Automatically Analyzing the Consistency
and Preciseness of Class Names

Luuk Stevens
Universiteit van Amsterdam
luuk.stevens@student.uva.nl

Thesis supervisor: Jurgen Vinju

July 24, 2012

Abstract

The consistency and preciseness of class names is important for program
comprehension. The goal of this research is to automatically analyze the consis-
tency and preciseness of these names, so that the comprehensibility and main-
tainability of software can be increased. This may ultimately result in lower
overall cost of software projects.

The main research question is: Can the consistency and preciseness of class
names in object-oriented software be analyzed automatically? To answer this
question an analysis process is developed, that groups "similar" classes together.
The classes in these groups are then analyzed for inconsistent and imprecise
names. When a class is considered inconsistent or imprecise, a renaming sug-
gestion is given. The suggestions are manually evaluated to determine how
successful the proposed analysis process is.

The results of this research suggest that the proposed analysis process does
not yet create renaming suggestions that are usable in practice. We successfully
found the cause of this problem. Results of a follow-up research indicate that
this problem can (partially) be solved, likely improving the renaming suggestions
proposed by the analysis process.

Contents

1 Introduction 4
1.1 Relevance and Goal 4
1.2 Related Work 4
1.3 Research Questions, Motivation and Structure. 5

2 Analyzing Consistency and Preciseness 9
2.1 Imtroduction 9
2.2 Research Method 11
2.3 Design of the Analysis Process 12
24 CaseStudy 24
2.5 Evaluation of the Results 25
2.6 TheCause. i 26
2.7 Discussion 28
2.8 Summary 29
3 Introducing Purpose-Specific Patterns 30
3.1 Introduction 30
3.2 Research Method 31
3.3 Designing Purpose-Specific Patterns 32
34 CaseStudy 33
3.5 Discussion 35
3.6 Summary e e 35
4 Conclusions and Future Work 36
A Tokenizer and Tagger Accuracies 40
A.1 Tokenizer Accuracieso 40
A2 Tagger Accuracieso 48
B Observations and Assumptions Regarding the Micro Pattern
Tool 58
C Formal Concept Algorithm 62

D Manual Evaluation of Renaming Suggestions
D.1 Common Suffixes
D.2 Uncommon Suffixes.

E Purpose-Specific Pattern Observations

Preface

I would like to thank Jurgen Vinju for giving me the opportunity to perform my
master thesis research at the "Centrum Wiskunde & Informatica". Furthermore,
I would like to thank Dennis van Leeuwen and Jouke Stoel for sharing their idea’s
regarding identifier names, formal concept analysis and other topics related to
this research.

Chapter 1

Introduction

In this chapter we introduce the automatic analysis of the consistency and pre-
ciseness of class names in object-oriented software. First, the relevancy and
goal of this research is discussed, followed by a review of related work and a
discussion of the research questions, motivation of the research questions and a
description of the structure of this document.

1.1 Relevance and Goal

Maintenance costs often dominate the cost of software projects [7]. Source code
has to be readable, since it is otherwise hard to comprehend. Especially, since
the programmers maintaining software are often not those who constructed it.
Program identifiers play an important role in source code comprehension [11, 14].
Since a programmer has to comprehend (part of) the source code before it can
be maintained, the quality of identifiers thus influence the cost of a software
project.

The detection (and correction) of inconsistent and imprecise class names
can result in more understandable code and improve communication between
programmers. This is because programmers using a term (class name) in a
consistent and precise manner, are more likely talking about the same concept,
reducing the chance of miscommunication. This improvement is likely to result
in decreased development time, increased maintainability, and ultimately lower
overall costs of software projects.

1.2 Related Work

Although in this research class names are analyzed, Hgst and @stvold already
proposed a method for “debugging” method names, of which some theories could
be modified and applied to the analysis of the consistency and preciseness of class
names. Hgst and @stvold used part-of-speech analysis in combination with nano
patterns (binary properties of Java methods, that are automatically detectable

or detectable by programmers [15]) to find "naming bugs" [8]. The main goal
of their method is to detect inconsistency in names of methods with similar
implementation properties. Results of this research look promising in providing
an automated analysis process for finding “bugs” in method names, although the
effectiveness (usefulness of the renaming suggestions) of the proposed process is
not yet analyzed by expert inquiry.

Singer found that there is a correspondence between the suffix of a class
name (The last word in the name. For example, Buffer in StringBuffer) and
the micro patterns occurring in classes with names with that suffix [16]. This
makes it possible to find ambiguity or inconsistencies in the naming of classes.

The work of Singer provides a good starting point for analyzing the consis-
tency of class names by analyzing the suffix. This thesis contributes by extend-
ing Singers method with the analysis of the consistency of the whole class name.
Furthermore, the detection of imprecise naming of compound words could be
integrated in the analysis. Renaming suggestion for classes that are named im-
precisely can be given using a method based on the work of Hgst and @stvold.
For example, suggesting the more precise name "CustomException" for a class
that is called "Exception".

1.3 Research Questions, Motivation and Struc-
ture

In this section we introduce the necessary definitions, present the research ques-
tions and discuss the structure of this document.

1.3.1 Definitions

It is necessary to present some definitions, before the research questions can be
presented. We need to define how we will abstract over class names and what
we mean with inconsistency and impreciseness. The definitions are as follows:

e Phrase: Based on the definition of Hgst and @stvold: A phrase is a non-
empty list of parts. A part p may be a token (word in the name) or a tag
(word type, such as a noun or adjective). A phrase that consists solely of
tokens is concrete; all other phrases are abstract.

e Inconsistency: A class name is considered inconsistent, if (a part of) its
phrase is significantly different from other classes with similar implemen-
tations. What significantly different is, is determined using statistics.

e Impreciseness: A class name is considered imprecise, if a longer phrase
(with more parts) is more common for class names of classes with similar
implementations. What significantly different is, is for preciseness also
determined using statistics.

Note, that with this definition of inconsistency we try to find synonyms.
An example of an inconsistently named class is "CustomError", when there are
many "similar" classes that are named "<Noun>-Exception", or maybe even
more concrete "CustomException". In this case "CustomException" is more
consistent than "CustomError".

An example of a imprecisely named class is a class named "Exception", when
many "similar" classes have a longer name, like "<Noun>-Exception", or maybe
even more concrete "CustomException". In this case "CustomException" is
more precise than "Exception".

1.3.2 Primary Research Questions

In this section the main, or primary, research questions are defined and moti-
vated. We close this section with a note on information hiding, which is related
to these questions.

Research Questions

Using the definitions from the previous section, the main research questions are
defined as follows:

e Can the consistency and preciseness of class names in object-oriented soft-
ware be analyzed automatically?

e How "effective" is the analysis process proposed?

With effective we mean, in how many cases we can argue that a renaming
suggestion proposed by the analysis process is more suitable than the original
class name.

Motivation

The motivation for the main research questions is, that Hgst and @stvold pre-
sented a quite sophisticated approach for the analysis of consistency (and pre-
ciseness) of methods names. Singer analyzed only the suffixes of classes, while
both consistency and preciseness are important for program comprehension ac-
cording to Deissenboeck. We think an approach based on the work of Hgst and
@stvold might work, by using micro patterns to group similar classes together
(instead of nano patterns for methods, as Hgst and @stvold did). Furthermore,
Singer already found that there is a correlation between the suffix of class names
and micro patterns. This relation might also hold for other parts of the class
name. By analyzing the consistency and preciseness of classes using an approach
based on the work Hgst and @stvold, we will investigate if more usable renaming
suggestions could be generated.

Note, that we do not propose or investigate a general definition or guide-
line for good naming. In this research we focus on consistency and preciseness,

because inconsistent and imprecise naming is found harmful for program com-
prehension by Deissenboeck [4]. He uses the word "conciseness" where we use
preciseness. With conciseness Deissenboeck refers conciseness of meaning, not
the length of a word. We will use the term preciseness, to avoid confusion with
conciseness as in concise code or concise (short) names.

A Note on Implementation Hiding

One might argue that it is not appropriate to use the implementation of classes
for the analysis of the correctness of its name, since the class name is an abstrac-
tion of its implementation. And this abstraction should not "leak" how a class
is implemented. Note however, that we will not analyze the implementation of
a class to determine how a class is implemented, but to determine what a class
implements. We try to make a distinction between the different concepts classes
implement. A properly named class is very likely to have a name that contains
the name of the concept it implements. This is discussed more in more detail
in Section 2.1.

1.3.3 Secondary Research Questions

In this section the secondary research questions of a follow-up research are de-
fined and motivated.

Research Questions

Initially, our goal was to perform a second study, involving experienced pro-
grammers judging the renaming suggestions produced by the proposed analysis
process. The goal of this case study would be to more accurately and objectively
determine how effective this process is. However, the results of the main research
indicate that the proposed process does not yet produce renaming suggestions
usable enough to perform an extensive case study. Therefore, we present the
following research question for our second study, which will later be formulated
more concretely:

e Can the renaming suggestions produced by the proposed analysis process
be improved?

Motivation

The motivation for the case study, involving experienced programmers (which we
did not perform, but such a study could still be useful for future research), is that
there is no accurate data on how effective the proposed “debugging” methods
from related research are (For example, the methods of Hgst & @stvold and
Singer). There are many factors that can make the proposed methods ineffective.
For example, micro or nano patterns could not be powerful enough to distinguish
sufficiently between the differences in the implementations of classes or methods
for the purpose of name analysis. Furthermore, programmers could intentionally

implement two classes with the same name differently. With providing data on
the effectiveness of the method proposed in this research, we would have aimed
to set a point of reference for future research.

1.3.4 Structure

Chapter 2 describes the research regarding the main research questions. The
next chapter, chapter 3, describes the follow-up research regarding the secondary
research question. We close this thesis with a conclusion and a discussion of
directions for future research.

Chapter 2

Analyzing Consistency and
Preciseness

In this chapter we address the first research questions: Can the consistency and
preciseness of class names in object-oriented software be analyzed automati-
cally? And, how effective is the analysis process proposed?

First, an introduction to the theories used during this experiment is given.
Next, the experiment is discussed in the methods section. Then, the approach
section describes the approach taken to automatically analyze the consistency
and preciseness of class names. Finally, we close this chapter with an overview
and a discussion of the results.

2.1 Introduction

Before we can discuss the experiment and the analysis approach that will be
taken to automatically analyze the consistency and preciseness of class names,
it is necessary to introduce relevant concepts and their relations. A theoretical
framework of these concepts and relations is shown in figure 2.1.

In this framework we use two terms that might need an introduction: "imple-
mentation semantics" and "semantic profile". With implementation semantics
we mean: The "true" meaning of the source code of a class. Programmers can
determine this meaning by reasoning about the source code.

With semantic profile we mean: An abstraction of the implementation se-
mantics. Classes with similar implementation semantics would have the same,
or a similar, semantic profile. This profile enables the automatic grouping of
classes with similar implementation semantics.

2.1.1 Relation Between the Class Name and Implementa-
tion Semantics

In the introduction of this document we assumed that inconsistent and im-
precise naming could be detected by analyzing the name and implementation
semantics of classes. This assumes that there is a relation between the name of
a class and the semantics of its implementation (Shown in figure 2.1 as name-
implementation relation). In other words, classes with similar names are ex-
pected to have similar implementation properties.

We assume this, because class names are mostly not arbitrary chosen by
programmers, but tell something about the concept or function of a class. In
the "Java Code Conventions" [17] is stated that class names should be simple
and descriptive. Furthermore, Robert C. Martin argues in his book "Clean
Code" that identifier names should reveal intent and that only one word per
concept should be used (For example, not mixing Controller and Manager) [12].

That programmers largely follow these guidelines is supported by the work
of Singer and Kirkham. They found a correlation between the last word of a
class name (suffix) and patterns in the implementation of the class [16].

2.1.2 Abstraction of the Implementation Semantics

We want to automatically determine what classes have similar implementa-
tion semantics, and therefore are expected to have similar names. We need an
abstraction, since machines cannot determine the true meaning of classes. Ab-
stractions will leave out details, thus there will always be a semantic gap between
the semantic profile (abstraction) and the "true meaning" (implementation se-
mantics) of class implementations (Shown as the semantic gap in 2.1). However,
if we abstract appropriately, there will also be a relation between the class name
and the semantics profile of a class (Shown in figure 2.1 as name-abstraction
relation). How we will analyze the class names and create an semantic profile
of classes is discussed in section 2.3.

10

Semantic Gap

1' Relation Relation

! (Name- .-~ ~ . (Name- \
Abstraction) |

-

Implemgrtation)

Semantic Profile

Implementation
Semantics

(ClassName {

Programmer method() { Automatically
Interpretation int i = 0; Extractable
if i == 0 then
i=1i+ 1
else
i=1i-1;
end if
}

Figure 2.1: A theoretical framework of class semantics as used for the analysis
of the concsistency and preciseness of class names.

2.2 Research Method

In this section the research methods are discussed.

2.2.1 Design of the Analysis Process

The first step is to design and implement a process for the automatic analysis
of the consistency and preciseness of class names. The approach chosen will be
based on the theories introduced in this chapter, and will be discussed in section
2.3.

Designing this process is not straightforward, and success is not guaranteed.
The analysis of the consistency and preciseness of class names is not researched
before, to the extend of this study. Questions we need to answer are:

e How do we determine how classes are generally named?
e How do we group "similar" classes together effectively?

e How do we construct an algorithm that analyzes the consistency and pre-
ciseness of a class name given a set of "similar" classes?

11

Success is not guaranteed, because:

e An inappropriate method may chosen to create a semantic profile of classes.

e Programmers might intentionally name classes with different implementa-
tions similarly.

We will motivate each decision made during the design of the analysis process
in section 2.3.

2.2.2 Case Study

To determine how well our approach works, we perform a small exploratory case
study. Results will be obtained by analyzing the classes of one application, and
consist of references to classes (class names with package prefix) that are found
inconsistently or imprecisely named and their renaming suggestions.

2.2.3 Evaluating the Results

There will always be a semantic gap between the implementation semantics and
the semantic profile of a class. The generated renaming suggestions are based
on the abstraction of the implementation semantics. In order to be useful, there
must be a relation between the renaming suggestion and the real implementa-
tion semantics. Since these semantics can only be interpreted by human, the
validation of the results will depend on human judgement.

We will evaluate the results by taking a sample set of classes that are found
to be inconsistent or imprecise, and evaluate the renaming suggestions. We will
reason and judge whether the renaming suggestion fits the class better than its
original name. Manual evaluation of the renaming suggestions will entail some
threats to validity (Section 2.2.4).

2.2.4 Threats to Validity

A threat to validity is that we could be biased during the evaluation of the
renaming suggestions, since this process depends on human judgement only.
To mitigate this thread, the motivation for the judgement of every suggestion
is given. Furthermore, the results in this chapter are only meant to get an
impression of how well the proposed analysis method works.

2.3 Design of the Analysis Process

In this section the designed process for the analysis of the consistency and
preciseness of class names is discussed. The process is based on the work of Hgst
and Ostvold [8]. The following steps must be taken to complete the approach
shown in figure 2.2:

12

A natural language analysis must be performed on the class names. In
this phase the class names are decomposed into individual words, and the
type of each word is determined using part-of-speech (POS) tagging. This
is discussed in section 2.3.1.

e Semantic profiles of the classes must be created, by analyzing Java .class
files. This is discussed in section 2.3.2.

e A corpus of Java applications must be analyzed to determine how classes
implementing a certain concept are generally named by Java programmers.
This is discussed in section 2.3.3.

e Algorithms must be constructed to analyze the consistency and preciseness
of class names with a similar semantic profile, and generate improvement
suggestions. This is discussed in section 2.3.4.

Name &
Semantic
Profiles

Analysis of
Class Names

Renaming
Suggestions

Name Analysis

Name &
Semantic
Profiles

Analysis of

Application
PP Class Names

Figure 2.2: An overview of the approach that will be taken to analyze the
consistency and preciseness of class names. The ovals represent inputs or (in-
termediate) products. The rectangles processing steps.

2.3.1 Analysis of Class Names

Our goal is to automatically generate renaming suggestions for classes that
are named inconsistently or imprecisely. These suggestions will be given on
token (word) level. For example, suggesting "Null-Pointer-Exception" for a
class that is called "Null-Pointer-Error" (last token is considered inconsistent).
Furthermore, we want to be able to give abstract suggestions, in case we can
not give concrete suggestions with a certain statistical certainty. For example,
suggesting "<noun>-Exception" instead of "Exception" (name is considered
imprecise).

13

From the above examples we can conclude that we not only need to split the
class names into separate tokens (by splitting at the upper case characters), but
we also have to identify the word type (part-of-speech, or POS tagging), since
not all words used in class names are nouns [3]. Knowing the word type lets
us distinguish between suggestions like "<noun>-factory" and "<adjective>-
factory".

Tokenizing

Although splitting camel cased class names into separate words seems quite
straightforward, not all programmers strictly follow Java naming conventions
(For example, using underscores to separate words). Furthermore, some class
names can be split ambiguously (For example, J2SELibrary, J-2-SE Library or
J2SE-Library). It is not necessary for this research to strive for perfect tok-
enization, but more accurate results will probably result in more usable data.
Therefore the Intt tokenizer is used [2], because manual verification of the out-
put of different tokenizers from related research indicates that this is the most
accurate tokenizer (See also Appendix A).

Tagging

The grammatical roles of the words in the class names are determined using the
POS tagging process. As for the tokenizer, a more accurate tagger will likely
result in more usable data. Results from Appendix A indicate that the tagger of
S. Butler is the most accurate. Therefore his tagger is used during this research.

2.3.2 Extracting Semantic Profiles

In this section is discussed how semantic profiles are extracted from classes.

Theory

Micro patterns are machine traceable patterns on class level. These patterns are
similar to Design Patterns, but stand at a lower, closer to the implementation,
level of abstraction. Gil and Maman proposed 27 micro patterns [6]. Five of
these patterns are shown in Table 2.1 as an example. See the work of Gil and
Maman for a complete list of definitions.

Gil and Maman also performed a static analysis on the occurrence of mi-
cro patterns. Their analysis suggests with a high confidence level, that the
occurrence of these patterns is not random, but is tied to the specification or
the purpose that the software realizes. This suggests that the same concepts,
classes with similar implementation semantics (involving the same design deci-
sions), probably contain the same micro patterns.

This statement is supported by the work of Singer and Kirkham. They found
that there is a correlation between the suffix of class names (name reflects the
intend or concept) and micro patterns (implementation semantics) [16].

14

The above findings suggest that the occurrence of micro patterns can be used
as a semantic profile for classes, since: these patterns are tied to the purpose of
classes, are machine traceable and there is a relation between the occurrence of
patterns and (part of) the name of classes.

Name Description

Pool A class which declares only static final fields, but no meth-
ods.

Stateless A class with no fields, other than static final ones.

Data Manager | A class where all methods are either getters or setters.

Sink A class whose methods do not propagate calls to any other
class.

Table 2.1: Examples of micro patterns defined by Gil and Maman.

Tool

Maman already constructed a tool to extract micro patterns from Java byte
code. However, ironically we found the source code of this tool hard to un-
derstand, and therefore hard to verify (with the pattern descriptions from the
paper) and modify. Therefore a new tool is constructed.

The newly implemented tool analyzes Java .class files to extract micro pat-
terns using the ASM library [13]. ASM is used, because it is an easy to use
library for the analysis of Java .class files.

Both tools output an array of booleans for each class, indicating which micro
patterns occur in that particular class. The output of both tools are compared
for a set of test classes (minimum implementations of classes containing a certain
micro pattern). By comparing the output of the two programs, some remark-
able observations are made. Some of them indicated faults in our tool (which
we have corrected), but some suggest ambiguity in the work of Gil and Maman
(ambiguous pattern definitions) or even inconsistencies between their work and
their tool. The observations made by comparing the two tools can be found in
Appendix B. We also had to make some assumptions during the implementa-
tions of the tool, which can also be found in Appendix B.

If the tool of Maman really contains faults, the conclusions made by Gil
and Maman about micro patterns using statistical analysis may have become
obsolete. They used statistical analysis to determine the individual value of
each pattern, and the randomness of their occurrence. The outcome of their
analysis is directly dependent on the accuracy of the tool used.

Note, that we would rather have analyzed Java source code, since this is the
code the programmer works with. However, analyzing the source code seemed
to be very impractical, because many projects use libraries, of which the source
code is often not provided. Since some patterns involve inheritance, this means
that the super classes of classes inheriting form these library classes cannot be
analyzed.

15

We chose to analyze open source Java projects, since the sources of these
projects are widely available. Furthermore, Java is an industrial language in
wide use.

2.3.3 Extracting Names and Micro Patterns from a Cor-
pus

To determine what class names are inconsistent or imprecise, we must first
determine how classes containing certain micro patterns are generally named by
Java programmers. We do this by analyzing the class names and micro patterns
from a large corpus of Java applications from different development teams and
different application domains. For this experiment the Qualitas Corpus is used
[18].

This corpus contains 109 Java applications from different application do-
mains. For every application the source code and the binary files are provided.
In addition, every project contains a .property file which defines some metadata
about the project. This meta-data includes what code (packages) is part of the
system, and what parts are not (For example, infrastructure code and 3rd party
libraries are not part of a system).

It would have been nice to have used the whole corpus, since one of its
purposes is reproducibility (other researchers could download the corpus and
repeat the experiment, producing the same results as a previous experiment).
However, not all projects are complete, and are missing 3rd party libraries.
These projects are excluded from the analysis. For reproducibility purposes the
used projects are shown in table 2.2.

There are three things to note about the corpus. First, the corpus contains
a couple of Java EE applications. These applications contain dependencies on
the Java EE API. There are multiple implementations of this API. For example
the Apache Tomcat and the Oracle Glassfish application servers contain an
implementation. To keep analysis independent of implementation details, the
Java EE API provided by Oracle is used. This API does however not include
implementations of the methods.

Second, some applications depend on other projects in the corpus. One of
the projects that is used by many other projects is JUnit. The jar-files of these
projects must be loaded when a depending project is analyzed.

16

3D / Graphics / Media

drawswf-1.2.9
joggplayer-1.1.4s

galleon-2.3.0
sunflow-0.07.2

jhotdraw-7.5.1

IDE

checkstyle-5.1
netbeans-6.9.1

drjava-stable-20100913-r5387

eclipse-SDK-3.6

SDK

colt-1.2.0

jFin-DateMath-R1.0.1

gt2-2.7-M3
ipf-1.0.2

jchempaint-3.0.1

Database

axion-1.0-M2
cayenne-3.0.1
hsqldb-2.0.0

azureus-4.5.0.4
derby-10.6.1.0
squirrel-sql-3.1.2

c-jdbe-2.0.2

hibernate-3.6.0-beta4

Diagram / Visualisation

argouml-0.30.2

exoportal-v1.0.2

ireport-3.7.5

jasperreports-3.7.3 jext-5.0 jung-2.0.1
velocity-1.6.4
Games
freecol-0.9.4 marauroa-3.8.1 megamek-0.35.18
Middleware

castor-1.3.1
jena-2.6.3
openjms-0.7.7-beta-1

informa-0.7.0-alpha2
jspwiki-2.8.4
picocontainer-2.10.2

jboss-5.1.0
jtopen-7.1
quartz-1.8.3

quickserver-1.4.7 struts-2.2.1 tapestry-5.1.0.5
tomcat-7.0.2 xmojo-5.0.0

Parsers / Generators / Make
ant-1.8.1 antlr-3.2 javacc-5.0
jparse-0.96 maven-3.0 nekohtml-1.9.14
sablecc-3.2 xalan-2.7.1 xerces-2.10.0

Programming Language

aspectj-1.6.9

jre-1.6.0

jruby-1.5.2

Testing

cobertura-1.9.4.1
fitjava-1.1
jmeter-2.4
pmd-4.2.5

emma-2.0.5312
fitlibraryforfitnesse-20100806
jrat-0.6

quilt-0.6-a-5

findbugs-1.3.9
htmlunit-2.8
junit-4.8.2

Tool

columba-1.0
ganttproject-2.0.9
jedit-4.3.2
jgraphpad-5.10.0.2
jmoney-0.4.4
proguard-4.5.1
sandmark-3.4

compiere-330
heritrix-1.14.4
jfreechart-1.0.13
jegrapht-0.8.1
jsXe-04-beta
roller-4.0.1
webmail-0.7.10

freecs-1.3.20100406
jag-6.1
jgraph-5.13.0.0
jgroups-2.10.0
mvnforum-1.2.2-ga

rssowl-2.0.5
weka-3.7.2

Table 2.2: Corpus of Java applications.

17

Finally, even though great care is taken to resolve the dependencies in the
corpus, some projects seem to contain some dependencies that could not be
resolved. It is possible that the developers of these projects broke these depen-
dencies (unintentionally). However, we excluded the project from the corpus if
more than 1% of the analyzed classed failed, as the result of unresolved depen-
dencies. 1% is a somewhat arbitrary number, but I found that most projects
only contain a couple of unresolved dependencies (less than 1%). Only a cou-
ple of project contain a large amount of unresolved dependencies, suggesting
missing libraries.

2.3.4 Consistency and Preciseness Analysis Algorithms

The consistency and preciseness analysis process (See figure 2.3) consists of three
distinct algorithms, namely:

o Recurring Suffiz Extraction: Names that are generally used by program-
mers are extracted from the corpus.

o Concept Creation: Classes are grouped into concepts. We define as a
concept a set of classes containing the same (sub-)set of micro patterns.

e Name Analysis: Each concept is analyzed for inconsistent and imprecise
class names.

The process uses the analyzed class names and micro patterns (as discussed
in section 2.3.1 and 2.3.2) of a corpus and an application to be analyzed as input.
The output of the process is a set of renaming suggestions per inconsistently
or imprecisely named class of the application that is analyzed. In this section
each of the phases of the analysis process is discussed, including the analysis
algorithm.

Recurring
N&MP Suffix Concgpt Name. Suggestions
Corpus . Creation Analysis
Extraction
N&MP
Application

Figure 2.3: The inputs, output and phases of the consistency and preciseness
analysis process. N&MP is name and micro patterns abbreviated.

Recurring Suffix Extraction

The class name and micro pattern data of classes from the corpus is extracted,
if the suffix of the class name occurs at least twice, and at least in two different

18

applications from the corpus. This simple heuristic filters out all class names
that are specific to an application, or used solely by one developer or team.
These incidental or idiosyncratic names are not valuable for the analysis of
consistency and preciseness, since this information does not tell something about
how concepts are generally named. Furthermore, the large amounts of data
would slow the analysis down significantly.

We look at the suffix, because most compound words are noun-noun com-
pounds. For this kind of compounds it is generally accepted that they involve a
head concept and a modifier concept. This means that the compound describes
a specialization of the head concept. Both in English and in class names, the
last word of the compound is almost always the head of the compound. In
Blackboard for example, Board is the head concept and Black is the modifier.
Thus blackboard is a special kind of board [4]. By looking at the last word of
the class name, we thus check if the head concept (the not specialized version
of the word) recurs in different application and is thus generally used.

Note, that we chose for a threshold value of 2, because this is the lowest
value for which we can speak of recurring suffixes. If the results indicate that a
higher value might improve the renaming suggestions, the threshold value can
be increased.

Concept Creation

We will create concepts of classes with the same (sub-)sets of micro patterns
using Formal Concept Analysis (FCA). This type of analysis is a way to create
a hierarchy of formal concepts that represent the set of objects sharing the
same values for a certain set of properties. The hierarchy is formed by placing
concepts below the concepts that have a super-set of objects. We want to group
classes with the same micro patterns together, so that we can analyze if there
are specific names used for specific combinations of micro patterns.

We can easily apply FCA to create concepts, because the "name-micro pat-
tern" combinations can be directly used as formal context, which is needed
to create formal concepts. A formal context consists of Objects (the classes)
with the same set of attributes (the 27 micro patterns), and values indicating
which object contains which attributes (boolean values indicating wether a class
contains a micro pattern). The objects and attributes could also be swapped
(patterns as object, classes as attributes). This has not influence on the analysis.

After performing FCA on the given formal context, classes with the same
micro patterns (and the same sub-sets of the containing micro patterns) are
grouped together into formal concepts. A concept lattice (hierarchy) of a small
amount of classes could look something like figure 2.4.

The figure shows the top concept that contains all the classes as attributes,
since all classes contain no patterns as sub-set. The bottom concept contains no
classes as attributes, since no class contains al the occurring micro patterns. The
concepts in between, represent al the occurring combinations of micro patterns
as objects, with the classes containing that combination of micro patterns as
attributes.

19

0

User/NN Factory/NN,
Application/NN Exception/NN,
User/NN,
Domain/NN Exception/NN,
Error/NN,
Simple/NN Factory/NN,
User/NN Exception/NN

)
| J

e

Application/NN Exception/NN,
User/NN,
Domain/NN Exception/NN,
Error/NN,
User/NN Exception/NN)

R N

Box, Sink, Taxonomy Stateless

Sink

Application/NN Exception/NN, -
User/NN Domain/NN Exception/NN, Simple/NN Factory /NN

Error/NN,
User/NN Exception/NN

!

Box,Stateless,
Data Manager,
Sink, Taxonomy

0

Data Manager,Sink L User/NN Factory /NN, J

Figure 2.4: Example of a concept lattice with the occurence of micro patterns
as formal objects (upper node part) and class names with their tokens and tags
as formal attributes (lower node part). /NN indicates a noun tag.

FCA is chosen because it fits neatly with the kind of data we are dealing
with, as described in second paragraph of this section. Furthermore, we can
easily evaluate the consistency and preciseness of a class, using a subset of its
patterns. These concepts are namely also created during the FCA phase. If we,
for example, would use a database to query classes with the same micro pat-
ters, relatively complex queries are needed, that have to be executed frequently
(for each class). To this respect, FCA is a more efficient and easier applicable
technique.

It is important that the class names and micro patterns of the application
to be evaluated are filtered out of the recurring suffix classes (if they are in). If
this is not done, the class name and micro patterns of the analyzed application
can occur twice in the formal concepts, skewing frequencies of the class tokens
and tags, and thus the renaming suggestions.

Name Analysis

Now that all the classes containing the same micro patterns (implementing
similar concepts) are grouped together in nodes of the concept lattice, the con-
sistency and preciseness of class names in each node can be analyzed. The
analysis is done using an analysis algorithm. The algorithm is first explained by

20

an example (Figure 2.5), followed by an explanation using an activity diagram
(Figure 2.6).

The counts of all the tokens or tags at a certain position of the class names
in combination with a threshold value are used to determine wether a token
or tag is considered inconsistent or imprecise. The counting of tokens or tags
is done the following way: We count the tokens or tags of all classes within a
concept at a certain position. The tokens or tags of the first position contain
all the last tokens or tags of all the classes within a concept (the last token or
tag is the first under analysis).

The relations of the threshold value and the token or tag counts with respect
to the consistency and preciseness of a class name are defined in the following
ways:

e Inconsistency: A token or tag at a certain position of the class name
under analysis is considered inconsistent, if: The token or tag count of
the current position of the class name under evaluation, divided by the
number of classes in the concept is smaller than the threshold value; and
the count of at least one other token or tag divided by the number of
classes in the concept is greater the threshold value.

e Impreciseness: The count of a token or tag divided by the number of
classes in the concept is greater than the threshold value, at a position
greater than the size of the class name under evaluation.

For the example we use the concept figure from 2.4 with the Sink and Taxon-
omy micro patterns (See Table 2.1 for the definitions of each micro pattern) as
formal objects (the gray concept in the figure). Furthermore, we use a threshold
value of 30%. This value might not be very suitable for a real-world analysis, but
it simplifies our example. A high threshold value allows us to keep the number
of classes in the concepts of the example low. The influence of the the threshold
value will be discussed at end of this section. The first step of the analysis is, is
to reverse the list of tokens and tags of the class name, so that the last tokens
(heads of the compounds) are evaluated first. The analysis algorithm will take

the following steps:

Error/NN -
Exception/NN Application/NN

Exception/NN Domain/NN
Exception/NN User /NN

Figure 2.5: Example of the analysis order of the consistency and preciseness
analysis algorithm

1. The analysis starts with analyzing tokens by class, thus starts at the first
token of the first class, the "Error" token. The token "Error" occurs in a

21

ratio of 25%. The "Exception" token occurs in a ratio of 75%. This means
that the "Error" token at this position is inconsistent for our threshold
value.

2. The only token occurring above our threshold value is "Exception", which
is added to the set of (partial) suggestions for the "Error" class (sugges-
tions are now: { "Exception" }).

3. At the next position, position two, the "Error" class has no tokens or
tags. We now directly check if there are any tokens that occur above the
threshold value. These new parts of the suggestion will be added to the
existing (partial) suggestions. In this case there is no such token.

4. Since there is no suggested token at this position, the algorithm starts
analyzing tags. At this position there is a tag that occurs above our
threshold value, namely "/NN". The "Error" class can thus be more
precisely named by adding a noun. The noun-tag will be appended in
front of each suggestion in our set of (partial) suggestions (suggestions are
now: { "/NN, Exception" })

5. This was the last possible position, the analysis restarts for the next class.

Note, that this example does not discuss two enclosing loops of the discussed
algorithm explicitly. The most outer loop iterates over all the concepts, since
all the concepts are analyzed. A loop that is nested within this most outer loop,
iterates over all the classes within a concept, since all the classes within concepts
are evaluated. We left out this loops to simplify the explanation. During the
rest of this chapter we will not discuss the mentioned loops.

Figure 2.6 shows an activity diagram of the algorithm for the analysis of
one class in a concept. Notice that it contains two similar phases. The analysis
of tokens (items shown in grey) and tags (items shown in white). Each phase
contains four of the same decision points and activities.

At the main decision point (first of its color) is decided, whether the current
position is:

e Lower than the phrase length of the class: In this case the consistency of
the class name is analyzed. During this process is first evaluated wether
the token or tag of the class occurs below the threshold value. Then if
another token or tag occurs above the threshold value.

e Greater than the phrase length of the class: In this case the preciseness
of the class name is analyzed. During this process is directly evaluated
wether there are tokens or tags in the concept at that position that occur
above the threshold value.

e Greater than the mazx phrase length in the concept: If the position is greater
than the maximum phrase length of all classes of the concept, the analysis
for the class stops.

22

At the activity points the following actions are taken:

e The current token or tag of a class is added to the list of suggestions, when
its not inconsistent.

e The tokens or tags above the threshold are added to the list of suggestion,
when the class name is inconsistent or imprecise.

Next pos

Pos > max size phrases in concept
Next pos Pos > size class phrase Tokens > threshojg Append tokens

above threshold
(Imprecise)

Pos <= size class phrase

‘Append token

Class token at pos > threshold
of class

No tokens > threshold

Append tokens Class token at pos< threshold

above threshold
(Inconsitent)

Other tokens at pos > threshold

Next pos

. . No other to
Pos > max size phrases in concept

0S > size class phr{sﬁ/\ Tags > threshold

Next pos
Pos <= size class phrase

Class tag at pos > threshold

Append tag
of class

Append tags
above threshold
(Imprecise)a

Class tag at pos < threshold

Append tags Other tags at pos > threshold
above threshold

(Inconsistent)

No tokens > threshold
No other tags > threshold

Figure 2.6: Actvity diagram of the analysis algorithm for the analysis of a class.
"Pos" means position. Append... means append token / tag in front of current
(partial) suggestions.

The algorithm can be refined by introducing a separate threshold value indi-
cating when tokens or tags are used in a renaming suggestion. The two threshold
values are then:

o Inconsistency Threshold (IT): This threshold value indicates when token
or tag at a certain position is considered inconsistent. If a threshold of
1% is chosen, a token or tag is considered inconstant if it occurs 1% or
less at a certain position in the concept under analysis. Expected is that
a higher value yields more inconsistently evaluated classes yielding more
false positives, and vice versa, yielding more false negatives.

e Suggestion Threshold (ST): This threshold value determines when a token
or tag is used as renaming suggestion. If this threshold is 5%, a token for
a certain position in the concept will only be used as suggestion when
it occurs for 5% or higher. Expected is that a lower value will not only
produce more suggestions (since a token or tag is only considered inconsis-
tent when it occurs below the inconsistency threshold AND other tokens

23

or tags occur above the suggestion threshold), but also results in sugges-
tions that are likely to be more divers, because more (and possibly less
prominent) tokens and tags will be used in renaming suggestions.

We will not try to find optimum threshold values during this research, but
reasoning about them makes it possible to refine our results later.

Note, that the use of threshold values is not necessarily the most sophis-
ticated "statistical" method that can be used to analyze the consistency and
preciseness of classes. However, this is a simple method to reason about and
implement. This makes it relatively simple to perform the analysis. More so-
phisticated, and possibly more effective statistical methods could be used in the
future.

2.4 Case Study

In this section a single Java system from the Qualitas Corpus is analyzed ac-
cording to the method discussed in the previous section. We chose the AspectJ
project for our case study, because it is medium sized, hopefully yielding a
manageable amount of renaming suggestions. AspectJ contains 4795 classes
that contain at least one micro pattern, that can thus be evaluated. For the
first analysis we use a inconsistency threshold of 0.5% and a suggestion threshold
of 7.5%.

Our case study is explorative. We try to determine if usable renaming sug-
gestions are produced by the proposed analysis process, and try to estimate how
effective this process is. We also try to determine why good renaming suggestion
are produced, or not.

We start section by discussing the algorithm performance. Then we discuss
the renaming suggestions given by the analysis algorithm (results).

2.4.1 Algorithm Performance

Initially the formal concept analysis module of the Rascal meta-programming
language was used to construct a concept lattice [9]. The performance of this
algorithm seemed sufficient for the creation of concepts for the names and micro
patterns of a small quantity of classes, but performed slowly on a large number
class names and micro patterns. Rough estimations indicated that the runtime
of the formal concept algorithm would be around 26 hours for 20k-25k classes.
This kind of runtimes are not very practical. Since the lattice is not needed
for this experiment, a more efficient algorithm is created, that calculates the
concepts directly using map data structures. This algorithm calculates concepts
for 25k classes in roughly 4 minutes. The code can be found in appendix C.
The other algorithms used in the consistency and preciseness analysis process
performed acceptably.

24

2.4.2 Initial Evaluation of the Results

Figure 2.7a shows that the variation of tokens used as the suffix of the renaming
suggestions is very low. Only 10 (out of 31) suffixes account for 90% of the
suffixes in the renaming suggestions. Other suffixes occur only 10% of the time.
Such a low variation might indicate problems with the process or threshold
values chosen. Since for example, it is not very likely that over 30% of the
classes with a suggestion should be renamed to a name with the "Exception"
suffix.

We can try to improve the suggestions by altering the suggestion threshold
value. As suggested in section 2.3.4, we could try to increase the variation in
suggested tokens by lowering the ST. Lowering the suggestion threshold to 5%,
increased the amount of suffixes to 94, but the amount of suffixes occurring in
90% of the suggestions remains approximately unchanged, as shown in figure
2.7b. The results from the second plot suggest that the suggestion threshold is
not the problem, so a problem might reside somewhere else in the process.

40 40
30| 1 s0f .
20 |- * 20 | b
10| 110 1
0 Ll \Hmmmmmmm 0 | | HHHHH’_‘WW
= = 5 2 8 2 2 5 'T‘E = E g g = 7 3 h=T T] =
SEzEEEREEE S E22f:EEET 2
S 3 58 = E 2 € 8 g =R
@«5 | R g z o & o @«gé v &M mztg o
% 3 % &
s O &
(a) Suggestion threshold = 7.5% (b) Suggestion threshold = 5.0%

Figure 2.7: Suffix occurrence (in %) for renaming suggestions.

2.5 Evaluation of the Results

The lack of variation in suffixes may be caused by problems in the analysis
process. In this case a lot of the renaming suggestions with common suffixes
may not be useful. To confirm this hypothesis a sample of 20 random classes
is manually examined to estimate the usefulness of suggestions generated by
the algorithm. We use the results of the second analysis (Suggestion threshold
= 0.5%). Ten classes are evaluated that have a suggestion with a commonly
occurring suffix, shown in figure 2.7b. Ten classes having suggestions with a
less commonly occurring suffix are also evaluated. This way we can see if less

25

commonly suggested suffixes lead to better renaming suggestions.

The results are summarized in table 2.3. A complete overview of the evalu-
ation, including motivation, can be found in Appendix D. The results suggest
that the renaming suggestions are generally not very useful. However, some re-
naming suggestions that might be useful can be found in the set of suggestions
with a less commonly occurring suffix. However, this type of renaming sugges-
tion only accounts for 10% of the generated suggestions. In the next section we
try to find the cause for the large amounts of useless renaming suggestions.

No | Maybe | Yes | Total
Common 10 | O 0 10
Uncommon | 7 3 0 10

Table 2.3: Usefulnes of the renaming suggestions. No = the suggestion does
not make sense, and is less suitable than the original name. Maybe = the
suggestion makes some sense, and can be swapped with the original name. Yes
= the suggestion is better than this original name. Suggestions with the Impl
suffix are ignored. See Appendix D for a motivation.

2.6 The Cause

From the previous sections we can conclude two things:

e There is a lack of token variation in renaming suggestions (or at least the
suffix). A small amount of tokens occurs frequently in renaming sugges-
tions.

e Suggestions with tokens (or at least suffixes) that occur less frequent tend
to make more sense. These suggestions are however overruled by the other
suggestions.

In this section we try to find the cause for the large amount of useless re-
naming suggestions.

2.6.1 Suffix Occurrence

Our hypothesis is that the large amount of useless renaming suggestions is
caused by the fact that commonly occurring suffixes are present in a wide va-
riety of concepts. In other words, the common suffixes are not isolated enough
to a restricted amount of concepts, overruling other tokens during the analy-
sis process. Until now we assumed that after this phase classes with common
suffixes are grouped together, however confirmation is needed.

Our hypothesis is supported by figure 2.8. The plot shows the amount of
times a suffix occurs in total, and in how many concepts a suffix occurs in the
concepts created for the AspectJ project. Suffixes that occur many times and
in many different concepts (upper right part of the plot) can be considered very

26

Concept Occurrence (n)

150

100

50

influential during the analysis process, because they are very generally used
(occurring in many concepts), and tend to occur above the suggestion threshold
(high occurrence), resulting in many unwanted suggestions. In figure 2.8 we can
see that many suffixes from figure 2.7b are indeed positioned further up and
right in the plot than most other suffixes. However, there many more outliers
that do not occur often as suffix in the renaming suggestions.

o™
o @ Factory
© Provider
© Contgyfiter © Hander
O\hfﬂ ® Action
QVale @Fwent
0 DescragRee
o O Listener o Node
List
s o o Stem® prefgrter
o 8“ tpressigy Mode!
R Element o ®
bR Exception
Helper
nderer o Binding (]
pper
rocessor @ Panel
© Hoider
Utis
essages @
erter @ Constans
I I I I
2000 4000 6000 8000

Total Occurrence (n)

Figure 2.8: Scatter plot of suffix occurrence for the concepts used for the AspectJ
analysis. The x-axis indicates the total amount of times a suffix occurs over all
the concepts. The y-axis shows the total amount of concepts the suffix is present
in. The dot markers of the common suffixes from figure 2.7b are filled.

2.6.2 Suffix Influence

In the previous section we did not include one important factor in our plot.
This is for how many classes the suffix will be used as renaming suggestion.
We cal this the influence of a suffix for short. The influence of a suffix can be
defined informally as: "The sum of all classes below the inconsistency threshold
in the concepts for which the suffix occurs above the ST". The suffixes with the

greatest influence are shown in figure 2.9.

27

Impl

Factory
Utils

o
o wt
T
Panel
Property
Event
Holder ||
Provider :l
Info| |
Helper []
Datal_|
|

Action

Exception
Adapter |_|
Constants ||

Figure 2.9: The suffix influence for an inconsistency threshold of 0.05% and a

suggestion threshold of 0.5%. The gray bars mark the common sufixes from
figure 2.7b.

All the common suffixes are highly ranked in the figure, which means that
they are highly influential for the renaming suggestions. Notice that the adapter
suffix is ranked slightly lower than expected. This is very likely the result of the
fact that multiple renaming suggestions can be given to a class, depending on
the consistency and preciseness of other tokens or tags in the class name under
analysis. This might slightly skew the results.

2.7 Discussion

The results regarding the renaming suggestions from table 2.3 indicate that
the proposed analysis process does not yet produce suggestions of a quality
sufficient enough to use in practice, or even perform an extensive case study.
Some renaming suggestions that make sense can be found, but these suggestions
are overruled by a large amount of useless renaming suggestions with a common
suffix (false positives).

We successfully found the root cause of the large amount of useless renam-
ing suggestions proposed by the analysis algorithm. Some suffixes are not iso-
lated well enough during the FCA phase of the analysis process, because micro
patterns do not discriminate enough between the implementation semantics of
classes. Therefore these suffixes can be highly influential during analysis of the
consistency and preciseness of class names.

Furthermore, some suffixes are very generic, like the "Impl" suffix. This
suffix is used for classes with a wide variety of implementation semantics.

Improving the renaming suggestions is not straightforward. The micro pat-
terns proposed by Gil & Maman seem to be useful, but not sufficient enough to
group classes during the FCA phase for the purpose of this research. Introduc-

28

ing new patterns, specific to our purpose might enhance the results. Introducing
a set of micro patterns, that could lead to the production of usable results is
however a lot of work, and deserves a research on its own.

However, the introduction of new patterns will probably not solve the prob-
lem of generally used names. These names could probably never be isolated.
Ignoring these names or removing generic tokens from the name in advance of
the analysis, might be a suitable strategy to reduce the large amount of unusable
renaming suggestions caused by these names.

2.8 Summary

In this chapter we tried to answer the following research question: Can the con-
sistency and preciseness of class names in object-oriented software be evaluated
automatically? This research suggests that the proposed method yield only
some useful results using micro patterns. The proposed method is therefore not
yet ready to use in an extensive case study or in practice.

29

Chapter 3

Introducing Purpose-Specific
Patterns

This chapter describes a follow-up research of the research described in the
previous chapter.

3.1 Introduction

The proposed analysis process from the previous chapter does not yet produce
renaming suggestions usable enough to perform a case study. We found that
this problem is mainly caused by the fact that the existing micro pattern catalog
does not contain micro patterns that distinguish sufficiently enough between the
implementation semantics of classes for the purpose of this research.

The goal of this chapter is not to introduce a complete set of new patterns,
that would produce usable renaming suggestions. This goal would deserve a
research on its own. Instead, we try to determine if such a research might be
useful, and therefore justifiable. The research question we try to answer in this
chapter is: Can suffixes be isolated better using new patterns specific to this
purpose? By answering this question, we try to answer the more abstract ques-
tion presented in the introduction of this thesis: Can the renaming suggestions
produced by the proposed analysis process be improved?

Notice, that we will not use the term micro-pattern here. We are indeed
trying to find some traceable patterns on class level. However, we do not assess
the individual value of each pattern with respect to the existing micro pattern
catalog (as done with each of the existing micro patterns by Gil & Maman).
Furthermore, the patterns presented here are designed specific for our purpose,
whereas micro patterns are more generally applicable.

30

3.2 Research Method

In this section the research methods are discussed.

3.2.1 Designing Purpose-Specific Patterns

To evaluate if the introduction of new purpose-specific patterns (PSPs) will
mitigate the problems described in the previous chapter, we will perform a
sample experiment. In this chapter we will try to isolate two of the common
suffixes, shown in figure 2.9.

The suffixes used as sample for this experiment are:

e Exception: This is the most commonly occurring suffix in the renaming
suggestions after Impl (Figure 2.7b)?.

e Factory: The most highly ranked design pattern name used as suffix in
figure 2.7b. Since the factory patterns are clearly defined [5], it is expected
that it is relatively easy to find commonalities in the implementation of
classes with names ending with Factory.

Two PSPs are designed to specifically isolate these suffixes. The definition
of the PSPs are determined by finding commonalities in the implementation of
a sample of classes with one of the suffixes above. The commonalities will be
formalized into new pattern definitions, and implemented in the analysis tool
used for this research.

3.2.2 Case Study

A small explorative case study will be performed, to determine if the isolation
of the Exception or Factory suffix is improved with respect to the isolation of
this suffixes using micro patterns. We will again analyze the AspectJ project to
obtain the results.

For this experiment we define the isolation of a suffix S using two variables,
namely: The count of the suffix S in a concept, and the count of other suffixes
in a concept. We say that a suffix is better isolated when it occurs in a higher
number in a concept, other suffixes occur in a lower number in a concept, or
both.

During the analysis concepts are created by performing FCA on all the
recurring suffix classes in the corpus of the previous chapter. Only this time we
include classes that contain no pattern. This is done because it is more likely
for the classes to have no patterns using the 2 new PSP, then using the existing
27 micro patterns. Leaving out classes that contain no pattern might skew the
results.

IThe Impl suffix is not chosen, because this suffix may be used for any kind of class
implementing an interface.

31

3.2.3 Evaluating the Results

We will see that the use of PSPs indeed increased the isolation of the Excep-
tion and Factory suffix, when the concepts created using these patterns contain
more of the classes with the Factory or Exception suffix than any other concept
using micro patterns. Furthermore, the concepts will contain fewer classes with
another suffix, with respect to the concepts created using micro patterns.

3.3 Designing Purpose-Specific Patterns

This section describes the commonalities between classes with the Factory or
Exception suffix. Using these commonalities a definition for the new PSPs is
given.

Exception

The observations made during the manual evaluation of 10 random classes with
the exception suffix, are shown in table E.1.

From the table we can conclude that all of the sample classes with the
exception suffix extend the java.lang.Exception class, or have super class that
extends this class. Furthermore, all of the classes contain a constructor, that
calls a constructor of a super class (the Exception class). This is done using the
"super" keyword.

Since the use of the super keyword is not detectable in Java byte-code, we
will define our new PSP for the isolation of the Exception suffix in Java classes
as: "A class which (indirectly) extends the java.lang.Exception class." We call
this PSP the "Exceptional" pattern.

Factory

The observations made during the manual evaluation of 15 random classes with
the Factory suffix, are shown in table E.2.

From the table we can conclude that the properties of the classes with the
factory suffix are more varied. This makes it hard to find similarities between
the classes. Therefore we try to create a definition using the description of the
"Abstract Factory" and "Factory Method" design patterns form Gamma et al.
[5]. We define the PSP for the Factory suffix as follows: "A class that imple-
ments an interface or extends an abstract class. At least of the implemented
or overridden methods is a Factory Method." We define a "Factory Method"
as: "A method of which the return type is abstract or an interface, and which
creates an object that is a subtype or an implementation of the return type."

We can see that 9 out of 15 classes from table E.2 could be determined that
they contain a factory method. 5 of of those also implement an interface or
extend an abstract class. So by using this definition we are expected to isolate
roughly one third of the factory suffixes.

32

Loosening the definition (For example, not requiring a factory class to imple-
ment an interface or extend an abstract class) might group more factory suffixes
in a concept, but is also likely to add more other suffixes to the concept.

3.4 Case Study

In this section we discuss the results of the case study performed on the AspectJ
project. Two separate studies are performed for the Exception and Factory
suffix.

3.4.1 Exception

Table 3.1 shows the occurrence information of the Exception suffix for five con-
cepts containing the most classes with that suffix. These concepts are created
using micro patterns. The concept with Sink micro pattern (combination) con-
tains by far the most classes with Exception suffix. Therefore, we will focus on
this concept during the comparison between the micro patterns en the Excep-
tional PSP.

Micro Patterns Suffix in concept | Suffix not in | Other suffixes in
concept concept™®

Sink 2253 (31.2%) 520 (18.8%) 11743 (83.9%)

Taxonomy & Sink 974 (35.1%) 1799 (64.9%) 1483 (60.4%)

Extender 454 (16.4%) 2319 (83.6%) 10715 (95.9%)

Sink & Extender 337 (12.1%) 2436 (87.9%) 1371 (80.3%)

Overrider 154 (5.6%) 2619 (94.4%) TTTT (98.0%)

Table 3.1: Occurrence information of the Exception suffix for five concepts
containing the most classes with that suffix. * percentage = (Concept size -
Exception suffixes) / Concept size

Table 3.2 shows the same kind of information for the Exceptional PSP. When
we compare the numbers with the Sink micro pattern concept, we can not only
see that the PSP captures more Exception suffixes compared to the Sink micro
pattern, but also excludes almost all other micro patterns from the concept. This
is a significant improvement in isolation compared to the Sink micro pattern.

Pattern Suffix in concept | Suffix not in | Other suffixes in
concept concept™®
Exceptional 2723 (98.2%) 49 (1.8%) 216 (0.1%)

Table 3.2: Occurrence information of the Exception suffix using the Exceptional
PSP. * = see table 3.1.

33

3.4.2 Factory

Table 3.3 shows the occurrence information of the Factory suffix for five con-
cepts containing the most classes with that suffix. These concepts are created
using micro patterns. The concept with Stateless micro pattern (combination)
contains by far the most classes with Factory suffix. Therefore, we will focus
on this concept during the comparison between the micro patterns and the
Manufacturing PSP.

Micro Patterns Suffix in concept | Suffix not in | Other suffixes in

concept concept*
Stateless 1269 (43.0%) 1685 (57.0%) 11355 (90.0%)
Extender 270 (9.1%) 2684 (90.9%) 10899 (97.6%)
Common State 229 (7.8%) 2725 (92.2%) 3536 (93.9%)
Implementor 202 (6.8%) 2752 (93.2%) 5360 (96.4%)
Function Pointer & | 194 (6.7%) 2760 (93.3%) 820 (80.7%)
Stateless

Table 3.3: Occurrence information of the Factory suffix for five concepts con-
taining the most classes with that suffix. * = (Concept size - Factory suffixes)
/ Concept size

Table 3.4 shows the occurrence information of the same suffix regarding the
Manufacturing PSP. We can see that the Stateless pattern seems to be better at
capturing the Factory suffix, than the Manufacturing PSP. Note however, that
the absolute amount of other suffixes is much smaller for the manufacturing
pattern, relative to that amount in the concept of the stateless micro pattern.
This means the influence of the Factory suffix is likely to be smaller for this
concept during the analysis phase.

Pattern Suffix in concept | Suffix not in | Other suffixes in
concept concept™®
Manufacturing 325 (11.0%) 2627 (89.0%) 3228 (90.8%)

Table 3.4: Occurrence information of the Factory suffix using the Manufacturing
PSP. * = see table 3.3

Now that we know the isolating properties of the Stateless pattern regarding
the Factory suffix, we can try to improve the isolation of it by refining the
Manufacturing PSP. Since a lot of factory classes do not seem to implement an
interface or extend an abstract class, we try to increase the amount of factory
suffixes by dropping this requirement and therefore loosening the definition.
Furthermore, we require the factory to be stateless, to tighten the definition
somewhat. The results are shown in table 3.5.

34

Pattern Suffix in concept | Suffix not in | Other suffixes in
concept concept™®
Manufacturing 370 (12.5%) 2584 (87.5%) 1294 (77.8%)

Table 3.5: Isolation of the Factory suffix using the redefined Manufacturing
PSP. * = see table 3.3

Although the results are not spectacular, there is a significant improvement
in isolation. The number of factory suffixes in the concept increased only slightly,
but more significantly, the amount of other suffixes decreased by 13%. Further
refinements of the Manufacturing PSP might further improve the results.

3.5 Discussion

In this chapter we showed that it is possible to improve the isolation of some
suffixes with little effort, as with the Exception suffix. For other suffixes this task
might be more complex, as for the Factory suffix. Programmers do not seem to
implement a concept like the Factory pattern in a predictable manner. A large
amount of variations occur (For example, a concrete Factory implementation
might implement an interface or not), which make the detection of classes with
such a suffix hard. This fact makes it questionable if we could ever isolate all
the classes with the Factory suffix, which seems to be quite generically used.

However, we made some progress in this chapter. The Sink micro pattern
might create a concept that contains a lot of classes with the Factory suffix, but
also contains a lot of other classes. The (redefined) Manufacturing PSP might
capture less classes with the factory suffix, but also adds less other suffixes to
the concept. This might create more significant renaming suggestions during
the analysis process. Further refinement of the PSP might improve the results
more.

Another approach to isolate classes with a name containing a name of a
design pattern, would be to apply more "heavyweight" design pattern recov-
ery/detection techniques. These techniques are described by Antoniol for ex-
ample [1].

3.6 Summary

In this chapter we addressed the following research question: Can the suffixes
be isolated better using new patterns specific to this purpose? We can conclude
that in some cases it is possible to define a PSP that isolates a suffix very
well. In other cases, it might be hard or even impossible to come up with
such a definition, making the production of (near) perfect renaming suggestions
perhaps too ambitious. However, renaming suggestions might very well improve
using, and become usable by the introduction of a new set of PSP.

35

Chapter 4

Conclusions and Future Work

In this work we have found that the analysis of the consistency and preciseness
using micro patterns as proposed in chapter 2 does not yet yield results that
are usable in practice. The micro patterns proposed by Gil and Maman do not
seem to discriminate sufficiently enough between the implementation semantics
of classes. This causes classes with certain suffixes to be present in a wide variety
of class groups (formal concepts).

We have seen that some common suffixes are easy to isolate using patterns
specific to the purpose of this research (PSP), instead of micro patterns. Other
suffixes are harder, or even impossible to isolate well. These results imply that
the renaming suggestions produced by the proposed analysis process could very
well be improved by the introduction of a carefully assembled set of PSP, yielding
(more) usable renaming suggestions.

Areas of future research can be summarized as follows:

o Adequately Abstracting over Implementation Semantics: To understand

and improve software on a large scale, we need to find ways to abstract
over implementation semantics of code automatically and adequately. Gil
and Maman did pioneering work in this area, by the introduction of micro
patterns. However, this tool did not seem to abstract adequately enough
over these semantics for the purpose of this research.
The refinement of the current micro pattern catalog is one way to more ad-
equately abstract over the implementation semantics of classes, but these
patterns might not be suitable for any type of software analysis. There-
fore a set of PSPs could be introduced, for example for the purpose of this
research.

o Understanding Concepts in Software: More research could be done in the
field of concepts in software. We have seen that the concept of an Ex-
ception is implemented quite uniformly by different programmers. Other
concepts, like that of a Factory, are more arbitrary implemented.

By understanding the concepts that are generally known by programmers
and how (consistently) these concepts are implemented, we could try to

36

asses how successful we might be at the automatic capturing of concepts
in software. Furthermore, we could try to improve current theories us-
ing this information. For example, the abstraction over implementation
semantics using micro patterns.

Effectiveness of Renaming Approaches: Current research on consistency of
class and method names (for example, Singer and Hgst & @stvold), do not
report the effectiveness (false positive, false negatives, etc) of the proposed
methods. Some numbers are available, but very significant numbers (for
example, as the result of a case study) are not available.

The lack of these numbers makes it hard asses how relevant the results of
newly proposed methods are.

37

Bibliography

[1] G. Antoniol, R. Fiutem, and L. Cristoforetti. Design pattern recovery in
object-oriented software. In Proceedings of the 6th International Workshop
on Program Comprehension, IWPC ’98, pages 153—, Washington, DC, USA,
1998. IEEE Computer Society.

[2] S. Butler. Intt: Identifier name tokenisation tool. http://oro.open.ac.
uk/28352/, March 2011.

[3] S. Butler, M. Wermelinger, Yijun Yu, and H. Sharp. Mining java class
naming conventions. In Software Maintenance (ICSM), 2011 27th IEEE
International Conference on, pages 93 —102, sept. 2011.

[4] F. Deissenboeck and M. Pizka. Concise and consistent naming. Software
Quality Control, 14(3):261-282, September 2006.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: El-
ements of Reusable Object-Oriented Software. Addisson-Wesley, Toronto,
Ontario. Canada, 1995.

[6] J. Gil and I. Maman. Micro patterns in java code. SIGPLAN Not.,
40(10):97-116, October 2005.

[7] R.L. Glass. Facts and Fallacies of Software Engineering. Addison-Wesley
Professional, October 2002.

[8] E. Hgst and B. Ostvold. Debugging method names. In Sophia
Drossopoulou, editor, ECOOP 2009 — Object-Oriented Programming, vol-
ume 5653 of Lecture Notes in Computer Science, pages 294-317. Springer
Berlin / Heidelberg, 2009. 10.1007,/978-3-642-03013-0-14.

[9] Centrum Wiskunde & Informatica. Rascal - webhome. http://www.
rascal-mpl.org/. [Accesed: may, 2012].

[10] K Karlsen and B.M. @stvold. lancelot-eclipse - a method name ana-
lyzer for eclipse - google project hosting. http://code.google.com/p/
lancelot-eclipse/. [Accesed: apr, 2012].

38

[11]

[12]

[13]
[14]

[15]

[16]

[17]
[18]

D. Lawrie, C.F. Morrell, and D. Binkley. What’s in a name? a study of
identifiers. In In 14th International Conference on Program Comprehen-
sion, pages 3—12. IEEE Computer Society, 2006.

R.C. Martin. Clean Code: A handbook of agile software craftsmanship.
Prentice Hall, 2009.

OW2. ASM Home Page. http://asm.ow2.org/. [Accesed: apr, 2012].

V. Rajlich and N. Wilde. The role of concepts in program comprehension.
In In IWPC 02, pages 271-278, 2002.

J. Singer, G. Brown, M. Lujan, A. Pocock, and P. Yiapanis. Fundamental
nano-patterns to characterize and classify java methods. Electronic Notes
in Theoretical Computer Science, 253(7):191 — 204, 2010.

J. Singer and C. Kirkham. Exploiting the correspondence between micro
patterns and class names. Source Code Analysis and Manipulation, IEEE
International Workshop on, 0:67-76, 2008.

Sun. Java Code Conventions. Sun, 1997.

E. Tempero, C. Anslow, J. Dietrich, T. Han, Jing Li, M. Lumpe, H. Melton,
and J. Noble. Qualitas corpus: A curated collection of java code for
empirical studies. In 2010 Asia Pacific Software Engineering Conference
(APSEC2010), pages 336-345, December 2010.

39

Appendix A

Tokenizer and Tagger
Accuracies

In this appendix the accuracies of two tokenizers and two taggers from related
research are determined. This is done by manually verification of their output
for random class names from the corpus described in section 2.3.3. It is not nec-
essary for this research to strive for perfect tokenization and tagging, but more
accurate results will probably result in more usable data. The most accurate
tokenizer and tagger will be used during this research.

A.1 Tokenizer Accuracies
The accuracy of the following tokenizers from related research are evaluated:

e Lancelot algorithm: The tokenization algorithm extracted from the Lancelot
Eclipse plug-in. This plug-in is based on the work by Hgst [10].

e Intt: Identifier name tokenization tool by Butler. A Java library that
is claimed have an overall accuracy of 96.5% for class names. Uses an
"oracle" to more accurately tokenize terms and abbreviations like "J2SE"

[2].

Manual verification of output of the two tokenizers indicate that the Intt
tokenizer has an accuracy of 96.4 - 98.0%, while the lancelot is 94.8 - 96.8% ac-
curate (n = 251, see table A.1 for the output). The accuracy is given in ranges,
because I found it hard to judge the correctness of some class names without
knowing the purpose of the class, and therefore the correctness of the tokeniza-
tion output. Results suggest that the Intt tokenizer is slightly more accurate.
Therefore this tokenizer is used for the experiment.

Remarkable is that the Intt tokenizer successfully tokenizes "J2EEResourceBase"
into "J2EE-Resource-Base", but incorrectly tokenizes "Guid" into "G-uid".

40

This is probably because it prefers to tokenize "uid", because it is contained

in the oracle.

Input Intt Incorrect | Lancelot Incorrect | Remarks
(Intt) (Lancelot

CommonBehaviorFactory Common Be- common behav-
havior Factory ior factory

XMLTestCase XML Test Case XML test case

TestGraphBaseToString Test Graph test graph base
Base To String to string

CopyInfoParser Copy Info copy info parser
Parser

ColumnText Column Text column text

‘WrongDocumentErr ‘Wrong Docu- wrong docu-
ment Err ment err

JmsConnectionMetaData Jms Connection jms connection
Meta Data meta data

CompletionPane Completion completion pane
Pane

TableViewerAction Table Viewer table viewer ac-
Action tion

SpringRepeat Spring Repeat spring repeat

PostExeNode Post Exe Node post exe node

MemoryGraphPanel Memory Graph memory graph
Panel panel

LocalTrackerPlugin Local Tracker local tracker
Plugin plugin

listNetworksListener list Networks list networks lis-
Listener tener

VersionColumns Version version columns
Columns

UShortToUlInt U Short To UI 1 u short to u int
nt

AntElement Ant Element ant element

FragReceiver Frag Receiver frag receiver

BorderLeftStyle Border Left border left style
Style

LicenseContentProvider License Content license content
Provider provider

NetBeansOrgEntry Net Beans Org | 1 net beans org | 1
Entry entry

DomainServerSocket Domain Server domain server
Socket socket

PrintStarter Print Starter print starter

Jdbc3PoolingDataSource Jdbc3 Pooling jdbc 3 pooling Both
Data Source data source are ok

NavigatorContentService

Navigator Con-
tent Service

navigator
tent service

con-

Unsigned16 Unsigned 16 unsigned 16
FileTableContentProvider File Table Con- file table con-
tent Provider tent provider
ComponentMapper Component component
Mapper mapper
InterpolationMethod TypeBindigterpolation interpolation
Method Type method type
Binding binding
StyledEditorKit Styled Editor styled editor kit
Kit
Recolor Recolor recolor
IRepositoryQuery I Repository i repository
Query query
InputTransferSelectDirective | Input Transfer input transfer
Select Directive select directive
ConfigSexpression Config Sexpres- config sexpres-
sion sion
PEMReader PEM Reader PEM reader

41

JRRtfExporterContext

JR Rtf Exporter
Context

JR rtf exporter
context

BindYellow

Bind Yellow

bind yellow

DynamicldentityPolicy

Dynamic Iden-
tity Policy

dynamic iden-
tity policy

UninstallFeatureAction

Uninstall Fea-
ture Action

uninstall feature
action

DisabledFacet

Disabled Facet

disabled facet

ExternalToolsBuilderTab

External Tools
Builder Tab

external tools
builder tab

NullPointerException Null Pointer Ex- null pointer ex-
ception ception
ASTProject AST Project AST project
T4CInputStream T 4 C Input t 4 ¢ input
Stream stream
JDKProvider JDK Provider JDK provider
FailureDetector Failure Detector failure detector
DefinitionKindHolder Definition Kind definition kind
Holder holder
DelegatingloHandler Delegating To delegating io
Handler handler
SettingsTabJava Settings Tab settings tab java
Java
QuadTo Quad To quad to
OutputMultiplexor Output Multi- output multi-
plexor plexor
HTMLTableComponent HTML Table HTML table
Component component
SybasePlatform Sybase Platform sybase platform
HttpSessionBindingListener Http Session http session

Binding Lis-
tener

binding listener

FooWorkManager Foo Work Man- foo work man-
ager ager

FilteredSourcePackage Filtered Source filtered source
Package package

MenuDetectListener

Menu Detect
Listener

menu detect lis-
tener

AntObject Ant Object ant object

FileStatsCacheltem File Stats Cache file stats cache
Item item

MruCacheStorage Mru Cache Stor- mru cache stor-

age

age

DelegatingTilesRequestProces|

soDelegating Tiles
Request Proces-
sor

delegating tiles
request proces-
sor

FolderNode

Folder Node

folder node

IWorkerStatusChangeListener

I Worker Status
Change Listener

i worker status
change listener

AgentHandler Agent Handler agent handler
StringTypeDescriptor String Type De- string type de-
scriptor scriptor
RtfMapper Rtf Mapper rtf mapper
KateBadPacketException Kate Bad kate bad packet
Packet Excep- exception

tion

SubjectKeyIDRequest

Subject Key ID

subject key ID

Request request
HTMLIndentEngineBeanInfo | HTML Indent HTML indent
Engine Bean engine bean info
Info
BaseSVGNumberList Base SVG Num- base SVG num-
ber List ber list
AnnotationMark Annotation annotation
Mark mark

42

ActionAddClassifierRoleBase

Action Add
Classifier Role
Base

action add clas-
sifier role base

InitClassDiagram Init Class Dia- init class dia-
gram gram
FreeCol Free Col free col

JavaSourceFilePrintWriter

Java Source File
Print Writer

java source file
print writer

MemberOptimizationInfoSettd

r Member Opti-
mization Info
Setter

member opti-
mization info
setter

DefaultScheduledExecutorFac

oByefault Sched-
uled Executor

default sched-
uled executor

Factory factory
Jje je je
DataFlavorComparator Data Flavor data flavor com-
Comparator parator
‘WhiteSharkWeapon ‘White Shark white shark
‘Weapon weapon
MoreTypes More Types more types

ContentHandlerAdaptor

Content Han-
dler Adaptor

content handler
adaptor

UpdateUnitProviderPanel

Update Unit
Provider Panel

update unit
provider panel

OriginatorIdentifierOrKey

Originator Iden-
tifier Or Key

originator iden-
tifier or key

ClassRenamer Class Renamer class renamer

NetworkRegistryMBean Network Reg- network registry
istry M Bean m bean

AFProxy AF Proxy AF proxy

SystemFlavorMap System Flavor system flavor
Map map

UseCasesFactory Use Cases Fac- use cases factory
tory

QosPolicyCountHelper Qos Policy qos policy count

Count Helper

helper

MemoryViewSynchronizationy

etMiemory View

memory view

Synchronization synchronization
Service service
UnorderableException Unorderable Ex- unorderable ex-
ception ception
SvnHookFactoryImpl Svn Hook Fac- svn hook factory
tory Impl impl
DatabaseServicelmpl Database Ser- database service
vice Impl impl
EnableCommand Enable Com- enable com-
mand mand
SingleStream Single Stream single stream

TaskConfigurationChecker

Task Configura-
tion Checker

task configura-
tion checker

IElementReference I Element Refer- i element refer-
ence ence
WatchpointTypeChange ‘Watchpoint watchpoint type
Type Change change
CatchClause Catch Clause catch clause
DatatypeRef Datatype Ref datatype ref
LL1Analyzer LL1 Analyzer LL 1 analyzer
PropertySetter Property Setter property setter

SACParserCSSmobileOKBasid

1S&stRatser CSS
mobile OK Ba-
sicl Constants

SAC parser CS
smobile OK ba-
sic 1 constants

DividerPainter Divider Painter divider painter
DOMInputImpl DOM Input DOM input
Impl impl

43

SimpleSequence Simple Se- simple sequence
quence

CollapsedBorderSide Collapsed Bor- collapsed border
der Side side

ToolBarButtonTag Tool Bar Button tool bar button
Tag tag

PlayerExploredTile Player Explored player explored
Tile tile

ValueDifferencelmpl Value Difference value difference
Impl impl

JavaModuleGlobals Java Module java module
Globals globals

Guid G uid guid

Surfacelnterpolation

Surface Interpo-
lation

surface interpo-
lation

RepositoryContentMetadata

Repository Con-
tent Metadata

repository con-
tent metadata

EStringToStringMapEntryImp

1 E String To

String Map
Entry Impl

e string to string
map entry impl

KeySortedCollectionHelper

Key Sorted Col-
lection Helper

key sorted col-
lection helper

CompatibleExecutor Compatible Ex- compatible
ecutor executor
X T ReportStatement X T Report NameSplitter
Statement encountered
unexpected
character:
KLNFOptionPane KLNF Option KLNF option
Pane pane
DefineFunction Define Function define function
NativeMachine Native Machine native machine
SkipIndexWriter Skip Index skip index
‘Writer writer
CalendarData_mk Calendar Data NameSplitter
mk encountered
unexpected
character:

RolloverMouseListener

Rollover Mouse
Listener

rollover mouse
listener

JDBCEvent JDBC Event JDBC event
BiffHeaderInput Biff Header In- biff header input
put

ServiceProviderTypeValidator

Service Provider
Type Validator

service provider
type validator

ReleaseListener Release Listener release listener

JRAbstractCompiler JR Abstract JR abstract
Compiler compiler

SearchFilterReference Search Filter search filter ref-
Reference erence

IIOWriteProgressListener 110 Write 110 write
Progress Lis- progress listener
tener

FinalStateClass Final State final state class
Class

ModifierKeyword Modifier Key- modifier key-

word

word

AbstractPreferencelnitializer

Abstract Prefer-
ence Initializer

abstract prefer-
ence initializer

AttributePanelListener

Attribute Panel
Listener

attribute panel
listener

NoneLockManager

None Lock Man-
ager

none lock man-
ager

44

JAXWSDeployerHookEJB3

JAXWS De-

JAXWS de-

ployer Hook ployer hook

EJB 3 EJB 3
ListViewerAdapter List Viewer list viewer

Adapter adapter
ExpressionFactorylmpl Expression Fac- expression

tory Impl factory impl

ZipEntryStorageEditorInput

Zip Entry Stor-
age Editor Input

zip entry stor-
age editor input

TraceConfiguration Trace Configu- trace configura-
ration tion

LabelUI Label UI label UI

OperationsCompartmentContaifdperations operations
Compartment compartment
Container container

DebugManagerAboutAction

Debug Manager
About Action

debug manager
about action

RelationOrJoin Relation Or relation or join
Join

CSSParseException CSS Parse Ex- CSS parse ex-
ception ception

RemovedCallbackFacet Abstra¢t Removed Call- removed call-
back Facet back facet
Abstract abstract

ForwardingAnnotated AnnotatioForwarding forwarding
Annotated annotated
Annotation annotation

JhlLogMessageChangePath

Jhl Log Message
Change Path

jhl log message
change path

rdfparse rdf parse rdfparse
XHTMLTagSerializer XHTML Tag XHTML tag se-
Serializer rializer
SortCalc Sort Calc sort calc
RBCollationTables RB Collation RB collation ta-
Tables bles
RenderException Render Excep- render excep-
tion tion
BusinessList Business List business list
ValueTask Value Task value task
HtmlEscape Html Escape html escape
SchemaCopy Schema Copy schema copy

ManagedPropertyDelegate

Managed Prop-
erty Delegate

managed prop-
erty delegate

ImageUsingCacheProperty

Image Using
Cache Property

image using
cache property

SortingJob

Sorting Job

sorting job

TableRowSWTPaintListener

Table Row SWT
Paint Listener

table row SWT
paint listener

MarkMapping Mark Mapping mark mapping
IsCollectionContaining Is Collection is collection con-
Containing taining
ObjectFilter Object Filter object filter
JmsSecurityException Jms Security jms security ex-
Exception ception

QueueRendererData

Queue Renderer
Data

queue renderer
data

CompactorDictBlock Compactor Dict compactor dict
Block block

CapturingELResolver Capturing EL capturing EL re-
Resolver solver

t2 t 2 t 2

Messagingltem Messaging Item messaging item

JFacePreferences J Face Prefer- j face prefer-
ences ences

NameReference Name Reference name reference

45

EnumDefIRHelper Enum Def IR enum def IR
Helper helper

RefState Ref State ref state

StaticMethodName Static Method static method
Name name

TextPaneView Text Pane View text pane view

JasperReportErrorHandler

Jasper Report
Error Handler

jasper report er-
ror handler

CompilationUnitVisitor

Compilation
Unit Visitor

compilation unit
visitor

JDBCResourceMBean

JDBC Resource
M Bean

JDBC resource
m bean

GeneratedOrderByLexer Generated generated order
Order By Lexer by lexer

TomcatResolver Tomcat Re- tomcat resolver
solver

PdfCollectionltem Pdf Collection pdf collection

Item

item

PluginValidationStatusHandle

Plugin Vali-
dation Status
Handler

plugin vali-
dation status
handler

1TypelList 1 Type List 1 type list

IIntroConstants I Intro Con- i intro constants
stants

ConfigViewPlatform Config View config view plat-

Platform

form

NotificationResultDeserFactor]|

Notification Re-
sult Deser Fac-
tory

notification re-
sult deser fac-
tory

DocFrame

Doc Frame

doc frame

J2SELibraryTypeProvider

J2SE Library
Type Provider

j 2 SE library
type provider

RemoveResultAction

Remove Result
Action

remove result
action

ExpressionView

Expression
View

expression view

SpellingSuggestionRequest

Spelling Sugges-
tion Request

spelling sugges-
tion request

IconRule

Icon Rule

icon rule

JMIHyperlinkAction

JMI Hyperlink
Action

JMI hyperlink
action

GoStateTolncomingTrans

Go State To In-
coming Trans

go state to in-
coming trans

JRXmlDataSource JR Xml Data JR xml data
Source source

JasperOpenCookie Jasper Open jasper open
Cookie cookie

MicrosoftSqlServerDialect Microsoft Sql microsoft sql

Server Dialect

server dialect

NbJarURLConnection Nb Jar URL nb jar URL con-
Connection nection
RootWalker Root Walker root walker
SynchronizedCounter Synchronized synchronized
Counter counter
NullLogWriter Null Log Writer null log writer
ExtendedSelector Extended Selec- extended selec-
tor tor
LocalClientRequestImpl Local Client Re- local client re-
quest Impl quest impl

EntityManagerEditor Entity Manager entity manager
Editor editor
StandardHostMapper Standard Host standard host

Mapper

mapper

46

NameMatchMethodPointcut A

dvisame Match

Method Point-
cut Advisor

name match
method point-
cut advisor

ConvTable921 Conv Table 921 conv table 921
ButtonBorder Button Border button border
XSTypelmpl XS Type Impl XS type impl
PMDException PMD Exception PMD exception
StringDef String Def string def

StyledLayerDescriptorImpl

Styled Layer
Descriptor Impl

styled layer de-
scriptor impl

NodesL

Nodes L

nodes 1

CompoundSelectorlterator

Compound Se-
lector Iterator

compound selec-
tor iterator

JmsWrapperFactoryContainer| Jms Wrap- jms wrapper
per Factory factory con-
Container tainer

ContentModuleImpl Content Module content module
Impl impl

DocFile Doc File doc file

style style style

HtmlDocument Html Document html document

OrderedConfiguration Ordered Config- ordered configu-

uration

ration

CacheFileManagerStatsImpl

Cache File Man-
ager Stats Impl

cache file man-
ager stats impl

FilterToCQL Filter To CQL filter to CQL

DistributedDatabase Distributed distributed
Database database

GoStimulusToAction Go Stimulus To go stimulus to

Action

action

ServiceExceptionReportHandl

erService Excep-

service excep-

tion Report tion report
Handler handler
EditorActionBuilder Editor Action editor action
Builder builder
JsBracesMatcherFactory Js Braces js braces
Matcher Fac- matcher fac-
tory tory
J2EEResourceBase J2EE Resource j 2 EE resource
Base base
ElementBindings Element Bind- element bind-
ings ings
MailFileSystemView Mail File Sys- mail file system
tem View view
LineStripArrayState Line Strip Array line strip array

State

state

EnableWatchExpressionAction

Enable Watch
Expression
Action

enable watch ex-
pression action

RequestPartitioningComponer

tIRgoluest Parti-

tioning Compo-
nent Impl

request parti-
tioning compo-
nent impl

CacheConfigurationMBean

Cache Configu-
ration M Bean

cache configura-
tion m bean

AsciiCharacterTranslator

Ascii Character
Translator

ascii character
translator

TestGanttRolloverButton

Test Gantt
Rollover Button

test gantt
rollover button

TreeBasedTask Tree Based Task tree based task
OnlyOneReturnRule Only One Re- only one return
turn Rule rule
DataWriterHolder Data Writer data writer
Holder holder
StatefulSessionInterceptor Stateful Session stateful session
Interceptor interceptor

47

NativeTextHandler Native Text native text han-
Handler dler

UMLOperation UML Operation UML operation

SPIAccessorImpl SPI Accessor SPI accessor
Impl impl

NDupFunction

ND up Function

n dup function

GridDataFactory

Grid Data Fac-

grid data fac-

tory tory
ConstructorResultItem Constructor Re- constructor re-

sult Item sult item
ASTProperty AST Property AST property
ReorgMessages Reorg Messages reorg messages
Faulty 5 8
Doubt 4 5
Faulty and Doubt 9 13

Table A.1: Results of the tokenization of random classes. A 0 is a doubt and a

1 is unknown.

A.2 Tagger Accuracies
The accuracy of the following taggers from related research are evaluated:

e Lancelot algorithm: Tagger used by the lancelot tool. This tagger is based
on the WordNet library. In their work Hgst and @stvold claim an accuracy
of approximately 97%, although it is not clear if this is for individual words
or full method names.

e Tagger by Butler: Stanford tagger trained by Butler for Java class names.
Has a reported accuracy of 87% for whole class names [3].

Manual verification of the output of the two taggers indicates that the
lancelot tagger is 90.5 - 94.5% accurate, and Butlers tagger 84.9 - 90.5% (n
= 199, correctly tokenized class names shown in A.2). However, the lancelot
tagger tags a lot of words as unknown. If we consider the unknown tags as
faulty, the tagger is 64.8-68.8% accurate. Since class names that contain un-
known tags are not very useful, it seems more sensible to use Butlers tagger. It
should be noted that Butlers tagger seems to tag words as noun if it does not
know the word type. However, since most class names consist of nouns, this
strategy seems to work (although it is not a very sophisticated approach).
Note that by combining the Intt tokenizer and Butlers tagger we accomplish an
accuracy of 81.8 - 88.6% in the process of class name analysis.

Input Output (Butler) | Correct Output Correct
(Butler) | (Lancelot) (Lancelot
Common Behavior Factory Common /NN 1 noun noun noun | 1
Behavior/NN
Factory /NN
XML Test Case XML/NN noun noun noun
Test /NN
Case/NN

48

Test Graph Base To String

Test/NN
Graph/NN
Base/NN
To/NN
String /NN

noun noun noun
unknown noun

Copy Info Parser

Copy/NN
Info/NN
Parser/NN

noun noun noun

Column Text

Column/NN
Text/NN

noun noun

Wrong Document Err

Wrong/NN
Document/NN
Err/NN

noun noun verb

Jms Connection Meta Data

Jms/NN Con-
nection/NN
Meta/NN
Data/NN

noun noun un-
known noun

Completion Pane

Completion/NN
Pane/NN

noun noun

Table Viewer Action

Table/JJ
Viewer /NN
Action/NN

noun noun noun

Spring Repeat

Spring/NN Re-
peat/NN

noun noun

Post Exe Node

Post /NN
Exe/NN
Node/NN

noun unknown
noun

Memory Graph Panel

Memory /NN
Graph/NN
Panel /NN

noun noun noun

Local Tracker Plugin

Local/JJ
Tracker/NN
Plugin/NN

noun noun un-
known

list Networks Listener

list /NN Net-
works/NNS
Listener /NN

noun noun noun

Version Columns

Version/NN
Columns/NNS

noun noun

Ant Element

Ant/NN Ele-
ment/NN

noun noun

Frag Receiver

Frag/NN Re-
ceiver /NN

unknown noun

Border Left Style

Border/NN
Left /NN
Style/NN

noun noun noun

License Content Provider

License/NN
Content /NN
Provider /NN

noun noun noun

Domain Server Socket

Domain /NN
Server /NN
Socket /NN

noun noun noun

Print Starter

Print /NN
Starter /NN

noun noun

Jdbe3 Pooling Data Source

Jdbc3/NN
Pooling /NN
Data/NN
Source/NN

unknown adjec-
tive noun noun

Navigator Content Service

Navigator /NN
Content/NN
Service/NN

noun noun noun

Unsigned 16

Unsigned/JJ
16/CD

adjective num-
ber

File Table Content Provider

File/NN Ta-
ble/JJ Con-
tent /NN
Provider /NN

noun noun noun
noun

49

Component Mapper

Component /NN

noun noun

Mapper/NN
Interpolation Method Type | Interpolation/NN noun noun noun
Binding Method /NN noun

Type/NN Bind-

ing/NN

Styled Editor Kit

Styled/JJ Edi-
tor/NN Kit/NN

adjective noun
noun

Recolor Recolor/NN unknown

I Repository Query I/NN Repos- noun noun noun
itory /NN
Query /NN

Input Transfer Select Direc- Input/NN noun noun ad-

tive Transfer /NN jective noun
Select/NN

Directive/NN

Config Sexpression Config/NN Sex- unknown un-
pression/NN known

PEM Reader PEM/NN noun noun
Reader /NN

Bind Yellow Bind/NN Yel- noun noun

low /NN

Dynamic Identity Policy Dynamic/NN noun noun noun
Identity /NN
Policy /NN

Uninstall Feature Action Uninstall/NN unknown noun
Feature/NN noun
Action/NN

Disabled Facet Disabled/JJ noun noun
Facet /NN

External Tools Builder Tab External /NN noun noun noun
Tools/NNS noun
Builder/NN
Tab/NN

Null Pointer Exception Null/NN noun noun noun
Pointer /NN
Exception/NN

AST Project AST/NN noun noun
Project/NN

JDK Provider JDK/NN noun noun

Provider /NN

Failure Detector

Failure/NN De-
tector /NN

noun noun

Definition Kind Holder

Definition/NN
Kind/NN
Holder/NN

noun noun noun

Delegating Io Handler

Delegating /NN
Io/NN Han-
dler/NN

noun noun noun

Settings Tab Java

Settings/NNS
Tab/NN
Java/NN

noun noun noun

Quad To

Quad/NN
To/NN

noun unknown

Output Multiplexor

Output/NN
Multiplexor /NN

noun unknown

HTML Table Component

HTML/NN Ta-
ble/JJ Compo-
nent/NN

noun noun noun

Sybase Platform

Sybase/NN
Platform /NN

unknown noun

Http Session Binding Lis-
tener

Http/NN
Session/NN
Binding /NN
Listener /NN

noun noun noun
noun

50

Foo Work Manager

Foo/NN

unknown noun

Work/NN noun
Manager/NN

Filtered Source Package Filtered/JJ adjective noun
Source/NN noun
Package/NN

Menu Detect Listener Menu/NN noun verb noun
Detect /NN

Listener /NN

Ant Object Ant/NN Ob- noun noun
ject /NN
File Stats Cache Item File/NN noun unknown
Stats/NNS noun noun
Cache/NN
Item /NN
Mru Cache Storage Mru/NN unknown noun
Cache/NN noun
Storage/NN
Delegating Tiles Request Delegating/NN noun noun noun
Processor Tiles/NNS noun
Request /NN
Processor /NN
Folder Node Folder/NN noun noun
Node/NN
I Worker Status Change Lis- | I/NN noun noun noun
tener Worker /NN noun noun
Status/NNS
Change/NN
Listener /NN
Agent Handler Agent/NN Han- noun noun
dler /NN
String Type Descriptor String/NN noun noun noun
Type/NN De-
scriptor /NN

Rtf Mapper

Rtf/NN Map-
per/NN

noun noun

Kate Bad Packet Exception Kate/NN unknown noun
Bad/NN noun noun
Packet /NN
Exception/NN
Subject Key ID Request Subject/NN noun noun noun
Key/NN ID/NN noun
Request /NN
HTML Indent Engine Bean | HTML/NN noun noun noun
Info Indent/NN noun noun
Engine/NN
Bean/NN
Info/NN
Base SVG Number List Base/NN noun noun noun
SVG/NN noun
Number /NN
List /NN
Annotation Mark Annotation/NN noun noun
Mark/NN
Action Add Classifier Role | Action/NN noun noun noun
Base Add/NN Clas- noun noun
sifier /NN
Role/NN
Base/NN
Init Class Diagram Init/NN unknown noun
Class/NN noun
Diagram /NN
Free Col Free/NN noun noun
Col/NN

o1

Java Source File Print
Writer

Java/NN
Source/NN
File/NN
Print /NN
Writer /NN

noun noun noun
noun noun

Member Optimization Info
Setter

Member/NN
Optimiza-
tion/NN
Info/NN Set-
ter /NN

noun noun noun
noun

Default Scheduled Executor | Default/NN noun adjective
Factory Scheduled/JJ noun noun
Executor /NN
Factory /NN
je je/NN unknown

Data Flavor Comparator

Data/NN Fla-
vor/NN Com-
parator/NN

noun noun un-
known

White Shark Weapon

White/NN
Shark /NN
Weapon/NN

noun noun noun

More Types

More/NN
Types/NNS

noun noun

Content Handler Adaptor

Content/NN
Handler /NN
Adaptor/NN

noun noun noun

Update Unit Provider Panel

Update/NN
Unit/NN
Provider /NN
Panel /NN

noun noun noun
noun

Originator Identifier Or Key

Originator /NN
Identifier/NN
Or/NN Key /NN

noun noun noun
noun

Class Renamer

Class/NN Re-

noun unknown

namer/NN

Network Registry M Bean Network /NN noun noun noun
Registry /NN noun
M/NN
Bean/NN

AF Proxy AF/NN noun noun
Proxy /NN

System Flavor Map System /NN noun noun noun
Flavor/NN
Map/NN

Use Cases Factory Use/NN noun noun noun
Cases/NNS
Factory /NN

Qos Policy Count Helper Qos/NN unknown noun
Policy /NN noun noun
Count/NN
Helper/NN

Memory View Synchroniza- Memory /NN noun noun noun

tion Service View /NN noun

Synchroniza-
tion/NN Ser-

vice/NN

Unorderable Exception Unorderable/JJ adjective noun
Exception/NN

Svn Hook Factory Impl Svn/NN noun noun noun
Hook/NN unknown
Factory /NN
Impl/NN

Database Service Impl Database/NN noun noun un-
Service/NN known
Impl/NN

92

Enable Command

Enable/JJ
Command /NN

verb noun

Single Stream

Single/NN
Stream /NN

noun noun

Task Configuration Checker

Task/NN Con-
figuration/NN

noun noun noun

Checker /NN

I Element Reference I/NN Ele- noun noun noun
ment/NN
Reference/NN

Watchpoint Type Change Watchpoint /NN unknown noun
Type/NN noun
Change/NN

Catch Clause Catch/NN noun noun
Clause/NN

Datatype Ref Datatype/NN unknown noun
Ref/NN

Property Setter Property /NN noun noun
Setter /NN

Divider Painter Divider/NN noun noun
Painter /NN

DOM Input Impl DOM/NN noun noun un-
Input/NN known
Impl/NN

Simple Sequence Simple/NN Se- noun noun
quence/NN

Collapsed Border Side Collapsed/JJ adjective noun
Border/NN noun
Side/NN

Tool Bar Button Tag Tool /NN noun noun noun
Bar/NN noun
Button/NN
Tag/NN

Player Explored Tile Player/NN noun adjective
Explored/JJ noun
Tile/NN

Value Difference Impl Value/NN Dif- noun noun un-
ference/NN known
Impl/NN

Java Module Globals

Java/NN Mod-
ule/NN Glob-
als/NNS

noun noun un-
known

Surface Interpolation

Surface/NN In-
terpolation/NN

noun noun

Repository Content Meta- Repository /NN noun noun noun
data Content/NN
Metadata/NN
Key Sorted Collection Key/NN noun adjective
Helper Sorted/JJ noun noun
Collection/NN
Helper/NN
Compatible Executor Compatible/JJ adjective noun
Executor /NN
KLNF Option Pane KLNF/NN noun noun noun
Option/NN
Pane/NN
Define Function Define/NN verb noun

Function/NN

Native Machine

Native/JJ Ma-
chine/NN

noun noun

Skip Index Writer

Skip/NN
Index/NN
Writer /NN

noun noun noun

Rollover Mouse Listener

Rollover /NN
Mouse/NN
Listener /NN

noun noun noun

33

JDBC Event JDBC/NN noun noun
Event /NN

Biff Header Input Biff/NN noun noun noun
Header/NN
Input/NN

Service Provider Type Val- Service/NN noun noun noun

idator

Provider /NN
Type/NN Val-

unknown

idator /NN

Release Listener Release/NN Lis- noun noun
tener /NN

JR Abstract Compiler JR/NN Ab- noun noun noun
stract /NN
Compiler /NN

Search Filter Reference Search/NN noun noun noun
Filter/NN
Reference/NN

IIO Write Progress Listener IIO/NN noun verb noun
Write/NN noun
Progress/NN
Listener /NN

Final State Class Final/JJ noun noun noun
State/NN
Class/NN

Modifier Keyword Modifier/NN noun unknown
Keyword /NN

Abstract Preference Initial- | Abstract/NN noun noun un-

izer Preference/NN known

Initializer /NN

Attribute Panel Listener

Attribute/NN

noun noun noun

Panel /NN
Listener /NN
None Lock Manager None/NN noun noun noun
Lock/NN Man-
ager /NN
JAXWS Deployer Hook EJB | JAXWS/NN noun unknown
3 Deployer/NN noun noun
Hook/NN number
EJB/NN 3/CD
List Viewer Adapter List /NN noun noun noun
Viewer /NN
Adapter/NN
Expression Factory Impl Expression/NN noun noun un-
Factory /NN known
Impl/NN

Zip Entry Storage Editor In-
put

Zip/NN En-
try /NN Stor-
age/NN Ed-
itor/NN In-
put/NN

noun noun noun
noun noun

Trace Configuration

Trace/NN Con-
figuration/NN

noun noun

Label UI Label /NN noun noun
UI/NN
Operations Compartment | Operations/NNS noun noun noun
Container Compart-
ment/NN
Container /NN
Debug Manager About Ac- | Debug/NN verb noun adjec-
tion Manager /NN tive noun
About/NN
Action/NN
Relation Or Join Relation/NN noun noun noun
Or/NN
Join/NN

94

CSS Parse Exception

CSS/NN
Parse/NN
Exception/NN

noun verb noun

Removed Callback Facet Ab-
stract

Removed/JJ
Callback/NN
Facet/NN Ab-

adjective noun
noun noun

stract /NN
Forwarding Annotated An- | Forwarding/JJ noun adjective
notation Annotated/JJ noun
Annotation/NN
Jhl Log Message Change Jhl/NN unknown noun
Path Log/NN noun noun noun
Message/NN
Change/NN
Path/NN
XHTML Tag Serializer XHTML/NN noun noun un-

Tag/NN Serial-
izer /NN

known

Sort Calc Sort/NN noun unknown
Calc/NN

RB Collation Tables RB/NN Col- noun noun noun
lation /NN
Tables/NNS

Render Exception Render/NN Ex- noun noun
ception/NN

Business List Business/NN noun noun
List /NN

Value Task Value/NN noun noun
Task /NN

Html Escape Html/NN Es- noun noun
cape/NN

Schema Copy Schema /NN noun noun
Copy /NN

Managed Property Delegate Managed/JJ adjective noun
Property /NN noun
Delegate/NN

Image Using Cache Property | Image/NN noun noun noun
Using/NN noun
Cache/NN
Property /NN

Sorting Job Sorting/NN noun noun
Job /NN

Table Row SWT Paint Lis- | Table/JJ noun noun noun

tener Row/NN noun noun
SWT/NN
Paint/NN Lis-
tener /NN

Mark Mapping Mark/NN Map- noun noun
ping/NN

Is Collection Containing Is/NN Col- noun noun ad-
lection/NN jective

Containing/NN

Object Filter

Object/NN Fil-
ter/NN

noun noun

Jms Security Exception

Jms/NN Se-

noun noun noun

curity /NN
Exception/NN

Queue Renderer Data Queue/NN noun unknown
Renderer/NN noun
Data/NN

Compactor Dict Block Compactor/NN unknown un-
Dict/NN known noun
Block/NN

Capturing EL Resolver Capturing/NN adjective noun
EL/NN Re- unknown
solver /NN

%)

Messaging Item

Messaging/NN
Ttem /NN

noun noun

J Face Preferences

J/NN Face/NN
Prefer-

noun noun noun

ences/NNS

Name Reference Name/NN Ref- noun noun
erence/NN

Enum Def IR Helper Enum/NN unknown un-
Def/NN IR/NN known noun
Helper /NN noun

Ref State Ref/NN noun noun
State/NN

Static Method Name Static/JJ noun noun noun
Method /NN
Name/NN

Text Pane View Text/NN noun noun noun
Pane/NN
View /NN

Jasper Report Error Handler Jasper/NN noun noun noun
Report/NN noun
Error/NN Han-
dler/NN

Compilation Unit Visitor

Compilation/NN
Unit/NN Visi-
tor/NN

noun noun noun

JDBC Resource M Bean

JDBC/NN_Re-

noun noun noun

source/NN noun
M/NN
Bean/NN

Generated Order By Lexer Generated/JJ adjective noun
Order/NN adverb unknown
By/NN
Lexer /NN

Tomcat Resolver Tomcat/NN Re- noun unknown
solver /NN

Pdf Collection Item Pdf/NN Col- noun noun noun
lection/NN
Item /NN

Plugin Validation Status | Plugin/NN unknown noun

Handler Validation/NN noun noun
Status/NNS
Handler /NN

1 Type List 1/CD Type/NN number noun
List /NN noun

I Intro Constants I/NN Intro/NN noun noun noun
Constants/NNS

Config View Platform Config/NN unknown noun
View/NN Plat- noun
form /NN

Notification Result Deser | Notification/NN noun noun un-

Factory Result/NN known noun
Deser /NN
Factory /NN

Doc Frame Doc/NN noun noun
Frame/NN

Remove Result Action Remove/NN noun noun noun
Result/NN
Action/NN

Expression View Expression/NN noun noun
View /NN

Spelling Suggestion Request Spelling/NN noun noun noun
Suggestion/NN
Request/NN

Icon Rule Icon/NN noun noun
Rule/NN

96

JMI Hyperlink Action JMI/NN Hy- noun noun noun
perlink/NN
Action/NN

Go State To Incoming Trans | Go/NN 0 noun noun un- | 2
State/NN known noun un-
To/NN In- known
coming /NN
Trans/NNS

JR Xml Data Source JR/NN noun noun noun
Xml/NN noun
Data/NN
Source/NN

Jasper Open Cookie Jasper/NN noun noun noun
Open/NN
Cookie/NN

Microsoft Sql Server Dialect Microsoft /NN unknown noun | 2
Sql/NN noun noun
Server/NN
Dialect /NN

Nb Jar URL Connection Nb/NN Jar/NN noun noun noun
URL/NN Con- noun
nection/NN

Root Walker Root/NN noun noun
Walker /NN

Synchronized Counter Synchronized/JJ adjective noun
Counter /NN

Null Log Writer Null/NN noun noun noun
Log/NN
Writer /NN

Extended Selector Extended/JJ adjective noun
Selector /NN

Local Client Request Impl Local/JJ noun noun noun 2
Client/NN unknown
Request/NN
Impl/NN

Entity Manager Editor Entity /NN noun noun noun
Manager /NN
Editor /NN

Standard Host Mapper Standard /NN noun noun noun
Host/NN Map-
per/NN

Name Match Method Point- | Name/NN noun noun noun | 2

cut Advisor Match/NN unknown noun
Method /NN
Pointcut /NN
Advisor/NN

Conv Table 921 Conv/NN Ta- | 1 unknown noun | 2
ble/JJ 921 /NN number

Button Border Button/NN noun noun
Border /NN

XS Type Impl XS/NN noun noun un- 2
Type/NN known
Impl/NN

Fault 19 11

Doubt 11 8

Fault and doubt 30 19

Contains unknown 51

Table A.2: Results of the tagging of random classes. A 0 is a doubt, a 1 is fault
and a 2 is contains unkown.

57

Appendix B

Observations and
Assumptions Regarding the
Micro Pattern Tool

The observations made by comparing the output of the micro pattern tool of

Maman and my tool are the following (per micro pattern):

e Box: The tool of Maman evaluates the FunctionObject class as box,
while its function does not mutate its instance variable. The Inner-
ClassTest$InnerClass file is also evaluated as box, while it has no fields.

Canopy: The tool of Maman evaluates the Taxonomy and TaxonomyBase
classes as Canopy, while there is never a variable assigned. My tool does
evaluate InnerClassTest$InnerClass as inner class. This must be corrected,
or inner classes must be skipped.

Common State: The tool of Maman evaluates the Main class as Common
State, while it has no static field. Furthermore the tool does not evaluate
the CommonState class as Common State, while it has only a static field.
And the Pool, Stateless and AugmentedType classes are not evaluated
as common state, maybe because their static fields are also final. The
PseudoClass class is not evaluated as common state, maybe because it
is abstract. My tool evaluated the Trait class as common state. This is
corrected.

Designator: The tool of Maman does not evaluate the Designator class (no
parents other than object), which is empty as Designator. The Joiner class
is also empty, but also not evaluated as Designator. It seems that classes
are never evaluated as a designator. This possibility is described in the
paper, though. My tool does evaluate the Joiner interface as Designator.
The tool of Maman not. It seems that the Designator is required to extend
just one interface.

98

Ezxtender: Ok, after correcting my tool. Apparently only extending Object
is not evaluated as Extender by the tool of Maman.

Function Object: The tool of Maman does evaluate the CobolLike class
as Function Object, while it has only a static method and a static field.
An instance method and field are required for Cobol Like. Common state
is also evaluated as function object, while it has only static fields. Appar-
ently, super classes must also be evaluated.

Function Pointer: The tool of Maman evaluates the Stateless class as
Function Pointer while it has a static final field. No fields are allowed for
Function Pointer pattern. Apparently, super classes must also be evalu-
ated.

Immutable: The Immutable class not evaluated as Immutable by the tool
of Maman, while it conforms to the description of an Immutable class from
the paper.

Pool: The Pool class not evaluated as Pool the tool of Maman. Maybe,
because the final field is also private.

Pseudo Class: The tool of Maman does not evaluate the Augemented-
Type class as pseudo class. Maybe, because the fields of this class are
also final. The PseudoClass class is also not evaluated, while it conforms
to the description from the paper. The CobolLike class is detected by
my tool as pseudo class, but ok after correcting my tool. Furthermore,
The StateMachine interface is evaluated by my tool as pseudo class, but
interface can be no pseudo class.

Pure type: The tool of Manan evaluates classes with no methods also as
Pure Type.

Record: Ok after correcting my tool. Apparently field cannot be static.
This is not mentioned in the paper.

Sink:The Main class is not evaluated as Sink by the tool of Maman, while
it has only an empty main method. The Sink class is not evaluated as
Sink, probably because the class calls its own method. This is not allowed
by the description in the micro patterns paper, but it is allowed according
to the description in table 1 of that paper. My tool elevated Box as
Sink, because it skipped constructor calls, this is corrected. And the tool
evaluated interfaces as sink. This is also corrected. Outline was evaluated
as Sink, but calls super methods, which is not allowed for the sink micro
pattern.

Stateless: The tool of Maman does not evaluate the Main class as stateless
while it has no fields or super classes that contain fields.

State Machine: Ok, after correction. Only interfaces can be a state ma-
chine.

99

Trait: The Trait class and other abstract classes with at least one abstract
method and no state are not evaluated as trait by the tool of Maman.
These classes do conform to the description from the paper.

Assumptions made during the implementation of the micro pattern tool are
(per micro pattern):

Pool: Assumed is that constraints must also apply on super classes, only
default constructors are allowed (<init>) and the class must have at least
one field. Test suggest that the tool of Maman adds the requirement that
fields must be public. I did not add this requirement, because it is not
described in the paper.

Function Pointer: Assumed is that constraints must apply to the super
classes, because this seems in line with the intend of the pattern. The test
results of the tool of Maman also suggest that super classes are evaluated.
I assume that interfaces could also be function pointers.

Function Object: Assumed is that constraints must apply to super classes.

Stateless: Assumed is that interfaces can not be stateless. However, it
could be useful to make a distinction between interfaces that have static
fields or not. Super classes are included in the analysis.

Common State: Super classes also evaluated. Although it is not stated in
the paper, results from Mamans tool suggest that fields cannot be final for
common state classes. I followed this assumption, because stateless classes
could otherwise be common state (only static final fields). I assume that
methods are not required, because this is not stated in the paper. However,
this would be more inline with the intend of the pattern. Assumed is
that the class itself (besides it parents) must have static fields. Maybe a
new pattern could be introduced, for classes that only contain static final
fields (For example, fixed Common State). The Stateless pattern could be
narrowed to classes that contain no fields at all.

Immutable: Assumed is that the “field is assigned once during instance
construction” requirement applies to all the constructors of the class.

Canopy: Assumed is that the “one instance field that can only be changed
by the constructors of this class” applies to all constructors.

Record: Assumed is that fields cannot be static, this is more in line with
the intend of the record pattern and test results suggest that the tool
of Maman does the same. Assumed is that super classes must also be
evaluated. Furthermore is assumed that the class must have a field.

Data Manager: The definition of getters and setters is not given in the
paper. Therefore I define getters as: methods that do not return void,
has no arguments, have a name that starts with “get” or “is” and contain

60

the “GETFIELD” opcode. I define setters as: methods that return void,
have one argument, have a name that starts with “set” and contain the
“PUTFIELD” opcode.

e Sink: The definition from the table and description in the paper are not
the same. The description from the table used. Interfaces are always Sink,
so they are excluded.

e State Machine: Assumed is that parents do not have to be evaluated.

e Pure Type: Assumed is that a minimum of one abstract method is re-
quired.

e Pseudo Class: The paper states that static methods are permitted and
that a pseudo classes can be mechanically rewritten as an interface. These
statements seem incompatible. I choose not to allow static methods.

e Faxtender: Assumed is that a class must extend an other object than the
Java Object class.

No observations are done or assumptions are made for micro patterns that
are not listed above. The work of Gil and Maman contains the definitions of
each micro pattern [6].

61

Appendix C

Formal Concept Algorithm

The algorithm used to create formal concepts during this research is displayed
here. The Rascal meta-programming language is used to construct the algo-
rithm.

//Creates formal concepts from formal context. Faster than fca if no lattice is needed.

//Will also return a single concept if found, instead of empty lattice as fca().

public set[Concept[&0bject, &Attribute]] fca2(FormalContext[&0bject, &Attribute] context) =
closeFca(unclosedFca(context));

//Creates formal concepts, but unclosed concepts may occur, like: {<{1},{1,2}>, <{1,2},{1,2}>, <{2},{1,2}>}
public set[Concept[&0bject, &Attribute]] unclosedFca(FormalContext[&0bject, &Attribute] context) {

map [set [&0bject] objects, set[&Attribute] attributes] openConcepts = ();
map [£ZAttribute, set[&0bject]] invertedContextMap = toMap(invert(context));

for (kAttribute attribute <- range(context)) {

set [&0bject] objects = invertedContextMap[attributel;
set[set[&0bject]] powObjects = power(objects);

for(set[&0bject] powObject <- powObjects) {
try {
openConcepts [powObject] = openConcepts[powObject] + attribute;
}
catch NoSuchKey : {
openConcepts += (powObject : { attribute });
}
}

return toRel(openConcepts) ;

}

//Closes the set of concepts, for example -> {<{1},{1,2}>, <{1,2},{1,2}>, <{2},{1,2}>} -> {<{1,2},{1,2}>}
public set[Concept[&0bject, &Attributel] closeFca(set[Concept[&0bject, &Attribute]] openConcepts) {

set [Concept [&0bject, &Attributel] closedConcepts = {};
set[&0bject] occuringObjects = {};

map [set [&Attribute], set[set[&0bject]]] invertedContextMap = toMap(invert (openConcepts));

for(set[&Attribute] attributeCombination <- range(openConcepts)) {

62

set[set[&0bject]] objectsForCombination = invertedContextMap[attributeCombination];
set [&0bject] greatestObjectSet = getGreatestSet(objectsForCombination) ;

closedConcepts += <greatestObjectSet, attributeCombination>;
occuringObjects += greatestObjectSet;

}

set [Concept [&0bject, &Attribute]] filtered = domainR(openConcepts, { occuringObjects 1});
set[set [&Attribute]] attributesForCombination = range(filtered);

closedConcepts += <occuringObjects, getGreatestSet(attributesForCombination)>;

return closedConcepts;

}

//Gets the greatest set of a set of sub-sets
private set[&t] getGreatestSet(set[set[&t]] sets) {

set[&t] superSet = {};
for(set[&t] sett <- sets) {
if (sett >= superSet) {
superSet = sett;
¥
}

return superSet;

63

Appendix D

Manual Evaluation of
Renaming Suggestions

In this appendix a small amount of renaming suggestions for AspectJ is exam-
ined to determine how useful these suggestions are. 10 suggestions are reviewed
with a suffix that occurred commonly in the generated renaming suggestions
(table D.1), and 10 for suffixes that where less common (D.2).

D.1 Common Suffixes

Class Suggestions Suitable Motivation
org/aspectj/ NN-NN-NN-Adapter No. Empty | All the fields and meth-
ajde/internal/ Class. ods are commented out.
StructureUtilities

NN-NN-NN-Constants
NN-NN-NN-NNS-

Exception

NN-NN-NN-JJ-

Exception

NN-NN-NN-NN-

Exception
org/aspectj/apache/ NN-NN-JJ-NN-Impl Maybe, Class overrides abstract
bcel/classfile/ <noun>- methods from super
ConstantClass Impl class. However Imp is

very general.
NN-NN-NN-NN-Impl
NN-NN-JJ-JJ-Impl
NN-NN-NN-JJ-Impl
NN-NN-NN-NN-Impl
NN-NN-NN-NN-
Property
NN-NN-JJ-NN-Property
NN-NN-JJ-NN-Impl
NN-NN-JJ-NN-Impl
NN-NN-NN-NN-Impl
NN-NN-JJ-JJ-Impl
NN-NN-NN-JJ-Impl

org/aspectj/org/ NN-NN-NN-NNS- No This is a visitor class for
eclipse/jdt/core/ Exception abstract syntax trees.
dom/ASTVisitor

64

NN-NN-NN-JJ-

NN-NN-NN-NN-NN-
Factory
NN-NN-NN-NN-NN-
Type
NN-NN-NN-NNS-
Exception
NN-NN-NN-JJ-
Exception
NN-NN-NN-NN-
Exception

Exception
NN-NN-NN-NN-
Exception
org/aspectj/org/ NN-NN-NN-NN-Impl No This class is no imple-
eclipse/jdt/core/ mentation or property.
BindingKey
NN-NN-NN-NN-
Property
NN-NN-JJ-NN-Property
NN-NN-JJ-NN-Impl
org/aspectj/org/ NN-NN-JJ-Class-Impl No Represents a class ref-
eclipse/jdt/internal/ erence in the .class file.
compiler/env/ <noun>-class property
ClassSignature makes some sense, but
the current class name
seems to be more suit-
able.
NN-NN-JJ-Class-
Property
NN-NN-NN-Class-
Property
NN-NN-NN-Class-Impl
org/aspectj/org/ NN-NN-NN-NN-Impl No Does not implement any
eclipse/jdt/internal/ interfaces or abstract
core/dom/rewrite/ classes.
TokenScanner
org/aspectj/org/ NN-NN-NN-NN-Impl Maybe, Implements method of
eclipse/jdt/ <Noun>- abstract super class.
internal/core/search/ Impl
PathCollector
NN-NN-NN-NN-
Property
NN-NN-JJ-NN-Property
NN-NN-JJ-NN-Impl
org/aspectj/org/ NN-NN-NN-NN-Impl Maybe, Implements an interface.
eclipse/jdt/ <noun>-
internal/core/util/ Impl
SimpleDocument
NN-NN-NN-NN-
Property
NN-NN-JJ-NN-Property
NN-NN-JJ-NN-Impl
org/aspectj/weaver/ NN-NN-Factory No No fac- | May be a utility, but this
bcel/asm/StackMapAdder tory. is too general.
NN-NN-Utils
org/aspectj/ NN-NN-NN-NN-NN- No A class containing con-
weaver/tools/ Manager stants for “point cut
PointcutPrimitive primitives”

Table D.1: Manual evaluation of the renaming suggestions for suggestions with

a common suffix.

The results from this small sample experiment suggest that mainly renaming
suggestions with the "Impl" suffix make any sense. However, this suffix can be

65

used very generally, since it makes sense as suffix for any class implementing
an interface or abstract class. Furthermore, wether the use of Impl as suffix of
classes is good style is debatable. So, the table suggests that there are hardly
any usable renaming suggestions to find in the suggestions with a commonly
occurring suffix.

D.2 Uncommon Suffixes

Class Suggestions Suitable Motivation
org/aspectj/org/ NN-NN-NN-String- Maybe, Contains an array with
eclipse/jdt/core/util/ Factory NN-NN- the description of each
OpcodeStringValues Constants Java opcode mnemonics.
or NN-NN- | OpcodeStringConstants
NN-String- or OpcodeStringUtilities
Utils could be suitable.
NN-NN-NN-String-Utils
NN-NN-Adapter
NN-NN-Constants
NN-NN-Exception
NN-NNS-Exception
NN-JJ-Exception
org/aspectj/weaver/ NN-NN-NN-NN-NN- Maybe, Fuzzy Boolean class. A
tools/FuzzyBoolean Type Fyzzy- refined boolean type.
Boolean-
Type
org/aspectj/weaver/ NN-JJ-JJ-Provider No This class is a kind of ab-
ast/Test stract syntax tree node.
NN-NN-JJ-Provider
NN-NN-NN-Provider
NN-JJ-NN-Provider
org/aspectj/weaver/ NN-NN-NN-Info Maybe, Contains fields for the
Position WeaverPosi- start and end position of
tionInfo the weaver.
org/aspectj/apache/ NN-NN-NN-Data No Super class for objects
bcel/classfile/ that have access modi-
Modifiers fiers.
org/aspectj/ NN-NN-List No No list properties.
weaver/patterns/
WithinPointcut
org/aspectj/org/ NN-NN-NN-Variable- No No view.
eclipse/jdt/internal/ View
core/search/matching/
VariablePattern
NN-JJ-JJ-Variable-View
NN-NN-NNS-Variable-
View
NN-JJ-NN-Variable-
View
NN-NN-JJ-Variable-
View
NN-JJ-NNS-Variable-
View
org/aspectj/org/ NN-Abstract-Variable- No Provides nothing. Only
eclipse/jdt/core/ Provider void methods.
ClasspathVariableInitializer
NN-NN-Variable-
Provider
org/aspectj/weaver/ NN-NN-NN-Factory-IR- No Determines if a version
bcel/asm/AsmDetector Format of ASM is present.
NN-NN-NN-Policy-IR-
Format

66

NN-NN-JJ-Factory-IR-
Format
NN-NN-JJ-Policy-IR~
Format

org/aspectj/weaver/
ast/Literal

NN-NN-Type-Manager

NN-NN-NN-NN-NN-
Manager

Hard to determine in-
tend of the class, but
probably no.

Table D.2: Manual evaluation of the renaming suggestions for suggestions with

a uncommon suffix.

This table shows three renaming suggestions with a suffix that is less common,
namely: "Constants", "Type" and "Info". Whilst still not ideal, the results
suggest that renaming suggestions with less common suffixes tend to be more
specific and better suitable than those with common suffixes from the previous

table.

67

Appendix E

Purpose-Specific Pattern
Observations

This appendix contains the observations made during the manual examination of
a set of sample classes with the Exception and Factory suffix. The observations
for the classes with the Exception suffix are shown in table E.1, and for classes
with the Factory suffix in table E.2.

Application

- Class

Description

Eclipse
SDK

org/eclipse/equinox/security/storage/
StorageException

- Extends Exception.

- Contains two constructors calling the super con-
structor.

- Contains error code constants.

- Contains private error code field.

- One getter for the error code.

- Contains serialVersionUID.

Eclipse
SDK

org/eclipse/core/commands/NotHandledException

- Super class extends exception.

- Contains a constructor calling the super con-
structor.
- Contains serialVersionUID.

Jrat

org/shiftone/jrat/core/ParseException

- Super class extends exception.

- Contains two constructors calling the super con-
structor.

- Contains constant for logging.

Azureus

org/gudy/azureus2/pluginsimpl/remote/
rpexceptions/RPObjectNoLongerExistsException

- Super class extends exception.

- Contains a constructor calling the super con-
structor.
- Contains a getter method (not strictly a getter).

Spring
Framework

org/springframework/web/client/
HttpStatusCodeException

- Super class extends exception.

- Contains multiple constructors, of which one
calls the super constructor.

- Contains getter methods.

- Contains constant.

Jena

com/hp/hpl/jena/shared/
UnknownPropertyException

- Super class extends exception.

- Contains a constructor calling the super con-
structor.

java/awt/color/CMMException

68

- Super class extends exception.

- Contains a constructor calling the super con-
structor.

Roller

org/apache/roller/weblogger/business/themes/
ThemeParsingException

- Super class extends exception.

- Contains constructors calling the super con-
structor.

Gt2

org/geotools/filter/MalformedFilterException

- Extends exception.
- Contains constructors calling the super con-
structor.

Table E.1: Observations made for 10 random classes with the Exception suffix.

Application

Class

Description

fitlibrary for
fitnesse

fitlibrary/table/TableFactory

- No super classes or interfaces.

- Multiple static fields.

- Multiple overloaded methods with the same re-
turn type, creating objects.

- Not all methods create new objects.

- Multiple factory methods

Jedit

org/gjt/sp/jedit/gui/statusbar/
MultiSelectWidgetFactory

- Implements interface

- No fields.

- Single method creating an object.
- Inner class.

- Single factory method.

Gt2

org/geotools/geometry/iso/operation/overlay/
OverlayNodeFactory

- Implements interface

- No fields.

- Single method creating an object.

- No factory method. Return type has parent,
but not abstract.

Openjms

org/exolab/jms/net/connector/
AbstractConnectionFactory

- Abstract class implementing an interface.

- Multiple methods, of which none directly creates
objects.

- Multiple fields.

- No factory method. Abstract factory.

Castor

org/exolab/castor/xml/
XercesXMLSerializerFactory

- Implements an interface.

- No fields.
- Multiple methods directly creating objects.
- Multiple factory methods.

Tapestry

org/apache/tapestry5/internal/bindings/
ContextBindingFactory

- Implements an interface.

- No fields.
- Single method creating an object.
- Single factory method.

Eclipse
SDK

org/eclipse/pde/internal/core/product/
ProductModelFactory

- Implements an interface.

- Contains one field.
- Multiple methods directly creating new objects.
- Multiple factory methods.

Openjms

org/exolab/jms/selector/RegexpFactory

- No super classes or interfaces.

- No fields.

- A single method (long) creating a new
- object or throwing an exception.

- Factory? N.a.

Megamek

megamek/common/net/marshall/
PacketMarshallerFactory

- Singleton class.

- No super classes or interfaces.

- Get instance method and a method creating an
object depending on a variable.

- Single factory method.

Findbugs

edu/umd/cs/findbugs/sourceViewer/
NumberedViewFactory

69

- Implements an interface.

- Has a single field.

- Has multiple methods, of which one creates ob-
jects depending of the type of the argument.

- Single factory method.

Jena com/hp/hpl/jena/query/ResultSetFactory - Interface containing multiple methods.
- Factory? N.a.

JreFactory org/acm/seguin/refactor/method/ - No super classes or interfaces.

MethodRefactoringFactory

- Has no fields.
- Has multiple methods, that create directly cre-
ate new objects.
- No factory method. Return type has parent,
but not abstract.

Xalan org/apache/xpath/objects/X0bjectFactory - No super classes or interfaces.
- Has no fields.
- Has two methods that create new objects de-
pending on the argument type.
- No factory method. Return type has parent,
but not abstract.

Castor org/exolab/castor/xml/handlers/ - Extends super class

DefaultFieldHandlerFactory

- Has one field.
- Has multiple methods, of which one returns an
new object depending on the argument type.
- Single factory method.

Openjms org/exolab/jms/selector/ - Implements an interface.

DefaultExpressionFactory

- Has no fields.

- Has multiple methods creating an objects (of
which the type depends on a parameter).

- Multiple factory methods.

Table E.2: Observations made for 15 random

70

classes with the Factory suffix.

