DEMO — A Demo of Epistemic Modelling

Jan van Eijck*
CWI, Kruislaan 413, 1098 SJ Amsterdam

May 22, 2007

Abstract

This paper introduces and documents DEMO, a Dynamic Epistemic Modelling tool. DEMO allows
modelling epistemic updates, graphical display of update results, graphical display of action models,
formula evaluation in epistemic models, translation of dynamic epistemic formulas to PDL formulas.
Also, DEMO implements the reduction of dynamic epistemic logic [22, 2, 3, 1] to PDL given in [17] and
presented in the context of generic languages for communication and change in [6]. Epistemic models
are minimized under bisimulation, and update action models are simplified under action emulation (an
appropriate structural notion for having the same update effect, cf. [19]). The paper is an exemplar
of tool building for epistemic update logic. It contains the essential code of an implementation in
Haskell [27], in ‘literate programming’ style [28], of DEMO.

Keywords: Knowledge representation, epistemic updates, dynamic epistemic modelling, action models.
information change, logic of communication.
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Introduction

In this introduction we will demonstrate how DEMO, which is short for Dynamic Epistemic MOdelling,
can be used to check semantic intuitions about what goes on in epistemic update situations.? For didactic
purposes, the initial examples have been kept extremely simple. Although the situation of message passing
about just two basic propositions with just three epistemic agents already reveals many subtleties, the
reader should bear in mind that DEMO is capable of modelling much more complex situations.

In a situation where you and I know nothing about a particular aspect of the state of the world (about
whether p and ¢ hold, say), our state of knowledge is modelled by a Kripke model where the worlds are
the four different possibilities for the truth of p and ¢ (0, p, ¢, pq), your epistemic accessibility relation ~,
is the total relation on these four possibilities, and mine ~y is the total relation on these four possibilities
as well. There is also ¢, who like the two of us, is completely ignorant about p and ¢. This initial model
is generated by DEMO as follows.

DEMO> showM (initE [P 0,Q 0] [a,b,cl)

*Other affiliations: Uil-OTS, Janskerkhof 13, 3512 BL Utrecht and NIAS, Meijboomlaan 1, 2242 PR Wassenaar
1Or short for DEMO of Epistemic MOdelling, for those who prefer co-recursive acronyms.
2The program source code is available from http://www.cwi.nl/~jve/demo/.



==> [0,1,2,3]

[0,1,2,3]
(0,[1)(1,[p])(2,[q]) (3, [p,al)
(a,[[0,1,2,311)

(b, [[0,1,2,31])
(c,[[0,1,2,3]1])

Here initE generates an initial epistemic model, and showM shows that model in an appropriate form,
in this case in the partition format that is made possible by the fact that the epistemic relations are all
equivalences.

As an example of a different kind of representation, let us look at the picture that can be generated with
dot [30] from the file produced by the DEMO command writeP "filename" (initE [P 0,Q 0]).

This is a model where none of the three agents a, b or ¢ can distinguish between the four possibilities
about p and q. DEMO shows the partitions generated by the accessibility relations ~, ~, ~.. Since
these three relations are total, the three partitions each consist of a single block. Call this model 0.

Now suppose a wants to know whether p is the case. She asks whether p and receives a truthful answer
from somebody who is in a position to know. This answer is conveyed to @ in a message. b and ¢ have
heard a’s question, and so are aware of the fact that an answer may have reached a. b and ¢ have seen
that an answer was delivered, but they don’t know which answer. This is not a secret communication,
for b and ¢ know that a has inquired about p. The situation now changes as follows:

DEMO> showM (upd e0 (message a p))
==> [1,4]

[0,1,2,3,4,5]

0,1, [pl) (2, [p])(3,[q]) (4, [p,ql)
(5, [p,ql)

(a, [[0,2,3,51,[1,411)
(v,[[0,1,2,3,4,5]11)
(c,[[0,1,2,3,4,5]1)

Note that upd is a function for updating an epistic model with (a representation of) a communicative
action. In this case, the result is again a model where the three accessibility relations are equivalences,



but one in which a has restricted her range of possibilities to 1,4 (these are worlds where p is the case),
while for b and c all possibilities are still open. Note that this epistemic model has two ‘actual worlds’:
this means that there are two possibilities that are compatible with ‘how things really are’. In graphical
display format these ‘actual worlds’ show up as double ovals:

abc

DEMO also allows us to display the action models corresponding to the epistemic updates. For the
present example (we have to indicate that we want the action model for the case where {a, b, c} is the set
of relevant agents):

showM ((message a p) [a,b,c])
==> [0]

[0,1]

(0,p) (1,T)

(a,[[01,0[11D

(b, [[0,111)

(c,[[0,11])

Notice that in the result of updating the initial situation with this message, some subtle things have
changed for b and ¢ as well. Before the arrival of the message, O,(—0,p A ~0,—p) was true, for b knew
that a did not know about p. But now b has heard a’s question about p, and is aware of the fact
that an answer has reached a. So in the new situation b knows that a knows about p. In other words,
Oy(d,pVO,—p) has become true. On the other hand it is still the case that b knows that a knows nothing
about ¢: O,—0,q is still true in the new situation. The situation for ¢ is similar to that for b. These
things can be checked in DEMO as follows:



DEMO> isTrue (upd e0 (message a p)) (K b (Neg (K a q)))
True
DEMO> isTrue (upd €0 (message a p)) (K b (Neg (K a p)))
False

If you receive the same message about p twice, the second time the message gets delivered has no further
effect. Note the use of upds for a sequence of updates.

DEMO> showM (upds e0 [message a p, message a pl)
==> [1,4]

[0,1,2,3,4,5]

0,[1>(,pl)(2,[p]) (3, [q]) (4, [p,q])

(5, [p,ql)

(a,[[0,2,3,5],[1,4]11)

(b, [[0,1,2,3,4,5]1)

(c,[[0,1,2,3,4,5]11)

Now suppose that the second action is a message informing b about p:

DEMO> showM (upds e0 [message a p, message b pl)
==> [1,6]

[0,1,2,3,4,5,6,7,8,9]

(0,11, [pl) (2, [p]) (3, [p]) (4, [p1)
(5,[q1)(6,[p,ql) (7, [p,q]) (8,[p,ql) (9, [p,ql)

(a,[[0,3,4,5,8,9],[1,2,6,711)
(b, [[0,2,4,5,7,9]1,[1,3,6,8]11)
(c,[[0,1,2,3,4,5,6,7,8,9]11)

The graphical representation of this model is slightly more difficult to fathom at a glance. See Figure 1.
In this model ¢ and b both know about p, but they do not know about each other’s knowledge about p.
c still knows nothing, and both a and b know that ¢ knows nothing. Both O,0,p and O,0,p are false in
this model. O,—0,p and O,—0,p are false as well, but O,-0.p and O,—0.p are true.

DEMO> isTrue (upds e0 [message a p, message b p]) (K a (X b p))

False

DEMO> isTrue (upds eO [message a p, message b p]) (X b (K a p))

False

DEMO> isTrue (upds e0 [message a p, message b p]) (K b (Neg (K b p)))
False

DEMO> isTrue (upds e0 [message a p, message b p]) (K b (Neg (K c p)))
True

The order in which a and b are informed does not matter:

DEMO> showM (upds e0 [message b p, message a pl)
==> [1,6]

0,1,2,3,4,5,6,7,8,9]

(0,[1> (1, [pl) (2, [p]) (3, [p]) (4, [p1)
(5,[q1)(6,[p,q])(7,[p,q]) (8, [p,ql) (9, [p,ql)

(a, [[0,2,4,5,7,9],[1,3,6,8]11)
(b, [[0,3,4,5,8,9],[1,2,6,71])
(c,[[0,1,2,3,4,5,6,7,8,91])



Figure 1: Situation after second message

Modulo renaming this is the same as the earlier result. The example shows that the epistemic effects of
distributed message passing are quite different from those of a public announcement or a group message.

DEMO> showM (upd e0 (public p))
==> [0,1]

[0,1]

0, [p1) (1, [p,ql)

(a, [[0,111)

(b, [[0,111)

(c,[[0,11D)

The result of the public announcement that p is that a, b and c are informed that p and about each
other’s knowledge about p.

DEMO allows to compare the action models for public announcement and individual message passing:

DEMO> showM ((public p) [a,b,cl)



==> [0]
[0]

(0,p)

(a, [[0]11)
(b, [[0]11)
(c,[[01D)

DEMO> showM ((cmp [message a p, message b p, message c p]) [a,b,c])
==> [0]

(0,1,2,3,4,5,6,7]

0,p) (1,p) (2,p) (3,p) (4,p)

(5,p) (6,p)(7,T)

(a, [[0,1,2,3],[4,5,6,711)

(b, [[0,1,4,5],[2,3,6,71])

(c,[[0,2,4,6],[1,3,5,711)

Here cmp gives the sequential composition of a list of communicative actions. This involves, among other
things, computation of the appropriate preconditions for the combined action model.

More subtly, the situation is also different from a situation where a, b receive the same message that p,
with a being aware of the fact that b receives the message and vice versa. Such group messages create
common knowledge.

DEMO> showM (groupM [a,b] p [a,b,c])
==> [0]

[0,1]

0,p) (1,

(a,[[0],[111)

(b, [[0]1,[111)

(c,[[0,11])

The difference with the case of the two separate messages is that now a and b are aware of each other’s
knowledge that p:

DEMO> isTrue (upd e0 (groupM [a,b] p)) (K a (K b p))
True
DEMO> isTrue (upd e0 (groupM [a,b] p)) (K b (K a p))
True

In fact, this awareness goes on, for arbitrary nestings of O, and O, which is what common knowledge
means. Common knowledge can be checked directly, as follows:

DEMO> isTrue (upd e0 (groupM [a,b] p)) (CK [a,b] p)
True

It is also easily checked in DEMO that in the case of the separate messages no common knowledge is
achieved.

Next, look at the case where two separate messages reach a and b, one informing a that p and the other
informing b that —q:

DEMO> showM (upds e0 [message a p, message b (Neg q)])
==> [2]



[0,1,2,3,4,5,6,7,8]
0,[1)(1,01)(2,0p]) (3, [p1) (4, [P
(5,[pl)(6,[q1)(7,[p,ql) (8, [p,ql)
(a,[[0,1,4,5,6,8],[2,3,71]1)

(v, [[0,2,41,[1,3,5,6,7,8]])
(c,[[0,1,2,3,4,5,6,7,8]11)

Again the order in which these messages are delivered is immaterial for the end result, as you should
expect:

DEMO> showM (upds e0 [message b (Neg q), message a pl)
==> [2]

[0,1,2,3,4,5,6,7,8]

0, @, 12, p] @3, p]) (4, [pD
(5,[pl)(6,[q1)(7,[p,ql) (8, [p,ql)
(a,[[0,1,3,5,6,8],[2,4,71])

(b, [[0,2,31,[1,4,5,6,7,811)

(c,[[0,1,2,3,4,5,6,7,811)

Modulo a renaming of worlds, this is the same as the previous result.

The logic of public announcements and private messages is related to the logic of knowledge, with [24] as
the pioneer publication. This logic satisfies the following postulates:

e knowledge distribution O,(p = ) = (O = O,1) (if @ knows that ¢ implies ¢, and she knows
©, then she also knows 1),

e positive introspection O,p = O,0,¢ (if a knows ¢, then a knows that she knows ),

e negative introspection =0, = O,-0,¢p (if @ does not know ¢, then she knows that she does not
know),

e truthfulness O, = ¢ (if a knows ¢ then ¢ is true).

As is well known, the first of these is valid on all Kripke frames, the second is valid on precisely the
transitive Kripke frames, the third is valid on precisely the euclidean Kripke frames (a relation R is
euclidean if it satisfies VaVyVz((xRy A ©Rz) = yRz)), and the fourth is valid on precisely the reflexive
Kripke frames. A frame satisfies transitivity, euclideanness and reflexivity iff it is an equivalence relation,
hence the logic of knowledge is the logic of the so-called S5 Kripke frames: the Kripke frames with an
equivalence ~, as epistemic accessibility relation. Multi-agent epistemic logic extends this to multi-S5,
with an equivalence ~y, for every b € B, where b is the set of epistemic agents.

Now suppose that instead of open messages, we use secret messages. If a secret message is passed to a, b
and c are not even aware that any communication is going on. This is the result when a receives a secret
message that p in the initial situation:

DEMO> showM (upd e0 (secret [a] p))
==> [1,4]

[0,1,2,3,4,5]

0,1, pl)(2,[p])(3,[q]) (4, [p,q])
(5, [p,q)

(a, [([1,[0,2,3,5]),([1,[1,4101)

(b, [([1,4],[0,2,3,51)])
(c,[([1,4],[0,2,3,51)D)



This is not an S5 model anymore. The accessibility for a is still an equivalence, but the accessibility for
b is lacking the property of reflexivity. The worlds 1,4 that make up a’s conceptual space (for these are
the worlds accessible for a from the actual worlds 1,4) are precisely the worlds where the b and ¢ arrows
are not reflexive. b enters his conceptual space from the vantage points 1 and 4, but b does not see these
vantage points itself. Similarly for ¢. In the DEMO representation, the list ([1,4],[0,2,3,5]) gives
the entry points [1,4] into conceptual space [0,2,3,5].

The secret message has no effect on what b and ¢ believe about the facts of the world, but it has effected
b’s and c’s beliefs about the beliefs of a in a disastrous way. These beliefs have become inaccurate. For
instance, b now believes that a does not know that p, but he is mistaken! The formula O,-0,p is true
in the actual worlds, but —0O,p is false in the actual worlds, for a does know that p, because of the secret
message. Here is what DEMO says about the situation (isTrue evaluates a formula in all of the actual
worlds of an epistemic model):

DEMO> isTrue (upd e0 (secret [a]l p)) (K b (Neg (X a p)))
True

DEMO> isTrue (upd eO (secret [a] p)) (Neg (K a p))

False

This example illustrates a regress from the world of knowledge to the world of consistent belief: the result
of the update with a secret propositional message does not satisfy the postulate of truthfulness anymore.

The logic of consistent belief satisfies the following postulates:

e knowledge distribution O, (¢ = ¥) = (Oap = 0u1),
e positive introspection O, = O,0,¢,
e negative introspection O, = O,-0,¢p,

e counsistency O,p = <Oup (if a believes that ¢ then there is a world where ¢ is true, i.e., ¢ is
consistent).

Consistent belief is like knowledge, except for the fact that it replaces the postulate of truthfulness
O, = ¢ by the weaker postulate of consistency.

Since the postulate of consistency determines the serial Kripke frames (a relation R is serial if Va3y xRy),
the principles of consistent belief determine the Kripke frames that are transitive, euclidean and serial,
the so-called KD45 frames.

In the conceptual world of secrecy, inconsistent beliefs are not far away. Suppose that a, after having
received a secret message informing her about p, sends a message to b to the effect that O,p. The trouble
is that this is inconsistent with what b believes.

DEMO> showM (upds e0 [secret [a] p, message b (K a p)])
==> [1,5]

[0,1,2,3,4,5,6,7]

0,1, (2, [p]) (3, [pl) 4, [q])

(5,[p,ql) (6, [p,q]) (7, [p,ql)

(a, (11, [(07,(0,3,4,71),(0],[1,2,5,61)1))

(b, ([1,5],[([2,6],[0,3,4,71)1))
(c,([1,[([1,2,5,6],[0,3,4,71)1))

This is not a KD45 model anymore, for it lacks the property of seriality for b’s belief relation. b’s belief
contains two isolated worlds 1,5. Since 1 is the actual world, this means that b’s belief state has become
inconsistent: from now on, b will believe anything.



So we have arrived at a still weaker logic. The logic of possibly inconsistent belief satisfies the following
postulates:

e knowledge distribution O, (¢ = ¥) = (up = Ou1),
e positive introspection O, = 0O,0,¢,

e negative introspection 0O, = O,-0,¢p.

This is the logic of K45 frames: frames that are transitive and euclidean.

In [16] some results and a list of questions are given about the possible deterioration of knowledge and
belief caused by different kind of message passing. E.g., the result of updating an S5 model with a public
announcement or a non-secret message, if defined, is again S5. The result of updating an S5 model with
a secret message to some of the agents, if defined, need not even be KD45. One can prove that the result
is KD45 iff the model we start out with satisfies certain epistemic conditions. The update result always
is K45. Such observations illustrate why S5, KD45 and K45 are ubiquitous in epistemic modelling. See
[7, 23] for general background on modal logic, and [9, 20] for specific background on these systems.

If this introduction has convinced the reader that the logic of public announcements, private messages
and secret communications is rich and subtle enough to justify the building of the conceptual modelling
tools to be presented in the rest of the report, then it has served its purpose.

In the rest of the report, we first fix a formal version of epistemic update logic as an implementation goal.
After that, we are ready for the implementation.

Further information on various aspects of dynamic epistemic logic is provided in [1, 2, 4, 5, 12, 20, 21, 29].

Design

DEMO is written in a high level functional programming language Haskell [27]. Haskell is a non-
strict, purely-functional programming language named after Haskell B. Curry. The design is modular.
Operations on lists and characters are taken from the standard Haskell List and Char modules. The
following modules are part of DEMO:

Models The module that defines general models over a number of agents. In the present implemenation
these are A through E. It turns out that more than five agents are seldom needed in epistemic
modelling. General models have variables for their states and their state adornments. By letting the
state adornments be valuations we get Kripke models, by letting them be formulas we get update
models.

MinBis The module for minimizing models under bisimulation by means of partition refinement.
Display The module for displaying models in various formats. Not discussed in this paper.

ActEpist The module that specializes general models to action models and epistemic models. Formulas
may contain action models as operators. Action models contain formulas. The definition of formulas
is therefore also part of this module.

DPLL Implementation of Davis, Putnam, Logemann, Loveland (DPLL) theorem proving [10, 11] for
propositional logic. The implementation uses discrimination trees or tries, following [33]. This is
used for formula simplification. Not discussed in this paper.



Semantics Implementation of the key semantic notions of epistemic update logic. It handles the mapping
from communicative actions to action models.

DEMO Main module.

Main Module

1 Main Module Declaration

module DEMO
(
module List,
module Char,
module Models,
module Display,
module MinBis,
module ActEpist,
module DPLL,
module Semantics
)

where

import List
import Char
import Models
import Display
import MinBis
import ActEpist
import DPLL
import Semantics

2 Version

The first version of DEMO was written in March 2004. This version was extended in May 2004 with an
implementation of automata and a translation function from epistemic update logic to Automata PDL.
In September 2004, I discovered a direct reduction of epistemic update logic to PDL [17]. This motivated
a switch to a PDL-like language, with extra modalities for action update and automata update. I decided
to leave in the automata for the time being, for nostalgic reasons.

In Summer 2005, several example modules with DEMO programs for epistemic puzzles (some of them
contributed by Ji Ruan ) and for checking of security protocols (with contributions by Simona Orzan )
were added, and the program was rewritten in a modular fashion.

In Spring 2006, automata update was removed, and in Autumn 2006 the code was refactored for the
present report.
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version :: String
version = "DEMO 1.06, Autumn 2006"

Definitions

3 Models and Updates

In this section we formalize the version of dynamic epistemic logic that we are going to implement.

Let p range over a set of basic propositions P and let a range over a set of agents Ag. Then the language
of PDL over P, Ag is given by:

e u= T|pl-pleiAps|[r]e
7T = al|lp|mme | M Une | 7"

Employ the usual abbreviations: L is shorthand for =T, ¢1 V @9 is shorthand for —(—p; A —p2),
©1 — ¢ is shorthand for —(¢1 A 2), @1 < @2 is shorthand for (p; — @2) A (p2 — 1), and ()
is shorthand for —[n]—¢. Also, if B C Ag and B is finite, use B as shorthand for b, Ubs U ---. Under
this convention, formulas for expressing general knowledge Fpp take the shape [B]p, while formulas for
expressing common knowledge Cpy appear as [B*|yp, i.e., [B]y expresses that it is general knowledge
among agents B that ¢, and [B*|¢ expresses that it is common knowledge among agents B that ¢. In
the special case where B = (), B turns out equivalent to 7L, the program that always fails.

The semantics of PDL over P, Ag is given relative to labelled transition systems M = (W, V, R), where
W is a set of worlds (or states), V : W — P(P) is a valuation function, and R = {SC W x W | a € Ag}
is a set of labelled transitions, i.e., binary relations on W, one for each label a. In what follows, we will
take the labeled transitions for a to represent the epistemic alternatives of an agent a.

The formulae of PDL are interpreted as subsets of Wy (the state set of M), the actions of PDL as binary
relations on Whyy, as follows:

[TIM = Wm
PIM = {weWm|pe Va(w)}
[—el™ = Wnm = [o]™
[or A@ad™ = [N [p]™
[7le]™ = {we Wnm|Vo(if (w,v) € [x]™ then v € [p]™)}
[a]™ = “m
[2el™ = {(w,w) € Wnm x W | w € [o]™}
[[7T1;7T2]]M = [[7T1]]M o [[7T2]]M
[mum]™ = [m]MU[m]™
1™ = (=™

If w € W then we use M =, ¢ for w € [p]™.

[3] proposes to model epistemic actions as epistemic models, with valuations replaced by preconditions.
See also: [4, 5, 12, 17, 20, 21, 29, 32].
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Action models for a given language £ Let a set of agents Ag and an epistemic language £ be
given. An action model for £ is a triple A = ([sq,..., sn—1],pre,T) where [so,...,sn—1] is a finite list
of action states, pre : {sg,...,sn,—1} — L assigns a precondition to each action state, and T' : Ag —
P({s0,...,5,_1}>) assigns an accessibility relation % to each agent a € Ag.

A pair A = (A, s) with s € {sg,...,8,—1} is a pointed action model, where s is the action that actually
takes place.

The list ordering of the action states in an action model will play an important role in the definition of
the program transformations associated with the action models.

In the definition of action models, £ can be any language that can be interpreted in PDL models. Actions
can be executed in PDL models by means of the following product construction:

Action Update Let a PDL model M = (W, V, R), a world w € W, and a pointed action model (4, s),
with A = ([s0,--.,5n_1],pre,T), be given. Suppose w € [pre(s)]™M. Then the result of executing (A, s)
in (M, w) is the model (M ® A, (w,s)), with M® A = (W', V', R’), where

W = {(w,s)|s€{s0,. . 801}, w € [pre(s)|M}
Vi(w,s) = V(w)
R(a) = {((w,s),(w,s)) ] (w,w’) € R(a),(s,s") € T(a)}.

In case there is a set of actual worlds and a set of actual actions, the definition is similar: those
world/action pairs survive where the world satisfies the preconditions of the action. See below.

The language of PDLPELY (update PDL) is given by extending the PDL language with update constructions
[A, s]p, where (A4, s) is a pointed action model. The interpretation of [A, s]p in M is given by:

[[A, s]e]™ = {w € Wi | if M =, pre(s) then (w, s) € [p]M®4}.
Using (A, s)¢ as shorthand for —[A, s]—p, we see that the interpretation for (A, s)¢ turns out as:
[(A, s)pIl™ = {w € W | M |5, pre(s) and (w,s) € []M}.

Updating with multiple pointed update actions is also possible. A multiple pointed action is a pair (4, S),
with A an action model, and S a subset of the state set of A. Extend the language with updates [A, S,
and interpret this as follows:

[[A, S]e]™ = {we Wy |Vs e S(if M [z, pre(s) then M ® A =y 5) @)}

In [17] it is shown how dynamic epistemic logic can be reduced to PDL by program transformation. Each
action model A has associated program transformers T;’? for all states s;,s; in the action model, such
that the following hold:

Lemma 1 (Program Transformation, Van Eijck [17]) Assume A has n states s, ..., Sn—1. Then:

n—1

M =y [A, si][7]e iff M ., /\ [T;?(TF)HAvsj]Qﬁ

Jj=0

This lemma allows a reduction of dynamic epistemic logic to PDL, a reduction that we will implement
in the code below.
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4 Operations on Action Models

Sequential Composition If (A,S) and (B,T) are multiple pointed action models, their sequential
composition (A,S)® (B,T) is given by:

(A,5)© (B, T) := ((W,pre, R), S x T),
where
o W = WA X WB,
e pre(s,t) = pre(s) A (A, S)pre(t),
e Ris given by: (s,t) % (s',t') € Riff s % s’ € Ry and t > t' € Rp.
The unit element for this operation is the action model
1= (({0},0~ T,{0%0]ae Ag}),{0}).
Updating an arbitary epistemic model M with 1 changes nothing.
Non-deterministic Sum The non-deterministic sum @ of multiple-pointed action models (A, S) and
(B,T) is the action model (A, S) ® (B, T) is given by:
(A, S)® (B, T) := ((W,pre,R),SWUT),
where & denotes disjoint union, and where
o W =W Wg,
® pre = prep Wpreg,

e R =RAWRE.

The unit element for this operation is called 0: the multiple pointed action model given by ((@,0,0), ).

5 Logics for Communication

Here are some specific action models that can be used to define various languages of communication.
Public announcement of ¢: action model (S, {0}), with
Ss ={0},ps =0+ ¢, Rs ={0->0]|ac A}.
Individual message to b that ¢: action model (S, {0}), with
Ss=1{0,1},ps=0—¢,1— T, Rs={020,121}U{0~,1]ae A—{b}}
Group message to B that ¢: action model (S, {0}), with

Sg={0,1},ps =0+ ¢, 1— T,Rs={0~y 1|aec A— B}
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Secret individual communication to b that ¢: action model (S, {0}), with

Ss = {0,1},
ps = 0= l—=T,
Rs = {02500u{0%1]lacA—{p}}U{l1 51 |ac A}
Secret group communication to B that ¢: action model (S, {0}), with
Ss = {0,1},
ps = 0= l—T,
Rs = {020|beByU{0%1|acA—B}U{1%1|ac A}

Test of ¢: action model (S, {0}), with
Ss={0,1},ps =0 p,1—~ T, Rs={0>1|ac A}U{l 51 |ac A}

Individual revelation to b of a choice from {p,...,p,}: action model (S,{1,...,n}), with
Ss = {1, ce ,n},
ps = 1’_)9017---7n'_>¢na

Rs {sBs|seSstu{sSs|ss €Ss,aeA—{b}}

Group revelation to B of a choice from {¢1,...,¢,}: action model (S,{1,...,n}), with
Ss = {1,...,n},
bs = 1H§01a'~-7nH§07L7
Rs = {s>s|seSs,beBlU{sSs |s s €Ss,acA—B}.

Transparant informedness of B about ¢: action model (S, {0,1}), with

Ss = {Oal}a
ps = 0=, 1— g,
Rs = {0%0|lacAlu{0%1]acA-BlU{1%0lacA-B}U{l%51]|acA}.

Transparant informedness of B about ¢ is the special case of a group revelation ot B of a choice from
{v, ~¢}. Note that all but the revelation action models and the transparant informedness action models
are single pointed (their sets of actual states are singletons).

The language for the logic of group announcements:

¢ == Tlpl=ol Al eal | Vign - 00l | Dap | Epe | Caep | [mle

T 1|0 |public B ¢ | ®[mr1,...,7] | ®r1,...,70]

Semantics for this: use the semantics of 1, 0, public B ¢, and the operations on multiple pointed action
models from Section 4.

The logic of tests and group announcements: as above, but now also allowing tests 7 as basic programs.
Semantics: add the semantics of 7¢ to the above repertoire.

The logic of individual messages: as above, but now the basic actions are messages to individual agents.
Semantics: start out from the semantics of message a .

The logic of tests, group announcements, and group revelations as above, but now also allowing revelations
from alternatives. Semantics: use the semantics of reveal B {¢1,...,¢n}.
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Kripke Models

6 Module Declaration

module Models where

import List

7 Agents

data Agent = A | B | C | D | E deriving (Eq,0Ord,Enum,Bounded)

Give the agents appropriate names:

a, alice, b, bob, c, carol, d, dave, e, ernie :: Agent
a = A; alice = A
b = B; bob =B
c = C; carol = C
d = D; dave =D
e = E; ernie = E

Make agents showable in an appropriate way:

instance Show Agent where
show A = "a"; show B = "b"; show C = "c"; show D = "d" ; show E = "e"

8 Model Datatype

It will prove useful to generalize over states. We first define general models, and then specialize to action
models and epistemic models. In the following definition, state and formula are variables over types.
We assume that each model carries a list of distinguished states.

data Model state formula = Mo
[state]
[(state,formula)]
[Agent]
[(Agent,state,state)]
[state]
deriving (Eq,0rd,Show)
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Decomposing a pointed model into a list of single-pointed models:

decompose :: Model state formula -> [Model state formula]
decompose (Mo states pre agents rel points) =
[ Mo states pre agents rel [point] | point <- points ]

It is useful to be able to map the precondition table to a function. Here is general tool for that. Note
that the resulting function is partial; if the function argument does not occur in the table, the value is
undefined.

table2fct :: Eq a => [(a,b)] -> a > b
table2fct t = \ x -> maybe undefined id (lookup x t)

Another useful utility is a function that creates a partition out of an equivalence relation:

rel2part :: (Eq a) => [a] -> (a -> a -> Bool) -> [[a]]
rel2part [1 r = []
rel2part (x:xs) r = xblock : rel2part rest r

where

(xblock,rest) = partition (\ y -> r x y) (x:xs)

The domain of a model is its list of states:

domain :: Model state formula —> [state]
domain (Mo states _ _ _ _) = states

The eval of a model is its list of state/formula pairs:

eval :: Model state formula -> [(state,formula)]
eval (Mo _ pre _ _ _) = pre

The agentList of a model is its list of agents:

agentList :: Model state formula -> [Agent]
agentList (Mo _ _ ags _ _) = ags

The access of a model is its labelled transition component:

access :: Model state formula -> [(Agent,state,state)]
access (Mo rel _) = rel

The distinguished points of a model:
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points :: Model state formula -> [state]
points (Mo _ _ _ _ pnts) = pnts

When we are looking at models, we are only interested in generated submodels, with as their domain the
distinguished state(s) plus everything that is reachable by an accessibility path.

gsm :: Ord state => Model state formula -> Model state formula
gsm (Mo states pre ags rel points) = (Mo states’ pre’ ags rel’ points)
where
states’ = closure rel ags points
pre’ = [(s,f) | (s,f) <- pre,
elem s states’ ]
rel’ = [(ag,s,s’) | (ag,s,s’) <- rel,
elem s states’,
elem s’ states’ ]

The closure of a state list, given a relation and a list of agents:

closure :: O0Ord state =>

[(Agent,state,state)] -> [Agent] -> [state] -> [statel
closure rel agents xs

| xs’ == xs = xs
| otherwise = closure rel agents xs’
where
xs’ = (nub . sort) (xs ++ (expand rel agents xs))

The expansion of a relation R given a state set S and a set of agents B is given by {t | s bte R,s €
S,b € B}. Implementation:

expand :: Ord state =>
[(Agent,state,state)] -> [Agent] -> [state] -> [state]
expand rel agnts ys =
(nub . sort . concat)
[ alternatives rel ag state | ag <- agnts,
state <- ys ]

The epistemic alternatives for agent a in state s are the states in sR, (the states reachable through R,
from s):

alternatives :: Eq state =>

[(Agent,state,state)] —-> Agent -> state -> [state]
alternatives rel ag current =

[ s> | (a,s,s’) <- rel, a == ag, s == current ]
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Model Minimization under Bisimulation

9 Module Declaration

module MinBis where

import List
import Models

10 Partition Refinement

Any Kripke model can be simplified by replacing each state s by its bisimulation class [s]. The problem
of finding the smallest Kripke model modulo bisimulation is similar to the problem of minimizing the
number of states in a finite automaton [26]. We will use partition refinement, in the spirit of [31]. Here
is the algorithm:

e Start out with a partition of the state set where all states with the same precondition function are
in the same class. The equality relation to be used to evaluate the precondition function is given
as a parameter to the algorithm.

e Given a partition I, for each block b in II, partition b into sub-blocks such that two states s,t of b
are in the same sub-block iff for all agents @ it holds that s and ¢ have —— transitions to states in
the same block of II. Update II to I’ by replacing each b in II by the newly found set of sub-blocks
for b.

e Halt as soon as II = II'.

Looking up and checking of two formulas against a given equivalence relation:

lookupFs :: (Eq a,Eq b) => a -> a -> [(a,b)] -> (b -> b -> Bool) -> Bool
lookupFs i j table r = case lookup i table of
Nothing -> lookup j table == Nothing
Just f1 -> case lookup j table of
Nothing -> False
Just 2 -> r f1 £2

Computing the initial partition, using a particular relation for equivalence of formulas:

initPartition :: (Eq a, EqQ b) => Model a b -> (b -> b -> Bool) -> [[a]]
initPartition (Mo states pre ags rel points) r =
rel2part states (\ x y -> lookupFs x y pre r)

Refining a partition:
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refinePartition :: (Eq a, Eq b) =>
Model a b -> [[al] -> [[a]]

refinePartition m p = refineP m p p

where

refineP :: (Eq a, Eq b) => Model a b -> [[al] -> [[al] -> [[all

refineP m part [1 = []

refineP m part (block:blocks) =

newblocks ++ (refineP m part blocks)
where
newblocks =
rel2part block (\ x y -> sameAccBlocks m part x y)

Function that checks whether two states have the same accessible blocks under a partition:

sameAccBlocks :: (Eq a, Eq b) =>
Model a b -> [[al]] -> a -> a -> Bool
sameAccBlocks m@(Mo states pre ags rel points) part s t =
and [ accBlocks m part s ag == accBlocks m part t ag |
ag <- ags ]

The accessible blocks for an agent from a given state, given a model and a partition:

accBlocks :: (Eq a, Eq b) =>
Model a b -> [[a]l]] -> a —-> Agent -> [[a]]
accBlocks m@(Mo states pre ags rel points) part s ag =
nub [ bl part y | (ag’,x,y) <- rel, ag’ == ag, x == s ]

The block of an object in a partition:

bl :: Eq a => [[al] -> a —> [a]
bl part x = head (filter (elem x) part)

Initializing and refining a partition:

initRefine :: (Eq a, Eq b) =>
Model a b -> (b -> b -> Bool) -> [[all]
initRefine m r = refine m (initPartition m r)

The refining process:

refine :: (Eq a, Eq b) => Model a b -> [[a]] -> [[a]]
refine m part = if rpart == part
then part
else refine m rpart
where rpart = refinePartition m part
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11 Minimization

Use this to construct the minimal model. Notice the dependence on relational parameter r.

minimalModel :: (Eq a, Ord a, Eq b, Ord b) =>
(b => b -> Bool) -> Model a b -> Model [a] b
minimalModel r m@(Mo states pre ags rel points) =
(Mo states’ pre’ ags rel’ points’)

where

partition = initRefine m r

states’ = partition

£ = bl partition

rel’ = (nub.sort) (map (\ (x,y,z) -> (x, £ y, £ z)) rel)
pre’ = (nub.sort) (map (\ (x,y) -> (£ %, y)) pre)
points’ = map f points

Converting a’s into integers, using their position in a given list of a’s.

convert :: (Eq a, Show a) => [a] -> a -> Integer
convert = convrt O
where
convrt :: (Eq a, Show a) => Integer -> [a] -> a -> Integer
convrt n [] x = error (show x ++ " not in list")
convrt n (y:ys) x | x ==y =n
| otherwise = convrt (n+l) ys x

Converting an object of type Model a b into an object of type Model Integer b:

conv :: (Eq a, Show a) =>
Model a b -> Model Integer b
conv (Mo worlds val ags acc points) =
(Mo (map f worlds)
(map (\ (x,y) -> (f x, y)) val)
ags
(map (\ (x,y,z) > (x, £y, £ z)) acc))
(map f points)
where f = convert worlds

Use this to rename the blocks into integers:

bisim :: (Eq a, Ord a, Show a, Eq b, Ord b) =>
(b => b -> Bool) -> Model a b -> Model Integer b
bisim r = conv . (minimalModel r)
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Formulas, Action Models and Epistemic Models

12 Module Declaration

module ActEpist
where

import List
import Models
import MinBis
import DPLL

Module List is a standard Haskell module. Module Models is described in Chapter 5, and Module
MinBis in Chapter 8. Module DPLL refers to an implementation of Davis, Putnam, Logemann, Loveland
(DPLL) theorem proving (not included in this document, but available at www.cwi.nl/~jve/demo).

13 Formulas

Basic propositions:

data Prop = P Int | Q Int | R Int deriving (Eq,0Ord)

Show these in the standard way, in lower case, with index 0 omitted.

instance Show Prop where
show (P 0) = "p"; show (P i) = "p" ++ show i
show (Q 0) = "q"; show (Q i) "q" ++ show i
show (R 0) = "r"; show (R i) = "r" ++ show i

Formulas, according to the definition:

@ TIpl=¢ | Alers-senl | Vers- el | e | [Alp

a| B2 | Olmy,....m] [ lm, -] [ 7

Here, p ranges over basic propositions, a ranges over agents, B ranges over non-empty sets of agents, and
A is a multiple pointed action model (see below) (O denotes sequential composition of a list of programs.
We will often write (O[m1, m2] as m1; w2, and |J[71, m2] as 71 U ma.

™

Note that general knowledge among agents B that ¢ is expressed in this language as [B]p, and common
knowledge among agents B that ¢ as [B*|e. Thus, [B]y can be viewed as shorthand for [|J,cz bl¢. In
case B =), [B]p turns out to be equivalent to [?L]ep.

For convenience, we have also left in the more traditional way of expressing individual knowledge O, ¢ ,
general knowledge Epp and common knowledge Cpo.
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data Form

Top

Prop Prop
Neg Form
Conj [Form]

Pr Program Form

K Agent Form

EK [Agent] Form
CK [Agent] Form

I
|
|
| Disj [Form]
|
I
|
|
|

Up AM Form

deriving (Eq,0rd)

data Program

Ag Agent

Ags [Agent]

Conc [Program]

Sum

|
| Test Form
|
|
|

[Program]
Star Program

deriving (Eq,0rd)

Some useful abbreviations:

impl ::

Form -> Form -> Form

impl forml form2 = Disj [Neg forml, form?2]

equiv ::

Form -> Form -> Form

equiv forml form2 = Conj [forml ‘impl‘ form2, form2 ‘impl‘ forml]

Xor ::

Form -> Form -> Form

xor x y = Disj [ Conj [x, Neg y], Conj [Neg x, yl]

The negation of a formula:

negation ::

negation form

Form -> Form
negation (Neg form) = form
= Neg form

Show formulas in the standard way:

show
show
show
show
show
show
show
show

instance Show Form where

Top = "T" ; show (Prop p)

(Conj fs)
(Disj fs)

(Pr p 1)

(K agent f)
(EK agents f)
(CK agents f)
(Up pam f)

= 2%
‘v
)[7:
7[7:
)E):
)C):
A

show
show
show
show
show
show
show

= show p; show (Neg f) = ’-’:(show f);
fs

fs

p ++ "1" ++ show f

agent ++ "]" ++ show f
agents ++ show f
agents ++ show f
(points pam) ++ show f

22




Show programs in a standard way:

instance Show Program where
show (Ag a) = show a
show (Ags as) = show as
show (Test f) = ’77: show f
show (Conc ps) = ’C’: show ps
show (Sum ps) = ’U’: show ps
show (Star p) = 2(’: show p ++ ")*"

Programs can get very unwieldy very quickly. As is well known, there is no normalisation procedure for
regular expressions. Still, here are some rewriting steps for simplification of programs:

n — 71
701U — (o1 V p2)
7lur — w
TJU?L — 7
U[ﬂ-lw-'77rk7U[7Tk+1u-~-77Tk+m]77rk+m+17~--77Tk:+m+n] - U[']Tla--~77rk+m+n
U[] — 71
Ul - =
213702 = p1 Aa)
Tinr —
1T =
7L,m — 7L
w7l — 71
O[ﬂ-la"-77Tk7O[7rk+1a-~-77Tk+m]77rk+m+1>~--77Tk:+m+n] - O[W1,-~-77Tk+m+n]
o — 77
O] — =
(Pe)r — T
PpUm)* — 7
(rU2) =
71'** N *

Simplifying unions by splitting up in test part, accessibility part and rest:
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splitU :: [Program] -> ([Form], [Agent], [Program])
splitU [1 = (01,01, 0D
splitU (Test f: ps) = (f:fs,ags,prs)
where (fs,ags,prs) = splitU ps
splitU (Ag x: ps) = (fs,union [x] ags,prs)
where (fs,ags,prs) = splitU ps
splitU (Ags xs: ps) = (fs,union xs ags,prs)
where (fs,ags,prs) = splitU ps
splitU (Sum ps: ps’) = splitU (union ps ps’)
splitU (p:ps) (fs,ags,p:prs)

where (fs,ags,prs) = splitU ps
Simplifying compositions:
comprC :: [Program] -> [Program]
comprC [1 = []
comprC (Test Top: ps) = comprC ps
comprC (Test (Neg Top): ps) = [Test (Neg Top)]
comprC (Test f: Test f’: rest) = comprC (Test (canonF (Conj [f,f’])): rest)
comprC (Conc ps : ps’) = comprC (ps ++ ps’)
comprC (p:ps) = let ps’ = comprC ps
in

if ps’ == [Test (Neg Top)]
then [Test (Neg Top)]

else p: ps’
Use this in the code for program simplification:
simpl :: Program -> Program
simpl (Ag x) = Ag x
simpl (Ags [1) = Test (Neg Top)
simpl (Ags [x]) = Ag x
simpl (Ags xs) = Ags xs

simpl (Test f) Test (canonF f)

Simplifying unions:
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simpl (Sum prs) =
let (fs,xs,rest)
f

splitU (map simpl prs)
canonF (Disj fs)

in
if xs == [] && rest == []
then Test £
else if xs == [] && £
then (head rest)

Neg Top && length rest ==

else if xs == [] && f == Neg Top
then Sum rest
else if xs == []
then Sum (Test f: rest)
else if length xs == && f == Neg Top

then Sum (Ag (head xs): rest)
else if length xs ==

then Sum (Test f: Ag (head xs): rest)
else if f == Neg Top

then Sum (Ags xs: rest)
else Sum (Test f: Ags xs: rest)

Simplifying sequential compositions:

simpl (Conc prs) =
let prs’ = comprC (map simpl prs)
in
if prs’== [] then Test Top
else if length prs’ == 1 then head prs’
else if head prs’ == Test Top then Conc (tail prs’)
else Conc prs’

Simplifying stars:

simpl (Star pr) = case simpl pr of
Test £ -> Test Top
Sum [Test f, pr’] -> Star pr’
Sum (Test f: prs’) -> Star (Sum prs’)
Star pr’ -> Star pr’
pr’ -> Star pr’

Property of being a purely propositional formula:

pureProp :: Form -> Bool
pureProp Top = True
pureProp (Prop _) = True
pureProp (Neg f) = pureProp f

pureProp (Conj fs) = and (map pureProp fs)
pureProp (Disj fs) = and (map pureProp fs)
pureProp = False
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Some example formulas and formula-forming operators:

bot, pO, p, pl, p2, p3, p4, p5, p6 :: Form

bot = Neg Top

pO = Prop (P 0); p = pO; pl = Prop (P 1); p2 = Prop (P 2)

p3 = Prop (P 3); p4 = Prop (P 4); p5 = Prop (P 5); p6 = Prop (P 6)

q0, q, 91, 92, g3, 94, g5, g6 :: Form
g0 = Prop (Q 0); q = q0; q1 = Prop (Q 1); g2 = Prop (Q 2);
g3 = Prop (Q 3); g4 = Prop (Q 4); g5 = Prop (Q 5); g6 = Prop (Q 6)

r0, r, rl, r2, r3, r4, r5, r6:: Form
r0 = Prop (R 0); r = r0; r1 = Prop (R 1); r2 = Prop (R 2)
r3 = Prop (R 3); r4 = Prop (R 4); r6 = Prop (R 5); r6 = Prop (R 6)

u =7Up :: AM -> Form -> Form
nkap = Neg (K a p)

nkanp = Neg (K a (Neg p))
nka_p = Conj [nkap,nkanp]

14 Reducing Formulas to Canonical Form

For computing bisimulations, it is useful to have some notion of equivalence (however crude) for the
logical language. For this, we reduce formulas to a canonical form. We will derive canonical forms that
are unique up to propositional equivalence, employing a propositional reasoning engine. This is still
rather crude, for any modal formula will be treated as a propositional literal.

The DPLL (Davis, Putnam, Logemann, Loveland) engine expects clauses represented as lists of integers,
so we first have to translate to this format. This translation should start with computing a mapping from
positive literals to integers.

For the non-propositional operators we use a little bootstrapping, by putting the formula inside the
operator in canonical form, using the function canonF to be defined below. Also, since the non-
propositional operators all behave as Box modalities, we can reduce OT to T.
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mapping :: Form -> [(Form,Integer)]
mapping f = zip lits [1..k]
where
lits = (sort . nub . collect) f
k toInteger (length lits)
collect :: Form -> [Form]
collect Top = []
collect (Prop p) = [Prop p]
collect (Neg f) = collect f
collect (Conj fs) concat (map collect fs)
collect (Disj fs) concat (map collect fs)
collect (Pr pr f) if canonF f == Top then [] else [Pr pr (canonF f)]
collect (K ag f) if canonF f == Top then [] else [K ag (canonF f)]
collect (EK ags f) if canonF f == Top then [] else [EK ags (canonF f)]
collect (CK ags f) if canonF f == Top then [] else [CK ags (canonF f)]
collect (Up pam f) if canonF f == Top then [] else [Up pam (canonF f)]

Putting in clausal form, given a mapping for the literals, and using bootstrapping for formulas in the
scope of a non-propositional operator. Note that OT is reduced to T, and -OT to L.

cf :: (Form -> Integer) -> Form -> [[Integer]]

cf g (Top) =[]

cf g (Prop p) = [[g (Prop p)1]

cf g (Pr pr f) = if canonF f == Top then []
else [[g (Pr pr (canonF £))]]

cf g (XK ag £) = if canonF f == Top then []
else [[g (K ag (canonF £))]]

cf g (EK ags f) = if canonF f == Top then []
else [[g (EK ags (canonF £f))]]

cf g (CK ags f) = if canonF f == Top then []
else [[g (CK ags (canonF £f))]]

cf g (Up am £) = if canonF f == Top then []
else [[g (Up am (canonF £))]]

cf g (Conj fs) = concat (map (cf g) fs)

cf g (Disj fs) = deMorgan (map (cf g) fs)

Negated formulas:
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cf g (Neg Top) = [[]]

cf g (Neg (Prop p)) = [[- g (Prop p)1l]

cf g (Neg (Pr pr f)) = if canonF f == Top then [[]]

else [[- g (Pr pr (canonF f£))]]

if canonF f == Top then [[]]

else [[- g (X ag (canonF £))]]

if canonF f == Top then [[]]

else [[- g (EK ags (canonF £))]]

if canonF f == Top then [[]]

else [[- g (CK ags (canonF £f))]]

if canonF f == Top then [[]]

else [[- g (Up am (canonF £))]]

cf g (Neg (Conj fs)) = deMorgan (map (\ f -> cf g (Neg f)) fs)
cf g (Neg (Disj fs)) concat (map (\ £ -> cf g (Neg £)) £fs)
ct g (Neg (Neg £)) cf g £

[0}

cf g (Neg (K ag £))

cf g (Neg (EK ags f))

cf g (Neg (CK ags f))

cf g (Neg (Up am £))

De Morgan’s disjunction distribution:
PV (LA An) < (VY1) A AV ).

De Morgan’s disjunction distribution, for the case of a disjunction of a list of clause sets.

deMorgan :: [[[Integer]]] -> [[Integer]]
deMorgan []1 = [[]]
deMorgan [cls] = cls
deMorgan (cls:clss) = deMorg cls (deMorgan clss)
where
deMorg :: [[Integer]] -> [[Integer]] -> [[Integer]]
deMorg clsl cls2 = (nub . concat) [ deM cl cls2 | cl <- clsl ]
deM :: [Integer] -> [[Integer]] -> [[Integer]]
deM cl cls = map (fuselLists cl) cls

Function fuseLists keeps the literals in the clauses ordered.

fuselLists :: [Integer] -> [Integer] -> [Integer]

fuselists [] ys = ys

fuseLists xs [] = xs

fuselists (x:xs) (y:ys) | abs x < abs y
| abs x == abs y

x: (fuselists xs (y:ys))
if x ==y
then x:(fuselists xs ys)
else if x > y
then x:y:(fuselists xs ys)
else y:x:(fuselists xs ys)
y: (fuseLists (x:xs) ys)

| abs x > abs y

Given a mapping for the positive literals, the satisfying valuations of a formula can be collected from the
output of the DPLL process. Here dp is the function imported from the module DPLL.
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satVals :: [(Form,Integer)] -> Form -> [[Integer]]
satVals t £ = (map fst . dp) (cf (table2fct t) f)

Two formulas are propositionally equivalent if they have the same sets of satisfying valuations, computed
on the basis of a literal mapping for their conjunction:

propEquiv :: Form -> Form -> Bool
propEquiv f1 f2 = satVals g f1 == satVals g f2
where g = mapping (Conj [f1,£2])

A formula is a (propositional) contradiction if it is propositionally equivalent to Neg Top, or equivalently,
toDisj [J:

contrad :: Form -> Bool
contrad f = propEquiv f (Disj [])

A formula is (propositionally) consistent if it is not a propositional contradiction:

consistent :: Form -> Bool
consistent = not . contrad

Use the set of satisfying valuations to derive a canonical form:

canonF :: Form -> Form
canonF f = if (contrad (Neg £))
then Top

else if fs == []
then Neg Top

else if length fs ==
then head fs

else Disj fs

where g = mapping f
nss = satVals g f
g’ =\ 1 ->head [ form | (form,j) <- g, i == j ]
h =\1->if i < 0 then Neg (g’ (abs i)) else g’ i
h> =\ xs -> map h xs
k =\ xs -> if xs == []
then Top
else if length xs == 1
then head xs
else Conj xs
fs = map k (map h’ nss)

This gives:
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ActEpist> canonF p

p

ActEpist> canonF (Conj [p,Topl)

P

ActEpist> canonF (Conj [p,q,Neg rl)
&[P’q’_r]

ActEpist> canonF (Neg (Disj [p, (Neg p)1))
-T

ActEpist> canonF (Disj [p,q,Neg rl)
vlp,&[-p,ql,&[-p,-q,-r]]

ActEpist> canonF (K a (Disj [p,q,Neg rl))
[alvIp,&[-p,q]l,&[-p,-q,-rl]

ActEpist> canonF (Conj [p, Conj [q,Neg r]ll)

&[p,q,-r]

ActEpist> canonF (Conj [p, Disj [q,Neg (K a (Disj [1))11)
v[&[p,ql,&[p,-q,-[a]l-T]]

ActEpist> canonF (Conj [p, Disj [q,Neg (K a (Conj [1))11)
&[p,ql

15 Action Models and Epistemic Models

Action models and epistemic models are built from states. We assume states are represented by integers:

type State = Integer

Epistemic models are models where the states are of type State, and the precondition function assigns
lists of basic propositions (this specializes the precondition function to a valuation).

type EM = Model State [Prop]

Find the valuation of an epistemic model:

valuation :: EM -> [(State, [Prop]l)]
valuation = eval

Action models are models where the states are of type State, and the precondition function assigns
objects of type Form. The only difference between an action model and a static model is in the fact that
action models have a precondition function that assigns a formula instead of a set of basic propositions.

type AM = Model State Form

The preconditions of an action model:

preconditions :: AM -> [Form]
preconditions (Mo states pre ags acc points) =
map (table2fct pre) points
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Sometimes we need a single precondition:

precondition :: AM -> Form
precondition am = canonF (Conj (preconditions am))

The zero action model O:

zero :: [Agent] -> AM
zero ags = (Mo [1 [1 ags [1 [1D

The purpose of action models is to define relations on the class of all static models. States with
precondition 1 can be pruned from an action model. For this we define a specialized version of the

gsm function:

gsmAM :: AM -> AM
gsmAM (Mo states pre ags acc points) =

let
points’ = [ p | p <- points, consistent (table2fct pre p) ]
states’ = [ s | s <- states, consistent (table2fct pre s) ]
pre’ = filter (\ (x,_) -> elem x states’) pre
f =\ (_,s,t) -> elem s states’ && elem t states’
acc’ = filter f acc

in

if points’ == []

then zero ags
else gsm (Mo states’ pre’ ags acc’ points’)

16 Program Transformation

For every action model A with states sg,...,s,_1 we define a set of n? program transformers Ti‘f‘j (0<
i<n,0<j<n), as follows [17]:

A _ Tpre(s;);a  if s; = 55,
Tita) = { 71 otherwise
2 N ATA s i
ALY — (pre(si) A [A, silp)  if i =,
T (7¢) { 71 otherwise
n—1

-

T (ry3ma) = (Ti (m1); T (m2))

k=0
T/j(mUmy) = T/(m)UT)(ms)
A _x _ A
Tij (") = Kijn(ﬂ)

where K;?k (m) is a (transformed) program for all the 7* paths from s; to s; that can be traced through
A while avoiding a pass through intermediate states s and higher. Thus, K{;‘-n(
the 7* paths from s; to s; that can be traced through A, period.
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KA, () is defined by recursing on k, as follows:

ijk

A s -

) MTUTAM)  fi=j,

Ko(m) = " )

T () otherwise

(K (m)* if i = k=,
B (K (m)*; Ko (m) if i =k # j,
Kisan () A A * e ,
Ko (m); (Ko, (7)) ifi#k=j,

K{;‘-k(w) U (K7, (m); (kak(w))*;K,;“jk(ﬂ)) otherwise (i # k # j).

Lemma 2 (Kleene Path) Suppose (w,w’) € [T;}(m)[M iff there is a @ path from (w,s;) to (w',s;) in
M ® A. Then (w,w') € [K#, ()M iff there is a 7 path from (w,s;) to (w',s;) in M ® A.

wn

The Kleene path lemma is the key ingredient in the proof of the following program transformation lemma.

Lemma 3 (Program Transformation) Assume A has n states sg,...,Sn—1. Then:
n—1
M = [A, sil[7le iff M /\ [T (1)][A, s5]e.
§=0

The implementation of the program transformation functions is given here:
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transf :: AM -> Integer -> Integer -> Program -> Program
transf am@(Mo states pre allAgs acc points) i j (Ag ag) =

let
f = table2fct pre i
in
if elem (ag,i,j) acc && f == Top then Ag ag

else if elem (ag,i,j) acc && f /= Neg Top then Conc [Test f, Ag ag]

else Test (Neg Top)
transf am@(Mo states pre allAgs acc points) i j (Ags ags)

let ags’ = nub [ a | (a,k,m) <- acc, elem a ags, k == i, m == j ]

agsl = intersect ags ags’
f table2fct pre i

in

if agsl == [1 || £ == Neg Top then Test (Neg Top)
else if f == Top && length agsl == 1 then Ag (head agsl)

else if f == Top then Ags agsl
else Conc [Test f, Ags agsi]
transf am@(Mo states pre allAgs acc points) i j (Test f) =

let

g = table2fct pre i
in
if i == j

then Test (Conj [g,(Up am £)])
else Test (Neg Top)
transf am@(Mo states pre allAgs acc points) i j (Conc [])
transf am i j (Test Top)
transf am@(Mo states pre allAgs acc points) i j (Conc [p]l)

transf am i j p

transf am@(Mo states pre allAgs acc points) i j (Conc (p:ps)) =
k <- [0..n] ]

Sum [ Conc [transf am i k p, transf am k j (Conc ps)] |
where n = toInteger (length states - 1)
transf am@(Mo states pre allAgs acc points) i j (Sum [])
transf am i j (Test (Neg Top))
transf am@(Mo states pre allAgs acc points) i j (Sum [pl)
transf am@(Mo states pre allAgs acc points) i j (Sum ps)
Sum [ transf am i j p | p <- ps ]

transf am i j p

transf am@(Mo states pre allAgs acc points) i j (Star p) = kleene am i j n p

where n = toInteger (length states)

Implementation of K é‘k:
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kleene :: AM -> Integer -> Integer -> Integer -> Program -> Program
kleene am i j O pr =
if 1 == j

then Sum [Test Top, transf am i j pr]
else transf am i j pr
kleene am i j k pr

| i ==j & j == pred k = Star (kleene am i i i pr)
| i == pred k =

Conc [Star (kleene am i i i pr), kleene am i j i pr]
| j == pred k =

Conc [kleene am i j j pr, Star (kleene am j j j pr)]
| otherwise =

Sum [kleene am i j k’ pr,
Conc [kleene am i k’ k’ pr,
Star (kleene am k’ k’ k’ pr), kleene am k’ j k’ pr]]
where k’ = pred k

Transformation plus simplification:

tfm ::
tfm am i j pr =

AM -> Integer -> Integer -> Program -> Program
simpl (transf am i j pr)

The program transformations can be used to translate Update PDL to PDL, as follows:

HT) = T

tp) = p

t(~p) = —t(p)
tlp1 Npa) = t(p1) Nt(p2)

t(rlp) = [r(m)]t(p)
t([A,s]T) = T
t([A,slp) = t(pre(s)) —p
t([A,s]~p) = t(pre(s)) — —t([A, s]p)

)

t([A7 8]4,01) A t([A, 5}902)

n—1

A L5 (r(m)]t([A, 55]0)

=0

t([A, s]t([A', s"]p))
N\ tlA, slp)

seS

a

B

()

r(m);r(me)
) Ur(ms)
)

)"

T(7T'1

(r(m
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The correctness of this translation follows from direct semantic inspection, using the program transformation
lemma for the translation of [A, s;|[7]e formulas.

The crucial clauses in this translation procedure are those for formulas of the forms [A, S]¢ and [A, s]p,
and more in particular the one for formulas of the form [A,s][r]e. It makes sense to give separate
functions for the steps that pull the update model through program = given formula ¢.

stepO, stepl :: AM -> Program -> Form -> Form
step0 am@(Mo states pre allAgs acc []) pr f = Top
step0 am@(Mo states pre allAgs acc [i]) pr f = stepl am pr f
step0 am@(Mo states pre allAgs acc is) pr f =

Conj [ stepl (Mo states pre allAgs acc [i]) pr f | i <- is ]
stepl am@(Mo states pre allAgs acc [i]) pr f =

Conj [ Pr (transf am i j (rpr pr))

(Up (Mo states pre allAgs acc [j]) f) | j <- states ]

Perform a single step, and put in canonical form:

step :: AM -> Program -> Form -> Form
step am pr f = canonF (step0 am pr f)

(EK xs f) = Pr (Ags xs) (t f)
(CK xs f) = Pr (Star (Ags xs)) (t ©)

t :: Form -> Form

t Top = Top

t (Prop p) = Prop p

t (Neg f) = Neg (t f)

t (Conj fs) = Conj (map t £fs)

t (Disj fs) = Disj (map t £fs)

t (Pr pr f) = Pr (rpr pr) (¢ £)
t (Kx f) =Pr (Ag x) (¢t f)

t

t

Translations of formulas starting with an action model update:

t (Up am@(Mo states pre allAgs acc [i]) f) = t’ am f
t (Up am@(Mo states pre allAgs acc is) f) =
Conj [ t’ (Mo states pre allAgs acc [i]) f | i <- is ]

Translations of formulas starting with a single pointed action model update are performed by t’:
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t’ :: AM -> Form -> Form

t’ am Top = Top

t’ am (Prop p) = impl (precondition am) (Prop p)
t’ am (Neg f) = Neg (t’ am f)

t’ am (Conj fs) = Conj (map (t’ am) fs)

t’ am (Disj fs) = Disj (map (t’ am) fs)

t’ am (K x f) = t’ am (Pr (Ag x) f)

t’ am (EK xs f) = t’> am (Pr (Ags xs) f)

t’ am (CK xs f) = t’> am (Pr (Star (Ags xs)) f)

t’ am (Up am’ f) =t’> am (¢t (Up am’ £f))

The crucial case: update action having scope over a program. We may assume that the update action is
single pointed.

t’ am@(Mo states pre allAgs acc [i]) (Pr pr f) =
Conj [ Pr (transf am i j (rpr pr))
(t’ (Mo states pre allAgs acc [j]) £f) | j <- states ]
t’ am@(Mo states pre allAgs acc is) (Pr pr f) =
error "action model not single pointed"

Translations for programs:

rpr :: Program -> Program
rpr (Ag x) = Ag x

rpr (Ags xs) = Ags xs
rpr (Test f) = Test (t f)

rpr (Conc ps) Conc (map rpr ps)
rpr (Sum ps) Sum (map rpr ps)
rpr (Star p) = Star (rpr p)

Translating and putting in canonical form:

tr :: Form -> Form
tr = canonF . t

Some example translations:

ActEpist> tr (Up (public p) (Pr (Star (Ags [b,cl)) p))

T

ActEpist> tr (Up (public (Disj [p,ql)) (Pr (Star (Ags [b,cl)) p))

[l?T,Ccl?vIp,ql, [b,cl11)*]vp,&[-p,-ql]

ActEpist> tr (Up (groupM [a,b]l p) (Pr (Star (Ags [b,c])) p))

[clcl(ul?T,Cc[?p, [b,c]111)*,C[?p, [c11],(ULUL?T, [b,c]],Clc, (UL?T,C[?p, [b,c]1]11)*,C[?p, [c1111)*]1]p
ActEpist> tr (Up (secret [a,b] p) (Pr (Star (Ags [b,cl)) p))

[clel(ul?T,Ccl?p, [b111)*,C[?p, [c]11], (U[UL?T, [b,c]],CL?-T, (UL?T,CL?p, [b]111)*,C[?p, [c]1111)*]1]p
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Semantics

We now turn to the implementation of the semantics module.

17 Semantics Module Declaration

module Semantics
where

import List
import Char
import Models
import Display
import MinBis
import ActEpist
import DPLL

18 Semantics Implementation

The group alternatives of group of agents a are the states that are reachable through (J,c 4 Ra-

groupAlts :: [(Agent,State,State)] -> [Agent] -> State -> [State]
groupAlts rel agents current =
(nub . sort . concat) [ alternatives rel a current | a <- agents ]

The common knowledge alternatives of group of agents a are the states that are reachable through a
finite number of R, links, for a € A.

commonAlts :: [(Agent,State,State)] -> [Agent] -> State -> [State]
commonAlts rel agents current =
closure rel agents (groupAlts rel agents current)

The model update function takes a static model and and action model and returns an object of type
Model (State,State) [Prop]. The up function takes an epistemic model and an AM and returns an
EM. Its states are the (State,State) pairs that result from the cartesian product construction described
in [2]. Note that the update function uses the truth definition (given below as isTrueAt).

We will set up matters in such way that updates with action models get their list of agents from the
epistemic model that gets updated. For this, we define:

type FAM = [Agent] -> AM
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up :: EM -> FAM -> Model (State,State) [Prop]
up m@(Mo worlds val ags acc points) fam =
Mo worlds’ val’ ags acc’ points’
where
am@(Mo states pre _ susp actuals) = fam ags
worlds’ = [ (w,s) | w <- worlds, s <- states,
formula <- maybe [] (\ x -> [x]) (lookup s pre),
isTrueAt w m formula ]
val’ = [ ((w,s),props) | (w,props) <- val,
s <- states,
elem (w,s) worlds’ ]
acc’ = [ (agl, (wl,s1),w2,s2)) | (agl,wl,w2) <- acc,
(ag2,s1,s2) <- susp,
agl == ag2,
elem (wl,sl) worlds’,
elem (w2,s2) worlds’ ]
points’ = [ (p,a) | p <- points, a <- actuals,
elem (p,a) worlds’ ]

An action model is tiny if is action list is empty or a singleton list:

tiny :: FAM -> Bool
tiny fam = length actions <=1
where actions = domain (fam [minBound..maxBound])

The appropriate notion of equivalence for the base case of the bisimulation for epistemic models is “having
the same valuation”.

sameVal :: [Prop] -> [Prop] -> Bool
sameVal ps gs = (nub . sort) ps == (nub . sort) gs

Bisimulation minimal version of generated submodel of update result for epistemic model and PoAM:

upd :: EM -> FAM -> EM
upd sm fam = if tiny fam then conv (up sm fam)
else bisim (sameVal) (up sm fam)

Non-deterministic update with a list of PoAMs:

upds :: EM -> [FAM] -> EM
upds = foldl upd

At last we have all ingredients for the truth definition.
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isTrueAt :: State -> EM -> Form -> Bool

isTrueAt w m Top = True

isTrueAt w m@(Mo worlds val ags acc pts) (Prop p) =
elem p (concat [ props | (w’,props) <- val, w’==w ])

isTrueAt w m (Neg f) = not (isTrueAt w m f)

isTrueAt w m (Conj fs) = and (map (isTrueAt w m) fs)

isTrueAt w m (Disj fs) = or (map (isTrueAt w m) fs)

The clauses for individual knowledge, general knowledge and common knowledge use the functions
alternatives, groupAlts and commonAlts to compute the relevant accessible worlds:

isTrueAt w m@(Mo worlds val ags acc pts) (K ag f) =

and (map (flip ((flip isTrueAt) m) f) (alternatives acc ag w))
isTrueAt w m@(Mo worlds val ags acc pts) (EK agents f) =

and (map (flip ((flip isTrueAt) m) f) (groupAlts acc agents w))
isTrueAt w m@(Mo worlds val ags acc pts) (CK agents f) =

and (map (flip ((flip isTrueAt) m) f) (commonAlts acc agents w))

In the clause for [M]y, the result of updating the static model M with action model M may be undefined,
but in this case the precondition P(sg) of the designated state sg of M will fail in the designated world wy
of M. By making the clause for [M]p check for M =, P(so), truth can be defined as a total function.

isTrueAt w m@(Mo worlds val ags rel pts) (Up am f) =
and [ isTrue m’ f |
m’ <- decompose (upd (Mo worlds val ags rel [w]) (\ ags -> am)) ]

Checking for truth in all the designated points of an epistemic model:

isTrue :: EM -> Form -> Bool
isTrue (Mo worlds val ags rel pts) form =
and [ isTrueAt w (Mo worlds val ags rel pts) form | w <- pts ]

19 Tools for Constructing Epistemic Models

The following function constructs an initial epistemic model where the agents are completely ignorant
about their situation, as described by a list of basic propositions. The input is a list of basic propositions
used for constructing the valuations.
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initE :: [Prop] -> [Agent] -> EM
initE allProps ags = (Mo worlds val ags accs points)
where
worlds = [0..(27k - 1)]
k length allProps
val = zip worlds (sortL (powerList allProps))

accs = [ (ag,stl,st2) | ag <- ags,
stl <- worlds,
st2 <- worlds ]
points = worlds
This uses the following utilities:
powerList :: [a] -> [[all
powerList [] = [[1]
powerList (x:xs) = (powerList xs) ++ (map (x:) (powerList xs))

sortL :: Ord a => [[a]]l -> [[al]

sortlL = sortBy (\ xs ys -> if length xs < length ys then LT
else if length xs > length ys then GT
else compare xs ys)

Some initial models:

e00 :: EM
e00 = initE [P 0] [a,b]

e0 :: EM
e0 = initE [P 0,Q 0] [a,b,c]

20 From Communicative Actions to Action Models

Computing the update for a public announcement:

public :: Form -> FAM
public form ags =
(Mo [0] [(0,form)] ags [ (2,0,0) | a <- ags ] [0])

Public announcements are S5 models:

DEMO> showM (public p [a,b,c])
==> [0]

(o]

(0,p)

(a, [[01D])

(v, [[011])

(c, [[01])
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Computing the update for passing a group announcement to a list of agents: the other agents may or
may not be aware of what is going on. In the limit case where the message is passed to all agents, the
message is a public announcement.

groupM :: [Agent] -> Form -> FAM
groupM gr form agents =
if sort gr == sort agents
then public form agents
else
(Mo
(0,11
[(0,form), (1,Top)]
agents
([ (2,0,0) | a <- agents ]
++ [ (a,0,1) | a <- agents \\ gr ]
++ [ (a,1,0) | a <- agents \\ gr ]
++ [ (a,1,1) | a <~ agents 1
KJp)

Group announcements are S5 models:

Semantics> showM (groupM [a,b] p [a,b,c,d,el)
=> [0]

[0,1]

0,p)(1,T)

(a, [[0],[11])

(b, [[0],[111)

(c, [[0,11D)

(d,[[0,111)

(e, [[0,11D)

Computing the update for an individual message to b that ¢:

message :: Agent -> Form -> FAM
message agent = groupM [agent]

Another special case of a group message is a test. Tests are updates that messages to the empty group:

test :: Form -> FAM
test = groupM []

Computing the update for passing a secret message to a list of agents: the other agents remain unaware
of the fact that something goes on. In the limit case where the secret is divulged to all agents, the secret
becomes a public update.
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secret :: [Agent] -> Form -> FAM
secret agents form all_agents =
if sort agents == sort all_agents
then public form agents
else
(Mo
(0,11
[(0,form), (1,Top)]
all_agents
([ (2,0,0) | a <- agents ]
++ [ (2,0,1) | a <- all_agents \\ agents ]
++ [ (a,1,1) | a <- all_agents 1)
KJp)

Secret messages are KD45 models:

DEMO> showM (secret [a,b] p [a,b,cl)
==> [0]

[0,1]

0,p)(1,T)

(a, [C0],001),C01,01101D

(b, [C0D,001),C01,01HD
(c,[CLO],[1DD)

To Do 1 Add functions for messages with bcc.

Here is a multiple pointed action model for the communicative action of revealing one of a number of
alternatives to a list of agents, in such a way that it is common knowledge that one of the alternatives
gets revealed (in [3] this is called common knowledge of alternatives).

reveal :: [Agent] -> [Form] -> FAM
reveal ags forms all_agents =
(Mo
states
(zip states forms)
all_agents
([ (ag,s,s) | s <~ states, ag <- ags ]
++
[ (ag,s,s’) | s <- states, s’ <- states, ag <- others ])
states)
where states = map fst (zip [0..] forms)
others = all_agents \\ ags

Here is an action model for the communication that reveals to a one of py, g1, 7.

Semantics> showM (reveal [a] [pl,ql,ri1] [a,bl)
==> [0,1,2]

[0,1,2]

(0,p1) (1,q1) (2,r1)

(a, [[01,[11,[211)

(b, [[0,1,2]11)
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A group of agents B gets (transparantly) informed about a formula ¢ if B get to know ¢ when ¢ is true,
and B get to know the negation of ¢ otherwise. Transparancy means that all other agents are aware of
the fact that B get informed about ¢, i.e., the other agents learn that (¢ — Cpyp) A (= — Cp—¢p). This
action model can be defined in terms of reveal, as follows:

info :: [Agent] -> Form -> FAM
info agents form =
reveal agents [form, negation form]

An example application:

Semantics> showM (upd e0 (info [a,b]l q))
==> [0,1,2,3]

[0,1,2,3]

0,1, P2, 3, Ip,al)

(a, [[0,11,[2,31])

(v, [[0,11,[2,31])

(c,[[0,1,2,31])

Semantics> isTrue (upd e0 (info [a,b] q)) (CK [a,b]
False

Semantics> isTrue (upd e0 (groupM [a,b]l q)) (CK [a,b] q)
True

Slightly different is informing a set of agents about what is actually the case with respect to formula ¢:

infm :: EM -> [Agent] -> Form -> FAM
infm m ags f = if isTrue m f
then groupM ags f
else if isTrue m (Neg f)
then groupM ags (Neg f)
else one

And the corresponding thing for public announcement:

publ :: EM -> Form —-> FAM
publ m f = if isTrue m £
then public £
else if isTrue m (Neg f)
then public (Neg f)
else one

21 Operations on Action Models

The trivial update action model is a special case of public announcement. Call this the one action model,
for it behaves as 1 for the operation ® of action model composition.
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one :: FAM
one = public Top

Composition ® of multiple pointed action models.

cmpP :: FAM -> FAM -> [Agent] -> Model (State,State) Form
cmpP faml fam2 ags =
(Mo nstates npre ags nsusp npoints)
where m@(Mo states pre _ susp ss) = faml ags
(Mo states’ pre’ _ susp’ ss’) = fam2 ags
npoints = [ (s,s’) | s <- ss, s’ <- ss’ ]

nstates = [ (s,s’) | s <- states, s’ <- states’ ]
npre = [ ((s,s”), g | (s,f) <- pre,

(s?,f7) <- pre’,

g <- [computePre m f £’] ]
nsusp = [ (ag,(s1,s1’),(s2,s2’)) | (ag,sl,s2) <- susp,

(ag’,s1’,82’) <- susp’,
ag == ag’ ]

Utility function for this: compute the new precondition of a state pair. If the preconditions of the two
states are purely propositional, we know that the updates at the states commute and that their combined
precondition is the conjunction of the two preconditions, provided this conjunction is not a contradiction.
If one of the states has a precondition that is not purely propositional, we have to take the epistemic
effect of the update into account in the new precondition.

computePre :: AM -> Form -> Form -> Form
computePre m g g’ | pureProp conj = conj
| otherwise = Conj [ g, Neg (Up m (Neg g’)) 1]
where conj = canonF (Conj [g,g’]l)

To Do 2 Refine the precondition computation, by making more clever use of what is known about the
update effect of the first action model.

Compose pairs of multiple pointed action models, and reduce the result to its simplest possible form
under action emulation.

cmpFAM :: FAM -> FAM -> FAM
-— cmpFAM fam fam’ ags = aePmod (cmpP fam fam’ ags)
cmpFAM fam fam’ ags = conv (cmpP fam fam’ ags)

Use one as unit for composing lists of FAMs:

cmp :: [FAM] -> FAM
cmp = foldl cmpFAM one

Here is the result of composing two messages:
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Semantics> showM (cmp [groupM [a,b] p, groupM [b,c] ql [a,b,cl)
==> [0]

[0,1,2,3]

0,&[p,ql) (1,p)(2,9)(3,T)

(a, [[0,1],[2,3]1])

(v, [[0],[1],[2],[31])

(c,[[0,21,[1,311)

This gives the resulting action model. Here is the result of composing the messages in the reverse order:

==> [0]

[0,1,2,3]

0,&[p,q1) (1,9 (2,p) (3,T)
(a,[[0,2],[1,3]1])

(b, [[0],[1],[2],[3]11)
(c,[[0,1],[2,31])

These two action models are bisimilar under the renaming 1 — 2,2 +— 1.

Here is an illustration of an observation from [16].

m2
psi

initE [P 0,Q 0] [a,b,c]
Disj[Neg(K b p),q]

Semantics> showM (upds m2 [message a psi, message b pl)
==> [1,4]

[0,1,2,3,4,5]

0, A, P12, [p]) G, [q]) 4, p,q])

(5, [p,ql)

(a,[[0,1,2,3,4,5]])

(b, [[0,2,3,5],[1,4]11)

(c,[[0,1,2,3,4,5]1)

Semantics> showM (upds m2 [message b p, message a psi])
==> [7]

[0,1,2,3,4,5,6,7,8,9,10]

0,1, [1)(2,[p]) (3, [p]) (4, [pDD

(5,[q1)(6,[q1) (7, [p,q]) (8,[p,ql) (9, [p,ql)

(10, [p,ql)

(a,([0,3,5,7,91,[1,2,4,6,8,1011)

(b, ([0,1,3,4,5,6,9,10],([2,7,8]11)
(c,[[0,1,2,3,4,5,6,7,8,9,10]11)

Power of action models:

pow :: Int -> FAM -> FAM
pow n fam = cmp (take n (repeat fam))

Non-deterministic sum @ of multiple-pointed action models:
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ndSum’ :: FAM -> FAM -> FAM
ndSum’ faml fam2 ags = (Mo states val ags acc ss)
where

(Mo statesl vall _ accl ssl) = faml ags

(Mo states2 val2 _ acc2 ss2) = fam2 ags

f =\ x -> toInteger (length statesl) + x
states2’ = map f states2

val2’ =map (\ (x,y) -> (£ x, y)) val2
acc2’ =map (\ (x,y,z) > (x, £y, £ 2)) acc2
ss = ssl ++ map f ss2

states = statesl ++ states2’

val = vall ++ val2’

acc = accl ++ acc2’

Example action models:

am0 = ndSum’ (test p) (test (Neg p)) [a,b,c]

aml

ndSum’ (test p) (ndSum’ (test q) (test r)) [a,b,c]

Examples of minimization for action emulation:

Semantics> showM amO
==> [0,2]

[0,1,2,3]
(0,p)(1,T)(2,-p) (3,T)

(a, [([0],[11),C[2],03DH D)
(b, [([01,[11),([2],[31>1)
(c, [C[0],[11),([2],(3101)

Semantics> showM (aePmod amO)
==> [0]

[0]

(0,T)

(a,[[0ID)

(b, [[0ID)

(c,[[0ID)

Semantics> showM aml

==> [0,2,4]

[0,1,2,3,4,5]
0,p)(1,T)(2,9)(3,T) (4,r)

(5,T)

(a, [([0],[11),(C[2],[3]1),([41,05610])
(b, [([0],[11),([2],(3]),([4]1,[51)1)
(c, [([0],[11),([2],(3]),([4]1,[51>1)

Semantics> showM (aePmod ami)

==> [0]
(0,1]
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0,v[lp,&[-p,ql,&[-p,-q,r]1) (1,T)
(a, [(L0],[11D1)
(b, (L[0T, [11)1)
(c, [CL0T,[11)1)

Non-deterministic sum @ of multiple-pointed action models, reduced for action emulation:

ndSum :: FAM -> FAM -> FAM
ndSum faml fam2 ags = (ndSum’ faml fam2) ags

Notice the difference with the definition of alternative composition of Kripke models for processes given
in [25, Ch 4].

The zero action model is the 0 for the & operation, so it can be used as the base case in the following
list version of the @ operation:

ndS :: [FAM] -> FAM
ndS = foldl ndSum zero

Performing a test whether ¢ and announcing the result:

testAnnounce :: Form -> FAM
testAnnounce form = ndS [ cmp [ test form, public form ],
cmp [ test (negation form),
public (negation form)] ]

testAnnounce form is equivalent to info all_agents form:

Semantics> showM (testAnnounce p [a,b,c])
==> [0,1]

[0,1]

(0,p) (1,-p)

(a,[[0],[111D

(b, [[0],[111)

(c,[[0],[11DD

Semantics> showM (info [a,b,c] p [a,b,c])
==> [0,1]

[0,1]

(0,p)(1,-p)

(a, [[01,[111)

(b, [[01,[111)

(c,[[01,[11])

The function testAnnounce gives the special case of revelations where the alternatives are a formula and
its negation, and where the result is publicly announced.

Note that DEMO correctly computes the result of the sequence and the sum of two contradictory
propositional tests:
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Semantics> showM (cmp [test p, test (Neg p)] [a,b,c])
==> []
[

(a, D
(b, [1D
(e, D

Semantics> showM (ndS [test p, test (Neg p)] [a,b,cl)
==> [0]

[o]

0,T)

(a, [[01])

(b, [[011)

(c,[[01]

Examples

22 The Riddle of the Caps

Picture a situation® of four people a, b, ¢, d standing in line, with a, b, ¢ looking to the left, and d looking
to the right. a can see no-one else; b can see a; ¢ can see a and b, and d can see no-one else. They are
all wearing caps, and they cannot see their own cap. If it is common knowledge that there are two white
and two black caps, then in the following situation ¢ knows what colour cap she is wearing.

NEEENEEES By B

If ¢ now announces that she knows the colour of her cap (without revealing the colour), b can infer from
this that he is wearing a white cap, for b can reason as follows: “c knows her colour, so she must see
two caps of the same colour. The cap I can see is white, so my own cap must be white as well.” In this
situation b draws a conclusion from the fact that ¢ knows her colour.

In the following situation b can draw a conclusion from the fact that ¢ does not know her colour.

o n

In this case ¢ announces that she does not know her colour, and b can infer from this that he is wearing a
black cap, for b can reason as follows: “c does not know her colour, so she must see two caps of different
colours in front of her. The cap I can see is white, so my own cap must be black.”

To account for this kind of reasoning, we use model checking for epistemic updating, as follows. Proposition
p; expresses the fact that the i-th cap, counting from the left, is white. Thus, the facts of our first example
situation are given by p; A ps A —p3 A —py, and those of our second example by p; A =ps A —p3 A p4.

Here is the DEMO code for this example (details to be explained below):

3See [18].
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module Caps
where

import DEMO

capsInfo :: Form
capsInfo = Disj [Conj [f, g, Neg h, Neg jl |
f <- [p1, p2, p3, p4l,
g <= [p1, p2, p3, p4al \\ [f],
h <- [p1l, p2, p3, p4l \\ [f,gl,
j <= [p1, p2, p3, p4] \\ [f,g,h],
f<g, h<j ]

awarenessFirstCap info [b,c] pil
awarenessSecondCap = info [c]  p2

cK
bK

Disj [K ¢ p3, K ¢ (Neg p3)]
Disj [K b p2, K b (Neg p2)]

mo0 = upd (initE [P 1, P 2, P 3, P 4] [a,b,c,d]) (test capsInfo)
mol = upd moO (public capsInfo)

mo2 = upds mol [awarenessFirstCap, awarenessSecondCap]

mo3a = upd mo2 (public cK)

mo3b = upd mo2 (public (Neg cK))

An initial situation with four agents a, b, ¢, d and four propositions p1, p2, p3, p4, with exactly two of these
true, where no-one knows anything about the truth of the propositions, and everyone is aware of the
ignorance of the others, is modelled like this:

Caps> showM moO

==> [5,6,7,8,9,10]

(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]

(0,010 (1, [p11) (2, [p2]) (3, [p3]1) (4, [p4])

(5, [p1,p21) (6, [p1,p3]) (7, [p1l,p4]l) (8, [p2,p3]) (9, [p2,p4])

(10, [p3,p4]1) (11, [p1,p2,p3]) (12, [p1,p2,p4]) (13, [p1,p3,p4]) (14, [p2,p3,p4l)
(15, [p1,p2,p3,p4l)

(a,[[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]])
(b,[[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,1511)
(c,[[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]])
@,rfro,1,2,3,4,5,6,7,8,9,10,11,12,13,14,1511)

The first line indicates that worlds 5,6,7,8,9,10 are compatible with the facts of the matter (the facts
being that there are two white and two black caps). E.g., 5 is the world where a and b are wearing the
white caps. The second line lists all the possible worlds; there are 2* of them, since every world has
a different valuation. The third through sixth lines give the valuations of worlds. The last four lines
represent the accessibility relations for the agents. All accessibilities are total relations, and they are
represented here as the corresponding partitions on the set of worlds. Thus, the ignorance of the agents
is reflected in the fact that for all of them all worlds are equivalent: none of the agents can tell any of
them apart.
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The information that two of the caps are white and two are black is expressed by the formula

(p1 Ap2 A—p3 A —pa) V (p1 Aps A —pa A—pa) V (p1 Apa A —p2 A —p3)
Vo (p2 Aps A=pr A=pa) V (p2 Apa A—pr A—p3) V (ps A pa A —pr A —pa).

A public announcement with this information has the following effect:

Caps> showM (upd moO (public capsInfo))

==> [0,1,2,3,4,5]

[0,1,2,3,4,5]

(0, [p1,p21) (1, [p1,p31) (2, [p1,p4l) (3, [p2,p3]) (4, [p2,p4l)
(5, [p3,p4l)

(a,[[0,1,2,3,4,5]]1)

(b, [[0,1,2,3,4,5]11)

(c,[[0,1,2,3,4,5]1])

4,[[0,1,2,3,4,511)

Let this model be called mol. The representation above gives the partitions for all the agents, showing
that nobody knows anything. A perhaps more familiar representation for this multi-agent Kripke model
is given in Figure 2. In this picture, all worlds are connected for all agents, all worlds are compatible
with the facts of the matter (indicated by the double ovals).

abed

Figure 2: Caps situation where nobody knows anything about p1, p2, p3, pa.

Next, we model the fact that (everyone is aware that) b can see the first cap and that ¢ can see the first
and the second cap, as follows:

Caps> showM (upds mol [info [b,c] pl, info [c] p2])
==> [0,1,2,3,4,5]
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[0,1,2,3,4,5]

(0, [p1,p21) (1, [p1,p31) (2, [p1,p4]) (3, [p2,p3]) (4, [p2,p4])
(5, [p3,p4])

(a,[[0,1,2,3,4,511)

(b, [[0,1,21,[3,4,5]11)

(c,[[0],[1,2],[3,4],[511)

d,r[,1,2,3,4,511)

Notice that this model reveals that in case a, b wear caps of the same colour (situations 0 and 5), ¢ knows
the colour of all the caps, and in case a,b wear caps of different colours, she does not (she confuses the
cases 1,2 and the cases 3,4). Figure 3 gives a picture representation.

’
A |

a
4:[p2,p4]

ad

Figure 3: Caps situation after updating with awareness of what b and ¢ can see.

Let this model be called mo2. Knowledge of ¢ about her situation is expressed by the epistemic formula
K ps V K.—ps, ignorance of ¢ about her situation by the negation of this formula. Knowledge of b about
his situation is expresed by Kpps V Kp—ps. Let bK, cK express that b, ¢ know about their situation. Then
updating with public announcement of cK and with public announcement of the negation of this have
different effects:

Caps> showM (upd mo2 (public cK))
==> [0,1]

[0,1]

(0, [p1,p2]1) (1, [p3,p4])

(a, [[0,111)

o1



(b, [[0], [11D)
(c,[[0],[11D)
(d,[[0,111)

Caps> showM (upd mo2 (public (Neg cK)))

==> [0,1,2,3]

[0,1,2,3]

(0, [p1,p3]) (1, [p1,p4l) (2, [p2,p3]) (3, [p2,p4l)
(a,[[0,1,2,3]1])

(v, [[0,1],[2,3]1])

(c, [[0,1],[2,311)

(4,[[0,1,2,31D)

In both results, b knows about his situation, though:

Caps> isTrue (upd mo2 (public cK)) bK

True

Caps> isTrue (upd mo2 (public (Neg cK))) bK
True

23 Muddy Children

For this example we need four agents a, b, ¢, d. Four children a, b, ¢, d are sitting in a circle. They have
been playing outside, and they may or may not have mud on their foreheads. Their father announces:
“At least one child is muddy!” Suppose in the actual situation, both ¢ and d are muddy.

a b ¢ d
o O e e

Then at first, nobody knows whether he is muddy or not. After public announcement of these facts, ¢(d)
can reason as follows. “Suppose I am clean. Then d(c) would have known in the first round that she was
dirty. But she didn’t. So I am muddy.” After ¢, d announce that they know their state, a(b) can reason
as follows: “Suppose I am dirty. Then ¢ and d would not have known in the second round that they were
dirty. But they knew. So I am clean.” Note that the reasoning involves awareness about perception.

In the actual situation where b, ¢, d are dirty, we get:

—_ 0 0 0 0
—_—— v e T

_— v e 0
—_——— 0 Y e &

Reasoning of b: “Suppose I am clean. Then ¢ and d would have known in the second round that they
are dirty. But they didn’t know. So I am dirty. Similarly for ¢ and d.” Reasoning of a: “Suppose I am
dirty. Then b, ¢ and d would not have known their situation in the third round. But they did know. So
I am clean.” And so on ...[20].
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Here is the DEMO implementation of the second case of this example, with b, ¢, d dirty.

module Muddy
where

import DEMO

bcd_dirty = Conj [Neg pl, p2, p3, p4l

upd mul (public (Disj [pl, p2, p3, p4l))

upd mu2 (public (Conj[Neg aK, Neg bK, Neg cK, Neg dK]))
upd mu3 (public (Conj[Neg aK, Neg bK, Neg cK, Neg dK]))
upds mu4 [public (Conj[bK, cK, dKI)]

awareness =
aK = Disj [K a pl,

bK = Disj [K b p2,

cK = Disj [K c p3,

dK = Disj [K d p4,

mu0 = upd (initE [P

mul = upds mu0 awareness
mu?2

mu3

mué

mub

[info [b,c,d] pil,
info [a,c,d] p2,
info [a,b,d] p3,
info [a,b,c] p4 ]

K a (Neg p1)]
K b (Neg p2)]
K ¢ (Neg p3)]
K d (Neg p4)]

1, P2, P 3, P 4] [a,b,c,d]) (test bcd_dirty)

The initial situation, where nobody knows anything, and they are all aware of the common ignorance
(say, all children have their eyes closed, and they all know this) looks like this:

Muddy> showM muO

==> [14]

[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]

0,[1) (1, [p11) (2, [p2]) (3, [p31) (4, [p4])

(5, [p1,p21) (6, [p1,p3]1) (7, [p1,p4]) (8, [p2,p3]) (9, [p2,p4])

(10, [p3,p4]1) (11, [p1,p2,p3]) (12, [p1,p2,p4]) (13, [p1,p3,p4]) (14, [p2,p3,p4l)
(15, [p1,p2,p3,p4l)

(a,[[0,1,2,3,4,5,
(b,[[0,1,2,3,4,5
(c,[[0,1,2,3,4,5,
(a,[[0,1,2,3,4,5

EILE

>t

EILE

PEER SRS R

9
,9,10,11,12,13,14,15]1])
,9

9

6,7,8
,6,7,8
6,7,8
6,7,8

B

,10,11,12,13,14,1511)

,10,11,12,13,14,1511)
,10,11,12,13,14,151])

The awareness of the children about the mud on the foreheads of the others is expressed in terms of
update models. Here is the update model that expresses that b, ¢, d can see whether a is muddy or not:

Muddy> showM (info [b,c,d] pl)
==> [O , 1]

(o,1]

(0,p1) (1,-p1)
(a, [[0,111)
(b, [[0],[111)
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(c,[[0],[11D)
(d, [[0],[11D)

Let awareness be the list of update models expressing what happens when they all open their eyes and
see the foreheads of the others. Then updating with this has the following result:

Muddy> showM (upds mu0O awareness)

==> [14]

[o,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]

(0, [ (1, [p11) (2, [p2]1) (3, [p3]1) (4, [p4])

(5, [p1,p2]) (6, [p1,p3]1) (7, [p1,p4]) (8, [p2,p3]) (9, [p2,p4])
(10, [p3,p4]) (11, [p1,p2,p31) (12, [p1,p2,p4]l) (13, [pl,p3,p4l) (14, [p2,p3,p4])
(15, [p1,p2,p3,p4l)
(a,[[0,1],[2,5],[3,61,[4,7],[8,11],[9,12],[10,13],[14,15]1)
(b, [[0,2],[1,5],[3,8],[4,9],[6,11],[7,12],[10,14],[13,15]1)
(c,[[0,3],[1,61,[2,8],[4,10],[5,11],[7,131,[9,14]1,[12,15]])
(a,[[0,4],[1,7],[2,9],[3,10],([5,12],([6,13],[8,14],[11,15]1)

Call the result mul. An update of mul with the public announcement that at least one child is muddy
gives:

Muddy> showM (upd mul (public (Disj [pl, p2, p3, p4l)))

==> [13]

[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14]

0, [p11) (1, [p21) (2, [p3]) (3, [p4]) (4, [p1,p2])

(5, [p1,p31) (6, [p1,p4l) (7, [p2,p3]1) (8, [p2,p4]1) (9, [p3,p4])

(10, [p1,p2,p31) (11, [p1,p2,p4]) (12, [p1,p3,p4]1) (13, [p2,p3,p4]) (14, [p1,p2,p3,p4l)

(a,[[0],[1,4]1,[2,5]1,[3,6],[7,101,[8,111,[9,12],[13,1411)
(b,[[0,4]1,[1]1,[2,7],[3,8],[5,101,[6,111,[9,13],[12,1411)
(c,[l0,5],[1,7],[2],[3,9],[4,10],[6,12],[8,13],[11,1411)
(a,[f0,6],[1,8],[2,91,[3],[4,11],[5,12],[7,13],[10,14]1])

Picture representation (the double oval indicates the actual world):

14:[pl,p2,p3,p4]
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Call this model mu2, and use aK, bK,cK, dK for the formulas expressing that a,b, ¢,d know whether they
are muddy (see the code above). Then we get:

Muddy> showM (upd mu2 (public (Conj[Neg aK, Neg bK, Neg cK, Neg dK])))
==> [9]

[0,1,2,3,4,5,6,7,8,9,10]

(0, [p1,p2]) (1, [p1,p3]1) (2, [p1,p4]) (3, [p2,p3]) (4, [p2,p4])

(5, [p3,p4]) (6, [p1,p2,p3]1) (7, [p1,p2,p4]) (8, [p1,p3,p4]) (9, [p2,p3,p4])
(10, [p1,p2,p3,p4l)

(a,[l01,01],02],[3,6],[4,7],[5,8],[9,10]1)

(b, [[0],[1,6]1,[2,7],(31,[4],(5,9],[8,1011)
(c,[[0,6],[1]1,[2,8],(3],[4,9],[5],[7,1011)

(4, [fo,7],[1,8],[2],(3,9],[4],[5],[6,10]11)

Picture representation:

10:[p1,p2,p3.p4]

Call this model mu3, and update again with the same public announcement of general ignorance:

Muddy> showM (upd mu3 (public (Conj[Neg aK, Neg bK, Neg cK, Neg dK])))
==> [3]

[0,1,2,3,4]

0, [p1,p2,p31) (1, [p1,p2,p41) (2, [pl,p3,p4]) (3, [p2,p3,p4l) (4, [p1,p2,p3,p4l)

(a, [[0], [1],[2], (3,41
(v, [[0],[1],[2,4],[31D)
(c,[[0],[1,4],[2],[31D)
(d,[[0,4]1,[1]1,[2]1,[311)

Picture representation:

O:[p1,p2,p3] 3:[p2,p3.p4]

1:[pl,p2,p4] 2:[pl,p3.p4]
d c b

4:[p1,p2,p3.p4]

Call this model mu4. In this model, b, ¢, d know about their situation:
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Muddy> isTrue mu4 (Conj [bK, cK, dKI])
True

Updating with the public announcement of this information determines everything:

Muddy> showM (upd mu4 (public (Conj[bK, cK, dK1)))
==> [0]

fo]

(0, [p2,p3,p4l)

(a, [[011D

(b, [[011D

(c, [L01D)

(d, [Lo11)

24 Conclusion and Further Work

DEMO was used for solving Hans Freudenthal’s Sum and Product puzzle by means of epistemic modelling
in [14]. There are many variations of this. See the DEMO documentation at http://www.cwi.nl/~jve/
demo/ for descriptions and for DEMO solutions. DEMO is also good at modelling the kind of card
problems described in [13], such as the Russian card problem. A DEMO solution to this was published
n [15]. DEMO was used for checking a version of the Dining Cryptographers protocol [8], in [18]. All of
these examples are part of the DEMO documentation.

The next step is to employ DEMO for more realistic examples, such as checking security properties of
communication protocols. To develop DEMO into a tool for blackbox cryptographic analysis — where
the cryptographic primitives such as one-way functions, nonces, public and private key encryption are
taken as given. For this, a propositional base language is not sufficient. We should be able to express
that an agent A generates a nonce n 4, and that no-one else knows the value of the nonce, without falling
victim to a combinatorial explosion. If nonces are 10-digit numbers then not knowing a particular nonce
means being confused between 10'C different worlds. Clearly, it does not make sense to represent all
of these in an implementation. What could be done, however, is represent epistemic models as triples
(W, R, V), where V now assigns a non-contradictory proposition to each world. Then uncertainty about
the value of na, where the actual value is IV, can be represented by means of two worlds, one where
ng = N and one where n, # N. This could be done with basic propositions of the form e = M and
e # M, where e ranges over cryptographic expressions, and M ranges over ‘big numerals’. Implementing
these ideas, and putting DEMO to the test of analysing real-life examples is planned as future work.
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