
Chapter 1

Modelling Epistemic Updates
with Functional Programming
Jan van Eijck1 and Simona Orzan2

Abstract: Epistemic logic is the logic of knowledge, and dynamic epistemic
logic is the logic of effects of communicative actions on the knowledge states
of a set of agents. Typical communicative actions are making public announce-
ments, passing private messages, revealing secrets, telling lies. This paper takes
its starting point from the version of dynamic epistemic logic of [3], and demon-
strates a tool that can be used for showing what goes on during a series of epis-
temic updates: the dynamic epistemic modelling tool DEMO [10]. DEMO allows
modelling epistemic updates, graphical display of update results, graphical dis-
play of action models, formula evaluation in epistemic models, and translation of
dynamic epistemic formulas to PDL [23] formulas. DEMO is written in Haskell.
This paper intends to demonstrate its use for calculating and visualizing the model
transformations that take place during epistemic updating.

1.1 INTRODUCTION

Analysis of multi-agent communication, in the spirit of [13], consists of repre-
senting the knowledge or beliefs of the agents in a semantic model, representing
the operations on the knowledge or beliefs of the agents as operations on semantic
models, and do model checking to see if given formulas are true in the models that
result from given updates. After the advances in dynamic epistemic logic docu-
mented in [22, 12, 2, 3], taking a model checking approach to epistemic dynamics
is more attractive than ever. In this paper we introduce DEMO, a model checking

1CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands; +31-(0)20-5924052;
jve@cwi.nl, and Uil-OTS, Trans 10, 3512 JK Utrecht, The Netherlands

2TU/e, Computer Science Department, P.O. Box 513, 5600 MB Eindhoven, The
Netherlands; +31-(0)40-2475576; s.m.orzan@tue.nl

tool written in Haskell and based on the streamlined version of dynamic epistemic
logic taken from [3].

DEMO represents epistemic models as objects of type EpistM and update
actions (pointed action models) on epistemic models as objects of type PoAM.
Update operations are specified as

upd :: EpistM -> PoAM -> EpistM
upds :: EpistM -> [PoAM] -> EpistM

Here upd defines an update with a single update action and upds an update
with a sequence of update actions. The updates generate new epistemic models.
Formula checking is defined as

isTrue :: EpistM -> Form -> Bool

The formula evaluator isTrue takes an epistemic model and an epistemic for-
mula as arguments, and returns the truth value of the formula in the model.

Here is the lay-out of the pages that follow. Section 1.2 provides the back-
ground on epistemic logic that is needed for understanding what goes on in the
rest of the paper. Sections 1.3, 1.4 and 1.5 discuss examples of epistemic mod-
elling with DEMO, and the final Section 1.6 concludes and lists further work.

1.2 EPISTEMIC MODELS, ACTION MODELS AND UPDATING

A model for representing the state of knowledge among a group of agents is a
labelled transition system (LTS) with labels for the individual agents, and valua-
tions for the states. It is common to call the states worlds and to refer to the LTSs
as epistemic models or Kripke models [14, 6, 11].

In a situation where one of us (a) knows about p and the other (b) knows about
q, while you (c) know nothing about either p or q, and while in fact p happens
to be false and q true, the state of knowledge of the agents a,b,c is represented
by a Kripke model where the worlds are the four different possibilities for the
truth of p and q (/0, p, q, pq), the epistemic accessibility relation ∼a is the relation
that links the two worlds where p is true and the two worlds where p is false, the
epistemic accessibility relation ∼b is the relation that links the two worlds where q
is true and the two worlds where q is false, and the epistemic accessibility relation
∼c is the total relation on the set of worlds. This situation can be visualized
as follows (this and the following pictures were generated by DEMO with the
graphic visualization tool dot [17]):

Epistemic formula Kaφ evaluates to true in a world in such a model if in that
world every a-accessible world makes φ true. In the actual world of the example
picture, indicated by the double oval, Ka¬p is true, for ¬p is true in worlds 0 and
2, and these are the two worlds that are a-accessible from the actual world 2 (we
assume that every world is self-accessible). On the other hand, Kaq is false in
world 2, for q is true in world 2 but false in world 0. Kbq is true in the actual
world. More subtly, Ka(Kbq∨Kb¬q) is true the actual world, for it happens to be
the case that Kbq is true in world 2 and Kb¬q is true on world 0. The examples
with embedded knowledge operators illustrate how the Kripke models encode
information about what agents know about the knowledge or ignorance of other
agents. In the example, a does not know about q, but a knows that b knows
whether q. Also, all agents know that c is ignorant about p and q.

Epistemic updates are themselves also a kind of Kripke models, with the im-
portant difference that the worlds do not carry a valuation but a precondition for-
mula [2]. Here is an example of a model of a group message to a,b that ¬p is the
case:

What this expresses is that in fact ¬p is communicated (indicated by the dou-
ble oval), but that agent c cannot distinguish this communication from a trivial

communication >.
Technically, the result of updating with an action model is defined as the prod-

uct of the epistemic model and the action model, restricted to the pairs (w,u)
where w satisfies the precondition of action u, and with the accessibility relations
holding between pairs (w,u) and (w′

,u′) just in case they hold both between w
and w′ and between u and u′. Further details are in [2, 3].

This product construction causes an exponential blow-up, and in order to
model the update process in a feasible way we need to minimize the update re-
sults modulo bisimulation [15]. For this, DEMO uses the following algorithm for
partition refinement, in the spirit of [20]:

• Start out with a partition of the state set where all states with the same pre-
condition function are in the same class. The equality relation to be used to
evaluate the precondition function is given as a parameter to the algorithm.

• Given a partition Π, for each block b in Π, partition b into sub-blocks such
that two states s, t of b are in the same sub-block iff for all agents a it holds
that s and t have a

−→ transitions to states in the same block of Π. Update Π to
Π′ by replacing each b in Π by the newly found set of sub-blocks for b.

• Halt as soon as Π = Π′.

DEMO implements epistemic formula evaluation in update results, for a wide
class of epistemic logics (multimodal epistemic logic, epistemic PDL, epistemic
PDL with action modalities).

1.3 THE RIDDLE OF THE CAPS

Picture a situation of four people a,b,c,d standing in line, with a,b,c looking to
the left, and d looking to the right. a can see no-one else; b can see a; c can see a
and b, and d can see no-one else. They are all wearing caps, and they cannot see
their own cap. If it is common knowledge that there are two white and two black
caps, then in the following situation c knows what color cap she is wearing.

If c now announces that she knows the color of her cap (without revealing the
color), b can infer from this that he is wearing a white cap, for b can reason as
follows: “c knows her color, so she must see two caps of the same color. The cap
I can see is white, so my own cap must be white as well.” In this situation b draws
a conclusion from the fact that c knows her color.

In the following situation b can draw a conclusion from the fact that c does not
know her color.

In this case c announces that she does not know her color, and b can infer from
this that he is wearing a black cap, for b can reason as follows: “c does not know
her color, so she must see two caps of different colors in front of her. The cap I
can see is white, so my own cap must be black.”

To account for this kind of reasoning, we use model checking for epistemic
updating, as follows (the Haskell code for this example is given in Figure 1.1).
Proposition pi expresses the fact that the i-th cap, counting from the left, is white.
Thus, the facts of our first example situation are given by p1 ∧ p2 ∧¬p3 ∧¬p4,
and those of our second example by p1 ∧¬p2 ∧¬p3 ∧ p4.

module Caps
where
import List
import DEMO

capsInfo :: Form
capsInfo = Disj [Conj [f, g, Neg h, Neg j] |

f <- [p1, p2, p3, p4],
g <- [p1, p2, p3, p4] \\ [f],
h <- [p1, p2, p3, p4] \\ [f,g],
j <- [p1, p2, p3, p4] \\ [f,g,h],
f < g, h < j]

awarenessFirstCap = info [b,c] p1
awarenessSecondCap = info [c] p2

cK = Disj [K c p3, K c (Neg p3)]
bK = Disj [K b p2, K b (Neg p2)]

mo0 = upd (initE [P 1, P 2, P 3, P 4]) (test capsInfo)
mo1 = upd mo0 (public capsInfo)
mo2 = upds mo1 [awarenessFirstCap, awarenessSecondCap]
mo3a = upd mo2 (public cK)
mo3b = upd mo2 (public (Neg cK))

FIGURE 1.1. Haskell code for the caps example.

An initial situation with four agents a,b,c,d and four propositions p1, p2, p3, p4,
with exactly two of these true, where no-one knows anything about the truth of
the propositions, and everyone is aware of the ignorance of the others, is modeled
like this:
Caps> showM mo0
==> [5,6,7,8,9,10]
[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]
(0,[])(1,[p1])(2,[p2])(3,[p3])(4,[p4])
(5,[p1,p2])(6,[p1,p3])(7,[p1,p4])(8,[p2,p3])(9,[p2,p4])
(10,[p3,p4])(11,[p1,p2,p3])(12,[p1,p2,p4])
(13,[p1,p3,p4])(14,[p2,p3,p4])(15,[p1,p2,p3,p4])
(a,[[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]])
(b,[[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]])
(c,[[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]])

(d,[[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]])

The first line indicates that worlds 5,6,7,8,9,10 are compatible with the facts of
the matter (the facts being that there are two white and two black caps). E.g.,
5 is the world where a and b are wearing the white caps. The second line lists
all the possible worlds; there are 24 of them, since every world has a different
valuation. The third through sixth lines give the valuations of worlds. The last
four lines represent the accessibility relations for the agents. All accessibilities
are total relations, and they are represented here as the corresponding partitions
on the set of worlds. Thus, the ignorance of the agents is reflected in the fact that
for all of them all worlds are equivalent: none of the agents can tell any of them
apart.

The information that two of the caps are white and two are black is expressed
by the formula

(p1 ∧ p2 ∧¬p3 ∧¬p4)∨ (p1 ∧ p3 ∧¬p2 ∧¬p4)∨ (p1∧ p4 ∧¬p2 ∧¬p3)

∨ (p2 ∧ p3 ∧¬p1 ∧¬p4)∨ (p2 ∧ p4 ∧¬p1 ∧¬p3)∨ (p3∧ p4 ∧¬p1 ∧¬p2).

A public announcement with this information has the following effect:

Caps> showM (upd mo0 (public capsInfo))
==> [0,1,2,3,4,5]
[0,1,2,3,4,5]
(0,[p1,p2])(1,[p1,p3])(2,[p1,p4])(3,[p2,p3])(4,[p2,p4])
(5,[p3,p4])
(a,[[0,1,2,3,4,5]])
(b,[[0,1,2,3,4,5]])
(c,[[0,1,2,3,4,5]])
(d,[[0,1,2,3,4,5]])

Let this model be called mo1. The representation above gives the partitions for
all the agents, showing that nobody knows anything. A perhaps more familiar
representation for this multi-agent Kripke model is given in Figure 1.2. In this
picture, all worlds are connected for all agents, all worlds are compatible with the
facts of the matter (indicated by the double ovals).

Next, we model the fact that (everyone is aware that) b can see the first cap
and that c can see the first and the second cap, as follows:

Caps> showM (upds mo1 [info [b,c] p1, info [c] p2])
==> [0,1,2,3,4,5]
[0,1,2,3,4,5]
(0,[p1,p2])(1,[p1,p3])(2,[p1,p4])(3,[p2,p3])(4,[p2,p4])
(5,[p3,p4])
(a,[[0,1,2,3,4,5]])
(b,[[0,1,2],[3,4,5]])
(c,[[0],[1,2],[3,4],[5]])
(d,[[0,1,2,3,4,5]])

Notice that this model reveals that in case a,b wear caps of the same color (sit-
uations 0 and 5), c knows the color of all the caps, and in case a,b wear caps
of different colors, she does not (she confuses the cases 1,2 and the cases 3,4).
Figure 1.3 gives a picture representation.

FIGURE 1.2. Caps situation where nobody knows anything about p1, p2, p3, p4.

Let this model be called mo2. Knowledge of c about her situation is expressed
by the epistemic formula Kc p3 ∨Kc¬p3, ignorance of c about her situation by
the negation of this formula. Knowledge of b about his situation is expressed by
Kb p2 ∨Kb¬p2. Let bK, cK express that b,c know about their situation. Then
updating with public announcement of cK and with public announcement of the
negation of this have different effects:

Caps> showM (upd mo2 (public cK))
==> [0,1]
[0,1]
(0,[p1,p2])(1,[p3,p4])
(a,[[0,1]])
(b,[[0],[1]])
(c,[[0],[1]])
(d,[[0,1]])

Caps> showM (upd mo2 (public (Neg cK)))
==> [0,1,2,3]
[0,1,2,3]
(0,[p1,p3])(1,[p1,p4])(2,[p2,p3])(3,[p2,p4])
(a,[[0,1,2,3]])
(b,[[0,1],[2,3]])
(c,[[0,1],[2,3]])
(d,[[0,1,2,3]])

In both results, b knows about his situation, though:

FIGURE 1.3. Caps situation after updating with awareness of what b and c can see.

Caps> isTrue (upd mo2 (public cK)) bK
True
Caps> isTrue (upd mo2 (public (Neg cK))) bK
True

1.4 ELEMENTS OF SECURE COMMUNICATION

Since the main concerns in security protocols are keeping, communicating and
discovering secrets, security protocol analysis is a new very promising applica-
tion area for epistemic logic. Attempts in this direction have been made [4, 1, 16],
but the field is only now truly emerging and DEMO can offer welcome support.
Examples of security protocols can be found in [18, 21]; an example of verifi-
cation by model checking, but without taking reasoning about knowledge into
account is [24]. In this section, we will discuss the DEMO modelling of a few
basic elements occurring in security protocols.

Keys and nonces as propositional variables The first difficulty encountered
when trying to model security situations as epistemic models is that the data ex-
changed in security protocols are not propositional variables, but essentially very
large numbers. However, we argue that they can be captured by propositional
variables, under the restriction that guessing is excluded. For look at the kind of
statements that we want to make about a key K. What we need to express are
statements like “agent A knows K”, “agent A doesn’t know K” and “agent A sends
key K to agent B”. This boils down to expressing doubt and certainty about key
K. Let us adopt the convention that an agent can never guess anything about K,
that is she can never make a statement about K unless she knows K. Then let a
propositional variable p express the truth value of a hashing statement, like for in-
stance “K is even”. Then, provided that guessing is excluded, we have a two-way
correspondence between the epistemic statement “agent A knows the value of p”
and the security statement “agent A knows K”.

In modelling a protocol, the convention allows us to represent every key or
nonce (parameter varying with time, such as a time stamp) involved in the protocol
by its propositional hash.

Public/secret key cryptography Many security protocols assume a public/secret
key infrastructure (PKI), meaning that each agent owns a pair of keys, a public
one, available to everybody, and a secret one, only known to the agent herself.
These keys are employed in encryption/decryption algorithms that match each
other, i.e. a content encrypted with a public key can only be decrypted with the
corresponding secret key, and the other way around. Therefore, when an agent a
wants to send a message that only an agent b should be able to read, all she has to
do is encrypt the message using b’s public key.

To see how this basic mechanism can be modeled in DEMO, we consider
two agents a,b trying to communicate as described above, and an agent c, the
eavesdropper, who intercepts all the messages. Let p1,p2 represent the secret
keys of a and b, respectively, and let us fix their truth values to p1 = >, p2 = ⊥.
It is not convenient to model the corresponding public keys explicitly; instead, we
model the encryption algorithms for the two parties as the implications p1 ⇒ x and
¬p2 ⇒ x (where x is the content to be encrypted). Finally, let q be the message
that a wishes to send to b. The situation when a is the only one who knows p1
and q, b the only one knowing p2 and all agents are aware of who knows what is
described in DEMO as follows:
ms1 = upds (initE [P 1, P 2, Q 0])
[test (Conj [p1,(Neg p2),q]),info [b] p2,info [a] p1,info [a] q]

Sending the encrypted message is modeled by the update step
ms2 = upd ms1 (public ((Neg p2) ‘impl‘ q))

¬p2 ⇒ q is the result of applying b’s public encryption algorithm to the content
q. The public communication expresses the fact that c eavedrops. The generated
visual representations of ms1 and ms2 are shown in Figure 1.4.

In ms2, it can be checked that b has learned q, while c hasn’t:

0

1:[p1]

bc

2:[p2]

ac

3:[q]

bc

4:[p1,p2]

c

5:[p1,q]

bc

6:[p2,q]

c

7:[p1,p2,q]

c

c

bc

ac

bc

c

c

c

bc

c

bc

bc

c

bc

ac

c

c

bc

bcc

ac

bc

0

1:[p1]

bc

2:[q]

bc

3:[p1,q]

bc

4:[p2,q]

c

5:[p1,p2,q]

c

bc

bc

c

c

bc

ac

cc

ac

bc

FIGURE 1.4. The epistemic state of agents a,b,c before and after a has sent the
message q encrypted with the public key of b.

SecCom> isTrue ms2 (Disj [K b q, K b (Neg q)])
True
SecCom> isTrue ms2 (Disj [K c q, K c (Neg q)])
False

It can also be verified in ms2 that the encryption algorithm works as a black-
box, that is that a and b do not learn each other’s secret key while encrypt-
ing/decrypting:
SecCom> isTrue ms2 (Disj [K a p2, K a (Neg p2)])
False
SecCom> isTrue ms2 (Disj [K b p1, K b (Neg p1)])
False

By replacing info with secret in the definition of ms1, it is also possible
to model the fact that a doesn’t actually know whether b indeed has b’s secret
key. This is a relevant subtlety in, for instance, the modelling of authentication
protocols.

Secret communication over insecure channels Another important element of
secure communication is the ability to pass information from a to b along an
insecure channel in such a way that an eavesdropper c cannot find out what b has
learned. A particular case of that is the Russian Card Problem [7, 9], but here we
will take a more abstract look at the problem.

If agent a and b share a link between propositions p and q and a and b are
the only ones with this link, then a can inform b in secret about q by means of a
public communication about p.

Assume there are three agents a,b,c. A situation where all agents are ignorant
about p and q, and are aware of their common ignorance looks like this:

SecCom> showM mo0
==> [0,1,2,3]
[0,1,2,3]
(0,[])(1,[p])(2,[q])(3,[p,q])
(a,[[0,1,2,3]])
(b,[[0,1,2,3]])
(c,[[0,1,2,3]])

Suppose a has information about p, and a and b either have common knowledge
that p and q are equivalent or they have common knowledge that p and ¬q are:

SecCom> showM (upds mo0 [info [a] p,link_ab_pq])
==> [0,5,8,9]
[0,1,2,3,4,5,6,7,8,9,10,11]
(0,[])(1,[])(2,[])(3,[p])(4,[p])
(5,[p])(6,[q])(7,[q])(8,[q])(9,[p,q])
(10,[p,q])(11,[p,q])
(a,[[0],[1,6],[2,7],[3,10],[4,11],[5],[8],[9]])
(b,[[0,9],[1,3,6,10],[2,4,7,11],[5,8]])
(c,[[0,1,3,6,9,10],[2,4,5,7,8,11]])

FIGURE 1.5. Situation where a knows whether p and where a,b have common
knowledge about a link between p and q.

Call this model mo1 (see Figure 1.5 for an alternative representation). In this
model, c still knows nothing about q:

SecCom> isTrue mo1 (Disj [K c q,K c (Neg q)])
False

Also, in this model it is common knowledge among a,b that b knows about the
link between p and q. Thus, the result of public announcement of p in this situa-
tion is that b knows whether q, while c is still left in the dark about q:

SecCom> showM (upd mo1 (public p))
==> [2,3]
[0,1,2,3,4,5]
(0,[p])(1,[p])(2,[p])(3,[p,q])(4,[p,q])
(5,[p,q])
(a,[[0,4],[1,5],[2],[3]])
(b,[[0,4],[1,5],[2],[3]])
(c,[[0,3,4],[1,2,5]])

SecCom> isTrue (upd mo1 (public p)) (Disj [K b q, K b (Neg q)])
True
SecCom> isTrue (upd mo1 (public p)) (Disj [K c q, K c (Neg q)])
False

1.5 THE PROTOCOL OF THE DINING CRYPTOGRAPHERS

The setting of Chaum’s dining cryptographers protocol [5] is a situation where
three cryptographers are eating out. At the end of the dinner, they are informed
that the bill has been paid, either by one of them, or by NSA (the National Security
Agency). Respecting each others rights to privacy, they want to find out whether
NSA paid or not, in such a way that in case one of them has paid the bill, the
identity of the one who paid is not revealed to the two others.

They decide on the following protocol. Each cryptographer tosses a coin with
his righthand neighbour, with the result of the toss remaining hidden from the
third person. Each cryptographer then has a choice between two public announce-
ments: that the coins that she has observed agree or that they disagree. If she has
not paid the bill she will say that they agree if the coins are the same and that they
disagree otherwise; if she has paid the bill she will say the opposite: she will say
that they agree if in fact they are different and she will say that they disagree if in
fact they are the same. Clearly, if everyone is speaking the truth, the number of
‘disagree’ announcements will be even. This reveals that NSA has picked up the
bill. If one person is lying, the number of ‘disagree’ announcements will be odd,
indicating that one among them is paying.

Model checking of this protocol in terms of process theory is described in [25].
In this approach, every aspect of the situation is modelled as a process: the process
for coins is defined in terms of processes for heads and for tails, the process for
cryptographers following the protocol is defined in terms of their behaviour, and
finally the process for the meal is composed from the processes for coins and
for cryptographers. The correctness specification is captured in a process that
outputs ‘crypt’ if a cryptographer pays and ‘nfa’ if NFA pays. After encoding

these processes, a model checker confirms that the process for the whole system is
indeed a refinement of the specification, and, thus, that it meets the specification.

An epistemic model checking approach is much more straightforward. One
starts with an epistemic situation where the diners have common knowledge of
the fact that either NSA or one of them has paid. Next, one updates with the
result of the coin tosses, and with communicative acts representing the sharing
of information between a cryptographer and his neighbour about these results.
Assume b has in fact picked up the bill.

module DC
where
import DEMO

zero_or_one_payer = Disj [
Conj [Neg(p1), Neg(p2), Neg(p3)], Conj [Neg(p1), Neg(p2), p3],
Conj [Neg(p1), p2, Neg(p3)], Conj [p1, Neg(p2), Neg(p3)]]

xor :: Form -> Form -> Form
xor x y = Neg (equiv x y)

-- at most one cryptographer pays, and this is public info
dc1 = upds (initE [P 1, P 2, P3, Q 1, Q 2, Q 3])

[test zero_or_one_payer, public zero_or_one_payer]

-- let’s say that crypt. b is paying (p2 true)
dc2 = upd dc1 (test (Conj [Neg(p1), p2, Neg(p3)]))
dc3 = upds dc2 [info [a] p1, info [b] p2, info [c] p3]

-- now the coins get flipped (scenario T,T,F)
flip_coins = Conj [q1, q2, Neg (q3)]
dc4 = upd dc3 (test flip_coins)
dc5 = upds dc4 [info [a,b] q1, info [b,c] q2, info [a,c] q3]

xA = xor (equiv q1 q3) p1
xB = xor (equiv q1 q2) p2
xB = xor (equiv q2 q3) p3

-- auxiliary function for public announcement of appropriate formula
publ :: EpistM -> Form -> PoAM
publ m f = if isTrue m f then public f else public (Neg f)

-- and the results get announced
dc6 = upds dc5 $ map (publ dc5) [xA, xB, xC]

FIGURE 1.6. Haskell code for the Dining Cryptographers example.

For i ∈ {1,2,3}, let pi be the proposition “cryptographer i is the payer”. The
aim of the protocol is that everybody learns whether the formula p1 ∨ p2 ∨ p3
is true or not, but if the formula is true, nobody (except the payer herself) learns
which of the three propositions was true. To model the protocol, we need three
more propositions q1,q2,q3 representing the result of flipping the coins shared by

0:[p1,q2]

4:[p2,q1,q2]

c

5:[p3,q2,q3]

b

1:[p2,q3]

3:[p1,q1,q3]

c a

2:[p3,q1]

ba

FIGURE 1.7. The final epistemic state of the DC protocol.

p1 and p2, p2 and p3, p3 and p1, respectively.
The three phases of the protocol — initialization, flipping the coins, announc-

ing the results — are captured by the epistemic models dc1 up to dc6, defined in
the listing from Figure 1.6. The restriction that one or none of the cryptographers
pays is modeled by the public announcement zero or one payer. For simplic-
ity of exposition, we fix a paying scenario (b pays, i.e. p2 =>) and a coin flipping
situation q1 = >,q2 = >,q3 = ⊥.

Figure 1.7 shows the final epistemic state, dc6. Space does not permit us to
list or display the (rather large) intermediate states. Here, world 4 is the actual
world. This is the world where b has paid and where q1 and q2 have value >. As
the accessibility relations show, a cannot distinguish the actual world from world
2 (a world where c has paid), and c cannot distinguish the actual world from world
0 (a world where a has paid).

The most important properties to be checked in the final state are the fact that
everybody learned p1 ∨ p2 ∨ p3 and that a and c don’t know that b was the payer:
DC> isTrue dc6 (CK [a,b,c] (Disj [p1,p2,p3]))
True
DC> isTrue dc6 (Conj [Neg(K a p2), Neg(K c p2)])
True

1.6 FURTHER WORK

As the program listings demonstrate, the DEMO representations of epistemic sit-
uations are very concise. A comparison between DEMO and two other model
checking tools for epistemic update logic can be found in [9]: “The fastest goal to
success was implementing the Russian Cards problem in DEMO.” Meanwhile, the
multi-agent systems of [19] may provide a stepping stone for connecting process-
style security protocol verification to the dynamic epistemic perspective.

At present DEMO is being used in various places around the world for model
checking of problems in epistemic update logic [8, 9]. Example code from these
analyses is available as part of the DEMO documentation. Further applications in
the area of analysis of security protocols are in preparation. The current imple-
mentation of DEMO does not use monads, but a new implementation in terms of

state monads is in the making. This will allow dynamic updating, with the current
result of all updates so far held in the state, and it will hopefully also increase the
efficiency of the tool, since some operations, like reduction under bisimulation,
have efficient imperative implementations.

Acknowledgments Thanks to Hayco de Jong for illuminating comments on an
earlier draft, and to Thijs van der Storm for advice on the use of dot.

Code availability The Haskell code for DEMO and for the DEMO examples is
available from http://www.cwi.nl/ jve/demo/.

REFERENCES

[1] A. Baltag. Logics for insecure communication. In TARK ’01: Proceedings of the
8th conference on Theoretical aspects of rationality and knowledge, pages 111–121,
2001.

[2] A. Baltag, L.S. Moss, and S. Solecki. The logic of public announcements, common
knowledge, and private suspicions. Technical report, Dept of Cognitive Science,
Indiana University and Dept of Computing, Oxford University, 2003.

[3] J. van Benthem, J. van Eijck, and B. Kooi. Logics of communication and change.
Under submission, 2005. Available from www.cwi.nl/ jve/papers/05/lcc/.

[4] Annette Bleeker and Jan van Eijck. Epistemic action and change. In G. Bonanno,
E. Colombatto, and W. van der Hoek, editors, LOFT-4 Proceedings, Torino, June
2000. 24 pp.

[5] D. Chaum. The dining cryptographers problem: unconditional sender and receiver
untraceability. Journal of Cryptology, 1:65–75, 1988.

[6] B.F. Chellas. Modal Logic: An Introduction. Cambridge University Press, 1980.
[7] Hans van Ditmarsch. The Russian card problem. Studia Logica, 75:31–62, 2003.
[8] Hans van Ditmarsch, Ji Ruan, and Rineke Verbrugge. Model checking sum and prod-

uct. In Shichao Zhang and Ray Jarvis, editors, AI 2005: Advances in Artificial Intel-
ligence: 18th Australian Joint Conference on Artificial Intelligence, volume 3809 of
Lecture Notes in Computer Science, pages 790–795. Springer-Verlag GmbH, 2005.

[9] Hans van Ditmarsch, Wiebe van der Hoek, Ron van der Meyden, and Ji Ruan. Model
checking Russian cards. To appear in Proceedings of MoChArt 05, 2005.

[10] Jan van Eijck. Dynamic epistemic modelling. Technical Report SEN-E0424, CWI,
Amsterdam, December 2004. Available from http://db.cwi.nl/rapporten/.

[11] R. Fagin, J.Y. Halpern, Y. Moses, and M.Y. Vardi. Reasoning about Knowledge. MIT
Press, 1995.

[12] J. Gerbrandy. Bisimulations on planet Kripke. PhD thesis, ILLC, 1999.
[13] Joseph Y. Halpern and Moshe Y. Vardi. Model checking vs. theorem proving: A

manifesto. In J. Allen, R. E. Fikes, and E. Sandewall, editors, Proceedings 2nd Int.
Conf. on Principles of Knowledge Representation and Reasoning, KR’91, pages 325–
334. Morgan Kaufmann Publishers, San Mateo, CA, 1991.

[14] J. Hintikka. Knowledge and Belief: An Introduction to the Logic of the Two Notions.
Cornell University Press, Ithaca N.Y., 1962.

[15] M. Hollenberg. Logic and Bisimulation. PhD thesis, Utrecht University, 1998.
[16] A. Hommersom, J.-J. Meyer, and E.P. de Vink. Update semantics of security proto-

cols. Synthese, 142:229–267, 2004. Knowledge, Rationality and Action subseries.
[17] E. Koutsofios and S. North. Drawing graphs with dot. Available from

http://www.research.att.com/ north/graphviz/.
[18] Gavin Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using

FDR. In Tools and Algorithms for the Construction and Analysis of Systems (TACAS),
volume 1055, pages 147–166. Springer-Verlag, Berlin Germany, 1996.

[19] Ron van der Meyden and Kaile Su. Symbolic model checking the knowledge of
the dining cryptographers. In 17th IEEE Computer Security Foundations Workshop
(CSFW’04), page 280, 2004.

[20] Robert Paige and Robert E. Tarjan. Three partition refinement algorithms. SIAM J.
Comput., 16(6):973–989, 1987.

[21] O. Pereira. Modelling and security analysis of authenticated group key agreement
protocols, 2003.

[22] J. A. Plaza. Logics of public communications. In M. L. Emrich, M. S. Pfeifer,
M. Hadzikadic, and Z. W. Ras, editors, Proceedings of the 4th International Sympo-
sium on Methodologies for Intelligent Systems, pages 201–216, 1989.

[23] V. Pratt. Application of modal logic to programming. Studia Logica, 39:257–274,
1980.

[24] A. W. Roscoe. Modelling and verifying key-exchange protocols using CSP and FDR.
In Proc. 8th IEEE Computer Security Foundations Workshop, pages 98–107, 1995.

[25] S. Schneider and A. Sidiropoulos. CSP and anonymity. In Proc. ESORICS’96, pages
198–218. LNCS 1146, 1996.

