
Parameter Curation for Benchmark Queries

Andrey Gubichev1 and Peter Boncz2

1 TU Munich gubichev@in.tum.de
2 CWI P.Boncz@cwi.nl

Abstract. In this paper we consider the problem of generating parameters for
benchmark queries so these have stable behavior despite being executed on datasets
(real-world or synthetic) with skewed data distributions and value correlations.
We show that uniform random sampling of the substitution parameters is not well
suited for such benchmarks, since it results in unpredictable runtime behavior of
queries. We present our approach of Parameter Curation with the goal of select-
ing parameter bindings that have consistently low-variance intermediate query
result sizes throughout the query plan. Our solution is illustrated with IMDB data
and the recently proposed LDBC Social Network Benchmark (SNB). 3

1 Introduction

A typical benchmark consists of two parts: (i) the dataset, which can be either real-
world or synthetic, and (ii) the workload generator that issues queries against the dataset
based on the pre-defined query templates. A query template is an expression in the query
language (e.g., SQL or SPARQL) with substitution parameters that have to be replaced
with real bindings by the workload generator. For example, a template of a query that
asks for all the movie producing companies from the country %Country% that have
released more that 20 movies, looks like:

Query 1.1: IMDB Query
s e l e c t cn . name , count (t . i d) c n t
from t i t l e t , movie compan ies mc , company name cn
where t . i d = mc . m o v i e i d and cn . i d = mc . company id

and cn . c o u n t r y c o d e = ’%Count ry%’ and t . k i n d i d = 1
group by mc . company id , cn . name
having count (*) > 20
order by c n t desc
l i m i t 20

In a query workload, the workload driver would execute this query template in
one experiment potentially multiple times (e.g., 10) with different bindings for the
%Country parameter. It would report an aggregate value of the observed runtime dis-
tribution per query (usually, the average runtime per query template). This aggregated
score serves two audiences: First, the users can evaluate how fit a specific system is
for their use-case (choosing, for example, between systems that are good in complex

3 Partially supported by EU project LDBC (FP7-317548), see http://ldbc.eu

analytical processing and those that have the highest throughput for lookup queries).
Second, database architects can use the score to analyze their systems’ handling of cer-
tain technical challenges, like handling multiple interesting orders or sparse foreign key
joins (in the LDBC project, we call such technical challenges “ choke points” [2]).

In “throughput” experiments, the benchmark driver may also execute the above ex-
periment multiple times in multiple concurrent query streams. For each stream, a dif-
ferent set of parameters is needed.

Desired Properties. In order for the aggregate runtime to be a useful measurement
of the system’s performance, the selection of parameters for a query template should
guarantee the following properties of the resulting queries:

P1: the query runtime has a bounded variance: the average runtime should correspond
to the behavior of the majority of the queries

P2: the runtime distribution is stable: different samples of (e.g., 10) parameter bindings
used in different query streams should result in an identical runtime distribution
across streams

P3: the optimal logical plan (optimal operator order) of the queries is the same: this
ensures that a specific query template tests the system’s behavior under the well-
chosen technical difficulty (e.g., handling voluminous joins or proper cardinality
estimation for subqueries etc.)

The conventional way to get the parameter bindings for %Country is to sample the
values (uniformly, at random) from all the possible country names in the dataset (the
“domain”). This is, for example, how the TPC-H benchmark creates its workload. Since
the TPC-H data is generated with simple uniform distribution of values, the uniform
sample of parameters trivially guarantees the properties P1-P3. The TPC-DS bench-
mark moved away from uniform distributions and uses ”step-shaped” frequency dis-
tributions instead [5, 6], where there are large differences in frequency between steps,
but each step in the frequency distribution contains multiple values all having the same
frequency. This allows TPC-DS to obtain parameter values with exactly the same fre-
quency, by choosing them all from the same step.

However, these techniques do not work for benchmarks that use real-world datasets
(IMDB in our example, or DBPedia etc.), or generate datasets with skewed value distri-
bution and close-to-realistic correlations between values (LDBC Social Network Bench-
mark, which is based on S3G2 generator [3]). In our example above, the behavior of the
query changes significantly depending on the selection of the parameter. We present a
detailed analysis of its behavior in Section 2, but most notably, if %Country is ’[US]’,
the query features a voluminous join between movie companies and movie, while
for smaller countries (like ’[FI]’) the join is very sparse. As we see, two very differ-
ent scenarios are tested for these two parameter choices, and they should ideally be
reported separately. The country parameter bindings for these two scenarios would be
drawn from two buckets of countries, with large number of movies (’[US]’, ’[UK]’,
’[FR]’ etc) and with a few movies (’[HK]’,’[DK]’ etc). The recently proposed LDBC
Social Network benchmark is another example where one would need to carefully select
parameters in order to avoid large variability of plans and execution times.

We clarify that our intention is not to obviate the interesting query optimization
problems related to the real-world distributions and correlations in the dataset, but to
make the results within one query template predictable by choosing the parameters
that satisfy properties P1-P3, in order to guarantee that the behavior of the System
Under Test (SUT) and of the benchmark results is understandable. In case different
parameters have very different runtimes and optimal query plans (e.g. due to skew or
correlations) this can still be tested in a benchmark by having multiple query variants,
e.g., one variant with countries where many movies are made, another with countries
where rarely movies are made. The different variants would behave very differently and
test whether the optimizer makes good decisions, but within the same query variant the
behavior should be stable and understandable regardless the substitution parameter.

Parameter Curation. In this paper we present an approach to generate parameters that
yield similar behavior of the query template, which we coin “Parameter Curation”. We
consider a setup with a fixed set of query templates and a dataset (either real-world or
synthetic) as input for the parameter generator. Our approach consists of two parts:

– for each query template for all possible parameter bindings, we determine the size
of intermediate results in the intended query plan. Intermediate result size heavily
influences the runtime of a query, so two queries with the same operator tree and
similar intermediate result sizes at every level of this operator tree are expected to
have similar runtimes. This analysis on result sizes versus parameter values is done
once for every query template (remember that we consider benchmarks with a fixed
set of queries).

– we define a greedy algorithm that selects (“curates”) those parameters with similar
intermediate result counts from the dataset.

Note that Parameter Curation depends on data generation in a benchmark: we are min-
ing the generated data for suitable parameters to use in the workload. As such, Parame-
ter Curation constitutes an new phase that follows data generation in a typical database
benchmarking process.

The astute reader may remark that %Country in the previous example has the
limitation that the country domain is rather limited. Thus, a need to select e.g., 100
parameter values would imply using a large part of the domain, and in case of skewed
frequency distribution would lead to unavoidable large variance. This does not invali-
date our approach to select parameters in an as stable manner as possible, and we note
that benchmark queries tend to have (or can be made to have) multiple parameters, so
the amount of parameter combinations is the product of the parameter domain sizes,
thus grows explosively, so limited parameter choices should not be an issue in general.

Outline. The rest of the paper is organized as follows. In Section 2 we demonstrate in
examples that the straightforward approach of generating parameter bindings uniformly
at random fails to deliver predictable and stable results. Section 3 formalizes the prob-
lem of curating parameters that would yield runtime distribution satisfying properties
P1 - P3. In Section 4 we present our implementation of Parameter, used in the LDBC
Social Network Benchmark (SNB). Section 5 describes the set of experiments we con-
ducted on SNB and IMDB queries. Section 6 summarizes and concludes the paper.

2 Examples

We use the recently proposed LDBC Social Network Benchmark [1] and a query on
IMDB dataset from Listing 1.1. For the LDBC Benchmark, we generated a social net-
work with 50.000 users (ca. 5 GB of CSV files). For both datasets we use Virtuoso 7
database (Column store) and run our experiments on a commodity server with the fol-
lowing specifications: Dual Intel X5570 Quad-Core-CPU, 64 Gb RAM, 1 TB SAS-HD,
Redhat Enterprise Linux (2.5.37).

In the following examples (E1-E4), we illustrate our statement that uniform selec-
tion of parameters leads to unpredictable behavior of queries, which makes interpreta-
tion of benchmark results difficult.

E1: Runtime distribution has high variance. When drawing parameters uniformly at
random, we encounter a very skewed runtime distribution for queries over real-world
datasets. The runtime of the query from Listing 1.1, for example, has a variance of
17 · 104. This is caused by the fact that the majority of the movies is produced in a
single country, US; additionally, the top 10 countries produce 3 times more movies
than all the other countries together. This translates into highly variable amount of data
that the query needs to touch depending on the parameter, which in turn influences the
runtime.

This issue is also important for the LDBC benchmark, where the data generator
seeks to mimic some of the properties of the real-world data: the generated data has
correlations and skewed data distributions. In this case, naturally, the randomly gener-
ated parameter bindings result in a very skewed runtime distribution.

E2: Different plans for different parameters. The uniformly generated parameter
bindings can lead to completely different plans for the same query template. This hap-
pens because the cardinalities of the subqueries naturally depend on the parameter bind-
ings, and sometimes on the combination of the parameters. For example, two optimal
plans for Query 1.1 (as found by the PostgreSQL database) are depicted in Figure 1a)
and b), where leaves are marked with table aliases from the query listing. Picking ’US’
as a parameter not only changes the join order, as compared with the ’UK’ parame-
ter, but also results in applying a different group-by method (by sorting as opposed to
hash-based grouping for the ’UK’ parameter).

As another example, we consider LDBC Query 3 that finds the friends and friends
of friends that have been to countries X and Y. The optimal plan for this query can
start either with finding all the friends within two steps from the given person, or from
extracting all the people that have been to countries X and Y: if X and Y are Finland
and Zimbabwe, there are supposedly very few people that have been to both, but if X
and Y are USA and Canada, this intersection is very large. In the LDBC benchmark,
correlations that might not even be detected by the optimizer aggravate the execution
picture beyond plain frequency differences. There is a correlation between the location
of each user and her friends (they often live in the same country) and travel destinations
are correlated so that nearby travel is more frequent. Hence combinations of countries
far from home are extremely rare and combinations of neighboring countries frequent.

Γhash

1

1

σ(CN) MC

T

(a) %Country = ’UK’

Γsort

1

1

T MC

σ(CN)

(b) %Country = ’US’

0

10

20

30

1 2 3 4 5
Runtime, seconds

co
un

t

(c) Runtime distribution, red line marks the
mean

Fig. 1: IMDB Query 1.1 plans and runtime distribution for different parameters

We note that the plan variability is not a bad property per se: indeed, this query
forces the query optimizer to accurately estimate the cardinalities of subqueries de-
pending on input parameters. However, the generated parameters should be sampled
independently for two different variants (countries that are rarely and frequently vis-
ited together), to allow a fair and complete comparison of different query optimization
strategies.

E3: Average runtime is not representative. In addition to being far from uniform
(E1), the query runtime distribution can also be ”clustered”: depending on the parameter
binding, the query runs either extremely fast or surprisingly slow, and the average across
the runtimes does not correspond to any actual query performance. To illustrate this
issue, we consider again the IMDB Query 1.1. Figure 1c shows the runtime distribution
of that query over the entire domain of %Country parameter bindings. We see that the
average runtime (red line on the plot) falls outside of the larger group of parameter
bindings, so in fact very few actual queries have the runtime close to the mean.

E4: Sampling is not stable. A single query in the benchmark is typically being exe-
cuted several times with different randomly chosen parameter bindings. It is therefore
interesting to see how the reported average time changes when we draw a different sam-
ple of parameters. In order to study this, we take Query 2 of the LDBC benchmark that
finds the newest 20 posts of the given user’s friends. We sample 4 independent groups
of parameter bindings (100 user parameter bindings in each group), run the query with
these parameters and report the aggregated runtime numbers within individual groups
(q10 and q90 are the 10th and the 90th percentiles, respectively).

We see that uniform at random generation of query parameters in fact produces
unstable results: if we were to run 4 workloads of the same query with 100 different
parameters in each workload, the deviation in reported average runtime would be up
to 40%, with even stronger deviation on the level of percentiles and median runtime
(up to 100%). When TPC benchmark record results are improved, this often only con-

Time Group 1 Group 2 Group 3 Group 4
q10 0.14 s 0.07 s 0.08 s 0.09 s

Median 1.33 s 0.75 s 0.78 s 1.04 s
q90 4.18 s 3.41 s 3.63 s 3.07 s

Average 1.80 s 1.33 s 1.53 s 1.30 s

cerns minor difference with the previous best (e.g. 5%). Hence, the desired stability
between different parameter runs of a benchmark should ideally have a variance below
that ballpark.

3 Problem Definition

Here we define the problem of generating the parameter binding for benchmark queries.
In order to compare two query plans formulated in logical relational algebra, we use the
classical logical cost function that takes into account the sum of intermediate results
produced during the plan’s execution [4]:

Cout(T) =

{
|Rx| if T is a scan of relation Rx
|T |+ Cout(T1) + Cout(T2) if T = T1 ./ T2

The above formula is incomplete and just here for argumentation; a more complete
version of this logical cost formula naturally should include all relational operators
(hence also selection, grouping, sorting, etc). The main idea is that for every relational
operator Ty it holds the amount of tuples that pass through it.

In our experiments, the cost function Cout, which is computed using the de-facto
result sizes (not the estimates!), strongly correlates with query running time (ca. 85%
Pearson correlation coefficient). Therefore, if two query plan instances have the same
Cout, or even better if all operators in the query plan have the same Cout, these plans
are expected to have very similar running time.

In order to find k parameter bindings that yield identical runtime behavior of the
queries, we could:

a: enumerate the set of all equivalent logical query plans LQ for a query template Q.
b: for each possible parameter p from domain P , and each subplan Tlq of LQ compute
Cout(Tlq(p)).

c: find subset S ⊂ P , with size |S| = k, such that the sum of all variances∑
∀Tlq∈LQ

Variance∀p∈S Cout(Tlq(p)) is minimized.

Note that this generic problem of parameter curation is infeasibly hard to solve. The
amount of possible query plans is exponential in the amount of operators (e.g. 2|LQ|,
just for leftdeep-only plans, and |LQ| being the amount of operators in plan LQ), and
all these plan costs would have to be calculated very many times: for each possible set
of parameter bindings (whose size is 2|P |, where |P | is the product of all parameter
domain sizes – a typically quite large number), and for all |LQ| subplans of LQ.

Instead, we simplify the problem by focusing on a single intended logical query
plan. Since we are designing a benchmark, which consists of a relatively small set of

query templates (the intended benchmark workload), and in this benchmark design we
have certain intentions, this is feasible to do manually. We can, therefore, formulate a
more practical problem of Parameter Curation as follows:

PARAMETER CURATION: For the Intended Query Plan QI and the parameter do-
mainP , select a subset S ⊂ P of size k such that

∑
∀Tqi∈QI Variance∀p∈S Cout(Tqi(p))

is minimized.

Since the cost function correlates with runtime, queries with identical optimal plans
w.r.t. Cout and similar values of the cost function are likely to have close-to-normal
distribution of runtimes with small variance. Therefore, the properties P1-P3 from Sec-
tion 1 hold within the set of parameters S and effects mentioned in Section 2 are elimi-
nated.

The Parameter Curation problem is still not trivial. A possible approach would be
to use query cardinality estimates that an EXPLAIN feature provides. For each query
template Q we could fix the operator order to the intended order QI , run the query op-
timizer for every parameter p and find out the estimated Cout(QI(p)), and then group
together parameters with similar values. However, it seems unsatisfactory for this prob-
lem, since even the state-of-the-art query optimizers are often very wrong in their car-
dinality estimates. As opposed to estimates we will therefore use the de-facto amounts
of intermediate result cardinalities (which are otherwise only known after the query is
executed).

4 Implementation of Parameter Curation

In this section we demonstrate how the problem of Parameter Curation for a given query
plan is solved in several important cases, namely:

– a query with a single parameter
– a query with two (potentially correlated) parameters, one from discrete and another

from continuous domain. Such a combination of parameters could be: Person and
Timestamp (of her posts, orders, etc).

– multiple (potentially correlated) parameters, such as Person, her Name and the
Country of residence.

Note that our solution easily generalizes to the cases of multiple parameters (such as
two Timestamp parameters etc); we consider the simplest cases merely for the purposes
of presentation.

Our solution is divided into two stages. First, we perform data analysis that aims at
computing the amount of intermediate results produced by the given query execution
plan across the entire domain of parameter(s). The output of the analysis is a set of
parameter(s) values and the corresponding intermediate result sizes produced by every
join of the query plan. Second, the output of the data analysis stage is processed by the
greedy algorithm that selects the subset of parameters resulting in the minimal variance
across all intermediate result sizes.

4.1 Single Parameter

Data Analysis The goal of this stage is to compute all the intermediate results in
the query plan for each value of the parameter. We will store this information as a
Parameter-Count (PC) table, where rows correspond to parameter values, and columns
– to a specific join’s result sizes.

There are two ways of computing that table. First, given the query plan tree we
can split it into a bottom-up manner starting with the smallest subtree that contains the
parameter. We will then remove the selection on the parameter value from the query, and
add a Group-By on the parameter name with a Count, thus effectively aggregating the
result size of that subtree across the parameter domain. In our experiments with LDBC
benchmark we were generating group-by queries based on the JSON representation of
the query plan.

The second way of computing the Parameter-Count table is to compute the corre-
sponding counts as part of data generation. Indeed, in case of the LDBC benchmark,
for instance, all the group-by queries boil down to counting the number of generated
entities: number of friends per person, number of posts per user etc. These counts are
later used to generate parameters across multiple queries.

As an example, consider a simplified version of LDBC Query 2, given in Listing 1.2,
which extracts 20 posts of the given user’s friends ordered by their timestamps. The gen-
erated plans with Group-By’s on top are depicted in Figure 2a and b. The first subquery
plan counts the number of friends per person, the second one aggregates the number of
posts of all friends by user. The resulting Parameter-Count table is given in Figure 2c,
where columns named |Γ 1| and |Γ 2| correspond to the results of the first and second
group-by queries, respectively. In other words, when executed with %ParameterID =
1542, Query 2 will generate 60 + 99 = 159 intermediate result tuples.

Query 1.2: LDBC Query 2
s e l e c t p p e r s o n i d , p s p o s t i d , p s c r e a t i o n d a t e
from person , pos t , knows
where

p e r s o n . p p e r s o n i d = p o s t . p s c r e a t o r i d and
knows . k p e r s o n 1 i d = \%P ers on\% and
knows . k p e r s o n 2 i d = p e r s o n . p p e r s o n i d

order by p s c r e a t i o n d a t e desc
l i m i t 20

Greedy Algorithm. Now, our goal is to find the part of the Parameter-Count table with
the smallest variance across all columns. Note that the order of the columns matters;
in other words, variance in the first column (result size of the bottom-most join of the
query plan) is more crucial to the runtime behaviour than variance in the last column
(top-most join). Following this observation, we construct a simple greedy algorithm,
depicted in Algorithm 7. It uses an auxiliary function FindWindow that finds the
windows (consecutive rows of the table) of size at least k on a given column i with the
smallest possible variance (lines 3-4). In our table in Figure 2c such windows on the
first column (|Γ 1|) are highlighted with red and green colors (they consist of parameter

Γ 1
PersonID

1

Person Friends

(a) Step 1:
Friends per Person

Γ 2
PersonID

1

1

Person Friends

Posts

(b) Step 2:
Posts of Friends

PersonID
...

1542
1673

1367

7511
958

...

60
60
60
61
61

99
102
103
120
101

(c) Parameter-Count table

Fig. 2: Preprocessing for the query plan with a single parameter

sets [1542, 1673, 7511] and [958, 1367], respectively). Both these sets have variance 0
in the column |Γ 1|.

The algorithm starts with finding the windows W with the smallest variance on the
entire first column (line 9). Then, in every found window from W we look for smaller
sub-windows (but of size at least than k, see line 3) that minimize variance on the
second column (lines 12-16). The found windows with the smallest variance become
candidates for the next iteration, based on further columns (line 17). The process stops
when we reach the last column or the number of candidate windows reduces to 1.

In the example from Figure 2c, the first iteration brings the two windows mentioned
above (red and green). Then, in every window we look for windows of k rows, they
are [99, 102], [102, 103] and [120, 101]. Out of these three candidates, [102, 103] has
the smallest variance (highlighted in blue), so our solution consists of two parameters,
[1673, 7511].

4.2 Two correlated parameters

Here we consider the case when a query has two parameters, discrete and continuous,
e.g. PersonID and Timestamp. The continuous parameter is involved in a selection, e.g.
specifying the time interval. We focus on the situation when these two are correlated,
otherwise the solution of the Parameter Curation problem is a straightforward general-
ization of the previous case: one would follow the independence assumption and find
the bindings for the discrete parameter using Parameter-Count table, and then select
intervals of the same length as bindings of the continuous parameter.

However, if parameters are correlated, the independence assumption may lead to a
significant skew in the Cout function values. We take the LDBC Query 2 as an example
again, which in its full form also includes the selection on the timestamp of the posts
ps creationdate < %Date0% (i.e., the query finds the top 20 posts of friends of
a user written before a certain date). In the LDBC dataset, the PersonID and Timestamp
of the user’s posts are naturally correlated, since users join the modeled social network
at different times; moreover, their posting activity changes over time. Therefore, if we

Algorithm 1: PARAMETER CURATION (SINGLE PARAMETER)
FINDWINDOWS

Input: PC – Parameter-Count table, i – column, start, end – offsets in the table
1 begin
2 scan the PC table on the ith column from start to end rows
3 W ← generate Windows of size K
4 merge overlapping windows with the same variance
5 return w ∈W with the smallest variance of PC[i] values

6 PARAMETERCURATION

Input: PC – Parameter-Count table, n – number of count columns in PC
Result: W – window in PC table with the smallest variance of counts across all columns

7 begin
8 i← 1 . corresponds to the column number in the table, i.e. |Γ i|
9 W← FINDWINDOWS(PC, 1, 0, |PC|) . find windows on the entire first column

10 while |W > 1| and i < n do
11 i← i+ 1
12 Wnew ← list()
13 for w ∈W do
14 w′ ← FINDWINDOW(PC, i, w.start, w.end)
15 Wnew.add(w′)

16 sort Wnew by variance asc
17 W← all w ∈Wnew with the smallest variance

18 return W

choose the Timestamp parameter in LDBC Query 2 independently from the PersonID,
the amount of intermediate results may vary significantly (even if ParameterIDs were
curated such that the total number of posts is the same).

Data analysis. In order to capture the correlation between two parameters, we need
to include the second one (Timestamp in our example) in the grouping key during the
Parameter-Count table construction. Grouping by the continuous parameter may lead
to a very large and sparse table, so we ”bucketize” it (e.g., by months and years for
Timestamp). We then store the results of the aggregation as a Parameter-Count table,
along with the bucket boundaries.

Our example from Figure 2 is extended with the Timestamp parameter in Figure 3.
The partial join trees are complemented with additional Group-By on Month and Year
of the timestamp as soon as the corresponding table containing the Timestamp (in our
case Posts) is added to the plan (in this example, at Step 2 when we consider the second
join). Assuming that our dataset spans 4 months of 2014, the resulting table may look
like Figure 3b.

Greedy algorithm. The first stage of the Parameter Curation for two parameters ignores
the continuous parameter (e.g. Timestamp). As a result, we get the bindings for the first
(discrete) parameter that have similar intermediate result sizes across the entire domain
of the continuous parameter. Now for these curated parameter bindings we find the

Γ 2
PersonID,Month(t),Y ear(t)

1

1

Person Friends

Posts(Time t)

(a) # Posts of Friends
By Month

PersonID
...

1673
7511

30

Jan'14 Feb'14 Mar'14 Apr'14

30
30

420
20 30 23

...

......

(b) Parameter-Count table with Time buckets (PCTime)

Fig. 3: Preprocessing for the query plan with two correlated parameters

corresponding continuous parameters such that the Cout function values are similar
across all the curated parameters.

For the purpose of presentation we consider the solution for the %Date0 parameter
that appears in the selection of a form timestamp < %Date0. In our example from
the previous section, we have found two PersonID parameters that have the smallest
variance in Cout. Let PCTime[i, j] denote the count in the Parameter-Count table for
the parameter i in bucket j, and N be the number of buckets for continuous parameter.
For example, in Figure 3b PCTime[1673,Mar′14] = 30 is the number of posts made
by friends of the user 1673 in March 2014, and N = 4.

– We compute the partial sums of the monthly counts Sum[i] =∑
j=1..N−M

PCTime[i, j] for all the discrete parameter bindings i for all the

months except the last M (where M is typically 1..3). In the table in Figure 3b
for M = 1 these partial sums are 60 and 80 for PersonIDs 1673 and 7511,
respectively.

– We determine the average A across these sums Sum[i] (70 in our example)
– For every discrete parameter i we pick the bucket J such that

∑
j=1..J

PCTime[i, j]

is as close as possible to the global average A. More precisely, we pick the first
bucket such that the sum exceeds the global average. In our example, for i = 1673,
J is the fourth bucket (Apr’14)

– Finally, since our buckets represent continuous variable (time), we can split the
bucket J so that the sum of counts is exactly A. For i = 1673 we need to get 10
posts in April 2014 (60 are covered by previous months, and we need to reach the
global average of 70). We pick April 42·10

30 = 14 as Date0.

In order to perform the last step in the above computation, we have assumed that
within one bucket the count is uniformly distributed (e.g., every day within one month
has the same number of posts). Even when this assumption does not hold precisely, the
effects are usually negligible.

The timestamp conditions of a different form, e.g. Timestamp > Date0, or
Timestamp ∈ [Date0, Date1] are handled in the same manner. For example, the
Timestamp ∈ [Date0, Date1] condition leads to finding for every PersonID the
median of its post-per-time distribution, that is the median of the PCTable[i, j] for
every row i. Then, the median of those medians is identified across all PersonIDs, and
finally every individual PersonID’s median is made as close as possible to the global
median by extending/reducing the corresponding bucket.

4.3 Multiple correlated parameters

Parameter Curation for multiple (more than two) parameters follows the scheme of two
parameters: one is selected as a primary (PersonID), the other ones are ”bucketized”.
This way we get sets of bindings, each of those results in identical query plan and
similar runtime behavior.

In case of correlated parameters, however, it may be interesting to find several sets
of parameter bindings that would yield different query plans (but consistent within one
set of bindings). Consider the simplified version of LDBC Query 3 that is finding the
friends of a user that have been to countries %C1 and %C2 and logged in from that
countries (i.e., made posts), given in Query 1.3 and its query plan in Figure 4a.

Query 1.3: LDBC Query 3
s e l e c t k . k p e r s o n 2 i d , p s p o s t i d , p s c r e a t i o n d a t e
from p e r s o n p , knows k , p o s t p1 , p o s t p2
where p . p e r s o n i d = k . k p e r s o n 1 i d

and k . k p e r s o n 2 i d = p1 . p p e r s o n i d
and k . k p e r s o n 2 i d = p2 . p p e r s o n i d
and p1 . p l a c e = ’%C1%’
and p2 . p l a c e = ’%C2%’

order by p s c r e a t i o n d a t e desc
l i m i t 20

Since in the generated LDBC dataset the country of the person is correlated with the
country of his friends, and users tend to travel to (i.e. post from) neighboring countries,
there are essentially two groups of countries for every user: first, the country of his
residence and neighboring countries; second, any other country. For parameters from
first group the join denoted 12 in Figure 4a becomes very unselective, since almost all
friends of the user are likely to post from that the country. For the second group, both
12 and 13 are very selective. In the intermediate case when parameters are taken from
the two different groups, it additionally influences the order of 12 and 13.

Both these groups of parameters are based on counts of posts made by friends of
a user, i.e. based on the counts collected in the Parameter-Count table (with additional
group-by on country of the post). Instead of keeping the buckets of all countries, we
group them into two larger buckets based on their count, Frequent and Non-Frequent as
shown in Figure 4b.

Now we can essentially split the LDBC Query 3 into three different (related) query
variants (a), b) and c)), based on the combination of the two %Country parameters: a)

13

12

11

Person Friends

Posts (Country = %C1%)

Posts (Country = %C2%)

(a) Query Plan

PersonID
...

1673
7511
...

Freq Non-Freq

CH, JP, IN ES, FR, SE
DE, FR, IT CA, BR, AU

Countries

(b) Parameter-Count table

Fig. 4: Case of multiple correlated parameters

%C1 and %C2 from the Frequent group, b) both from Non-Frequent group, c) combi-
nation of the two above.

5 Experiments

In this section we describe our experiments with curated parameters in the LDBC
benchmark. First, we compare the runtimes of query templates with curated parame-
ters as opposed to randomly selected ones (Section 5.1). Then we proceede with an
experiment on curating parameters for different intended plans of the same query tem-
plate in Section. All experiments are run with Virtuoso 7 Column Store as a relational
engine on a commodity server.

5.1 Curated vs Uniformly Sampled Parameters

First experiment aims at comparing the runtime variance of the LDBC queries with cu-
rated parameters with the randomly sampled parameters. For all 14 queries we curated
500 parameters and sampled randomly the same amount of parameters for every query.
We run every query template with each parameter binding for 10 times and record the
mean runtime. Then, the compute the runtime variance per query for curated and ran-
dom parameters. The results, given in Table 1, indicate that Parameter Curation reduces
the variance of runtime by a factor of at least 10 (and up to several orders of magnitude).
We note that some queries are more prone to runtime variability (such as Query 4 and
5), that is why the variance reduction is different accross the query set. For Query 4
we additionally report the runtime distribution of query runs with curated and random
parameters in Figure 5.

5.2 Groups of Parameters for One Query

So far we have considered the scenario when the intended query plan needs to be
supplied with parameters that provide the smallest variance to its runtime. For some
queries, however, there could be multiple intended plan variants, especially when the
query contains a group of correlated parameters. As an example, take LDBC Query 11
that finds all the friends of friends of a given person P that work in country X. The

Query 1 2 3 4 5 6 7
Curated 13 31 243 0.6 1300 6931 33
Random 773 2165 444174 184 · 106 52 · 106 278173 362

Query 8 9 10 11 12 13 14
Curated 0.18 99269 4073 1 95 2977 5107
Random 403 880287 102852 39 1535 26777 155032
Table 1: Variance of runtimes: Uniformly sampled parameters vs Curated parameters
for the LDBC Benchmark queries

Curated Random

100

200

300

400

500

1 10 100 1 10 100
Runtime, seconds

co
un

t

Fig. 5: LDBC Query 4 Runtime Distribution: Curated vs Random parameters

data generator guarantees that the location of friends is correlated with the location of
a user. Naturally, when the country X is the user’s country of residence, the amount
of intermediate results is much higher than for any other country. Moreover, if X is a
non-populous country, the reasonable plan would be to start from finding all the people
that work at organizations in X and then figure out which of them are friends of friends
of the user P.

As described in Section 4.3, our algorithm provides three sets of parameters for the
three intended query plans that arise in the following situations: (i) P resides in the
country X , (ii) country X is different than the residence country of P , (iii) X is a non-
populous country that is not a residence country for P . As a specific example, we con-
sider a set of Chinese users with countries (i) China, (ii) Canada, (iii) Zimbabwe. The
corresponding average runtimes and standard deviations are depicted in Figure 6. We
see that the three groups indeed have distinct runtime behavior, and the runtime within

Canada China Zimbabwe Random

100

200

300

400

500

0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60
Runtime, ms

co
un

t

Fig. 6: LDBC Query 11 with four different groups of parameters (for countries China,
Canada, Zimbabwe, Random)

the group is very similar. For comparison, we also provide the runtime distribution for
a randomly chosen country parameter, which is far from the normal distribution.

5.3 Parameter Curation time

Finally, we report the runtime of the parameter curation procedure for the LDBC Bench-
mark. Note that we have incorporated the data analysis stage in our case is implemented
as part of data generation, e.g. we keep the number of posts per person generated, num-
ber of replies to the user’s posts etc. This is done with a negligible runtime overhead.
In Table 2 we report the runtime of the greedy parameter extraction procedure for the
LDBC dataset of different scales (as number of persons in the generated social net-
work). We additionally show the size of the generated data; this is essentially an indica-
tor of the amount of data that the extraction procedure needs to deal with. We see that
Parameter Curation takes approximately 7% to 12% of the total data generation time,
which looks like a reasonable overhead.

Scale Parameter Extraction Time % of Total Generation Time Data Size, Gb
10K 17 s 7 % 1
50K 125 s 11 % 5.5
1Mln 4329 s 12 % 227

Table 2: Time to extract parameters in the LDBC datasets of different scales

6 Conclusions

In this paper we motivated and introduced Parameter Curation: a data mining-like pro-
cess that follows data generation in a database benchmarking process. Parameter Cura-
tion finds substitution parameters for query templates that produces query invocations
with very small variation in the size of the intermediate query results, and consequently,
similar running times and query plans. This technique is needed when designing under-
standable benchmark query workloads for datasets with skewed and correlated data,
such as found in real-world datasets. Parameter Curation was developed and is in fact
used as part of the LDBC Social Network Benchmark (SNB) 4, whose data genera-
tor produces a social network with a highly skewed power-law distributions and small
diameter network structure, that has as additional characteristic that both the attribute
values and the network structure are highly correlated. Our results show that Parameter
Curation in these skewed and correlated datasets transforms chaotic performance be-
havior for the same query template with randomly chosen substitution parameters into
highly stable behavior for curated parameters. Parameter Curation retains the possibil-
ity for benchmark designers to test the ability of query optimizers to identify different
query plans in case of skew and correlation, by grouping parameters with the same be-
havior into a limited number of classes which among them have very different behavior;
hence creating multiple variants of the same query template. Our approach to focus the
problem on a single intended query plan for each template variant reduces the high com-
plexity of generic parameter curation. We experimentally showed that group-by based
data analysis followed by greedy parameter extraction that implements Parameter Cu-
ration in the case of LDBC SNB is practically computable and can form the final part
of the database generator process.

References

1. LDBC Benchmark. http://ldbc.eu:8090/display/TUC/Interactive+Workload
2. Boncz, P., Neumann, T., Erling, O.: TPC-H Analyzed: Hidden Messages and Lessons Learned

from an Influential Benchmark. In: TPCTC (2013)
3. Minh Duc, P., Boncz, P.A., Erling, O.: S3g2: A Scalable Structure-Correlated Social Graph

Generator. In: Proceedings of TPC Technology Conference on Performance Evaluation
& Benchmarking 2012 (2012), http://oai.cwi.nl/oai/asset/19975/19975B.
pdf

4. Moerkotte, G.: Building Query Compilers. http://pi3.informatik.uni-mannheim.de/ moer/-
querycompiler.pdf

5. Poess, M., Stephens, Jr., J.M.: Generating thousand benchmark queries in seconds. In: Pro-
ceedings of the Thirtieth international conference on Very large data bases - Volume 30. pp.
1045–1053. VLDB ’04, VLDB Endowment (2004), http://dl.acm.org/citation.
cfm?id=1316689.1316779

6. Stephens, J.M., Poess, M.: Mudd: a multi-dimensional data generator. SIGSOFT Softw.
Eng. Notes 29(1), 104–109 (Jan 2004), http://doi.acm.org/10.1145/974043.
974060

4 See http://github.com/ldbc and http://ldbcouncil.org

