
UNIVERSITY OF AMSTERDAM

Reducing Dynamic Feature Usage in

PHP Code

by

Chris Mulder

A thesis submitted in partial fulfillment for the

degree of Master of Science Software Engineering

in the

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

Centrum voor Wiskunde en Informatica

Saturday 31st August, 2013

http://www.uva.nl
christian.mulder@student.uva.nl
http://www.uva.nl/en/about-the-uva/organisation/organisational-structure/content/faculties/faculty-of-science-fnwi/faculty-of-science-fnwi.html
http://www.cwi.nl

UNIVERSITY OF AMSTERDAM

Abstract

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

Centrum voor Wiskunde en Informatica

Master of Science

by Chris Mulder

Most PHP applications make use of the language’s dynamic features. Even though these

features give the developers great flexibility, they can make static analysis impossible

and can have a negative impact on performance. Using dynamic analysis, we were

able to transform occurrences of dynamic feature usage to static code with the same

semantics. This transformed code enables more accurate static analysis, however we did

not measure any performance improvements.

http://www.uva.nl
http://www.uva.nl/en/about-the-uva/organisation/organisational-structure/content/faculties/faculty-of-science-fnwi/faculty-of-science-fnwi.html
http://www.cwi.nl
christian.mulder@student.uva.nl

Acknowledgements

First of all I would like to thank my two tutors: Mark Hills and Jurgen Vinju. Without

their feedback and ideas I would not be able to write this thesis. Next them I want to

thank Frank Tip for giving me some pointers concerning dynamic tracing.

I finally would like to thank my girlfriend, family and friends for there mental support

during this intensive period.

ii

Contents

Abstract i

Acknowledgements ii

1 Introduction 1

1.1 PHP . 1

1.2 Dynamic Language Features . 1

1.3 Problem Statement . 2

1.4 Motivation 1: Static Analysis . 3

1.5 Motivation 2: Performance . 3

1.6 Proposed Solution . 4

1.7 Hypotheses . 5

1.8 Outline . 5

2 Related Work 7

2.1 PHP Feature Usage . 7

2.2 Dynamic Analysis . 7

2.3 Static Analysis of PHP . 8

3 Usage of Dynamic Features 10

3.1 Dynamic Invocation and Eval . 10

3.2 Occurrences in Corpus . 11

3.2.1 Threats to Validity . 12

3.2.2 Conclusion . 13

3.3 Case Study: Execution Traces of WordPress 13

3.3.1 Threats to Validity . 15

3.3.2 Conclusion . 16

3.4 Dynamic Invocation Stability Theory . 16

3.4.1 Threats to Validity . 17

3.4.2 Conclusion . 17

4 Implementation 18

4.1 Design . 18

4.1.1 Requirements . 18

4.1.2 Design Decisions . 19

4.1.3 Traceability . 20

iii

Contents iv

4.2 Execution Trace Gathering . 20

4.3 Code Transformation . 21

4.3.1 Rascal . 21

4.3.2 Algorithm . 21

4.4 Ensuring the Correctness . 27

4.4.1 Preconditions . 27

4.4.2 Context Preservation . 28

5 Evaluation of Static Analysis Improvements 30

5.1 Simple Graph Experiment . 30

5.1.1 Threats to Validity . 33

5.1.2 Conclusion . 33

5.2 Call Graph Generation of WordPress . 33

5.2.1 Threats to Validity . 34

5.2.2 Conclusion . 34

6 Evaluation of Performance Improvements 35

6.1 Isolated Dynamic Invocation Performance 35

6.2 Performance in Real World Code . 36

6.3 Threats to Validity . 36

6.4 Conclusion . 36

7 Conclusions & Future Work 37

7.1 Conclusions . 37

7.2 Future Work . 38

7.2.1 Partial Evaluation . 38

7.2.2 Data-flow Analysis . 38

7.2.3 Other Dynamic Features . 38

Bibliography 39

Chapter 1

Introduction

1.1 PHP

PHP is a scripting language originally created by Rasmus Lerdorf in 1994 for the creation

of simple dynamic websites[1]. Since then, the language evolved into a full-featured

object oriented language packed with a large number of standard libraries and dynamic

features. Equipped with all these features, PHP makes it easy to get the job done,

which resulted in a broad adoption. A research of W3Techs at service-side language

usage among almost one million popular websites showed that in July 2013, 80.5% of

the websites of which they knew the programming language was using PHP[2].

1.2 Dynamic Language Features

As most scripting languages, PHP has a number of dynamic language features. Dynamic

language features let you delegate the precise behavior of your code at runtime. For

example, instead of explicitly calling a certain function in the code, you can make use of

dynamic invocation, where you call a method like call user func[3] with the function

name as a argument in the form of a string. This way, the function to be called can be

determined at runtime, instead of upfront. Listing 1.1 shows a simple example, where

call user func is used reduce the number of lines of code. Instead of calling each

function explicitly, the function names are synthesized as strings and called using call

user func. Another example of dynamic invocation is shown in listing 1.2. This snippet

is taken from WordPress and is used to delegate a function call to all installed filters,

where a filter is a type of plugin. Here the function names are not known upfront due

to the extensibility using plugins and therefore dynamic invocation is used. Another

1

Chapter 1. Introduction 2

dynamic feature is eval. eval[4] lets you execute any string containing PHP source

code.

foreach (array(’single ’, ’category ’, ’page’, ’day’,

’month’, ’year’, ’home’) as $type) {

$func = ’is_’ . $type;

if (call_user_func($func)) {

$user_ts_type = $type;

break;

}

}

Listing 1.1: Static usage example of call user func

foreach((array) current($wp_filter[’all’]) as $the_)

if (!is_null($the_[’function ’]))

call_user_func_array($the_[’function ’], $args);

Listing 1.2: Plugin usage example of call user func array

1.3 Problem Statement

Dynamic features like dynamic invocation and eval can make PHP programs very flexible

by determining which code should be executed at runtime, however it comes at the cost

of code which is impossible to precisely inspect using static analysis. The main reason

why this analysis is difficult is that, in case of dynamic invocation, by looking at the

code it is not directly clear which function call will be invoked. To determine the actual

function call you should know the value that is passed to the function that facilitates

the dynamic invocation, for example the first argument of a call user func call. If this

argument is a scalar, the behavior is trivial but the problem lies in the fact that this

argument can be a variable and this variable can be set in any possible way, including

via other dynamic features which are also hard to analyze because of the same reasons.

Looking at listing 1.2, to know what functions will be called here would mean that you

have to determine all the values of the array $wp filter[’all’] which can become

very complex. Next to that, the value can originate from a database or user input in

which case the value cannot be determined by looking at the code. These problems for

dynamic invocation are similar to the problems by having eval.

Chapter 1. Introduction 3

1.4 Motivation 1: Static Analysis

Because PHP is widely used, there is always a demand for better development tools. The

key to creating a good IDE is besides general usability, the ability to support developers

to write clean and correct software. Ways of giving that support are for example smart

refactoring tools and possible bug detection. To be able to create features like that the

PHP source code should be analyzed and interpreted in a certain degree to understand

what it does. Here, static analysis comes into play. By making source code less dynamic,

static analysis of this source code becomes more accurate. An example of a type of

static analysis which is useful for an IDE is type inference. PHP is a dynamically typed

language, which means that types are not explicitly stated in the source code. The type

of a variable is determined by the value it is assigned. The process of determining the

types of variables in a dynamically typed language using data-flow analysis is called

type inference. When function calls are explicitly stated in the code, instead of variables

passed into dynamic invocation functions, data-flow analysis becomes easier because the

semantics of dynamic invocation functions do not have to be me known to determine

the execution path. The data-flow analysis can also become more accurate because

static code shows explicit execution paths instead of keeping them implicit which would

be the case with dynamic invocation and therefore possibly undeterminable because of

arguments that are passed into dynamic invocation functions that can originate from

outside of the code base. More accurate data-flow analysis results into more accurate

type inference which can be used to create a better type checker for PHP.

A second use case of static analysis for PHP is for security audits. Since most PHP

code runs on web servers which are publicly reachable, security holes could have big

consequences, for example user data being compromised. Next to manually inspecting

source code to find these type of bugs, tools can be written which leverage static analysis

techniques like data-flow analysis to detect security holes, such as possibilities for SQL

injection by determining which variables are tainted[5]. As we have explained earlier,

when the PHP source code contains less dynamic features static analysis becomes more

accurate and will result in more accurate security audits which will result in less security

holes.

1.5 Motivation 2: Performance

An other motivation for reducing the usage of dynamic features is possible performance

improvements. Besides that dynamic invocation and eval can be slower than explicit

invocation due to its indirectness, you call a function to call a function, is it possible that

Chapter 1. Introduction 4

PHP code with less dynamic features can better benefit from static analysis techniques

that can be used to optimize code compilation[6].

1.6 Proposed Solution

In this thesis we will show a hybrid analysis technique to replace dynamic invocation

and eval from PHP source with static source code.

The first part is a naive static approach. Static use cases of dynamic invocation methods

and eval are being detected using straightforward pattern matching and will be replaced

by the their explicit counterpart. A static use case is where a constant string is be passed

to eval of one of the dynamic invocation methods, for example eval("echo ’foo’;").

This call to the dynamic feature eval will immediately be replaced by echo ’foo’;.

The more dynamically used occurrences of dynamic invocation and eval, where the

arguments consists of variables, are replaced using information gathered by analyzing

execution traces in the second part of the process. This dynamic analysis approach

is because of the uncertainties that are related to analyzing dynamic features. These

uncertainties come from the fact that values that are passed to dynamic invocation

and eval are just strings and these strings could derive from everywhere within the

source code, but also from other sources such as databases, command line parameters

or HTTP’s POST and GET variables. If such a string is originated from outside of the

source code, it will not be possible to determine the value of this string using static

analysis. To be able to capture all the values independent from their origin, we chose to

observe them during execution.

At first the program is executed in an instrumented environment to be able to collect

all the function calls including their parameters made during execution. Then we deter-

mine what functions signatures are passed to the dynamic invocation occurrences and

what pieces of script are passed to eval. These usage patterns are then being incor-

porated directly into the code. If for example for a certain occurrence of call user

func($funcName) two values (function names) for $funcName have been captured, this

occurrence could be replaced by two if-statements which each have a test for one value

of $funcName and execute the corresponding function call. The possible problems with

using this dynamic approach is that the accuracy of your results depend on the code

coverage you can achieve during execution and the representativeness of the execution

for overall execution. This is because you can only capture the values you observe during

execution.

Chapter 1. Introduction 5

The technique of using dynamic traces to study the usage of dynamic features is based

on similar research into eliminating the dynamic language feature eval from code in

the languages JavaScript[7, 8]. However they were able to look at already installed

external systems because the client-side JavaScript of websites runs in the browser and

is therefore available for inspection. PHP runs on the server, so we first have to install

the software package we want to analyze to be able to instrument the execution.

For Ruby, another dynamic scripting language used on the server-side just like PHP,

dynamic feature profiling was done by Furr[9]. Their approach is very similar as ours,

the major difference is the language. What the added value of doing similar research for

PHP is is its broad adaption. There is a lot more code written in PHP and because of the

low barrier to start with PHP development, the quality of PHP code can vary a lot. All

this code could benefit from better code analysis tools. Next to the different language

Furr’s research is focused on sound static analysis, whereas we aim for transformed code

that is suitable for unsound static analysis. Unsound static analysis is when you for

example look at security flaws but do not capture them all because the transformed

code is an under-approximation of code. The power of unsound analysis is that it is

faster to do since you do not look at every possible execution path, which shrinks the

solution space. You also do not suffer from a lot of false positives in security analysis,

which would derive from undecidable execution paths that have to be marked as insecure

when you want to be sound. Having many false positives could result in a situation where

the person reviewing the analysis results is not able to see the wood for the trees.

These earlier researches into JavaScript and Ruby have shown that in most cases dynamic

code behavior is predictable and can be transformed to a static variant. This gives us

confidence, similar findings could be done in PHP.

1.7 Hypotheses

The accuracy of static analysis on PHP code can be improved by reducing number of

occurrences of dynamic invocation and eval using dynamic analysis.

The performance of PHP code can be improved by reducing number of occurrences of

dynamic invocation and eval using dynamic analysis.

1.8 Outline

This thesis will first start with describing related work (chapter 2) in this research area.

What follows is the research into the usage of dynamic features in a corpus of 19 PHP

Chapter 1. Introduction 6

software packages and a more in-dept look at WordPress (chapter 3). Next we describe

how we implemented our solution (chapter 4). The following two chapters 5 and 6 show

how we evaluate our two hypotheses. After that we end with the conclusions and future

work (chapter 7).

Chapter 2

Related Work

In this chapter we will discuss some of the other research done in this field and how it

relates to our work.

2.1 PHP Feature Usage

In a paper by Hills et al.[10] a broad research is done on the usage of different features

of PHP in a corpus of 19 PHP systems, including the 12 of the most popular used

PHP projects. The goal was to investigate which language features should be dealt with

in order to be able to develop static analysis tools for PHP. During the research they

stumbled upon multiple dynamic language features that impose a problem for static

analysis. With a few smart lightweight techniques they were able to resolve some of the

dynamic references, for example dynamic includes and variable variables, to improve

the ability for static analysis. They also looked at the amount of dynamic invocation

usage in each of the analyzed PHP system. Per system they counted in how many files

dynamic invocation occurred directly or indirectly via dynamic includes. What they

found is that the number of files in a project that contain at least one occurrence of

dynamic invocation ranges between 2 and 92. This indicates that for certain systems

the number of dynamic invocation is significant. Since dynamic invocation is significant

we found it worthwhile to further investigate this dynamic feature.

2.2 Dynamic Analysis

Richard et al.[7] performed a study which does an in-depth analysis of the usage of eval

in the JavaScript code of large number of websites. It was performed by gathering traces

7

Chapter 2. Related Work 8

using a modified web browser. Their conclusion was that there are a number of popular

use cases of eval which could be replaced with safer strategies, however there are still

cases where the use of eval is inevitable. A similar runtime analysis of PHP code is

possible for determining the different use cases of dynamic invocation and eval.

Continuing on the previous study, Meawad et al.[8] describe how they were able to

replace a lot of eval occurrences in JavaScript programs by analyzing every string that

was passed to eval, extract usage patterns and replacing the eval with substitution code

including a fall back mechanism to eval itself. The way they were able to model the

usage of eval at certain places by analyzing the dynamic traces should be possible to

implement in PHP as well. However, since PHP is a server-side scripting language, our

traces should be gathered at the server-side on PHP installations we have control over

ourselves. This makes it more involved to capture accurate dynamic behavior of PHP

systems, but the basic idea of leveraging execution traces to investigate dynamic features

is an approach we will take as well.

In 2009 Furr et al.[9] tried to statically type source code written in the dynamic scripting

language Ruby. To be able to infer the types using static analysis, they first replace

dynamic pieces of code with a static equivalent. This code transformation is guided

by dynamic tracing how these dynamic features are being used. This data is collected

through profiling the application code. This is a similar approach as what is done

by Meawad et al.[8] The research showed that most occurrences of dynamic features

were transformable to static code. Ruby being a server-side scripting language mostly

used for the Web just like PHP brings hope that equally impressive results can be

achieved. Instead of type inference, our goal will be better unsound analysis and possible

performance improvements.

2.3 Static Analysis of PHP

Jovanovic et al.[5] created a tool called Pixy which uses data-flow analysis to detect

security breaches in PHP source code in the form of SQL injection possibilities. The

data-flow analysis is done purely using static source code analysis, which give them

the advantage of inspecting all the code paths without execution. However, they do

not support automatic file inclusion because of PHP’s dynamic nature. We think that

by making the source less dynamic by transforming the source code using information

gathered by dynamic analysis, would further improve the accuracy of this type of static

analysis. After the source code is transformed by our tool, tools like Pixy should get

more accurate results.

Chapter 2. Related Work 9

At Facebook, they have a large PHP code base. In order to get better performance out

of this interpreted dynamic language they decided to static compile the PHP code, with

their own compiler called HipHop[11]. The ahead-of-time compilation process consists

of a number of phases including, program analysis and type inference which is all done

in a static manner. Although HipHop has shown a great performance improvement,

it enforces some restrictions to the programmers because of the lack of a few dynamic

features such as dynamic code evaluation (eval). Facebook’s main goal is to increase

the performance of their code and they are able to restrict their developers to not use

certain features like eval. Even though we share the goal of performance improvements,

we also want to be able to handle systems using these dynamic features. Next to that we

have a second goal that is to modify the code itself to make it more suitable for further

analysis.

Another earlier attempt to compile PHP to machine code was Biggar’s PHC[12]. Just

like Hiphop, PHC does a number of static optimizations such as constant-folding to

get better performance. In order to support eval they have coupled the PHP runtime

in their compiler and compiled code. This of course, does not reduce the performance

penalty of eval. Another thing, just as we mentioned for Facebook’s HipHop compiler,

our additional goal is to prepare the PHP source for further analysis, not converting it

to C++ code. We want to analyze and possibly optimize dynamic feature usage in PHP

code.

Chapter 3

Usage of Dynamic Features

This chapter describes the research into the behavior of the dynamic features we are

interested in to understand how it fits our proposed solution.

3.1 Dynamic Invocation and Eval

In PHP, there are two functions which can be used for dynamic invocation. To get

everyone onto the same page, we will briefly explain their syntax and semantics.

call user func($callback [, $parameter [, $...]]) The first parameter is

the callback and all the following parameters are passed to the callback. call

user func is a variadic function with one mandatory parameter. This means that

it can handle an arbitrary number of parameters with a minimum of one. The

return value of the callback is returned.

call user func array($callback , array $paramArr) The first parameter is the

callback and the second parameter is an array of all the parameters that are passed

to the callback. The return value of the callback is returned.

The callback is the function or method that should be called. A callback can have a

number of forms. When it is a function, the callback is just a string of the name of the

function ("functionName"). For non-static method calls, the callback is an array with

the object as first item and the method name as the second item in the form of a string

(array($object, "methodName")). The third form is for static method calls, there the

callback is an array with the first item being a string containing the name of the class

and the second item also a string containing the method name (array("className",

10

Chapter 3. Usage of Dynamic Features 11

"methodName")). Since PHP 5.3 the callback can also be a closure, however, since this

use case is rarely used, we do not that take them into account in our research.

Furthermore we also look at eval. Here follows a short description.

eval (string $code) The parameter is a string containing the code that should be

executed. Eval can return a value if the code contains a return statement. At the

moment we do not support the return value of eval.

3.2 Occurrences in Corpus

By counting the calls of the two primary functions for dynamic invocation call user

func and call user func array in the initial corpus that was put together by Hills et

al.[10] we reached a total of 931 ocurrences. To get an idea of how they are generally

used we manually inspected them. When looking at each of the occurrences, all of them

can be put in one of the following categories:

Plugin/Module/Hook infrastructure. A number of the software packages in the

corpus are frameworks or content management systems, which are meant to func-

tion as the base of a software system and are designed to be able to easily be

extended. To achieve this extensibility, the software packages have all types of

plugin systems and to handle plugins of which the class and method names are

unknown upfront, dynamic invocation is used. An example of this can be seen in

listing 1.2.

Calling callback functions. There are scenarios where you would want functions that

can accept callback functions as arguments which should then be called in certain

circumstances in the code. These arguments are also known as anonymous func-

tions or closures. To be able to call a such an anonymous function you need to use

dynamic invocation.

Unit test frameworks. When automatically running test suites, unit test frameworks

like PHPUnit use dynamic invocation to call test cases and their setup and tear-

down methods.

Proxied method calls in magic methods. PHP has the notion of magic methods.

These are class methods with special names which are implicitly called when cer-

tain actions are performed on that class. One magic method which can be imple-

mented in a class is call. This method is invoked when an inaccessible method

of an object instance is being called, even if the objects class does not have an

Chapter 3. Usage of Dynamic Features 12

implementation of this method at all. Some of the software packages in the cor-

pus use these types of magic methods and use dynamic invocation to forward the

method call to a another class.

Passing array of arguments. One trick for which call user func array is used is

to pass the elements of an array as arguments in a function call because second

parameter of call user func array is an array of arguments.

Configuration. Similar to the case of plugin infrastructures, there are configuration

components in software packages to make them more flexible. We found that there

are use cases in which certain class names are set in these configuration settings,

for example to determining which database driver to use. Dynamic invocation is

then used to call the configured classes.

Code shortcuts. In order to write the least code possible and not repeat yourself, there

are cases where call user func is used in loops that just iterate over static strings

and where these strings are used as arguments of call user func. These loops

could easily be unrolled and call user func could be avoided, but this would

make the code more verbose and less maintainable. An example of this can be

seen in listing 1.1

3.2.1 Threats to Validity

Even though the variety in terms of application domain within the corpus is high, there

can always be use cases of dynamic invocation that are not occurring in this corpus.

This makes this categorization not exhaustive and causes a threat to external validity.

Furthermore, the classification is done by inspecting the call sites and their immediate

contexts, where the context was limited to the function or method in which a call occurs

so their exact behavior could be misunderstand. Next to that this type of classification

is subject to interpretation. Some cases could be put in more than one category. These

factors have a negative impact on the reliability of this categorization. A more objective

categorization could be achieved by defining strict criteria on which every occurrence

would be rated and use these ratings to segment them into categories. However, the

goal of this part of the research was to give an overview of typical use cases of dynamic

invocation and to get an idea of how these use cases will fit our proposed solution of

using dynamic traces to replace the occurrences with explicit function calls.

Chapter 3. Usage of Dynamic Features 13

3.2.2 Conclusion

When inspecting the occurrences of dynamic invocation in a corpus of 19 PHP projects,

we observed that most use cases of dynamic invocation that we inspected are related to

plugins and configuration. This gives us an angle for further investigating the usage of

dynamic invocation.

3.3 Case Study: Execution Traces of WordPress

Manually analyzing occurrences of dynamic invocation shows us what type of use cases

there are, but gives us no insight into how dynamic these occurrences are used. To

actually look at how dynamic invocation behaves in a real world scenario, we have to

install an application, instrument the installation and execution the application.

For this more in-dept analysis of dynamic invocation in a widely used application, we

chose to take a look at WordPress[13]. WordPress is a content management system

which can be used to create websites. According to WordPress co-founder Matt Mul-

lenweg in July 2013, 18.9% of the Web is powered by WordPress[14]. Because of this

large installed base, it seems a good candidate for a case study.

In addition to inspecting the source code to see how dynamic invocation and eval is

being used, it is possible to instrument the runtime environment to see what arguments

are explicitly passed to the two main dynamic invocation related methods call user

func and call user func array as well as eval. For this research the PHP extension

Xdebug[15] is used. In order to execute the code and simulate real world usage, multiple

requests are being triggered by a functional test written for CasperJS[16].

To get an idea of how dynamic call user func and call user func array are being

used in a WordPress 3.5.2 installation table 3.1 and 3.2 give an overview of the number

of unique function signatures that are dynamically being invoked. The definition of

function signature in this context is the method or function that is being called combined

with the number of arguments. The number of arguments is included since PHP supports

variadic functions and call user func array uses an array for passing in the arguments,

which allows for a dynamic number of arguments per call site.

The tables show the variety of function signatures per covered dynamic invocation call

site for 5 different WordPress installations ranging from 0 plugins to 4 plugins in-

stalled. Table 3.3 show an ordered list of the plugins that are added to the installation

to get the desired number of plugins. The reason we distinguish between the number

of plugins installed is based on our earlier observation that a typical motivation for the

Chapter 3. Usage of Dynamic Features 14

Location (<file>:<line number>) Number of Plugins
0 1 2 3 4

wp-admin/includes/template.php:927 24 24 24 25 25
wp-admin/includes/class-wp-list-table.php:860 7 7 7 7 7
wp-includes/media.php:1230 2 2 2 2 2
wp-includes/category-template.php:674 2 1 1 1 1
wp-includes/comment-template.php:1334 1 1 1 1 1
wp-includes/functions.php:2035 1 1 1 1 1
wp-includes/class-http.php:216 1 1 1 1 1
wp-admin/custom-header.php:471 1 1 1 1 1
wp-includes/nav-menu-template.php:179 1 1 1 1 1
wp-includes/SimplePie/Parse/Date.php:602 0 2 2 2 2
wp-includes/class-simplepie.php:1338 0 1 1 1 1

Table 3.1: # of different signatures per call user func in WordPress

Location (<file>:<line number>) Number of Plugins
0 1 2 3 4

wp-includes/plugin.php:406 100 135 156 207 207
wp-includes/plugin.php:173 63 64 68 79 79
wp-includes/plugin.php:487 14 20 22 24 24
wp-admin/includes/widgets.php:196 12 12 12 12 12
wp-includes/class-wp-walker.php:129 7 7 7 7 7
wp-includes/class-wp-walker.php:157 7 7 7 7 7
wp-includes/widgets.php:893 7 7 7 7 7
wp-includes/capabilities.php:926 2 2 2 2 2
wp-includes/capabilities.php:1289 2 2 2 2 2
wp-includes/post-template.php:964 1 1 1 1 1
wp-includes/nav-menu-template.php:478 1 1 1 1 1
wp-admin/includes/widgets.php:45 1 1 1 1 1
wp-admin/includes/template.php:149 1 1 1 1 1
wp-admin/includes/template.php:146 1 1 1 1 1
wp-includes/category-template.php:738 1 1 1 1 1
wp-includes/post-template.php:947 1 1 1 1 1
wp-includes/plugin.php:230 1 1 1 1 1
wp-includes/category-template.php:756 1 1 1 1 1
wp-includes/SimplePie/Registry.php:222 0 7 7 7 7
wp-admin/includes/dashboard.php:1049 0 4 4 4 4
wp-cron.php:87 0 1 1 1 1
wp-includes/SimplePie/Registry.php:215 0 1 1 1 1
wp-content/plugins/jetpack/class.jetpack-sync.php:62 0 0 1 1 1

Table 3.2: # of different signatures per call user func array in WordPress

use of dynamic invocation is to facilitate a plugin architecture. Working with plugins

means that you are going the work with classes and methods of which the names are

unknown upfront. To see this observation in practice, we show the variety per number

of plugins installed.

Chapter 3. Usage of Dynamic Features 15

Plugin Version

1 Contact Form 7 3.4.2
2 Jetpack by WordPress.com 1.6
3 WordPress SEO 1.4.13
4 WordPress Importer 0.6.1

Table 3.3: Plugins used

Looking at the table 3.1 and 3.2 it seems that there are use cases of dynamic invocation

in WordPress that are not that dynamic at all. 6 out of the 11 covered call user

func call sites and 11 out of 23 covered call user func array call sites actually only

get one unique function signature passed to them. This could indicate that these cases

could be rewritten without the use of dynamic invocation, since that single function

signature could just be called explicitly.

When we inspect how the different number of plugins per installation influence the

variety of function signatures, table 3.1 does not show any significant influence. Table 3.2

however shows for the top 3 varying call sites of call user func array a clear increase

of variety when the number of plugins increases. These call sites are unsurprisingly in

a file called plugin.php. This observation of a correlation between plugin usage and

dynamic invocation variety confirms our earlier observation, that dynamic invocation is

used for plugin architectures.

3.3.1 Threats to Validity

Since our data about dynamic invocation is gathered through dynamic analysis, the

program has to be executed. Dynamic analysis is as good as the coverage of its execution.

The test case we created for executing WordPress is handcrafted and covers 18 out

of 47 (38.3%) call user func array occurrences and 9 out of 42 (21.4%) call user

func occurrences. 5 occurrences of call user func array where excluded from these

numbers, since they are located in deprecated functions and our installation including

all 4 plugins do not contain explicit calls to these deprecated functions. Not covering

the majority of the occurrences of dynamic invocation can decrease our validity.

During the analysis of WordPress, we observed that the plugins are a typical use case

for dynamic invocation and that when the number of plugins increases, the variety of

function signatures passed to dynamic invocation functions also increases. This relation

is causal, however we only observed this in WordPress which could be a threat to

external validity. Another observation we did was the relative large amounts of occur-

rences that receive just 1 function signature. This could indicate that these are actually

static use cases, but given the fact that this observation is based on dynamic tracing

Chapter 3. Usage of Dynamic Features 16

which was limited to the coverage of the functional test cases, these occurrences could

possibly behave more dynamic than we were able to see. A better coverage could have

given us more valid results. Also an additional independent variable next to the number

of plugins could possibly give us more insight on which factors determine the dynamics

of dynamic invocation.

3.3.2 Conclusion

This analysis of WordPress shows us that plugin infrastructures are an important

influence on the behavior of dynamic invocation. This gives us some level of confidence

that when the configuration of an application is stabilized, occurrences of dynamic invo-

cation are used in a static manner, meaning that they always call a fixed set of function

and methods.

3.4 Dynamic Invocation Stability Theory

Since we have seen that a lot of the usage of dynamic invocation is related to plugins and

configuration, we hypothesize that this dynamic behavior will be static when a system

is configured and running. The following stages of a PHP system can be distinguished

with respect to the stability of dynamic invocation usage patterns: configuration and

deployed. See figure 3.1.

Configuration

Deployed

Deploying Maintaining

Figure 3.1: Phases of PHP system

In the configuration phase, plugins are installed and configured, this in contrast to the

deployed phase, where we assume that the system and its environment is stable.

Because we would like to replace the occurrences of call user func as well as the

occurrences of call user func array with inline explicit function calls, we need to

analyze the system in its stable form to ensure consistent behavior of the dynamic

invocation occurrences. The analyzing process will consist of execution trace gathering,

preferably in the live environment to get the most accurate results. Our source code

transformations will then be based on the current state of this stable form. Figure 3.2

shows how these phases relate to each other.

Chapter 3. Usage of Dynamic Features 17

Configuration

Deployed - Analyzing

Transformed

Deploying Maintaining

Source Transformation

Figure 3.2: Phases of PHP system (extended)

3.4.1 Threats to Validity

This theory depends on the assumption that plugins and configuration are the main

contributors to the dynamic behavior of dynamic invocation and therefore a stable state

of the application exists. However, scenarios could exist where external factors such as

user input influence the variety of function signatures passed into call user func and

call user func array. In that case there is no stable state of the application.

3.4.2 Conclusion

Since the plugins installed and the configuration of a system tend to stabilize when a

system is deployed and since we assume that the behavior of dynamic invocation becomes

more static when the system is stable, we propose that to have the most accurate trace

information it is best to trace a deployed system. Also the deployed environment is

where the system lives and therefore traces gathered from this environment will give the

most accurate representation of how the system behaves. The assumption that a stable

form of the system exists gives us the confidence that we are able to of safely replace

dynamic invocation with explicit invocation.

Chapter 4

Implementation

In this chapter we will describe which requirements and design decisions lead to the tool

we created, how the tool was constructed and how all the underlying algorithms work.

4.1 Design

Since dynamic invocation is hard to analyze using static analysis techniques, because

the values of the arguments have to be determined, the goal is to construct a tool that

replaces the occurrences of call user func as well as the occurrences of call user

func array with explicit function calls. In addition to reduce dynamic invocation, the

tool will also inline pieces of code that are passed into eval. The process will be based

on dynamic analysis of the program combined with transformation on the source code.

4.1.1 Requirements

Functional Requirements

1. Valid Output. The tool should replace the occurrences of dynamic invocation

and eval from the given PHP system with semantically equivalent PHP code.

Rationale: The outputted PHP system should be suitable either as a replacement

for the original system in its execution environment or as input for further source

code analysis. Therefore it is important that the transformed source code works

exactly as the original code.

2. Automation. The tool should be able to be automated.

18

Chapter 4. Implementation 19

Rationale: When you could automate the interaction with the tool, it could be

integrated into other tools like IDEs and continuous integration systems.

Non-Functional Requirements

1. Modularity. The tool should have a modular architecture.

Rationale: This ensures better separation of concerns. This separation makes

it easier to extend the systems functionality, for example replacing the tracing

module with a new, faster implementation or adding transformation algorithms

for other types of dynamic features. Having a modular setup ensures that for

each of these examples the whole system does not have to be altered, but only the

related module.

2. Fast. The tool should use the least number of resources as possible.

Rationale: Because this tool needs to run next to other development tools like

IDEs, we should try to keep the setup as efficient as possible.

4.1.2 Design Decisions

1. Split-up Tracing and Transformation. In the tool we decided to split-up the

tracing phase of the process from the analysis and transformation phase.

Rationale: We did this to have a modular setup. Alternatively, we could integrated

it all into one program, but this would increase the complexity of this one program

and would not allow the user to execution both phases of the process separately.

Next to that, it will me easier for different parts of the program to be altered or

replaced.

Related requirement: NFR1

2. Xdebug for Tracing. We decided to use the open source PHP extension Xdebug

for instrumenting the PHP execution environment to gather trace information.

Rationale: Alternatively, we could have altered the PHP interpreter ourselves since

it is open source, but we chose to go for an already existing and proven alternative.

Also because it is not strongly coupled to our system it could easily be replaced if

necessary.

Related requirement: NFR1

3. Lighttpd as Server. We decided to use lighttpd combined with PHP and

MySQL in our server setup to run the PHP code.

Chapter 4. Implementation 20

Rationale: We chose lighttpd for its small footprint, alternatively, we could

have chosen Apache or NGINX, since these are more widely used, but this choice

would not impact the quality of the tool.

Related requirement: NFR2

4. AWK to convert output to CSV. We decided to use AWK to filter and convert

the output of Xdebug on-the-fly.

Rationale: We chose AWK for its small footprint and the ability to handle the file

stream outputted by Xdebug directly to limit disk usage.

Related requirement: NFR2

5. Functional Testing with CasperJS. We decided to use the CasperJS to run

the functional tests that execute the PHP application.

Rationale: CasperJS is an open source test framework which uses an headless

browser. This makes it easy to run from a command line environment and therefore

suitable for automation.

Related requirement: FR2

6. Rascal for Analysis and Transformation. We decided to use the Rascal

language for analysis of the traces and transformation of the source code.

Rationale: There already was a parser for PHP that generated Rascal ASTs

and Rascal has powerful features to manipulate an AST which made it easy to

transform the PHP source code.

Related requirement: FR1

4.1.3 Traceability

During this chapter we will refer to these requirements and design decisions using a

prefix and their number. For the functional requirements we have the prefix FR, the

non-functional requirements will use NFR and we will use the prefix DD for referring

to the design decisions.

4.2 Execution Trace Gathering

In order to see how the occurrences of the dynamic features that we are interested in

are being called during runtime, the PHP extension Xdebug (DD2) is being leveraged.

This open source extension brings extra debug utilities such as clearer stack traces and

Chapter 4. Implementation 21

better timing methods to PHP but also the ability to get logs of all the function calls

that were executed including the used arguments. This logging feature is used to gather

all the arguments that are being passed into call user func, call user func array

and eval without modifying PHP ourselves.

To generate logs, the code has to be executed. One way to do this is by running the

unit tests that are available for the software project in question. Even though this will

generate logs with possibly a good code coverage, unit tests are not always representative

for real world execution. Therefore we did not chose unit test but installed the software

on a lightweight web server setup consisting of Lighttpd (DD3), PHP and MySQL.

Functional tests written for the CasperJS (DD5) framework will generate the HTTP

requests to the installed software by simulating real user behavior. These tests have to

be specially crafted for the PHP system under investigation. One disadvantage of using

unit tests or functional test is that it is hard to get 100% coverage.

The logs generated by Xdebug can become very large because they contain all function

calls made during execution including their arguments. We filter the output of Xdebug

and convert it into comma-separated value (CSV) (DD1) format using awk (FR2) so

that the traces are suited for easy analysis in the second part of the tool: code transfor-

mation in Rascal. Figure 4.1 gives an overview of the whole system we used to gather

execution traces.

4.3 Code Transformation

4.3.1 Rascal

Rascal is a programming language created at CWI. The language’s main purpose is to

facilitate metaprogramming[17]. It does this by having integrated support for generating

parsers and having powerful pattern matching and tree traversal capabilities. Part of

our tool is written in Rascal (DD6) and is build upon earlier work of Hills[10] that

allows us to parse PHP source code to abstract syntax trees (AST). The AST structure

can than be easily inspected and altered using language features natively available in

Rascal. The resulting AST can than be converted back to PHP source code (FR1).

4.3.2 Algorithm

The Rascal program first starts with converting each PHP file into an AST. This is

done using the PHP analysis framework which is provided by Hills. Now we have the

Chapter 4. Implementation 22

Figure 4.1: Tracing Architecture

ASTs we start with a naive form of static analysis. There can be occurrences of dynamic

invocation and eval which are not dynamic at all. For instance, when a static string

is passed as the first argument of call user func like this call user func("func",

$arg). This call could be replaced by func($arg). Even though these cases are rare,

they are easy to detect and replace and it is possible that other static analysis techniques

like constant propagation will result into such occurrences being present. By running a

pattern matching algorithm against the AST of the source code, these static use cases

are detected. The detected code fragments are then replaced the explicit method calls

in the case of dynamic invocation and inline code for eval.

The remaining occurrences of dynamic invocation and eval will be handled in the second

phase. In Rascal the CSV file containing all the logs of call user func, call user

func array and eval is parsed so that we only have unique function signatures for

each dynamic invocation call site and unique arguments per eval call site. We parse

the serialized callback argument we got from Xdebug for dynamic invocation function

calls into one of the three callback types: function call, non-static method call and static

method call. For call user func array we also look at the number of array elements of

the second argument. The combination of the callback and number of arguments make

up the function signature. Using the known function signatures for the call user

Chapter 4. Implementation 23

func and call user func array, static code is generated which does these function

invocation directly. eval is a special case, the script string that is passed to eval is

directly inlined within the source code. Algorithm 1 gives a general overview of the main

transformation algorithm.

Algorithm 1 General algorithm of code transformation

for all o in occurrences such that o has traces do
traces← traces of o
context← surrounding statement of o
statements← ∅
for all t in traces do

s← generate if-statement for t with context
add s to statements

end for
if has to be sound then

add context as else case to statements
end if
replace context with statements

end for

The following algorithm (2) described how an if-statement is generated for a trace of

dynamic invocation.

Algorithm 2 If-statement generation for a dynamic invocation trace

callback ← callback variable
arguments← list of arguments to pass to callback
conditions← ∅
if trace is function call then
conditions← (callback == ”functionName”)
body ← context with occurrence replaced by functionName(arguments...)
return if-statement with conditions and body

end if
add (callback is array) to condictions
if trace is non-static method call then

add (callback[0] is object) to condictions
explicitCall← callback[0]->methodName(arguments...)

else if trace is static method call then
add (callback[0] == ”className”) to condictions
explicitCall← className::methodName(arguments...)

end if
add (callback[1] == ”methodName”) to condictions
body ← context with occurrence replaced by explicitCall
return if-statement with conditions and body

We will now demonstrate the workings of the algorithm with a simple piece of code that

contains an occurrence of call user func. First we will show you the original code

(listing 4.1), followed by two transformed versions (listing 4.2 and 4.3).

Chapter 4. Implementation 24

<?php

function func1 () {

return "foo";

}

function func2 () {

return "bar";

}

function func3($funcName) {

return call_user_func($funcName);

}

func3("func1");

func3("func2");

?>

Listing 4.1: Simple example of call user func

Given the code fragment shown in listing 4.1, our execution log will tell us that the

following two string values were passed as the callback of this call site of call user

func: "func1" and "func2". Using this information one of the following two pieces

source code (listing 4.2 and 4.3) will be generated:

<?php

function func1 () {

return "foo";

}

function func2 () {

return "bar";

}

function func3($funcName) {

if ($funcName == "func1" && function_exists("func1")) {

return func1 ();

} else if ($funcName == "func2" && function_exists("func2")) {

return func2 ();

} else {

return call_user_func($funcName);

}

}

func3("func1");

func3("func2");

?>

Listing 4.2: Resulting code of call user func (sound)

Chapter 4. Implementation 25

<?php

function func1 () {

return "foo";

}

function func2 () {

return "bar";

}

function func3($funcName) {

if ($funcName == "func1" && function_exists("func1")) {

return func1 ();

} else if ($funcName == "func2" && function_exists("func2")) {

return func2 ();

}

}

func3("func1");

func3("func2");

?>

Listing 4.3: Resulting code of call user func (unsound)

The resulting code (listing 4.2 and listing 4.3) is constructed using the information

gathered by looking at execution traces to make the possible execution paths more

explicit. As you can see in listing 4.2, the code still contains the call to call user func,

this in case that there are values of $funcName that are not seen during the execution.

This guarantees that the transformed program can cover all possible executions paths of

the original program and makes it suitable for execution. However, this else case could

be removed when you are certain that all possible values are covered or when there is a

need for unsound static analysis, listing 4.3 show an example how the source code will

look like for that case.

Another interesting fact to note is that the surrounding statement of the call user

func method is also copied to each if case, in this example the return statement, to

assure that the semantics of the code stay the same.

Now for a more complicated example, we will show the transformation of call user

func array call:

Chapter 4. Implementation 26

<?php

class A {

public function nonStaticMethod($param) { }

public static function staticMethod($param1 , $param2) { }

}

$object = new A();

$callback = array($object , "nonStaticMethod");

$args = array("arg");

call_user_func_array($callback , $args);

$callback = array("A", "staticMethod");

$args = array("arg1", "arg2");

call_user_func_array($callback , $args);

?>

Listing 4.4: Example of call user func array

Execution of this code will result in two execution traces, one for each occurrence.

The first trace be the non-static method callback and one argument in the array and

the second trace the static method with two arguments. The sound version of the

transformed code looks like this (listing 4.5):

Chapter 4. Implementation 27

<?php

class A {

public function nonStaticMethod($param) {}

public static function staticMethod($param1 ,$param2) {}

}

$object = new A();

$callback = array($object ,"nonStaticMethod");

$args = array("arg");

if(is_array($callback) && sizeof($callback) > 1 &&

is_object($callback [0]) && $callback [1] == "nonStaticMethod" &&

method_exists($callback [0],"nonStaticMethod") &&

is_array($args) && sizeof($args) == 1) {

$callback [0]-> nonStaticMethod($args [0]);

} else {

call_user_func_array($callback , $args);

}

$callback = array("A", "staticMethod");

$args = array("arg1", "arg2");

if(is_array($callback) && sizeof($callback) > 1 &&

$callback [0] == "A" && $callback [1] == "staticMethod" &&

method_exists("A","staticMethod") &&

is_array($args) && sizeof($args) == 2) {

A:: staticMethod($args[0], $args [1]);

} else {

call_user_func_array($callback ,$args);

}

?>

Listing 4.5: Example of call user func array

As you can see, the conditions of the if-statements in listing 4.5 are quite elaborate.

This extensive checking is to make sure that the resulting code does not generate any

errors.

4.4 Ensuring the Correctness

4.4.1 Preconditions

To ensure that the transformed code acts exactly the same as the original code and does

not introduce any errors, all inserted function and method calls are preceded with a

number of checks on preconditions. As we have explained in the beginning of chapter

Chapter 4. Implementation 28

3, there are three types of callbacks which can be passed to call user func and call

user func array that we are interested in. For each of these types the preconditions

are slightly different as we have shown in algorithm 2.

The first type of callback is a function name. Here the callback is a string of the name

of the function, as seen in listing 4.1. In the transformed code, first we check if the

function should be called by checking the value of the callback. Next to that, we make

sure that function exists to be sure that the explicit function call will not result in a

fatal error (listing 4.3).

The second and third type of callback are respectively non-static and static method

calls. The callback for these types is an array consisting of two elements. For non-static

method calls the first element is an object and for static method calls the first element

is the class name as a string. The second element for both types is the method name as

a string. To be sure the correct explicit method call is made in the transformed code,

we first check if the callback is an array with at least two elements. Then we check

for non-static method calls if the first element is an object. For static method calls the

first element should be the name of class of the explicit call. The second element should

match the name of the method. Then we check if the method exists.

These preconditions are all checked for the call user func and call user func array

replacement code. However, as you can see in listing 4.5, for call user func array

replacements to be safe additional checks are done on the argument array. First the

array variable is checked if it indeed is an array and after that the number of elements is

validated, this number should correspond with the number of arguments in the explicit

function or method call to prevent out of bound access of the array.

Using these preconditions we can make sure that the transformed code acts as the

original and does not trigger any errors that are not triggered by the original code.

4.4.2 Context Preservation

Since the dynamic invocation methods are expressions, they can occur at the same

places as any other expression can occur, for example as the value in an assignment.

In our transformation we wrap the explicit function and method calls with conditional

statements, but we cannot directly replace a dynamic invocation expression with these

statements. To make sure that the call is made in the same context as the original

dynamic invocation call we take statement directly surrounding the original expression

and wrap it around the explicit calls in each of the bodies of the conditional statements.

Chapter 4. Implementation 29

An example of this can be seen in listing 4.3 where the surrounding return statement is

preserved in all of the cases.

By preserving the context in which the dynamic invocation expression is occurring, we

can guarantee that the semantics of the transformed code is the same as that of the

original code.

Chapter 5

Evaluation of Static Analysis

Improvements

In this chapter we will evaluate the improvements that are gained using are implemented

tool considering further static analysis of a given processed PHP system.

5.1 Simple Graph Experiment

Our first motivation for reducing the number of dynamic features was to improve the

opportunities for static analysis. Using a small example, we will show how eliminating

dynamic invocation could achieve this.

When performing static analysis, the goal is to extract facts from source code. One well

know type of static analysis is call graph analysis (CGA). A call graph is a graph which

shows which units of a program call which other units. Some typical units are classes,

files, modules and functions.

Imagine creating a call graph for function calls of the following code:

30

Chapter 5. Evaluation of Static Analysis Improvements 31

<?php

function A() {

global $funcName;

call_user_func($funcName)

}

function B() {

C();

D();

}

function C() { }

function D() { }

?>

Listing 5.1: CGA example with call user func

Assuming we are not able to statically resolve the global variable $funcName, function

A could potentially call every other function or method. The resulting call graph would

look as follows:

A

B

C D

Figure 5.1: Call graph with call user func

The function A has an arrow to every other function. However, it could be that in

reality function A is unlikely to call every single function or method. Now let say that

we perform our dynamic tracing process on this piece of code and that we intercept one

value of $funcName which is "B". Utilizing this trace, the code can be transformed to

the this:

Chapter 5. Evaluation of Static Analysis Improvements 32

<?php

function A() {

global $funcName;

if ($funcName == "B") {

B();

}

}

function B() {

C();

D();

}

function C() { }

function D() { }

?>

Listing 5.2: CGA example with call user func

The code generated is an under-approximation of the original code, since there could

be possible execution paths in the original code, that are not possible in this modified

version. Using this code will therefore result in unsound analysis. The code of listing

5.2 will result in a much cleaning call graph (see figure 5.2).

A

B

C D

Figure 5.2: Call graph without call user func

This call graph gives a more clear view of the real behavior of the program in comparison

of the previous graph, however we can not be sure if this represents all the possible calls.

Chapter 5. Evaluation of Static Analysis Improvements 33

5.1.1 Threats to Validity

We demonstrate for a small example program, how we remove false positives among the

edges of the call graph. The resulted call graph however, is not necessarily more precise

than the original one, since it is based on an under-approximation of the original code.

It is possible that we only registered one value for the particular call site of call user

func but in practice there are more values. This is the same problem as the problem

with the coverage of the functional tests. The dynamic analysis is dependent on the

completeness of the traced execution and the level to which it represents real world

execution. As we described in the model, the deployed application could be considered

stable and is the best execution environment to capture real world usage.

5.1.2 Conclusion

The transformed code gives us a cleaner ouput of our static analysis, but since it is

unsound analysis, it is hard to determine if the accuracy really increases.

5.2 Call Graph Generation of WordPress

Next to the previous simplified example to show the implications of code transformations

on the accuracy of call graph generation, we also looked at a real application. As we

did early we chose WordPress as our benchmark. Using Doxygen, an open source

tool to generate documentation from source code we are able to generate call graphs

for every function and method in the code base. For a plain WordPress installation

with version 3.5.2, this results in more than 3.000 call graphs. The call graphs that

Doxygen generates only contain function and methods that are in the code base itself

and dynamic invocation functions such as call user func and call user func array

are ignored. This means that whenever a function or method used dynamic invocation to

call another method, these calls are not included. The resulting call graphs are therefore

unsound.

To see how our transformation tool alters the accuracy of static analysis, we compare

the call graph sizes of an normal WordPress installation and a transformed installation.

We counted all the nodes and all the edges in the 3.077 generated call graphs. We did

this by analyzing the DOT files created by Doxygen.

Our original WordPress installation has 64.743 nodes and 108.704 edges.

Our transformed WordPress installation has 87.886 nodes and 137.103 edges.

Chapter 5. Evaluation of Static Analysis Improvements 34

This shows us that the number of nodes and edges for call graphs increases after trans-

forming the code. This of course is not a surprise, since instances of dynamic invocation

where previously ignored but the resulting invocations are made explicit in the trans-

formed code. Since the original call graphs did not contain calls made by dynamic

invocation and the graphs of the transformed code did, we can say that these graphs

give a better representation of the call flow and therefore is more accurate.

apply_filters_ref_array _wp_call_all_hook

Figure 5.3: Call graph from Doxygen for orignal version

apply_filters_ref_array

_wp_call_all_hook

_close_comments_for
_old_posts

get_option

apply_filters

Figure 5.4: Call graph from Doxygen for transformed version

5.2.1 Threats to Validity

For some unknown reason Doxygen generated around 100 call graphs less for our

transformed version of WordPress compared to the original version. To mitigate for

this difference, we only compared the call graphs that were generated for both versions.

Even though we compensated for this difference, it still makes our results less reliable.

5.2.2 Conclusion

Transforming the source code of WordPress by replacing dynamic invocations with

explicit invocations results in more accurate call graphs generated Doxygen. The

results of the already unsound analysis done by Doxygen were enhanced thanks to the

additions of call graph nodes and edges of functions and methods that were called via

dynamic invocation.

Chapter 6

Evaluation of Performance

Improvements

This chapter describes an evaluation of the performance improvements gained from using

the implemented tool to replace occurrences of dynamic invocation with explicit function

calls.

6.1 Isolated Dynamic Invocation Performance

To get an idea of the performance impact of PHP’s call user func and call user

func array functions we have profiled isolated calls to these functions.

Our first benchmark script contained the following code:

call user func("func");

Running this piece of code 1,000,000 times showed us that the overhead of call user

func was 2,532,000 microseconds CPU time in total, which is an average of 2.5 microsec-

onds per invocation. This is negligible.

Our second benchmark script contained the following code:

call user func array("func", array());

Running this piece of code 1,000,000 times showed us that the overhead of call user

func was 2,639,000 microseconds CPU time in total, which is an average of 2.6 microsec-

onds per invocation. This is also negligible.

35

Chapter 6. Evaluation of Performance Improvements 36

6.2 Performance in Real World Code

Since previous microbenchmarks show that the performance penalty of dynamic invo-

cation is minimal, further investigation into performance improvements in real code is

unnecessary. Because the overhead of dynamic invocation is so small, on average 2.6

microseconds, the impact of such a call in the context of a HTTP request which is

measured in tens or hundreds of milliseconds is not noticeable.

6.3 Threats to Validity

The small impact that was measured with our microbenchmark let us to believe that

further investigation into possible performance improvements thanks to the reduction of

dynamic invocation was unnecessary. However, it could be possible that the transformed

source code, due to its more static nature, is more suitable for optimization using static

analysis techniques used in interpreters and compilers. We however did not verify this.

6.4 Conclusion

The replacement of dynamic invocation with explicit invocation does not directly result

in significant preformance improvements.

Chapter 7

Conclusions & Future Work

This chapter describes the conclusions and possible future work.

7.1 Conclusions

PHP is full-featured scripting language equipped with some useful dynamic features.

Dynamic features give developers a lot of flexibility by letting them delegate program

behavior to the runtime. One example of a dynamic feature is dynamic invocation,

which let you pass in the function or method to be called as a string. However, usage of

the dynamic features can have a negative influence on the analyzability and performance

of a program. We observed that an important reason for the use of dynamic invocation

is to facilitate configuration and plugin functionality. Because configuration and plugin

installation tends to stabilize, we state that there is a moment where most dynamic

invocation behavior is static. Using dynamic analysis, done with the help of trace

analysis, we are able to reduce the number of dynamic features used, especially dynamic

invocation. We can do this by capturing execution traces, analyzing these traces and

use the gained insights of the usage patterns of occurrences of dynamic invocation to

generate static code with the same semantics. To be sure that the static replacements

are as complete as possible we leverage the assumption made earlier, that the behavior of

dynamic invocation at a certain moment in time is static and could therefore in theory be

completely traced. The source code transformation eventually leads to code that can be

analyzed more easily using existing types of static analysis. We showed that simple call

graph analysis can get more accurate representation of real world call flow behavior. We

also looked at the possible performance increase gained by reducing dynamic invocation,

however the direct performance impact of dynamic invocation appeared to be so small

that it is negligible. The approach of using dynamic analysis to replace dynamic feature

37

Chapter 7. Conclusions & Future Work 38

use cases with static equivalents for more accurate unsound analysis looks promising,

but dynamic analysis is always depended on the level of completeness of the traced

execution. You only know what you have traced and you only trace what is executed,

but there are situations were all you need to know is what is actually executed.

7.2 Future Work

7.2.1 Partial Evaluation

When transforming the dynamic invocation to explicit method and function calls, we

chose to not look at the arguments that are being passed to the functions or methods

themselves. However, this information is also captured during the tracing phase and

could be used to generate specialized functions for the mostly used arguments. This

could lead to performance improvements.

7.2.2 Data-flow Analysis

In addition to the hybrid approach we took were we used execution traces to observe what

data is passed into the functions we were interested in, data-flow analysis could bring

extra insight into possible values. Combining the information about how variables are

being set with the data gathered using traces could lead to more precise approximations

of the original program semantics and therefore more accurate static analysis.

7.2.3 Other Dynamic Features

Similar to dynamic invocation were the name of the item which you refer to can be

variable are things like variable variables, variable methods and variable functions. You

can for example call a function like this: $funcName() where $funcName is a variable

that contains the name of the function which is to me be invoked. This family of

variable constructs could be investigated and resolved in the same manner as we did in

this research.

Bibliography

[1] PHP: History of PHP. http://www.php.net/manual/en/history.php.php. Ac-

cessed: 2013-7-16.

[2] Usage Statistics and Market Share of PHP for Websites, July 2013. http:

//w3techs.com/technologies/details/pl-php/all/all. Accessed: 2013-07-08.

[3] PHP: call user func. http://php.net/manual/en/function.call-user-func.

php. Accessed: 2013-07-08.

[4] PHP: eval. http://www.php.net/manual/en/function.eval.php. Accessed:

2013-7-16.

[5] Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. Pixy: A static analysis

tool for detecting web application vulnerabilities (short paper). In Proceedings

of the 2006 IEEE Symposium on Security and Privacy, SP ’06, pages 258–263,

Washington, DC, USA, 2006. IEEE Computer Society. ISBN 0-7695-2574-1. doi:

10.1109/SP.2006.29. URL http://dx.doi.org/10.1109/SP.2006.29.

[6] Jeffrey Dean, David Grove, and Craig Chambers. Optimization of object-oriented

programs using static class hierarchy analysis. In Mario Tokoro and Remo Pareschi,

editors, ECOOP95 Object-Oriented Programming, 9th European Conference,

arhus, Denmark, August 711, 1995, volume 952 of Lecture Notes in Computer Sci-

ence, pages 77–101. Springer Berlin Heidelberg, 1995. ISBN 978-3-540-60160-9. doi:

10.1007/3-540-49538-X 5. URL http://dx.doi.org/10.1007/3-540-49538-X_5.

[7] Gregor Richards, Christian Hammer, Brian Burg, and Jan Vitek. The eval that men

do: A large-scale study of the use of eval in javascript applications. In Proceedings of

the 25th European conference on Object-oriented programming, ECOOP’11, pages

52–78, Berlin, Heidelberg, 2011. Springer-Verlag. ISBN 978-3-642-22654-0. URL

http://dl.acm.org/citation.cfm?id=2032497.2032503.

[8] Fadi Meawad, Gregor Richards, Floréal Morandat, and Jan Vitek. Eval begone!:

semi-automated removal of eval from javascript programs. SIGPLAN Not., 47(10):

39

http://www.php.net/manual/en/history.php.php
http://w3techs.com/technologies/details/pl-php/all/all
http://w3techs.com/technologies/details/pl-php/all/all
http://php.net/manual/en/function.call-user-func.php
http://php.net/manual/en/function.call-user-func.php
http://www.php.net/manual/en/function.eval.php
http://dx.doi.org/10.1109/SP.2006.29
http://dx.doi.org/10.1007/3-540-49538-X_5
http://dl.acm.org/citation.cfm?id=2032497.2032503

Bibliography 40

607–620, October 2012. ISSN 0362-1340. doi: 10.1145/2398857.2384660. URL

http://doi.acm.org/10.1145/2398857.2384660.

[9] Michael Furr, Jong-hoon (David) An, and Jeffrey S. Foster. Profile-guided static

typing for dynamic scripting languages. SIGPLAN Not., 44(10):283–300, October

2009. ISSN 0362-1340. doi: 10.1145/1639949.1640110. URL http://doi.acm.org/

10.1145/1639949.1640110.

[10] Mark Hills, Paul Klint, and Jurgen Vinju. An Empirical Study of PHP Feature

Usage: A Static Analysis Perspective. 2013.

[11] Haiping Zhao, Iain Proctor, Minghui Yang, Xin Qi, Mark Williams, Qi Gao, Guil-

herme Ottoni, Andrew Paroski, Scott MacVicar, Jason Evans, and Stephen Tu.

The hiphop compiler for php. In Proceedings of the ACM international conference

on Object oriented programming systems languages and applications, OOPSLA ’12,

pages 575–586, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1561-6. doi: 10.

1145/2384616.2384658. URL http://doi.acm.org/10.1145/2384616.2384658.

[12] Paul Biggar, Edsko de Vries, and David Gregg. A practical solution for script-

ing language compilers. In Proceedings of the 2009 ACM symposium on Applied

Computing, SAC ’09, pages 1916–1923, New York, NY, USA, 2009. ACM. ISBN

978-1-60558-166-8. doi: 10.1145/1529282.1529709. URL http://doi.acm.org/10.

1145/1529282.1529709.

[13] WordPress Blog Tool, Publishing Platform, and CMS. http://wordpress.org/.

Accessed: 2013-8-7.

[14] WordPress now powers 18.9% of the Web, has over 46m downloads, according to

founder Matt Mullenweg - The Next Web. http://thenextweb.com/insider/

2013/07/27/wordpress. Accessed: 2013-8-7.

[15] Xdebug - Debugger and Profiler Tool for PHP. http://xdebug.org/. Accessed:

2013-7-10.

[16] CasperJS, a navigation scripting and testing utility for PhantomJS. http://

casperjs.org/. Accessed: 2013-7-10.

[17] Paul Klint, Tijs van der Storm, and Jurgen Vinju. Rascal: A domain spe-

cific language for source code analysis and manipulation. In Proceedings of the

2009 Ninth IEEE International Working Conference on Source Code Analysis and

Manipulation, SCAM ’09, pages 168–177, Washington, DC, USA, 2009. IEEE

Computer Society. ISBN 978-0-7695-3793-1. doi: 10.1109/SCAM.2009.28. URL

http://dx.doi.org/10.1109/SCAM.2009.28.

http://doi.acm.org/10.1145/2398857.2384660
http://doi.acm.org/10.1145/1639949.1640110
http://doi.acm.org/10.1145/1639949.1640110
http://doi.acm.org/10.1145/2384616.2384658
http://doi.acm.org/10.1145/1529282.1529709
http://doi.acm.org/10.1145/1529282.1529709
http://wordpress.org/
http://thenextweb.com/insider/2013/07/27/wordpress
http://thenextweb.com/insider/2013/07/27/wordpress
http://xdebug.org/
http://casperjs.org/
http://casperjs.org/
http://dx.doi.org/10.1109/SCAM.2009.28

	Abstract
	Acknowledgements
	1 Introduction
	1.1 PHP
	1.2 Dynamic Language Features
	1.3 Problem Statement
	1.4 Motivation 1: Static Analysis
	1.5 Motivation 2: Performance
	1.6 Proposed Solution
	1.7 Hypotheses
	1.8 Outline

	2 Related Work
	2.1 PHP Feature Usage
	2.2 Dynamic Analysis
	2.3 Static Analysis of PHP

	3 Usage of Dynamic Features
	3.1 Dynamic Invocation and Eval
	3.2 Occurrences in Corpus
	3.2.1 Threats to Validity
	3.2.2 Conclusion

	3.3 Case Study: Execution Traces of WordPress
	3.3.1 Threats to Validity
	3.3.2 Conclusion

	3.4 Dynamic Invocation Stability Theory
	3.4.1 Threats to Validity
	3.4.2 Conclusion

	4 Implementation
	4.1 Design
	4.1.1 Requirements
	4.1.2 Design Decisions
	4.1.3 Traceability

	4.2 Execution Trace Gathering
	4.3 Code Transformation
	4.3.1 Rascal
	4.3.2 Algorithm

	4.4 Ensuring the Correctness
	4.4.1 Preconditions
	4.4.2 Context Preservation

	5 Evaluation of Static Analysis Improvements
	5.1 Simple Graph Experiment
	5.1.1 Threats to Validity
	5.1.2 Conclusion

	5.2 Call Graph Generation of WordPress
	5.2.1 Threats to Validity
	5.2.2 Conclusion

	6 Evaluation of Performance Improvements
	6.1 Isolated Dynamic Invocation Performance
	6.2 Performance in Real World Code
	6.3 Threats to Validity
	6.4 Conclusion

	7 Conclusions & Future Work
	7.1 Conclusions
	7.2 Future Work
	7.2.1 Partial Evaluation
	7.2.2 Data-flow Analysis
	7.2.3 Other Dynamic Features

	Bibliography

