
Purely Functional Algorithm Specification

Jan van Eijck

SEN1 Talk, Amsterdam, June 30 2011



Abstract

An algorithm is an effective method expressed as a list of instructions describing a computa-
tion for calculating a result. Algorithms have to be written in human readable form, either using
pseudocode (natural language looking like executable code), a high level specification language
like Dijkstra’s Guarded Command Language, or an executable formal specification formalism
such as Z.

We will give an easy purely functional implementation of the Guarded Command Language,
and demonstrate how this can be used for specifying (executable) algorithms, and for automated
testing of Hoare correctness statements about these algorithms. The small extension of Haskell
that we will present and discuss can be viewed as a domain specific language for algorithm
specification and testing.

Inspiration for this was the recent talk by Leslie Lamport on the executable algorithm spec-
ification language PlusCal [4], and Edsger W. Dijkstra, ”EWD472: Guarded commands, non-
determinacy and formal derivation of programs.” [2] Instead of formal program derivation, we
demonstrate test automation of Hoare style assertions.



Overview

We show how to write imperative algorithms in a purely functional
style. No monads needed.

Our method yields executable algorithm specifications together with
executable tests, so the specifications can be easily tested and de-
bugged.

We will first explain algorithm specification and Hoare assertion over
algorithm execution, by explaining how the algorithm construction
operators are defined.

Next, we illustrate by means of several example algorithms: squaring
a natural number in terms of addition, Euclid’s gcd algorithm and the
extended gcd algorithm, and Prim’s algorithm for finding a minimum
spanning tree of a connected undirected weighted graph.



Module Declaration

Import modules for sets and lists, for turning properties into tests, and
for injection of randomness into the function space.

module GCL where

import Data.Set as Set

import Data.List as List

import Test.QuickCheck

import System.Random

import System.IO.Unsafe



Variable Names, Values, Counters

Variable names are strings.

type Name = String

Values can be anything.

We will let the type of values be a parameter of states.



State Spaces

A state is a triple consisting of a state counter, a a variable space, and
a space for sets.

Because we want a record of everything we will carry along the com-
plete state space.

Because we want to assign to sets, we throw in space for them too.

type Counter = Integer

type Space a = Counter -> Name -> a

type SetSpace a = Counter -> Name -> Set a

type State a = (Counter, Space a, SetSpace a)



Non-Determinism

For nondeterministic choice (selection) we need randomization. The
following function generates a random natural number less than a
given n.

randomNat :: Int -> Int

randomNat n = unsafePerformIO $

getStdRandom (randomR (0,n-1))

Importing of the random number through IO cannot be avoided: we
have to get the random seed from the environment somehow.



Picking Randomly from a List

pick :: [a] -> a

pick [] = error "pick from empty list"

pick [x] = x

pick xs = xs !! randomNat (length xs)



Operations on Sets

Taking an arbitrary element from a (non-empty) set.

takeElem :: Set a -> a

takeElem = pick . elems

Note that this is a non-deterministic operation.

Taking an arbitrary element from a (non-empty) set and removing it.

takeRemove :: Ord a => Set a -> (a,Set a)

takeRemove set = (x,set’)

where x = takeElem set

set’ = Set.delete x set

Note that this is a non-deterministic operation.



Intensions of Values, Conditions

Intensions of values of type a are functions from states to values. We
abbreviate this type as I a, or SI a for sets.

type I a = State a -> a

type SI a = State a -> Set a

Intensions of values will be used for variable assignment (see below).

A condition is the intension of a Boolean: a function from states to
Booleans.

type Condition a = State a -> Bool



Actions

An Action is what corresponds to an imperative statement.

Variable assignments, e.g., are (interpreted as) actions.

An action is a state transformation, i.e., a function from states to
states.

type Action a = State a -> State a



Variable Lookup

Since a state consists of a counter and a space, to find the value of a
variable name we have to apply the space to the counter and the name.

infixl 9 $$

($$) :: State a -> Name -> a

(c,s,_) $$ x = s c x



Variable Lookup for Sets

infixl 9 $$$

($$$) :: State a -> Name -> Set a

(c,_,s) $$$ x = s c x



Start State

Construct a suitable start state by initializing every possible variable
for every possible counter to a particular element of the value type:

start :: a -> State a

start x = (0, \ _ _ -> x, \ _ _ -> empty)

If the state space is over the type Int, then all variables range over
Int, and start 0 initializes all variables for all counters to 0 (and
all set variables to ∅).



Variable History Inspection

Inspect the complete history of a single variable:

inspect :: State a -> Name -> [a]

inspect (c,e,f) x = [(c’,e,f) $$ x | c’ <- [0..c]]

Inspect the complete history of a list of variables:

history :: State a -> [Name] -> [[a]]

history (c,e,f) xs =

[ [(c’,e,f) $$ x | x <- xs] | c’ <- [0..c]]



Variable Dump at a State

Dump a list of variable values at a state:

dump :: State a -> [Name] -> [a]

dump s = List.map (\ x -> s $$ x)

Example:

*GCL> dump (start 0) ["x1","x2"]

[0,0]

*GCL> history (start 0) ["x1","x2"]

[[0,0]]



Set Variable History Inspection

sinspect :: State a -> Name -> [[a]]

sinspect (c,e,f) x =

[toList $ (c’,e,f) $$$ x | c’ <- [0..c]]

shistory :: State a -> [Name] -> [[[a]]]

shistory (c,e,f) xs =

[ [toList $ (c’,e,f) $$$ x | x <- xs] |

c’ <- [0..c]]

sdump :: State a -> [Name] -> [[a]]

sdump s = List.map (\ x -> toList $ s $$$ x)



Timing of Algorithms

Timing is just counting the number of algorithm steps:

time :: Action a -> a -> Integer

time action = fst’ . action . start

where fst’ (x,_,_) = x



Skip Action

The skip action is the trivial state transition that changes nothing, so
we define it as the identity function on states:

skip :: Action a

skip = id



Abort Action

The abort action is the action that generates an error and stops execu-
tion.

abort :: Action a

abort = error "execution aborted"



Sequential Execution (Concatenation)

Imperative “statements” correspond to actions.

Sequential execution corresponds to action composition. Since we
want to mention the actions in the order in which they get performed,
we define the action separator as a new infix operator:

infixl 5 ##

(##) :: Action a -> Action a -> Action a

a1 ## a2 = a2 . a1



Variable Assignment: Intensions and Extensions

To understand how to treat variable assignment one has to know the
difference between intensions and extensions.

An intension is a function from states to values, an extension is just a
value.



Variable Assignment, Extensionally

In the extensional version of variable assignment, the new value does
not depend on state:

ass :: Name -> a -> Action a

ass x v (c,e,f) = (c’,e’,f) where

c’ = succ c

e’ t y | x == y && t == c’ = v

| x /= y && t == c’ = e c y

| otherwise = e t y

The new value v gets assigned to x for c′. The new values at c′ for
variable names different from x are inherited from c, and everything
else remains the same.



Variable Assignment, Intensionally

The intensional version of assignment assigns an intension.

The value that corresponds to that intension is computed by applying
the intension to the current state.

ass’ :: Name -> I a -> Action a

ass’ x v = \ s -> ass x (v s) s



Multiple Assignment, Extensionally

mass :: [(Name,a)] -> Action a

mass = foldr (\(x,v) action -> ass x v ## action)

skip



Multiple Assignment, Intensionally

mass’ :: [(Name,I a)] -> Action a

mass’ xs s =

mass (List.map (\ (n,v) -> (n, v s)) xs) s

Note that every I a argument is evaluated in the same state.



Infix operators for Extensional and Intensional Assignment

infixl 9 <=<

(<=<) :: Name -> a -> Action a

x <=< n = ass x n

infixl 9 <==

(<==) :: Name -> I a -> Action a

x <== v = ass’ x v



Increment

Increment is defined in terms of intensional assignment, for it depends
on state:

incr :: Enum a => Name -> Action a

incr x = ass’ x (\s -> succ (s$$x))

To increment the value of x in state s means to move to a new state s′

where the value of x equals the successor of the value of x at s.

Note the constraint Enum on the type a. The variable has to be of a
type for which succ is defined.



Set Variable Assignment, Extensionally

In the extensional version of variable assignment, the new value does
not depend on state:

sass :: Name -> Set a -> Action a

sass x v (c,e,f) = (c’,e,f’) where

c’ = succ c

f’ t y | x == y && t == c’ = v

| x /= y && t == c’ = f c y

| otherwise = f t y



Set Variable Assignment, Intensionally

The intensional version of assignment assigns an intension.

The value that corresponds to that intension is computed by applying
the intension to the current state.

sass’ :: Name -> SI a -> Action a

sass’ x v = \ s -> sass x (v s) s



Incrementing and Decrementing Set Variables

Incrementing a set variable is adding an item to its current set value.

sincr :: Ord a => Name -> a -> Action a

sincr x item =

sass’ x (\ s -> Set.insert item (s$$$x))

Decrementing a set variable is deleting an item from its current set
value.

sdecr :: Ord a => Name -> a -> Action a

sdecr x item =

sass’ x (\ s -> Set.delete item (s$$$x))



Infix Operators for Extensional and Intensional Set Assignment

infixl 9 <==<

(<==<) :: Name -> Set a -> Action a

x <==< set = sass x set

infixl 9 <===

(<===) :: Name -> SI a -> Action a

x <=== v = sass’ x v



Deterministic Choice, Conditional Execution

Deterministic choice between two actions:

if_then_else :: Condition a ->

Action a -> Action a -> Action a

if_then_else c a1 a2 = \ s -> if c s then a1 s

else a2 s

Conditional execution of an action:

if_then :: Condition a -> Action a -> Action a

if_then c action = \ s -> if c s then action s

else s



Select the ‘good’ actions from a list

good_actions :: State a -> [(Condition a,Action a)]

-> [Action a]

good_actions s = List.map snd .

List.filter (\ (c,_) -> c s)



Non-Deterministic Choice

Dijkstra’s non-deterministic choice: pick any good action from a list.
At least one action must be good, so we check for that.

if_fi :: [(Condition a, Action a)] -> Action a

if_fi xs = \ s ->

let

good = good_actions s xs

in

if List.null good then abort s else pick good s



While

If the condition holds then perform the action once and execute the
while statement again, otherwise do nothing.

while :: Condition a -> Action a -> Action a

while c a =

\s -> if c s

then (a ## (while c a)) s

else s



For Loop

This uses a control variable and a bound for ending the loop. After
the routine the old value of the control variable is restored.

for_to :: (Num a, Ord a, Enum a) =>

Name -> a -> Action a -> Action a

for_to x bound a = \s -> let oldvalue = s$$x in

(

x <=< 0

##

while (\s -> s$$x < bound) (a ## incr x)

##

x <=< oldvalue

) s



Non-Deterministic Repetition

Continue picking good actions from a list of guarded actions and ex-
ecute them, until no good actions remain.

do_od :: [(Condition a, Action a)] -> Action a

do_od xs =

\s -> let

good = good_actions s xs

in

if List.null good then s

else (pick good ## do_od xs) s



Hoare Style Assertions

Hoare style assertions [3] have the form

{Pre} Command {Post}

where Pre and Post are conditions on states.

This Hoare statement is true in state s if truth of Pre in s guarantees
truth of Post in any state s′ that is a result state of performing Com-
mand in state s.



Implementing Hoare Assertions

A Hoare assertion has the following type:

assertion :: State a -> Condition a -> Action a

-> Condition a -> Bool

The implementation is a straightforward encoding of the truth condi-
tions:

assertion s pre a post = if pre s

then post (a s)

else True

Note that if the precondition does not hold in the initial state, the
Hoare assertion is trivially true.



Invariants

An invariant of a command A in a state s is a condition C with the
property that if C holds in s then C will also hold in any state that
results from execution of A in s.

invariant :: Condition a

-> Action a -> State a -> Bool

invariant c action s = assertion s c action c

Note that an invariant is true in state s if the condition does not hold
in s.



Turning a condition into a test

test :: Condition a -> Action a

test c = if_then_else c skip abort

Note that the test action does not take any time: when skip is per-
formed, the state counter is not incremented.



Invariant Tests

We can use an invariant to produce “self-testing code”, as follows:

inv :: Condition a -> Action a -> Action a

inv c action = if_then_else (invariant c action)

action

abort

This wraps the invariant around the action: if the invariant holds for
a state and an action, the result of the action on the state is returned,
otherwise execution is aborted.

Note that the self-testing code does not take more time than the orig-
inal code.



Self-Testing Non-Deterministic Repeat

do_od_inv :: Condition a

-> [(Condition a, Action a)]

-> Action a

do_od_inv c xs =

if_then_else c

(do_od

(List.map (\ (d,a) -> (d, a ## test c)) xs))

(do_od xs)



Names for some variables

x,y,z :: Name

x = "x"

y = "y"

z = "z"



Imperative Algorithm for Squaring a Number

The following imperative algorithm computes the square of a number
in terms of addition.

squaring :: Int -> Action Int

squaring n = x <=< 0 ##

y <=< 0 ##

z <=< n ##

(while (\s -> s$$y < s$$z)

(x <== (\s -> s$$x+s$$y+s$$y+1)

##

incr y))



Constructing An Invariant

Isolate the body of the while loop:

whileBody :: Action Int

whileBody =

ass’ x (\s -> s$$x+s$$y+s$$y+1) ## incr y

Construct a suitable internal state for checking an invariant of the
while body:

mkState :: Int -> Int -> State Int

mkState m n = mass [(x,m),(y,n)] (start 0)



From Invariants to QuickCheck Properties

Express the invariant as a property to be checked with QuickCheck
[1].

prop_invar :: (Int,Int) -> Bool

prop_invar (m,n) =

invariant (\ s -> s$$x == (s$$y)ˆ2)

whileBody

(mkState m n)

This succeeds.



Some More QuickCheck Properties

Here is another property of squaring for checking with QuickCheck.

prop_sq n = squaring n (start 0) $$ x == nˆ2

This gives counterexamples. Here is the remedy:

prop_sq1 n = if n >= 0

then squaring n (start 0) $$ x == nˆ2

else True



Setting a Threshold

threshold :: Int

threshold = 1000

Testing squaring for arbitrary Int values takes far too long.

Our algorithm execution code is not very fast (nor is it supposed to be
fast).

QuickCheck has a remedy for that:

prop_sq2 n = n < threshold ==>

if n >= 0

then squaring n (start 0) $$ x == nˆ2

else True



Still Nicer

Test with the appropriate assertion:

prop_sq3 n = n < threshold ==>

assertion

(start 0)

(\ _ -> n >= 0)

(squaring n)

(\ s -> s$$x == (s$$y)ˆ2)



‘Self-testing’ Version of Squaring

Use test injection to produce a self-testing version of the algorithm:

squaring2 :: Int -> Action Int

squaring2 n =

x <=< 0 ##

y <=< 0 ##

z <=< n ##

while (\s -> s$$y < s$$z)

(inv (\ s -> s$$x == (s$$y)ˆ2)

(x <== (\s -> s$$x+s$$y+s$$y+1) ## incr y)

)



Yet Another Way

squaring3 :: Int -> Action Int
squaring3 n =

x <=< 0 ##

y <=< 0 ##

z <=< n ##

while (\s -> s$$y < s$$z)

(

test (\ s -> s$$x == (s$$y)ˆ2)

##

x <== (\s -> s$$x + s$$y + s$$y + 1)

##

incr y

##

test (\ s -> s$$x == (s$$y)ˆ2)

)



Euclid’s famous gcd algorithm

euclid :: Int -> Int -> Action Int

euclid m n =

x <=< m ##

y <=< n ##

while (\s -> not (s$$x == s$$y))

(if_then_else (\ s -> s$$x < s$$y)

(y <== \s -> s$$y - s$$x)

(if_then (\ s -> s$$x > s$$y)

(x <== \s -> s$$x - s$$y)))



Dijkstra’s version

This looks more elegant in Dijkstra’s guarded command style:

euclid2 :: Int -> Int -> Action Int

euclid2 m n =

x <=< m ##

y <=< n ##

do_od

[

(\s -> s$$x < s$$y, y <== \s -> s$$y-s$$x),

(\s -> s$$y < s$$x, x <== \s -> s$$x-s$$y)

]



Testing With Hoare Assertions

Checking euclid with Hoare assertions in QuickCheck:

prop_euclid :: (Int,Int) -> Property

prop_euclid (m,n) =

m < threshold && n < threshold ==>

assertion (start 0)

(\_ -> m > 0 && n > 0)

(euclid m n)

(\ s -> s$$x == gcd m n)



And similarly for euclid2.

prop_euclid2 :: (Int,Int) -> Property

prop_euclid2 (m,n) =

m < threshold && n < threshold ==>

assertion (start 0)

(\_ -> m > 0 && n > 0)

(euclid2 m n)

(\ s -> s$$x == gcd m n)



A Nicer Way: Self-Testing Version of Euclid

euclid3 :: Int -> Int -> Action Int

euclid3 m n =

x <=< m ##

y <=< n ##

do_od_inv

(\s -> gcd m n == gcd (s$$x) (s$$y))

[

(\s -> s$$x < s$$y, y <== \s -> s$$y - s$$x),

(\s -> s$$y < s$$x, x <== \s -> s$$x - s$$y)

]



The Extended Euclidean Algorithm

Some more names for variables:

(a, b, u, v, q, r) = ("a","b","u","v","q","r")

An extended Euclidean algorithm in Dijkstra notation:



extEuclid :: Int -> Int -> Action Int

extEuclid m n =

mass [(a,m),(b,n),(x,1),(y,0),(u,0),(v,1)]

##

while (\s -> s$$b /= 0)

(mass’ [(q,\s -> s$$a ‘div‘ s$$b),

(r,\s -> s$$a ‘mod‘ s$$b)

]

##
mass’ [(a,\s -> s$$b),

(b,\s -> s$$r),

(x,\s -> s$$u),

(y,\s -> s$$v),

(u,\s -> s$$x - (s$$q * s$$u)),

(v,\s -> s$$y - (s$$q * s$$v))

]

)



Checking the Extended GCD Algorithm

Bézout’s identity is the equality xM + yN = gcd(M,N).

A QuickCheck property for it:

prop_Bezout :: (Int,Int) -> Bool

prop_Bezout (m,n) =

assertion (start 0)

(\ _ -> m > 0 && n > 0)

(extEuclid m n)

(\ s -> (s$$x)*m + (s$$y)*n == gcd m n)



Purely Functional Algorithms

Haskell is already a specification language for purely function algo-
rithms, so here we do not need the extensions.

The following is a literal version of an alternative algorithm for gcd.

ext_gcd :: (Int,Int) -> (Int,Int)

ext_gcd (a,b) =

if b == 0

then (1,0)

else

let

(q,r) = quotRem a b

(s,t) = ext_gcd (b,r)

in (t, s - q*t)



A check for Bézout’s identity again:

prop_Bezout1 :: (Int,Int) -> Bool
prop_Bezout1 (m,n) =

if m > 0 && n > 0

then x*m + y*n == gcd m n

else True

where (x,y) = ext_gcd (m,n)



Problem of Finding a Minimum Spanning Tree of a Graph

• A weighted undirected graph is a graph with weights assigned to
the edges. Think of the weight as an indication of distance.

• Let G be a weighted, undirected (i.e., symmetric) and connected
graph. Assume there are no self-loops. (Or, if there are self-loops,
make sure their weight is set to 0.)

• A minimum spanning tree for weighted graph G is a spanning
tree of G whose edges sum to minimum weight.

• Caution: minimum spanning trees are not unique.

• Applications: finding the least amount of wire necessary to con-
nect a group of workstations (or homes, or cities, or . . . ).



Prim’s Minimum Spanning Tree Algorithm

Finds a minimum spanning tree for an arbitrary weighted symmetric
and connected graph. See [5], [6, 4.7].

• Select an arbitrary graph node r to start the tree from.

• While there are still nodes not in the tree

– Select an edge of minimum weight between a tree and non-
tree node.

– Add the selected edge and vertex to the tree.

It is not at first sight obvious that Prim’s algoritm always results in
a minimum spanning tree, but this fact can be checked by means of
Hoare assertions, which can be tested.



Datatype for Weighted Graphs

type Vertex = Int

type Edge = (Vertex,Vertex,Int)

type Graph = ([Vertex],[Edge])

If (x, y,w) is an edge, then the edge is from vertex x to vertex y, and
its weight is w.



Creation of Proper Symmetric Edge Lists

Make a list of edges into a proper symmetric graph, while also re-
moving self loops and edges with non-positive weights.

mkproper :: [Edge] -> [Edge]

mkproper xs = let

ys = List.filter

(\ (x,y,w) -> x /= y && w > 0) xs

zs = nubBy (\ (x,y,_) (x’,y’,_) ->

(x,y) == (x’,y’) || (x,y) == (y’,x’)) ys

in foldr

(\ (x,y,w) us -> ((x,y,w):(y,x,w):us))

[] zs



Checking for Connectedness

Connected components of a graph are given by a least fixpoint com-
putation:

lfp :: Eq a => (a -> a) -> a -> a

lfp f x | x == f x = x

| otherwise = lfp f (f x)

Set of items that are connected to a given set:

connectedC :: [Edge] -> Set Vertex -> Set Vertex

connectedC es set =

fromList [ v | x <- toList set,

(u,v,w) <- es, x == u ]



The whole graph is connected if the least fixpoint computation yields
the full set of vertices:

connected :: [Edge] -> Set Vertex -> Bool

connected es set = set == set’

where

x = takeElem set

set’ = lfp

(\ s -> Set.union s (connectedC es s))

(singleton x)

Note: this presupposes symmetry of the list of edges.



Finding Index of Edge with Minimum Weight

Finding the vertex y and index i with the property that i is the index
of the (x,w, y) with the least w such that x ∈ I, y ∈ O.

minVE :: Graph -> Set Vertex -> Set Vertex

-> (Vertex,Int)

minVE graph ins outs =

let

ies = zip (snd graph) [0..]

new = [ ((x,y,w),i) |((x,y,w),i) <- ies,

member x ins,

member y outs ]

new’= sortBy (\((_,_,w),_) ((_,_,w’),_) ->

compare w w’) new

in (\((_,y,_),i) -> (y,i)) $ head new’



Prim’s Algorithm

prim :: Graph -> Action (Int)

prim (vs,es) = let

vset = fromList vs

root = takeElem vset

in

"in" <==< singleton root ##

"out" <==< Set.delete root vset ##

"tree" <==< empty ##

while (\s -> s $$$ "out" /= empty)

( \ s ->

let

(v,i) = minVE (vs,es)(s$$$"in")(s$$$"out")

in

(sdecr "out" v ##

sincr "in" v ##
sincr "tree" i) s )



Testing this:

exampleGraph :: Graph

exampleGraph =

([1,2,3],mkproper [(1,2,3),(2,3,5),(1,3,7)])

*GCL> prim exampleGraph (start 0) $$$ "tree"

fromList [0,2]

*GCL> prim exampleGraph (start 0) $$$ "tree"

fromList [1,3]

Note that we do not always get the same outcome: the algorithm is
non-deterministic. To interpret the output we need to see the edge list:

*GCL> mkproper [(1,2,3),(2,3,5),(1,3,7)]

[(1,2,3),(2,1,3),(2,3,5),(3,2,5),(1,3,7),(3,1,7)]



Automated Time Complexity Analysis

This is work in progress.

*GCL> [ time (squaring n) 0 | n <- [0..15] ]

[3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33]



Further Work

• generate pseudocode in a variety of flavours from the formal al-
gorithm specifications,

• generate executable (C, Java, . . . ) code from the formal algorithm
specifications,

• develop automated time complexity analysis . . .

• implement monadic algorithm debugger . . .

• use all this in master course in purely functional algorithm speci-
fication and analysis.



Conclusion

Purely functional programming is a suitable tool for specification of
algorithms written in imperative style.

The method is to implement the semantics of an imperative algorithm
as a function from states to states, and to define the appropriate algo-
rithm construction operations.

Hoare style assertions for such algorithms take the shape of exe-
cutable tests, so the algorithms can be tested and debugged easily.

Also, the time complexity of the algorithms is open for inspection.

Haskell is excellent for writing testable properties of algorithms, and
Haskell’s automated test tooling can be used off-the-shelf.
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