A short proof of Mader's \mathcal{S}-paths theorem

Alexander Schrijver ${ }^{1}$

Abstract

For an undirected graph $G=(V, E)$ and a collection \mathcal{S} of disjoint subsets of V, an \mathcal{S}-path is a path connecting different sets in \mathcal{S}. We give a short proof of Mader's min-max theorem for the maximum number of disjoint \mathcal{S}-paths.

Let $G=(V, E)$ be an undirected graph and let \mathcal{S} be a collection of disjoint subsets of V. An \mathcal{S}-path is a path connecting two different sets in \mathcal{S}. Mader [4] gave the following min-max relation for the maximum number of (vertex-)disjoint \mathcal{S}-paths, where $S:=\bigcup \mathcal{S}$.

Mader's \mathcal{S}-paths theorem. The maximum number of disjoint \mathcal{S}-paths is equal to the minimum value of

$$
\begin{equation*}
\left|U_{0}\right|+\sum_{i=1}^{n}\left\lfloor\frac{1}{2}\left|B_{i}\right|\right\rfloor, \tag{1}
\end{equation*}
$$

taken over all partitions U_{0}, \ldots, U_{n} of V such that each \mathcal{S}-path disjoint from U_{0}, traverses some edge spanned by some U_{i}. Here B_{i} denotes the set of vertices in U_{i} that belong to S or have a neighbour in $V \backslash\left(U_{0} \cup U_{i}\right)$.

Lovász [3] gave an alternative proof, by deriving it from his matroid matching theorem. Here we give a short proof of Mader's theorem.

Let μ be the minimum value obtained in (1). Trivially, the maximum number of disjoint \mathcal{S}-paths is at most μ, since any \mathcal{S}-path disjoint from U_{0} and traversing an edge spanned by U_{i}, traverses at least two vertices in B_{i}.
I. First, the case where $|T|=1$ for each $T \in \mathcal{S}$ was shown by Gallai [2], by reduction to matching theory as follows. Let the graph $\tilde{G}=(\tilde{V}, \tilde{E})$ arise from G by adding a disjoint copy G^{\prime} of $G-S$, and making the copy v^{\prime} of each $v \in V \backslash S$ adjacent to v and to all neighbours of v in G. We claim that \tilde{G} has a matching of size $\mu+|V \backslash S|$. Indeed, by the Tutte-Berge formula ([5],[1]), it suffices to prove that for any $\tilde{U}_{0} \subseteq \tilde{V}$:

$$
\begin{equation*}
\left|\tilde{U}_{0}\right|+\sum_{i=1}^{n}\left\lfloor\frac{1}{2}\left|\tilde{U}_{i}\right|\right\rfloor \geq \mu+|V \backslash S| \tag{2}
\end{equation*}
$$

where $\tilde{U}_{1}, \ldots, \tilde{U}_{n}$ are the components of $\tilde{G}-\tilde{U}_{0}$. Now if for some $v \in V \backslash S$ exactly one of v, v^{\prime} belongs to \tilde{U}_{0}, then we can delete it from \tilde{U}_{0}, thereby not increasing the left hand side of (2). So we can assume that for each $v \in V \backslash S$, either $v, v^{\prime} \in \tilde{U}_{0}$ or $v, v^{\prime} \notin \tilde{U}_{0}$. Let $U_{i}:=\tilde{U}_{i} \cap V$ for $i=0, \ldots, n$. Then U_{1}, \ldots, U_{n} are the components of $G-U_{0}$, and we have:

$$
\begin{equation*}
\left|\tilde{U}_{0}\right|+\sum_{i=1}^{n}\left\lfloor\frac{1}{2}\left|\tilde{U}_{i}\right|\right\rfloor=\left|U_{0}\right|+\sum_{i=1}^{n}\left\lfloor\frac{1}{2}\left|U_{i} \cap S\right|\right\rfloor+|V \backslash S| \geq \mu+|V \backslash S| \tag{3}
\end{equation*}
$$

(since in this case $B_{i}=U_{i} \cap S$ for $i=1, \ldots, n$), showing (2).

[^0]So \tilde{G} has a matching M of size $\mu+|V \backslash S|$. Let N be the matching $\left\{v v^{\prime} \mid v \in V \backslash S\right\}$ in \tilde{G}. As $|M|=\mu+|V \backslash S|=\mu+|N|$, the union $M \cup N$ has at least μ components with more edges in M than in N. Each such component is a path connecting two vertices in S. Then contracting the edges in N yields μ disjoint \mathcal{S}-paths in G.
II. We now consider the general case. Fixing V, choose a counterexample E, \mathcal{S} minimizing

$$
\begin{equation*}
|E|-|\{\{t, u\} \mid t, u \in V, \exists T, U \in \mathcal{S}: t \in T, u \in U, T \neq U\}| \tag{4}
\end{equation*}
$$

By part I, there exists a $T \in \mathcal{S}$ with $|T| \geq 2$. Then T is independent in G, since any edge e spanned by T can be deleted without changing the maximum and minimum value in Mader's theorem (as any \mathcal{S}-path traversing e contains an \mathcal{S}-path not containing e, and as deleting e does not change any set B_{i}), while decreasing (4).

Choose $s \in T$. Replacing \mathcal{S} by $\mathcal{S}^{\prime}:=(\mathcal{S} \backslash\{T\}) \cup\{T \backslash\{s\},\{s\}\}$ decreases (4), but not the minimum in Mader's theorem (as each \mathcal{S}-path is an \mathcal{S}^{\prime}-path and as $\cup \mathcal{S}^{\prime}=S$). So there exists a collection \mathcal{P} of μ disjoint \mathcal{S}^{\prime}-paths. We can assume that no path in \mathcal{P} has any internal vertex in S.

Necessarily, there is a path $P_{0} \in \mathcal{P}$ connecting s with another vertex in T, all other paths in \mathcal{P} being \mathcal{S}-paths. Let u be an internal vertex of P_{0}. Replacing \mathcal{S} by $\mathcal{S}^{\prime \prime}:=(\mathcal{S} \backslash\{T\}) \cup\{T \cup\{u\}\}$ decreases (4), but not the minimum in Mader's theorem (as each \mathcal{S}-path is an $\mathcal{S}^{\prime \prime}$-path and as $\bigcup \mathcal{S}^{\prime \prime} \supset S$). So there exists a collection \mathcal{Q} of μ disjoint $\mathcal{S}^{\prime \prime}$-paths. Choose \mathcal{Q} such that no internal vertex of any path in \mathcal{Q} belongs to $S \cup\{u\}$, and such that \mathcal{Q} uses a minimal number of edges not used by \mathcal{P}.

Necessarily, u is an end of some path $Q_{0} \in \mathcal{Q}$, all other paths in \mathcal{Q} being \mathcal{S}-paths. As $|\mathcal{P}|=|\mathcal{Q}|$ and as u is not an end of any path in \mathcal{P}, there exists an end v of some path $P \in \mathcal{P}$ that is not an end of any path in \mathcal{Q}. Now P intersects at least one path in \mathcal{Q} (since otherwise $P \neq P_{0}$, and $\left(\mathcal{Q} \backslash\left\{Q_{0}\right\}\right) \cup\{P\}$ would consist of μ disjoint \mathcal{S}-paths). So when following P starting at v, there is a first vertex w that is on some path in \mathcal{Q}, say on $Q \in \mathcal{Q}$.

For any end x of Q let Q^{x} be the $x-w$ part of Q, let P^{v} be the $v-w$ part of P, and let U be the set in $\mathcal{S}^{\prime \prime}$ containing v. Then for any end x of Q we have that Q^{x} is part of P or the other end of Q belongs to U, since otherwise by rerouting part Q^{x} of Q along P^{v}, Q remains an $\mathcal{S}^{\prime \prime}$-path disjoint from the other paths in \mathcal{Q}, while we decrease the number of edges used by \mathcal{Q} and not by \mathcal{P}, contradicting the minimality assumption.

Let y, z be the ends of Q. We can assume that $y \notin U$. Then Q^{z} is part of P, hence Q^{y} is not part of P (as Q is not part of P, as otherwise $Q=P$, and hence v is an end of Q), so $z \in U$. As z is on P and as also v belongs to U and is on P, we have $P=P_{0}$. So $U=T \cup\{u\}$ and $Q=Q_{0}$ (since Q^{z} is part of P, so $z=u$). But then rerouting part Q^{z} of Q along P^{v} gives μ disjoint \mathcal{S}-paths, contradicting our assumption.

References

[1] C. Berge, Sur le couplage maximum d'un graphe, Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences [Paris] 247 (1958) 258-259.
[2] T. Gallai, Maximum-minimum Sätze und verallgemeinerte Faktoren von Graphen, Acta Mathematica Academiae Scientiarum Hungaricae 12 (1961) 131-173.
[3] L. Lovász, Matroid matching and some applications, Journal of Combinatorial Theory, Series B 28 (1980) 208-236.
[4] W. Mader, Über die Maximalzahl kreuzungsfreier H-Wege, Archiv der Mathematik (Basel) 31 (1978) 387-402.
[5] W.T. Tutte, The factorization of linear graphs, The Journal of the London Mathematical Society 22 (1947) 107-111.

[^0]: ${ }^{1}$ CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands, and Department of Mathematics, University of Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands.

