
Computational Semantics, Type Theory,
and Functional Programming

APPENDIX — The Functional Approach To Parsing

Jan van Eijck

CWI and ILLC, Amsterdam, Uil-OTS, Utrecht

LOLA7 Tutorial, Pecs

August 2002

Summary

• Categories

• Features, Feature Agreement, Feature Percolation

• Lexical Items

• Parse Rules for Categories

• Putting it all together

A Module for Syntactic Categories

No index information on NPs, except for pronouns. Otherwise, virtually

the same as a datatype declaration for a fragment of dynamic Montague

grammar. The module Cat imports the standard List module. Lists

will be employed to implement a simple feature agreement mechanism.

module Cat

where

import List

Define features, feature lists, indices, and numerals.

data Feature = Masc | Fem | Neutr

| Sg | Pl

| Fst | Snd | Thrd

| Nom | Acc

deriving (Eq,Ord)

instance Show Feature

where

show Masc = "M"

show Fem = "F"

show Neutr = "N"

show Sg = "Sg"

show Pl = "Pl"

show Fst = "1"
show Snd = "2"

show Thrd = "3"

show Nom = "n"

show Acc = "a"

type Agreement = [Feature]

type Idx = Int

type Numeral = Int

Selecting the gender, number, person and case part of a feature list:

gen, nr, ps, cs :: Agreement -> Agreement

gen = filter (\x -> x == Masc

|| x == Fem || x == Neutr)

nr = filter (\x -> x == Sg || x == Pl)

ps = filter (\x -> x == Fst

|| x == Snd || x == Thrd)

cs = filter (\x -> x == Nom || x == Acc)

Declare a class Cat for categories that carry number and gender infor-

mation, with a function fs that gives the feature list of a category, func-

tions gender, number, sperson and scase for the syntactic gender,

number, person and case features of the category, a function combine

that computes the features of a combined category (with feature clashes

reported by []), and a function agree indicating whether there is a

feature clash or not when two categories are combined.

class (Eq a, Show a) => Cat a where

fs :: a -> Agreement

gender, number, sperson, scase :: a -> Agreement

gender cat = gen (fs cat)

number cat = nr (fs cat)

sperson cat = ps (fs cat)

scase cat = cs (fs cat)

combine :: Cat b => a -> b -> [Agreement]
combine cat1 cat2 =

[feats | length (gen feats) <= 1,

length (nr feats) <= 1,

length (ps feats) <= 1,

length (cs feats) <= 1]

where

feats = (nub . sort) (fs cat1 ++ fs cat2)

agree :: Cat b => a -> b -> Bool

agree cat1 cat2 = not (null (combine cat1 cat2))

Sentences are in class Cat. Set the agreement lists of ‘if then’ sentences

and texts consisting of several sentences to [].

data S = S NP VP | If S S | Txt S S

deriving (Eq,Show)

instance Cat S

where

fs (S np vp) = fs vp

fs _ = []

Pronouns and complex NPs carry explicit feature information. The

feature information of proper names depends on the name.

data NP = Ann | Mary | Bill | Johnny

| PERS Agreement

| PRO Agreement Idx

| NP1 Agreement DET CN

| NP2 Agreement DET RCN

deriving (Eq,Show)

instance Cat NP

where

fs Ann = [Fem,Sg,Thrd]

fs Mary = [Fem,Sg,Thrd]

fs Bill = [Masc,Sg,Thrd]

fs Johnny = [Masc,Sg,Thrd]
fs (PERS ftrs) = ftrs

fs (PRO ftrs i) = ftrs

fs (NP1 ftrs det cn) = ftrs

fs (NP2 ftrs det rcn) = ftrs

The entries ALL, SOME, NO, THE are for both singular and plural deter-

miners, so they carry no number feature information. The entries LESS

and MOST are for plural determiners. The number feature of MORE and

EXACT depends on the numeral.

data DET = ALL Agreement | SOME Agreement

| NO Agreement | THE Agreement

| LESS Numeral | MORE Numeral

| EXACT Numeral | MOST

deriving (Eq,Show)

We only set the number feature.

instance Cat DET

where

fs (ALL ftrs) = ftrs

fs (SOME ftrs) = ftrs

fs (NO ftrs) = ftrs

fs (THE ftrs) = ftrs

fs (LESS i) = [Pl]

fs (MORE 1) = [Sg]

fs (MORE i) = [Pl]

fs (EXACT 1) = [Sg]

fs (EXACT i) = [Pl]

fs MOST = [Pl]

We make a syntactic distinction between singular and plural versions of

CNs and RCNs, although their semantic treatment will be the same.

data CN = Man Agreement | Woman Agreement

| Boy Agreement | Person Agreement

| Thing Agreement | House Agreement

| Cat Agreement | Mouse Agreement

| ACN ADJ CN

deriving (Eq,Show)

instance Cat CN

where

fs (Man ftrs) = ftrs

fs (Woman ftrs) = ftrs

fs (Boy ftrs) = ftrs

fs (Person ftrs) = ftrs
fs (Thing ftrs) = ftrs

fs (House ftrs) = ftrs

fs (Cat ftrs) = ftrs

fs (Mouse ftrs) = ftrs

fs (ACN adj cn) = fs cn

data ADJ = Old | Young | Other

deriving (Eq,Show)

instance Cat ADJ

where

fs Old = []

fs Young = []

data RCN = CN1 CN VP | CN2 CN NP TV

deriving (Eq,Show)

instance Cat RCN

where

fs (CN1 cn vp) = fs cn

fs (CN2 cn np tv) = fs cn

We make a syntactic distinction between singular and plural versions of

VPs and TVs, although their semantic treatment will be the same.

data VP = Laugh Agreement | Cry Agreement

| Curse Agreement

| Smile Agreement

| VP1 TV NP | VP2 Agreement TV REFL

deriving (Eq,Show)

instance Cat VP

where

fs (Laugh ftrs) = ftrs

fs (Cry ftrs) = ftrs

fs (Curse ftrs) = ftrs

fs (Smile ftrs) = ftrs

fs (VP1 tv np) = fs tv
fs (VP2 ftrs tv refl) = ftrs

data REFL = Self Agreement deriving (Eq,Show)

instance Cat REFL

where fs (Self ftrs) = ftrs

Transitive verbs carry a number feature, so they are in the class Cat.

data TV = Love Agreement | Respect Agreement

| Hate Agreement | Own Agreement

deriving (Eq,Show)

instance Cat TV

where

fs (Love ftrs) = ftrs

fs (Respect ftrs) = ftrs

fs (Hate ftrs) = ftrs

fs (Own ftrs) = ftrs

A Simple CF Parser

module Parser

where

import Cat

type Words = [String]

NPs

lexNP :: Words -> [(NP,Words)]

lexNP ("ann":xs) = [(Ann,xs)]

lexNP ("mary":xs) = [(Mary,xs)]

lexNP ("bill":xs) = [(Bill,xs)]

lexNP ("johnny":xs) = [(Johnny,xs)]

lexNP ("i":xs) = [(PERS [Sg,Fst,Nom],xs)]

lexNP ("me":xs) = [(PERS [Sg,Fst,Acc],xs)]

lexNP ("we":xs) = [(PERS [Pl,Fst,Nom],xs)]

lexNP ("us":xs) = [(PERS [Pl,Fst,Acc],xs)]

lexNP ("you":xs) = [(PERS [Snd],xs)]

lexNP ("he":x:xs) =
[((PRO [Masc,Sg,Thrd,Nom] (read x)),xs)]

lexNP ("him":x:xs) =

[((PRO [Masc,Sg,Thrd,Acc] (read x)),xs)]

lexNP ("she":x:xs) =

[((PRO [Fem,Sg,Thrd,Nom] (read x)),xs)]

lexNP ("her":x:xs) =

[((PRO [Fem,Sg,Thrd,Acc] (read x)),xs)]

lexNP ("it":x:xs) =

[((PRO [Neutr,Sg,Thrd] (read x)),xs)]

lexNP ("they":x:xs) =

[((PRO [Pl,Thrd,Nom] (read x)),xs)]

lexNP ("them":x:xs) =

[((PRO [Pl,Thrd,Acc] (read x)),xs)]

lexNP _ = []

parseNP :: Words -> [(NP,Words)]
parseNP = \xs ->

[(NP1 agr det cn,zs) |

(det,ys) <- parseDET xs,

(cn, zs) <- parseCN ys,

agr <- combine det cn]

++

[(NP2 agr det rcn,zs) |

(det,ys) <- parseDET xs,

(rcn, zs) <- parseRCN ys,

agr <- combine det rcn]

++

[(np,ys) | (np,ys) <- lexNP xs]

Determiners

Note that we need a distinction in the lexicon between singular and

plural some, no and the, because of the semantic distinction.

lexDET :: Words ->[(DET,Words)]

lexDET ("every":xs) = [(ALL [Sg], xs)]

lexDET ("all":xs) = [(ALL [Pl], xs)]

lexDET ("some":xs) =

[(SOME [Sg], xs),(SOME [Pl], xs)]

lexDET ("no":xs) =

[(NO [Sg], xs), (NO [Pl], xs)]

lexDET ("the":xs) =

[(THE [Sg], xs),(THE [Pl], xs)]

lexDET ("less":"than":x:xs) = [((LESS (read x)), xs)]

lexDET ("more":"than":x:xs) = [((MORE (read x)), xs)]

lexDET ("exactly":x:xs) = [((EXACT (read x)), xs)]
lexDET ("most":xs) = [(MOST, xs)]

lexDET _ = []

parseDET :: Words -> [(DET,Words)]
parseDET = lexDET

ADJs

lexADJ :: Words -> [(ADJ,Words)]

lexADJ ("old":xs) = [(Old,xs)]

lexADJ ("young":xs) = [(Young,xs)]

lexADJ ("other":xs) = [(Other,xs)]

lexADJ _ = []

parseADJ :: Words -> [(ADJ,Words)]

parseADJ = lexADJ

CNs

Singular and plural CNs get distinguished by means of an appropriate

number feature.

lexCN :: Words ->[(CN,Words)]

lexCN ("man":xs) = [(Man [Masc,Sg,Thrd],xs)]

lexCN ("men":xs) = [(Man [Masc,Pl,Thrd],xs)]

lexCN ("woman":xs) = [(Woman [Fem,Sg,Thrd],xs)]

lexCN ("women":xs) = [(Woman [Fem,Pl,Thrd],xs)]

lexCN ("boy":xs) = [(Boy [Masc,Sg,Thrd],xs)]

lexCN ("boys":xs) = [(Boy [Masc,Pl,Thrd],xs)]

lexCN ("person":xs) = [(Person [Sg,Thrd],xs)]

lexCN ("persons":xs)= [(Person [Pl,Thrd],xs)]

lexCN ("thing":xs) = [(Thing [Neutr,Sg,Thrd],xs)]

lexCN ("things":xs) = [(Thing [Neutr,Pl,Thrd],xs)]

lexCN ("house":xs) = [(House [Neutr,Sg,Thrd],xs)]
lexCN ("houses":xs) = [(House [Neutr,Pl,Thrd],xs)]

lexCN ("cat":xs) = [(Cat [Neutr,Sg,Thrd],xs)]

lexCN ("cats":xs) = [(Cat [Neutr,Pl,Thrd],xs)]

lexCN ("mouse":xs) = [(Mouse [Neutr,Sg,Thrd],xs)]

lexCN ("mice":xs) = [(Mouse [Neutr,Pl,Thrd],xs)]

lexCN _ = []

parseCN :: Words -> [(CN,Words)]

parseCN = \xs ->

[(cn,ys)| (cn,ys) <- lexCN xs]

++

[(ACN adj cn, zs) | (adj,ys) <- parseADJ xs,

(cn, zs) <- parseCN ys]

RCNs

parseTHAT :: Words -> [Words]

parseTHAT ("that":xs) = [xs]

parseTHAT _ = []

parseRCN :: Words -> [(RCN,Words)]

parseRCN = \xs ->

[(CN1 cn vp, us) |

(cn,ys) <- parseCN xs,

zs <- parseTHAT ys,

(vp,us) <- parseVP zs,

agree cn vp]

++

[(CN2 cn np tv, vs) |
(cn,ys) <- parseCN xs,

zs <- parseTHAT ys,

(np,us) <- parseNP zs,

(tv,vs) <- parseTV us,

agree np tv,

notElem Acc (fs np)]

REFLs

parseREFL :: Words -> [(REFL,Words)]

parseREFL ("myself":xs) = [(Self [Sg,Fst], xs)]

parseREFL ("ourselves":xs) = [(Self [Pl,Fst], xs)]

parseREFL ("yourself":xs) = [(Self [Sg,Snd], xs)]

parseREFL ("yourselves":xs) = [(Self [Pl,Snd], xs)]

parseREFL ("himself":xs) =

[(Self [Masc,Sg,Thrd], xs)]

parseREFL ("herself":xs) =

[(Self [Fem,Sg,Thrd], xs)]

parseREFL ("itself":xs) =

[(Self [Neutr,Sg,Thrd], xs)]

parseREFL ("themselves":xs) = [(Self [Pl,Thrd], xs)]

parseREFL _ = []

VPs

lexVP :: Words -> [(VP,Words)]

lexVP ("laughs":xs) = [(Laugh [Sg,Thrd],xs)]

lexVP ("laugh":xs) = [(Laugh [Sg,Fst],xs),

(Laugh [Sg,Snd],xs),(Laugh [Pl],xs)]

lexVP ("cries":xs) = [(Cry [Sg,Thrd],xs)]

lexVP ("cry":xs) = [(Cry [Sg,Fst],xs),

(Cry [Sg,Snd],xs),(Cry [Pl],xs)]

lexVP ("curses":xs) = [(Curse [Sg,Thrd],xs)]

lexVP ("curse":xs) = [(Curse [Sg,Fst],xs),

(Curse [Sg,Snd],xs),(Curse [Pl],xs)]

lexVP ("smiles":xs) = [(Smile [Sg,Thrd],xs)]

lexVP ("smile":xs) = [(Smile [Sg,Fst],xs),
(Smile [Sg,Snd],xs),(Smile [Pl],xs)]

lexVP _ = []

parseVP :: Words -> [(VP,Words)]

parseVP = \xs ->

[(VP1 tv np,zs) |

(tv,ys) <- parseTV xs,

(np,zs) <- parseNP ys,

notElem Nom (fs np)]

++

[(VP2 agr tv refl,zs) |

(tv,ys) <- parseTV xs,

(refl,zs) <- parseREFL ys,

agr <- combine tv refl]

++

[(vp,ys)| (vp,ys) <- lexVP xs]

TVs

lexTV :: Words ->[(TV,Words)]
lexTV ("loves":xs) = [(Love [Sg,Thrd],xs)]

lexTV ("love":xs) = [(Love [Sg,Fst],xs),

(Love [Sg,Snd],xs), (Love [Pl],xs)]

lexTV ("respects":xs) = [(Respect [Sg,Thrd],xs)]

lexTV ("respect":xs) = [(Respect [Sg,Fst],xs),

(Respect [Sg,Snd],xs),(Respect [Pl],xs)]

lexTV ("hates":xs) = [(Hate [Sg,Thrd],xs)]

lexTV ("hate":xs) = [(Hate [Sg,Fst],xs),

(Hate [Sg,Snd],xs), (Hate [Pl],xs)]

lexTV ("owns":xs) = [(Own [Sg,Thrd],xs)]

lexTV ("own":xs) = [(Own [Sg,Fst],xs),

(Own [Sg,Snd],xs),(Own [Pl],xs)]

lexTV _ = []

parseTV :: Words -> [(TV,Words)]

parseTV = \xs ->

[(tv,ys)| (tv,ys) <- lexTV xs]

IF, THEN, ‘.’, ‘;’

parseIF :: Words -> [Words]

parseIF ("if":xs) = [xs]

parseIF _ = []

parseTHEN :: Words -> [Words]

parseTHEN ("then":xs) = [xs]

parseTHEN _ = []

parseC :: Words -> [Words]

parseC (".":xs) = [xs]

parseC (";":xs) = [xs]

parseC _ = []

Ss

parseS :: Words -> [(S,Words)]

parseS = \xs ->

[(S np vp,zs) | (np,ys) <- parseNP xs,

(vp,zs) <- parseVP ys,

agree np vp,

notElem Acc (fs np)]

++

[(If s1 s2,vs) | ys <- parseIF xs,

(s1,zs) <- parseS ys,

us <- parseTHEN zs,

(s2,vs) <- parseS us]

Text

Since the rule T ::= S | T.S is left-recursive, we need an extra function

for splitting the input word list: split gives all the ways to split a list

of at least two elements in two non-empty parts.

split :: [a] -> [([a],[a])]

split [x,y] = [([x],[y])]

split (x:y:zs) =

([x],(y:zs)):(map (\ (us,vs) -> ((x:us),vs))

(split (y:zs)))

parseTxt :: Words -> [(S,Words)]

parseTxt = \xs ->

parseS xs
++

[(Txt t s,vs) | (ys,zs) <- split xs,

us <- parseC zs,

(t,[]) <- parseTxt ys,

(s,vs) <- parseS us]

The ‘scan’ function

The next function scans an input string and puts whitespace in front of

punctuation marks and numerals. This can be used to convert a string

like “He1 loves her2.” to “He 1 loves her 2 .”

scan :: String -> String

scan [] = []

scan (x:xs) | x == ’.’ || x == ’;’ =

’ ’:x:scan xs

| isDigit x =

’ ’:x: (digits ++ scan rest)

| otherwise =

x:scan xs

where (digits,rest) = span isDigit xs

Parse

The main parse function uses the predefined function words to split

the input into separate words. Punctuation marks and pronoun indices

should come out as separate words; we use scan for that. Also, for

robustness, we convert everything to lowercase.

parse :: String -> [S]

parse string = [s | (s,["."]) <- parseTxt

(words

(map toLower (scan string)))]

Now try it out:

Parser> parse "Every man loves some woman."

[S (NP1 [M,Sg,3] (ALL [Sg]) (Man [M,Sg,3]))

(VP1 (Love [Sg,3]) (NP1 [F,Sg,3]

(SOME [Sg]) (Woman [F,Sg,3])))]

Parser> parse "All men love some woman."

[S (NP1 [M,Pl,3] (ALL [Pl]) (Man [M,Pl,3]))

(VP1 (Love [Pl]) (NP1 [F,Sg,3]

(SOME [Sg]) (Woman [F,Sg,3])))]

Parser> parse "All men love some women."

[S (NP1 [M,Pl,3] (ALL [Pl]) (Man [M,Pl,3]))

(VP1 (Love [Pl]) (NP1 [F,Pl,3]

(SOME [Pl]) (Woman [F,Pl,3])))]

Parser> parse "Bill loves more than 1 woman."

[S Bill (VP1 (Love [Sg,3])

(NP1 [F,Sg,3] (MORE 1) (Woman [F,Sg,3])))]

Parser> parse "Bill loves more than 1 women."

[]

Parser> parse "Bill loves more than 1 woman. He0 respects them1."

[Txt (S Bill (VP1 (Love [Sg,3])

(NP1 [F,Sg,3] (MORE 1) (Woman [F,Sg,3]))))

(S (PRO [M,Sg,3,n] 0)

(VP1 (Respect [Sg,3]) (PRO [Pl,3,a] 1)))]

Examples with personal pronouns:

pp1 = "I love you."

pp2 = "We respect ourselves."

pp3 = "We respect every woman that respects herself."

pp4 = "You respect yourself."

pp5 = "You respect yourselves."

Examples with singular NPs:

ex1 = "Johnny smiles."

ex2 = "Bill laughs."

ex3 = "if Bill laughs then Johnny smiles."

ex4 = "Bill laughs. Johnny smiles. Mary laughs."

ex5 = "Bill smiles. He1 loves some woman."

ex6 = "The boy loves some woman."

ex7 = "Some man loves some woman that smiles."

ex8 = "Some man respects some woman."

ex9 = "The man loves some woman."

ex10 = "Every man loves some woman."

ex11 = "Every man loves Johnny."

ex12 = "Some woman loves Johnny."

ex13 = "Johnny loves some woman."
ex14 = "Johnny respects some man that loves Mary."

ex15 = "No woman loves Bill."

ex16 = "No woman that hates Johnny loves Bill."

ex17 = "Some woman that respects Johnny loves Bill."

ex18 = "The boy loves Johnny."

ex19 = "He2 loves her1."

ex20 = "He2 respects her1."

ex21 = "If some man loves some woman then he4 respects her5."

ex22 = "Some man loves some woman. He4 respects her5."

ex23 = "Some woman owns some thing."

ex24 = "Some woman owns the house."
ex25 = "Some woman owns the house that Johnny hates."

ex26 = "No man that cries respects himself."

ex27 = "Some man respects himself."

ex28 = "Exactly 1 boy curses."

Examples with plurals:

px1 = "More than 1 man laughs."

px2 = "More than 2 men laugh."

px3 = "Most men that love some woman smile."

px4 = "Some women cry. No men cry."

px5 = "No men that cry respect themselves."

px6 = "All men cry."

px7 = "The men curse. The women laugh."

px8 = "Most men curse. No women curse."

px9 = "Most men smile. They4 laugh."

px10 = "Most men cry. They4 laugh."

px11 = "More than 1 man laughs. They4 love Mary."

px12 = "Less than 4 men laugh."

px13 = "Less than 4 men laugh. They4 love Mary."

