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Abstract

We look at the distinction between form and content, or syntax and semantics, or structure
and meaning. After making this distinction a bit more precise, we study the composition of
meaning.



Module Declaration

module FormContent

where

import List

import Char



Form

Form is given by syntax. As an example, we give a datatype for syntax

trees in Haskell.



data Sent = Sent NP VP

deriving (Eq,Show)

data NP = Ann | Mary | Bill | Johnny

| NP1 DET CN | NP2 DET RCN

deriving (Eq,Show)

data DET = Every | Some | No | The | Most

| Atleast Int

deriving (Eq,Show)

data CN = Man | Woman | Boy | Person
| Thing | House

deriving (Eq,Show)



data RCN = CN1 CN VP | CN2 CN NP TV
deriving (Eq,Show)

data VP = Laughed | Smiled | VP1 TV NP

deriving (Eq,Show)

data TV = Loved | Respected | Hated | Owned

deriving (Eq,Show)



Content

It is hard to say what content is. But the relevant notion is sameness

of content.

Replace the question ‘What is the meaning of a sentence?’ by the more

precise question ‘When do two sentences express the same meaning’?

Let us restrict attention to declarative sentences. Declarative sentences

are sentences that can be either true or false in a given context.

‘It is raining today in Utrecht’ and ‘I am Dutch’ are declarative sen-

tences. If they are uttered, the context of utterance fixes the meaning

of ‘today’ and ‘I’, and the uttered sentences are either true or false in

that context.

‘Let’s try to be smarter next time’ is not a declarative sentence. ‘Is

drinking coffee bad for you?’ is not a declarative sentence either.



Sameness of Meaning

‘Jan van Eijck is Dutch’ and ‘I am Dutch’ do not have the same mean-

ing, for if I utter them they are both true, and if someone from abroad

utters them one will be true and the other false.

‘Jan van Eijck is Dutch’ and ‘Jan van Eijck is Nederlander’ have the

same meaning, as have ‘Cinderella est belle’ and ‘Assepoester is mooi’.

To check for ‘Sameness of meaning’ one has to interpret sentences in

many different situations, and check if the resulting truth values are

always the same.

But what does ‘interpretation of a sentence in a situation’ mean?

To replace the intuitive understanding by a precise understanding we

can look at formal examples: the language of predicate logic and its

semantics, or the Haskell language, and its interpretation.



Basic Sentences in Predicate Logic, and in Haskell

Predicate logic is the logic of predicates. A predicate is a word that

combines with a certain number of proper names to form a basic sen-

tence.

Example:

P (a, b)

This expresses that a, b are in the relation given by P . But what is

”the relation given by P”? That depends on the interpretation.



Interpretation

What is an interpretation?

An interpretation for predicates consists of a domain of discourse D

and an instruction for connecting the predicates to the domain. If P is

a predicate that takes a pair of names to form a basic sentence, then

an interpretation for P is a binary relation on D.

The number of names that a basic predicate needs to form a basic

sentence is called the arity of the predicate. Predicates that take one

name are called unary. Their interpretation is a subset of the domain

of discourse D. Predicates that take two names are called binary,

predicates that take three names ternary.



Predicate Logic in Haskell

The domain of discourse is some Haskell type. Let us say the type of

Integers.

Predicates are properties of integers, such as odd, even, threefold,

(>0), and relations such as (>), (<=).

Logical operations on predicates are negation, conjunction, disjunction.

‘even or threefold’ becomes \ x -> even x || rem x 3 == 0.

‘not even’ becomes not . even or \ x -> not (even x).

Quantifications are ‘some integers in [1..100] are even’, or ‘all integers

in [1..] are positive’.



Examples of Quantifications in Haskell

‘some integers in [1..100] are even’

FormContent> any even [1..100]

True

‘all integers in [1..100] are positive’:

FormContent> all (>0) [1..100]

True

FormContent> all (>0) [1..]

{Interrupted!}

Question: what is the type of all and any ?

Question: does a quantification over an infinite list (like [1..]) always

run forever?



A Domain of Discourse in Haskell

data Entity = A | B | C | D | E | F | G

| H | I | J | K | L | M | N

| O | P | Q | R | S | T | U

| V | W | X | Y | Z | Unspec

deriving (Eq,Bounded,Enum)

Because Entity is a bounded and enumerable type, we can put all of

its elements in a finite list:

entities :: [Entity]

entities = [minBound..maxBound]



A Show Function for Entities

instance Show Entity where

show (A) = "A"; show (B) = "B"; show (C) = "C";

show (D) = "D"; show (E) = "E"; show (F) = "F";

show (G) = "G"; show (H) = "H"; show (I) = "I";

show (J) = "J"; show (K) = "K"; show (L) = "L";

show (M) = "M"; show (N) = "N"; show (O) = "O";

show (P) = "P"; show (Q) = "Q"; show (R) = "R";

show (S) = "S"; show (T) = "T"; show (U) = "U";

show (V) = "V"; show (W) = "W"; show (X) = "X";

show (Y) = "Y"; show (Z) = "Z"; show (Unspec)= "*"

FormContent> entities

[A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,*]



Relations on the Domain

Example relation:

rel1 :: Entity -> Entity -> Bool

rel1 A A = True

rel1 B A = True

rel1 D A = True

rel1 C B = True

rel1 C C = True

rel1 C D = True

rel1 _ _ = False

FormContent> filter (\x -> rel1 x A) entities

[A,B,D]



Arity Reduction on Binary Relations

self :: (a -> a -> b) -> a -> b

self = \ f x -> f x x

The following definition picks the reflexive part out of rel1:

rel2 = self rel1

FormContent> filter (self rel1) entities

[A,C]



Representing a Model

Interpretations for proper names:

ann, bill, lucy, mary, johnny :: Entity

ann = A; bill = B; lucy = L

mary = M; johnny = J



Conversion function

For easy specification of (unary) predicates:

list2pred :: Eq a => [a] -> a -> Bool

list2pred = flip elem

This uses:

flip :: (a -> b -> c) -> b -> a -> c

flip f x y = f y x



Interpretations for Predicates

man, boy, woman, tree, house :: Entity -> Bool

leaf, stone, gun, person, thing :: Entity -> Bool

man = list2pred [B,J]

woman = list2pred [A,C,M,L]

boy = list2pred [J]

tree = list2pred [T,U,V]

house = list2pred [H,K]

leaf = list2pred [X,Y,Z]

stone = list2pred [S]

gun = list2pred [G]



A person is a man or a woman, and a thing is everything which is neither

a person nor the special object Unspec:

person = \ x -> (man x || woman x)

thing = \ x -> not (person x || x == Unspec)



Meanings for Intransitive Verbs

Same type as CN meanings:

laugh, smile :: Entity -> Bool

laugh = list2pred [M]

smile = list2pred [A,B,J,M]



Binary Relations: Meanings for Transitive Verbs

love, respect, hate, own, wash, shave, drop0

:: (Entity, Entity) -> Bool

love = list2pred

[(B,M),(J,M),(J,J),(M,J),(A,J),(B,J)]

respect = list2pred [(x,x)

| x <- entities, person x ]

hate = list2pred [(x,B)

| x <- entities, woman x ]

own = list2pred [(M,H)]

wash = list2pred [(A,A),(A,J),(L,L),(B,B),(M,M)]

shave = list2pred [(A,J),(B,B)]

drop0 = list2pred [(T,X),(U,Y),(U,Z),(Unspec,V)]



Ternary Relations

break0, kill ::

(Entity, Entity, Entity) -> Bool

break0 = list2pred [(M,V,S), (J,W,G)]

kill = list2pred

[(M,L,G), (Unspec,A,D), (Unspec,J,Unspec)]

The verbs give and sell are also interpreted as ternary relations.

give, sell :: (Entity, Entity, Entity) -> Bool

give = list2pred [(M,V,L), (L,G,M)]

sell = list2pred [(J,J,M), (J,T,M), (A,U,M)]



Conversions for Ternary Relations

curry3 :: ((a,b,c) -> d)

-> a -> b -> c -> d

curry3 f x y z = f (x,y,z)

uncurry3 ::

(a -> b -> c -> d) -> ((a,b,c) -> d)

uncurry3 f (x,y,z) = f x y z



Semantic Interpretation: Compositionality

Fix a situation: a domain of discourse with properties and relations

defined on it. Logicians call this a model.

Next, fix the interpretation of individual words, by linking proper names

to entities in the domain of discourse, intransitive verbs and common

nouns to properties, transitive verbs to binary relations, and so on.

Finally, define a composition function that computes the meanings of

composite expressions from the meanings of their parts.

This is called: compositional interpretation.

Note: The semantic type of the interpretation depends on the syntactic

category of the expression that gets interpreted.



Semantic Interpretation: Sentences

Syntactic categories get interpretations of appropriate types.

Type for the interpretation of sentences: Bool.

intSent :: Sent -> Bool

intSent (Sent np vp) = (intNP np) (intVP vp)



Semantic Interpretation: Noun Phrases

Type for the interpretation of NPs: (Entity -> Bool) -> Bool.

intNP :: NP -> (Entity -> Bool) -> Bool

intNP Ann = \ p -> p ann

intNP Mary = \ p -> p mary

intNP Bill = \ p -> p bill

intNP Johnny = \ p -> p johnny

intNP (NP1 det cn) = (intDET det) (intCN cn)

intNP (NP2 det rcn) = (intDET det) (intRCN rcn)



Semantic Interpretation: Verb Phrases

intVP :: VP -> Entity -> Bool

intVP Laughed = laugh

intVP Smiled = smile

intVP (VP1 tv np) =

\ subj ->

intNP np (\ obj -> intTV tv (subj,obj))



Semantic Interpretation: Transitive Verbs

intTV :: TV -> (Entity,Entity) -> Bool

intTV Loved = love

intTV Respected = respect

intTV Hated = hate

intTV Owned = own



Semantics Interpretation: Common Nouns

Similar to that of Verb Phrases:

intCN :: CN -> Entity -> Bool

intCN Man = man

intCN Boy = boy

intCN Woman = woman

intCN Person = person

intCN Thing = thing

intCN House = house



Semantic Interpretation of Determiners: Some and Every

Type of interpretation function:

intDET :: DET -> (Entity -> Bool)

-> (Entity -> Bool) -> Bool

intDET Some p q = any q (filter p entities)

intDET Every p q = all q (filter p entities)



Semantic Interpretation of Determiners: The

The interpretation of The consists of two parts:

1. a check that the CN property is unique, i.e., that it is true of

precisely one entity in the domain,

2. a check that the CN and the VP property have an element in

common, in other words, the Some check on the two properties.

intDET The p q = singleton plist && q (head plist)

where

plist = filter p entities

singleton [x] = True

singleton _ = False



Semantic Interpretation of Determiners: No

The interpretation of No is just the negation of the interpretation of

Some:

intDET No p q = not (intDET Some p q)



Semantic Interpretation of Determiners: Most

The interpretation of Most compares the length of the list of entities

satisfying the first argument (the restrictor argument) with the length of

the list of entities satisfying the second argument (the body argument).

intDET Most p q = length pqlist >

length (plist \\ qlist)

where

plist = filter p entities

qlist = filter q entities

pqlist = filter q plist

Exercise: Implement the interpretation function for (Atleast n).



Semantic Interpretation of Relativized CNs

Relativised common nouns of the form that CN VP:

intRCN :: RCN -> Entity -> Bool

intRCN (CN1 cn vp) =

\ e -> ((intCN cn e) && (intVP vp e))

Relativised common nouns of the form that CN NP TV:

intRCN (CN2 cn np tv) = \ e ->

((intCN cn e) &&

(intNP np (\ subj -> (intTV tv (subj,e)))))



Example Queries

FormContent> intSent (Sent (NP1 The Boy) Smiled)

True

FormContent> intSent (Sent (NP1 The Boy) Laughed)

False

FormContent> intSent (Sent (NP1 Some Man) Laughed)

False

FormContent> intSent (Sent (NP1 No Man) Laughed)

True

FormContent> intSent (Sent (NP1 Some Man)

(VP1 Loved (NP1 Some Woman)))

True

FormContent> intSent (Sent (NP2 No (CN1 Man (VP1 Loved Mary)))

Laughed)

True



After the break

More about logic . . .


