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Abstract. We characterize which graph invariants are partition functions of a vertex model over
C, in terms of the rank growth of associated ‘connection matrices’.

1. Introduction

Let G denote the collection of all undirected graphs, two of them being the same if they
are isomorphic. In this paper, all graphs are finite and may have loops and multiple edges.
Let k ∈ N and let F be a commutative ring. Following de la Harpe and Jones [4], call any
function y : N

k → F a (k-color) vertex model (over F).2 The partition function of y is the
function py : G → F defined for any graph G = (V, E) by

(1) py(G) :=
∑

κ:E→[k]

∏

v∈V

yκ(δ(v)).

Here δ(v) is the set of edges incident with v. Then κ(δ(v)) is a multisubset of [k], which we
identify with its incidence vector in N

k. Moreover, we use N = {0, 1, 2, . . .} and for n ∈ N,

(2) [n] := {1, . . . , n}.

We can visualize κ as a coloring of the edges of G and κ(δ(v)) as the multiset of colors
‘seen’ from v. The vertex model was considered by de la Harpe and Jones [4] as a physical
model, where vertices serve as particles, edges as interactions between particles, and colors
as states or energy levels. It extends the Ising-Potts model. Several graph parameters are
partition functions of some vertex model, like the number of matchings. There are real-
valued graph parameters that are partition functions of a vertex model over C, but not over
R. (A simple example is (−1)|E(G)|.)

In this paper, we characterize which functions f : G → C are the partition function of
a vertex model over C. The characterization differs from an earlier characterization given
in [2] (which our present characterization uses) in that it is based on the rank growth of
associated ‘connection matrices’.

To describe it, we need the notion of a k-fragment. For k ∈ N, a k-fragment is an
undirected graph G = (V, E) together with an injective ‘label’ function λ : [k] → V , where
λ(i) is a vertex of degree 1, for each i ∈ [k]. (You may alternatively view these degree-1
vertices as ends of ‘half-edges’.)

If G and H are k-fragments, the graph G · H is obtained from the disjoint union of G
and H by identifying equally labeled vertices and by ignoring each of the k identified points

1 CWI and University of Amsterdam. Mailing address: CWI, Kruislaan 413, 1098 SJ Amsterdam, The
Netherlands. Email: lex@cwi.nl.

2 In [7] it is called an edge coloring model. Colors are also called states.
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as vertex, joining its two incident edges into one edge. (A good way to imagine this is to
see a graph as a topological 1-complex.) Note that it requires that we also should consider
the ‘vertexless loop’ as possible edge of a graph, as we may create it in G · H. We denote
this vertexless loop by O. Observe that if y is a vertex model over C with n colors, then
py(O) = n.

Let Gk denote the collections of k-fragments. For any f : G → C and k ∈ N, the kth

connection matrix is the Gk × Gk matrix Cf,k defined by

(3) (Cf,k)G,H := f(G · H)

for G, H ∈ Gk.
Now we can formulate our characterization:

Theorem 1. A function f : G → C is the partition function of a vertex model over C if

and only if f(∅) = 1, f(O) ∈ R, and

(4) rank(Cf,k) ≤ f(O)k

for each k ∈ N.

Let us relate this to Szegedy’s theorem [7], which characterizes the partition functions of
vertex models over R. Call a function f : G → C multiplicative if f(∅) = 1 and f(G∪̇H) =
f(G)f(H) for all graphs G and H, where G∪̇H denotes the disjoint union of G and H.
Then Szegedy’s theorem reads:

(5) A function f : G → R is the partition function of a vertex model over R if and
only if f is multiplicative and Cf,k is positive semidefinite for each k.

For related results for the ‘spin model’ see [3] and [6].
Our proof of Theorem 1 is based on some elementary results from the representation

theory of the symmetric group, and on the following alternative characterization of partition
functions of vertex models given in [2], which uses the Nullstellensatz.

For any graph G = (V, E), any U ⊆ V , and any s : U → V , define

(6) Es := {us(u) | u ∈ U} and Gs := (V, E ∪ Es)

(adding multiple edges if Es intersects E). Let SU be the group of permutations of U .
Then:

(7) A function f : G → C is the partition function of some k-color vertex model over
C if and only if f is multiplicative and for each graph G = (V, E), each U ⊆ V
with |U | = k + 1, and each s : U → V :

∑

π∈SU

sgn(π)f(Gs◦π) = 0.
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2. Some results on the symmetric group

In our proof we need Proposition 3 below, which we prove in a number of steps. (The
result might be known, and must not be a difficult exercise for those familiar with the
representation theory of the symmetric group, but we could not find an explicit reference.)

We recall a few standard results from the representation theory of the symmetric group
Sn (cf. James and Kerber [5]). Basis is the one-to-one relation between the partitions λ of n
and the irreducible representations rλ of Sn. Here a partition λ of n is a finite nonincreasing
sequence (λ1, . . . , λt) of positive integers with sum n. One puts λ ⊢ n if λ is a partition of
n. The number t of terms of λ is called the height of λ, denoted by height(λ). Denote by
fλ the dimension of representation rλ, and by χλ the character of rλ.

For any λ ⊢ n, the Young shape Yλ of λ = (λ1, . . . , λt) is the following subset of N
2:

(8) Yλ := {(i, j) | i ∈ [t], j ∈ [λ(i)]}.

For any π ∈ Sn, let o(π) denote the number of orbits of π.

Proposition 1. For any n ∈ Z+, λ ⊢ n, and d ∈ C:

(9)
∑

π∈Sn

χλ(π)do(π) = fλ
∏

(i,j)∈Yλ

(d + j − i).

Proof. As both sides of (9) are polynomials in d, we can assume that d ∈ Z+. Consider the
natural representation r of Sn on (Cd)⊗n. Note that its character χ satisfies χ(π) = do(π)

for each π ∈ Sn.
For any α ⊢ n, let µα be the multiplicity of rα in r. Then

(10)
∑

π∈Sn

χλ(π)do(π) =
∑

π∈Sn

χλ(π)χ(π) =
∑

π∈Sn

χλ(π)
∑

α⊢n

µαχα(π) =

∑

α⊢n

µα

∑

π∈Sn

χα(π)χλ(π) =
∑

α⊢n

µαn!δα,λ = n!µλ = fλ
∏

(i,j)∈Yλ

(d + j − i).

The last equality follows from the fact that µλ is (by Schur duality) equal to the dimension
of the irreducible representation of GL(d, C) corresponding to λ (cf. [1] eq. 9.28). This
shows (9).

For any n ∈ Z+ and d ∈ C, let Mn(d) be the Sn × Sn matrix with

(11) (Mn(d))ρ,σ := do(ρσ−1)

for ρ, σ ∈ Sn.

Proposition 2. For any n ∈ Z+ and d ∈ C:
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(12) rank(Mn(d)) =

{

n! if d 6∈ Z,
∑

((fλ)2 | λ ⊢ n, height(λ) ≤ |d|) if d ∈ Z.

Proof. First, we have

(13) rank(Mn(−d)) = rank(Mn(d)).

Indeed, note that Mn(−d) = (−1)n∆sgnMn(d)∆sgn, where ∆sgn is the Sn × Sn diagonal
matrix with (∆sgn)π,π = sgn(π) for π ∈ Sn. (This because sgn(π) = (−1)n−o(π) for all π.)
This gives (13).

Let R be the regular representation of Sn. So, for any π ∈ Sn, R(π) is the Sn × Sn

matrix with

(14) R(π)ρ,σ =

{

1 if ρ = πσ,

0 otherwise

for ρ, σ ∈ Sn. Then

(15) Mn(d) =
∑

π∈Sn

do(π)R(π).

As Mn(d) commutes with each R(π),

(16) rank(Mn(d)) =
∑

((fλ)2 | λ ⊢ n,
∑

π∈Sn

χλ(π)do(π) 6= 0)

=
∑

((fλ)2 | λ ⊢ n, d 6∈ {i − j | (i, j) ∈ Yλ}).

The last equality follows from (9).
Now if d 6∈ Z, then for all λ ⊢ n: d 6= i − j for all (i, j) ∈ Yλ. So rank(Mn,d) = n!. If

d ∈ Z, then by (13) we can assume d ∈ Z+. Then for all λ ⊢ n: d 6∈ {i − j | (i, j) ∈ Yλ} if
and only if height(λ) ≤ d. This proves (12).

Proposition 3. For any d ∈ C:

(17) sup
n∈Z+

(rank(Mn(d)))1/n =

{

∞ if d 6∈ Z,

d2 if d ∈ Z.

Proof. If d 6∈ Z, the result follows directly from (12), as supn n!1/n = ∞.
If d ∈ Z, we can assume d ∈ Z+. Then rank(Mn(d)) ≤ (d2)n. Indeed, let χ be the

character of the natural representation r of Sn on (Cd)⊗n. Then do(π) = χ(π) for all π ∈ Sn.
Hence do(ρσ−1) = χ(ρσ−1). So do(ρσ−1) is the trace of the product of the dn × dn matrices
r(ρ) and r(σ−1). Hence rank(Mn(d)) ≤ (dn)2 = (d2)n. This proves ≤ in (17).
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To prove the reverse inequality, consider for any m ∈ Z+, the partition λm = (m, . . . , m)
of n := dm, with height(λm) = d. By the hook formula,

(18) fλm = n!/
d

∏

i=1

m
∏

j=1

(i + j − 1) =
(dm)!0!1! · · · (d − 1)!

m!(m + 1)! · · · (m + d − 1)!
=

(dm)!

m!dp(m)
,

where (fixing d), p(m) is a polynomial in m (namely p(m) =
∏d−1

i=0

(

m+i
i

)

). So, by Stir-

ling’s formula, limm→∞(fλm)1/dm = d. By (12), we have for each m, since λm ⊢ dm and
height(λm) = d,

(19) rank(Mdm(d)) ≥ (fλm)2.

This gives the required inequality.

3. Proof of Theorem 1

Necessity being easy, we show sufficiency. As f(∅) = 1 and rank(Cf,0) ≤ f(O)0 = 1, we
know that f is multiplicative. Moreover, as rank(Cf,1) ≤ f(O), we know f(O) ≥ 0.

We develop some straightforward algebra. Let k ∈ N. For G, H ∈ G2k, define the
product GH as the 2k-fragment obtained from the disjoint union of G and H by identifying
vertex labeled k + i in G with vertex labeled i in H, and ignoring this vertex as vertex (for
i = 1, . . . , k); the vertices of G labeled 1, . . . , k and those of H labeled k + 1, . . . , 2k make
GH to a 2k-labeled graph again.

Geometrically, one may imagine that the 2k-fragments have the labels 1, . . . , k vertically
at the left and the labels k + 1, . . . , 2k vertically at the right. Then GH arises by drawing
G at the left from H and connecting the right-side labels of G with the left-side labels of
H, in order.

Clearly, this product is associative. Moreover, there is a unit, denoted by 1k, consisting
of k disjoint edges e1, . . . , ek, where the ends of ei are labeled i and k + i (i = 1, . . . , k).

Let CG2k be the collection of formal C-linear combinations of elements of G2k. Extend
the product G·H and GH bilinearly to CG2k. The latter product makes CG2k to a C-algebra.

Let I2k be the kernel of the matrix Cf,2k, which we may consider as subset of CG2k.
Then I2k is an ideal in the algebra CG2k, and the quotient

(20) Ak := CG2k/I2k

is an algebra of dimension rank(Cf,2k). We will indicate elements of Ak by representatives
in CG2k.

Define τ : Ak → C by

(21) τ(x) := f(x · 1k).

Then τ(xy) = τ(yx) for all x, y ∈ Ak.

5



Consider any k, m ∈ N. For x ∈ Ak, let x⊗m be the element of Akm obtained by taking
m disjoint copies x(1), . . . , x(m) of x, and relabeling in copy x(j) label i to i + (j − 1)k and
label k + i to km + i + (j − 1)k, for each i = 1, . . . , k.

Geometrically, one may imagine this of putting m copies of x above each other, and
renumbering the labels at the left and right side accordingly in order.

For π ∈ Sm, let Pk,π be the 2km-fragment consisting of km disjont edges ei,j for i =
1, . . . , m and j = 1, . . . , k, where ei,j connects the vertices labeled i + (j − 1)m and km +
π(i) + (j − 1)m. Then for any ρ, σ ∈ Sm one has

(22) f(x⊗mPk,ρ · Pk,σ) =
∏

c

τ(x|c|),

where c ranges over the orbits of ρσ−1.

Proposition 4. If x is a nilpotent element of Ak, then τ(x) = 0.

Proof. Suppose τ(x) 6= 0 and x is nilpotent. Then there is a largest t with τ(xt) 6= 0. Let
y := xt. So τ(y) 6= 0 and τ(ys) = 0 for each s ≥ 2. By scaling we can assume that τ(y) = 1.

Choose m such that m! > f(O)2km. By (22) we have, for any ρ, σ ∈ Sm,

(23) f(y⊗mPk,ρ · Pk,σ) = δρ,σ.

So rank(Cf,2km) ≥ m!, contradicting the fact that rank(Cf,2km) ≤ f(O)2km < m!.

The following is a direct consequence of Proposition 4:

Proposition 5. Ak is semisimple.

Proof. As Ak is finite-dimensional, it suffices to show that for each nonzero element x of
Ak there is a y with xy not nilpotent. As x 6∈ I2k, we know that f(x · z) 6= 0 for some
z ∈ Ak. So τ(xy) 6= 0 for some y ∈ Ak, and hence, by Proposition 4, xy is not nilpotent.

Proposition 6. If x is a nonzero idempotent in Ak, then τ(x) is a positive integer.

Proof. Let x be any idempotent. Then for each m ∈ Z+ and ρ, σ ∈ Sm, by (22):

(24) f(x⊗mPk,ρ · Pk,σ) = τ(x)o(ρσ−1).

So for each m:

(25) rank(Mm(τ(x))) ≤ rank(Cf,km) ≤ f(O)2km.

Hence

(26) sup
m

(rank(Mm(τ(x))))1/m ≤ f(O)2k.
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By Proposition 3 this implies τ(x) ∈ Z and τ(x) ≤ f(O)k. As 1k − x also is an idempotent
in CG2k and as τ(1k) = f(O)k, we have

(27) f(O)k ≥ τ(1k − x) = f(O)k − τ(x).

So τ(x) ≥ 0.
Suppose finally that x is nonzero while τ(x) = 0. As τ(y) ≥ 0 for each idempotent

y, we may assume that x is a minimal nonzero idempotent. Let J be the two-sided ideal
generated by x. As Ak is semisimple, J ∼= C

m×m for some m. As τ is linear, there exists
an a ∈ J such that τ(z) = tr(za) for each z ∈ J . As τ(z) = 0 for each nilpotent z, we know
that a is a diagonal matrix. As τ(yz) = τ(zy) for all y, z ∈ J , a is in fact equal to a scalar
multiple of the identity matrix.

As x 6= 0, f(x · z) 6= 0 for some z ∈ Ak. So τ(xy) 6= 0 for some y. Hence a 6= 0, and so
τ(x) 6= 0, contradicting our assumption.

As 11 is an idempotent, we know that τ(11) is a nonnegative integer, say n. So f(O) = n.
Let k := n+1. For π ∈ Sk let rπ be the 2k-fragment consisting of k disjoint edges e1, . . . , ek,
where the ends of ei are labeled i and k+π(i), for i = 1, . . . , k. (In fact, rπ = P1,π as defined
above.) We define the following element q of CG2k:

(28) q :=
∑

π∈Sk

sgn(π)rπ.

By (7) it suffices to show that q ∈ I2k, that is, q = 0 in Ak.
Now k!−1q is an idempotent in CG2k. Moreover,

(29) τ(q) =
∑

π∈Sk

sgn(π)no(π) =
∑

π∈Sk

sgn(π)
∑

φ:[k]→[n]
φ◦π=φ

1 =
∑

φ:[k]→[n]

∑

π∈Sk
φ◦π=φ

sgn(π) = 0,

since no φ : [k] → [n] is injective. So by Proposition 6, q = 0 in Ak, as required.
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