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Abstract

Rewriting technology has proved to be an adequate and powerful mech-
anism to perform source code transformations. These transformations can
not only be efficiently implemented using rewriting technology, but it also
provides a firmer grip on the source code syntax. However, an important
shortcoming of rewriting technology is that source code comments and
layout are lost during rewriting. We propose “rewriting with layout” to
solve this problem. We present a rewriting algorithm that keeps the lay-
out of sub-terms that are not rewritten, and reuses the layout occurring
in the right-hand side of the rewrite rules.

1 Introduction

Rewriting technology has proved to be an adequate and powerful mechanism
to tackle all kinds of problems in the field of software renovation. Software
renovation is to bring existing source code up to date with new requirements.
One of the techniques applied in this field is source code transformation. Source
code transformations are simple syntactic transformations which are mainly
implemented using string replacement technology.

Such transformations can also conveniently be implemented using rewriting
technology. Using rewriting technology is safer because it provides a firmer grip
on source code syntax. An important shortcoming of rewriting technology is
that source code comments and layout are lost during rewriting. It is possible
to retrieve comments and layout, but this complicates the specification of such
a source code transformation tool because every rule has to take comments and
layout explicitly into consideration. This is unlike string replacement technol-
ogy, where comments are just strings like any other part of the source code. We
propose rewriting with layout to solve this problem, and try to make rewrit-
ing technology an attractive alternative to conventional software maintenance
tooling.



We present a rewriting algorithm that retains the layout! of sub-terms that
are not rewritten and reuses the layout occurring in the right-hand side of the
rewrite rules. Even sub-terms that are reused in the normal form will have their
original layout. However a certain amount of layout is still lost when a rule is
applied to a certain node in the tree. We offer some ideas to solve this when
discussing future work.

1.1 Source code transformations

Maintenance programmers frequently use string replacement tools to automate
their software maintenance tasks. For example, they use the regular expressions
available in scripting languages like Perl [14] to perform all kinds of syntactical
transformations. Naturally, such source code transformations must be precise.
But regular string matching alone is not powerful enough to recognize all kinds of
syntactical structures commonly found in programming languages. This lack of
power is usually solved by extensive explicit programming, or not at all. Some
string replacement languages, like SNOBOL [11], would provide the mainte-
nance programmer with low level context-free matching. But these powerful
languages are hardly used. Probably because they are too “low level” to offer
practical solutions to software renovation problems.

There is quite a difference between source code transformations on one hand
and general program transformations [13] on the other hand. Source code trans-
formations deal with automatic syntactical transformations. They automate
software maintenance tasks, but they do not automate any correctness proof of
the adaptations to the source code. Whereas general program transformations
usually require user interaction and involve proving that the transformations
are sound and complete.

As opposed to string rewriting, term rewriting technology is a different ap-
proach to implement source code transformations. The source code is fully
parsed given the context-free grammar of the language, the term representa-
tion is transformed according to a set of powerful rules and the result is un-
parsed to obtain source code again. We use an algebraic specification formal-
ism, ASF+SDF [10], based on term rewriting. Due to recent improvements of
its compilation techniques [5] and term representation [4], ASF+SDF can now
be applied to industry sized problems [6]. For example, COBOL renovation
factories have been implemented and used [8].

The rewrite rules in ASF+SDF use concrete syntax. They are defined on the
actual syntax of the source language, not some abstract representation. Because
the rules are applied to structured terms instead of strings, complex syntactical
structures can be grasped by a single rule. A very important feature of rewrite
rules is that they abstract from the arbitrary layout of the source code, ignoring
even source code comments. This is all in favor of simplicity. It can be expected
that software maintenance tooling can be developed with more confidence and
less effort using such rewriting technology. But first the rather practical issue

1We will use the term “layout” to indicate the layout as well as source code comments.



/ISYSUT2 DD DSN=PSSIAS8.S00.SDPAR02.DSCO017, 00520000

I DISP=(NEW,CATLG,DELETE), 00530000
I SPACE=(TRK,(1,1)), 00540000
Il DCB=(RECFM=FB,LRECL=80) 00550000

(SC017, DELETE-TO-CATLG , 00530000 ) }—»

/ISYSUT2 DD DSN=PSSIAS8.500.SDPAR02.DSC017, 00520000
Il DISP=(NEW,CATLG,CATLG), 00530000

I SPACE=(TRK,(1,1)), 00540000

I DCB=(RECFM=FB,LRECL=80) 00550000

Figure 1: Sample input and output of a source code transformation in JCL. The
DELETE keyword is be replaced by CATLG, but in a specific context.

of loosing the layout needs to be solved. For no maintenance programmer will
consider using rewriting technology and loose all of his source code comments
during a large maintenance job.

1.2 Example

The following example of a source code transformation shows the importance
of considering layout while rewriting. This example is a part of a recent reverse
engineering project of JCL scripts? in cooperation with a Dutch software house.

The interpretation of JCL scripts is sensitive to their particular layout, which
is an unfortunate but not uncommon language property. There are numerous
examples of languages that depend on layout, e.g. COBOL and Haskell. As
an adequate solution to this problem, the source code transformation was per-
formed in two steps:

1. A rewriting language, ASF4SDF, was used to reduce a JCL script to a list
of instructions that indicate precisely where to modify the script.

2. The list of instructions was interpreted by a Perl script that used regular
string replacements to implement them.

The above situation is depicted in Figure 1 for a specific JCL instruction. Ob-
viously, this effective combination of term rewriting and string replacement is

2JCL stands for Job Control Language and is mainly used in combination with COBOL
programs on IBM mainframes.



neither an attractive nor a generic solution to the problem of transforming layout
sensitive source code. It would be preferable to encode the entire transformation
in the rewriting language.

1.3 Overview

To explore the subject, we have developed an ASF+SDF interpreter that retains
layout. Apart from the actual rewriting algorithm, there are two important
prerequisites to the idea of a layout preserving rewriter. Firstly, the parser
should produce trees in which the layout is preserved in some way. Secondly,
rewriting must be performed on a term representation that also contains all
layout, for instance the parse tree directly.

In Section 2 we will introduce the term format. In Section 3 we discuss our
layout preserving algorithm for ASF+SDF. Section 4 describes some benchmark
figures. We compare the performance of the layout preserving rewriter with the
original ASF+SDF rewriter, and with two other interpreted rewriting systems:
ELAN [3] and Maude [9]. Finally, in Section 5 we draw some conclusions and
present directions for future work.

2 Term format

One of the features of rewriting technology is that it automatically abstracts
from layout. To implement this abstraction, usually layout information is just
not included in the term format. So, it is common practice to have a very
concise tree representation to represent terms that have to be rewritten. Typical
examples of these concise formats are REF [2] used within the ELAN system
[3], and pASF used within the ASF+SDF compiler [5].

We have been exploring the other direction: using parse trees as term format
for rewriting. These parse trees contain all information encountered during pars-
ing, e.g. layout, keywords, application of syntax production rules, etc. Although
all this information seems redundant for rewriting itself, it is of importance to
the entire transformation process from input to output. In the following two
sections we describe our parse trees and the generic term data-type it is based
on briefly.

2.1 ATERM data-type

Our representation of parse trees is based on a generic abstract data-type called
ATERM [4]. The corresponding libraries for this ATERM format have a number
of important properties. One of the most important properties is that the
ATERM library ensures a maximal sharing of terms, each term is unique. This
property results in a memory and execution time efficient run-time behavior.
Maximal sharing proofs to be especially beneficial when applied to our parse
tree format, which is rather compressible.



true
or false

Figure 2: A term over the Booleans. An ASF+SDF specification of the Booleans
can be found in Figure 4.

4[Bool "or" Bool —> Bool {IefH
"true" —> Bool "false" —> Bool

I("true™ w("\n") I("or") w("") I("false")

Figure 3: Parse tree of the term in Figure 2. Applications of productions are
boxed. There are layout leafs (w) and lexical leafs (1).

A striking consequence of the maximal sharing is that term equality can
be implemented as pointer equality. A negative effect of sharing is that the
ATERM library allows only a functional manipulation of terms. This means
that destructive updates on terms can only be implemented by rebuilding the
updated term from scratch. But the ATERM library is time efficient nevertheless
(see Section 4).

2.2 Parse trees

Based on the ATERM format we are able to define a simple format to represent
trees. A parse tree is a collection of nodes consisting of an application of a
production rule (context-free or lexical syntax rule) to a number of arguments.
An argument is a node representing an application of another production rule,
a lexical symbol, a variable, a literal (keyword), or layout. Except for the
applications all other nodes are leafs of the parse tree.

There is a picture of a parse tree in Figure 3. Parse trees are built in such a
way that for a left to right depth first traversal of the leafs every two contiguous
lexical nodes have a layout node in between. In this manner, all possible internal
layout is encoded in the parse tree.

3 Rewriting

Rewriting technology is an adequate technology to implement source code trans-
formations. Losing the original layout including comments is a severe drawback.
We will discuss an adaptation of the rewriter used within the ASF+SDF Meta-
Environment [12, 7] which preserves as much layout as possible. First we will
briefly introduce the reader to the semantics of our rewriting formalism ASF [1].
Then we discuss the interpreter and the adapted interpreter in detail.



module Booleans
imports Layout
exports

sorts Bool
context-free syntax

"true" -> Bool

"false" -> Bool

Bool "or" Bool -> Bool {left}
variables

"Bool" [0-9]* -> Bool

equations
[or-1] true or Bool = true
[or-2] false or Bool = Bool

Figure 4: Simple equations for or-operator

3.1 AsrF

AsF is based on an innermost reduction strategy over terms. Rules are expressed
as conditional equations. The left- and right-hand side of equations are terms
in concrete syntax (user-defined syntax), augmented with sorted variables. The
right-hand side of an equation introduces no new variables (or uninstantiated
variables), the left-hand side of an equation may not consist of a single variable.
Equations can be marked as default. These equations are only applied if no
other equations could successfully be applied.

Equations can have conditions. There are positive and negative conditions.
Conditions are evaluated one after the other in a fixed order. Only if the eval-
uation of a condition is successful the rest of the conditions is evaluated. A
positive condition checks the syntactical equality of the left- and right-hand
side after normalization of both sides. One side of a positive condition may
introduce new variables, this side is not normalized but matched with the term
of the normalized side. A negative condition checks the syntactical inequality of
both sides after normalization. No new variables may be introduced in negative
conditions. An equation can be applied if the left-hand side matches and all
conditions are successfully evaluated.

Another characteristic feature of ASF is list matching. List matching (also
called associative matching) enables the specification writer to manipulate el-
ements of a list in a concise manner. The manipulation of the list elements is
performed via so-called list patterns, in such a list pattern the individual list
elements can be addressed or sublists can be matched via list variables. List
matching may involve backtracking. However, the backtracking is restricted
to the scope of the rewrite rule in which the list pattern occurs. The possi-
ble matches are strictly ordered to enforce deterministic and finite behavior.



module BoolList

imports Booleans
exports
sort List
context-free syntax
"[" {Bool ";"}x "]" -> List
variables
"Boolx" [0-9]* -> {Bool ";"}x

equations
[set-1] [ Bool*1l ; Bool ; Bool*2 ; Bool ; Bool*3 ] =
[ Bool*1 ; Bool ; Bool*2 ; Boolx*3 ]

Figure 5: An extension of the Boolean syntax and an equation with list variables.

ASF+SDF supports two variants of lists: lists without separators and lists with
separators. A ’*’ indicates zero or more elements and a '+’ indicates that the
list should contain at least one element. For example: A* is a list of zero or
more elements of sort A and {B ";"}+ represents a list of at least one element
of sort B. The B elements are separated by semicolons.

An example of a very simple ASF4SDF specification is presented in Figure
4, the equations that define the semantics of the or operator are specified. Note
that the equations are labelled with tags. These labels have no semantics. The
ASF+SDF specification in Figure 5 demonstrates the use of list matching in an
equation. This equation will remove all double occurring Bool terms from the
List. For more elaborate ASF+SDF examples we refer to [10].

3.2 Normalization of terms

Given an ASF+SDF specification and some term to be normalized, this term
can be rewritten by interpreting the ASF equations as rewrite rules. One ap-
proach is to compile these equations to C functions [5]. We do this to optimize
batch performance of rewrite systems. On the other hand, a small interpreter
facilitates interactive development of rewrite systems. To explore the subject
of rewriting with layout, we have chosen to extend the ASF4SDF interpreter.
First we will discuss an interpreter which ignores layout completely in both the
term and the equations. Thereafter, we discuss the extension to an interpreter
that retains layout in a specific manner.

The original ASF+SDF interpreter takes as input slightly modified parse
trees of both the term and the set of equations. We explicitly do not use some
abstract term representation. The modification consists of stripping the parse
trees of both the equations and the term of all layout nodes. This is an easy and
efficient implementation of abstraction from layout. The efficiency benefit is due
to ATERM library on which the parse trees are built (Section 2.1). Without the
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Figure 6: Matching the parsed term in Figure 2 to the parsed left-hand side of
rule [or-1] in Figure 4. The dotted lines depict matches of layout leafs.

layout nodes and with maximal sharing, term equality can be decided by single
pointer comparison.

The rewriter operates on these stripped parse trees as an ordinary rewriting
engine. Based on the outermost function symbol of some sub-term the appro-
priate set of rewrite rules (with the same outermost function symbol in the
left-hand side) is selected. If the left-hand side matches with respect to the
arguments, variables are instantiated by this match. Then the conditions are
evaluated one-by-one using the instantiated variables. Along with the evalu-
ation of the conditions new variables are instantiated. Note that due to the
innermost reduction strategy we know that the arguments of any sub-term will
be in normal form. If the evaluation of all conditions is successful, the reduct is
built by instantiating the variables in the right-hand side of an equation.

For the moment we are experimenting with a rather simple and straightfor-
ward rewriting technique with layout. We modified our rewriter in such a way
that it is no longer necessary to strip the layout for the parse trees. Firstly,
to implement abstraction from layout, term equality can no longer be imple-
mented as pointer equality. An almost full traversal of both trees is now needed
to decide term equality. In Section 4 we will show what performance penalty is
paid now that we need to look deeper for equality modulo layout.

Secondly, the matching algorithm with layout is depicted in Figure 6. Two
parse trees are matched by comparing their top node. If their pointers are
equal, we can stop early. If only the productions are equal, the match continues
recursively. Variable productions match any subtree of the same top sort and
the match instantiates them immediately. Of course lexicals should always



be exactly equal. But any two compared layout nodes always match, which
implements abstraction from layout.

Thirdly, the layout occurring in the right-hand side of a successful equation
is just left in the normal form. Which effectively means that it is inserted
in the reduct. In this way the specification writer can influence the layout of
the constructed normal form by formatting the right-hand side of an equation
manually. A negative consequence of this approach is that all rewritten terms
will loose their original layout. But the values of the instantiated variables (sub-
terms) do retain their original layout. Ideas to possibly save even more layout
from the original term will be offered in Section 5.

3.3 List matching

The interpreter implements list matching by means of backtracking. Given a
term representing a list and a list pattern all possible matches are tried one
after the other until the first successful match including a successful evaluation
of all conditions. Backtracking takes only place if more than one list variable
occurs in the list pattern.

List matching also needs some adaptation when dealing with layout. There
are layout nodes between every consecutive element (or separator) in a list.
When constructing a sublist to instantiate a list variable these layout nodes
have to be incorporated as well.

Some special care must be taken when constructing a term containing a
list variable. If such list variable is instantiated with a sublist consisting of
zero elements, the layout occurring before and/or after this list variable must
be adapted to ensure the resulting term is well formed with respect to layout
again.

Suppose we want to normalize the term [true; true] given the specification
presented in Figure 5. The left-hand side of rule set-1 matches with this term
resulting in the following variable substitutions: Bool*I = e, Bool = true,
Bool*2 = e, Bool = true, and Bool*3 = ¢, where ¢ represents the empty list. A
naive substitution of the variables in the right-hand side of set-1 would result
in: [ ; true ; ; J]. The interpreter checks whether a list variable represents
an empty list and does not include the redundant separators and layout. In our
example the resulting term will be [true].

3.4 Discussion

The impact of introducing rewriting with layout in our interpreter was rather
small. The pre- and post-processing of the parse trees for the equations and
term had to be adapted. The matching algorithm was modified to implement
abstraction from layout.

The impact on the efficiency of the interpreter will be discussed in Section 4,
given a few benchmarks the performance of our interpreters with and without
layout preserving are compared. In order to get an impression of the overall



performance we have considered the interpreters of ELAN [3] and Maude [9] as
well.

4 Performance

How much does this rewriting with layout cost? There are three issues which
may have a negative influence on the performance:

e Matching becomes more expensive because the layout nodes are still in
the tree and have to be matched.

e Matching is more expensive because all terms have to be fully inspected.

In order to get insight in the relative performance of rewriting with layout
we compare the time and memory usage of the classical ASF interpreter and
the layout preserving interpreter. Furthermore, we have run the benchmarks
on interpreters of other rule based systems, like ELAN [3] and Maude [9] as
well to provide the reader with a better context. Note that for higher execution
speed both the ELAN system and the ASF+SDF Meta-Environment also provide
compilers 3.

We have used two simple benchmarks based on the symbolic evaluation of
expressions 2" mod 17: evalsym and evaltree. These benchmarks have been
used before for the analysis of compiled rewriting systems in [5]. We reuse them
for they isolate the core rewriting algorithm from other language features. All
measurements have been performed on a 450 MHz Intel Pentium III with 256
MB of memory and a 500 MB swap disk.

The evalsym benchmark The evalsym benchmarks computes 2" mod 17
in a memory efficient manner. Its memory complexity is in O(1) for all bench-
marked interpreters. From this benchmark we obviously try to learn what the
consequences of rewriting with layout are for time efficiency.

The results for this benchmark are in Figure 7. The different implementa-
tions of rewrite systems all show the same time and memory complexity behav-
ior. We pay a structural 50% time penalty for rewriting with layout. But this
does not change the relative speed to the other systems much. The AsSF+SDF
system still runs about as fast as the ELAN system.

The evaltree benchmark The evaltree algorithm generates a huge amount
of terms. Real world source code transformations usually involve enormous
terms and therefor scaling up is an important aspect to source code transfor-
mation. So in this benchmark we focus on the space complexity behavior of
rewriting with layout.

The results for this benchmark are in Figures 8 and 9. The ASF+4SDF system
uses a constant amount of memory, while the other systems show exponential

3See [5] for details on compilation of ASF+SDF
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Figure 7: Timing results for the evalsym benchmark.

growth in memory usage. This is due to maximal sharing. Obviously, any extra
memory allocated for layout is insignificant. Again, we pay a structural 50%
time penalty for reducing with layout and the relative speed is not affected
significantly.

5 Conclusions and future work

We presented an adaptation of the standard ASF4SDF interpreter in order to
deal with rewriting with layout. This form of rewriting proves to be very useful
with the field of reverse engineering and more specific in the realm of source
code transformations. We showed that due to the fact that our interpreter is
based on an intermediate format to represent terms and equations, which is very
close to parse trees, only a very small modification was needed to obtain this
functionality. This intermediate format is based on the ATERM library which
provides maximal sharing.

The only concern is the computational overhead, because by keeping the
layout information in the intermediate representation the advantage of maximal
sharing is lost. By means of some small benchmarks we showed that rewriting
with layout is about 50% slower than rewriting without layout, but the amount
of used memory is not affected by this modification.

At the moment we have performed only a very straightforward modification

11
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Figure 8: Timing results for the evaltree benchmark. The lines stop where
the system runs out of memory.

of the rewriter. Given this framework it is interesting to perform experiments
with matching on layout and/or reusing the layout occurring in a term in the
right-hand side of a rule. In Figure 10 we give an example of how matching on
layout could be specified in ASF+SDF.

Finally, compilation of rewriting with layout is needed to bring it to the
industrial application domain. The runtime term format of compiled rewriting
systems need to have layout encoded. And the compilation scheme needs to
generate code to implement abstraction from layout.
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