
Sets, types and functions

Computational Semantics with Functional Programming
Jan van Eijck (CWI, Amsterdam) & Christina Unger (UiL-OTS, Utrecht)

LOT Summer School
Leiden, June 2009

Computational Semantics (-o-) Sets, types and functions LOT 2009 1 / 46

What the lecture today is about

refreshing basics about sets, relations, functions and types

getting a taste of how to work with them in Haskell

based on that, specifying a model that we will use tomorrow to
interpret natural language expressions

Computational Semantics (-o-) Sets, types and functions LOT 2009 2 / 46

Outline

1 Sets

2 Relations

3 Functions

4 Lambda Calculus

5 Types

6 Specifying a model

7 Gimmick

Computational Semantics (-o-) Sets, types and functions LOT 2009 3 / 46

Sets

Computational Semantics (-o-) Sets, types and functions LOT 2009 4 / 46

Sets and their members

Sets are collections of definite, distinct objects.

the set of words in Michael Ende’s The Neverending Story

the set of Jason and the argonauts

the set of even natural numbers greater than 47

the set consisting of

the set of letters in the Greek alphabet
the set of kanji

the set of Guybrush Threepwood, the Danish national anthem, a deck
of Skat cards, and all slides of today

the empty set (written as ∅)

Computational Semantics (-o-) Sets, types and functions LOT 2009 5 / 46

Sets and their members

The elements of a set are called members.

If a is an element of a set A, we write a ∈ A.

If a is not an element of A, we write a /∈ A.

Sets are fully determined by their members. To check whether two sets
A,B are the same we have to check whether they have the same members:

Is every element of A also an element of B?

Is every element of B also an element of A?

If every element of A is also an element of B, then A is a subset of B,
written as A ⊆ B.

Now, A = B if and only if A ⊆ B and B ⊆ A.

Computational Semantics (-o-) Sets, types and functions LOT 2009 6 / 46

Different notations

There are several ways to specify a set.

Description

the set of colors of the Dutch flag

Enumeration

{red,white,blue}
which is the same as {blue,white,red,red}

Set comprehension

E = {2n | n ∈ N}
O = {n ∈ N | n /∈ E}

By means of operations on other sets

O = N− E

Computational Semantics (-o-) Sets, types and functions LOT 2009 7 / 46

Lists in Haskell

In our implementations we use lists. (The order is taken to be an arbitrary
one. If necessary, we use a function nub to remove all duplicates.)

[] is the empty list

[x] is the singleton list containing only x

(x:xs) is a non-empty list with x its head and xs its tail

[x | x <- U, p x] is the list of all x in U with property p

Computational Semantics (-o-) Sets, types and functions LOT 2009 8 / 46

Examples

Here are some examples of lists of type [Int], given by enumeration...

[2,3,5], 2:(3:(5:[]))

[1..47], [’a’..’z’]

[1..] (Long lives laziness!)

... and list comprehension:

[x | x <- [1..], even x]

[square x | x <- [1..]]

[(x+y) | x <- [1..10], y <- [11..20], even x && odd y]

[[x..y] | x <- [2,3], y <- [4,7]]

What about [even x | x <- [1..]]?

Computational Semantics (-o-) Sets, types and functions LOT 2009 9 / 46

Strings as lists of characters

Strings are of type String, which is an abbreviation for [Char].
That is, "Hello world" is the same like:

[’H’,’e’,’l’,’l’,’o’,’ ’,’w’,’o’,’r’,’l’,’d’]

A simple example using strings:

stems,suffixes,adjectives :: [String]

stems = ["use","faith"]
suffixes = ["ful","less"]

adjectives = [x ++ y | x <- stems, y <- suffixes]

Computational Semantics (-o-) Sets, types and functions LOT 2009 10 / 46

Relations

Computational Semantics (-o-) Sets, types and functions LOT 2009 11 / 46

Relations

There are numerous ways in which objects are related to each other.

people: is friends with

numbers: is divisible by

colors and people: is the favorite color of

numbers and cities: is the number of inhabitants of

. . .

Formally, a relation between two sets A and B is a set of ordered pairs
(a, b) such that a ∈ A and b ∈ B.

The set of all such ordered pairs is called the Cartesian product of A and
B, written as A× B.

A relation between A and B is a subset of A× B.

Computational Semantics (-o-) Sets, types and functions LOT 2009 12 / 46

Example

A = {a, b, c , d , e, f , g , h}
B = {1, 2, 3, 4, 5, 6, 7, 8}
the set P of positions on a chess board:

A× B = {(a, 1), (a, 2), . . . , (b, 1), (b, 2), . . . , (h, 1), . . . , (h, 8)}

the set of colors: C={White,Black}
the set of chess figures: F={King,Queen,Knight,Rook,Bishop,Pawn}
the set of chess pieces: C × F
e.g. (White,King)

the set of piece positions on a board: (C × F)× P
e.g. ((White,King),(e,1))

the set of moves on a chess board: (C × F)× (P × P)
e.g. ((White,King),((e,1),(f,2)))

Computational Semantics (-o-) Sets, types and functions LOT 2009 13 / 46

Relations

We can generalize relations to sets of n-tupels.

A unary relation (also called property) is the set that contains all
elements having the property.

properties of people: is a wizard
properties of numbers: is prime

A ternary relation is the set of triples that stand in the relation.

relating people: a introduced b to c
relating numbers: x is the product of y and z
relating people, books and numbers: a read b more than x times

An n-ary relation is the set of n-tuples that stand in the relation.

Computational Semantics (-o-) Sets, types and functions LOT 2009 14 / 46

Implementing relations

We can implement:

unary relations as lists of entities

binary relations as lists of pairs of entities

n-ary relations as lists of n-tuples of entities

Here is an implementation of a universe with 27 entities:

data Entity = A | B | C | D | E | F | G
| H | I | J | K | L | M | N
| O | P | Q | R | S | T | U
| V | W | X | Y | Z | Unspec
deriving (Eq,Show,Bounded,Enum)

entities = [minBound..maxBound]

Computational Semantics (-o-) Sets, types and functions LOT 2009 15 / 46

Implementing relations

Properties (unary relations) are lists of entities, i.e. of type [Entity].

girl = [A,D,G,S]
boy = [M,Y]
princess = [E]
dwarf = [B,R]
giant = [T]
wizard = [W,V]

child = girl ++ boy

brave = [D,Y]
laugh = [A,G,E]
cheer = [M,D]
shudder = [S]

is,does :: (Eq a) => a -> [a] -> Bool
is = elem
does = elem

Computational Semantics (-o-) Sets, types and functions LOT 2009 16 / 46

Implementing relations

Binary relations are lists of pairs of entities, i.e. of type
[(Entity,Entity)].

help = [(W,W),(V,V),(S,B),(D,M)]

admire = [(x,G) | x <- entities, x ‘is‘ child]

defeat = [(x,y) | x <- entities,
y <- entities,
x ‘is‘ dwarf && y ‘is‘ giant]

Computational Semantics (-o-) Sets, types and functions LOT 2009 17 / 46

Functions

Computational Semantics (-o-) Sets, types and functions LOT 2009 18 / 46

Functions

Functions are special relations: for any (a, b) and (a, c) in the relation it
has to hold that b = c .

Thus a function from a set A (domain) to a set B (range) is a relation
between A and B such that for each a ∈ A there is one and only one
associated b ∈ B.

In other words, a function is a mechanism that maps an input value to a
uniquely determined output value.

Computational Semantics (-o-) Sets, types and functions LOT 2009 19 / 46

Functions: extensional view

Kelvin Celsius Fahrenheit

0 -273.15 -459.67 (absolute zero)
273.15 0 32 (freezing point of water)
310.15 37 98.6 (human body temperature)
373.13 99.98 211.96 (boiling point of water)
505.9 232.8 451 (paper auto-ignites)
5778 5504.85 9940.73 (surface temperature of the sun)

Functions can be seen as sets of pairs of input and output values.

function from Kelvin to Celsius: {(0,−273.15), . . .}
function from Celsius to Fahrenheit: {(−273.15,−459.67), . . .}

Computational Semantics (-o-) Sets, types and functions LOT 2009 20 / 46

Functions: intensional view

Functions can also be seen as instructions for computation.

function from Kelvin to Celsius: x 7→ x − 273.15

kelvin2celsius :: Float -> Float
kelvin2celsius x = x - 273.15

function from Celsius to Fahrenheit: x 7→ x × 9
5 + 32

celsius2fahrenheit :: Float -> Float
celsius2fahrenheit x = x * (9/5) + 32

Example: 37× 9
5 + 32→ 66.6 + 32→ 98.6

Computational Semantics (-o-) Sets, types and functions LOT 2009 21 / 46

Function composition

Function composition f · g is defined as x 7→ f (g(x)).

Example:

Let g be the function from Kelvin to Celsius and f be the function from
Celcius to Fahrenheit. Then f · g is a function from Kelvin to Fahrenheit,
given by:

x 7→ (x − 273.15)× 9

5
+ 32

In Haskell:

kelvin2fahrenheit x = celcius2fahrenheit (kelvin2celsius x)

Or shorter:

kelvin2fahrenheit = celsius2fahrenheit . kelvin2celcius

Computational Semantics (-o-) Sets, types and functions LOT 2009 22 / 46

Functions in Haskell

Let us define an addition function plus :: Int -> Int -> Int.

plus x y = x + y

Based on this, we can define a successor function.

succ y = plus 1 y

succ = plus 1

succ = (+ 1)

succ = (1 +)

So actually we could have defined plus like this:

plus = (+)

Computational Semantics (-o-) Sets, types and functions LOT 2009 23 / 46

Characteristic functions

The characteristic function of a subset A of some universe U is a function
that maps:

all members of A to the truth-value True

all elements of U that are not members of A to False

Characteristic functions characterize membership of a set.

Computational Semantics (-o-) Sets, types and functions LOT 2009 24 / 46

Characteristic functions

Since we specified relations as sets, this means we can represent every
relation as a characteristic function.

laugh’ :: Entity -> Bool
laugh’ x = x ‘elem‘ [A,G,E]

help’ :: (Entity,Entity) -> Bool
help’ (x,y) = (x,y) ‘elem‘ [(W,W),(V,V),(S,B),(D,M)]

help’’ :: Entity -> Entity -> Bool
help’’ x y = (x,y) ‘elem‘ [(W,W),(V,V),(S,B),(D,M)]

help’’’ :: Entity -> Entity -> Bool
help’’’ y x = (x,y) ‘elem‘ [(W,W),(V,V),(S,B),(D,M)]

Computational Semantics (-o-) Sets, types and functions LOT 2009 25 / 46

Lambda calculus

Computational Semantics (-o-) Sets, types and functions LOT 2009 26 / 46

Lambda calculus

The lambda calculus is a formal system for defining and investigating
functions.

Functions are represented by means of function abstraction.
Consider x2 + y .

λx 7→ x2 + y

λy 7→ x2 + y

λx 7→ (λy 7→ x2 + y)

Function application corresponds to substitution:

((λx 7→ (λy 7→ x2 + y)) 4) 7 ((λx 7→ (λy 7→ x2 + y)) 4) 7

→ (λy 7→ 42 + y) 7 → (λy 7→ 42 + y) 7

→ 42 + 7

Computational Semantics (-o-) Sets, types and functions LOT 2009 27 / 46

Lambda calculus (formal definition)

Expressions: v ::= x | v ′

E ::= v | (E E) | (λv 7→ E)

In Haskell we write E E and \ x -> E.

Reduction rule: (λx 7→ E) A→ E [x := A]

(When substituting expressions, we have to make sure that no variables
get accidentally captured.)

Computational Semantics (-o-) Sets, types and functions LOT 2009 28 / 46

Lambda calculus in semantics

The lambda calculus allows to illustrate how the semantic derivation of a
sentence proceeds in accordance with its syntactic structure.

S
((help Dorothy) Toto)

NP
Toto

VP
λy 7→ ((help Dorothy) y)

V
λx 7→ (λy 7→ ((help x) y))

NP
Dorothy

Computational Semantics (-o-) Sets, types and functions LOT 2009 29 / 46

Two observations

First, reductions need not come to an end.

(λx 7→ x x) (λx 7→ x x)
→ (λx 7→ x x) (λx 7→ x x)
→ . . .

and if you want things to get wild, try:
(λx 7→ x x x) (λx 7→ x x x)

Second, we can build a lot of expressions that do not make sense.

4 (λx 7→ x + 7)

Toto (λx 7→ (λy 7→ ((help x) y)))

(λy 7→ y2) (λx 7→ x + 7)

Computational Semantics (-o-) Sets, types and functions LOT 2009 30 / 46

Types

Types are sets of expressions, classifying them according to their
combinatorial behaviour.

τ ::= b | (τ → τ)

Basic types b:

Haskell: Int, String, Bool, [a], (a,b), Entity, . . .

Semantics: e (Entity) and t (Bool)

Examples:

help :: [(Entity,Entity)]

help’ :: (Entity,Entity) -> Bool

help’’ :: Entity -> Entity -> Bool

Computational Semantics (-o-) Sets, types and functions LOT 2009 31 / 46

Example

S
((help Dorothy) Toto) :: t

NP
Toto :: e

VP
λy 7→ ((help Dorothy) y) :: e → t

V
λx 7→ (λy 7→ ((help x) y)) :: e → e → t

NP
Dorothy :: e

Computational Semantics (-o-) Sets, types and functions LOT 2009 32 / 46

Typed lambda calculus

Each lambda expression is assigned a type, specified as follows:

Variables: For each type τ we have variables for that type,
e.g. x :: τ , x ′ :: τ , and so on.

Abstraction: If x :: δ and E :: τ , then (λx 7→ E) :: δ → τ .

Application: If E1 :: δ → τ and E2 :: δ, then (E1 E2) :: τ .

Computational Semantics (-o-) Sets, types and functions LOT 2009 33 / 46

Lambda calculus as a model of computation

The lambda calculus can also be thought of as a basic programming
language, with functions corresponding to programs or procedures.

Functional programming languages like Haskell are indeed based on the
lambda calculus. (You can even view them as an executable lambda
calculus augmented with constants and datatypes.)

Computational Semantics (-o-) Sets, types and functions LOT 2009 34 / 46

Now we have the formal tools at hand that we need in order to assign
meanings to natural language expressions.

Computational Semantics (-o-) Sets, types and functions LOT 2009 35 / 46

Specifying a model

Computational Semantics (-o-) Sets, types and functions LOT 2009 36 / 46

Specifying a model

A model, with respect to which we interpret expressions, is a pair

M = (U, I)

where

U is a non-empty set of objects (the universe)

I is an interpretation function that maps

every proper name to an object in U
every n-ary predicate to an n-ary relation over U
(or, in our case, to its characteristic function)

Computational Semantics (-o-) Sets, types and functions LOT 2009 37 / 46

Specifying a model: the universe

As universe we take the one we introduced earlier:

data Entity = A | B | C | D | E | F | G
| H | I | J | K | L | M | N
| O | P | Q | R | S | T | U
| V | W | X | Y | Z | Unspec
deriving (Eq,Show,Bounded,Enum)

entities = [minBound..maxBound]

Computational Semantics (-o-) Sets, types and functions LOT 2009 38 / 46

Specifying a model: interpretation functions

Proper names are interpreted as entities.

alice,dorothy,goldilocks,littleMook,atreyu :: Entity

alice = A
dorothy = D
goldilocks = G
littleMook = M
atreyu = Y

Computational Semantics (-o-) Sets, types and functions LOT 2009 39 / 46

Specifying a model: interpretation functions

One-place predicates are interpreted as characteristic functions of unary
relations.

list2OnePlacePred :: [Entity] -> (Entity -> Bool)
list2OnePlacePred xs = \ x -> x ‘elem‘ xs

girl,boy,wizard,child,laugh,cheer,shudder :: Entity -> Bool

girl = list2OnePlacePred [A,D,G,S]
boy = list2OnePlacePred [M,Y]
wizard = list2OnePlacePred [W,V]
child = \ x -> (girl x || boy x)

laugh = list2OnePlacePred [A,G,E]
cheer = list2OnePlacePred [M,D]
shudder = list2OnePlacePred [S]

Computational Semantics (-o-) Sets, types and functions LOT 2009 40 / 46

Specifying a model: interpretation functions

Two-place predicates are interpreted as characteristic functions of binary
relations.

curry :: ((a,b) -> c) -> a -> b -> c
curry f x y = f (x,y)

help,admire,defeat :: Entity -> Entity -> Bool

help = curry (‘elem‘ [(W,W),(V,V),(S,B),(D,M)])
admire = curry (‘elem‘ [(x,G) | x <- entities, person x])
defeat = curry (‘elem‘ [(x,y) | x <- entities,

y <- entities,
dwarf x && giant y])

Computational Semantics (-o-) Sets, types and functions LOT 2009 41 / 46

A gimmick

Computational Semantics (-o-) Sets, types and functions LOT 2009 42 / 46

Argument reduction

The entity Unspec can be used to leave arguments implicit. We can thus
define underspecified relations.

eat :: Entity -> Entity -> Bool
eat = curry (‘elem‘ [(A,I),(D,Unspec)])

We can also use it to define argument reducing functions, such as
passivization.

passivize :: (Entity -> Entity -> Bool) -> (Entity -> Bool)
passivize r = \ x -> r Unspec x

But: Relations> (passivize eat) I
False

Computational Semantics (-o-) Sets, types and functions LOT 2009 43 / 46

Fixing it

close :: [(Entity,Entity)] -> [(Entity,Entity)]
close r = r ++ [(Unspec,y) | x <- entities, y <- entities,

(x,y) ‘elem‘ r]
++ [(x,Unspec) | x <- entities, y <- entities,

(x,y) ‘elem‘ r]

Relations> close [(A,I),(D,Unspec)]
[(A,I),(D,Unspec),(Unspec,I),(Unspec,Unspec),(A,Unspec),
(D,Unspec)]

eat’ :: Entity -> Entity -> Bool
eat’ = curry (‘elem‘ (close [(A,I),(D,Unspec)]))

Relations> (passivize eat’) I
True

Computational Semantics (-o-) Sets, types and functions LOT 2009 44 / 46

Argument reduction

Reflexive pronouns like himself and herself can also be seen as argument
reducing functions. Applied to a two-place predicate, they unify the two
argument positions, thus yielding a one-place predicate.

self :: (a -> a -> b) -> (a -> b)
self r = \ x -> r x x

Two nice consequences:

Reflexive pronouns can only refer to co-arguments but not to
antecedents that are ‘further away’.

∗ Alicei said that Dorothy likes herselfi .

Reflexives cannot occur in subject position.

∗Herself likes Dorothy.

Computational Semantics (-o-) Sets, types and functions LOT 2009 45 / 46

More

This afternoon in Yoad Winter’s course: more on types and model
structure

Tomorrow in this course: typed meanings for natural language

Computational Semantics (-o-) Sets, types and functions LOT 2009 46 / 46

	Outline
	Sets
	Relations
	Functions
	Lambda Calculus
	Types
	Specifying a model
	Gimmick

