On the graphon space

Notes for our seminar

Lex Schrijver

Let \mathcal{W} be the set of measurable functions $[0,1]^2 \to \mathbb{R}$, and let \mathcal{W}_0 be the set of those $W \in \mathcal{W}$ with image in [0,1] (the *graphons*). Let G be the group of measure preserving bijections on [0,1], as acting on \mathcal{W} . For any $W \in \mathcal{W}_0$ and any simple graph F, let

(1)
$$t(F,W) := \int_{[0,1]^{VF}} \prod_{ij \in EF} w(x_i, x_j) dx.$$

The following was proved by Borgs, Chayes, Lovász, Sós, and Vesztergombi [1]:

Theorem 1. For $U, W \in \mathcal{W}_0$, if t(F, U) = t(F, W) for each simple graph F, then $\delta_{\Box}(U, W) = 0$.

Proof. I. Let $\delta_1 := d_1/G$. We first show that for each $W \in \mathcal{W}$:

(2)
$$\lim_{k \to \infty} \mathbf{E}[\delta_1(W, \mathbb{H}(k, W))] = 0.$$

Suppose to the contrary that for some $\varepsilon > 0$ there are infinitely many k with $\mathbf{E}[\delta_1(W, \mathbb{H}(k, W))] > \varepsilon$. Choose a step function U with $d_1(U, W) < \varepsilon/3$. Then (where, for $x \in [0, 1]^2$, W_x denotes the weighted graph with vertex set [k] and weight $W(x_i, x_j)$ on edge ij with $i \neq j$):

(3)
$$\mathbf{E}[d_1(\mathbb{H}(k,U),\mathbb{H}(k,W))] = \int_{[0,1]^k} d_1(U_x,W_x)dx$$
$$= \int_{[0,1]^k} k^{-2} \sum_{\substack{i,j=1\\i\neq j}}^k |U(x_i,x_j) - W(x_i,x_j)|dx \le \int_{[0,1]^2} |U(y_1,y_2) - W(y_1,y_2)|dy = d_1(U,W).$$

Hence $\mathbf{E}[\delta_1(U, \mathbb{H}(k, U))] > \varepsilon/3$ for infinitely many k. So to prove (2), we can assume that W is a step function, with intervals as steps. Let $J_k := \{x \in [0, 1]^k \mid x_1 \leq x_2 \leq \cdots \leq x_k\}$. Then it suffices to show

(4)
$$\lim_{k \to \infty} k! \int_{J_k} d_1(W, W_x) dx = 0.$$

To prove (4), we can assume that $W = \mathbf{1}_{[\alpha,\alpha+\beta]^2}$ for some $\alpha, \beta \in [0,1]$ (by the sublinearity of $d_1(W, W_x)$ in W). Setting $\gamma := 1 - \alpha - \beta$ we have, if i + j + l = k,

(5)
$$d_1(W, \mathbf{1}_{[\frac{i}{k}, \frac{i+j}{k}]^2}) \le 2(|\frac{i}{k} - \alpha| + |\frac{l}{k} - \gamma|).$$

This gives the following, where the term $\frac{1}{k}$ corrects for the zeros on the diagonal of W_x :

(6)
$$k! \int_{J_k} d_1(W, W_x) dx \leq \frac{1}{k} + 2 \sum_{i+j+l=k} {k \choose i,j,l} \alpha^i \beta^j \gamma^l \left(\left| \frac{i}{k} - \alpha \right| + \left| \frac{l}{k} - \gamma \right| \right).$$

With Cauchy-Schwarz we have

(7)
$$\sum_{\substack{i+j+l=k\\i=0}} {\binom{k}{i,j,l}} \alpha^i \beta^j \gamma^l \left| \frac{i}{k} - \alpha \right| = \sum_{i=0}^k {\binom{k}{i}} \alpha^i (1-\alpha)^{k-i} \left| \frac{i}{k} - \alpha \right| \le \left(\sum_{i=0}^k {\binom{k}{i}} \alpha^i (1-\alpha)^{k-i} (\frac{i}{k} - \alpha)^2 \right)^{1/2} = \left(\frac{\alpha - \alpha^2}{k}\right)^{1/2},$$

which tends to 0 as $k \to \infty$. By symmetry, we have a similar estimate for the other part in the summation in (6), and we have (4), and hence (2).

II. We next show that for each $W \in \mathcal{W}_0$:

(8)
$$\lim_{k \to \infty} \mathbf{E}[d_{\Box}(\mathbb{H}(k, W), \mathbb{G}(k, W))] = 0.$$

For any weighted graph (H, w), let $\mathbf{G}(H)$ be the random graph where edge ij is chosen independently with probability w(ij) $(i \neq j)$. Let H have vertex set [k]. Then for any fixed $S \subseteq [k]$, by the Chernoff-Hoeffding inequality,

(9)
$$\mathbf{Pr}[|\sum_{i,j\in S} (e_{\mathbf{G}(H)}(ij) - w(ij)|) > 2k^{3/2}] = \mathbf{Pr}[|\sum_{\substack{i,j\in S\\i< j}} (e_{\mathbf{G}(H)}(ij) - w(ij))| > k^{3/2}] < 2e^{-k^3/|S|^2} \le 2e^{-k},$$

where $e_{\mathbf{G}(H)}(ij) = 1$ if $ij \in E(\mathbf{G}(H))$ and $e_{\mathbf{G}(H)}(ij) = 0$ otherwise. This gives

(10)
$$\mathbf{Pr}[d_{\Box}(\mathbf{G}(H), H) > 4k^{-1/2}] \leq \mathbf{Pr}[\exists S \subseteq [k] : |\sum_{i,j \in S} (e_{\mathbf{G}(H)}(ij) - w(ij))| > 2k^{3/2}] < 2^k 2e^{-k}.$$

Since $d_{\Box}(\mathbf{G}(H), H) \leq 1$, this implies

(11)
$$\mathbf{E}[d_{\Box}(\mathbf{G}(H), H)] \le 4k^{-1/2} + 2^k 2e^{-k}.$$

Now substitute $H := \mathbb{H}(k, W)$. As $\mathbf{G}(\mathbb{H}(k, W)) = \mathbb{G}(k, W)$ and as the right hand side of (11) tends to 0 as $k \to \infty$, we get (8).

III. We finally derive the theorem. We have for any k:

(12)
$$\delta_{\Box}(U,W) \le \mathbf{E}[\delta_{\Box}(U,\mathbb{G}(k,W))] + \mathbf{E}[\delta_{\Box}(\mathbb{G}(k,W),W)] =$$

$$\mathbf{E}[\delta_{\Box}(U, \mathbb{G}(k, U))] + \mathbf{E}[\delta_{\Box}(\mathbb{G}(k, W), W)].$$

The equality follows from the condition in the theorem. By (2) and (8), the last expression in (12) tends to 0 as $k \to \infty$ (using $d_{\Box} \leq d_1$). So $\delta_{\Box}(U, W) = 0$.

Let \mathcal{F} be the collection of all connected simple graphs. Note that the distance function

(13)
$$d(x,y) := \sup_{F \in \mathcal{F}} \frac{|x(F) - y(F)|}{|E(F)|}$$

for $x, y \in [0, 1]^{\mathcal{F}}$ gives the Tychonoff product topology on $[0, 1]^{\mathcal{F}}$, since for each m, there are only finitely many $F \in \mathcal{F}$ with $|E(F)| \leq m$.

Let $\mathcal{W}_0//G$ be the space obtained from $(\mathcal{W}_0, d_{\Box})/G$ by identifying points at distance 0. (So its points are the closures of the *G*-orbits in \mathcal{W}_0 .) Define $\tau : \mathcal{W}_0//G \to [0, 1]^{\mathcal{F}}$ by

(14)
$$\tau(W)(F) := t(F, W)$$

for $W \in \mathcal{W}_0$ and $F \in \mathcal{F}$. Since $|t(F, U) - t(F, W)|/|E(F)| \leq \delta_{\Box}(U, W)$ for all $U, W \in \mathcal{W}_0$, τ is continuous.

Corollary 1a. τ is injective.

Proof. This is equivalent to Theorem 1.

By (2) and (8), the graphs among the graphons span \mathcal{W}_0 , and hence also the range of τ . The latter can be characterized by reflection positivity (Lovász and Szegedy [2]).

Corollary 1a implies a strengthening of Theorem 1:

Corollary 1b. There exists a function $\varphi : (0,1] \to (0,1]$ such that

(15)
$$\frac{|t(F,U) - t(F,W)|}{|E(F)|} \ge \varphi(\delta_{\Box}(U,W))$$

for all $U, W \in \mathcal{W}_0$ and $F \in \mathcal{F}$.

Proof. This follows from the fact that τ is continuous and bijective between compact metric spaces, and that hence τ^{-1} is uniformly continuous.

Bound (15) is qualitative. In [1] it is proved that one can take φ of order $(\exp \exp(1/x))^{-1}$.

Appendix: The Chernoff-Hoeffding inequality

First note that for any $a \in [0, 1]$ and $t \in \mathbb{R}$ we have

(16)
$$ae^{(1-a)t} + (1-a)e^{-at} \le \frac{1}{2}(e^t + e^{-t}) \le e^{t^2/2},$$

as $(0, ae^{(1-a)t} + (1-a)e^{-at}) = (1-a)(-a, e^{-at}) + a(1-a, e^{(1-a)t})$, hence it is below the line connecting $(-1, e^{-t})$ and $(1, e^t)$, by the convexity of e^x . The second inequality in (16) follows by Taylor expansion.

Theorem 2 (Chernoff-Hoeffding inequality). Let x_1, \ldots, x_n be independent random variables from $\{0, 1\}$. Then for $\lambda \geq 0$:

(17)
$$\mathbf{Pr}[\sum_{i=1}^{n} (x_i - \mathbf{E}[x_i]) > \lambda] < e^{-\lambda^2/2n}.$$

Proof. We have

(18)
$$e^{\lambda^{2}/n} \mathbf{Pr}[\sum_{i=1}^{n} (x_{i} - \mathbf{E}[x_{i}]) > \lambda] = e^{\lambda^{2}/n} \mathbf{Pr}[e^{\lambda(\sum_{i=1}^{n} (x_{i} - \mathbf{E}[x_{i}]))/n} > e^{\lambda^{2}/n}] < \mathbf{E}[e^{\lambda(\sum_{i=1}^{n} (x_{i} - \mathbf{E}[x_{i}]))/n}] = \mathbf{E}[\prod_{i=1}^{n} e^{\lambda(x_{i} - \mathbf{E}[x_{i}])/n}] = \prod_{i=1}^{n} \mathbf{E}[e^{\lambda(x_{i} - \mathbf{E}[x_{i}])/n}] \leq \prod_{i=1}^{n} e^{\lambda^{2}/2n^{2}} = e^{\lambda^{2}/2n},$$

where the first inequality is Markov's inequality and the last inequality follows from (16).

References

- C. Borgs, J.T. Chayes, L. Lovász, V.T. Sós, K. Vesztergombi, Convergent sequences of dense graphs. I. Subgraph frequencies, metric properties and testing, 2007, arXiv:math/0702004v1
- [2] L. Lovász, B. Szegedy, Limits of dense graph sequences, Journal of Combinatorial Theory, Series B 96 (2006) 933–957.