
Battle of the Logics

Barteld Kooi and Rineke Verbrugge

A concern of the organizers of the workshop on ‘Games, Action and Social
Software’ is that although everyone is keen to use logic for the analysis of key
concepts in this area, it is not so clear which logic or which tools from logic
to use for investigating games, actions and social software. For this reason,
they have organized a discussion session on the theme “Battle of the Logics:
Temporal Logic, Dynamic Logic, Game Logic, Logic for Belief Revision . . . Are
There too Many?” Participants in the discussion are logicians of four different
stripes: a Temporal logician, a Dynamic logician, a Philosophical logician, and
a Mathematical logician. As always, the computer scientist is also present.
A Multiagent System Designer who uncharacteristically does not know a lot
about logic has just been referred to the four logicians for advice.

Multiagent System Designer: As a multiagent system designer, I am usually
not that concerned with logic. Of course I use a bit of logic every now and
again. A good programmer cannot do without it and should have a good
understanding of logic, but I am more concerned with the features and the
desired behavior of the system I am designing, than with logical aspects of
multiagent systems. Even when I am looking for a logic to support me in the
design process, I notice that there is a whole bunch of logics that I could use:
temporal logic, dynamic logic, belief-desire-intention logic, which is usually
called BDI, and so on. Since there are so many logicians here, I am sure that
you could point me in the right direction and tell me what logic I should be
using.

Temporal logician: I think you will want to use temporal logic. As Fagin,
Halpern, Moses and Vardi have shown in their wonderful book Reasoning
about Knowledge [88], extensions of temporal logic are best suited to reason
about multiagent systems. The approach is very straightforward. As you will



2 Battle of the Logics

acknowledge, a multiagent system can best be represented as a distributed
system of computer processors. These processors can be in different local
states at different times. Together the local states constitute a global state
of the system. You, as a designer, will have limited the number of global
states that are allowed to occur and also which sequences of global states are
allowed to occur. We call these sequences of global states runs . Formally, a
multiagent system can best be thought of as a set of runs. I would even argue
that a multiagent system simply is the set of runs of the system. We can then
interpret a logical language with temporal operators on these runs, and with
a little effort we can also interpret epistemic operators on them, and possibly
other propositional attitudes. So, temporal logic with such a semantics of
interpreted systems is the way to go.

Dynamic logician: Although I agree that temporal logic is a good approach
to modeling some multiagent systems, I would not advise you to stick to just
one logic. As you said, there are lots of approaches. At first this might seem
somewhat unfortunate. After all, if logicians cannot even agree on one system
for one application, then the whole enterprise must be flawed. However, you
can also see this as an advantage. Apparently there are so many aspects of
multiagent systems, and so many questions one might ask about social soft-
ware or intelligent interaction in general, that one logic might not be enough.
I have heard Johan van Benthem compare this situation to the mathematics
of space, where geometry and topology are not seen as competitors. They are
complementary approaches to the mathematics of space [1]. In the same way,
different logics for multiagent systems can complement each other, together
giving a rich perspective on intelligent interaction.

Temporal logician: Come on. We cannot expect our poor Multiagent System
Designer to wade through the entire literature of logics for multiagent systems.
This colleague is asking us for some very specific advice, and we should give
it. Temporal logic is the best way to go.

Dynamic logician: If you insist, I will join you in your battle of the logics
then. Besides temporal logics, our Multiagent System Designer might do well
to consider using dynamic logic. In fact, dynamic logic might appeal more
to programmers than temporal logic would. After all, the constructs in the
dynamic language are very much like a programming language. There is a
great textbook by Harel, Kozen and Tiuryn on dynamic logics [111].

Computer Scientist: Why use logics of action when game theory provides



Battle of the Logics 3

all that is needed for analyzing what goes on when rational agents interact?
But I suppose the Game theorist has not been invited to this “Battle of the
logics”...

Philosophical logician: No, we allow ourselves to be myopic today and to talk
about logic, just this once. We have talked about possible uses of logic in
game theory on another occasion (see the discourse starting on page 133).

Dynamic logician: Please let me continue my explanation of dynamic logic
then. In the language of dynamic logic, there are modal operators corre-
sponding to programs. To inductively build up these programs, there are
usually some atomic actions α, as well as tests (?φ), which correspond to a
program that tests whether a formula φ is true. Then there is sequential
composition (π;π′), which simply says first do π, then do π′. You also have
non-deterministic choice (π∪π′), which allows either to execute π or π′. And
last but not least, there is iteration (π∗), which tells you to execute π zero or
more times. Sometimes, an intersection operator ∩ is also used; it is defined
semantically by the intersection of the two accessibility relations.

Temporal logician: Aha, so intersection is a bit like the operator for dis-
tributed or implicit knowledge in the logic of knowledge: if two agents would
pool all their knowledge, their implicit knowledge is what they would know.
For example, if I know that p and you know that p implies q, then we im-
plicitly know that q. The semantics of implicit knowledge is also based on
the intersection of the agents’ accessibility arrows, just like your intersection
operator for programs, and the completeness proof for the resulting logic is a
bit tricky because this intersection is not characterizable by modal axioms.

Dynamic logician: Exactly, the same problem also holds for dynamic logic
with intersection. Incidentally, the dynamic language might seem somewhat
far removed from programming languages, but you can easily represent an
‘if p then π else π′’ construction as (?p;π) ∪ (?¬p;π′), and a ‘while p, do
π’ construction as (?p;π)∗; ?¬p. This logic is my personal favorite, and I
recommend you to take a look at it, also for specifying and verifying your
multiagent systems.

Philosophical logician: You seem to be glossing over a very important philo-
sophical point that is relevant to the current discussion. “Useful” is a re-
lational concept. One cannot discuss the usefulness of an object, without
specifying the purpose for which it is to be used: One cannot say that a car
is useful on its own. However, if one wants to go from A to B, a car might be



4 Battle of the Logics

very useful. It is these simple philosophical points that seem to complicate
discussions between non-philosophers all the time. A basic course in philoso-
phy should be mandatory in any academic programme. This would save us a
lot of wasted time. So, what would you like to use these logics for?

Multiagent System Designer: Well, obviously, to help me design, implement
and analyze systems of interacting agents, because that happens to be my job.
In fact, I have many applications in mind. Perhaps a suitable logic could help
me design a multiagent system by providing a nice logical language to write
down a specification of desired system behavior. Perhaps logic could help me
verify that the system I have designed indeed has the desired properties I
had in mind while making it. Perhaps logic could also warn me not to try to
implement impossible systems, such as a decision method for the provability
of formulas in predicate logic.

Mathematical logician: Perhaps it would be nice to ask ourselves more gener-
ally what logics are supposed to be good for. When you look at the historical
roots of formal logic, you see that modern logic arose from a desire to pro-
vide a firm foundation for mathematics. Think about the so-called logicist
program of Frege and Hilbert’s Program, where the aim was to found math-
ematics on logic. Alas, Hilbert’s Program in its original guise failed on two
counts: Gödel’s incompleteness theorems showed that the supposed founda-
tions, which at that time were represented by Russell and Whitehead’s axiom-
atization of arithmetic in Principia Mathematica, were incomplete, and that
such systems could not even prove their own consistency. Second, Turing and
Church proved that first-order logic is undecidable. Still, Hilbert’s Program
has proved to be very fruitful for mathematical logic, and nowadays many
interesting revisions of Hilbert’s Program are around, that try to justify ideal
mathematics by restricted means. For example, people like Feferman, Kreisel,
Friedman and Simpson have shown that a lot of scientifically applicable math-
ematics can be based on weak subsystems of analysis, which are reducible to
finitary mathematics [211].

Computer Scientist: So, logicians have by no means lost their interest in very
precise mathematical proofs. And now we even have computational proof
assistants as powerful as Coq, a direct descendant of Automath. Isn’t it
fascinating that a group of researchers has recently succeeded in constructing
and checking a completely formal proof of the four color theorem in Coq [103;
104]?



Battle of the Logics 5

Philosophical logician: That’s all very well, but do not forget that logic started
with Aristotle who had a somewhat broader view of logic than just mathe-
matics. He was thinking about argumentation and science in general. If you
want go back to the real historical roots of logic, you will see that its purpose
is twofold. On the one hand, logic is a normative tool to assess the validity of
inferences. On the other hand, due to its precision it clarifies and explicates
intuitions one has about complex concepts.

Multiagent System Designer: This is a bit too abstract for me. May we turn
to a specific type of logic? In my field I have heard a lot about logics for
beliefs, desires and intentions, BDI logics for short. Could you clarify for me
what use these logics would have for me?

Temporal logician: BDI logics are simply extensions of branching time tem-
poral logic as it was developed in theoretical computer science to investigate
distributed systems. The founders of BDI logics wanted to formalize the con-
cept of an agent. You could view BDI logics as a formalization of work done
in philosophy on intentions and planning [187].

Philosophical logician: In philosophy, intention has been the subject of study
for years. It seems that people in artificial intelligence are always reinventing
the wheel, because this is exactly what Michael Bratman proposed [39; 40].
He said that if one has an intention to do something in the future, one forms
a partial plan, that one can fill in along the way. For example, if one wants to
go to New York, there are many ways to get there. So, one forms some sort of
highly abstract plan: For example one might want to travel by air rather than
by sea. Some things one may leave to the very last minute before one starts
executing the plan. One may for example decide to take a taxi to the airport,
but one would probably not have selected a particular taxi in advance. It is
quite clear that intentions and plans are very closely connected.

Temporal logician: Yes, and Bratman’s is exactly the work upon which BDI
logic is based. So the researchers in artificial intelligence have bought Brat-
man’s very nice wheels instead of reinventing them. You can view BDI logics
as providing a specification for the implementation of real agents.

Mathematical logician: So can someone explain the basics, please?

Temporal logician: Just think of the branching time logic CTL, computation
tree logic. At each time point, the tree can branch to several successors
according to different events taking place, or atomic actions if you like. In



6 Battle of the Logics

the language, you use temporal operators like inevitably (on every branch),
optionally (on some branch), eventually (at some future point on the current
branch), next, and until. Now Rao and Georgeff’s idea was to combine this
with operators for beliefs, goals and intentions. In the model, this would lead
to a number of time trees, where for example the agent believes a formula
at a time in the current tree if that formula holds in all belief-accessible
time trees at the corresponding point in time. So, it’s just as you would
expect. If you want to have obvious axioms in your system that say things
like “if you intend something, then you also desire it”, this corresponds to a
semantic property such as “every desire-accessible world has a subtree that is
an intention-accessible world”.

Multiagent System Designer: I find it hard to believe that such an abstract
logic has anything to do with working systems. If BDI logic really is about
this notion of agency, it is a philosophical exercise.

Dynamic logician: Well, BDI logic can be used for planning and that’s really
relevant for artificial intelligence. BDI logics are on the supply side of social
software. They provide social procedures. They do not aim to describe reality,
but they are going to help make things reality by providing specifications that
can be implemented.

Philosophical logician: Why don’t you give us a concrete example?

Temporal logician: A well-known automobile factory has constructed a pro-
totype of a conveyor belt system for car manufacturing [123] based on a BDI
architecture. The usual method of manufacturing cars is that a central con-
troller pre-plans the whole production process for a day, but then you lose
a lot of time if one of the machines breaks down during the day, as often
happens. Instead, Jennings and his colleagues designed a decentralized con-
trol system. All machines and all manufactured parts were conceptualized
as agents with their own objectives, such as “get myself to the end of the
manufacturing line after a specified set of operations has been performed on
me”. Then constant negotiations among different agents took place, following
the Contract Net Protocol, where machines bid for the opportunity to carry
out operations on the parts [198]. All these objectives and outcomes of the
task allocation protocols were represented as agents’ desires and intentions.
It turns out that the BDI-based decentralized system is much more flexible
and robust in the face of an uncertain dynamic environment than the usual
centralized one.



Battle of the Logics 7

Multiagent System Designer: That’s a really neat application, I’m impressed!
I will look up that conveyer belt paper and see if I can build upon Jennings’
neat work. Still, isn’t the notion of agency in BDI logics too much like the
notion of a player from game theory to be of practical use?

Dynamic logician: Indeed there are close connections between multiagent
systems and game theory, and what goes on in games can also be captured in
dynamic logics [17]. I do not want to go too deeply into games here as we have
already talked about them elsewhere (in the Chapter starting on page 133),
but let me remind you that the notion of agency is one of the key concepts to
be analyzed in both fields.

Mathematical logician: I once attended a lecture on BDI logics and remember
being surprised by the high number of different aspects that were mixed in
one logic. It might have been the case that this was due to the area still being
so young, but I would consider it unwise to develop a logic that is so rich in
language and semantics. These rich systems might seem attractive when you
want to write things down in your logic, but any metalogical result is very
hard to obtain. I prefer simple systems with small languages, with which one
can obtain beautiful results.

Philosophical logician: Again it seems a question of the purpose of one’s
enterprise. To me, it seems as though in mathematical logics the axiom-
atization of a logic comes first. Because one desires a certain elegance of
axiomatization, one consequently makes the language very poor. I remem-
ber certain mathematical logicians whose preferred fragment of propositional
logic only contained implication and absurdity. Of course, this language is
truth-functionally complete, and proofs with induction on the language are
less cumbersome, but in this way, other philosophically important logical op-
erators are ignored. When I develop a logic, the language simply contains
logical operators for those concepts I deem important.

Temporal logician: Maybe you should start with model theory instead of
language. Indeed, a logic is used for reasoning about certain structures.
You should first capture these structures, then you can decide on the lan-
guage. Remember that there are lots of ways to represent time. One can have
branching time or linear time, or one can have interval based models [86;
23]. Once you fix your models, you can interpret all sorts of languages on
them. But the models come first.

Mathematical logician: Hey, what are you all quibbling about? Doesn’t every



8 Battle of the Logics

well-trained logician know that once you have a sound and complete system,
there is a one-to-one correspondence between syntax and semantics?

Dynamic logician: Of course we all know that, and I guess my colleagues here
were just getting a little carried away talking about private tastes. In fact, I
also think of the models first, and language and axiomatization later. This is
not because I think the models are somehow fundamental. They just give me
the best intuitions in developing a logic. I can well imagine that this works
differently for other people, though.

Computer Scientist: Actually, there is one perspective from which your quib-
ble between models and deductions is important, and that is feasibility. Halpern
and Vardi describe this very well in their paper Model checking vs. Theorem
Proving: A Manifesto [108]. In good old-fashioned artificial intelligence, an
agent’s knowledge was represented as a knowledge base, a collection of formu-
las. An agent was said to know something if it was provable from his knowl-
edge base. But as the fathers of AI, and especially McCarthy, found that
first-order logic was the logic for knowledge representation, this meant that
the theorem-proving approach led to undecidability. In the model-checking
approach, in contrast, you only need to check whether a given formula holds
in a database, and that problem takes up memory space only polynomial in
the size of your data: it is in PSPACE.

Temporal logician: In my field, there are also such striking cases where model
checking is much more efficient than theorem proving. For example, if you
want to verify a finite-state program, let’s say a communication protocol, with
respect to some specification that can be expressed in a branching time logic.
Then the theorem-proving way would be that you first completely characterize
your protocol by a temporal formula: You just need to describe all possible
transitions in all possible global states. Then you need to check whether
this description implies your specification. Unfortunately, checking this is not
tractable because the validity problem for branching time logic is EXPTIME
complete.

Multiagent System Designer: Sorry, guys and girls, all this complexity stuff
with PSPACE and EXPTIME complete goes way over my head.

Computer Scientist: OK, so let me fill you in on the four most famous com-
plexity classes. Computer scientists are interested in classifying problems by
how much computational resources, like time and memory, they take to solve,
as a function of the length of the input of the problem. Problems that take



Battle of the Logics 9

up time polynomial in the length of the input are in the class P, and those
problems are usually said to be tractable. For example, think of the problem
whether a certain valuation satisfies a given propositional formula - this cor-
responds to checking a single row in a truth table, which can clearly be done
in linear time. The next important class is called NP for non-deterministic
polynomial time. This class includes problems that can be described as “guess
a polynomially short potential solution, and then check in polynomial time
whether this guess indeed forms a solution”. A typical example of a problem
in NP is satisfiability for propositional formulas, abbreviated as SAT: guess
a valuation, and then check in linear time whether it indeed satisfies the for-
mula. Now the interesting thing is that there are no problems in NP that
are essentially more difficult than satisfiability: Cook proved already in 1971
that each problem in NP can be easily translated to a suitable instance of
SAT. Such problems like SAT that are in NP and are also among the hardest
in NP, are called “NP-complete”. As you probably know, it is still unknown
whether P and NP are really different. If they aren’t, that could have seri-
ous repercussions for public key cryptography (see the Chapter starting on
page 197).

Multiagent System Designer: And if you prove it one way or another, the
Clay Mathematics Institute will give you a million dollars, right?

Computer Scientist: Right, but being a Buddhist, the money doesn’t interest
me much. Let me tell you about two other relevant complexity classes. One is
called PSPACE, and contains those problems that can be solved using mem-
ory space polynomial in terms of the input. A typical example is the model
checking problem for predicate logic that I just mentioned for databases. An-
other one is the satisfiability problem for the most common modal logics [33,
Chapter 6]. Both of these problems are in fact PSPACE-complete, again in
the sense that all other problems in PSPACE can be reduced to them. It is
immediately clear that NP is included in PSPACE, because short guesses and
polynomial checking of them can never take up more than polynomial space.
But again, nobody has yet found out whether NP and PSPACE are really
different classes.

Multiagent System Designer: Now I wonder how EXPTIME fits into this
picture. Surely exponential time is really more difficult than polynomial time?

Computer Scientist: Indeed it is, and that’s in fact the only equivalence among
the four complexity classes P, NP, PSPACE and EXPTIME that has been dis-



10 Battle of the Logics

proved. The simple thing we know is that PSPACE is included in EXPTIME
- this is done by a nice proof, which you can look up in classical textbooks on
complexity theory, such as Papadimitriou’s [171]. A typical problem in EX-
PTIME is the satisfiability problem for propositional dynamic logic, where
satisfying a formula that includes the Kleene star operator may require tree
models of exponential depth [33, Chapter 6].

Dynamic logician: So, just to sum up all relations: P is included in NP, which
is included in PSPACE, which is in turn included in EXPTIME, and the only
inequality that has been proved is the one between the two extremes P and
EXPTIME.

Multiagent System Designer: Wow, so much is still unknown in complexity
theory! Doesn’t that mean that computer science has been built on quicksand?

Computer Scientist: You could view it that way, but personally I rather think
that these problems are at the heart of computation and show the depth of
my subject.

Dynamic logician: I think we can now safely return to our earlier discussion
of theorem proving versus model checking for finite-state programs such as
communication protocols with respect to specifications that are represented
by branching-time formulas.

Temporal logician: Thank you for getting us back to this main branch of
our discussion. In the early eighties, Clarke and Emerson found out that
you could represent a finite-state program by a Kripke model. The worlds of
the Kripke model represent possible global states of your program, and the
accessibility relations represent possible transitions. The great thing is that
the Kripke model does not get out of hand: it is just about the same size as
your program. Now checking whether your program satisfies the specification
amounts to checking whether the specification holds at the world in your
Kripke model that corresponds to the initial global state. And you can do
this in time just linear in the sizes of the specification formula and your Kripke
model [108]!

Computer Scientist: Unfortunately I have to temper your enthusiasm about
this low complexity a bit. In model checking problems, the model is often
assumed to be part of the input, so a seemingly attractive complexity result
like “linear time in terms of the size of the input” is sometimes misleading,
as these models can be very large in practice [118].



Battle of the Logics 11

Philosophical logician: I think that the complexity of a logic should also be
viewed in relation to its use. For example, in the context of cryptography,
high complexity is a feature, not a bug.

Multiagent System Designer: I am of course not a logician, but, returning to
the question where to start, I think I would start on the language instead of
the model. There are just properties that you want to express. I do not want
some very small language in which it takes a lot of work to express some basic
concepts.

Dynamic logician: Ah, but that is exactly what can get me excited: A very
simple language with great expressivity. I agree with our Mathematical logi-
cian that having language and semantics that are rich might make metalogical
results difficult to obtain. Even worse, it could be that the system “does”
things that are incorrect, but you are unaware of this because the system
is too complex. I am reminded of what Albert Visser once said in a talk on
logic and linguistics: Logicians prefer small and correct theories, and linguists
prefer big and incorrect theories. That is to say, when a logician tries to cap-
ture an aspect of natural language, he or she develops a dedicated system
for a small fragment of natural language. Linguists, on the other hand, try
to capture all of natural language in their system. They are bothered that
the fragments that the logicians use for describing parts of natural language
do not capture all of natural language. But their wish to cover everything
leads them to adopt theories that contain inconsistencies, which in the eyes
of logicians is committing mortal sin after mortal sin.

Mathematical logician: I see what you mean. Just like the linguists you
mentioned, computer scientists sometimes seem to construct logics that can
express everything you want, but the semantics and axiomatization might be
mistaken here and there.

Computer Scientist: I object! No one in his right mind could claim that
contributions to conferences such as Logic in Computer Science present shaky
semantics and axiomatizations. Use of logic in computer science is often very
subtle and we can compete with the best of mathematical logicians in our
use of abstract structures like locales, quantales and co-algebras. I think you
have ample reason to tone down your arrogance. Mathematical logic has
never been viewed as mainstream mathematics, and there has been only little
contact between mathematical logic and the natural sciences. On the other
hand, you can hardly over-estimate the role of logic in computer science. Just



12 Battle of the Logics

think of the relations between logic and complexity, the use of predicate logic
as database query language, the influence of type theory on programming
language research, and the use of modal logics in multiagent systems. You
should definitely read the classic paper On the unusual effectiveness of logic
in computer science [106].

Mathematical logician: Ahem, sorry about that.

Multiagent System Designer: To go back to the previous point, I feel sym-
pathetic towards the linguist perspective, and start with all the expressivity
that you need. After all, even as a programmer, first you build a system and
then you try to debug it.

Computer Scientist: Now wait a minute, that is not the state of the art
in software development at all! Nowadays we start with requirements and
specifications, we use logic to check these specifications, and we let the imple-
mentation process go hand in hand with unit testing and specification-based
random testing. For almost all aspects of this process, logic is highly relevant.

Multiagent System Designer: Point taken. What I was worried about is, what
good is a logical system that at best will only do part of what I want it to do?

Dynamic logician: I understand your concerns. But in that case, instead of
taking the risk of developing an incorrect theory, you can follow a piecemeal
approach. You first create dedicated systems that do only part of what you
really want and then you extend and combine systems. Initially we only focus
on aspects that are interesting for us. Dynamic epistemic logic, for instance,
is only about information change [66]. It does not capture anything else. This
is also a valid approach.

Philosophical logician: Of course a piecemeal approach assumes that a prob-
lem can be thought of and solved in an analytic fashion. This is a very old
philosophical discussion, of which I am afraid none of you are aware. One can
imagine that there are problems that can only be solved as a whole. That is
to say, there can be a need for holism. A system that only deals with some
aspects of the problem will in that case always be dreadfully misguided.

Dynamic logician: Can you give an example of this?

Philosophical logician: The notion of obligation is very much connected to the
notion of action. One is usually obliged to do something, to take an action.
And the obligation is met when a certain action has taken place, and after-



Battle of the Logics 13

wards there may not be an obligation anymore. Therefore a philosophically
sound deontic logic needs to be grafted on a logic of action. The work of John
Horty is a nice example of this [120].

Dynamic logician: But deontic logic and the logic of action have developed
separately. A holistic approach might have been too difficult initially. More-
over, as has recently been shown, the notion of knowledge is also very impor-
tant for the notion of obligation [170]. Yet, epistemic logic was very fruitfully
developed on its own.

Philosophical logician: I will admit it, but in order to grasp a concept in full,
one cannot leave out crucial aspects.

Mathematical logician: Even if an analytic approach is possible, it may not be
straightforward at all. Given two different logics, it seems highly non-trivial
to combine them into one logic.

Temporal logician: It is indeed. When you investigate the complexity of com-
binations of logics, you might like to turn to general results on the transfer of
the complexity of satisfiability problems from single logics to their combina-
tions: isn’t a combination of a few PSPACE-complete logics, with some simple
interdependency axioms, automatically PSPACE-complete again? However,
it turns out that the positive general results that do exist (such as those
in Edith Spaan’s Ph.D. thesis [216]) apply mainly to minimal combinations,
without added interdependencies, of two NP-complete systems, each with a
single modality.

Dynamic logician: Even more dangerously, I’ve heard of some very negative
results on the transfer of complexity to combined systems. Listen to this:
there are two “very decidable” logics whose combination, even without any
interrelation axioms, is undecidable. For the first logic, let’s take a weak vari-
ant of dynamic logic with two atomic programs, both deterministic. Take the
sequential operator ; and the intersection operator ∩ as only operators. Satis-
fiability of formulas is in EXPTIME, just like for propositional dynamic logic
itself. For the second logic, take the logic of the global operator A (Always),
which just means what you would think, namely that the formula it is applied
to is true everywhere throughout the Kripke model. Satisfiability for this logic
is in NP. Blackburn and Spaan have shown that the minimal combination of
the two logics is not only not in EXPTIME, but even undecidable in any finite
time. This goes to show that we need to be very careful with any assump-
tions about generalizations of complexity results to combined systems [34;



14 Battle of the Logics

33].

Multiagent System Designer: But those are just artificial examples made up
to achieve horrendous undecidability results. Let us stick to a realistic multi-
modal logic such a BDI combination of the standard logics for beliefs, goals
and intentions, and add some reasonable interdependencies, such as the axiom
that having an intention implies having the corresponding goal.

Temporal logician: That combination turns out to be PSPACE-complete, so
no better or worse than its individual component logics [79].

Computer Scientist: Here I agree with you, the situation is not so bad. You
may also be interested in Gabbay’s fibring as a general approach to combining
logics. I will try to tell you roughly what it is, but you all should really read
his book about it [97]. Given two logics, let us say linear temporal logic
and epistemic logic, the language of their fibring is obtained by combining
all atomic symbols and operations from both of them. As for deduction, you
suppose that the two given logics have the same type of deductive system
(for example, both a Hilbert style one, or both a tableau system). Then in
the fibring, you can freely use inference rules from both. If the two original
systems were schematic, this means that the inference rules can be applied
to formulas including symbols from the “other” language, and fibring them
makes sense. The semantics is quite complicated, so you should just look it
up in the book, but you could think of a fibred model as a cloud of points.
At each point you can extract a model of the first logic and a model of the
second one, so in our example you would be able to extract a time line as well
as a model of epistemic logic.

Temporal logician: I do not really see the point of combining systems. Why
would you want to model everything at the same time? And why should
everything be in the language? It might be fine to have temporal models for
multiagent systems with knowledge and just interpret an epistemic language
on those models. There is nothing wrong with that.

Mathematical logician: I only know of one situation where the models can
be uniquely described by the logic: propositional logic with only finitely
many propositional variables. In that case the language is not only truth-
functionally complete, but also expressive complete in the sense that for every
model, there is a formula that is true in exactly that model and in no others.
For other logics the models are much richer than the logical language can
describe. Modal logics cannot distinguish bisimilar models for instance, but



Battle of the Logics 15

bisimilar models are not isomorphic.

Multiagent System Designer: What are bisimilar models?

Dynamic logician: Do you know what a Kripke model is?

Multiagent System Designer: Yes.

Dynamic logician: Good. A bisimulation is a relation between two Kripke
models.

The concept of bisimulation was independently developed in automata theory,
modal logic, and non-well founded set theory. Davide Sangiorgi has a nice
paper on its history [199]. The idea is that two structures are bisimilar if their
“behavior” is somehow the same. In automata theory that means that two
automata accept the same language, in modal logic it means that two models
satisfy the same formulas and in non-well-founded set theory it means that
two sets are identical.

A bisimulation between two Kripke models is a relation between the worlds
of the two Kripke models. Such a relation has to satisfy three requirements
in order to be a bisimulation. First of all, if two worlds w and w′ are linked
by the relation, then they have to satisfy the same propositional variables.
Secondly, for each accessible world v from w, i.e. by the accessibility relation
in the one Kripke model, there is an accessible world v′ from w′ in the other
model such that v and v′ are also related. This is called the forth condition.
Thirdly, for each accessible world v′ from w′, there is an accessible world v
from w such that v and v′ are also related. This is the back condition. Let
me draw you a picture for the forth condition.

We have one model on the left and one on the right. If the two worlds below
are linked and there is a world accessibly on the left, then there is a world
accessible on the right such that those accessible worlds are also linked. The



16 Battle of the Logics

“if” part is the normal lines, the “then” part are the dashed lines. The picture
for the back condition looks like this.

The relation is called a bisimulation because what can be done on the left can
be done on the right and simultaneously what can be done on the right can
be done on the left. The two models simulate each other simultaneously.

Modal logic cannot distinguish bisimilar models in the sense that they satisfy
the same formulas. So in that sense, the models are much richer than the
logic can describe.

Multiagent System Designer: I would not like that kind of situation. Why
would you want rich models and a poor language? There seems to be some-
thing out of balance in that case.

Computer Scientist: Not at all. This is not a defect, this is a virtue. This is
how process theorists look at modal logics. Processes are about choice and
sequence, and one and the same process can be pictured in different ways.
Take the process X of making a choice between doing a and b, and next
performing X again. One can picture this as

a

b

or as

a

b

a

b

Both pictures describe the same process. These pictures happen to be bisim-
ilar. So the “real process” is the class of all pictures that are bisimilar to the
first picture.

Multiagent System Designer: I see what you mean. But how is it a virtue
that different pictures can represent the same process?



Battle of the Logics 17

Computer Scientist: The notion of process captures the essence of the picture.
It tells us what is important and what is not.

Dynamic logician: In modal logic it tells you when two models are not essen-
tially different.

Temporal logician: This depends on the logical language of course. It is quite
easy to distinguish the two structures above using first-order logic.

Dynamic logician: It might be better to view this as something of a range of
possibilities. On one extreme a feature of the models can be entirely captured
such as the propositional case that our Mathematical logician mentioned ear-
lier. At the other end of the spectrum, the extra structure cannot be captured
in the language at all. There might be good reasons to be on one side of the
spectrum or the other, or somewhere in the middle.

Temporal logician: I don’t think we should have a general discussion about
this. Why don’t you give us a specific example?

Dynamic logician: Indeed, so let’s consider the case of AGM-style belief re-
vision versus the dynamic doxastic logic of Segerberg [136]. Although both
systems deal with the same phenomena, they have a very different method-
ology when it comes to something being inside or outside the language. The
basic ingredients of belief revision are so-called belief sets. These are sim-
ply logically closed sets of either propositional or first-order formulas. Then
there are operations on these belief sets that correspond to changes in belief.
Dynamic doxastic logic arose out of the idea to internalize these operations
in a logic, so to view the operations on belief sets as modal operators in an
extended logic.

Philosophical logician: I must say that I really appreciated the original AGM
paper [2]. I do not see what extra insight is gained by internalizing belief
change operators.

Dynamic logician: In their paper, Leitgeb and Segerberg argue that one of the
main advantages is that by putting everything in the language you can nest
belief operators and change operators [136]. In this way you can explicitly
formalize beliefs about changes, as well as changes of belief. I agree that this
is a great advantage. Rather than formalizing belief change, you formalize
reasoning about belief change.

Temporal logician: This reminds me of the two different schools in addressing



18 Battle of the Logics

the effects of communication in multiagent systems. There is the famous
school of Fagin, Halpern, Moses and Vardi [88] on the one hand, where the
semantics are based on interpreted systems. These are in turn based on a
temporal structure such as linear or branching time, with added epistemic
structure reflecting agents’ observational powers. Such interpreted systems
work wonders when you want to model processes that arise when a protocol
is followed through time. Of course the corresponding language of Epistemic
Temporal Logic (ETL) combines epistemic and temporal operators.

The other school is called Dynamic Epistemic Logic (DEL). There, the epis-
temic events such as public announcements are included in the language. In
order to describe communicative processes, you then have to compute so-called
product updates in stages, starting from an initial situation.

Computer Scientist: As a computer scientist, I really appreciate the work from
the Halpern school: they think as computer scientists and give many examples
of how logic can be used to specify and analyze protocols for communicating
systems. In fact, one of my favorite papers of all time is Joe Halpern and
Lenore Zuck’s A little knowledge goes a long way. They introduce the concept
of a knowledge-based algorithm and give an extremely nice and convincing
logical analysis of such computer science classics as the alternating-bit proto-
col. It seems to me that the DEL examples, which often involve puzzles or
simple card games, have much less of a “real life” flavor.

Temporal logician: I keep wondering whether our two schools are really so
different as some authors claim.

Dynamic logician: You have timed your question very well indeed. Recent
work by Van Benthem, Pacuit, Gerbrandy and others shows that if you look
at it the right way, you can find very interesting analogies between ETL and
DEL. Rather than reducing one framework to the other, these authors aim
to merge them. This program has already led to some interesting results and
techniques, such as a new kind of modal correspondence theory which relates
properties of DEL protocols to corresponding ETL properties. Also they have
proved some completeness theorems for ETL model classes generated by DEL
protocols. So instead of remaining rivals, these logicians now use ideas from
our DEL school to add fine structure to ETL [24].

Temporal logician: But aren’t ETL-style logics much more complex than
DEL?



Battle of the Logics 19

Dynamic logician: To be sure, another article that embodies the temporal-
dynamic unification program is aptly named The tree of knowledge in action:
Towards a common perspective [25]. It explores complexity issues around
epistemic logics from both the temporal and the dynamic point of view. At
first sight the ETL view on branching time gives rise to models that quickly
get out of hand. Especially if the added epistemic structure enables some grid-
like structure to be encoded, for example because of properties like Perfect
Recall and No Miracles, undecidability may result. Van Benthem and Pacuit
go on to use ETL-style methods to investigate the complexity of some DEL-
like logics that live close to the edge of undecidability. For example, the result
by Miller and Moss that the dynamic epistemic logic of public announcement
with program iterations is undecidable may be contrasted with the fact that
adding temporal “past” operators to DEL does not destroy decidability. Also
in this case, methods from one camp are fruitfully used to chart the complexity
of logics from the other camp.

Mathematical logician: As the paper by Van Benthem and Pacuit suggests,
it seems that there is still a certain amount of strife between temporal and
dynamic camps, though. I remember that Johan van Benthem compared
this situation with the start of computability theory. There were several
approaches, from recursive functions through lambda calculus to Turing ma-
chines. Rather than bicker and argue about which approach was the best,
the logicians at the time proved that these definitions were equivalent and
embraced Church’s Thesis that every effectively calculable function is general
recursive [25].

Dynamic logician: And rather than weakening their own position, their joint
forces strengthened the field enormously because it turned out that the notion
of computability is quite stable. Indeed, “seeing differences may make for
short-term gains, seeing analogies leads to a long-term common cause” [25].

Philosophical logician: I do not think such a grand unification can ever be
achieved in the case of logics for intelligent interaction. There are simply
too many systems and they seem quite incomparable. Moreover I think it
is nonsensical to aim to achieve unification. It will only give us a few extra
theorems, but no better understanding of the concepts involved.

Temporal logician: There is a danger if one never compares systems. A lot of
time will be wasted if different people work on essentially the same problem,
because they are blind to the fact that the systems they use are essentially



20 Battle of the Logics

equivalent. The book by John Horty Agency and Deontic Logic for instance
uses branching time temporal logic and I think his approach fits in very nicely
with the temporal logics that are used in computer science [120]. It would
be very useful if the people working on logics for “seeing to it that” and the
people working on computation tree logic would compare notes.

Dynamic logician: I’ve heard that Broersen, Herzig and Troquard have started
doing so: they found some nice first results on the connection between Alternating-
time temporal logic and STIT logic [41].

Temporal logician: Indeed, we have hardly discussed Alternating-time tem-
poral logic or ATL today, but I think it is also a worthwhile approach for
specifying multiagent systems [118]. If temporal logics tell you when you will
be happy, and dynamic logic can express how it is done, ATL can speak about
who will achieve this state for you. This seems to be quite an essential aspect
when you are interested in intelligent interaction.

Multiagent System Designer: I wish there were a map of the logics of intelli-
gent interaction, showing what the connections between different approaches
are and charting in what ways some of them are equivalent. Then I would,
depending on the purpose, be able to use one of those systems off the shelf.

Dynamic logician: Let a thousand flowers and trees of knowledge bloom in
the logical landscape! Our task is to be both gardeners and cartographers, so
that everyone can find his way.


