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Abstract

Freedman, Lovász and Schrijver characterized graph parameters
that can be represented as the (weighted) number of homomorphisms
into a fixed graph. Several extensions of this result have been proved.
We use the framework of categories to prove a general theorem of this
kind. Similarly as previous resuts, the characterization uses certain
infinite matrices, called connection matrices, which are required to be
positive semidefinite.

1 Introduction

For two finite graphs F and G, let hom(F,G) denote the number of homo-
morphisms F → G. The definition can be extended to weighted graphs. In
[7] graph parameters of the form hom(·, G), defined on finite multigraphs,
were characterized, where G is a fixed weighted graph. Several variants of
this result have been obtained, characterizing graph parameters hom(·, G)
where all nodeweights of G are 1 [16], such graph parameters defined on sim-
ple graphs [13] etc. These characterizations involve certain infinite matrices,
called connection matrices, which are required to be positive semidefinite and
to satisfy a condition on their rank. The results can be extended to directed
graphs, hypergraphs etc.

The goal of this paper is to use the framework of categories to prove a
general theorem of this kind. Let C be a category. We need to assume that it
satisfies a number of natural conditions C1-C4 below, but for the statement
of the main theorem we only need that it is locally finite, it has pullbacks,
and it contains a terminal object t. In particular, every two objects a and b
have a direct product a× b. We denote by C(a, b) the set of morphisms from
a to b.

Let f be a real valued function defined on the objects, invariant under
isomorphism. We say that f is multiplicative, if f(a × b) = f(a)f(b) for
any two objects a and b. For every object a, we define a (possibly infinite)
symmetric matrix N(f, a), whose rows and columns are indexed by the mor-
phisms into a, and whose entry in row α and column β is f(p(α, β)), where
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p(α, β) is the object where the pullback of (α, β) starts (this is well defined
up to isomorphism).

Theorem 1 Let C be a category satisfying conditions C1-C4 below. Let f
be a function defined on the objects, invariant under isomorphism. Then
f = |C(b, .)| for some object b if and only if the following conditions are
fulfilled: (F1) f(t) = 1, (F2) f is multiplicative, and (F3) N(f, a) is positive
semidefinite for every object a.

We note that if there is a monomorphism from a to b, then N(f, a) is a
submatrix ofN(f, b). Thus it would be enough to require the semidefiniteness
condition for an appropriate subset K of objects such that every object has
a monomorphism into some k ∈ K (we call such a set K cofinal). Since a× t
is isomorphic with a, condition (F1) follows from (F2) unless f is identically
0.

Let us mention a corollary.

Corollary 2 Conditions (F1)–(F3) of the theorem imply that (a) the values
of f are non-negative integers, (b) the rank of N(f, a) is at most C(b, a).

Part (a) contrasts this result with the results of [7, 16], where (thanks to
the weights) the function values can be arbitrary. An analogue of (b) must
be imposed as a condition e.g. in the characterization in [7], while in this
setup it follows from the other assumptions.

2 Preliminaries

2.1 Conditions on the category

Let C be a category (for basic definitions and facts, see e.g. [1]). For two
objects a, b ∈ Ob(C), we denote by C(a, b) the set of morphisms a → b.
For α ∈ C(a, b), we set t(α) := a and h(α) := b. Let Ca denote the set of
morphisms with h(α) = a. We denote by Cmon(a, b) and by Cmon

a the set of
monomorphisms in C(a, b) and Ca, respectively.

We make the following assumptions about our category.

C1 (a) C is locally finite, i.e., C(a, b) is finite for all a, b.

(b) For every object a there is only a finite number of nonisomorphic
objects that have a monomorphism into a.
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C2 (a) C has pullbacks.
(b) C has a terminal object t, into which every object has a unique mor-

phism (which can be thought of as the pullback of the empty set of mor-
phisms).

C3 Every morphism is the product of an epimorphism and a monomorphism.

C4 The category has an object such that the set of its direct powers is cofinal
(we call such an object a generator).

For every object a, we introduce an equivalence relation on Ca by α ≡ β
if and only if β = γα for some isomorphism γ. We say that α and β are
left-isomorphic. We denote by [α] the equivalence class of α, and by Ĉa, the
set of equivalence classes in Ca.

Recall that for two morphisms α ∈ C(a, c) and β ∈ C(b, c), a pair of
morphisms α′ ∈ C(d, a) and β ′ ∈ C(d, b) is called a pullback of (α, β) if
α′α = β ′β, and whenever ξ ∈ C(e, a) and ζ ∈ C(e, b) are two morphisms such
that ξα = ζβ, then there is a unique morphism η ∈ C(e, d) such that ηα′ = ξ
and ηβ ′ = ζ . We also call α′ a pullback of β along α.

In terms of α and β, we write

p(α, β) := d, β∗(α) := β ′, α∗(β) := α′, α× β := α′α = β ′β.

(This strange notation will be convenient later on.)
It is well known and easy to check that for α, β ∈ Ca, [α∗(β)] only depends

on [β], and [α × β] only depends on [α] and [β]. The object p(α, β) is
determined up to isomorphism. Furthermore, if [α1] = [α2], then [β∗(α1)] =
[β∗(α2)] and [β × α1] = [β × α2]. So the operation × is well defined on
equivalence classes of morphisms. It is also clear that if α1, α2 ∈ C(a, b), ϕ ∈
C(b, c), and [α1] = [α2], then [α1ϕ] = [α2ϕ]. This defines [α]× [β] := [α× β].

It is easy to see that the operation × on Ĉa is associative and commutative.
We say that the category has pullbacks (condition C2(a)) if every pair of

morphisms into the same object has a pullback. A direct product a × b of
two objects is any object of the form p(α, β), where α and β are the unique
morphisms of a and b into the terminal object t. This is uniquely determined
up to isomorphism.
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2.2 Examples

Example 1 The category of finite simple graphs with loops (where mor-
phisms are homomorphisms, i.e., adjacency-preserving maps) satisfies these
assumptions. Conditions C1 and C3 are trivial.

The terminal object in C2(b) is the single node with a loop, while any
complete graph on 2 or more nodes with loops can serve as a generator object
as in C4. To construct the pullback of two homomorphisms α : a → c and
β : b → c, take the direct (categorial) product d of the two graphs a and b,
together with its projections πa and πb onto a and b, respectively, and take
the subgraph d′ of d induced by those nodes v for which (πaα)(v) = (πbβ)(v),
together with the restrictions of πa and πb onto d′.

The cofinal set mentioned in the remark after the Theorem can be the set
of all complete graphs with loops at all nodes, in which case the conditions
of Theorem 1 are exactly the conditions given in [11].

Example 2 Reversing the arrows in the category of finite simple graphs
with loops (Example 1) gives another category satisfying the assumptions.

Conditions C1 and C3 are again trivial. The terminal object in C2(b) is
the empty graph, a generator object is the single node without a loop.

In this dual setting, we have to construct the pushout of two homomor-
phisms α : c→ a) and β : c → b). This can be done by taking the disjoint
union of the two graphs a and b, and identifying those nodes that are the
images of one and the same node of c. This is just the construction of the
connection matrix given in [11]. The cofinal set mentioned in the remark
after the Theorem can be the set of all graphs with no edges, in which case
the conditions of Theorem 1 are exactly the conditions given in [11] for this
dual setting.

We note that the conditions are very similar to those in [7], except
that there the graphs cannot have loops and the matrices are indexed by
monomorphisms only. As a consequence, the characterization concerns ho-
momorphism numbers into weighted graphs, which is an extension not con-
sidered in this paper. Razborov’s “flag algebras” [15] are essentially subalge-
bras of the algebras Ca below (with arrows reversed), generated by induced
embeddings of a fixed graph into all other graphs.

These examples can be extended to simplicial maps between simplicial
complexes, homomorphisms between directed graphs, hypergraphs, etc.
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2.3 Some simple properties of the category

We state some easy consequences of these assumptions. It is easy to see that
condition C1 implies:

Lemma 3 (a) Every monomorphism [epimorphism] µ ∈ C(a, a) is an iso-
morphism.

(b) If both C(a, b) and C(b, a) contain monomorphisms [epimorphisms],
then a is isomorphic to b.

The operations introduced above satisfy some useful identities.

Lemma 4 (a) Let α ∈ C(a, b), β ∈ C(b, c) and ϕ ∈ C(d, c). Let (β ′, ϕ′) be a
pullback of (β ′, ϕ′), and let (α′, β ′′) be a pullback of (α, β ′). Then (α′, β ′′ϕ′)
is a pullback of (αβ, ϕ).

(b) Let α1, α2 ∈ Ca and ϕ ∈ C(b, a). Then [ϕ∗(α1 × α2)] = [ϕ∗(α1) ×
ϕ∗(α2)].

(c) Let α1, α2 ∈ Ca and ϕ ∈ C(a, b). If ϕ is a monomorphism, then
[(α1 × α2)ϕ] = [(α1ϕ) × (α2ϕ)].

Proof. The proofs of these identities is similar, and we only prove (b) and
(c). We fix a particular choice of the pullbacks.

The first identity follows by the following computation:

ϕ∗(α1 × α2) = ϕ∗(α∗
2(α1)α2) = (α∗

2(ϕ))∗(α∗
2(α1))ϕ

∗(α2)

= (α∗
2(ϕ)α2)

∗(α1)ϕ
∗(α2) = (ϕ∗(α2)ϕ)∗(α1)ϕ

∗(α2)

= (ϕ∗(α2))
∗(ϕ∗(α1))ϕ

∗(α2) = ϕ∗(α1) × ϕ∗(α2).

(Here we used (a).)
To prove (c), let α1 ∈ C(ci, a), and α1 × α2 ∈ C(d, a). We want to

prove that (α∗
1(α2), α

∗
2(α1)) is a pullback of (α1ϕ, α2ϕ). Let e be any object

and let γi ∈ C(e, ci) be morphisms such that γ1α1ϕ = γ2α2ϕ. Since ϕ is
a monomorphism, this implies that γ1α1 = γ2α2. Since α∗

2(α1) ∈ C(d, c1)
and α∗

1(α2) ∈ C(d, c2) form a pullback of (α1, α2), it follows that there is
a morphism ψ ∈ C(e, d) such that γ1 = ψα∗

1(α2) and γ2 = ψα∗
2(α1). This

proves the assertion. �

For each object a, the operation × defines a semigroup on Ĉa. Let Ga

denote its semigroup algebra. If ϕ : a → b is any morphism, then α 7→ αϕ
extends to a linear map Ga → Gb, which we denote by x 7→ xϕ. The map
β 7→ ϕ∗(β) extends to a linear map Gb → Ga, which we denote by x 7→ xϕ∗.
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Lemma 5 Let a, b1, b2 be objects, ϕi ∈ C(bi, a), and let (η1, η2) be a pullback
of (ϕ2, ϕ2). Let xi ∈ Gbi, then x1ϕ1 × x2ϕ2 = (x1η

∗
1 × x2η

∗
2)(ϕ1 × ϕ2).

Proof. It suffices to prove this for the case when xi = [βi] for some βi ∈ Cbi .
Then the equation follows by applying Lemma 4(a) twice. �

3 Factoring by f

Let f : C → R be any function invariant under isomorphism. It will be
convenient to extend it to morphisms, and define f(ϕ) = f(t(a)). Clearly,
this extension is invariant under left-isomorphism of morphisms. We can
extend f to the algebras Ga linearly. It follows from the definition that for
x ∈ Ga and ϕ ∈ C(a, b) we have f(xϕ) = f(x).

For α, β ∈ Ca, we define

〈α, β〉 = f(α× β),

which defines a (generally indefinite) inner product on Ga. Lemma 4(a)
implies that for x ∈ Ga, y ∈ Gb and ϕ ∈ C(a, b) the following identity holds:

〈xϕ, y〉 = 〈x, yϕ∗〉 (1)

(which justifies the notation ϕ∗). Furthermore, Lemma 4(c) implies that if
ϕ ∈ C(a, b) is a monomorphism, then for x, y ∈ Ca,

〈xϕ, yϕ〉 = f(xϕ× yϕ) = f((x× y)ϕ) = f(x× y) = 〈x, y〉. (2)

It also follows from the definition and the associativity of the product × that

〈α× β, γ〉 = f(α× β × γ) = 〈α, β × γ〉 (3)

for all α, β, γ in Ca. This extends linearly to the identity

〈x× y, z〉 = 〈x, y × z〉 (4)

for all x, y, z ∈ Ga.
Let

Na = {x ∈ Ga : 〈x, y〉 = 0 for all y ∈ Ga},
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then Na is an ideal in the algebra Ga, since if x ∈ Na, then by (4), we have
for all y, z ∈ Ga, 〈x × y, z〉 = 〈x, y × z〉 = 0, and hence x × y ∈ Na. So we
can form the factor Aa = Ga/Na, which is an associative and commutative
algebra with a (possibly indefinite) inner product 〈., .〉. The coset Na + ida

is an identity element in Aa, which we denote by 1a.

Lemma 6 Let ϕ ∈ C(a, b).

(a) If x ∈ Na then xϕ ∈ Nb.

(b) If y ∈ Nb then yϕ∗ ∈ Na.

(c) If ϕ is a monomorphism, then xϕ ∈ Nb implies that x ∈ Na.

Proof. (a) To prove that xϕ ∈ Nb, we want to prove that 〈xϕ, y〉 = 0 for all
y ∈ Gb. By (1), 〈xϕ, y〉 = 〈x, yϕ∗〉, which is 0 as x ∈ Na.

(b) To prove that yϕ∗ ∈ Na, we want to prove that 〈yϕ∗, x〉 = 0 for all
x ∈ Ga. Similarly as before, 〈yϕ∗, x〉 = 〈y, xϕ〉 = 0 as y ∈ Nb.

(c) Assume that xϕ ∈ Nb for some x ∈ Ga. Then 〈xϕ, y〉 = 0 for every
y ∈ Gb, in particular, 〈xϕ, zϕ〉 = 0 for every z ∈ Ga. Then by (2), 〈x, z〉 = 0
for every z ∈ Ga, and so x ∈ Na. �

Corollary 7 (a) The maps x 7→ xϕ and y 7→ yϕ∗ induce linear maps from
Aa → Ab and Ab → Aa, respectively.

(b) The map y 7→ yϕ∗ induces an algebra homomorphism.

(c) If ϕ is a monomorphism, then the map x 7→ xϕ induces an injective
algebra homomorphism.

We need some simple facts about inner products in direct products.

Lemma 8 Let a, b1, b2 be objects, ϕi ∈ C(bi, a), and let (η1, η2) be a pullback
of (ϕ2, ϕ2). Let xi ∈ Gbi, then

〈x1η
∗
1, x2η

∗
2〉 = 〈x1ϕ1, x2ϕ2〉.

In particular if a = t, then

〈x1η
∗
1, x2η

∗
2〉 = f(x1)f(x2),

and for xi, yi ∈ Gbi,

〈x1η
∗
1 × x2η

∗
2, y1η

∗
1 × y2η

∗
2〉 = f(x1 × y1)f(x2 × y2).
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Proof. The first assertion follows from Lemma 5:

〈x1ϕ1, x2ϕ2〉 = f(x1ϕ1 × x2ϕ2) = f((x1η
∗
1 × x2η

∗
2)(ϕ1 × ϕ2))

= f(x1η
∗
1 × x2η

∗
2) = 〈x1η

∗
1, x2η

∗
2〉.

For the second assertion, it suffices to note that if a = t, then by the multi-
plicativity of f ,

f(x1ϕ1 × x2ϕ2) = f(x1ϕ1)f(x2ϕ2) = f(x1)f(x2),

and using that η∗i is an algebra homomorphism,

〈x1η
∗
1 × x2η

∗
2, y1η

∗
1 × y2η

∗
2〉 = f(x1η

∗
1 × x2η

∗
2 × y1η

∗
1 × y2η

∗
2)

= f(x1η
∗
1 × y1η

∗
1 × x2η

∗
2 × y2η

∗
2) = f((x1 × y1)η

∗
1 × (x2 × y2)η

∗
2)

= f(x1 × y1)f(x2 × y2).

�

4 Semidefiniteness

From now on we assume that 〈., .〉 is positive semidefinite on every Ga (and
hence positive definite on Aa). This is clearly equivalent with the condition
that the matrices N(f, a) are positive semidefinite.

Lemma 9 The algebra Aa is finite dimensional and dim(Aa) ≤ f(a).

(The proof, which is an extension of Szegedy’s argument in [17], only uses
that N(f, a× a) is positive semidefinite.)

Proof. Let π1, π2 ∈ C(a × a, a) be the canonical projections of a × a onto
a. There is a unique morphism ϕ ∈ C(a, a× a) (the “diagonal embedding”)
such that ϕπ1 = ϕπ2 = ida.

Let e1, . . . , eN be mutually orthogonal unit vectors in Aa. Both assertions
will follow if we prove that N ≤ f(a).

Let

x =
N∑

i=1

(eiπ
∗
1 × eiπ

∗
2) − [ϕ].
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Then

〈x, x〉 =

N∑

i=1

〈eiπ
∗
1 × eiπ

∗
2, eiπ

∗
1 × eiπ

∗
2〉

+ 2
∑

i<j

〈eiπ
∗
1 × eiπ

∗
2, ejπ

∗
1 × ejπ

∗
2〉

− 2

N∑

i=1

〈eiπ
∗
1 × eiπ

∗
2, ϕ〉

+ 〈ϕ, ϕ〉. (5)

Here using Lemma 8,

〈eiπ
∗
1 × eiπ

∗
2, eiπ

∗
1 × eiπ

∗
2〉 = f(ei × ei)

2 = 〈ei, ei〉
2 = 1.

Similarly,
〈eiπ

∗
1 × eiπ

∗
2, ejπ

∗
1 × ejπ

∗
2〉 = 〈ei, ej〉

2 = 0.

Furthermore, using that

eiπ
∗
2 × ϕ = (eiπ

∗
2ϕ

∗)ϕ = (ei(ϕπ2)
∗)ϕ = eiϕ,

we have

〈eiπ
∗
1 × eiπ

∗
2, ϕ〉 = 〈eiπ

∗
1, eiπ

∗
2 × ϕ〉 = 〈eiπ

∗
1 , eiϕ〉 = 〈ei, eiϕπ1〉 = 〈ei, ei〉 = 1.

Since [ϕ] is an idempotent in Ga×a,

〈ϕ, ϕ〉 = f(ϕ× ϕ) = f(ϕ).

Hence by (5),

〈x, x〉 = N + 0 − 2N + f(ϕ) = f(a) −N.

Since this is nonnegative, the lemma follows. �

Since 〈x × y, z〉 = 〈x, y × z〉 for all x, y, z ∈ Aa, the algebra Aa has a
(unique) orthogonal basis Ba consisting of idempotents. Every idempotent
in Aa is the sum of a subset of Ba, and in particular

1a =
∑

p∈Ba

p. (6)
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Let ϕ ∈ C(a, b). Since ϕ∗ Ab → Aa is an algebra homomorphism, pϕ∗ is
an idempotent in Aa for any p ∈ Bb, and 1bϕ

∗ = 1a. So (6) implies that
∑

p∈Bb

pϕ∗ = 1bϕ
∗ = 1a =

∑

q∈Ba

q. (7)

For p ∈ Bb and ϕ ∈ C(a, b), define

Bϕ,p := {q ∈ Ba : pϕ∗ × q = q}.

By (7),

pϕ∗ =
∑

q∈Bϕ,p

q. (8)

Lemma 10 Let p ∈ Bb, q ∈ Ba, and ϕ ∈ C(a, b).

(a) q ∈ Bϕ,p if and only if

qϕ =
f(q)

f(p)
p.

(b) If q ∈ Bϕ,p and ϕ is a monomorphism, then qϕ = p.

Note that here f(q) = f(q × q) = 〈q, q〉 > 0 and similarly f(p) > 0.

Proof. (a) To prove the necessity of the condition, assume that p′ ∈ Bb\{p}.
Then

〈qϕ, p′〉 = 〈q, p′ϕ∗〉 = 0 = 〈
f(q)

f(p)
p, p′〉,

since 〈p, p′〉 = 0. Moreover,

〈qϕ, p〉 = 〈q, pϕ∗〉 = f(q × (pϕ∗)) = f(q) = 〈
f(q)

f(p)
p, p〉,

since 〈p, p〉 = f(p× p) = f(p).
The proof of sufficiency is easy, since q belongs to Bϕ,p′ for some p′ ∈ Bb,

hence qϕ = f(q)
f(p′)

p′, and so p = p′.

(b) Notice that ϕ defines an algebra homomorphism from Aa to Ab by
Corollary 7(c), and hence using Lemma 4(c),

f(q)

f(p)
p = qϕ = (q × q)ϕ = (qϕ) × (qϕ) =

(f(q)

f(p)
p
)
×

(f(q)

f(p)
p
)

=
(f(q)

f(p)

)2

p,

which implies that f(q)/f(p) = 1. �
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5 Simplified idempotents

Let a and b be two objects and x ∈ Aa, y ∈ Ab. We say that y is a
simplification of x if there exists a monomorphism ϕ ∈ C(b, a) such that
x = yϕ. It is clear that a simplification of a simplification is a simplification.

Lemma 11 Every x ∈ Aa has a unique simplification y such that for every
other simplification z of x, y is a simplification of z.

Proof. Condition C1(b) implies that there is a simplification y of x such
that y has no simplification other than itself. We claim that if z is any other
simplification of x, then y is a simplification of z.

Let y ∈ Ab and z ∈ Ac, and let ϕ ∈ C(b, a) and ψ ∈ C(c, a) be monomor-
phisms such that x = yϕ = zψ. Then

x = yϕ = (1b × y)ϕ = 1bϕ× yϕ = 1bϕ× zψ.

By Lemma 5, this implies that, setting d := p(ϕ, ψ), there is a u ∈ Ad

such that x = 1bϕ × zψ = u(ϕ × ψ). Since ϕ × ψ, ψ∗(ϕ) and ϕ∗(ψ) are
monomorphisms, this implies that u is a simplification of each of x, y and
z. So we must have u = y, which implies that y is a simplification of z as
claimed. �

So it follows that every x ∈ Aa has a “most simplified” version, which we
denote by s(x).

Lemma 12 If p is a basic idempotent, then every simplification of p is a
basic idempotent.

Proof. Let p ∈ Aa, y ∈ Ab and p = yϕ, where ϕ ∈ C(b, a) is a monomor-
phism. Write y =

∑
q∈Bb

λqq. Then p = yϕ =
∑

q∈Bb
λqqϕ. By Lemma 10,

the algebra elements qϕ are basic idempotents in Aa, and so one of them must
be equal to p. Hence qϕ = yϕ for this basic idempotent, and by Corollary
7(c), this implies that y = q. �

Basic idempotents of the form s(p) will be called simplified.

Lemma 13 Let ϕ ∈ C(b, a) be an epimorphism, let p ∈ Ba be a simplified
basic idempotent, and let q ∈ Bϕ,p Let s(q) ∈ Bd. Then there is an epimor-
phism η ∈ C(d, a) such that s(q) ∈ Bη,p.
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Proof. Let µ ∈ C(d, b) be a monomorphism such that q = s(q)µ. By
condition C3, µϕ also factors as αβ, where α is an epimorphism and β is a
monomorphism. Then

p =
f(p)

f(q)
qϕ =

f(p)

f(q)
s(q)µϕ =

f(p)

f(q)
s(q)αβ.

Since p is simplified, this implies that p = f(p)
f(q)

s(q)ασ for some isomorphism

σ. Setting η = ασ, we get that s(q) ∈ Bη,p by Lemma 10. �

Lemma 14 If p ∈ Aa is a simplified basic idempotent, then for every object
b,

dimAb ≥
|Cmon(a, b)|

|Cmon(a, a)|
.

Proof. For every ϕ ∈ Cmon(a, b), pϕ is a basic idempotent in Ab. We
claim that if pϕ = pψ, then [ψ] = [ϕ]. This will imply that Ab has at
least |Cmon(a, b)|/|Cmon(a, a)| different basic idempotents, which will imply
the Lemma.

Let q := pψ = pϕ. Let σ = ϕ × ψ ∈ C(c, b). By Lemma 5, there is a
z ∈ Ac such that pϕ×pψ = z(ϕ×ψ). But pϕ×pψ = q× q = q = pϕ, and so
zϕ∗(ψ)ϕ = z(ϕ×ψ) = q = pϕ, whence zϕ∗(ψ) = p as ϕ is monic. But ϕ∗(ψ)
is also monic, and since p is simplified, it follows that it is an isomorphism.
Similarly, ψ∗(ϕ) is an isomorphism, and hence ψ = (ψ∗(ϕ))−1ϕ∗(ψ)ϕ, where
(ψ∗(ϕ))−1ϕ∗(ψ) is an automorphism of a. Thus [ψ] = [ϕ]. �

Our next goal is to prove that the number of simplified basic idempotents
is finite. This is where we also use the existence of a generator object g.

Lemma 15 For every object g, the following are equivalent.

(i) g is a generator.

(ii) Every object a has a monomorphism into the direct power g|C(a,g)|.

(iii) For any two objects a, b and any two different morphisms α, β ∈
C(b, a) there is a morphism η ∈ C(a, g) such that αη 6= βη.

Proof. Clearly (ii) is a sharper form of (i), so it suffices to prove that
(i)⇒(iii) and (iii)⇒(ii).

(i)⇒(iii). We know that there is a k such that a has a monomorphism
ξ into gk. Then αξ 6= βξ. Let π1, . . . , πk be the canonical morphisms of gk
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into g, then by the definition of pullback, there is an i ∈ {1, . . . , k} such that
αξπi 6= βξπi. So we can take η = ξπi.

(iii)⇒(ii). Let C(a, g) = {ϕ1, . . . , ϕk}. By the definition of pullbacks,
there is a map ξ ∈ C(a, gk) such that ξπi = ϕi for i ∈ {1, . . . , k}. We
claim that ξ is a monomorphism. Indeed, for any two different morphisms
α, β ∈ C(b, a) there is an i such that αϕi 6= βϕi, and hence αξ 6= βξ. �

Lemma 16 The number of simplified basic idempotents is finite.

Proof. Let a be an object such that Aa has a simplified basic idempotent
p. Let m be the smallest integer such that a has a monomorphism into gm.
By Lemma 15, |C(a, g)| ≥ m. Hence it follows that |C(a, gk)| ≥ mk, and so

|Cmon(a, gk)| ≥ |C(a, gk−m)||Cmon(a, gm)| ≥ mk−m

for k ≥ m. Combining with Lemma 14, we get that

dimAgk ≥
|Cmon(a, gk)|

|Cmon(a, a)|
≥

mk−m

|Cmon(a, a)|
.

Using Lemma 9, we get that

mk−m ≤ |Cmon(a, a)|f(gk) = |Cmon(a, a)|f(g)k.

Letting k → ∞, we get
m ≤ f(g).

So it follows that a has a monomorphism into g⌊f(g)⌋. By Condition C1, the
number of such objects a is finite. �

6 Conclusion

We say that a simplified basic idempotent p ∈ Aa is maximal, if whenever
η ∈ C(b, a) is an epimorphism and q ∈ Bη,p is a simplified basic idempotent,
then η is an isomorphism. Lemma 16 implies that there is at least one
maximal simplified basic idempotent.
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Lemma 17 Let ϕ ∈ C(b, a) be an epimorphism, and let p ∈ Ba be a maximal
simplified basic idempotent. Then

pϕ∗ =
∑

ψ∈C(a,b)
ψϕ=ida

pψ.

Proof. Let q ∈ Bb. We want to prove that q ∈ Bp,ϕ if and only if q = pψ
for some ψ ∈ C(a, b) with ψϕ = ida.

If q = pψ for such a ψ, then qϕ = pψϕ = p, and so q ∈ Bϕ,p by Lemma
10.

Conversely, let q ∈ Bϕ,p. By Lemma 13, there is an epimorphism η ∈
C(d, a) (where s(q) ∈ Bd) such that s(q) ∈ Bη,p. By the maximality of p,
this implies that d = a and s(q) = pσ for some isomorphism σ ∈ C(a, a).
It follows that q = s(q)µ = pσµ for some monomorphism µ ∈ C(a, b). Let

β := σµ. Then p = f(p)
f(q)

qϕ = f(p)
f(q)

pβϕ.

Applying f we see that f(p) = f(q), so p = qϕ. Set α = βϕ, so p = pα.
Write α = γδ, where γ ∈ C(a, d) is an epimorphism and δ ∈ C(d, a) is a
monomorphism. Then p = pα = (pγ)δ, and hence by the assumption that
p is simplified, it follows that a = d and γ, δ ∈ C(a, a) are isomorphisms.
Hence α is an isomorphism, and so ψ = α−1β ∈ C(a, b) is a monomorphism
satisfying ψϕ = ida. �

Lemma 18 For any two objects a, b and maximal simplified basic idempotent
p ∈ Aa, ∑

ϕ∈C(a,b)

pϕ = f(p)1b. (9)

Proof. By condition C2(b), the category has a terminal object t. Let
C(a, t) = {α} and C(b, t) = {β}. Set γ = α∗(β), δ = β∗(α), and c = p(α, β).

The algebra At is 1-dimensional, which implies that for any y ∈ Ab, yβ is
a scalar multiple of 1t, where f(yβ) = f(y) and the hypothesis that f(1t) = 1
give the value of the scalar:

yβ = f(y)1t. (10)

Furthermore, Lemma 4(b) implies that that

(yβ)α∗ = (yδ∗)γ. (11)

15



For each ϕ ∈ C(a, b), there is a unique ψ ∈ C(a, p(α, β)) with ψγ = ida

and ψδ = ϕ. Hence, with Lemma 17,

∑

ϕ∈C(a,b)

pϕ =
∑

ψ
αψ=ida

pψδ =
( ∑

ψ∈C(a,p(α,β))
ψγ=ida

pψ
)
δ = (pγ∗)δ.

By (1), (10) and (11), we have for each y ∈ Ab:

〈y, pγ∗δ〉 = 〈yδ∗, pγ∗〉 = 〈yδ∗γ, p〉 = 〈(yβ)α∗, p〉

= 〈yβ, pα〉 = f(y)f(p)〈1t, 1t〉 = f(y)f(p) = 〈y, f(p)1b〉.

This implies that (pγ∗)δ = f(p)1b. �

We are now ready to prove our main theorem.

Proof of Theorem 1. Let p ∈ Ca be a maximal simplified basic idempotent.
Then for every object b, by Lemma 18,

f(b) = f(1b) =
1

f(p)

∑

ϕ∈C(a,b)

f(pϕ) = |C(a, b)|.

�

7 Concluding remarks

Homomorphisms between graphs and their number occur in several other
contexts. Which of these results can be extended to categories? Let us
discuss some examples.

• Questions of existence of homomorphisms between graphs can often be
posed in a very clean form using categorial language (see e.g. [8]).

• Counting homomorphisms has been a main tool in proving cancellation
laws for finite relational structures [9]. These results were extended to
locally finite categories much in the spirit of this paper [10, 14].

• Counting homomorphisms from fixed graphs into a growing sequence of
“large” graphs can be used to define convergence of sequences of graphs
and their limit objects [5, 12]. Counting homomorphisms from “large”
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graphs into fixed graphs (usually with weights) connects this subject
to statistical physics. Some of these methods have been extended to
hypergraphs and other structures [6]. It would be very interesting to
extend these notions and results to categories. One can generalize the
notions of cut distance and convergence in a rather straightforward
way, but it seems to be much harder to generalize some of the basic
proofs, and to find interesting special categories to which the general
results would apply.

• The set of homomorphisms between two graphs can be endowed with
the structure of a convex cell complex [2], which allows the use of meth-
ods from algebraic topology to prove non-existence results concerning
homomorphism, in particular colorings [3, 4]. Can this be extended
to categories? Again, one can generalize the definitions in more than
one way, but the generalization of the results, and even more finding
interesting further special cases, is open.

References
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