
Parsing and interpretation

Computational Semantics with Functional Programming
Jan van Eijck (CWI, Amsterdam) & Christina Unger (UiL-OTS, Utrecht)

LOT Summer School
Leiden, June 2009

Computational Semantics (-o-) Parsing and interpretation LOT 2009 1 / 46

Outline

1 Recognizing and parsing simple context-free languages

2 Parsers and parse trees

3 Parsing a natural language fragment

4 Adding features

5 Adding extraction

6 Adding semantics

Computational Semantics (-o-) Parsing and interpretation LOT 2009 2 / 46

Recognizing and parsing simple context-free languages

Computational Semantics (-o-) Parsing and interpretation LOT 2009 3 / 46

What is recognition and parsing?

Given a grammar, there are two ways to answer the question, whether a
certain string is in the language generated by that grammar:

yes or no (recognition)

yes or no, plus how it was derived (parsing)

Computational Semantics (-o-) Parsing and interpretation LOT 2009 4 / 46

Recognizing a very simple language

A very simple context-free language is the following screaming language:

E −→ argh! | a E

Examples: argh!, aargh!, aaaaaaaaaargh!

Exercise: Write a recognizer for it.

recognize :: String -> Bool
recognize [] = False
recognize s@(x:xs) = (s == "argh!")

|| (x == ’a’ && recognize xs)

Computational Semantics (-o-) Parsing and interpretation LOT 2009 5 / 46

From recognition to parsing

A parser should also take a string as input. However, it should not give a
Boolean as output but a list of parse trees.

Parse trees represent the structure of the expression, i.e. tell us how it was
built.

If the result is an empty list, the parse failed.

If it is a singleton list, there is a unique parse.

Otherwise, the input has more than one parse (i.e. is ambiguous).

Computational Semantics (-o-) Parsing and interpretation LOT 2009 6 / 46

Talking about trees

Trees are either leaves with lexical information, or nodes dominating a list
of trees.

data Tree a = Leaf a | Branch [Tree a]

Example: aaaargh!

Tree:

a
a

a argh!

aaaargh :: Tree String
aaaargh = Branch [Leaf "a",

Branch [Leaf "a",
Branch [Leaf "a",

Leaf "argh!"]]]

Computational Semantics (-o-) Parsing and interpretation LOT 2009 7 / 46

Exercise

Exercise: Write a function

string2length :: Tree String -> Tree Int

that takes a tree with string leaves as input and replaces all those strings
by their length.

Example:

(Branch [Leaf "Haskell",Branch [Leaf "is",Leaf "lazy"]])
 Branch [Leaf 7,Branch [Leaf 2,Leaf 4]]

Computational Semantics (-o-) Parsing and interpretation LOT 2009 8 / 46

Parsing our toy language

Exercise: Write a parser for our screaming language.

parse :: String -> [Tree String]
parse [] = []
parse s@(x:xs) = [Leaf "argh!" | s == "argh!"]

++ [Branch [Leaf "a",t] | t <- parse xs,
x == ’a’]

Computational Semantics (-o-) Parsing and interpretation LOT 2009 9 / 46

Parsers and parse trees

Computational Semantics (-o-) Parsing and interpretation LOT 2009 10 / 46

Parsers (more generally)

A parser scans a list of tokens (of type a) and tries to construct parse
objects (of type b) from a prefix of the input list, leaving the remainder for
further processing.

type Parser a b = [a] -> [(b,[a])]

Again, if the result list is empty, the parse failed.

If it contains one or more pairs (parse-object,[]), the input is in
the language generated by the grammar and it has the structure
encoded by parse-object.

A pair (partial-parse-object,[token]) is the result of a partial
parse.

Computational Semantics (-o-) Parsing and interpretation LOT 2009 11 / 46

Parse trees

We want the parse objects to be trees. We label the nodes of the trees
with syntactic information.

data ParseTree a b = Leaf a | Branch b [ParseTree a b]

Our terminals and labels will be strings, so we will consider parsers of type
Parser String String, i.e.:

[String] -> [(ParseTree String String,[String])]

Computational Semantics (-o-) Parsing and interpretation LOT 2009 12 / 46

Parsing a natural language fragment

Computational Semantics (-o-) Parsing and interpretation LOT 2009 13 / 46

A natural language fragment

Here is a simple context-free grammar for a very small fragment of English:

S −→ NP VP

NP −→ Alice | Dorothy | D N

VP −→ smiled | laughed | V NP

D −→ every | some | no

N −→ dwarf | wizard

V −→ met | liked

Some of the sentences we can build:

Some dwarf laughed.

Dorothy met Alice.

No wizard liked every dwarf.

Computational Semantics (-o-) Parsing and interpretation LOT 2009 14 / 46

Example parse tree

S

NP
Dorothy

VP

V
met

NP

D
some

N
wizard

data ParseTree a b = Leaf a | Branch b [ParseTree a b]

Branch "S" [Leaf "Dorothy",
Branch "VP" [Leaf "met",

Branch "NP" [Leaf "some",
Leaf "wizard"]]]

Computational Semantics (-o-) Parsing and interpretation LOT 2009 15 / 46

Building parsers

Input to our parsers will be a list of strings.

Parsing> words "Dorothy met some wizard"
["Dorothy","met","some","wizard"]

We will build parsers that directly correspond to the grammar rules. Our
building blocks will be:

elementary parsers (for parsing terminal strings)

parser combinators (for −→ and |)

Computational Semantics (-o-) Parsing and interpretation LOT 2009 16 / 46

Elementary parsers

Two elementary parsers are parsers that always succeed or always fail.

succeed :: b -> Parser a b
succeed r xs = [(r,[])]

failp :: Parser a b
failp xs = []

Computational Semantics (-o-) Parsing and interpretation LOT 2009 17 / 46

Elementary parsers

For parsing single tokens in our input list, we define the following parser.

symbol :: Eq a => a -> Parser a a
symbol s [] = []
symbol s (x:xs) | s == x = [(x,xs)]

| otherwise = []

Computational Semantics (-o-) Parsing and interpretation LOT 2009 18 / 46

Parsing words

Now we can parse the terminal string Alice with the parser

symbol "Alice",

the string laughed with the parser

symbol "laughed",

and so on. But we cannot yet handle rules like N−→ dwarf |wizard.
For that we need means for combining parsers into more complex parsers,
namely a dwarf-parser and a wizard-parser into an N-parser.

Computational Semantics (-o-) Parsing and interpretation LOT 2009 19 / 46

Parser combinators

Parser combinators are functions that combine parsers into a new parser,
or transform a parser into a different parser.

For choice (|), we define a parser combinator <|>, that takes two parsers
as arguments and returns a new parser that recognizes everything that
either one of the parsers recognizes.

(<|>) :: Parser a b -> Parser a b -> Parser a b
(p1 <|> p2) xs = p1 xs ++ p2 xs

Now we can define a parser for the rule N−→ dwarf |wizard.

nParser = symbol "dwarf" <|> symbol "wizard"

Computational Semantics (-o-) Parsing and interpretation LOT 2009 20 / 46

Parser combinators

Let us look at cases of nonterminals on the right-hand side of rules, e.g.
NP−→D N. To build a parser for this, we need sequential composition of
parsers. Its general form is:

(<*>) :: Parser a b -> Parser a b -> Parser a b
(p <*> q) xs = [(combine r1 r2,zs) | (r1,ys) <- p xs,

(r2,zs) <- q ys]

Let us assume we simply return strings as parse objects. Then we can
define <*> as follows:

(<*>) :: Parser a String -> Parser a String -> Parser a String
(p <*> q) xs = [(r1 ++ r2,zs) | (r1,ys) <- p xs,

(r2,zs) <- q ys]

Computational Semantics (-o-) Parsing and interpretation LOT 2009 21 / 46

Parser combinators

Now, an NP-parser for the rule NP−→Alice |Dorothy |D N can be
implemented like this:

npParser = symbol "Alice"
<|> symbol "Dorothy"
<|> (dParser <*> nParser)

Computational Semantics (-o-) Parsing and interpretation LOT 2009 22 / 46

Parsing the grammar 1

sParser :: Parser String String

sParser = npParser <*> vpParser

nParser = symbol "dwarf" <|> symbol "wizard"

dParser = symbol "every" <|> symbol "some"
<|> symbol "no"

npParser = symbol "Alice" <|> symbol "Dorothy"
<|> (dParser <*> nParser)

vpParser = symbol "smiled" <|> symbol "laughed"
<|> (vParser <*> npParser)

vParser = symbol "liked" <|> symbol "met"

Computational Semantics (-o-) Parsing and interpretation LOT 2009 23 / 46

Building parse trees

Up to now, we have built parsers of type Parser String String, i.e.
they do not yet give parse trees as a result.

In order to get parse trees, we will do postprocessing on the results of a
parse. For that we introduce the following parser combinator:

(<$>) :: (a -> b) -> Parser c a -> Parser c b
(f <$> p) xs = [(f r,ys) | (r,ys) <- p xs]

Example:

alice :: Parser String Int
alice = length <$> symbol "Alice"

Computational Semantics (-o-) Parsing and interpretation LOT 2009 24 / 46

Building parse trees

If the symbol we parse is a terminal, the parser should produce a leaf tree.

symbolT :: Eq a => a -> Parser a (ParseTree a b)
symbolT s = (\ x -> Leaf x) <$> symbol s

For convenience, we define the following type synonym:

type PARSER a b = Parser a (ParseTree a b)

Computational Semantics (-o-) Parsing and interpretation LOT 2009 25 / 46

Building parse trees

For more than one symbol on the right-hand side of a rule, we want the
parser to produce a branching tree.

parseAs :: b -> [PARSER a b] -> PARSER a b
parseAs label ps = (\ xs -> Branch label xs) <$> collect ps

The combinator collect collects the result of a list of parses operating
one after another.

collect :: [Parser a b] -> Parser a [b]
collect [] = succeed []
collect (p:ps) = p <:> collect ps

(<:>) :: Parser a b -> Parser a [b] -> Parser a [b]
(p <:> q) xs = [(r:rs,zs) | (r, ys) <- p xs,

(rs,zs) <- q ys]

Computational Semantics (-o-) Parsing and interpretation LOT 2009 26 / 46

Parsing the grammar 2

s,np,vp,d,n,v :: PARSER String Char

s = parseAs ’S’ [np,vp]

np = symbolT "Alice" <|> symbolT "Dorothy"
<|> parseAs ’N’ [d,n]

d = symbolT "every" <|> symbolT "some" <|> symbolT "no"

n = symbolT "dwarf" <|> symbolT "wizard"

vp = symbolT "smiled" <|> symbolT "laughed"
<|> parseAs ’V’ [v,np]

v = symbolT "liked" <|> symbolT "met"

Computational Semantics (-o-) Parsing and interpretation LOT 2009 27 / 46

Example

Parsing> s (words "Dorothy met some wizard")
[([.’S’ ["Dorothy",[.’V’ ["met",[.’N’ ["some","wizard"]]]]]],[])]

Computational Semantics (-o-) Parsing and interpretation LOT 2009 28 / 46

Adding features

Computational Semantics (-o-) Parsing and interpretation LOT 2009 29 / 46

Adding features

Adding a feature mechanism to a context-free grammar boils down to
replacing rules of the form A −→ B C by rules of the form Af −→ Bg Ch,
with f , g , h feature sets whose shape is determined by some feature
handling mechanism.

E.g., the rule S −→ NP VP is replaced by:

S∅ −→ NP{Sg} VP{Sg}

S∅ −→ NP{Pl} VP{Pl}

So we get:

Dorothy laughs.
∗Dorothy laugh.

All wizards laugh.
∗ All wizards laughs.

Computational Semantics (-o-) Parsing and interpretation LOT 2009 30 / 46

Adding features

We implement a mix of feature assignment and feature compatibility
check.

For convenience, we put all features in one datatype.

data Feat = | Masc | Fem | Neutr | Sg | Pl
| Fst | Snd | Thrd
| Nom | Acc | Infl | Wh

Computational Semantics (-o-) Parsing and interpretation LOT 2009 31 / 46

From strings to categories

Instead of considering words as strings, we implement them as categories,
including information about their features and subcategorization
properties.

data Cat = Cat Phon CatLabel [Feat] [Cat]

type Phon = String
type CatLabel = String

Examples: lexicon :: String -> [Cat]

lexicon "alice" = [Cat "alice" "NP" [Thrd,Fem,Sg] []]

lexicon "helped" = [Cat "helped" "VP" [Tense]
[Cat " " "NP" [Acc]]]

Computational Semantics (-o-) Parsing and interpretation LOT 2009 32 / 46

Feature compatibility

The function combine combines the feature lists of two categories. Failure
is indicated by [].

combine :: Cat -> Cat -> [[Feat]]
combine cat1 cat2 = [feats | length (gender feats) <= 1,

length (number feats) <= 1,
length (person feats) <= 1,
length (gcase feats) <= 1,
length (tense feats) <= 1]

where feats = (nub . sort) (fs cat1 ++ fs cat2)

Two categories agree if the attempt to combine them does not yield [].

agree :: Cat -> Cat -> Bool
agree cat1 cat2 = not (null (combine cat1 cat2))

Computational Semantics (-o-) Parsing and interpretation LOT 2009 33 / 46

Feature assignment

Some syntactic rules will assign a new feature to a category. E.g. the rule
that combines a subject with a predicate will assign the feature Nom to the
subject.

assign :: Feat -> Cat -> [Cat]
assign f c@(Cat s l fs cs) =

[Cat s l fs’ cs | fs’ <- combine c (Cat "" "" [f] [])]

Assignment will fail if the category already has an incompatible feature.

Computational Semantics (-o-) Parsing and interpretation LOT 2009 34 / 46

Parsing with categories

parseNP :: PARSER Cat Cat
parseNP = leafP "NP" <|> npRule

leafP :: CatLabel -> PARSER Cat Cat
leafP label [] = []
leafP label (c:cs) = [(Leaf c,cs) | catLabel c == label]

npRule :: PARSER Cat Cat
npRule xs = [(Branch (Cat " " "NP" fs []) [det,cn],zs) |

(det,ys) <- parseDET xs,
(cn, zs) <- parseCN ys,
fs <- combine (t2c det) (t2c cn),
agreeC det cn]

Computational Semantics (-o-) Parsing and interpretation LOT 2009 35 / 46

Parsing with categories

parseSent :: PARSER Cat Cat
parseSent = sRule

sRule :: PARSER Cat Cat
sRule xs = [(Branch (Cat " " "S" [] []) [np’,vp],zs) |

(np,ys) <- parseNP xs,
(vp,zs) <- parseVP ys,
np’ <- assignT Nom np,

agreeC np vp,
subcatList (t2c vp) == []]

Computational Semantics (-o-) Parsing and interpretation LOT 2009 36 / 46

Adding extraction

Computational Semantics (-o-) Parsing and interpretation LOT 2009 37 / 46

Grammars with extraction

S −→ NP VP

SNP −→ NPNP VP | NP VPNP

NP −→ Alice | Dorothy | D N

NPNP −→ ε

VP −→ smiled | laughed | V NP

VPNP −→ V NPNP

D −→ every | some | no

N −→ dwarf | wizard | N that SNP

V −→ met | liked

Computational Semantics (-o-) Parsing and interpretation LOT 2009 38 / 46

Example

S

NP
Alice

VP

V
met

NP

D
some

N

N
dwarf

that SNP

NP
Dorothy

VPNP

V
liked

NPNP

ε

Computational Semantics (-o-) Parsing and interpretation LOT 2009 39 / 46

Stack parsers for extraction

For handling extractions, we enrich our parsers with a stack of ‘extracted
material’.

type StackParser a b = [a] -> [a] -> [(b,[a],[a])]
type SPARSER a b = StackParser a (ParseTree a b)

We define adapted versions of the parser combinators, that pass around
the stack, as well as stack operations for pushing new items on the stack
and popping the top item from a stack.

push :: Cat -> SPARSER Cat Cat -> SPARSER Cat Cat
push c p stack = p (c:stack)

pop :: CatLabel -> SPARSER Cat Cat
pop c [] xs = []
pop c (u:us) xs | catLabel u == c = [(Leaf u, us, xs)]

| otherwise = []

Computational Semantics (-o-) Parsing and interpretation LOT 2009 40 / 46

Example

Relative clauses consist of a relative plus a sentence with an NP-gap. This
is created by pushing a gap of category NP on a parser for sentences.

relR :: SPARSER Cat Cat
relR us xs = [(Branch (Cat "_" "COMP" fs []) [rel,s],ws,zs) |

(rel,vs,ys) <- leafPS "REL" us xs,
fs <- [fs (t2c rel)],
gap <- [Cat "#" "NP" fs []],
(s,ws,zs) <- push gap prsS vs ys]

An NP can be parsed by popping an NP from the extraction stack.

prsNP :: SPARSER Cat Cat
prsNP = leafPS "NP" <||> npR <||> pop "NP"

Computational Semantics (-o-) Parsing and interpretation LOT 2009 41 / 46

The final parsing function

parses :: String -> [ParseTree Cat Cat]
parses str = let ws = lexer str

in [s | catlist <- collectCats lexicon ws,
(s,[],[]) <- prsTXT [] catlist

++ prsYN [] catlist
++ prsWH [] catlist]

lexer preprocesses the string (removes punctuation marks, maps
capital letters to lower ones, and so on)

collectCats looks up the words in a database (like lexicon) of
type String -> [Cat]

Testing: testSuite1, testSuite2

Computational Semantics (-o-) Parsing and interpretation LOT 2009 42 / 46

Adding semantics

Computational Semantics (-o-) Parsing and interpretation LOT 2009 43 / 46

Defining logical forms

First, we define logical forms LF.

data LF = Rel String [Term]
| Eq Term Term
| Neg LF
| Impl LF LF
| Equi LF LF
| Conj [LF]
| Disj [LF]
| Qt GQ Abstract Abstract

data Term = Const String | Var Int
data GQ = Sm | All | Th | Most | Many | Few
data Abstract = MkAbstract Int LF

Computational Semantics (-o-) Parsing and interpretation LOT 2009 44 / 46

Translating trees into LFs

Then we map parse trees to logical forms by matching every parse rule
with a logical form translation rule.

Examples:

trS :: ParseTree Cat Cat -> LF
trS (Branch (Cat "S") [np,vp]) = (trNP np) (trVP vp)

trNP :: ParseTree Cat Cat -> (Term -> LF) -> LF
trNP (Leaf (Cat "#" "NP")) = p -> p (Var 0)
trNP (Leaf (Cat name "NP")) = p -> p (Const name)
trNP (Branch (Cat "NP") [det,cn]) = (trDET det) (trCN cn)

Computational Semantics (-o-) Parsing and interpretation LOT 2009 45 / 46

Translating trees into LFs

process :: String -> [LF]
process string = map transS (parses string)

Finally, we need one more step for interpreting these logical forms.

Computational Semantics (-o-) Parsing and interpretation LOT 2009 46 / 46

	Outline
	Recognizing and parsing simple context-free languages
	Parsers and parse trees
	Parsing a natural language fragment
	Adding features
	Adding extraction
	Adding semantics

