
Basic Voting Theory

Jan van Eijck and Floor Sietsma

Abstract

Basic concepts of voting theory, implemented in literate Haskell style, with some
(hopefully) new results.

1 Preliminaries

Voting is the process of selecting an item or a set of items from a finite set
A of alternatives, on the basis of the stated preferences of a set of voters.

The set of m alternatives A = {a0, . . . , am−1} is represented as {0, . . . ,m−
1}, for m = 2, 3, 4,

A ballot is a linear ordering of A. We assume that the preferences of a voter
are represented by a ballot. A profile is a vector of ballots, one for each
voter. We assume voter anonymity, so it does not matter which voter has
which ballot. The only thing that matters is the number of voters holding
a certain ballot. Under this assumption voting profiles can be represented
as mappings from ballots to non-negative integers.

We will use P,Q to range over (quantified) profiles, and b,b′ to range over
ballots.

This paper is a literate program [Knu92] written in Haskell [Jon03, HT],
with the programming code appearing in boxed typescript.

1

2 Cycles 2

module Voting

where

import List

import Ratio

Type declarations for readability:

type Alternative = Int

type Ballot = [Alternative]

type Profile = [Int]

2 Cycles

Definition 1 A permutation of alternatives π on A = {a0, . . . , am−1} is a
full cycle if π can be given as a0 = π0(a0) 7→ π(a0) 7→ π2(a0) 7→ · · · 7→
πm−1(a0), with the πi(a0) all different.

Any full cycle on A can be considered as a linear ordering on A with a0
as least element, and vice versa. Thus, there are (m − 1)! full cycles on
{a0, . . . , am−1}. Customary notation for full cycles π on a list of m elements
is to give the list:

(a0, π(a0), π
2(a0), · · · , πm−1(a0)).

For example, the full cycle in the following picture can be given as (adbc).

a d

bc

2 Cycles 3

cycles :: Int -> [[Int]]

cycles n = map (0:) (perms [1..n-1])

listCycles :: [a] -> [[a]]

listCycles xs = let

n = length xs

lst = cycle xs

cls ys = take n ys : cls (drop (n+1) ys)

in take n (cls lst)

All permutations of a list are given by:

perms :: [a] -> [[a]]

perms [] = [[]]

perms (x:xs) = concat (map (insrt x) (perms xs))

where

insrt :: a -> [a] -> [[a]]

insrt x [] = [[x]]

insrt x (y:ys) = (x:y:ys) : map (y:) (insrt x ys)

The (m− 1)! cycles in a profile for m alternatives are found by:

getCycle :: Int -> Int -> [[Int]]

getCycle m k = listCycles ((cycles m) !! k)

Or with characters:

getCycle’ :: Int -> Int -> [[Char]]

getCycle’ m k = map (map int2chr) (getCycle m k)

2 Cycles 4

int2chr :: Int -> Char

int2chr n = toEnum (n + 97)

This gives, e.g.:

*Voting> getCycle’ 4 0

["abcd","bcda","cdab","dabc"]

*Voting> getCycle’ 4 1

["acbd","cbda","bdac","dacb"]

*Voting> getCycle’ 4 2

["acdb","cdba","dbac","bacd"]

*Voting> getCycle’ 4 3

["abdc","bdca","dcab","cabd"]

*Voting> getCycle’ 4 4

["adbc","dbca","bcad","cadb"]

*Voting> getCycle’ 4 5

["adcb","dcba","cbad","badc"]

It is easy to generate the list of all ballots, given the number of alternatives.

fac :: Int -> Int

fac m = product [1..m]

genBallots :: Int -> [Ballot]

genBallots m = let

k = fac (m-1) - 1

in concat [getCycle m i | i <- [0..k]]

Or if you wish to see the ballots as strings “abcd” and so on:

2 Cycles 5

genBallots’ :: Int -> [String]

genBallots’ = map (map int2chr) . genBallots

Here are some examples:

*Voting> genBallots’ 2

["ab","ba"]

*Voting> genBallots’ 3

["abc","bca","cab","acb","cba","bac"]

*Voting> genBallots’ 4

["abcd","bcda","cdab","dabc","acbd","cbda","bdac","dacb","acdb",

"cdba","dbac","bacd","abdc","bdca","dcab","cabd","adbc","dbca",

"bcad","cadb","adcb","dcba","cbad","badc"]

*Voting> genBallots’ 5

["abcde","bcdea","cdeab","deabc","eabcd","acbde","cbdea","bdeac",

"deacb","eacbd","acdbe","cdbea","dbeac","beacd","eacdb","acdeb",

"cdeba","debac","ebacd","bacde","abdce","bdcea","dceab","ceabd",

"eabdc","adbce","dbcea","bcead","ceadb","eadbc","adcbe","dcbea",

"cbead","beadc","eadcb","adceb","dceba","cebad","ebadc","badce",

"abdec","bdeca","decab","ecabd","cabde","adbec","dbeca","becad",

"ecadb","cadbe","adebc","debca","ebcad","bcade","cadeb","adecb",

"decba","ecbad","cbade","badec","abced","bceda","cedab","edabc",

"dabce","acbed","cbeda","bedac","edacb","dacbe","acebd","cebda",

"ebdac","bdace","daceb","acedb","cedba","edbac","dbace","baced",

"abecd","becda","ecdab","cdabe","dabec","aebcd","ebcda","bcdae",

"cdaeb","daebc","aecbd","ecbda","cbdae","bdaec","daecb","aecdb",

"ecdba","cdbae","dbaec","baecd","abedc","bedca","edcab","dcabe",

"cabed","aebdc","ebdca","bdcae","dcaeb","caebd","aedbc","edbca",

"dbcae","bcaed","caedb","aedcb","edcba","dcbae","cbaed","baedc"]

Notice that the number of possible ballots grows very rapidly with the num-
ber of alternatives. For m alternatives there are m! possible ballots.

Profiles are represented as lists of non-negative integers, where the length of
the list equals m!, with m the number of alternatives. The size of a profile
is equal to the length of its ballots. If a profile P has size m, this means
that its alternative set A has |A| = m.

2 Cycles 6

size :: Profile -> Int

size xs = length $ fst $ findBallot xs 0

The integer at position p in the list indicates the number of voters with the
ballot at position p in the list of all possible ballots:

findBallot :: Profile -> Int -> (Ballot,Int)

findBallot xs n = let

m = length xs

factorials = [fac k | k <- [2..]]

candidates = takeWhile (\x -> x <= m) factorials

lst = last candidates

k = length candidates + 1

in

if m == lst then (genBallots k!!n,xs!!n)

else error "incorrect profile length"

Or in terms of strings:

findBallot’ :: Profile -> Int -> (String,Int)

findBallot’ xs n = let

m = length xs

factorials = [fac k | k <- [2..]]

candidates = takeWhile (\x -> x <= m) factorials

lst = last candidates

k = length candidates + 1

in

if m == lst then (genBallots’ k!!n,xs!!n)

else error "incorrect profile length"

It is sometimes useful to expand a profile to a list of (ballot,int) pairs:

3 Profile Normalization 7

expand :: Profile -> [(Ballot,Int)]

expand xs = map (findBallot xs) [0..length xs-1]

Or in terms of strings:

expand’ :: Profile -> [(String,Int)]

expand’ xs = map (findBallot’ xs) [0..length xs-1]

If b is a ballot and P a profile, we use P(b) for the number of voters with
ballot b in P. Here is the implementation:

votes :: Profile -> Ballot -> Int

votes profile ballot = let

eprofile = expand profile

Just k = lookup ballot eprofile

in

k

The vote size (total number of voters) in a profile:

voteSize :: Profile -> Int

voteSize = sum

3 Profile Normalization

Profiles can be normalized by dividing with the gcd of the list of all nonzero
vote numbers.

4 Some Special Profiles 8

norm :: Profile -> Profile

norm profile =

let

xs = filter (/= 0) profile

k = if null xs then 1 else foldl1 gcd xs

f = flip div k

in map f profile

If P is a profile, we use P◦ for the normalized form of the profile.

If we are prepared to use fractions, we can normalize still further:

type Nprofile = [Ratio Int]

Converting to a normalized profile:

nrm :: Profile -> Nprofile

nrm profile = let

total = sum profile

in

map (\ k -> (k % total)) profile

This gives:

*Voting> norm [2,0,0,2,6,4]

[1,0,0,1,3,2]

*Voting> nrm [2,0,0,2,6,4]

[1 % 7,0 % 1,0 % 1,1 % 7,3 % 7,2 % 7]

4 Some Special Profiles

The empty m-profile:

5 Voting Rules, Resolute Voting Rules, Tie Breaking 9

nullprofile :: Int -> Profile

nullprofile m = take (fac m) (repeat 0)

Unit m-profiles:

unit :: Int -> Int -> Profile

unit m i = let

f = \ (x,y) -> if y == i then (x+1) else x

in

map f (zip (nullprofile m) [0..])

This gives:

*Voting> unit 3 0

[1,0,0,0,0,0]

*Voting> unit 3 1

[0,1,0,0,0,0]

*Voting> unit 4 2

[0,0,1,0]

5 Voting Rules, Resolute Voting Rules, Tie Breaking

Voting rules are functions from profiles to non-empty sets of alternatives
(sets represented as lists), or from profiles to non-empty sets of characters.
If V is a voting rule and P a profile, we call V (P) the V -winners for P.

type VotingRule = Profile -> [Alternative]

type VotingRule’ = Profile -> [Char]

Resolute voting rules are functions from profiles to alternatives (or char-
acters). If V is a resolute voting rule and P a profile, we call V (P) the
V -winner for P.

5 Voting Rules, Resolute Voting Rules, Tie Breaking 10

type ResVotingRule = Profile -> Alternative

type ResVotingRule’ = Profile -> Char

Tie breaking can be viewed as a method for mapping voting rules to resolute
voting rules: in case the result of the voting rule is not a singleton, apply
the tie break order to select a unique winner.

tieBreak :: [Alternative] -> VotingRule -> ResVotingRule

tieBreak tiebreaklist f profile = let

results = f profile

m = size profile

order = list2ordering (take m tiebreaklist)

in

if null results then error "no winners selected"

else if length results == 1 then head results

else head (sortBy order results)

Note: the reason for cutting off the tie break list after the n-th element is
to enable use of the infinite list [0..] as a generic tie break argument.

From a tie break list to an ordering. Head of the list is top (most prominent),
which corresponds to lowest in the ordering. We are going to use the ordering
for sorting.

list2ordering :: Eq a => [a] -> a -> a -> Ordering

list2ordering xs x y | x == y = EQ

| elem x (dropWhile (/= y) xs) = GT

| otherwise = LT

If P is a profile for A, and π is a permutation of A, then Pπ is the result of
replacing x by π(x) everywhere in P. If B ⊆ A, then π(B) = {π(x) | x ∈ B}.

Definition 2 A voting rule V is neutral if for every profile P and for every

6 Scoring 11

permutation π of the set A of alternatives,

V (Pπ) = π(V (P)).

Recall that P◦ is the normalized form of profile P.

Definition 3 A voting rule V is normal if it holds for every profile P that
V (P) = V (P◦).

Proposition 4 There are anonomymous and neutral voting rules that are
not normal.

Proof. Let Vk be given by x ∈ Vk(P) if at least k voters have x at the top
of their ballots. Then Vk is anonymous and neutral, but Vk is not normal.
2

To Do 1 Find out the minimal properties of voting rules that guarantee
normality. The previous fact indicates that anonymity and neutrality are
not enough.

6 Scoring

A score for an m-profile is a list of m integers, one for each alternative. The
score lists the number of points that each alternative gets. The convention
is that the alternative with the highest score wins.

type Score = [Int]

A profile is tallied with a voting rule by calculating the score of each alter-
native.

The following function finds the alternatives with the maximum score:

findMaxValues :: Score -> [(Int,Int)]

findMaxValues values =

filter (\ (_,x) -> x == maximum values)

(zip [0..] values)

6 Scoring 12

The alternatives with the maximum values are the winners, so findMaxValues
can be used to map a score to a set of winners:

winners :: Score -> [Alternative]

winners = map fst . findMaxValues

Find the alternative(s) with the minimum score:

findMinValues :: Score -> [(Int,Int)]

findMinValues values =

filter (\ (_,x) -> x == minimum values)

(zip [0..] values)

Compute the loser(s):

losers :: Score -> [Alternative]

losers = map fst . findMinValues

A type for scoring functions:

type SF = Profile -> Score

From a scoring function to a voting rule:

sf2votingrule :: SF -> VotingRule

sf2votingrule sf = winners . sf

7 Voting Rules With Positional Scoring 13

7 Voting Rules With Positional Scoring

A scoring vector for ballots of size m is a list of non-negative integers
(w0, . . . , wm−1) satisfying wi ≥ wi+1. The number wi indicates the weight
of position i in the ballot.

Plurality or majority has scoring vector (1, 0, · · · , 0). Anti-plurality or veto
has scoring vector (1, · · · , 1, 0). Borda has scoring vector (m − 1,m −
2, · · · , 1, 0) [Bor81].

We implement functions that construct scoring vectors from numbers of
alternatives. So we define the types of scoring vectors and scoring vector
functions as follows:

type ScoringVector = [Int]

type ScoringVF = Int -> ScoringVector

Example scoring vectors (in fact, vector constructing functions):

pluralityVector :: ScoringVF

pluralityVector n = 1 : (take (n-1) $ repeat 0)

antipluralityVector :: ScoringVF

antipluralityVector n = (take (n-1) $ repeat 1) ++ [0]

bordaVector :: ScoringVF

bordaVector n = reverse [0..n-1]

For every scoring vector there is an equivalent scoring vector with wm−1 = 0,
so scoring vectors can be normalized by subtracting a positive c from every
wi. Furthermore, common factors can be divided out. This gives:

7 Voting Rules With Positional Scoring 14

normSV :: ScoringVector -> ScoringVector

normSV ws = let

w = last ws

xs = zipWith (-) ws (repeat w)

ys = init xs

k = if null ys then 1 else foldl1 gcd ys

f = flip div k

in

map f xs

This gives:

*Voting> normSV [5,3,1]

[2,1,0]

*Voting> normSV [8,5,5,2]

[2,1,1,0]

Proposition 5 Scoring vector normalization does not affect the set of win-
ners.

Proof. Let (w1, . . . , wm−1) be a scoring vector. If x is a winner under
this vector for profile P, this means that the score N of x for P is maximal
among the scores, i.e., greater than or equal to the score M of any alternative
y 6= x. Scoring for the vector (w1 − wm−1, . . . , wm−2 − wm−1, 0) give scores
N − kmwm−1 and M − kmwm−1, so the score of x is still maximal. In the
other direction, the scores change by adding a constant, so winners are also
preserved.

Next, compare (w1, . . . , wm−1) and (w1K, . . . , wm−1K), with K > 1. Scores
M and N for x and y under (w1, . . . , wm−1) change into MK and NK.
Since M > N iff MK > NK, winners are not affected in either direction.
2

From a scoring vector (function) to a scoring function:

7 Voting Rules With Positional Scoring 15

vector2sf :: ScoringVF -> SF

vector2sf vectorfct profile =

let

m = size profile

vector = vectorfct m

eprofile = expand profile

vmult k b = [(x, k*(vector!!n))

| (x,n) <- zip b [0..]]

poscounts = concat $

map (\(ys,k) -> vmult k ys) eprofile

f x ys = map snd (filter (\ (y,_) -> y == x) ys)

in

[sum (f x poscounts) | x <- [0..m-1]]

From a scoring vector function to a voting rule:

svf2votingrule :: ScoringVF -> VotingRule

svf2votingrule = sf2votingrule . vector2sf

The trivial voting rule that maps any profile to A arises from the trivial
scoring vector (0, . . . , 0).

bordaSC, plurSC, vetoSC :: SF

bordaSC = vector2sf bordaVector

plurSC = vector2sf pluralityVector

vetoSC = vector2sf antipluralityVector

borda, plur, veto :: VotingRule

borda = svf2votingrule bordaVector

plur = svf2votingrule pluralityVector

veto = svf2votingrule antipluralityVector

8 The Majority, Unanimity, Near-Unanimity Voting Rules 16

And with tie breaking:

bordaR, plurR, vetoR :: ResVotingRule

bordaR = tieBreak [0..] borda

plurR = tieBreak [0..] plur

vetoR = tieBreak [0..] veto

Versions that display the outcomes as character lists:

borda’, plur’, veto’ :: VotingRule’

borda’ = map int2chr . borda

plur’ = map int2chr . plur

veto’ = map int2chr . veto

bordaR’, plurR’, vetoR’ :: ResVotingRule’

bordaR’ = int2chr . bordaR

plurR’ = int2chr . plurR

vetoR’ = int2chr . vetoR

8 The Majority, Unanimity, Near-Unanimity Voting Rules

Majority is the voting rule that selects an alternative with more than 50 %
of the votes as winner, and returns the whole set of alternatives otherwise.
This is not the same as plurality, which selects an alternative that has the
maximum number of votes as winner, regardless of whether more than half
of the voters voted like this or not.

8 The Majority, Unanimity, Near-Unanimity Voting Rules 17

majority :: VotingRule

majority profile = let

m = size profile

score = vector2sf pluralityVector profile

results = findMaxValues score

total = sum profile

(winner,votes) = head results

in

if (fromIntegral votes) / (fromIntegral total) > 0.5

then [winner]

else [0..(m-1)]

Unanimity: if all voters have an alternative a at the top of their ballots then
a is the winner, otherwise all alternatives tie for a win.

unanimity :: VotingRule

unanimity profile = let

m = size profile

xs = vector2sf pluralityVector profile

results = findMaxValues xs

total = sum profile

(winner,votes) = head results

in

if votes == total && total > 0

then [winner]

else [0..(m-1)]

Near-unanimity: if all but at most one of the voters have an alternative a
at the top of their ballots then a is the winner, otherwise all alternatives tie
for a win.

9 Profile Restriction 18

nearUnanimity :: VotingRule

nearUnanimity profile = let

m = size profile

xs = vector2sf pluralityVector profile

results = findMaxValues xs

total = sum profile

(winner,votes) = head results

in

if votes+1 >= total && total > 0

then [winner]

else [0..(m-1)]

majority’, unanimity’, nearUnanimity’ :: VotingRule’

majority’ = map int2chr . majority

unanimity’ = map int2chr . unanimity

nearUnanimity’ = map int2chr . nearUnanimity

9 Profile Restriction

Profile restriction is computing a new profile for a subset of the alternative
set of the original profile. The relative preferences of the voters in the new
profile should remain unchanged.

9 Profile Restriction 19

restrict :: [Alternative] -> Profile -> Profile

restrict xs profile = let

m = length profile

eprofile = expand profile

f = filter (flip elem xs)

table = zip xs [0..]

g = map (\ x -> let Just y = lookup x table in y)

pprofile = map (\ (xs,k) -> (g (f xs), k)) eprofile

in

makeProfile pprofile

example0 = [1,2,0,3,0,2] :: Profile

This gives:

*Voting> restrict [0,1] example0

[4,4]

*Voting> restrict [0,2] example0

[6,2]

*Voting> restrict [1,2] example0

[5,3]

What this means is that out of 8 voters, 4 prefer 0 to 1, 6 prefer 0 to 2, and
5 prefer 1 to 2.

If B ⊆ A, we use PB for the result of restricting P to B.

Definition 6 A voting rule V is safe for restriction if it holds for every
B ⊆ A and every profile P that

V (P) ∩B ⊆ V (PB).

What this means is that winners are preserved under restriction.

Here is an obvious question;

9 Profile Restriction 20

Question 7 Characterize the voting rules that are safe for restriction.

Notice that restriction destroys information. If there are m alternatives and
k voters then there are m! possible ballots. The number of integer solutions
for

x1 + · · ·+ xn = k

under the condition that xi ≥ 0 for all i = 1, . . . , n is
(
n+k−1

k

)
[Juk11,

Proposition 1.5].

Thus, for m alternatives and k voters there are
(
m!+k−1

k

)
possible profiles.

There are m ways to restrict away one alternative. After pruning, there are
(m − 1)! possible ballots, which leaves

((m−1)!+k−1
k

)
profiles. All in all this

gives m
((m−1)!+k−1

k

)
possibilities.

Let’s calculate these outcomes for some m and k.

fact :: Int -> Int -> Int

fact n k = product [n-k+1..n]

binom :: Int -> Int -> Int

binom n k = div (fact n k) (fac k)

For 4 alternatives and 10 voters, we get:

*Voting> binom ((fac 4) + 10 - 1) 10

92561040

*Voting> 4 * binom ((fac 3) + 10 - 1) 10

12012

To see that the information destruction is vast, consider the case where the
pruning process leaves only pairs. m alternatives give m(m − 1) pairs, so
after pair pruning there are only m(m−1)(k+1) possibilities left, since there
are k + 1 ways to split k into non-negative integers k1, k2 with k1 + k2 = k.
For 4 alternatives and 10 voters, this reduces the number of possibilities
from 92561040 to 132.

An alternative x beats another alternative y in a one-to-one contest if more
than half of the voters prefer x to y. Such a one-to-one contest between
alternatives can be defined in terms of pruning by means of:

10 Pairwise Contests and the Condorcet Winner 21

beats :: Profile -> Alternative -> Alternative -> Bool

beats p x y = let

p’ = restrict [x,y] p

in majority p’ == [0]

10 Pairwise Contests and the Condorcet Winner

A majority graph [Las97] is a directed graph on the set of alternatives as
nodes, with an edge x→ y indicating that x beats y in a majority contest.

type MajorityGraph = Alternative -> Alternative -> Int

Every profile gives rise to a majority graph, as follows:

p2mg :: Profile -> MajorityGraph

p2mg p x y = if beats p x y then 1 else 0

The pair score gives the number of pairwise contests that each alternative
wins.

pairscore :: Profile -> [Int]

pairscore profile = let

m = size profile

as = [0..m-1]

mg = p2mg profile

in

[sum [mg x y | y <- as \\ [x]] | x <- as]

A Condorcet winner is an alternative that beats every other alternative in
pairwise contests.

11 The Copeland Rule 22

cW :: Profile -> Alternative -> Bool

cW profile x = let

m = size profile

in

pairscore profile !! x == m-1

The Condorcet voting rule (proposed in 1785 by the marquis of Condorcet
in [Con85]) selects the Condorcet winner if it exists, and the set of all alter-
natives otherwise.

condorcet :: VotingRule

condorcet profile = let

m = size profile

as = [0..m-1]

f [] = as

f (x:xs) = if cW profile x then [x] else f xs

in

f as

condorcet’ :: VotingRule’

condorcet’ = map int2chr . condorcet

11 The Copeland Rule

The Copeland voting rule [Cop51] selects the alternative that maximizes the
difference between the number of won and lost pairwise majority contests.
To compute it we need an expanded version of pairscore:

12 Single Transferable Vote, or the Hare Rule 23

pairscore’ :: Profile -> [(Int,Int)]

pairscore’ profile = let

m = size profile

as = [0..m-1]

mg = p2mg profile

in

[(sum [mg x y | y <- as \\ [x]],

sum [mg y x | y <- as \\ [x]]) | x <- as]

The Copeland score function is the difference between these two scores:

copelandScore :: Profile -> Score

copelandScore profile =

map (\(x,y) -> x-y) (pairscore’ profile)

The Copeland rule:

copeland :: VotingRule

copeland = winners . copelandScore

copeland’ :: VotingRule’

copeland’ = map int2chr . copeland

12 Single Transferable Vote, or the Hare Rule

The voting rule of single transferable vote, also known as the Hare rule
(described by John Stuart Mill, with an attribution to Thomas Hare, in
[Mil61]), works as follows.

12 Single Transferable Vote, or the Hare Rule 24

If one of the candidates gets an absolute majority, that candidate wins. Oth-
erwise prune the candidate(s) who is/are ranked first by the fewest number
of voters from the profile, and repeat.

This is called single transferable vote because one way to think about it is
that each voter has one vote aimed at getting a majority for some alternative.
If this fails, the vote is not wasted, but transfered to the next candidate on
the ballot list that is still in the running. And so on.

In the implementation of the hare rule, the repeat construct (the “and so
on”) is represented by a recursive call to hare. Note that it may happen
that at some stage in the process, there is a tie between all candidates: they
all get the same number of preference votes. In that case this set is returned
as the set of Hare winners.

hare :: VotingRule

hare profile = let

m = size profile

ps = plurSC profile

maxs = findMaxValues ps

mins = findMinValues ps

(winner,votes) = head maxs

total = sum profile

proportion = (fromIntegral votes) / (fromIntegral total)

as = [0..m-1]

ws = as \\ (losers ps)

profile’ = restrict ws profile

g = \ n -> ws !! n

in

if proportion > 0.5 then [winner]

else if ws == [] then as

else map g (hare profile’)

hare’ :: Profile -> String

hare’ = map int2chr . hare

13 Plurality with Run-Off 25

To Do 2 Analyze how much of the ballot information is used by this rule.
Compare with the Borda rule.

To Do 3 Implement the version where a number of candidates needs to be
elected, and where the votes for eliminated candidates get transferred.

13 Plurality with Run-Off

Use a first round to select the (two) top candidates by plurality voting. Next,
have a second round using the plurality rule with the (two) top candidates.

What to do if in the first round there is a tie between more than two candi-
dates? In the implemenentation, the second round is between all of these.
But ties in the second round are broken.

plurRO :: ResVotingRule

plurRO profile = let

m = size profile

score = plurSC profile

max1 = findMaxValues score

f = \ (n,k) -> if elem (n,k) max1 then 0 else k

max2 = findMaxValues (map f (zip [0..] score))

max3 = if length max1 > 1

then max1 else max1 ++ max2

ws = map fst max3

profile’ = restrict ws profile

g = \ n -> ws !! n

in

if m == 2 then plurR profile

else g (plurR profile’)

plurRO’ :: Profile -> Char

plurRO’ = int2chr . plurRO

14 Profile Addition, Subtraction and Multiplication 26

As the implementation shows, plurality with runoff is very similar to the
Hare rule. In the case of an election with three candidates, they boil down
to (almost) the same thing.

14 Profile Addition, Subtraction and Multiplication

Intuitively, we can merge two elections into a single election, by adding the
numbers of votes for the various ballots.

addP :: Profile -> Profile -> Profile

addP = zipWith (+)

Call this operation ⊕. Note that the two operand profiles have to be of the
same size.

Definition 8 A voting rule V is additive if it holds for all m-profiles P
and Q that V (P) ∩ V (Q) ⊆ V (P ⊕ Q). Or in words: V is additive if
winners of two separate elections concerning the same set of alternatives
remain winners if the elections are merged.

The following definition is from [You75].

Definition 9 A voting rule V is consistent if it holds for all m-profiles P
and Q that V (P) ∩ V (Q) 6= ∅ implies V (P) ∩ V (Q) = V (P⊕Q).

The property of additivity is weaker than the property of consistency: see
Fact 14 below.

The requirement of additivity seems entirely reasonable, and the following
fact is perhaps surprising.

Proposition 10 The Condorcet rule is not additive.

Proof. Consider the following two profiles P and Q:

(abc, 3), (bca, 0), (cab, 0), (acb, 0), (cba, 0), (bac, 2),

(abc, 1), (bca, 1), (cab, 1), (acb, 3), (cba, 3), (bac, 3).

14 Profile Addition, Subtraction and Multiplication 27

The first of these has Condorcet winner a, the second has no Condorcet
winner. So V (P) = {a} and V (Q) = {a, b, c}, and therefore V (P)∩V (Q) =
{a}. Their sum is:

(abc, 4), (bca, 1), (cab, 1), (acb, 3), (cba, 3), (bac, 5).

The Condorcet winner of this sum is b. 2

Here is the demonstration with the implementation:

*Voting> addP [3,0,0,0,0,2] [1,1,1,3,3,3]

[4,1,1,3,3,5]

*Voting> condorcet’ [3,0,0,0,0,2]

"a"

*Voting> condorcet’ [1,1,1,3,3,3]

"abc"

*Voting> condorcet’ [4,1,1,3,3,5]

"b"

A voting rule satisfies the Condorcet Criterion if it always elects the Con-
dorcet winner if there is one. The above fact should worry anyone who
thinks of the Condorcet criterion as a benchmark for voting rule quality.

To prove the following fact, we need two more example profiles:

profile1, profile2 :: Profile

profile1 = makeProfile’

[("abcd",5),("bacd",6),("cabd",2),("dabc",10)]

profile2 = makeProfile’

[("abcd",4),("bacd",4),("cabd",8),("dabc",2)]

Proposition 11 The Hare rule is not additive.

Proof.

*Voting> hare’ profile1

"a"

*Voting> hare’ profile2

14 Profile Addition, Subtraction and Multiplication 28

"a"

*Voting> hare’ (addP profile1 profile2)

"b"

2

Proposition 12 The majority, unanimity and near-unanymity rules are
additive.

Proof. Suppose P and Q are m-profiles, V is the majority rule, and
a ∈ V (P)∩ V (Q). Let P have N voters and Q have M voters. Then either
no x ∈ A has an absolute majority, or more than N/2 ballots in P have a in
first position. Similarly, either no x ∈ A has an absolute majority in Q, or
more than M/2 ballots in Q have a in first position. It follows that either no
x ∈ A has an absolute majority in P⊕Q, in which case a ∈ V (P⊕Q) = A,
or (N +M)/2 ballots in P⊕Q have a in first position, i.e., a is the majority
winner in P⊕Q.

Same reasoning for the unanimity and near-unanymity rule. 2

Proposition 13 The near-unanymity rule is not consistent.

Proof. Let V be the near-unanimity rule and let P be the following
profile:

(ab, 2), (ba, 1).

Then V (P) = {a} and V (P ⊕ P) = {a, b}. This shows that V is not
consistent. 2

Proposition 14 Additivity does not imply consistency.

Proof. Immediate from Facts 12 and 13. 2

Theorem 15 Every positional voting rule is additive.

Proof. Let V be a positional voting rule, and let P, Q be a pair of
m-profiles, for some m. Suppose a ∈ V (P) ∩ V (Q). We have to show that
a ∈ V (P⊕Q). But this is immediate from the fact that if the score of a is
maximal in P and Q, it is also maximal in P⊕Q. 2

Question 16 Can we prove an if and only if for additivity?

15 Profile Reduction 29

Profile subtraction subtracts the result of one election from that of another
election (by separating the sets of voters):

subtrP :: Profile -> Profile -> Profile

subtrP p1 p2 = let

p = zipWith (-) p1 p2

in

if any (<0) p then error "negative number of voters"

else p

Call this operation 	. Note that the two operand profiles have to be of the
same size.

Finally, we can multiply a profile by a positive integer.

multP :: Int -> Profile -> Profile

multP k profile = if k < 1

then error "wrong multiplication factor"

else map (k*) profile

Call this the k-fold product of P, with notation kP.

15 Profile Reduction

The following definition is from Saari [Saa95].

Definition 17 A profile is called reduced if each cycle in the profile contains
a ballot with no voters.

The profile

(abc, 3), (bca, 1), (cab, 0), (acb, 2), (cba, 0), (bac, 2)

is reduced.

15 Profile Reduction 30

Definition 18 A profile is called balanced if each cycle in the profile is
such that each ballot in the cycle has the same number of voters. Use B for
balanced profiles.

The profile

(abc, 1), (bca, 1), (cab, 1), (acb, 3), (cba, 3), (bac, 3)

is balanced.

Proposition 19 For every profile P there exist a reduced Q and a balanced
B such that P = Q⊕B.

Definition 20 If P = Q ⊕B, as in Fact 19, then call B the surplus of P
and Q the reduced form of P. Use Pr for the reduced form of P.

Proposition 21 A profile P is both balanced and reduced iff P has no vot-
ers.

Definition 22 Call the operation of subtracting a balanced profile from P
reduction. Call the operation of adding a balanced profile to P dilution.

Here is an obvious algorithm for putting a profile P in reduced
form:

For each cycle π of P, let the minimum of the vote numbers in
that cycle be k. Subtract k from every vote number in the cycle.

The surplus of a profile indicates by how much the profile can be reduced:

15 Profile Reduction 31

surplus :: Profile -> Profile

surplus profile = let

m = size profile

eprofile = expand profile

n = fac (m - 1)

cls = [getCycle m k | k <- [0..n-1]]

vals = [[nr | (xs,nr) <- eprofile, ys <- c, xs == ys]

| c <- cls]

mins = [minimum list | list <- vals]

in

[k | xs <- genBallots m,

(l,k) <- zip [0..] mins,

elem xs (getCycle m l)]

The surplus of the profile

(abc, 4), (bca, 2), (cab, 1), (acb, 3), (cba, 3), (bac, 6)

is the profile

(abc, 1), (bca, 1), (cab, 1), (acb, 3), (cba, 3), (bac, 3).

Use this for putting a profile in reduced form:

reduce :: Profile -> Profile

reduce profile = subtrP profile (surplus profile)

The reduced form of the profile

(abc, 4), (bca, 2), (cab, 1), (acb, 3), (cba, 3), (bac, 6)

is the profile

(abc, 3), (bca, 1), (cab, 0), (acb, 0), (cba, 0), (bac, 3).

15 Profile Reduction 32

Theorem 23 Any anonymous and neutral voting rule maps a balanced pro-
file to the set of all alternatives.

Proof. Let P be a balanced profile for A. Let V be an anonymous and
neutral voting rule. We must prove that V (P) = A.

Suppose not, i.e., suppose there is some b /∈ V (P). There also is some
a ∈ V (P), for V (P) 6= ∅.

Let σ be any permutation of A that satisfies σ(a) = b.

Observe that each cycle will remain a cycle under the permutation σ. There-
fore, because of anonymity and the fact that P is balanced: Pσ = P. Be-
cause of neutrality V (Pσ) = σ(V (P)), and therefore b = σ(a) ∈ V (Pσ) =
V (P), and contradiction. 2

Theorem 24 If |A| = m then the number of voters in any balanced profile
for A is a multiple of m.

Proof. Each cycle in an m-profile has m elements. There are (m − 1)!

cycles. Let cycle i have ki voters. Then all in all we have m
∑(m−1)!

i=1 ki
voters. 2

Definition 25 A voting rule V is safe for dilution if it holds for all profiles
P and balanced profiles B that V (P) ⊇ V (P⊕B).

Safety for dilution means that dilution does not introduce new winners.

Definition 26 A voting rule V is safe for reduction if it holds for all profiles
P and balanced profiles B that V (P) ⊆ V (P⊕B).

Safety for reduction means that reduction does not introduce new winners.

Theorem 27 Any anonymous, neutral and additive voting rule is safe for
reduction.

Proof. Assume V is anonymous and neutral. Then V (B) equals the set
of all alternatives. By additivity we have:

V (P) = V (P) ∩ V (B) ⊆ V (P⊕B).

2

15 Profile Reduction 33

Proposition 28 The Condorcet rule is neither safe for reduction nor safe
for dilution.

Proof. Consider the profile:

(abc, 1), (bac, 3), (bca, 1), (acb, 5), (cab, 4), (cba, 3).

The Condorcet winner for this profile is a. The reduced form of this is:

(abc, 0), (bac, 0), (bca, 0), (acb, 2), (cab, 3), (cba, 0).

The Condorcet winner for the reduced profile is c. 2

Proposition 29 The majority rule is safe for reduction, but not safe for
dilution.

Proof. The example from Fact 28 works here as well. In the reduced
profile

(abc, 0), (bac, 0), (bca, 0), (acb, 2), (cab, 3), (cba, 0)

there is a majority for c. Dilute this profile with

(abc, 1), (bac, 1), (bca, 1), (acb, 3), (cab, 3), (cba, 3).

There is no majority in the diluted profile

(abc, 1), (bac, 3), (bca, 1), (acb, 5), (cab, 4), (cba, 3).

2

Theorem 30 Any voting rule V with positional scoring will assign to every
alternative in a balanced profile B the same score.

Proof. Let B be a balanced m-profile. Then there are (m − 1)! cycles,
and there are ki voters in each ballot in the i-th cycle. Let V be a positional
voting rule with (x0, · · · , xm−1) as its scoring vector. Let πi be an arbitrary
cycle of P, let a be an arbitrary alternative, and let j be an arbitrary position
(i.e., 0 ≤ j < m). Then the score for a for this position in the cycle under
the voting rule is given by kixj , for a occurs in this position exactly once
in the cycle. Summing over the cycles, we get that a collects the following
score in B:

(m−1)!∑
i=1

kixj .

15 Profile Reduction 34

Summing over the positions, we see that a collects the score:

m−1∑
j=0

(m−1)!∑
i=1

kixj .

Since a was arbitrary, every alternative collects this same score. 2

Theorem 31 Any voting rule V with positional scoring is safe for reduction
and safe for dilution.

Proof. Let P be an m-profile, and let B be a balanced m-profile.

Since B is balanced, it follows from the previous Theorem that the scores
for the alternatives under V for P can be computed from those for P ⊕B
by subtracting a constant c from each score, and vice versa, by adding a
constant c to each score. These subtractions and additions do not affect the
outcome of V . 2

Question 32 Does the converse hold as well? If a voting rule is safe in
both directions then it is positional?

For all voting rules V that are not invariant under reduction, the derived
voting rule V r defined by V r(P) = V (Pr) is different from V .

Theorem 33 There are voting rules V with the property that V is not po-
sitional, but V r is.

Proof. Let V be the voting rule stating that x is a single winner if x is at
the top position in a majority of the ballots, and moreover these are more
than 1

m!−m of all ballots. Otherwise all alternatives tie for a win. Observe
that V is not positional. But V r is the plurality rule, for the condition that
a single plurality winner has more than 1

m!−m of the votes is always fulfilled
in a reduced profile. 2

In view of Theorem 33 it makes sense to ask the following question:

Question 34 Can we characterize the voting rules V with the property that
V r is positional?

Here is the implementation of the function that maps V to V r:

16 Casting Ballots 35

red :: VotingRule -> VotingRule

red f p = f (reduce p)

Definition 35 If v ⊆ A, then a v-cycle on A is a permutation on A that is
a full cycle on v and the identity on A− v. For v ⊆ A with |v| ≥ 2, a profile
is v-balanced if every v-cycle in it has the same number of voters for each
ballot in the cycle.

For example, the profile

(abc, 2), (bac, 2), (acb, 1), (bca, 1)

is {a, b}-balanced.

Theorem 36 Any anonymous and neutral voting rule maps a v-balanced
profile for A either to a superset of v or to a subset of A− v.

Proof. Let P be v-balanced, and let V be an anonymous and neutral
voting rule. Assume v 6⊆ V (P) and V (P) ∩ v 6= ∅. Let a ∈ V (P) ∩ v and
b ∈ v − V (P). We derive a contradiction.

Since both a ∈ v and b ∈ v, and π is a v-cycle, there is some k with πk(a) = b.

Apply P = Pπ k times to get P = Pπk
. Therefore V (P) = V (Pπk

). By the
fact that V is neutral, we get from this that V (P) = πk(V (P)). From this
it follows that b ∈ V (P), and contradiction. 2

To Do 4 Analyze and implement v-cycles.

16 Casting Ballots

Casting k identical ballots can be viewed as a function from profiles to
profiles, as follows:

16 Casting Ballots 36

cast :: Int -> Ballot -> Profile -> Profile

cast k ballot profile = let

m = size profile

p = position ballot (genBallots m)

f = \ (x,n) -> if x == p then n+k else n

in

map f (zip [0..] profile)

Finding the position of an item in a list of items, where it is assumed that
the item occurs in the list:

position :: Eq a => a -> [a] -> Int

position x xs = let

Just p = lookup x (zip xs [0..])

in p

Casting a single ballot is a function from profiles to profiles:

cast1 :: Ballot -> Profile -> Profile

cast1 = cast 1

Constructing a profile from a list of (ballot,int) pairs:

makeProfile :: [(Ballot,Int)] -> Profile

makeProfile [] = error "no ballots"

makeProfile [(x,k)] = let

m = length x

in

cast k x (nullprofile m)

makeProfile ((x,k):xs) = cast k x (makeProfile xs)

16 Casting Ballots 37

Constructing a profile from a list of ballots:

makeProfile1 :: [Ballot] -> Profile

makeProfile1 xs = makeProfile (zip xs (repeat 1))

Versions with strings for the ballots:

makeProfile’ :: [(String,Int)] -> Profile

makeProfile’ = makeProfile . map f where

f (xs,k) = (map chr2int xs,k)

makeProfile1’ :: [String] -> Profile

makeProfile1’ = makeProfile1 . map (map chr2int)

chr2int :: Char -> Int

chr2int c = fromEnum c - 97

Example (stolen from [End10]): the simplified and reconstructed Florida
2000 US presidential elections profile. Use a for Bush, b for Gore, c for
Nader.

florida :: Profile

florida = makeProfile’

[("abc",49),("bca",20),("bac",20),("cba",11)]

This gives:

*Voting> plur’ florida

"a"

17 Ballot Withdrawal 38

*Voting> majority’ florida

"abc"

*Voting> condorcet’ florida

"b"

*Voting> borda’ florida

"b"

*Voting> hare’ florida

"b"

*Voting> plurRO’ florida

’b’

17 Ballot Withdrawal

If k voters with the same ballot decide to withdraw their vote from a profile,
then the result is given by:

withdraw :: Int -> Ballot -> Profile -> Profile

withdraw k ballot profile = let

m = size profile

p = position ballot (genBallots m)

f = \ (x,n) -> if x == p && n < k then

error "negative ballot number"

else if x == p then n-k

else n

in

map f (zip [0..] profile)

Withdrawing a single ballot:

withdraw1 :: Ballot -> Profile -> Profile

withdraw1 = withdraw 1

The following example is again from [End10]:

18 Changing Ballots 39

noshowExample :: Profile

noshowExample = makeProfile’

[("abc",25),("cab",46), ("bca",24)]

noshow :: Profile

noshow = withdraw 2 [0,1,2] noshowExample

This illustrates what some voting theorists call the ‘no show paradox’: the
fact that it can be more advantageous to abstain from voting than to cast
one’s true ballot.

*Voting> plurRO’ noshowExample

’c’

*Voting> plurRO’ noshow

’b’

Proposition 37 Plurality with run-off is not safe for reduction.

Proof.

*Voting> plurRO’ noshow

’b’

*Voting> plurRO’ (reduce noshow)

’c’

2

18 Changing Ballots

If k voters change from ballot b to ballot b′, this can be described as a
withdrawal step followed by a new casting step:

change :: Int -> Ballot -> Ballot -> Profile -> Profile

change k b b’ = cast k b’ . withdraw k b

19 Strategizing 40

Ballot change by a single voter:

change1 :: Ballot -> Ballot -> Profile -> Profile

change1 = change 1

change1’ :: String -> String -> Profile -> Profile

change1’ b b’ = change 1 (map chr2int b) (map chr2int b’)

19 Strategizing

Strategizing is replacing a ballot b by a different one, b′, in the hope or
expectation to get a better outcome (where better is “closer to b” in some
sense).

As is explained in [Tay05], there are many ways to interpret ‘better’. One
way is that X is better than Y if X weakly dominates Y , that is if every
x ∈ X is at least as good as every y ∈ Y and some x ∈ X is better than
some y ∈ Y . Here is its implementation:

better1 :: Ballot -> [Alternative] -> [Alternative] -> Bool

better1 ballot outcome1 outcome2 = let

order = list2ordering ballot

in

and [order x y /= GT | x <- outcome1, y <- outcome2]

&&

or [order x y == LT | x <- outcome1, y <- outcome2]

The results of strategic change to a different ballot by a group of k voters.
The voters are identified by their current ballot. The output of the function
is the list of all alternative ballots that would give these voters a better
outcome:

19 Strategizing 41

stratChange :: Int

-> Ballot

-> VotingRule

-> Profile -> [Ballot]

stratChange k b rule profile = let

m = size profile

alts = genBallots m \\ [b]

x = rule profile

f y = rule (change k b y profile)

in

[alt | alt <- alts, better1 b (f alt) x]

Strategic change by a single voter:

stratChange1 :: Ballot

-> VotingRule

-> Profile -> [Ballot]

stratChange1 = stratChange 1

The following example is from Taylor [Tay05, p. 45]:

example1 = makeProfile1’ ["abcd", "bdca", "dcab","cabd"]

bordaManip = map (map int2chr) $

stratChange1 (genBallots 4!!0) borda example1

plurManip = map (map int2chr) $

stratChange1 (genBallots 4!!0) plur example1

20 Voting Games 42

bordaManip gives the two ballot changes that are advantageous for the voter
with ballot abcd, given this profile, and given the fact that the Borda rule
is applied.

*Voting> example1

[1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0]

Voting> borda’ example1

"c"

*Voting> bordaManip

["bacd","badc"]

*Voting> borda’ (change1’ "abcd" "bacd" example1)

"bc"

*Voting> borda’ (change1’ "abcd" "badc" example1)

"b"

20 Voting Games

To define voting games it looks like we need to drop the assumption of
anonymity, because we have to be able look at the voting situation from
the perspective of individual voters (or agents). A bit of further reflection
makes clear, however, that all that really matters for an individual agent is
how many of the other agents hold certain ballots. After all, we do not drop
the assumption that the voting rule that defines the game is anonymous.

What is relevant for determining the move of an individual player (abstain
from the vote or not?, strategize or not?) is (i) a profile representing the
current ballots (true or not) of the other voters, and (ii) the true ballot of
the player, as a yardstick for the quality of an outcome of the vote.

Define a payoff function on the basis of the better1 relation: the payoff
of an outcome equals the number of possible outcomes that are worse than
that outcome, given a particular ballot.

For generating possible outcomes we need:

powerlist :: [a] -> [[a]]

powerlist [] = [[]]

powerlist (x:xs) = powerlist xs ++ map (x:) (powerlist xs)

20 Voting Games 43

The payoff function is defined in terms of this, as follows:

payoff :: Int -> Ballot -> [Alternative] -> Int

payoff _ b [] = error "no winners selected"

payoff m b ws = let

outcomes = powerlist [0..m-1] \\ [[]]

in

length [vs | vs <- outcomes, better1 b ws vs]

Using this we can compute the value for a voter with true ballot b of ab-
staining from the vote:

abstain :: VotingRule -> Profile -> Ballot -> Int

abstain r p b = let

m = size p

n = length b

in

if m /= n then error "wrong ballot size"

else payoff m b (r p)

Now compare the following amusing quote from Littlewood:

If a man abstains from voting in a General Election on the ground
that the chance of his vote’s mattering is negligible, it is com-
mon to rebuke him by saying ‘suppose everyone acted so.’ The
unpleasant truth that the rebuke is fallacious in principle is per-
haps fortunately hidden from the majority of the human race.
Consider, however, the magnitudes involved, where the election
and the constituency are reasonably open. The chance that his
vote will elect his member by a majority of 1 is of the order of
1 in 5000; there is a further chance of the order of 1 in 50 that
this result will cause a change of Government. The total chance
of this is no worse than 1 in 250,000. Since there are 30,000,000
voters with similar opportunities it would appear that there is

20 Voting Games 44

something wrong; the explanation is that when the event hap-
pens to one man, 20,000 or so1 other voters in his constituency
are in the same position.

J.E. Littlewood, A Mathematician’s Miscellany [Lit53]

The snag is, of course, that in order to make the decision that it is safe to
abstain from voting, a voter has to know the outcome of the election, and
has to assume that she is the only one abstaining from the vote.

The value for a group of voters with true ballot b of voting with ballot b′,
given a profile and a voting rule:

play :: Int -> VotingRule -> Profile

-> Ballot -> Ballot -> Int

play k r p b b’ = let

m = size p

n = length b

n’ = length b’

p’ = cast k b’ p

in

if m /=n || n /= n’ then error "wrong ballot size"

else payoff m b (r p’)

And for a single voter:

play1 :: VotingRule -> Profile

-> Ballot -> Ballot -> Int

play1 = play 1

Making a game out of a list of ballots. First a type declaration for readabil-
ity:

type Agent = Int

1 Half 70 per cent, of 80,000.

20 Voting Games 45

Check whether a profile is an m-profiles for i voters:

checkProfile :: Int -> Int -> Profile -> Bool

checkProfile m i p = size p == m && voteSize p == i

Creating a game given a voting rule and a list of ballots. The game com-
putes for each agent and each possible profile for the other players a payoff
function. The ballot list that is the first argument gives the true ballots of
all the players.

makeGame :: [Ballot] -> Agent -> VotingRule

-> Profile -> Ballot -> Int

makeGame bs k r p castb = let

trueb = bs !! k

m = length trueb

n = length castb

i = length bs - 1

ok = checkProfile m i p

in

if m /= n then error "wrong ballot size"

else if not ok then error "wrong profile"

else play1 r p trueb castb

Using strings for ballots:

makeGame’ :: [String] -> Agent -> VotingRule

-> Profile -> String -> Int

makeGame’ bs k r p castb = let

bs’ = map (map chr2int) bs

castb’ = map chr2int castb

in

makeGame bs’ k r p castb’

21 Approval Voting 46

21 Approval Voting

Ballots for approval voting (see [Ott], [BF78] and [Bra08]) are subsets of the
set of alternatives that the voter approves of. If there are m alternatives
there are 2m subsets.

Approval voting was designed to remedy the following defect of “one man,
one vote”:

The whole thing can be stated in a dispassionate way, without
reference to “good” or to “sides”: if, out of three or more can-
didates, two are similar, and even if a majority of voters prefers
either one of these, yet the votes of that majority are split be-
tween them, with the result that another candidate is likely to
win, though not wanted by the majority.

The primary reason why this seems wrong is that it makes the
result of the vote depend more on the distribution of the candi-
dates than on the distribution of the voters’ wishes. Secondly, it
is the opposite of the way it should be in that candidates ought
to be encouraged, not discouraged, from adding their names to
the competition; each new candidate may be an improvement on
the others; at any rate the voters have a wider choice, and the
statistical chance of electing a good candidate is higher.

Thirdly, you have only to think of the dilemma you are placed
in if you happen to be one of the voters supporting side B, es-
pecially BE [i.e., B “extreme”] and especially if it is a relatively
small splinter. If there had been only two candidates, you would
have voted for the one you considered better. To them is added
another whom you consider better still, but he has less chance
to win. If you do vote for him, you have in effect given your
vote to the candidate you consider worst. On the other hand
you feel that if you and others like you do not vote for the one
you believe in, his cause will never have a chance to grow.

All this is well known. It is “a fact of political life”; it is “the
voters dilemma.”

[Ott]

21 Approval Voting 47

type Aballot = [Alternative]

A profile is again a mapping from ballots to non-negative integers.

genAballots :: Int -> [Aballot]

genAballots m = sublists [0..m-1]

sublists :: [a] -> [[a]]

sublists [] = [[]]

sublists (x:xs) = map (x:) (sublists xs) ++ sublists xs

complement :: Int -> [Alternative] -> [Alternative]

complement m ys = [0..m-1] \\ ys

genAballots’ :: Int -> [String]

genAballots’ = map (map int2chr) . genAballots

Profiles P for approval voting are reduced if P(S) > 0 implies P(A−S) = 0
for all S ⊆ A.

Profiles for approval voting are balanced if P(S) = k implies P(A− S) = k
for all S ⊆ A.

Profiles for approval voting can be put in reduced form by subtraction of a
surplus balanced profile.

asize :: Profile -> Int

asize profile = let

m = fromIntegral (length profile)

in

round (logBase 2 m)

21 Approval Voting 48

The expansion of a profile for approval voting:

aexpand :: Profile -> [(Aballot,Int)]

aexpand profile = let

m = asize profile

g = \ (n,k) -> (genAballots m !! n, k)

in

map g (zip [0..] profile)

avotes :: Profile -> Ballot -> Int

avotes profile ballot = let

eprofile = aexpand profile

Just k = lookup ballot eprofile

in

k

The surplus of a profile for approval voting:

asurplus :: Profile -> Profile

asurplus profile = let

m = asize profile

in

[min (avotes profile ballot) (avotes profile cballot)

| ballot <- genAballots m,

cballot <- [complement m ballot]]

Reducing a ballot for approval voting:

areduce :: Profile -> Profile

areduce profile = subtrP profile (asurplus profile)

22 Knowledge 49

Computing a score for approval voting from a ballot for approval voting:

approvalScore :: Profile -> Score

approvalScore profile = let

m = asize profile

eprofile = aexpand profile

count = \ n -> sum [k | (ballot,k) <- eprofile,

elem n ballot]

in

[count n | n <- [0..m-1]]

Approval voting rule:

approval :: VotingRule

approval = winners . approvalScore

approval’ :: VotingRule’

approval’ = map int2chr . approval

22 Knowledge

Suppose the outcome of an election (or the outcome of a poll) gets an-
nounced. Then the following relation defines what the voters learn from
this:

announce :: VotingRule

-> Profile -> Profile -> Bool

announce rule p1 p2 = rule p1 == rule p2

23 Election Matrices 50

23 Election Matrices

As was explained above, voting rules can be mapped to scoring functions.
These scoring functions can be viewed as ways to determine a matrix for a
set of linear equations, as follows.

type Matrix = [Row]

type Row = [Ratio Int]

rows, cols :: Matrix -> Int

rows m = length m

cols m | m == [] = 0

| otherwise = length (head m)

From a scoring function to an election matrix, given a profile size m:

sf2matrix :: Int -> SF -> Matrix

sf2matrix m f = let

k = fac m

in

[nrm $ f (unit m i) | i <- [0..k-1]]

Examples:

example2 = sf2matrix 3 (vector2sf pluralityVector)

example3 = sf2matrix 3 (vector2sf antipluralityVector)

example4 = sf2matrix 3 bordaSC

This gives:

24 Further Work 51

Voting> example2

[[1 % 1,0 % 1,0 % 1],[0 % 1,1 % 1,0 % 1],[0 % 1,0 % 1,1 % 1],

[1 % 1,0 % 1,0 % 1],[0 % 1,0 % 1,1 % 1],[0 % 1,1 % 1,0 % 1]]

*Voting> example3

[[1 % 2,1 % 2,0 % 1],[0 % 1,1 % 2,1 % 2],[1 % 2,0 % 1,1 % 2],

[1 % 2,0 % 1,1 % 2],[0 % 1,1 % 2,1 % 2],[1 % 2,1 % 2,0 % 1]]

*Voting> example4

[[2 % 3,1 % 3,0 % 1],[0 % 1,2 % 3,1 % 3],[1 % 3,0 % 1,2 % 3],

[2 % 3,0 % 1,1 % 3],[0 % 1,1 % 3,2 % 3],[1 % 3,2 % 3,0 % 1]]

24 Further Work

This is work in progress. Our intention is to extend this implementation to
an epistemic model checker for voting under uncertainty about the profile.

References

[BF78] S.J. Brams and P.C. Fishburn. Approval voting. The American
Political Science Review, 72(3):831–847, 1978.

[Bor81] J.-C. de Borda. Mémoire sur les élections au scrutin. Histoire de
l’Académie Royale des Sciences, Paris, 1781.

[Bra08] Steven Brams. Mathematics and Democracy:Designing Better Vot-
ing and Fair Division Procedures. Princeton University Press, 2008.

[Con85] M. le Marquis de Condorcet. Essai sur l’application de l’analyse à la
probabilité des décisions rendues à la pluralité des voix. Imprimerie
Royale, Paris, 1785.

[Cop51] A.H. Copeland. A ”reasonable” social welfare function. Seminar
on Mathematics in Social Sciences, 1951.

[End10] U. Endriss. Tutorial on voting theory. AAAI-2010 Slides, 2010.

[HT] The Haskell Team. The Haskell homepage. http://www.haskell.
org.

[Jon03] S. Peyton Jones, editor. Haskell 98 Language and Libraries; The
Revised Report. Cambridge University Press, 2003.

24 Further Work 52

[Juk11] Stasys Jukna. Extremal Combinatorics, with Applications in Com-
puter Science — Second Edition. Texts in Theoretical Computer
Science. Springer, 2011.

[Knu92] D.E. Knuth. Literate Programming. CSLI Lecture Notes, no. 27.
CSLI, Stanford, 1992.

[Las97] J.F. Laslier. Tournament Solutions and Majority Voting. Springer,
1997.

[Lit53] J.E. Littlewood. A Mathematician’s Miscellany. Methuen, London,
1953.

[Mil61] John Stuart Mill. Considerations of a Representative Government.
Parker, Son, and Bourn, London, 1861. Electronically available
from Project Gutenberg.

[Ott] Guy Ottewell. The arithmetic of voting. Available online at http:
//www.universalworkshop.com/ARVOfull.htm.

[Saa95] D.G. Saari. Basic Geometry of Voting. Springer, 1995.

[Tay05] Alan D. Taylor. Social Choice and the Mathematics of Manipula-
tion. Cambridge University Press, 2005.

[You75] H.P. Young. Social choice scoring functions. SIAM Journal on
Applied Mathematics, 28(4):824–836, 1975.

