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ABSTRACT
The Linked Data Benchmark Council (LDBC) is now two
years underway and has gathered strong industrial partici-
pation for its mission to establish benchmarks, and bench-
marking practices for evaluating graph data management
systems. The LDBC introduced a new choke-point driven
methodology for developing benchmark workloads, which
combines user input with input from expert systems archi-
tects, which we outline. This paper describes the LDBC
Social Network Benchmark (SNB), and presents database
benchmarking innovation in terms of graph query function-
ality tested, correlated graph generation techniques, as well
as a scalable benchmark driver on a workload with complex
graph dependencies. SNB has three query workloads under
development: Interactive, Business Intelligence, and Graph
Algorithms. We describe the SNB Interactive Workload in
detail and illustrate the workload with some early results,
as well as the goals for the two other workloads.

1. INTRODUCTION
Managing and analyzing graph-shaped data is an increas-

ingly important use case for many organizations, in for in-
stance marketing, fraud detection, logistics, pharma, health-
care but also digital forensics and security. People have
been trying to use existing technologies, such as relational
database systems for graph data management problems. It
is perfectly possible to represent and store a graph in a rela-
tional table, for instance as a table where every row contains
an edge, and the start and end vertex of every edge are a
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foreign key reference (in SQL terms). However, what makes
a data management problem a graph problem is that the
data analysis is not only about the values of the data items
in such a table, but about the connection patterns between
the various pieces. SQL-based systems were not originally
designed for this – though systems have implemented diverse
extensions for navigational and recursive query execution.

In recent years, the database industry has seen a prolifer-
ation of new graph-oriented data management technologies.
Roughly speaking, there are four families of approaches.
One are pure graph database systems, such as Neo4j, Spark-
see and Titan, which elevate graphs to first class citizens in
their data model (“property graphs”), query languages, and
APIs. These systems often provide specific features such as
breadth-first search and shortest path algorithms, but also
allow to insert, delete and modify data using transactional
semantics. A second variant are systems intended to manage
semantic web data conforming to the RDF data model, such
as Virtuoso or OWLIM. Although RDF systems emphasize
usage in semantic applications (e.g. data integration), RDF
is a graph data model, which makes SPARQL the only well-
defined standard query language for graph data. A third
kind of new system targets the need to compute certain
complex graph algorithms, that are normally not expressed
in high-level query languages, such as Community Finding,
Clustering and PageRank, on huge graphs that may not fit
the memory of a single machine, by making use of cluster
computing. Example systems are GraphLab, Stratosphere
and Giraph, though this area is still heavily in motion and
does not yet have much industrial installed base. Finally, re-
cursive SQL, albeit not very elegant, is expressive enough to
construct a large class of graph queries (variable length path
queries, pattern matching, etc.). One of the possibilities
(exemplified by Virtuoso RDBMS) is to introduce vendor-
specific extensions to SQL, which are basically shortcuts for
recursive SQL subqueries to run specific graph algorithms
inside SQL queries (such as shortest paths).



The Linked Data Benchmark Council1 (LDBC) is an in-
dependent authority responsible for specifying benchmarks,
benchmarking procedures and verifying/publishing bench-
mark results. Benchmarks on the one hand allow to quan-
titatively compare different technological solutions, helping
IT users to make more objective choices for their software
architectures. On the other hand, an important second goal
for LDBC is to stimulate technological progress among com-
peting systems and thereby accelerate the maturing of the
new software market of graph data management systems.

This paper describes the Social Network Benchmark (SNB),
the first LDBC benchmark, which models a social network
akin to Facebook. The dataset consists of persons and a
friendship network that connects them; whereas the major-
ity of the data is in the messages that these persons post in
discussion trees on their forums. While SNB goes through
lengths to make its generated data more realistic than previ-
ous synthetic approaches, it should not be understood as an
attempt to fully model Facebook – its ambition is to be as re-
alistic as necessary for the benchmark queries to exhibit the
desired effects – nor does the choice for social network data
as the scenario for SNB imply that LDBC sees social net-
work companies as the primary consumers of its benchmarks
– typically these internet-scale companies do not work with
standard data management software and rather roll their
own. Rather, the SNB scenario is chosen because it is an
appealing graph-centric use case, and in fact social network
analysis on data that contains excerpts of social networks is
a very common marketing activity nowadays.

There are in fact three SNB benchmarks on one common
dataset, since SNB has three different workloads. Each work-
load produces a single metric for performance at the given
scale and a price/performance metric at the scale and can
be considered a separate benchmark. The full disclosure
further breaks down the composition of the metric into its
constituent parts, e.g. single query execution times.

SNB-Interactive. This workload consists of a set of rel-
atively complex read-only queries, that touch a significant
amount of data, often the two-step friendship neighborhood
and associated messages. Still these queries typically start
at a single point and the query complexity is sublinear to the
dataset size. Associated with the complex read-only queries
are simple read-only queries, which typically only lookup
one entity (e.g. a person). Concurrent with these read-only
queries is an insert workload, under at least read commit-
ted transaction semantics. All data generated by the SNB
data generator is timestamped, and a standard scale fac-
tor covers three years. Of this 32 months are bulkloaded at
benchmark start, whereas the data from the last 4 months
is added using individual DML statements.

SNB-BI. This workload consists of a set of queries that
access a large percentage of all entities in the dataset (the
“fact tables”), and groups these in various dimensions. In
this sense, the workload has similarities with existing re-
lational Business Intelligence benchmarks like TPC-H and
TPC-DS; the distinguishing factor is the presence of graph
traversal predicates and recursion. Whereas the SNB In-
teractive workload has been fully developed, the SNB BI
workload is a working draft, and the concurrent bulk-load
workload has not yet been specified.
1ldbcouncil.org - LDBC originates from the EU FP7 project
(FP7-317548) by the same name.

SNB-Algorithms. This workload is under construction,
but is planned to consist of a handful of often-used graph
analysis algorithms, including PageRank, Community De-
tection, Clustering and Breadth First Search. While we
foresee that the two other SNB workloads can be used to
compare graph database systems, RDF stores, but also SQL
stores or even noSQL systems; the SNB-Algorithms work-
load primary targets graph programming systems or even
general purpose cluster computing environments like MapRe-
duce. It may, however, be possible to implement graph algo-
rithms as iterative queries, e.g. keeping state in temporary
tables, hence it is possible that other kinds of systems may
also implement it.

Given that graph queries and graph algorithm complexity
is heavily influenced by the complex structure of the graph,
we specifically aim to run all three benchmarks on the same
dataset. In the process of benchmark definition, the dataset
generator is being tuned such that the graph, e.g. contains
communities, and clusters comparable to clusters and com-
munities found on real data. These graph properties cause
the SNB-Algorithms workload to produce “sensible” results,
but are also likely to affect the behavior of queries in SNB-
Interactive and SNB-BI. Similarly, the graph degree and val-
ue/structure correlation (e.g. people having names typical
for a country) that affect query outcomes in SNB-Interactive
and BI may also implicitly affect the complexity of SNB-
Algorithms. As such, having three diverse workloads on the
same dataset is thought to make the behavior of all work-
loads more realistic, even if we currently would not under-
stand or foresee how complex graph patterns affect all graph
management tasks.

This paper focuses on SNB-Interactive, since this work-
load is complete. The goal of SNB-Interactive is to test
graph data management systems that combine transactional
update with query capabilities. A well-known graph database
system that offers this is neo4j, but SNB-Interactive is for-
mulated such that many systems can partitipate, as long
a they support transactional updates allowing simultaneous
queries. The query workload focus on interactivity, with
the intention of sub-second response times and query pat-
terns that start typically at a single graph node and visit
only a small portion of the entire graph. One could hence
position it as OLTP, even though the query complexity is
much higher than TPC-C and does include graph tasks such
as traversals and restricted shortest paths. The rationale
for this focus stems from LDBC research among its ven-
dor members and the LDBC Technical User Comunity of
database users. This identified that many interactive graph
applications currently rely on key-value data manegement
systems without strong consistency, where query predicates
that are more complex than a key-lookup are answered us-
ing offline pre-computed data. This staleness and lack of
consistency both impact the user experience and compli-
cate application development, hence LDBC hopes that SNB-
Interactive will lead to the maturing of transactional graph
data management systems that can improve the user expe-
rience and ease application development.

The main contributions by the LDBC work on SNB are
the following:

scalable correlated graph. The SNB graph generator has
been shown to be much more realistic than previous syn-
thetic data generators [13], for which reason it was already
chosen to be the base of the 2014 SIGMOD programming



contest. The graph generator is further notable because it
realizes well-known power laws, uses skewed value distri-
butions, but also introduces plausible correlations between
property values and graph structures.

choke-point based design. The SNB-Interactive query
workload has been carefully designed according to so-called
choke-point analysis that identifies important technical chal-
lenges to evaluate in a workload. This analysis requires both
user input2 as well as expert input from database systems ar-
chitects. In defining the SNB-Interactive, LDBC has worked
with the core architects of Neo4j, RDF-3X, Virtuoso, Spark-
see, MonetDB, Vectorwise and HyPer.

dependency synchronization. The SNB query driver
solves the difficult task of generating a highly parallel work-
load to achieve high throughput, on a datasets that by its
complex connected component structure is impossible to
partition. This could easily lead to extreme overhead in
the query driver due to synchronization between concurrent
client threads and processes – the SNB driver enables op-
timizations that strongly reduce the need for such synchro-
nization by identifying sequential and window-based execu-
tion modes for parts of the workload.

parameter curation. Since the SNB dataset is such a
complex graph, with value/structure correlations affecting
queries over the friends graph and message discussion trees,
with most distributions being either skewed (typically using
the exponential distribution) or power-laws, finding good
query parameters is non-trivial. If uniformly chosen val-
ues would serve as parameters, the complexity of any query
template would vary enormously between the parameters –
an undesirable phenomenon for the understandability of a
benchmark. The SNB therefore introduced a new bench-
marking concept, namely Parameter Curation [6] that per-
forms a data mining step during data generation to find
substitution parameters with equivalent behavior.

2. INNOVATIVE GRAPH GENERATOR
The LDBC SNB data generator (DATAGEN) evolved from

the S3G2 generator [10] and simulates the user’s activity in a
social network during a period of time. Its schema has 11 en-
tities connected by 20 relations, with attributes of different
types and values, making for a rich benchmark dataset. The
main entities are: Persons, Tags, Forums, Messages (Posts,
Comments and Photos), Likes, Organizations, and Places.
A detailed description of the schema is found at [11].

The dataset forms a graph that is a fully connected com-
ponent of persons over their friendship relationships. Each
person has a few forums under which the messages form
large discussion trees. The messages are further connected
to posts by authorship but also likes. These data elements
scale linearly with the amount of friendships (people having
more friends are likely more active and post more messages).
Organization and Place information are more dimension-like
and do not scale with the amount of persons or time. Time
is an implicit dimension (there is no separate time entity)
but is present in many timestamp attributes.

2LDBC has a Technical User Community which it consults
for input and feedback.

(person.location, person.firstName (typical names)

person.gender) person.interests (popular artist)

person.location person.lastName (typical names)

person.university (nearby universities)

person.company (in country)

person.languages (spoken in country)

person.language person.forum.post.language (speaks)

person.interests person.forum.post.topic (in)

post.topic post.text (DBpedia article lines)

post.comment.text (DBpedia article lines)

person.employer person.email (@company, @university)

post.photoLocation post.location.latitude (matches location)

post.location.longitude (matches location)

person.birthDate person.createdDate (>)

person.createdDate person.forum.message.createdDate (>)

person.forum.createdDate (>)

forum.createdDate post.photoTime (>)

forum.post.createdDate (>)

forum.groupmembership.joinedDate (>)

post.createdDate post.comment.createdDate (>)

Table 1: Attribute Value Correlations: left determines right

Name Number

Karl 215
Hans 190
Wolfgang 174
Fritz 159
Rudolf 159
Walter 150
Franz 115
Paul 109
Otto 99
Wilhelm 74

Name Number

Yang 961
Chen 929
Wei 887
Lei 789
Jun 779
Jie 778
Li 562
Hao 533
Lin 456
Peng 448

Table 2: Top-10 person.firstNames (SF=10) for persons with
person.location=Germany (left) or China (right).

2.1 Correlated Attribute Values
An important novelty in DATAGEN is the ability to pro-

duce a highly correlated social network graph, in which at-
tribute values are correlated among themselves and also in-
fluence the connection patterns in the social graph. Such
correlations clearly occur in real graphs and influence the
complexity of algorithms operating on the graph.

A full list of attribute correlations is given in Table 1.
For instance, the top row in the table states that the place
where a person was born and gender influence the first name
distribution. An example is shown in Table 2, which shows
the top-10 most occurring first names for people from Ger-
many vs China. The actual set of attribute values is taken
from DBpedia, which also is used as a source for many other
attributes. Similarly, the location where a person lives in-
fluences his/her interests (a set of tags), which in turn influ-
ences the topic of the discussions (s)he opens (i.e., Posts),
which finally also influences the text of the messages in the
discussion. This is implemented by using the text taken
from DBpedia pages closely related to a topic as the text
used in the discussion (original post and comments on it).

Person location also influences last name, university, com-
pany and languages. This influence is not full, there are
Germans with Chinese names, but these are infrequent. In
fact, the shape of the attribute value distributions is equal
(and skewed), but the order of the values from the value
dictionaries used in the distribution, changes depending on
the correlation parameters (e.g. location).
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2.2 Time Correlation and Spiking Trends
Almost all entities in the SNB dataset have timestamp

attributes, since time is an important phenomenon in social
networks. The latter correlation rules in Table 1 are related
to time, and ensure that events in the social network follow
a logical order: e.g., people can post a comment only after
becoming a friend with someone, and that can only happen
after both persons joined the network.

The volume of person activity in a real social network, i.e.,
number of messages created per unit of time, is not uniform,
but driven by real world events such as elections, natural dis-
asters and sport competitions. Whenever an important real
world event occurs, the amount of people and messages talk-
ing about that topic spikes – especially from those persons
interested in that topic. We introduced this in DATAGEN
by simulating events related to certain tags, around which
the frequency of posts by persons interested in that tag is sig-
nificantly higher (the topic is “trending”). Figure 2(a) shows
the density of posts over time with and without event-driven
post generation, for SF=10. When event driven post gen-
eration is enabled, the density is not uniform but spikes of
different magnitude appear, which correspond to events of
different levels of importance. The activity volume around
an event is implemented as proposed in [7].

2.3 Structure Correlation: Friendships
The “Homophily Principle” [8] states that similar people

have a higher probability to be connected. This is modeled
by DATAGEN by making the probability that people are
connected dependent on their characteristics (attributes).
This is implemented by a multi-stage edge generation pro-
cess over two correlation dimensions: (i) places where
people studied and (ii) interests of persons.

In other words, people that are interested in a topic and/or
have studied in the same university at the same year, have
a larger probability to be friends. Furthermore, in order to
reproduce the inhomogeneities found in real data, a third
dimension consisting of a random number is also used.

In each edge generation stage the persons are re-sorted
on one dimension (first stage: study location, second: inter-
ests, last: random). Each worker processes a disjunct range
of these persons sequentially, keeping a window of the per-
sons in memory – the entire range does not have to fit – and
picks friends from the window using a geometric probabil-
ity distribution that decreases with distance in the window.
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Figure 2: (a) Post distribution over time for event-driven vs
uniform post generation on SF=10. (b) Maximum degree of
each percentile in the Facebook graph.

The probability for generating a connection during this stage
drops from very low at window boundary to zero outside
it (since the generator is not even capable of generating a
friendship to data dropped from its window). All this makes
the complex task of generating correlated friendship edges
scalable, as it now only depends on parallel sorting and se-
quential processing with limited memory. We note that one
dimension may have the form of multiple single-dimensional
values bitwise appended. In the particular case of the stud-
ied location, these are the Z-order location of the university’s
city (bits 31-24), the university ID (bits 23-12), and the stud-
ied year (bits 11-0). This is exemplified at Figure 1 where
we show a sliding window along the first correlation dimen-
sion (i.e., studied location). As shown in this figure, those
persons closer to person P2 (the person generating friends
for) according to the first dimension (e.g., P41, P6) have a
higher probability to be friends of P2.

The correlations in the friends graph also propagate to
the messages. A person location influences on the one hand
interests and studied location, so one gets many more like-
minded or local friends. These persons typically have many
more common interests (tags), which become the topic of
posts and comment messages.

The number of friendship edges generated per person (friend-
ship degree) is skewed [4]. DATAGEN discretizes the power
law distribution given by Facebook graph [14], but scales
this according to the size of the network. Because in smaller
networks, the amount of “real” friends that is a member and
to which one can connect is lower, we adjust the mean aver-
age degree logarithmically in terms of person membership,
such that it becomes (somewhat) lower for smaller networks.
A target average degree of the friendship graph is chosen us-
ing the following formula: avg degree = n0.512−0.028·log(n),
where n is the number of persons in the graph. That is,
when the size of the SNB dataset would be that of Facebook
(i.e. 700M persons) the average friendship degree would be
around 200. Then, each person is first assigned to a per-
centile p in the Facebook’s degree distribuion and second,
a target degree uniformly distributed between the minimum
and the maximum degrees at percentile p. Figure 2(b) shows
the maximum degree per percentile of the Facebook graph,
used in DATAGEN. Finally, the person’s target degree is
scaled by multiplying it by a factor resulting from divid-
ing avg degree by the average degree of the real Facebook
graph. Figure 3(a) shows the friendship degree distribution
for SF=10. Finally, given a person, the number of friendship
edges for each correlation dimension is distributed as follows:
45%, 45% and 10% out of the target degree, for the first, the
second and the third correlation dimension, respectively.



SFs
Number of entities (x 1000000)

Nodes Edges Persons Friends Messages Forums

30 99.4 655.4 0.18 14.2 97.4 1.8

100 317.7 2154.9 0.50 46.6 312.1 5.0

300 907.6 6292.5 1.25 136.2 893.7 12.6

1000 2930.7 20704.6 3.60 447.2 2890.9 36.1

Table 3: SNB dataset statistics at different Scale Factors

2.4 Scales & Scaling
DATAGEN can generate social networks of arbitrary size,

however for the benchmarks we work with standard scale-
factors (SF) valued 1,3,10,30,.. as indicated in Table 3. The
scale is determined by setting the amount of persons in the
network, yet the scale factor is the amount of GB of uncom-
pressed data in comma separated value (CSV) representa-
tion. DATAGEN can also generate RDF data in ntriple3

format, which is much more verbose.
DATAGEN is implemented on top of Hadoop to provide

scalability. Data generation is performed in three steps, each
of them composed of more MapReduce jobs.

person generation: In this step, the people of the so-
cial network are generated, including the personal informa-
tion, interests, universities where they studied and compa-
nies where they worked at. Each mapper is responsible of
generating a subset of the persons of the network.

friendship generation: As explained above, friendship
generation is split into a succession of stages, each of them
based on a different correlation dimension. Each of these
stages consists of two MapReduce jobs. The first is respon-
sible for sorting the persons by the given correlation dimen-
sion. The second receives the sorted people and performs
the sliding window process explained above.

person activity generation: this involves filling the fo-
rums with posts comments and likes. This data is mostly
tree-structured and is therefore easily parallelized by the
person who owns the forum. Each worker needs the at-
tributes of the owner (e.g. interests influence post topics),
the friend list (only friends post comments and likes) with
the friendship creation timestamps (they only post after
that); but otherwise the workers can operate independently.

We have paid specific attention to making data generation
deterministic. This means that regardless the Hadoop con-
figuration parameters (#node, #map and #reduce tasks)
the generated dataset is always the same.

On a single 4-core machine (Intel i7-2600K@3.4GHz, 16GB
RAM) that runs MapReduce in “pseudo-distributed” mode
– where each CPU core runs a mapper or reducer – one can
generate a SF=30 in 20 minutes. For larger scale factors
it is recommended to use a true cluster; SF=1000 can be
generated within 2 hours with 10 such machines connected
with Gigabit ethernet (see Figure 3(b)).

3When generating URIs that identify entities, we ensure
that URIs for the same kind of entity (e.g. person) have
an order that follows the time dimension. This is done by
encoding the timestamp (e.g. when the user joined the net-
work) in the URI string in an order-preserving way. This is
important for URI compression in RDF systems where of-
ten a correlation between such identifying URIs and time is
present, yet it is not trivial to realize since we generate data
in correlation dimension order, not logical time order.
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3. DESIGN BY CHOKE POINTS
LDBC benchmark development is driven by the notion of

a choke point. A choke point is an aspect of query execution
or optimization which is known to be problematical for the
present generation of various DBMS (relational, graph and
RDF). Our inspiration here is the classical TPC-H bench-
mark. Although TPC-H design was not based on explicitly
formulated choke points, the technical challenges imposed
by the benchmark’s queries have guided research and de-
velopment in the relational DBMS domain in the past two
decades [3]. A detailed analysis of all choke points used to
design the SNB Interactive workload is outside the scope
of this paper, the reader can find it in [11]. In general, the
choke points cover the “usual” challenges of query processing
(e.g., subquery unnesting, complex aggregate performance,
detecting dependent group-by keys etc.), as well as some
hard problems that are usually not part of synthetic bench-
marks. Here we list a few examples of these:

Estimating cardinality in graph traversals with data skew
and correlations. As graph traversals are in fact repeated
joins this comes back at a crucial open problem of query
optimization in a slightly more severe form. SNB queries
stress cardinality estimation in transitive queries, such as
traversals of hierarchies (e.g., made by replies to posts) and
dense graphs (paths in the friendship graph).

Choosing the right join order and type. This problem is di-
rectly related to the previous one, cardinality estimation.
Moreover, there is an additional challenge for RDF systems
where the plan search space grows much faster compared to
equivalent SQL queries: SPARQL operates over triple pat-
terns, so table scans on multiple attributes in the relational
domain become multiple joins in RDF.

Handling scattered index access patterns. Graph traversals



(such as neighborhood lookup) have random access without
predictable locality, and efficiency of index lookup is very
different depending on the locality of keys. Also, detecting
absence of locality should turn off any locality dependent
optimizations in query processing.

Parallelism and result reuse. All SNB Interactive queries of-
fer opportunities for intra- and inter-query parallelism. Ad-
ditionally, since most of the queries retrieve one- or two-hop
neighborhoods of persons in the social graph, and the Per-
son domain is relatively small, it might make sense to reuse
results of such retrievals across multiple queries. This is an
example of recycling: a system would not only cache final
query results, but also intermediate query results of a “high
value”, where the value is defined as a combination of partial
query result size, partial query evaluation cost, and observed
frequency of the partial query in the workload.

Example. In order to illustrate our choke point-based de-
sign of SNB queries, we will describe technical challenges
behind one of the queries in the workload, Query 9. Its
definition in English is as follows:

Query 9: Given a start Person, find the 20 most recent
Posts/Comments created by that Person’s friends or friends
of friends. Only consider the Posts/Comments created be-
fore a given date.

This query looks for paths of length two or three, starting
from a given Person, moving to the friends and friends of
friends, and ending at their created Posts/Comments. This
intended query plan, which the query optimizer has to de-
tect, is shown in Figure 4. Note that for simplicity we pro-
vide the plan and discussion assuming a relational system.
While the specific query plan for systems supporting other
data models will be slightly different (e.g., in SPARQL it
would contain joins for multiple attributes lookup), the fun-
damental challenges are shared across all systems.

Although the join ordering in this case is fairly straight-
forward, an important task for the query optimizer here
is to detect the types of joins, since they are highly sen-
sitive to cardinalities of their inputs. The lower most join
11 takes only 120 tuples (friends of a given person) and joins
them with the entire Friends table to find the second degree
friends. This is best done by looking up these 120 tuples in
the index on the primary key of Friends, i.e. by performing
an index nested loop join. The same holds for the next 12,
since it looks up around a thousand tuples in an index on
primary key of Person. However, the inputs of the last 13

are too large, and the corresponding index is not available
in Post, so Hash join is the optimal algorithm here. Note
that picking a wrong join type hurts the performance here:
in the HyPer database system, replacing index-nested loop
with hash in 11 results in 50% penalty, and similar effects
are observed in the Virtuoso RDBMS.

Determining the join type in Query 9 is of course a conse-
quence of accurate cardinality estimation in a graph, i.e. in a
dataset with power-law distribution. In this query, the opti-
mizer needs to estimate the size of second-degree friendship
circle in a dense social graph.

Finally, this query opens another opportunity for databases
where each stored entity has a unique synthetic identifier,
e.g. in RDF or various graph models. There, the system
may choose to assign identifiers to Posts/Comments en-
tities such that their IDs are increasing in time (creation
time of the post). Then, the final selection of Posts/Com-

ments created before a certain date will have high locality.
Moreover, it will eliminate the need for sorting at the end.

4. SNB-INTERACTIVE WORKLOAD
The SNB-Interactive workload consists of 3 query classes:
Transactional update queries. Insert operations in SNB

are generated by the data generator. Since the structure
of the SNB dataset is complex, the driver cannot generate
new data on-the-fly, rather it is pre-generated. DATAGEN
can divide its output in two parts, splitting all data at one
particular timestamp: all data before this point is output in
the requested bulk-load format (e.g., CSV), the data with a
timestamp after the split is formatted as input files for the
query driver. These become inserts that are “played out”
as the transactional update stream. There are the following
types of update queries in the generated data: add a user
account, add friendship, add a forum to the social network,
create forum membership for a user, add a post/comment,
add a like to a post/comment.

Complex read-only queries. The 14 read-only queries shown
in the Appendix retrieve information about the social envi-
ronment of a given user (one- or two-hop friendship area),
such as new groups that the friends have joined, new hash-
tags that the environment has used in recent posts, etc. Al-
though they answer plausible questions that a user of a real
social network may need, their complexity is typically be-
yond the functionality of modern social network providers
due to their online nature (e.g., no pre-computation). These
queries present the core of query optimization choke points
in the benchmark. We have already discussed some of the
challenges included in Query 9 in Section 3; the analysis of
the rest of the queries is given in [11]. The base definition of
the queries is in English, from the LDBC website4 one can
find query definitions in SPARQL, Cypher and SQL, as well
as API reference implementations for neo4j and Sparksee.

Simple read-only queries. The bulk of the user queries are
simpler and perform lookups: (i) Profile view: for a given
user returns basic information from her profile (name, city,
age), and the list of at most 20 friends and their posts. (ii)
Post view: for a given post return basic stats (when was it
submitted?) and some information about the sender.

We connect simple with complex read-only queries using
a random walk: results of the latter queries (typically a
small set of users or posts) become input for simple read-
only queries, where Profile lookup provides an input for Post
lookup, and vice versa. This chain of operations is governed
by two parameters: the probability to pick an element from
the previous iteration P , and the step ∆ with which this
probability is decreased at every iteration. Clearly, since
the probability to continue lookups decreases at each step,
the chain will be finite.

Query Mix. Constructing the overall query mix involves
defining the number of occurrences of each query type. While
doing so, we have two goals in mind. First, the overall
mix has to be somewhat realistic. In a social network, this
means the workload is read-dominated: for instance, Face-
book recently revealed that for each 500 reads there is 1
write in their social network [15]. Second, the workload has
to be challenging for the query engine, and consequently the
throughput on complex read-only queries should determine
a significant part of the benchmark score.

4ldbcouncil.org/developer/snb



Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14

132 240 550 161 534 1615 144 13 1425 217 133 238 57 144

Table 4: Frequency of complex read-only queries (number
of updates for each query type)

When calibrating SNB-Interactive query mix we aimed at
10% of total runtime to be taken by update queries (taken
from the data generator), 50% of time take complex read-
only queries, and 40% for the simple read-only queries. Within
the corresponding shares of time, we make sure each query
type takes approximately equal amount of CPU time (i.e.,
queries that touch more data run less frequently) to avoid
the workload being dominated by a single query. Since up-
dates are given by the data generator, the definition of the
query mix is done by setting relative frequencies of read
queries (e.g., Query 1 should be performed once in every
132 update operation). The calibration (setting the rela-
tive frequencies to fit the target runtime distribution) was
performed with Virtuoso RDBMS using explicit plans. In
addition, the probability P and the step ∆ that control the
amount of short reads were also determined experimentally
for each supported scale factor. We provide the frequencies
of complex read-only queries in Table 4 (see also [5]).

Scaling the workload. If D is the average out-degree of
a node in the social graph, and n is the number of enti-
ties in the dataset (users/posts/forums), then the 14 read-
only queries have complexities O(D logn), O(D2 logn) or
O(D3 logn), depending on whether they touch one-, two-
or three-hop friendship circle. The logarithmic component
there is a result of a corresponding index lookup. In con-
trast, simple read-only and the update queries – all requiring
only point lookups in the indexes – are of O(logn) complex-
ity. Hence, as the dataset increases, our read queries become
more “heavy” relatively to updates and short reads. In or-
der to keep the target CPU distribution (10% writes, 40%
lookups, 50% reads) as the workload scales, we adjust the
frequency of read queries correspondingly (reduce them by
the logarithmic factor as the scale factor grows).

Rules and Metrics. Since the scope of our benchmark in
terms of systems is very broad, we do not pose any restric-
tions on the way the queries are formulated. In fact, the
preliminary results presented below were achieved by a na-
tive graph store (no declarative query language, queries for-
mulated as programs using API) and a relational database
system (queries in SQL with vendor-specific extensions for
graph algorithms). Moreover, usage of materialized views
(or their equivalents) is not forbidden, as long as the system
can cope with updates. We require that all transactions
have ACID guarantees, with serializability as a consistency
requirement. Note that given the nature of the update work-
load, systems providing snapshot isolation behave identically
to serializable.

Our workload contains operations with timestamps in the
simulation time: updates coming from the data generator,
and the read queries that were added according to predefined
relative frequencies, as shown in Table 4. A system may be
able to execute the workload faster in real time; for exam-
ple, one hour of simulation time worth of operations might
be played against the database system in half an hour of real
time. The system under test (SUT) in this situation accepts
operations at a certain preset rate, a chosen multiple of the
rate in the timeline of the dataset. This acceleration-factor

(simulation time/real time) that the system can sustain cor-
relates with with throughput of the system.

In order to produce results, a vendor picks a scale of the
dataset and the acceleration factor. The run is successful
if the system can maintain a steady state throughput com-
patible with the acceleration factor (simulation time/real
time) that was set at the start of the run. Additionally, it
is required that latencies of the complex read-only queries
are stable as measured by a maximum latency on the 99th
percentile. These latencies are reported as a result of the
run. Hence the metrics produced by the benchmark are
this acceleration-factor and the acceleration-factor/$, i.e. di-
vided by total system cost over 3 years. The cost of the sys-
tem include hardware and software costs, but not the people
costs (that would make price computation extremely vague
and location-dependent for the ”in-house” solutions). Cur-
rently, LDBC allows benchmark runs to be performed in the
cloud, but we we extrapolate the operating expenses from
the measurement interval to the three year interval, given
that inside the measurement interval the workload is uni-
formly busy. Since people costs are not included into the
benchmark score, the cloud runs may be somewhat disad-
vantaged. We therefore anticipate that there will be a sep-
arate category for the cloud-based runs, incomparable with
the standalone (”in-house”) solutions.

4.1 Innovative Parameter Generation
Motivation and Examples. The benchmark specification
provides templates of queries with parameters (e.g., Per-
sonID, Timestamp, etc.) that are substituted with bindings
from the corresponding domain (e.g., all persons or times-
tamps). Having multiple parameter bindings instead of just
one prevents the system from trivially caching the single
query results, and it also ensures that a significant portion
of the dataset will be touched by the benchmark run. A con-
ventional way to pick parameters is to generate a uniform
random sample of the parameter domain, and use values of
that sample as parameter bindings. This approach has been
employed, among others, by TPC-H and BSBM.

However, selecting uniform random samples from the do-
main only works well if the underlying values are uniformly
distributed and uncorrelated. This is clearly not the case
for the LDBC SNB dataset: for example, the distribution
of the size of 2-hop environment (i.e., friends and friends of
friends) in the SNB graph, depicted in Figure 5a. Since the
number of friends has a power-law distribution, the number
of friends of friends follows a multimodal distribution with
several peaks. Consider now LDBC Query 5 that finds new
groups that friends and friends of friends of a given user
have joined recently. The uniform sample of PersonID for
LDBC Query 5 leads to non-uniform distribution of that
query runtime (shown in Figure 5b), since the size of the 2-
hop environment varies a lot across the users. What is worse,
the runtime distribution has a very high variance: there is
more than 100 times difference between the smallest and the
largest runtime for this sample.

High runtime variance is especially unfortunate, since it
leads to non-repeatable benchmark results: by obtaining
several uniform samples from the parameter domain (i.e.,
by running the benchmark several times) we would get very
different average runtimes and therefore different scores for
the same DBMS, data scale factor and hardware setup.

A similar effect was observed in the TPC-DS benchmark,
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Figure 5: Correlations cause high runtime variance (Q5)

where some values have the step-function distribution. TPC-
DS circumvents undesired effects by always selecting param-
eters with the same value of step function (i.e., from the
same “step”). However, this trick becomes impossible when
the distribution is more complex such as a power-law distri-
bution, and when there are correlations across joins (struc-
tural correlations).

In general, in order for the aggregate runtime to be a use-
ful measurement of the system’s performance, the selection
of parameters for a query template should guarantee the
following properties of the resulting queries:

P1: the query runtime has a bounded variance: the aver-
age runtime should correspond to the behavior of the
majority of the queries

P2: the runtime distribution is stable: different samples of
(e.g., 10) parameter bindings used in different query
streams should result in an identical runtime distribu-
tion across streams

P3: the optimal logical plan (optimal operator order) of the
queries is the same: this ensures that a specific query
template tests the system’s behavior under the well-
chosen technical difficulty (e.g., handling voluminous
joins, or proper cardinality estimation for subqueries)

It might seem that the ambition in SNB to include queries
that are affected by structure/value correlations goes counter
to P3, because due to such correlation a particular selection
predicate value might for instance influence a join hit ra-
tio in the plan, hence the optimal query plan would vary
for different parameter bindings, and picking the right plan
would be part of the challenge of the benchmark. Therefore,
whenever a query contains correlated parameters we identify
query variants that correspond to different query plans. For
each query variant, though, we would like to obtain param-
eter bindings with very similar characteristics, i.e. we still
need parameter curation.

There are two considerations taken into account when de-
signing the procedure to pick parameters satisfying prop-
erties P1-P3. First, there is a strong correlation between
the runtime of a query and the amount of intermediate re-
sults produced during the query execution, denoted Cout

[9]. Second, as we design the benchmark, we have a specific
(intended) query plan for each query. For example, LDBC
Query 5 mentioned above has an intended query plan as
given in Figure 6a. It should be executed by first looking up
the person with a given PersonId, then finding her friends

and friends of friends, and then going through the forums
to filter out those that all these friends joined after a cer-
tain date. It is therefore sufficient to select parameters with
similar runtime for the given query plan.

Now, the problem of selecting (curating) parameters from
the corresponding domain P with properties P1-P3 can be
formalized as follows:

Parameter Curation: for the Intended Query Plan QI
and the parameter domain P , select a subset S ⊂ P of size
k such that

∑
∀Tqi∈QI Variance∀p∈S Cout(Tqi(p)) is mini-

mized. This problem definition requires that the total vari-
ance of the intermediate results, taken for every subplan Tqi

of the plan QI, is minimized across the parameter domain
P (in case of multiple parameters P is a cross-product of the
respective domains). Since the cost function correlates with
runtime, queries with identical optimal plans w.r.t. Cout and
similar values of the cost function are likely to have close-
to-normal distribution of runtimes with small variance.

From the computational complexity point of view, the Pa-
rameter Curation problem is not trivial. Intuitively, an exact
algorithm would need to tackle a problem which is inverse
to the NP-hard join ordering problem: for the given optimal
plan find the parameters (i.e., queries) which yield a given
cost function value. Clearly, we can only seek a heuristic
method to solve this at scale.

Note that, as opposed to estimates of Cout (that could be
obtained from an EXPLAIN feature), we use the de facto
amounts of intermediate result cardinalities (which are oth-
erwise only known after the query is executed).

Parameter Curation at scale. Our heuristic for scalable
Parameter Curation works in two steps:

Step 1: Preprocessing The goal of this stage is to compute
all the intermediate results in the query plan for each value
of the parameter. We store this information as a Parameter-
Count (PC) table, where rows correspond to parameter val-
ues, and columns to a specific join result sizes.

As an example, consider LDBC Query 2, which extracts
20 posts of the given user’s friends ordered by their times-
tamps, following the intended plan depicted in Figure 6a.
The Parameter-Count table for this query is given in Fig-
ure 6b, where columns named | 11 | and | 12 | correspond
to the amount of intermediate results generated by the first
and second join, respectively. In other words, when executed
with %PersonID = 1542, Query 2 generates 60 + 99 = 159
intermediate result tuples.

There are two ways to obtain the Parameter-Count table
for the entire domain of PersonID in our example:
(i) we can form multiple Group-By queries around each sub-
query in the intended query plan. In our example these are
the queries ΓPersonID(Person 1 Friend) and
ΓPersonID((Person 1 Friend) 1 Forum). The result of
these queries are first and second column in Parameter-
Count table, respectively. Or, alternatively
(ii) since we are generating the data anyway, we can keep
the corresponding counts (number of friends per user and
number of posts per user) as a by-product of data genera-
tion. SNB-Interactive uses this strategy: DATAGEN in a
final stage curates parameters based on frequency statistics.

The Parameter-Count table needs to be materialized for
every query template. While it is feasible for discrete pa-
rameters with reasonably small domains (like PersonID in



Sort

12

11

σ(Person) Friends

Forums

(a) Intended Plan

PersonID
... ... ...

1673

1367

7511
958

... ... ...

60
60
60
60
61

99
102
103
120
101

1 2

1542

(b) Parameter-Count table

Figure 6: Parameter Curation for Query 2

SNB dataset), it becomes too expensive for continuous pa-
rameters. In that case, we introduce buckets of parameters
(for example, group Timestamp parameter into buckets of
one month length), see [6] for more details.

Step 2: Greedy parameter selection Once the intermediate
results for the query template are computed, our Parame-
ter Curation problem boils down to finding similar rows
(i.e., with the smallest variance across all columns) in the
Parameter-Count table. Here we rely on a greedy heuristics
that forms windows of rows with the smallest variance. In
our example Figure 6b we first identify the windows of rows
in the column | 11 | with the minimum variance (depicted
with dark gray color). Then, in this window we find the
sub-window with the smallest variance in the second col-
umn | 12 |. This procedure continues on further columns (if
present). In our example the initial window on the first col-
umn consists of rows with count 60, and among these rows
we pick rows with values 99, 102, and 103 in the second
column (dark gray color in Figure 6b). These rows corre-
spond to bindings 1542, 1673 and 7511 of PersonID. At the
end, every initial window on the first column is refined to
contain rows with the smallest variance across all columns.
We use the corresponding PersonID from these rows (across
the entire Parameter-Count table) to collect the required k
parameter bindings.

Parameter Curation for multiple parameters. The
procedure described above can be easily generalized to the
case of multiple parameters [6]. In particular, we have used
it for picking parameters in the following two situations that
occur in LDBC SNB queries: 1) A query with two (poten-
tially correlated) parameters, one from discrete and another
from continuous domain, such as Person and Timestamp (of
her posts, orders, etc). 2) Multiple (potentially correlated)
parameters, such as Person, her Name and her Country.

4.2 Workload Driver
Traditionally, a transactional workload is split into par-

titioned (streams) that are issued concurrently against the
System Under Test in order to get maximal throughput.
In case of SNB-Interactive, splitting update operations into
parallel streams is not trivial, since updates may depend on
each other: a user can not add a friendship before the corre-
sponding friend profile is created (these two operations may
be in two different streams), a comment can be added only
to existing post, etc. Some parts of the update workload can
be easily partitioned: for example, updates touching posts/-
comments from one forum are assigned to the same update
stream. On the other hand, any update that takes Per-
sonId potentially touches the FRIEND graph, which is non-
partitionable. The negative consequence would be running

only a single stream, or multiple streams where the clients
must synchronize their activities. Both alternatives could
severely limit the throughput achieved by the query driver.

Tracking Dependencies. To have greater control over
the generated load profile (e.g., to generate trending topics,
see Figure 2b) every operation in a workload has a times-
tamp, referred to as Due Time (T DUE), which represents
the simulation time at which that operation is scheduled to
be executed.

In addition, each operation belongs to none, one, or both
of the following sets: Dependencies and Dependents. De-
pendencies contains operations that introduce dependencies
in the workload (e.g., create profile); for every operation in
this set there exists at least one other operation (from De-
pendents) that can not be executed until this operation has
completed execution. Dependents contains operations that
are dependent on at least one other operation (from Depen-
dencies) in the workload, for instance, adding a friend. The
driver uses this information when tracking inter-operation
dependencies, to ensure they are not violated during ex-
ecution. It tracks the latest point in time behind which
every operation has completed; every operation (i.e., depen-
dency) with T DUE lower or equal to this time is guaranteed
to have completed execution. This is achieved by main-
taining a monotonically increasing timestamp variable called
Global Completion Time (T GC), which every parallel stream
has access to. Every time the driver begins execution of a
Dependencies operation the timestamp of that operation is
added to Initiated Times (IT ): set of timestamps of opera-
tions that have started executing but not yet finished. Upon
completion, timestamps are removed from IT and added to
Completed Times (CT ): set of timestamps of completed op-
erations. Timestamps must be added to IT in monotonically
increasing order but can be removed in any order.

More specifically, dependency tracking is performed as fol-
lows. Each stream has its own instances of IT and CT
which, along with the dependency-tracking logic, are encap-
sulated in Local Dependency Service (LDS); its data struc-
tures and logic are given in Figure 7. As well as maintaining
IT and CT, LDS exposes two timestamps: Local Initiation
Time (T LI) and Local Completion Time (T LC). T LI is the
lowest timestamp in IT, or the last known lowest timestamp
if IT is empty. T LC is a local analog to T GC, the point
in time behind which every operation from that particular
stream has completed; there is no lower or equal timestamp
in IT and at least one equal or higher timestamp in CT.
T LI and T LC are guaranteed to monotonically increase.

Inter-stream dependency tracking is performed by Global
Dependency Service (GDS) similarly to how LDS tracks
intra-stream dependencies, but instead of internally track-
ing IT and CT it tracks LDS instances. Like LDS, GDS
exposes two timestamps: Global Initiation Time (T GI) and
T GC. T GI is the lowest T LI from across all LDS instances.
T GC is the point in time behind which every operation, from
all streams, has completed; there is no LDS with T LI lower
or equal to this value and at least one LDS has T LC equal
or higher than this value. T GI and T GC are guaranteed to
monotonically increase.

The rationale for exposing T LI is that, as values added to
IT are monotonically increasing, T LI communicates that no
lower value will be submitted in the future, enabling GDS
to advance T GC as soon as possible. Strictly, T GI is not re-
quired in a single process context. The rationale for exposing



class LocalDependencyService {
Time[] IT
Time[] CT

Time TLI <- max(TLI , min([i for i in IT]))

Time TLC <- max([c for c in CT: c<TLI ])
}

class GlobalDependencyService {
LocalDependencyService [] LDS

Time TGI <- min([l.TLI for l in LDS])

Time TGC <- max([l.TLC for l in LDS: l.TLC <TGI ])
}

Figure 7: Dependency tracking classes

T GI is to make GDS composable. That is, a GDS instance
could track other GDS instances in the same manner as it
tracks LDS instances, enabling dependency tracking in a
hierarchical/distributed setting.

Stream Execution Modes. Every operation, regardless of
dependencies, is executed in a similar manner, illustrated in
Figure 8. The default Execution Mode (method of schedul-
ing operations) is Parallel: multiple stream operations are
executed in parallel, using a thread pool, and the dependen-
cies are satisfied using TGC communication. However, for
some types of operations it is possible to use a simple Se-
quential execution mode, where very limited communication
between driver threads is necessary, since most of the depen-
dencies stay within one stream. In this section we describe
the motivation and applicability of this Sequential mode to
update execution in SNB-Interactive.

Some dependencies are difficult to capture efficiently with
T GC alone. For example, consider a subset of the SNB-
Interactive workload: the creation of users, posts, and likes.
Likes depend on the existence of posts, posts and likes de-
pend on the existence of the users that created them. Users
are created at a much lower frequency than posts and likes,
and do not immediately create content. Conversely, posts
are replied to and/or liked soon after their creation.

Using T GC to maintain dependencies between posts and
likes would result in many frequent updates to T GC, and
excessive synchronization between streams as they wait for
T GC to advance. However, observe that posts and likes
form a tree, rooted at the forum, therefore it is possible to
partition update streams by forum, eliminating inter-forum
dependencies. The insight here is that posts and likes only
depend on other posts from the same forum, as long as intra-
forum dependencies are maintained, updates to a given fo-
rum can progress irrespective of the state of other forums.

Moreover, when dependent operations occur at high fre-
quency (duration between T DUE of dependent operations is
short) the benefit of parallel execution might be negated by
the cost of dependency tracking in the query driver. The
alternative offered by Sequential execution is that instead
of classifying stream operations as Dependent/Dependency,
the same dependencies can be captured by executing that
stream sequentially, thereby guaranteeing causal order is
maintained. This, however, only applies when it is possible
to partition streams into many smaller streams, to achieve
sufficient parallelism.

In the SNB-Interactive case Sequential execution is used
for capturing intra-forum dependencies - using T GC would
introduce false dependencies. This dramatically reduces over-
head related to dependency tracking, and achieves sufficient
parallelism due to the large number of forums.

Operation operation <- stream.next()
if (dependencies.contains(operation)){

LDS.IT.add(operation.DUE)
}
if (dependents.contains(operation)){

while(operation.DEP < GDS.GCT){
// wait

}
}
while(operation.DUE < now()){

// wait
}
operation.execute ()
if (dependencies.contains(operation)){

LDS.IT.remove(operation.DUE)
LDS.CT.add(operation.DUE)

}

Figure 8: Dependent execution

For dependencies between users and their generated con-
tent T GC tracking is used, as it is impossible to partition the
social graph in such a way that dependencies are eliminated.

Windowed Execution. The mechanisms we introduced
so far guarantee that dependency constraints are not vio-
lated, but in doing so they unavoidably introduce overhead
of synchronization between driver threads.

In so-called Windowed Execution mode, operations are ex-
ecuted in groups (Windows), where operations are grouped
according to their T DUE. Every Window has a Start Time,
Duration, and End Time. Logically, all operations in a Win-
dow are executed at the same time, some time within the
Window. No guaranty is made regarding exactly when, or
in what order, an operation will execute within its Window.
Operations belonging to Dependencies are never executed in
this manner – T DUE of Dependencies operations are never
modified as it would affect how dependencies are tracked.

To allow Windowed Execution mode we must ensure a
minimum duration exists between the T DEP and T DUE of
any operation in Dependents, this is called “Safe Time”
(T SAFE). In the case of the SNB dataset, what we need
to know is the minimum time between a person becoming a
member of the network and making a first post, and a min-
imum time between becoming a friend and writing a first
comment or like in the friend’s forum. DATAGEN ensures
that this T SAFE is considerably long in all generated data.
The end effect of Windowed Execution is that the T GC be-
tween the parallel threads (or processes) in the driver need to
be synchronized much less often (once every T SAFE of simu-
lated time). This helps reduce communication overhead, and
this mode also gives threads the ability to schedule queries
inside a window out-of-order and hence be less bursty.

In the currently available version of the driver, which is
multi-threaded but single-node, Windowed Execution mode
is not yet available. We plan to make this available in the
multi-node version of the driver, where synchronization cost
would be high (as it involves network communication).

Scalable Dependent Execution. To illustrate driver scal-
ability, experiments were performed using a dummy database
connector that, rather than executing transactions against
a database, simply sleeps for a configured duration. From
the driver perspective this simulates a benchmark run where
the SUT takes, on average, that duration to execute a trans-
action. The experiment was run with two configured sleep
durations: 1ms and 100us.

The chosen workload consists only of the SNB-Interactive
updates. Specifically, all updates from SF10 update stream



partitions: 1 2 4 8 12

1ms 997 1990 3969 7836 11298

100us 9745 19245 38285 78913 110837

Table 5: Op/second vs #partitions

- approximately 32 Million operations. Note that, as they
contain no inter-dependencies, executing the read queries in
parallel is trivial and uninteresting from the perspective of
driver scalability. To control parallelism, the number of par-
titions was set from 1 to 12. All experiments were done on
a system with 12 Intel Xeon E5-2640 CPUs, 128GB RAM,
and SSD storage running Linux’s 3.2.0-57 kernel.

As presented in Table 5, the driver shows near-linear scal-
ability while maintaining the complex inter-partition depen-
dencies, i.e., ensuring dependent operations do not start
until their dependencies complete. Every entry in Table 5
corresponds to the execution of the exact same stream (in
SF10 the stream comprises of 32,648,010 forum operations
and 6,889 user operations, which are spread uniformly across
the timeline), the only differences being the number of par-
titions the stream is divided into. As partition count (par-
allelism) increases so does the execution rate, reducing the
time between subsequent operations, in turn straining more
the tracking of dependencies. Remembering that every fo-
rum operation depends on one user operation, this increased
throughput translates to a greater probability for any of the
forum operations to block as they wait for their user depen-
dency to complete. Further, because forums are executed
using synchronous execution mode, the blocking of one op-
eration would result in the blocking of an entire partition.

5. EVALUATION
We report some results of running SNB-Interactive with

two systems: Sparksee (native graph database) and Virtu-
oso (hybrid relational/RDF store). All the runs were per-
formed on the same machine, a single dual Xeon E5 2630
with 192GB of RAM and 6 magnetic disks. It should be
noted that both vendors are still in the process of tuning
their systems and these results are preliminary.

Scale Factor 10: Sparksee First we run the Interactive
workload on SF10 dataset with Sparksee graph database.
The queries were implemented using Sparksee’s Java API.
Sparksee creates indexes on IDs of nodes, and additionally
materializes neighborhood of each node. Our acceleration
ratio for this run is 0.1, measured throughput is around 26
operations per second. For the 10GB dataset, the Sparksee
image takes 27GB; the execution is therefore fully in mem-
ory. We provide the mean latencies of complex read queries
in Table 6. Results of short read queries and transactional
updates are given in Tables 7 and 9, respectively.

Scale Factor 300: Virtuoso We run the SNB SF300 on
Openlink Virtuoso 7.5. The benchmark implementation is
in SQL using Virtuoso transitive SQL extensions for graph
traversals. The tables are column-wise compressed and in-
dices are created on foreign key columns where needed, oth-
erwise all is in primary key order. The 300GB dataset is
88GB after gzip compression.

In Table 8 we give the sizes in MB of allocated database
pages for three largest tables and their largest indices, loaded
into Virtuoso Column store. 138GB is the total allocated
space including all column and row-wise structures. We note

complex read-only Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14

Sparksee,SF10 20 44 441 31 100 41 11 38 3376 194 66 177 794 2009

Virtuoso,SF300 941 1493 4232 1163 2688 16090 1000 32 18464 1257 762 1519 559 742

Table 6: Mean runtime of complex read-only queries (ms)

simple read-only Q1 Q2 Q3 Q4 Q5 Q6 Q7

Sparksee,SF10 7 9 9 8 9 9 8

Virtuoso,SF300 6 147 37 7 2 1 8

Table 7: Mean runtime of simple read-only queries (ms)

that both identifiers and datetimes compress significantly
from their CSV form.

The benchmark was run with acceleration of 10 units of
simulation time per 4 of real time (0.4), reaching a through-
put of 500 queries per second. Table 6 gives the number
of executions and mean client-side duration of each query.
The achieved throughput would be plausible as a peak load
of an online system, as these are usually sized to run at
a fraction of theoretical peak throughput. Thus, a 300GB
dataset with 1.1 million people could be served from a smal-
l/medium commodity server (12 core, 192GB RAM). Con-
versely, a 100 million people network would take over 200
servers in a redundant cluster configuration, which is again
plausible. Tables 7 and 9 have results of short read queries
and transactional updates of the Virtuoso SF-300 run. More
experimental results for Virtuoso can be found in [12].

6. RELATED WORK
Benchmarking has become popular in the RDF/Seman-

tic Web community, partially because there is a standard
query language, SPARQL. Consequently many benchmarks
exist in the area, including LUBM, BSBM, and SP 2Bench.
Although these benchmarks often cover many features of
SPARQL, even BSBM, a rather advanced benchmark, does
not reach the classical TPC-H in terms of query optimization
challenges. SNB-Interactive workload, on the other hand,
follows a query language-independent, choke point-based ap-
proach to provide challenges for modern DBMS.

Related to social network benchmarking, Facebook re-
cently presented Linkbench [1], a benchmark targetting the
OLTP workload on the Facebook graph. It is, however,
rather limited in scope (only transactions) and uses a syn-
thetic graph generator that, besides degree distribution, re-
produces very little of the structure or value correlations
found in real networks. In contrast, SNB’s DATAGEN pro-
vides the ground for multiple realistic workloads ranging
from OLTP to graph algorithms.

The BG benchmark [2] proposes to evaluate simple so-
cial networking actions under different Service Level Agree-
ments. We note that LDBC queries are more complex than
BG, and require more stict consistency requirements (ACID).
Further, it would be impossible to validate benchmark runs
for such relaxed consistency models.

In the super-computing domain, we find Graph-500, which
consists of Breadth First Search queries, and is used to test
the hardware capabilities of large scale systems for work-

Table Size (MB) Largest Index (MB)

post 76815 ps content (41697)

likes 23645 l creationdate (11308)

forum person 9343 fp creationdate (5957)

Table 8: Size of 3 largest tables - Virtuoso,SF300



updates Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Sparksee,SF10 492 309 307 239 317 190 324 273

Virtuoso,SF300 35 198 85 55 16 118 141 15

Table 9: Mean runtime of transactional updates (ms)

loads exhibiting more random memory access patterns than
those found in traditional scientific applications.

7. CONCLUSION
The LDBC SNB introduces a new and quite complex syn-

thetic social network dataset on which three workloads are
intended to be run: SNB-Interactive, SNB-BI and SNB Al-
gorithms. This paper focuses on the former, which tests
on-line queries. The benchmark has been implemented on
graph database systems, RDF database systems and RDBMSs.
The SNB data generator is innovative due to its power-
law driven data generation with realistic correlations be-
tween properties and graph structure, as well as its scalable
Hadoop implementation – allowing to generate terabytes of
data quickly on a small cluster. The SNB query driver
needed to confront the issue of non-partitionability of the
transaction workload, since social graphs are one huge con-
nected component. The SNB-Interactive query mix is a bal-
ance between testing so-called “choke points” with the com-
plex read-only queries, and executing simple updates and
read-only queries. A final contribution is the introduction
of parameter curation which data mines the dataset for query
parameters with highly similar behavior, to make the bench-
mark score more insightful and stable across runs.

SNB-Interactive contains a rich set of technical challenges,
of which we are convinced that the current generation of
systems only a few target effectively. This makes it an in-
teresting benchmark for IT practitioners, industry engineers
and academics alike.
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APPENDIX
Definitions of 14 read queries of the Interactive workload. See [11]
for their SQL/SPARQL/Cypher formulations. For each query we
additionally highlight its parameters.

Q1. Extract description of friends with a given name Given
a person’s firstName, return up to 20 people with the same first
name, sorted by increasing distance (max 3) from a given person,
and for people within the same distance sorted by last name.
Results should include the list of workplaces and places of study.

Q2. Find the newest 20 posts and comments from your friends.
Given a start Person, find (most recent) Posts and Comments
from all of that Person’s friends, that were created before (and
including) a given Date. Return the top 20 Posts/Comments, and
the Person that created each of them. Sort results descending by
creation date, and then ascending by Post identifier.

Q3. Friends within 2 steps that recently traveled to countries X
and Y. Find top 20 friends and friends of friends of a given Person
who have made a post or a comment in the foreign CountryX
and CountryY within a specified period of DurationInDays after
a startDate. Sorted results descending by total number of posts.

Q4. New Topics. Given a start Person, find the top 10 most
popular Tags (by total number of posts with the tag) that are at-
tached to Posts that were created by that Person’s friends within
a given time interval.

Q5. New groups. Given a start Person, find the top 20 Forums
the friends and friends of friends of that Person joined after a
given Date. Sort results descending by the number of Posts in
each Forum that were created by any of these Persons.

Q6. Tag co-occurrence. Given a start Person and some Tag,
find the other Tags that occur together with this Tag on Posts
that were created by Person’s friends and friends of friends. Re-
turn top 10 Tags, sorted descending by the count of Posts that
were created by these Persons, which contain both this Tag and
the given Tag.

Q7. Recent likes. For the specified Person get the most recent
likes of any of the person’s posts, and the latency between the
corresponding post and the like. Flag Likes from outside the
direct connections. Return top 20 Likes, ordered descending by
creation date of the like.

Q8. Most recent replies. This query retrieves the 20 most
recent reply comments to all the posts and comments of Person,
ordered descending by creation date.

Q9. Latest Posts. Find the most recent 20 posts and comments
from all friends, or friends-of-friends of Person, but created before
a Date. Return posts, their creators and creation dates, sort
descending by creation date.

Q10. Friend recommendation. Find top 10 friends of a friend
who posts much about the interests of Person and little about
not interesting topics for the user. The search is restricted by the
candidate’s horoscopeSign. Returns friends for whom the differ-
ence between the total number of their posts about the interests
of the specified user and the total number of their posts about
topics that are not interests of the user, is as large as possible.
Sort the result descending by this difference.

Q11. Job referral. Find top 10 friends of the specified Person,
or a friend of her friend (excluding the specified person), who has
long worked in a company in a specified Country. Sort ascending
by start date, and then ascending by person identifier.

Q12. Expert Search. Find friends of a Person who have replied
the most to posts with a tag in a given TagCategory. Return top
20 persons, sorted descending by number of replies.

Q13. Single shortest path. Given PersonX and PersonY , find
the shortest path between them in the subgraph induced by the
Knows relationships. Return the length of this path.

Q14. Weighted paths. Given PersonX and PersonY , find all
weighted paths of the shortest length between them in the sub-
graph induced by the Knows relationship. The weight of the path
takes into consideration amount of Posts/Comments exchanged.


