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Let W be the set of measurable functions [0, 1]2 → R, and let W0 be the set of those
W ∈ W with image in [0, 1] (the graphons). Let G be the group of measure preserving
bijections on [0, 1], as acting on W. For any W ∈ W0 and any simple graph F , let

(1) t(F, W ) :=

∫

[0,1]V F

∏

ij∈EF

w(xi, xj)dx.

The following was proved by Borgs, Chayes, Lovász, Sós, and Vesztergombi [1]:

Theorem 1. For U, W ∈ W0, if t(F, U) = t(F, W ) for each simple graph F , then

δ¤(U, W ) = 0.

Proof. I. Let δ1 := d1/G. We first show that for each W ∈ W:

(2) lim
k→∞

E[δ1(W, H(k, W ))] = 0.

Suppose to the contrary that for some ε > 0 there are infinitely many k with E[δ1(W, H(k, W ))]
> ε. Choose a step function U with d1(U, W ) < ε/3. Then (where, for x ∈ [0, 1]2, Wx de-
notes the weighted graph with vertex set [k] and weight W (xi, xj) on edge ij with i 6= j):

(3) E[d1(H(k, U), H(k, W ))] =

∫

[0,1]k
d1(Ux, Wx)dx

=

∫

[0,1]k
k−2

k
∑

i,j=1

i6=j

|U(xi, xj) − W (xi, xj)|dx ≤

∫

[0,1]2
|U(y1, y2) − W (y1, y2)|dy =

d1(U, W ).

Hence E[δ1(U, H(k, U))] > ε/3 for infinitely many k. So to prove (2), we can assume that
W is a step function, with intervals as steps. Let Jk := {x ∈ [0, 1]k | x1 ≤ x2 ≤ · · · ≤ xk}.
Then it suffices to show

(4) lim
k→∞

k!

∫

Jk

d1(W, Wx)dx = 0.

To prove (4), we can assume that W = 1[α,α+β]2 for some α, β ∈ [0, 1] (by the sublinearity
of d1(W, Wx) in W ). Setting γ := 1 − α − β we have, if i + j + l = k,

(5) d1(W,1[ i
k
, i+j

k
]2) ≤ 2(| i

k − α| + | l
k − γ|).
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This gives the following, where the term 1
k corrects for the zeros on the diagonal of Wx:

(6) k!

∫

Jk

d1(W, Wx)dx ≤ 1
k + 2

∑

i+j+l=k

(

k
i,j,l

)

αiβjγl
(
∣

∣

i
k − α

∣

∣ +
∣

∣

l
k − γ

∣

∣

)

.

With Cauchy-Schwarz we have

(7)
∑

i+j+l=k

(

k
i,j,l

)

αiβjγl
∣

∣

i
k − α

∣

∣ =

k
∑

i=0

(

k
i

)

αi(1 − α)k−i
∣

∣

i
k − α

∣

∣ ≤

(

k
∑

i=0

(

k
i

)

αi(1 − α)k−i( i
k − α)2

)1/2
=

(

α−α2

k

)1/2
,

which tends to 0 as k → ∞. By symmetry, we have a similar estimate for the other part in
the summation in (6), and we have (4), and hence (2).

II. We next show that for each W ∈ W0:

(8) lim
k→∞

E[d¤(H(k, W ), G(k, W ))] = 0.

For any weighted graph (H, w), let G(H) be the random graph where edge ij is chosen
independently with probability w(ij) (i 6= j). Let H have vertex set [k]. Then for any fixed
S ⊆ [k], by the Chernoff-Hoeffding inequality,

(9) Pr[|
∑

i,j∈S

(eG(H)(ij) − w(ij)|) > 2k3/2] = Pr[|
∑

i,j∈S
i<j

(eG(H)(ij) − w(ij))| > k3/2] <

2e−k3/|S|2 ≤ 2e−k,

where eG(H)(ij) = 1 if ij ∈ E(G(H)) and eG(H)(ij) = 0 otherwise. This gives

(10) Pr[d¤(G(H), H) > 4k−1/2] ≤ Pr[∃S ⊆ [k] : |
∑

i,j∈S

(eG(H)(ij) − w(ij))| > 2k3/2]

< 2k2e−k.

Since d¤(G(H), H) ≤ 1, this implies

(11) E[d¤(G(H), H)] ≤ 4k−1/2 + 2k2e−k.

Now substitute H := H(k, W ). As G(H(k, W )) = G(k, W ) and as the right hand side of
(11) tends to 0 as k → ∞, we get (8).

III. We finally derive the theorem. We have for any k:

(12) δ¤(U, W ) ≤ E[δ¤(U, G(k, W ))] + E[δ¤(G(k, W ), W )] =

2



E[δ¤(U, G(k, U))] + E[δ¤(G(k, W ), W )].

The equality follows from the condition in the theorem. By (2) and (8), the last expression
in (12) tends to 0 as k → ∞ (using d¤ ≤ d1). So δ¤(U, W ) = 0.

Let F be the collection of all connected simple graphs. Note that the distance function

(13) d(x, y) := sup
F∈F

|x(F ) − y(F )|

|E(F )|

for x, y ∈ [0, 1]F gives the Tychonoff product topology on [0, 1]F , since for each m, there
are only finitely many F ∈ F with |E(F )| ≤ m.

Let W0//G be the space obtained from (W0, d¤)/G by identifying points at distance 0.
(So its points are the closures of the G-orbits in W0.) Define τ : W0//G → [0, 1]F by

(14) τ(W )(F ) := t(F, W )

for W ∈ W0 and F ∈ F . Since |t(F, U) − t(F, W )|/|E(F )| ≤ δ¤(U, W ) for all U, W ∈ W0,
τ is continuous.

Corollary 1a. τ is injective.

Proof. This is equivalent to Theorem 1.

By (2) and (8), the graphs among the graphons span W0, and hence also the range of
τ . The latter can be characterized by reflection positivity (Lovász and Szegedy [2]).

Corollary 1a implies a strengthening of Theorem 1:

Corollary 1b. There exists a function ϕ : (0, 1] → (0, 1] such that

(15)
|t(F, U) − t(F, W )|

|E(F )|
≥ ϕ(δ¤(U, W ))

for all U, W ∈ W0 and F ∈ F .

Proof. This follows from the fact that τ is continuous and bijective between compact metric
spaces, and that hence τ−1 is uniformly continuous.

Bound (15) is qualitative. In [1] it is proved that one can take ϕ of order (exp exp(1/x))−1.

Appendix: The Chernoff-Hoeffding inequality

First note that for any a ∈ [0, 1] and t ∈ R we have

(16) ae(1−a)t + (1 − a)e−at ≤ 1
2(et + e−t) ≤ et2/2,
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as (0, ae(1−a)t + (1 − a)e−at) = (1 − a)(−a, e−at) + a(1 − a, e(1−a)t), hence it is below the
line connecting (−1, e−t) and (1, et), by the convexity of ex. The second inequality in (16)
follows by Taylor expansion.

Theorem 2 (Chernoff-Hoeffding inequality). Let x1, . . . , xn be independent random vari-

ables from {0, 1}. Then for λ ≥ 0:

(17) Pr[
n

∑

i=1

(xi − E[xi]) > λ] < e−λ2/2n.

Proof. We have

(18) eλ2/nPr[
n

∑

i=1

(xi − E[xi]) > λ] = eλ2/nPr[eλ(
Pn

i=1
(xi−E[xi]))/n > eλ2/n] <

E[eλ(
Pn

i=1
(xi−E[xi]))/n] = E[

n
∏

i=1

eλ(xi−E[xi])/n] =

n
∏

i=1

E[eλ(xi−E[xi])/n] ≤

n
∏

i=1

eλ2/2n2

= eλ2/2n,

where the first inequality is Markov’s inequality and the last inequality follows from (16).
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