

Hence we have equality throughout.

FFT for S±
n = O(n, C)∩Sn(C) (so each nonzero entry of any matrix in S±

n

is ±1). Let

(44) H ′ := {hk | k even, k ≥ 2}.

Then GL(n, C)H′
= S±

n . Hence (as in the previous example) TS±
n is spanned

by mutations of tensor products of flips of elements of H ′.
As above, one may show that equivalently TS±

n is spanned by mutations
of tensor products of flips of

(45)
∑

i1,...,ik

e⊗2
i1

⊗ · · · ⊗ e⊗2
ik

(for k = 1, . . . , n), where the sum ranges over all distinct i1, . . . , ik ∈
{1, . . . , n}.

FFT for An = Sn ∩ SO(n, C) (the alternating group). Let H be as in
(40). Then GL(n, C)H∪{det} = An. Hence TAn is equal to the linear space
spanned by mutations of tensor products of flips of elements of H and of
elements

(46)
∑

π∈Sn

sgn(π)e⊗k1

π(1) ⊗ · · · ⊗ e⊗kn

π(n),
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ranging over all k1, . . . , kn ≥ 0. (To apply Lemma 2, take S equal to H
joined with all elements (46), and check that any contraction of any flip of
element of S or product of two elements of S belongs to A.)

FFT for A±
n = S±

n ∩SO(n, C). Let H ′ be as in (44). Then GL(n, C)H′∪{det} =

A±
n . As in the previous example, TA±

n is spanned by mutations of tensor
products of flips of elements of H ′ and of elements (46), ranging over all odd
k1, . . . , kn ≥ 1.

The examples of FFT’s for subgroups of the orthogonal group can in
fact also be derived from the following consequence of Theorem 1. Let V
be an n-dimensional real inner product space. For 1 ≤ i < j ≤ k, let
Ck

i,j : V ⊗k → V ⊗k−2 be the operator contracting the ith and jth factor in

V ⊗k. (So Ck
i,j(a ⊗ b ⊗ c ⊗ d ⊗ e) = 〈b, d〉(a ⊗ c ⊗ e) for a ∈ V ⊗i−1, b, d ∈ V ,

c ∈ V ⊗j−i−1, e ∈ V ⊗k−j , where 〈., .〉 is the inner product.) Call A ⊆ T (V )
contraction-closed if Ck

i,j(A ∩ V ⊗k) ⊆ A for all k and 1 ≤ i < j ≤ k. Call A
nondegenerate if A is not a subset of T (W ) for some proper subspace W of
V .

Corollary 1e. Let n ≥ 1 and A ⊆ T (V ). Then there is a subgroup G of

O(n, R) with A = T (V )G if and only if A is a nondegenerate contraction-

closed graded subalgebra of T (V ).

Proof. This follows by applying Theorem 1 to the set of all flips of elements
of A + iiA, seen as subset of T (V + iiV )⊗T ((V + iiV )∗). Here we need that
A is closed under mutations, which follows (cf. (12)) from the fact that the
identity matrix I in V ⊗2 belongs to A. This can be derived similarly as
(13) from the nondegeneracy of A and from the fact if M ∈ A ∩ V ⊗2 then
MTM ∈ A ∩ V ⊗2, as MTM = C4

1,3(M ⊗ M).

6 Application to self-dual codes

The results above also apply to the study of weight enumerators of self-dual
codes, as initiated by Gleason [3] (cf. MacWilliams and Sloane [7] Chapter
19 for background). To give the idea, we just describe the most elementary
application.

Let F be a finite field, with q elements. For k, l ≥ 0 and C ⊆ F
k × F

l,
define C⊥ by

(47) C⊥ := {(z, w) ∈ F
k ⊗ F

l | zT x = wT y for each (x, y) ∈ C}.
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Here zT x :=
∑k

i=1 zixi, taking addition and multiplication in the field F;
wT y is defined similarly. Call C self-dual if C⊥ = C. In that case, C is a
linear subspace of F

k × F
l.

Let V := C
q, and encode the coordinates of C

q by the elements of F.
For k, l ≥ 0 and C ⊆ F

k × F
l, define the following tensor τC in V ⊗k ⊗ V ∗⊗l:

(48) τC :=
∑

(x,y)∈C

k
⊗

i=1

exi
⊗

l
⊗

j=1

e∗yj
.

Let A be the linear space spanned by all τC , taken over all k, l and all self-
dual codes C ⊆ F

k × F
l. Then one easily checks that A is a nondegenerate

contraction-closed graded ∗-subalgebra of T = T (V ) ⊗ T (V ∗). Hence, by
Theorem 1, A = TG for some subgroup G of U(q).

This applies to self-dual codes, as follows. Let ξ : T (V ) → R[xi | i ∈ F] be
the symmetrization operator (bringing ei to xi). Set wC := ξ(τC), the weight

enumerator of C. So ξ(A∩T (V )) is spanned by the weight enumerators of all
self-dual codes over F. Moreover, ξ(A ∩ T (V )) = R[xi | i ∈ F]G. Hence, the
weight enumerators of the self-dual codes over F span an invariant subring
of R[xi | i ∈ F].

We illustrate the use of this with the very simple case F = {0, 1}. Let J
be the trivial code {(0, 0), (1, 1)} and let H be the [8, 4, 4] Hamming code.
Then wJ = x2

0 + x2
1 and wH = x8

0 + 14x4
0x

4
1 + x8

1. One may check that
the group G of unitary matrices U with (wJ)U = wJ and (wH)U = wH is

generated by
„

1 0

0 −1

«

and 2−
1

2

„

1 1

1 −1

«

. Moreover, for each self-dual

code C we have τU
C = τC for each U ∈ G. So A as defined above is equal to

the smallest contraction-closed graded ∗-subalgebra of T = T (V ) ⊗ T (V ∗)
that contains τJ and τH . It implies that A is equal to the smallest graded
subalgebra of T containing I, τH , and τ∗

H . Therefore, we obtain the result
of Gleason [3] that the G-invariant subring of R[x0, x1] is spanned by the
weight enumerators of self-dual codes, and is generated by wJ and wH .

One may next apply Molien’s theorem to derive that wH and wJ are
algebraically independent. Conversely, the algebraic independence of wH

and wJ gives Molien’s theorem for this invariant ring.
A generalization is obtained as follows. Consider again a finite field F

and moreover some m ∈ N. Now let A be the linear space spanned by
all τC , taken over all k, l and those self-dual codes C ⊆ F

k × F
l for which

weight(x) − weight(y) is a multiple of m for each (x, y) ∈ C. Here the
weight weight(x) of x is the number of nonzero components of x. Then A is
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a nondegenerate contraction-closed graded ∗-subalgebra of T , hence A = TG

for some subgroup G of U(q) (for q := |F|). Similarly to above, it yields for
instance the characterization of Gleason [3] of the weight enumerators of
even self-dual binary codes. Here even means that the weight of each word
is a multiple of 4.

7 Application to combinatorial parameters

We finally describe an application of Theorem 1 to combinatorial parame-
ters. This application was in fact our main motivation to prove Theorem 1.
We sketch a simple special case of this application, which case is a variant of
a theorem of Freedman, Lovász, and Schrijver [2]. The method is inspired
by Szegedy [11]. Full proofs and more general applications are given in [9].

Let G be the collection of (undirected) graphs (loops and multiple edges
allowed). A (real-valued) graph parameter is a function f : G → R such that
if G and H are isomorphic graphs then f(G) = f(H).

For any n ∈ N and any symmetric matrix M ∈ R
n×n, define a graph

parameter fM : G → R by

(49) fM (G) :=
∑

φ:V G→[n]

∏

uv∈EG

Mφ(u),φ(v)

for G ∈ G. Here V G and EG denote the vertex and edge set of G, respec-
tively, and [n] := {1, . . . , n}. By uv we denote an edge connecting u and
v.

We characterize for which graph parameters f : G → R there is an n ∈ N

and a symmetric matrix M ∈ R
n×n with f = fM . To this end, define a

k-labeled graph to be a pair (G, λ) of a graph G and a function λ : [k] → V G
(not necessarily injective). Let Gk be the collection of k-labeled graphs.

For two k-labeled graphs (G, λ) and (G′, λ′), let (G, λ) · (G′, λ′) be the
graph obtained by making the disjoint union of G and G′ and identifying
λ(i) and λ′(i) for i = 1, . . . , k. (Since λ and λ′ need not be injective, this
might mean repeated identification.)

For any graph parameter f : G → R and any k ∈ N, define a function
Nf,k : Gk × Gk → R by

(50) Nf,k((G, λ), (G′, λ′)) := f((G, λ) · (G′, λ′)).

We can consider Nf,k as a matrix. Call f reflection positive if Nf,k is positive
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semidefinite. Call f multiplicative if f(∅) = 1 and f(G ∪ G′) = f(G)f(G′)
for disjoint graphs G and G′. (Here ∅ is the graph with no vertices.)

Theorem 2. Let f : G → R be a graph parameter. Then f = fM for

some n ∈ N and some symmetric matrix M ∈ R
n×n if and only if f is

multiplicative and reflection positive.

The full proof of Theorem 2 is too long to give here (see [9]), but we will
give the point where Theorem 1 is used.

Let n ∈ N, and introduce variables xij for 1 ≤ i ≤ j ≤ n. For any graph
G, define the polynomial pG in R[x11, x12, . . . , xnn] by

(51) pG(x11, x12, . . . , xnn) :=
∑

φ:V G→[n]

∏

uv∈EG

xφ(u)φ(v).

(Here xij = xji if i > j.) So fM (G) = pG(M) for any symmetric matrix
M ∈ R

n×n.
Consider the subalgebra R of R[x11, x12, . . . , xnn] spanned by the poly-

nomials pG. Set V := C
n. An easy construction shows that R is the set

of real symmetric tensors in A ∩ T (V ) for some nondegenerate contraction-
closed graded ∗-subalgebra A of T (V ) ⊗ T (V ∗). Corollary 1e then implies
that R = R[x11, x12, . . . , xnn]H for some subgroup H of O(n, R).

To obtain a real matrix M with pG(M) = f(G) for each graph G, the
proof uses the Positivstellensatz. The existence of the group H enables to
project the polynomials that arise in the Positivstellensatz, onto R, by which
the sufficiency in Theorem 2 follows. (A sharpening of the theorem can be
obtained by using the theorem of Procesi and Schwarz [8].)

While in the graph case the group H above can in fact be described quite
directly, similar theorems for more general combinatorial structures can be
derived where the corresponding group is not explicitly known — see [9].

Note. Harm Derksen generalized Theorem 1 by giving a correspondence be-
tween reductive subgroups of GL(V ) and nondegenerate contraction-closed
graded subalgebras of T containing the identity matrix I. In this case, ‘non-
degenerate’ means that the natural C-bilinear form on T is nondegenerate
on the subalgebra.
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