
TECHNISCHE UNIVERSITÄT
MÜNCHEN

SCHOOL OF COMPUTATION, INFORMATION AND
TECHNOLOGY - INFORMATICS

Master’s Thesis in Data Engineering and Analytics

Exploiting Column Correlations for
Compression

Thomas Glas

TECHNISCHE UNIVERSITÄT
MÜNCHEN

SCHOOL OF COMPUTATION, INFORMATION AND
TECHNOLOGY - INFORMATICS

Master’s Thesis in Data Engineering and Analytics

Exploiting Column Correlations for
Compression

Ausnutzen von Spaltenkorrelationen
zur Datenkompression

Author: Thomas Glas
Supervisor: Prof. Dr Thomas Neumann
Advisor: Prof. Dr. Peter Boncz, Azim Afroozeh
Submission Date: 15.12.2023

I confirm that this master’s thesis is my own work and I have documented all
sources and material used.

Munich, 15.12.2023 Thomas Glas

Acknowledgments

This thesis project was completed at Centrum Wiskunde & Informatica (CWI)
in Amsterdam. I want to give a special thank you to Peter Boncz, Azim Afroozeh,
and the CWI Database Architectures Group for hosting me and guiding me
throughout this project.

Abstract

Open file formats typically use a set of lightweight compression (LWC) schemes
to compress columns, which exploit data patterns within a column for com-
pression. However, typical LWC schemes compress each column individually
and do not consider column correlations that may be helpful for compression.
Real-world datasets exhibit many such correlations and we researched how they
can be exploited for LWC. In this thesis, we propose six new multi-column LWC
schemes that exploit different types of correlations between columns. To detect
the correlations, we use sampling-based algorithms to estimate the compres-
sion ratio achieved by each of our multi-column LWC schemes for a pair of
columns. During compression, we use both multi-column and single-column
LWC schemes in combination and choose the most effective scheme to compress
each column. We evaluated the effectiveness of our multi-column LWC schemes
on the Public BI benchmark, containing real-world datasets, and achieved 1.2x
higher compression ratios than only using single-column LWC schemes.

vii

Contents

Acknowledgments v

Abstract vii

1 Introduction 1
1.1 Research Questions . 2
1.2 Outline . 3

2 Background 5
2.1 Lightweight Compression Schemes 5

2.1.1 One Value Encoding . 5
2.1.2 Frequency Encoding . 6
2.1.3 Run-Length Encoding (RLE) 6
2.1.4 Bit-packing . 8
2.1.5 Frame of Reference (FOR) 8
2.1.6 Pseudodecimal Encoding (PDE) 9
2.1.7 Dictionary Encoding . 10
2.1.8 Fast Static Symbol Table (FSST) 10

2.2 BtrBlocks . 11
2.3 Public BI Benchmark . 14

3 Related Work 17
3.1 Exploiting Column Correlations 17

3.1.1 BHUNT . 17
3.1.2 CORDS . 18
3.1.3 DeCoRel . 18

3.2 Column Correlations for Compression 19
3.2.1 Whitebox Compression . 19
3.2.2 CorBit: Leveraging Correlations for Compressing Bitmap

Indexes . 20

4 Design and Implementation 23
4.1 Single-Column LWC Schemes . 23

ix

Contents

4.2 Multi-Column LWC Schemes . 25
4.2.1 Equality . 26
4.2.2 Numerical . 28
4.2.3 1-to-1 Dictionary . 30
4.2.4 1-to-N Dictionary . 32
4.2.5 Dictionary-FOR . 35
4.2.6 Dictionary Sharing . 36

4.3 Compression Framework . 38
4.3.1 Finding Correlated Columns 39
4.3.2 Choosing Correlated Compression Schemes 41
4.3.3 Compression . 44
4.3.4 Decompression . 46
4.3.5 Multi-Row Group Compression 47

4.4 Compressed column format . 48
4.4.1 Single-Column Scheme Compressed Format 49
4.4.2 Compressed Equality Scheme Format 50
4.4.3 Compressed Numerical Scheme Format 51
4.4.4 Compressed 1-to-1 Dictionary Scheme Format 51
4.4.5 Compressed 1-to-N Dictionary Scheme Format 52
4.4.6 Compressed DFOR Scheme Format 52
4.4.7 Compressed Dictionary-Sharing Scheme Format 55
4.4.8 Compressed Dictionary Format 55
4.4.9 Compressed Exceptions Format 55
4.4.10 Compressed Nullmap Format 56

5 Results and Discussion 57
5.1 Baseline . 57
5.2 Individual Multi-Column Schemes 57
5.3 Combining All Schemes . 61

5.3.1 Reversing Bad Multi-Column Schemes 63
5.3.2 Sample run size . 65
5.3.3 Multi-Row Group: Sharing Correlations 65
5.3.4 Compression Ratio Improvement per Table 66

6 Conclusion 69
6.1 Research Questions . 69
6.2 Future Work . 70

List of Figures 71

x

Contents

List of Tables 75

Bibliography 77

xi

1 Introduction

With the increasing demand for efficient data processing and storage platforms,
the need to optimize data storage and retrieval processes has become more
relevant. The pursuit of efficient storage solutions has led to the development
and adoption of columnar file formats. These formats, such as Apache Parquet,
Apache ORC, and BtrBlocks organize data based on columns rather than rows,
and store values of a column consecutively on disk [1] [2] [3].

Columnar storage provides benefits in terms of query performance and better
compression ratios compared to traditional row-oriented formats. The improved
compression in columnar storage not only reduces storage requirements but also
increases the query performance of data processing systems by increasing I/O
performance and reducing data transfer times [4] [5]. Compression for columnar
file formats is typically done by applying a set of lightweight compression (LWC)
schemes in individual columns. LWC schemes take advantage of the fact that
all values of a column share the same data type, and that neighboring values
are often similar to each other. Examples of LWC schemes include run-length
encoding (RLE) and Dictionary encoding [4]. In RLE, values that are repeated
consecutively are encoded as a pair of values and run-lengths. Dictionary
encoding is useful for columns with a small number of unique values that occur
frequently. Each value in the column is replaced with a smaller code, and a
dictionary maps each code to its corresponding value. Since each LWC scheme
only exploits a specific data pattern, a set of LWC schemes are commonly used
together to cover as many common patterns as possible.

Given a group of columns to compress, LWC schemes are applied to individual
columns, and a compression framework needs to decide which LWC scheme
is most suitable for a column. This is usually done by inspecting a sample
of the column for certain patterns [3] [5]. Since LWC schemes only consider
every column individually, they do not make use of patterns that may exist
between different columns. We see opportunities for LWC schemes that can
exploit correlations between columns. We introduce six new multi-column
LWC schemes that exploit correlations we encountered in real-world datasets.
Our Equality Scheme exploits column pairs that are identical or near-identical.
The Numerical Scheme exploits numerical linear correlations between pairs of
integer columns. The 1-to-1 Dictionary exploits correlations in which a 1-to-1

1

1 Introduction

mapping exists between values of two columns. The 1-to-N Dictionary exploits
correlations between a categorical column and a column containing members
of the categories. The Dictionary-FOR Scheme exploits correlations in which the
values of a target column can be grouped in distinct and separate ranges, which
can be mapped to a category derived by another column. The Dictionary-Sharing
Scheme exploits correlations in which two columns have a large overlap of unique
values.

We implement a compression framework that combines these multi-column
LWC schemes with conventional single-column LWC schemes. For every multi-
column scheme, we implemented methods to detect correlations using samples
and column statistics. The addition of the multi-column schemes allows the
framework to exploit any correlations it detects, and fall back to single-column
schemes if none are detected for a column. Our implementation is open-sourced
and is available in our GitHub repository https://github.com/cwida/C3.

1.1 Research Questions

This thesis will investigate the following research questions:

1. How can we exploit column correlations to improve compression? Different
kinds of column correlations may require different approaches to exploit
them for LWC. Which methods can we use to utilize correlation information
to compress columnar data?

2. How can column correlations be efficiently detected? The search space
for finding correlated pairs of columns is quadratic, thus a method of
efficiently detecting correlations is necessary to keep the overhead as low
as possible.

3. How can multi-column LWC schemes that exploit column correlations
be used in combination with typical single-column LWC schemes? LWC
frameworks are designed to compress one column at a time and are thus
not compatible with the requirements of multi-column LWC schemes. How
can we design an LWC framework suitable for both single-column and
multi-column LWC schemes combined?

4. How much compression benefit does exploiting column correlations pro-
vide in real-world datasets compared to existing LWC schemes? Multi-
column LWC schemes need to show meaning compression benefit to justify
the added complexity, how much benefit can we get in real-world datasets?

2

1.2 Outline

5. If compressing multiple row group groups, can we amortize the overhead
of finding correlations over multiple row groups by reusing correlations
found in one row group with other row groups? Assuming that column
correlations hold over entire columns, then correlations found in one row
group should also be present in other row groups. How could we use this
to reduce the overhead of finding correlations?

1.2 Outline

The rest of the thesis is organized as follows. In Chapter 2 we present background
information on LWC schemes, the Public BI benchmark, and the BtrBlocks file
format. Chapter 3 gives a brief overview of related works. Chapter 4 goes into
detail on the design and implementation of our new compression schemes and
compression framework. Chapter 5 presents and discusses the results on the
Public BI benchmark. The final conclusions are drawn in Chapter 6.

3

2 Background

In the following chapter, we present existing lightweight comrpession schemes
that are used in our implementation. We further introduce the BtrBlocks file
format, which we use as a basis for implementing and testing our compression
schemes. Finally, we introduce our chosen benchmark, the Public BI benchmark,
and give an overview of its characteristics.

2.1 Lightweight Compression Schemes

Compression schemes used in database systems can be separated into two
categories, lightweight and general-purpose (heavyweight) compression com-
pression. General-purpose compression algorithms such as Zstd [6] are designed
to work with any type of data by exploiting data patterns on the byte-level.
This makes them usable for many use cases, including compression in database
systems. In contrast, lightweight (LWC) schemes exploit patterns on data-type
level, and are applied to blocks of data containing only one data type, e.g. inte-
gers, doubles, and strings [4]. This makes them ideal for columnar file formats,
which group data column-wise so data chunks are made up of elements of the
same data type. LWC schemes offer faster compression and decompression
speeds than general-purpose schemes [7]. One LWC scheme can only exploit
one specific pattern, so typically a group of LWC schemes are used together to
cover as many common data patterns as possible. To decide which LWC scheme
to apply to a column, a compression framework needs to estimate which scheme
is the most suitable, typically by inspecting a sample of values [3].

In the following, we introduce single-column LWC schemes used in this thesis.

2.1.1 One Value Encoding

One-Value Encoding or Constant Encoding is a LWC scheme and is used for
columns in which only a single unique value occurs [3]. This compression scheme
only needs to store the unique value only once, leading to large compression
ratios. This scheme can be used for arbitrary data types. Given a column

5

2 Background

containing n elements, one value encoding compresses it to 1
n -th size. Figure 2.1

shows an example of one-value encoding.

Figure 2.1: An integer column is compressed using one-value encoding.

2.1.2 Frequency Encoding

Frequency Encoding is a LWC scheme applied to columns in which one value
occurs exponentially more often than other values [3]. The scheme stores the
most common value and keeps an additional bitmap to mark which entries in
the column corresponding to this value. All entries which do not correspond to
the most common value are stored as uncompressed exceptions. This scheme
can be used for arbitrary data types. The compression ratio of this scheme is
inversely proportional to the number of exceptions. Given a data type of b bytes
and a column with n elements, frequency encoding reduces the size from b ∗ n
to b +

⌈n
8

⌉
+ e ∗ n bytes, with e being the number of exceptions. Figure 2.2 shows

an example of frequency encoding.

2.1.3 Run-Length Encoding (RLE)

Run-Length Encoding can be applied to any data type and exploits runs of
consecutive repeated values [4][3]. RLE replaces each run of repeated values in
the column with a pair of values and counts, encoding how often each value
occurs in succession. The total number of value-count pairs is equal to the total
number of runs in the column. Given a data type of b bytes and a column with k
runs, RLE encodes the column into k ∗ (b + 4) bytes, assuming the use of 32-bit
(4 bytes) integers to encode the counts. Figure 2.3 shows an example of RLE.

6

2.1 Lightweight Compression Schemes

Figure 2.2: A string column is compressed using Frequency Encoding.

Figure 2.3: A string column is compressed using Run-Length Encoding.

7

2 Background

2.1.4 Bit-packing

Bit-packing is a technique to compress integers by omitting leading zero bits
[3]. For example, signed 32-bit integers can encode values between a minimum
value of -2,147,483,648 (−231) and a maximum value of 2,147,483,647 (231 − 1),
but in practice, the values of integers in most columns only use a small fraction
of this range. As a consequence, these integers are encoded with many leading
zero bits which can be omitted to reduce the total number of bits used to encode
the value. Bit-packing uses the minimum number of bits to encode an integer
column and stores the number of bits used to decode individual values during
decompression. Given a column of integers and a maximum value k, bit-packing
uses ⌊log2 k⌋+ 1 bits to store all integers in the column. The smaller the range
of integers, the higher the compression ratio achieved by bit packing. To handle
outliers and take advantage of local data attributes, bit-packing often compresses
small consecutive ranges of values individually, e.g. 32 integers at a time. Figure
2.4 shows an example of bit-packing.

Figure 2.4: An integer column is compressed using bit-packing.

2.1.5 Frame of Reference (FOR)

Frame of Reference is another LWC scheme for integers [8]. The scheme finds
the minimum integer value in a column and stores it as the reference value.
It then subtracts the reference from all integer values in the column, with the
goal of decreasing the values of the integers for improved bit-packing. After
subtracting the reference, the resulting values are bit-packed. Frame of reference
encoding is most effective when integer values are distributed in a narrow range
close to a large reference value. The compression ratio achieved by the final

8

2.1 Lightweight Compression Schemes

bit-backing step depends on the size of integers after subtracting the frame of
reference value. Figure 2.5 shows an example of FOR encoding.

Figure 2.5: An integer column is compressed using Frame of Reference encoding.

Patched Frame of Reference (PFOR) is a variation introduced to make FOR
more resistant to outliers [5]. If after subtracting the reference, a resulting value is
still larger than a predetermined threshold, it is treated as an outlier and is stored
separately. This method further reduces the size of the maximum integer value
in the column, leading to higher compression ratios from bit-packing. During
decompression, all values are first decompressed regardless of exceptions, after
which a second loop over the data patches all exception values [7].

2.1.6 Pseudodecimal Encoding (PDE)

Pseudodecimal Encoding is a recently introduced compression scheme for
double data types [3]. As doubles are typically stored in IEEE 754 representation
(1-bit sign, 11-bit exponent, 52 bits mantissa), the approaches of other numerical
LWC schemes such as bit-packing or FOR are not effective, since the mantissa bits
can vary greatly even for numerically close values. PDE makes use of the fact that
doubles are often used to encode values for which fixed-point encoding would
be sufficient (e.g. prices such as $0.99). Even though some decimal values such
as 0.99 can not be represented accurately in IEEE 754 representation (it is stored
physically as 0.98999...), the physical value can be efficiently compressed by
representation with a pair of integers, the significant digits 99 and the exponent
2. Due to the characteristics of the rounding errors occurring in floating point
arithmetic, 99 ∗ 10−2 results in the bit-wise exact same value as the IEEE 754
floating point representation of 0.99. In this way, a column of doubles can be
transformed into two arrays of integer values, which can be further compressed

9

2 Background

using integer compression schemes. True floating point numbers that can not be
represented in this way are stored separately as exceptions and are not further
compressed. PDE is not effective if columns contain many exceptions, as these
are not compressed and patching exception values will increase decompression
time significantly. Figure 2.6 shows an example of pseudo-decimal encoding.

Figure 2.6: A float column is compressed using Pseudo-decimal encoding.

2.1.7 Dictionary Encoding

Dictionary Encoding is a LWC scheme for all data types [4]. It is most effective
for columns with only a small number of unique values that occur multiple times
in the column. Dictionary encoding creates a separate dictionary containing all
the unique values and provides a unique integer key to access each value in the
dictionary. The values of the original column are replaced with the dictionary
keys of the respective value, resulting in an encoded integer column. This integer
column is further compressed with bit-packing. Given a data type of b bytes and
a column with n elements and m unique elements, dictionary encoding needs
n ∗ (⌊log2 m⌋+ 1) bytes to encode the column of integer keys using bit-packing.
m ∗ b bytes are additionally needed to store the dictionary itself. Figure 2.7
shows an example of dictionary encoding.

2.1.8 Fast Static Symbol Table (FSST)

FSST is a newly proposed LWC scheme for strings [9]. FSST takes advantage of
the fact that strings often share common substrings. Given a group of strings,
FSST finds the 256 most common shared substrings of up to 8 characters long and
stores these in a fixed-size symbol table. Each substring in the table is assigned
a 1-byte symbol to represent the substring. String columns are compressed by

10

2.2 BtrBlocks

Figure 2.7: A string column is compressed using Dictionary encoding.

replacing all occurrences of these substrings with their corresponding symbols.
To decompress the encoded strings, the symbol table is used to replace the
symbols with the original substrings. Figure 2.8 shows an example of FSST
encoding.

Figure 2.8: A string column is compressed using FSST encoding. "UM" is re-
placed with the symbol "0", "BRA" is replaced with the symbol "1".

2.2 BtrBlocks

BtrBlocks is a columnar file format for storing relational data, the authors provide
an open-source C++ implementation [3]. BtrBlocks compresses data using a set
of LWC schemes. Data is first ingested as CSV files and is transformed into an
in-memory columnar binary representation. In binary representation, the data

11

2 Background

of each column is stored in separate files and each column has a bitmap that
marks its null values.

To compress the data, BtrBlocks reads in columns in binary representation and
applies LWC schemes to individual columns. During compression, columns are
split into row groups with up to 65536 rows, and each row group is compressed
and stored individually. BtrBlocks uses a sampling-based algorithm to decide
which LWC scheme to apply to a column. The data types that BtrBlocks supports
are 32-bit integers, doubles, and strings. BtrBlocks performs a single pass over
each column and generates statistics of the data, such as the number of unique
values and minimum and maximum values for numerical columns. These
statistics are used to further filter out compression schemes that are estimated to
be unsuitable for a column. For all schemes that are left, BtrBlocks computes
an estimation of the compression ratio that the scheme achieves on a column
by using one of two methods. For integer and double columns, BtrBlocks
takes a sample of the data and applies the compression schemes to the sample,
computing the achieved compression ratio. The samples are generated by
randomly picking 10 non-overlapping runs of 64 tuples from the column. For
string columns, BtrBlocks relies only on the generated statistics to estimate a
compression ratio for the compression schemes. BtrBlocks chooses the scheme
with the best compression ratio to apply to the column. If no compression scheme
achieves a compression ratio greater than 1, then the column stays uncompressed.
If a compression scheme is applied to a column, but the compressed size is
larger than the uncompressed size, then the column stays uncompressed.

To improve compression ratios, BtrBlocks uses recursive compression. When-
ever the output of compression schemes includes arrays of integers, doubles,
or strings, BtrBlocks recursively compresses these data arrays again using the
most suitable LWC scheme. For example, applying RLE to an integer column
produces two new integer arrays containing the values and the counts of the RLE
runs. These two arrays would further be compressed by BtrBlocks. BtrBlocks
calls this cascading, and the cascading depth is a parameter that can be set to
limit the depth of recursive compression and is set to 2 by default.

Table 2.1 shows which LWC schemes BtrBlocks supports and for which data
type they are applicable. BtrBlocks handles null values by keeping Roaring
bitmap for all columns. The compression schemes used by BtrBlocks have
vectorized decompression algorithms for higher decompression throughput.
Tests on the Public BI benchmark show that while combinations of compression
algorithms such as parquet + zstd can achieve higher compression ratios (7.06
vs 8.24), BtrBlocks achieved 3.8x faster compression speeds.

12

2.2 BtrBlocks

Table 2.1: Compression schemes and data types supported by BtrBlocks. Many
schemes support cascading compression, where the output can be
recursively compressed further.

Scheme Data Types Cascading compression

RLE All Cascading integer compression for RLE values
Cascading integer compression for RLE lengths

One Value All -

Dictionary All Cascading integer compression for codes
Cascading FSST compression for string dictionary

Frequency All Cascading compression for exceptions

PFOR Integer -

Bit-Packing Integer -

FSST String -

Pseudodecimal Double Cascading integer compression for significant
digits and exponents.
Cascading double compression for exceptions

Roaring Bitmap -

13

2 Background

2.3 Public BI Benchmark

The Public BI benchmark [10] is a user-generated benchmark containing real
data from public workbooks in Tableau Public. The benchmark contains tabular
data in CSV files and was created to be more representative of real-world data
than synthetically generated benchmarks such as TPC-H.

The benchmark contains a total of 47 datasets, although multiple datasets
have the same or very similar schemas, and some tables within a dataset also
have overlapping data. To prevent over-representation of datasets with a large
number of tables, we only use the first table of each dataset. We also remove
datasets that have very same or very similar schemas, such as IGlocations1 and
IGlocations2. The datasets AirlineSentiment and IUBLibrary are left out due to
their low number of tuples. From here on, we refer to this subset of the Public
BI benchmark. Table 2.2 provides an overview of the tables and column data
types in the subset. Since BtrBlocks only supports 32-bit integers, doubles, and
floats, data types such as date, time, timestamp, and 64-bit integers are left out
and grouped under "other". The subset of the Public BI benchmark has a total of
2223 columns across 36 tables. In total, the data types of the columns are 45%
integers, 21% decimal, and 31% string, while 3% of the columns are unsupported
by BtrBlocks, including booleans, 64-bit integers, dates, and timestamps.

14

2.3 Public BI Benchmark

Table 2.2: Tables of the Public BI benchmark subset, with statistics on column
count and data type.

Table Columns Integer Decimal String Other

Arade_1 11 2 4 4 1
Bimbo_1 12 10 2 0 0
CityMaxCapita_1 12 10 2 0 0
CMSProvider_1 26 5 7 14 0
CommonGovernment_1 56 9 10 37 0
Corporations_1 27 6 0 21 0
Eixo_1 80 12 0 59 9
Euro2016_1 11 2 2 6 1
Food_1 6 3 1 2 0
Generico_1 43 14 2 26 1
HashTags_1 101 41 10 48 2
Hatred_1 31 8 6 17 0
IGlocations1_1 18 15 0 3 0
Medicare1_1 26 10 6 10 0
MedPayment1_1 28 5 7 16 0
MLB_1 48 28 14 6 0
Motos_1 44 14 2 27 1
MulheresMil_1 81 12 0 60 9
NYC_1 54 4 2 42 6
PanCreactomy1_1 29 5 7 17 0
Physicians_1 28 5 7 16 0
Provider_1 28 7 6 15 0
RealEstate1_1 28 5 4 17 2
Redfin1_1 44 6 30 6 2
Rentabilidad_1 141 18 64 57 2
Romance_1 12 3 2 6 1
SalariesFrance_1 57 6 30 21 0
TableroSistemaPenal_1 27 4 4 19 0
Taxpayer_1 28 7 6 15 0
Telco_1 181 1 174 1 5
TrainsUK1_2 28 4 10 13 1
TrainsUK2_1 37 13 3 13 8
Uberlandia_1 81 15 0 57 9
USCensus_1 519 512 0 6 1
Wins_1 257 196 38 20 3
YaleLanguages_1 30 8 0 20 2

Total 2223 1022 466 735 66

15

3 Related Work

The following sections give an overview of relevant existing literature on finding
and exploiting column correlations in database systems.

3.1 Exploiting Column Correlations

Multiple papers explore opportunities to exploit column correlations in database
systems. Even though they do not exploit correlations for compression, the
following related work deals with similar challenges such as defining correlation
metrics and detecting correlated columns within the large search space. In the
following, we give an overview of these papers and discuss their approaches to
these challenges.

3.1.1 BHUNT

BHUNT is a proposed scheme for finding algebraic constraints between pairs of
numerical columns in database tables [11]. The constraints are used to speed up
query processing by expressing them as query predicates and injecting them into
incoming queries. BHUNT also supports fuzzy constraints, by storing records
that do not conform to the constraint in exception tables. BHUNT modifies
queries by incorporating constraints in the form of predicates. This helps query
optimizers filter out data partitions that do not fulfill the predicates, speeding up
query processing time. In the case of fuzzy constraints, the unmodified query is
additionally run against the exception table, and the results are combined with
the modified query.

BHUNT searches for constraints between two columns by first generating a
set of "key-like" columns and looking for "foreign-key-like" matching columns.
Queries are likely to contain predicates referring to such column pairs. To reduce
the search space, BHUNT applies a set of pruning rules to these candidate
column pairs, with the goal of keeping column pairs likely to generate useful
constraints, in the context of speeding up query performance. The constraints
are defined based on data types, row count, the number of distinct values and
null values, and the existence of column indexes amongst others. To compute

17

3 Related Work

the algebraic constraint between the column pairs, BHUNT uses segmentation
and clustering techniques on random samples to create "bump intervals" for
the target column, in which most of the values fall into. Values that do not
fall into the intervals are considered exceptions and are stored in a separate
exception table. The number of samples is used to control the size of the size
of bump intervals, and consequently the number of exceptions and the size of
the exception table. The most useful constraints are stored and are used during
query optimization.

3.1.2 CORDS

CORDS is a tool that builds upon ideas used in BHUNT, also searching for cor-
relations between pairs of columns for use in query optimization [12]. CORDS
outputs groups of columns for which it recommends maintaining joint statistics.
These statistics can be used by query optimizers to improve selectivity estimates,
which typically assume statistical independence of columns. CORDS also ex-
tends the functionality of BHUNT by being able to detect correlations between
numerical and categorical attributes.

CORDS finds correlations and soft functional dependencies by first generating
candidate column pairs, for which a pairing rule exists between values of both
columns. For columns of different tables, the pairing rule can be a join predicate.
As in BHUNT, for each "key-like" column, CORDS uses samples to search every
other column to find matching "foreign-key-like" columns, which contain all
the values found in the source column. To reduce the search space, CORDS
applies a set of pruning rules based on data types, the number of distinct values,
any declared primary key and foreign key relationships, and predicates that
were present in past queries. To detect functional dependencies between a
column pair, CORDS analyzes the number of distinct values in random samples
and estimates the strength of the dependency. To detect correlations between
columns, CORDS uses a sampling-based chi-square test to determine whether
two columns are correlated. CORDS recommends column groups for which
to maintain join statistics based on the computed strength of correlations and
functional dependencies. The joint statistics can include information about
distinct values, frequencies, and quantiles, and can used by query optimizers to
improve selectivity estimates.

3.1.3 DeCoRel

DeCoRel is a method introduced to detect groups of correlated columns for usage
in data analytics and database operations [13]. The detected groups of columns

18

3.2 Column Correlations for Compression

may overlap and consist of columns with mixed data types. To create groups of
correlated columns, DeCoRel models pair-wise correlations in a graph in which
nodes represent columns, and weighted edges represent correlations between
columns. The correlation metric used by DeCoRel is a pair-wise asymmetric
metric that combines statistical properties of Shannon entropy for discrete or
categorical data with cumulative entropy for real-valued data. An algorithm
sorts columns into groups, in which each column is correlated with most of the
other columns, given a minimum threshold for the correlation metric. Since
the number of column groups may be very large, but the output should also
be suitable for manual data analysis, similar groups are merged to create fewer
and larger groups. The authors do not give specific use cases for the detected
correlated column groups, but state that they are useful for many applications
in database systems.

3.2 Column Correlations for Compression

There is very little existing research on exploiting correlations for compression.
Two papers we have foudn are Whitebox Compression and CorBit. Whitebox
Compression superficially explores using column correlations in the context of
a "Whitebox" compression framework. CorBit exploits column correlations to
compress bitmap indexes.

3.2.1 Whitebox Compression

Whitebox Compression is a conceptual model introduced by Ghita et al. for data
compression in columnar database systems [14] [15]. Whitebox compression de-
fines physical columns as the physical bytes stored on disk and logical columns
as defined by the database schema. Whitebox compression creates mappings
between physical and logical columns, consisting of composite functions that
contain information on how the logical columns can be recreated by the physical
columns. One idea behind Whitebox compression is that this mapping infor-
mation can be made available to databases’ query engines, which can exploit
it during query optimization and execution, e.g. for predicate push-downs
into the physical columns. Another advantage of Whitebox compression is the
compression opportunities created by the functional mappings. Since physical
and logical columns are decoupled, multiple logical columns can be represented
by one physical column to avoid storing redundant data. On the other hand, a
single logical column can also be split (e.g. splitting string prefixes) into multiple
physical columns, which can introduce more effective compression opportunities

19

3 Related Work

for the physical columns.
To find a suitable mapping between physical and logical columns, the authors

propose a recursive exhaustive algorithm to build an expression tree. Using data
samples, a cost model estimates the compression ratio achieved by recursively
applying various transformative operators to the data. The algorithm aims to
maximize the total compression ratio based on the estimated compression ratio
of the cost model. The output of the algorithm is a tree structure with leaf
nodes representing physical columns, root nodes representing logical columns,
and inner nodes representing logical transformation operators. Whitebox com-
pression further tries to reduce the number of physical columns by finding
dictionary mappings between correlated string columns. If a string column can
be efficiently reconstructed by another string column, a dictionary mapping, and
a number of exceptions, then this physical column is removed and replaced by
the dictionary and exceptions. All remaining physical columns are subsequently
compressed using conventional LWC schemes.

Although Whitebox Compression exploits column correlations for compres-
sion, the work is in the early stages of research and is implemented only as a
proof-of-concept in Python. The proof-of-concept applies transformations to the
logical columns, but for the final task of compressing the columns, the data is
ingested into a Vectorwise database and compressed there. The authors evaluate
their proof-of-concept Whitebox compression implementation on the Public BI
benchmark and report a 1.92X increased compression ratio over conventional
"black-box" compression [14], when only considering the columns for which
Whitebox compression was applied. When considering all columns, the im-
proved compression ratio is 1.43X [15]. Unfortunately, an evaluation of how
much the column correlations contributed to the total compression improvement
is missing. In their evaluation of the benchmark, the authors state that 28%
of used operators are related to column correlations, but this metric cannot
accurately be used to derive the contribution of these operators towards the
achieved compression ratio.

3.2.2 CorBit: Leveraging Correlations for Compressing Bitmap
Indexes

Lyu et al. propose a new method of leveraging column correlations to improve
compression of bitmap indexes [16]. Bitmap indexes are associated with individ-
ual columns and typically each unique value of the column is assigned a bitmap.
Each bitmap stores a 0 or 1 bit for each tuple, signifying whether the tuple cor-
responds to the unique value or not. Common techniques to compress bitmap

20

3.2 Column Correlations for Compression

indexes include Roaring and Tree-Encoded Bitmaps. The authors propose a
new compression scheme for bitmaps called CorBit, which leverages correlations
between columns to improve bitmap compression even further.

The idea behind CorBit is to improve bitmap compressibility by increasing
sparseness within bitmaps. Given two bitmaps A and B, the difference X between
them can be computed using XOR. If A and B are very similar (small Hamming
distance), X will be a very sparse bitmap. To leverage this for compression,
bitmap B is discarded and only its diff-encoded form X is stored. A and
X are passed to compression schemes such as Roaring or RLE compression.
The sparseness of X will allow these compression schemes to achieve higher
compression ratios than if applied to the original bitmap B. To reconstruct bitmap
B, bitmaps A and X are first decompressed, then XOR-ed, which results in the
original bitmap B.

To find pairs of correlated columns for which this compression method is
suitable, the authors designed a new metric called Total Reduced Popcnt, which
measures by how much the number of 1-bits of diff-encoded bitmaps can
be reduced. The metric is highly correlated with the amount of saved space
achieved.

The process of compressing bitmaps with CorBit works as follows. Each pair
of columns in a table is assigned a contingency table to store the frequency
distribution of the values. During a single pass of the table, all contingency
tables are updated with the frequency counts. In the next step, these frequency
counts are used to calculate the Total Reduced Popcnt metric for each pair
of columns. A graph is constructed to model the relationships between all
columns. Graph nodes represent columns and weighted edges represent the
Total Reduced Popcnt metric of column pairs. A greedy algorithm picks the
highest-weighted edges, in an approximation of the optimal dependency graph.
Given the final edges, all bitmaps of the source columns are compressed directly
by Roaring compression. The bitmaps of the target columns are first diff-encoded
with the bitmaps of the source column and are then compressed by Roaring.
Evaluated on three datasets, the authors report between 2.4% and 9.1% smaller
storage footprint using CorBit, compared to compressing all bitmaps directly
with Roaring. The increased latency overhead during decompression of CorBit
on the datasets was between around -1% and 12.6%. The added overhead for
finding pairs of correlated columns during compression was not evaluated.
These columns are expected to be more suitable for CorBit compression and
we expect the improvement in storage footprint to be significantly less when
considering all columns.

While CorBit shares some similar approaches, our work aims to exploit corre-
lations to compress columns themselves, instead of bitmap indexes.

21

4 Design and Implementation

Our compression framework is implemented in C++ and is integrated into the
BtrBlocks file format, which has a compression framework for single-column
LWC schemes. The general steps taken to compress a table are as follows: a
table is horizontally partitioned into row groups of 65536 tuples. In one pass
over all columns in the row group, statistics of the columns are collected. For
every column, a sample of the values and the statistics are used in combina-
tion to calculate an estimated compression ratio achieved by every applicable
compression scheme on the column. In the case of multi-column compression
schemes, this process involves computing the estimated compression ratio for
all pairs of columns. A greedy algorithm picks which compression schemes to
use based on the estimated compression ratios. The best schemes are used to
compress each column, and all relevant metadata is added to a header of the
compressed data. Figure 4.1 provides an overview of the compression workflow.

Figure 4.1: Overview of the compression workflow. Columns of a row group
are analyzed to collect statistics, which are used in conjunction with
samples to compute estimated compression ratios (ECR) for all com-
pression schemes. The best schemes are selected and applied to
compress the columns.

The following sections go into more detail on the design and implementa-
tion of the individual compression schemes and the surrounding compression
framework.

4.1 Single-Column LWC Schemes

For our single-column compression schemes, we use the implementions in
BtrBlocks, with some modifications to limit cascading compression. We modified

23

4 Design and Implementation

the schemes so that they more accurately represent regular LWC schemes used
by most file formats. This lets us evaluate how much benefit our multi-column
compression schemes can provide compared to a conventional compression
framework with regular LWC schemes. Compared to the original BtrBlocks
schemes as listed in 2.1, the schemes are modified to have cascading behavior
as listed in table 4.1. Instead of computing estimated compression ratios by
compressing samples of a column, we instead compress the entire column.
This effectively gives us 100% accurate estimated compression ratios or single-
column schemes and allows us to better evaluate the benefit provided by our
multi-column compression schemes.

Table 4.1: The single-column compression schemes of BtrBlocks, modified to
represent regular LWC schemes with limited cascading compression.

Scheme Data Types Cascading compression

RLE All RLE values and RLE lengths produced by
encoding are further compressed with bit-packing.

One Value All -

Dictionary All Integer codes are further compressed with
bit-packing.
Dictionaries are not further compressed.

Frequency All Exceptions are not further compressed.

PFOR Integer -

Bit-Packing Integer -

FSST String -

Pseudodecimal Double Significant digits and exponents are compressed
with bit-packing.
Exceptions are not further compressed.

Roaring Bitmap -

Single-column dictionary compression. A few of our multi-column compres-
sion schemes will need to dictionary encode columns without compressing the
codes. To support this we added our own implementation of a single-column
dictionary encoding scheme. This scheme only dictionary-encodes a column
and returns the dictionary, but does not compress the encoded integer values.
This scheme is also able to take an existing dictionary as input and use it to

24

4.2 Multi-Column LWC Schemes

dictionary-encode a column.

4.2 Multi-Column LWC Schemes

We developed six multi-column compression schemes that work on pairs of
columns to exploit correlations. We present our compression schemes, including
how they compress and decompress columns, as well as how we compute their
estimated compression ratios. All multi-column compression schemes operate
on a source column and target column, where the aim is to reduce the number of
bytes needed to encode the target column, by using information from the source
column. Since at the time of writing the BtrBlocks file format supports only
three data types: 32-bit integers, doubles, and strings, our compression schemes
are also limited to these data types. In our C++ implementation, a column of
integers a represented by a vector of int32_t, doubles by a vector of doubles, and
strings are represented by an array of int32_t offsets followed by a block of bytes
containing the string characters, as shown in figure 4.2.

Figure 4.2: An example of an encoded string column containing 6 strings. Given
n strings, n+1 integer offsets are used to find the start and end of
each string. All string characters are stored in a single chunk after
the offsets.

Estimating bit-packing compression ratio. To accurately estimate the size of
bit-packed integers, we take into account that our bit-packing scheme compresses
integers in blocks of 128 values. Each block is divided into mini-blocks containing
32 integers each. For every mini-block, the number of bits required to bit-pack
all integers in the block is computed, based on the largest value in the mini-block.
Each mini-block is compressed with its own number of bits, and 4 8-bit unsigned
integers containing the number of bits used to encode each mini-block are stored
at the beginning of the block. Compared to a naive implementation in which
the maximum value of the entire column is used to determine the number of
bits used to encode each value, this mini-block-based bit-packing achieves better
compression ratios if the maximum values of mini-blocks require fewer bits to
encode than the global maximum. To estimate the compression ratio of this

25

4 Design and Implementation

bit-packing implementation, we use the total tuple count of a column, an array
of samples, and an array containing the indexes of the samples in the column.
Using the total tuple count, we compute the number of blocks and mini-blocks
that will be generated. Every block needs 4 bytes to store the number of bits
used to encode each of its 4 mini-blocks. To estimate the size of mini-blocks, we
use the indexes of each sample to determine which mini-block it belongs to and
collect the maximum value for each mini-block. In case there are mini-blocks
to which no samples were matched, we set its maximum value equal to the
average maximum value of all other mini-blocks. Using these maximum values,
we compute the number of bits needed to encode the values in each mini-block
and derive the total compressed sizes of every mini-block.

4.2.1 Equality

The Equality compression scheme is a multi-column compression scheme that
exploits columns that are identical or nearly identical. The columns must have
the same data type. In the case of two identical columns, only the source column
needs to be stored, and the target column can be reconstructed by simply copying
the source column. If two columns are mostly identical, with few values differing
from each other, then the target values that deviate from the source values are
stored separately as exceptions. Exceptions are stored as two arrays of the
same length, one containing the indexes at which the exceptions occur, and one
containing the corresponding values of the exceptions. To keep track of null
values in the target column, the original nullmap of the target column is kept.
The compressed target column consists only of exceptions and the nullmap,
whose sizes added together make up the compressed size of the target column.
To reconstruct the target column in this case, the source column is copied and all
exceptions are patched by replacing the values at the exception indexes with the
corresponding exception values. In the Equality scheme, the source column is
left unchanged and can be compressed with the best single-column compression
scheme for the column. Figure 4.3 shows an example of two columns compressed
with the Equality scheme.

The exception values are stored in the data type of the columns, whereas the
exception indexes are stored as integers. Since patching exception values can
slow down the decompression of the target column, we set the upper limit for
the number of exceptions allowed to 10% of the total tuple count. The limit is a
parameter that can be configured.

Estimating the compression ratio. We compute the estimated compression
ratio the Equality scheme, in order to compare it to the estimated compression
ratios achieved by single-column schemes. Since in the Equality scheme, the

26

4.2 Multi-Column LWC Schemes

Figure 4.3: A pair of columns encoded with the Equality compression scheme.

source column is compressed with the best single-column scheme, we only need
to estimate the compression ratio achieved for the target column. To compute
this, we need to estimate the number and size of exceptions, whose sum equals
the compressed size of the target column. We take a sample of n values from
each column and compare their values for equality. The exception size in bytes
is initialized with 0, and for each pair of values that are not equal, we add 4
bytes (size of integer) for the exception index and the size of the exception value
(depending on data type and string length). The estimated compression ratio
ECREquality for the target column is computed by dividing the total size of the
target samples by the exception size, as seen in equation 4.11. Exceptions are left
uncompressed.

target_samples_size_bytes =
n

∑
i=1

sizeo f (samplei) (4.1)

exceptions_size = ∑
e∈exceptions

sizeo f (integer) + sizeo f (e) (4.2)

ECREquality =
target_samples_size_bytes

exceptions_size
(4.3)

27

4 Design and Implementation

Compressing with the Equality scheme. To compress two columns with the
Equality scheme, all values of the columns are compared to find exceptions.
These are stored in the exception value array, and the index at which they occur
is stored in the exception index array. The target column is discarded, and only
the exception arrays and the nullmap are kept. The exception arrays are left
uncompressed and the nullmap is compressed with Roaring. The source column
is compressed with the best single-column compression scheme.

4.2.2 Numerical

Our Numerical compression scheme exploits linear numerical correlations be-
tween two integer columns. If the values of a target column can be computed by
applying a linear function to the values of a source column, then the target values
do not need to be stored at all, since they can be reconstructed by the source
values and the linear function. Our scheme also exploits soft linear correlations
for column pairs, so that columns that are not perfectly correlated can still be
encoded with this scheme. In these cases the source values can approximately
determine the values of the target column, but with small deltas. We compute
these deltas and store them in place of the original target values. If the deltas are
smaller than the original target values, this will benefit compression techniques
such as bit-packing. To take advantage of this, we shift all offsets into the
range [0, ∞) and apply bit-packing. The shift is necessary since bit-packing is
not effective on negative values. Figure 4.4 shows an example of two columns
compressed with the Equality scheme.

Estimating the compression ratio. We compute the estimated compression
ratio of the Numerical scheme, in order to compare it to the estimated compres-
sion ratios achieved by single-column schemes. Since in the Numerical scheme,
the source column is compressed with the best single-column scheme, we only
need to estimate the compression ratio achieved for the target column. We
only compute the estimated compression ratio for column pairs with a Pearson
correlation coefficient with an absolute value greater than 0.7. We use a group of
n source samples si and target samples ti to compute it as follows:

corr_coe f =
∑n

i=1(si − s̄)(ti − t̄)√
∑n

i=1 (si − s̄)2 ∑n
i=1 (ti − t̄)2

(4.4)

s̄ and t̄ denote the mean of the source and target samples. After filtering out
column pairs with a low correlation coefficient, the slope α and intercept β are

28

4.2 Multi-Column LWC Schemes

Figure 4.4: A pair of columns encoded with the Numerical compression scheme.

computed based on the same sample as follows:

β =
∑n

i=1(si − s̄)(ti − t̄)

∑n
i=1 (si − s̄)2 (4.5)

α = t̄ − βs̄ (4.6)

To avoid duplicate computations, we reuse factors from computing the corre-
lation coefficient to compute β. To estimate the compressed size of the target
column using the Numerical scheme, the target deltas di are computed for the
samples:

di = ti − ⌊αsi + β⌋ (4.7)

We compute the estimated size of bit-packing the delta values and use this as
the estimated size of the target column. The estimated compression ratio is the
original size of the column divided by the estimated compressed size:

ECRNumerical =
target_col_size_bytes

bitpacked_deltas
(4.8)

Compressing with the Numerical scheme. To compress a column with the
Numerical scheme, we reuse the slope a and intercept b computed on the samples.
The target deltas di are computed as in equation 4.7. The target deltas replace the

29

4 Design and Implementation

original target values and are compressed further with bit-packing. The slope
and intercept are stored in the metadata of the compressed target column. The
source column is compressed with the best single-column compression scheme.
To decompress the target column, the source column is first decompressed and
the offsets stored in the target column are decompressed. Using the slope and
intercept stored in the target column’s metadata, the target values ti are then
reconstructed as follows:

ti = ⌊α ∗ si + β⌋+ di (4.9)

4.2.3 1-to-1 Dictionary

The 1-to-1 Dictionary scheme is designed to compress a target column, whose
values can directly be determined by a source column through a dictionary
mapping. The scheme can be applied to two columns of arbitrary mixed data
types. If the values of a source column always map to the same corresponding
values of a target column and these value-pairs occur often, then this mapping
can be stored once and the target column does not need to be stored. To soften
the criteria needed to apply this scheme, we allow exceptions to this mapping
which are stored as separate exception indexes and exception values.

Compressing the 1-to-1 Dictionary scheme. The compression scheme is
applied as follows: the source column and target column are both separately
dictionary-encoded, whereby each unique value is replaced with an integer code.
In a single pass over the source and target column, each unique mapping between
source and target codes is stored and their occurrence frequency is counted. For
each unique source code, we determine the most frequently mapped target code
and store it in a dictionary mapping. In a second pass over the source and target
column, all target codes that do not correspond to the code in the dictionary
mapping are identified as exceptions. The index and the target code of the
exception are stored in separate integer arrays. Since we dictionary encoded the
target column, both the mapping dictionary and exception values are reduced
to the integer codes. This reduces the sizes of the mapping dictionary and
exception values (for double and string target columns). In the case of string
columns, the integer codes also allow a more accurate estimation of the mapping
dictionary size and exception size using samples by fixing the size of mappings
and exceptions. To keep track of null values in the target column, the original
nullmap of the target column is kept. The codes for the source and target
column are bit-packed, and the exceptions and the mapping dictionary are left
uncompressed. Figure 4.5 gives an example of two columns encoded with the
1-to-1 Dictionary scheme.

30

4.2 Multi-Column LWC Schemes

Figure 4.5: A pair of columns encoded with the 1-to-1 Dictionary compression
scheme.

The number of entries in the source dictionary and the target dictionary equals
the number of unique values in the respective columns. The number of entries in
the source-target mapping dictionary also equals the number of unique source
values.

Decompressing the 1-to-1 Dictionary scheme. To decompress a 1-to-1 Dictionary-
encoded column, the compressed source column must first be bit-unpacked to
its integer dictionary codes. The dictionary-encoded target column is recreated
by applying the mapping dictionary. All exceptions are patched in the target
column, after which the original target values are retrieved by replacing the
dictionary codes with the original values using the target dictionary. To fully
decompress the source column, the source dictionary is used to replace the
source codes with their original values. Since patching exception values can slow
down the decompression of the target column, we limit the maximum number
of allowed exceptions to 10% of the total tuple count.

Estimating the compression ratio. We compute the estimated compression
ratio of the 1-to-1 Dictionary scheme, in order to compare it to the estimated
compression ratios achieved by single-column schemes. Since this scheme
requires the source column to be dictionary encoded, we need to include both
the source and target column in the estimated compression ratio. We compute

31

4 Design and Implementation

the estimated compression ratio with a combination of column statistics and
samples. The statistics were generated by a single pass over the columns and
include the total number of tuples, the number of unique values, and the total
size of unique values. We know the size of the source dictionary and target
dictionary since they are equal to the total size of unique values from the
respective column statistics. The size of the source-target mapping dictionary
is equal to the number of unique source values, multiplied by 4 (size of integer
codes). We need the samples only to estimate the number of exceptions. To
achieve this, we create a dictionary with all unique mappings between source
and target samples, including a counter for how often they occur. For each source
sample, we determine the most frequent target sample, and the frequencies of
all mappings are summed up and equal the exception count. We extrapolate
the number of exceptions we found in the samples to the total number of tuples
in the column. For each exception, we store an integer index and an integer
code, so the total exception size is the exception count multiplied by 8 bytes. We
estimate the compressed size of the source column using the number and size
of unique values, and by estimating the bit-packed size of the codes. We leave
exceptions and dictionaries uncompressed.

estimated_compressed_target_size = exception_count ∗ 2 ∗ sizeo f (integer)+
target_total_unique_values_size+

source_unique_values_count ∗ sizeo f (integer) (4.10)

ECR1−to−1−Dict =
source_column_size + target_column_size

estim_compressed_source_size + estim_compressed_target_size
(4.11)

4.2.4 1-to-N Dictionary

The 1-to-N Dictionary scheme is designed to exploit a correlated column pair in
which a 1-to-N mapping exists between unique values of the source and target
column. This scheme can be applied to columns of arbitrary mixed data types.
For example, a 1-to-N mapping would hold for a source column containing
countries and a target column containing cities within the country. For each
unique source value, all corresponding N unique target values are gathered and
assigned a code starting from 0 to N. Instead of applying dictionary encoding
to the target column, which would result in target codes with values between
[0, target_unique_count), target codes are instead limited to [0, N), which can

32

4.2 Multi-Column LWC Schemes

improve compression ratios achieved by schemes such as bit-packing, if N ≪
target_unique_count.

Compressing the 1-to-N Dictionary scheme. To compress two columns with
this scheme, the source column is first dictionary encoded. In a single pass
over the source and target column, a mapping dictionary is built. The mapping
dictionary is filled by going through source codes in ascending order, and for
each source code, all unique target values are added to the mapping dictionary.
We build a dictionary containing offsets for each source code. The offsets point
to the segment of target values in the mapping dictionary which belong to the
source code. Finally, the target column is replaced with integer codes, so that
the offset of the source code added to the target code equals the index to access
the correct value in the mapping dictionary. Figure 4.6 shows an example of a
1-to-N Dictionary encoding. To keep track of null values in the target column,
the original nullmap of the target column is kept. The source and target codes
are bit-packed and the dictionaries are kept uncompressed.

Figure 4.6: A pair of columns encoded with the 1-to-N Dictionary compression
scheme.

Decompressing the 1-to-N Dictionary scheme. To decompress the target
column, the source column and target column are first bit-unpacked, so that
they are in dictionary-encoded form. Each target value is reconstructed by using
the integer code in the source column as an index to retrieve the offset from the
offset dictionary. This offset is added to the target integer code, which results in
the final index used to access the correct target value in the mapping dictionary.
To fully decompress the source column, the source dictionary is used to replace

33

4 Design and Implementation

the integer codes with the original values.
Estimating the compression ratio. We compute the estimated compression

ratio of the 1-to-N Dictionary scheme, in order to compare it to the estimated
compression ratios achieved by single-column schemes. Since this scheme
requires the source column to be dictionary encoded, we need to include both
the source and target column in the estimated compression ratio. We use pre-
collected column statistics are used to estimate the size of the compressed source
column, the source dictionary, and the offset dictionary. Samples are needed to
compute and estimate the sizes of the target column and target dictionary. The
size of the dictionary to dictionary-encode the source is equal to the total size
of unique values in the column, which are part of the source column statistics.
We compute the estimated size of the source codes by using samples to estimate
the bit-packed. The size of the offset dictionary is equal to the total number of
unique source values multiplied by the size of integers. To estimate the size of
the target column and target dictionary, we need a set of samples. Based on
the samples, a mapping is created between each unique source sample, and a
vector of all unique target values it maps to. The number of elements in the
target dictionary is equal to the number of unique mappings between source
and target samples. In the case of an integer or double target column, we can
directly compute the size of the target dictionary, by multiplying the number of
entries with the size of the data type. In the case of a string target column, we
use the statistics to compute the average string length in the column, and use
this value multiplied by the number of entries to estimate the target dictionary
size. To estimate the size of the target codes, we compute them for a number
of samples and use to to estimate the size of the codes after bit-packing. The
dictionaries are not further compressed. The final estimated compression ratio
of the scheme is computed as in equation 4.15.

o f f set_size = source_unique_values_count ∗ sizeo f (integer) (4.12)

target_dict_size = total_mapping_count ∗ avg_size_data_type (4.13)

estimated_compressed_target_size = o f f set_size+
target_dict_size+

estimated_bitpacked_codes_size (4.14)

34

4.2 Multi-Column LWC Schemes

ECR1−to−N−Dict =
source_column_size + target_column_size

estim_compressed_source_size + estim_compressed_target_size
(4.15)

4.2.5 Dictionary-FOR

The Dictionary-Frame-of-Reference (DFOR) scheme exploits correlations between
a source column of arbitrary data type and an integer target column, in which
the target values mapped to unique source values fall into distinct and separate
ranges. In this case, every unique source value can be assigned a reference value
equal to the minimum target value it maps to. All target values mapped to
the source value can be adjusted by subtracting the corresponding reference
value. If the original target column is not very suitable to be compressed with a
conventional integer compression schemes, this scheme may produce smaller
integer values for the target column which will benefit from bit-packing. Figure
4.7 shows an example of DFOR encoded columns.

Figure 4.7: A pair of columns encoded with the DFOR compression scheme.

Compressing the DFOR scheme. To compress a pair of columns with the
DFOR scheme, the source column is first dictionary-encoded. In a first pass
over the source and target column, a dictionary is built that maps each unique
source value to the minimum corresponding target value. During a second pass
of the source and target column, the minimum target values corresponding to
the source values are subtracted from the target values. The source and target
columns are further compressed with bit-packing.

35

4 Design and Implementation

Decompressing the DFOR scheme. To decompress the DFOR scheme, the
source column is bit-unpacked to its dictionary-encoded form. The values in the
source column are used to access the correct frame-of-reference values, which
are added to the target values to reconstruct the original target values. To fully
decompress the source column, the source dictionary is used to replace the codes
with the original source values.

Estimating the compression ratio. To estimate the compression ratio achieved
by the DFOR scheme, pre-collected column statistics and samples are used in
conjunction. Since this scheme requires the source column to be dictionary
encoded, we need to compute the estimated compression ratio of the source
and target column combined. For the size of the source column, the estimated
compression ratio can be calculated by using samples to compute the estimated
bit-packed size. To estimate the bit-packed size of the target column, we need
to estimate how large the encoded integer values will be. We apply the DFOR
encoding to a sample and use it to estimate the bit-packed size. The size of the
frame-of-references equals the number of unique source values, multiplied by
the size of integers. The total estimated compression ratio is computed as in
equation 4.18.

re f erences_size = source_unique_values_count ∗ sizeo f (integer) (4.16)

estimated_compressed_target_size = re f erences_size+
estimated_bitpacked_codes_size (4.17)

ECRDFOR =
source_column_size + target_column_size

estim_compressed_source_size + estim_compressed_target_size
(4.18)

4.2.6 Dictionary Sharing

The Dictionary Sharing scheme uses a shared dictionary to dictionary encode
two columns, and can be applied to two columns of equal data type. If the
source column and target column have an overlapping set of unique values, then
the combined dictionary will be smaller than the total size of two individual
dictionaries. The amount of bytes saved is equal to the total size of shared unique
values between the columns. To compress a pair of columns with the Dictionary

36

4.2 Multi-Column LWC Schemes

Sharing scheme, we need to compute the union of both sets of unique values.
For both columns, we use the maps from the column statistics which already
map each unique value to a dictionary code. For each unique target value, we
check whether it is contained in source column’s map of unique values. If it
is not present, the target value is added to the map and given an integer code
equal to the new size of the map. This combined dictionary is used to dictionary
encode both the source and target column, as seen in Figure 4.8. The dictionary
is stored only with the source column, but is used to decode both the source and
target column during decompression.

Figure 4.8: A pair of columns encoded with the Dictionary-Sharing compression
scheme.

Estimating the compression ratio. To estimate the compression ratio achieved
by applying the Dictionary Sharing scheme to a pair of columns, we use the
pre-collected column statistics which include a set of all unique values of both
columns. Since this scheme required the source column to be dictionary encoded,
the estimated compression ratio of the scheme needs to be calculated on both
the source and target columns combined. To compute the size in bytes of the
combined dictionary, we take the total size of unique values of the source column,
and for each unique target value not contained in the source column, add the
size of the target value. The estimated size of the source and target codes can
be computed using samples to estimate the bitpacked size. The final estimated
compression ratio is computed as in equation 4.19.

37

4 Design and Implementation

ECRDShare =
source_column_size + target_column_size

estim_compressed_source_size + estim_compressed_target_size
(4.19)

4.3 Compression Framework

After horizontally partitioning a table into row groups, each row group is com-
pressed individually. In the first step, the compression framework iterates over
each column in the row group. For each column, it generates statistics and uses
the statistics as well as a set of samples to compute an estimated compression ra-
tio for each applicable single-column compression scheme. The column statistics
are used in combination with samples to compute the estimated compression
ratios of both single-column and multi-column compression schemes. The statis-
tics collected for each column differ between numerical columns (integer and
double) and string columns.

Statistics for integer and double columns include:

• Map containing all unique values. Each unique value is mapped to an
occurrence counter and a unique integer id.

• Minimum value.

• Maximum value.

• Total number of tuples.

• Number of null values.

• Number of unique values.

• Average length of value runs.

Statistics for string columns include:

• Map containing all unique strings. Each unique string is mapped to a
unique integer id.

• Total size in bytes of the column, including both offsets and strings.

• Total string size in bytes of the column, starting from the end of offsets to
the end of the column.

38

4.3 Compression Framework

• Total unique strings size in bytes. The sum of the length of all unique
strings without offsets.

• Total number of tuples.

• Number of null values.

• Number of unique values.

4.3.1 Finding Correlated Columns

After generating statistics and computing the estimated compression ratios for
single-column compression schemes, we further move on to finding correlations
to exploit with multi-column compression schemes. Given n columns and m
multi-column compression schemes, the total search space to find correlated
column pairs for compression is O(n2 ∗ m). Our goal is to find multi-column
compression schemes that achieve higher compression ratios than applying
single-column schemes to individual columns. To do this we iterate over all
column pairs and compute the estimated compression ratio of all applicable
multi-column compression schemes. Compression schemes are applicable if
the data type requirements are met, as listed in table 4.2. The methods used
to compute the estimated compression ratios for each scheme are described in
section 4.2.

Table 4.2: Data type requirements for multi-column compression schemes.

Scheme Data Types

Equality Any matching pair of data types

Numerical Any source column data type, integer target column type

1-to-1 Dictionary Any two data types

1-to-N Dictionary Any two data types

DFOR Any source column data type, integer target column type

Dictionary-Sharing Any two data types

Pruning Rules. To reduce the quadratic search space as much as possible,
we skip compression schemes for column pairs based on pruning rules defined
for each scheme as listed in table 4.3. These pruning rules are set to filter out
as many unpromising column pairs and schemes as possible using column
statistics while trying to avoid pruning column pairs and schemes which have

39

4 Design and Implementation

the potential to achieve high compression ratios. The efficacy of these pruning
rules is discussed in chapter 5. As a final tool to reduce the search space for
tables with a large number of columns n, we introduce a window size parameter
w < n, which adds a restriction to the maximum allowed distance between two
columns based on column indexes in the table. This limits the search space to
O(w2 ∗ m). In our implementation, we set w = 100.

Table 4.3: Column-pair pruning rules for multi-column compression schemes
using column statistics.

Scheme Pruning Rules

Equality Skip column pair, if the difference between the number of
unique values is larger than the allowed threshold for
exceptions.

Numerical Skip column pair, if the difference between the number of
unique values is larger than 0.3% of total tuple count.

1-to-1 Dictionary Skip column pair, if the number of unique values of
either source or target column exceeds 15% of total
tuple count.
Skip column pair, if the difference between the number of
unique values is larger than the allowed threshold for
exceptions.

1-to-N Dictionary Skip column pair, if the number of unique values of
either source or target column exceeds 15% of total
tuple count.

DFOR Skip column pair, if the number of unique values of
source column exceeds 10% of total tuple count.

Dictionary-Sharing Skip column pair, if the number of unique values of
either source or target column exceeds 25% of total
tuple count.

Sampling. Since the search space for multi-column schemes is quadratic in
the number of columns, the number of estimated compression ratios that are
computed is very high. Given a sample size of s, the algorithms to compute
the estimated compression ratios for the Equality and Numerical scheme have a
time complexity of O(s), and O(s log s) for all other multi-column schemes. We
try to keep the sample size for computing the estimated compression ratios as
small as possible. We add two parameters to control the sample size: the number

40

4.3 Compression Framework

of sample runs and the size of each sample run. The total sample size is the
product of these parameters. A run of samples refers to a range of consecutive
values sampled from the column, compression schemes that take advantage of
patterns between consecutive values need runs of samples to effectively estimate
compression ratios. Given parameters sample_runs and run_size, a column is
divided into as many equal-sized windows as the number of sample_runs, and
run_size consecutive values are sampled with a random offset so that the entire
run is contained within the window. This ensures that the sample runs are
non-overlapping.

4.3.2 Choosing Correlated Compression Schemes

Building a correlation graph. While iterating over all pairs of columns, we
compute the estimated compression ratio for every applicable multi-column
scheme. To decide whether the estimated compression ratios are good enough
to consider using the scheme, we compare the expected compression ratio of
the multi-column scheme with the expected compression ratios of the best
single-column schemes for the two columns. Only if the multi-column scheme is
estimated to compress the columns better than the single-column schemes by a
minimum margin, do we keep the multi-column compression scheme for further
consideration. For schemes with exceptions, the estimated number of exceptions
also cannot exceed the maximum exception count threshold, which is set as
a parameter. If these conditions are fulfilled, the multi-column compression
scheme is added to a correlation graph which contains all multi-column schemes
that are estimated to improve the compression ratio over single-column schemes.
The directed graph consists of n nodes representing each column of the table,
while weighted edges represent multi-column compression schemes between
two columns, pointing from the source to the target column. The edge weights
represent the estimated number of bytes that are saved by using the multi-scheme
compression scheme instead of single-column compression schemes. Figure 4.9
shows an example of a correlation graph.

Picking the final schemes. The correlation graph may contain a high number
of multi-column compression schemes that are not compatible with each other
for compression. We implement a greedy algorithm to pick a subset of the edges
to maximize the number of bytes saved compared to compressing with single-
column compression schemes. This subset of edges forms the final correlation
graph which contains the final compression schemes we will use to compress
the columns. The algorithm picks the highest-weighted edges that conform to
the following restrictions until none are left:

41

4 Design and Implementation

Figure 4.9: An example of a correlation graph. Nodes represent columns and
weights on the edges represent the estimated amount bytes saved
by using the multi-column scheme over single-column schemes. For
example, the 1-to-N Dictionary scheme can be applied between the
source column 7 and target column 10, and would save an estimated
32994 bytes, compared to using the best single-column schemes on
both columns.

42

4.3 Compression Framework

• The final correlation graph may only contain paths of length 1. This
prevents chained correlations and ensures that at most only two columns
need to be accessed to compress and decompress any column.

• Every node in the final correlation graph may at most only have one input
edge.

• Every node may only have one outgoing edge representing a Dictionary
Sharing scheme. This is to simplify the compression process for the Dic-
tionary Sharing scheme, as one source column sharing a dictionary with
multiple target columns would add complexity and decrease the efficiency
of the scheme.

Figure 4.10 shows an example of the final edges chosen by the greedy algo-
rithm.

Figure 4.10: The final edges chosen by the greedy algorithm, applied to the
correlation graph shown in Figure 4.9. The algorithm picks edges
greedily in an attempt to maximize the number of bytes saved
by using multi-column schemes. The order of edges picked is
(11 → 10), (11 → 3), (7 → 2), (7 → 5), (7 → 4).

43

4 Design and Implementation

4.3.3 Compression

Compression of a row group happens in two stages. First, all multi-column com-
pression schemes are applied, after which all remaining uncompressed columns
are compressed with single-column compression schemes. Since multiple multi-
column compression schemes can share the same source column, and different
compression schemes have different requirements on how the source column
should be encoded, all compression schemes using the same source column need
to be taken into consideration during compression.

Order of applying compression schemes. We need to split the multi-column
compression schemes into three categories based on how they require the source
column to be encoded:

• Non-Dictionary-Encoding schemes: Equality and Numerical. To apply
these compression schemes, the source column needs to be in its original
state with no encodings applied.

• Regular-Dictionary-Encoding schemes: Dictionary 1-to-1, Dictionary 1-
to-N, and DFOR. To apply these schemes, the source column first needs to
be dictionary encoded.

• Dictionary Sharing scheme. To apply this scheme, the source column also
needs to be dictionary encoded, but the dictionary needs to be extended to
include unique values of the target column.

To avoid encoding and compressing the source column multiple times for each
multi-column scheme using the source column, we define a strict order for all
compression operations:

1. Apply all non-dictionary-encoding schemes. All multi-column schemes
that need the source column with its original values are applied. Specifi-
cally, this step includes encoding and compressing the target column. After
applying each scheme, use the compression graph to check if there are any
more multi-column compression schemes that have not yet been applied
and share the same source column. If yes, the source column is not com-
pressed, if no, the source column is compressed with the best single-column
compression scheme according to the estimated compression ratios.

2. Apply all dictionary Sharing schemes. All Dictionary Sharing compres-
sion schemes are applied. Specifically, dictionary-encoding the source and
target columns, as well as compressing the encoded target column. After
applying each scheme, use the compression graph to check if there are any
more multi-column compression schemes that have not yet been applied

44

4.3 Compression Framework

and share the same source column. If yes, the encoded source column is
not compressed, if no, the source column is compressed with an integer
compression scheme.

3. Apply all regular-dictionary-encoding schemes. All regular-dictionary-
encoding compression schemes are applied. At this point, the source
column may already be dictionary encoded by a previously applied com-
pression scheme. If this is the case, dictionary encoding the source column
can be skipped and only the target column needs to be encoded and com-
pressed. After applying each scheme, use the compression graph to check
if there are any more multi-column compression schemes that have not
yet been applied and share the same source column. If yes, the encoded
source column is not compressed, if no, the source column is compressed
with an integer compression scheme. In the case that we need to compress
the source column and it was already dictionary encoded by a previous
scheme, we need to retrieve the dictionary originally used to encode it and
store it together with the compressed source column.

Reversing Compression Schemes. Since the estimated compression ratios
for the multi-column compression schemes are computed using samples, the
accuracy of the estimations depends greatly on the sample size and how well
the samples represent the characteristics of the columns. We want to avoid
cases in which inaccurate estimated compression ratios lead us to choose multi-
column schemes which actually compress worse than single-column schemes.
We added a mechanism to discard a multi-column scheme during compression
and compress the columns with single-column schemes instead. Reversing the
multi-column is done as follows:

• When to trigger scheme reversal. After applying a multi-column compres-
sion scheme, the size of the compressed columns is used to re-evaluate
whether the final compressed size is larger than the estimated size achieved
by using the best single-column compression schemes on the source and
target column. If the size is larger by a minimum margin, the multi-column
compression scheme is reversed.

• Target column. To reverse the scheme, the compressed target column is
discarded and the original target column is kept in place.

• Source column. If the current multi-column scheme is the first scheme us-
ing the source column and the source column has been dictionary encoded,
the dictionary encoding is discarded and the original source column is
kept in place. If the source column was dictionary encoded and is used

45

4 Design and Implementation

by a previously applied multi-column scheme and there are no further
multi-column schemes using the source column that need to be applied,
then the encoded source column is bitpacked to complete the compression
of the source column. In all other cases, nothing needs to be done for the
source column.

Single-column compression. After all multi-column compression schemes
have been applied, all columns that have been left uncompressed are com-
pressed with the best single-column compression scheme, which we derive from
the estimated compression ratios previously computed for all single-column
schemes.

4.3.4 Decompression

In many cases, systems may only need to access and decompress individual
columns of a table, and some systems may even support working directly
on compressed data [17]. This section discusses our procedure for efficiently
decompressing all columns of a row group, but it can be adapted and applied
to decompressing only a subset of columns. When decompressing all columns
of a row group, the decompression procedure should consider that multiple
multi-column schemes may use the same source column. Multi-column schemes
in which the source column is dictionary compressed need first bit-unpack the
source codes without dictionary-decoding the codes, in order to reconstruct the
target column. In contrast, multi-column schemes without dictionary-encoded
source columns require the source column to be fully decompressed, in order
to reconstruct the target column. To take this into account and to minimize
decompression work, we decompress a row group in four stages:

1. Decompress all columns that are not part of a multi-column compression
scheme and are compressed only with single-column schemes. Addi-
tionally, all dictionary-encoded columns that are a source column of a
multi-column scheme are bit-unpacked to retrieve the codes dictionary
codes. The codes are not decoded back to the original values at this stage.

2. Decompress all columns that are target columns of a multi-column dictio-
nary compression scheme. The previous step ensures that by this point
the integer codes of the dictionary-encoded source columns are already
bit-unpacked.

3. Fully decode all dictionary encoded columns whose integer codes were
bit-unpacked in step one.

46

4.3 Compression Framework

4. Decompress all target columns that were compressed with multi-column
non-dictionary-encoding schemes. The previous steps ensure that by this
point the source columns have been fully decompressed to its original
values.

4.3.5 Multi-Row Group Compression

Previous sections have discussed the compression of individual row groups,
this section discusses optimization opportunities presented when compressing a
batch of row groups from the same table.

Since we expect that most column correlations hold over an entire column
and are not limited to a single row group, correlations found in one row group
should also be applicable to other row groups. If this is the case, then the
multi-column schemes found in one row group can also be reused in other row
groups as well. To take advantage of this, we introduce two mechanisms to share
the multi-column compression schemes found in the first row group of a table
with subsequent row groups of the same table. This allows us to amortize the
cost of finding correlated columns as described in section 4.3.1 over multiple
row groups.

Sharing final schemes. Our first method involves sharing all multi-column
compression schemes that were picked as the final schemes from the compression
graph. After compressing the first row group, the final schemes are extracted,
including the type of the multi-column compression scheme and the source and
target column indexes. For all subsequent row groups of the same table, the
process of finding correlated columns is altered. Instead of finding beneficial
multi-column schemes for all column pairs and schemes, the search space
is reduced to include only the column pairs and schemes as given by the
final schemes of the first row group. Only for these schemes, the estimated
compression ratio is computed using the statistics and samples of the new
row group, and it is re-evaluated whether they outperform the single-column
compression schemes. By re-evaluating the estimated compression ratios, we
allow the schemes to be discarded in case that the correlations do not hold
for the current row group. All schemes that are estimated to achieve higher
compression ratios than single-column schemes are added to the correlation
graph of the new row group. Since these multi-column schemes were all part of
the final schemes of the first row group, they are guaranteed to be compatible
and can directly be used as the final schemes for the new row group.

Sharing all schemes in the correlation graph. As a less aggressive alternative,
a second method involves sharing all multi-column compression schemes that
were added to the correlation graph of the first row group, instead of only the

47

4 Design and Implementation

final picked schemes. These are all schemes that were estimated to achieve higher
compression ratios than using single-column compression schemes. For all
subsequent row groups of the same table, the search space of finding correlations
between columns is reduced to only the column pairs and schemes which were
added to the correlation graph of the first row group. For all these schemes, the
estimated compression ratio is re-computed with the statistics and samples of
the new row group, and only those estimated to achieve higher compression
ratios than single-column schemes are added to the correlation graph of the new
row group. To pick the final schemes used for compression, the greedy scheme
picking algorithm described in section 4.3.2 is run on the correlation graph of
the new row group.

4.4 Compressed column format

The general format of compressed columns is shown in figure 4.11. The format
contains:

• Multi-Column Scheme: an identifier encoding whether a multi-column
compression scheme was used to compress the column and which scheme
was used.

• Column Data Type: identifier encoding the original data type of the col-
umn.

• Source Column-ID: if a multi-column scheme was used to compress the
column, this contains the column-ID of the source column of the scheme.
The current column is always the target column of the scheme.

• Original Column Size: size in bytes of the original uncompressed column.

• Single-Column Data Offset: offset in bytes to access the data chunk con-
taining the compressed column and metadata used by the single-column
compression scheme.

• Data: split into a chunk containing data used by the multi-column com-
pression scheme, and a chunk containing data used by the single-column
compression scheme. The multi-column chunk contains data used by the
multi-column compression scheme to decompress the target column of the
scheme, such as all exceptions and dictionaries. The single-column chunk
contains a header with metadata about the single-column compression
scheme used, the compressed values itself, the compressed nullmap, and
any other data used by the single-column compression scheme.

48

4.4 Compressed column format

Figure 4.11: Format of a compressed column, including a fixed size header and
variable sized data chunk.

The following sections discuss the format of the data stored in the Multi-Column
Compression Data chunk and Single-Column Compression Data chunk shown in
figure 4.11.

4.4.1 Single-Column Scheme Compressed Format

The Single-Column Compression Data of all values that are compressed with single-
column compression schemes is stored in the format as shown in figure 4.12.
This includes both compressed column values and other data arrays generated
by compression schemes such as exceptions, dictionaries, and RLE values and
lengths. Value chunks that are left uncompressed are also stored in this format,
in this case, the scheme type is set to "uncompressed". The format contains:

• Scheme Type: identifier encoding which single-column compression scheme
was used.

• Nullmap Type: identifier encoding whether the nullmap is filled with only
ones or zeros, or the bits were flipped for better Roaring compression.

• Data Type: identifier encoding the data type of the values in the chunk.

49

4 Design and Implementation

• Nullmap Offset: offset in bytes to access the compressed nullmap.

• Tuple Count: number of tuples contained in the chunk.

• Data: the compressed nullmap for the chunk and the compressed values,
which contain all data output of the used single-column compression
scheme.

Figure 4.12: Format of a value chunk compressed with single-column compres-
sion schemes, including a fixed size header and variable sized data
chunk.

4.4.2 Compressed Equality Scheme Format

The Multi-Column Compression Data of all column chunks that were compressed
with the Equality Compression Scheme is stored in the format as shown in figure
4.13. The format contains:

• Exceptions Offset: offset in bytes to access the exceptions.

• Data: one data chunk containing the nullmap of the target column, followed
by a chunk containing all exceptions.

Since the column values are replaced with exceptions, the Single-Column Com-
pression Data chunk is empty.

50

4.4 Compressed column format

Figure 4.13: Format of a column compressed with Equality compression schemes,
including a fixed size header and variable sized data chunk.

4.4.3 Compressed Numerical Scheme Format

The Multi-Column Compression Data of all columns that were compressed with
the Numerical Compression Scheme is stored in the format as shown in figure
4.14. The format contains:

• Slope: float value containing the slope of the linear correlation.

• Intercept: float value containing the slope of the linear correlation.

• Reference Value: integer value containing the reference value by which the
encoded target values are shifted.

The Single-Column Compression Data chunk contains the compressed target values
generated by the scheme.

4.4.4 Compressed 1-to-1 Dictionary Scheme Format

The Multi-Column Compression Data of all columns that were compressed with
the 1-to-1 Dictionary Compression Scheme is stored in the format as shown in
figure 4.15. The format contains:

• Target Dictionary Offset: offset in bytes to access the dictionary for decod-
ing the dictionary-encoded target column.

• Mapping Dictionary Offset: offset in bytes to access the dictionary used to
recreate the target column codes from the source column codes.

51

4 Design and Implementation

Figure 4.14: Format of a column compressed with Numerical compression
schemes.

• Exceptions Offset: offset in bytes to access the exceptions.

• Data: contains data chunks for the nullmap of the target column, the target
dictionary, the mapping dictionary, and the exceptions.

Since the column values are replaced with dictionaries and exceptions, the
Single-Column Compression Data chunk is empty.

4.4.5 Compressed 1-to-N Dictionary Scheme Format

The Multi-Column Compression Data of all columns that were compressed with
the 1-to-N Dictionary Compression Scheme is stored in the format as shown in
figure 4.16. The format contains:

• Mapping Dictionary Offset: offset in bytes to access the dictionary used to
retrieve the target column values from the source column codes.

• Data: contains data chunks for the dictionary containing the offset for each
source code and the data chunk for the mapping dictionary.

Since the column values are replaced with dictionaries and exceptions, the
Single-Column Compression Data chunk is empty.

4.4.6 Compressed DFOR Scheme Format

The Multi-Column Compression Data of all columns that were compressed with
the DFOR Compression Scheme is stored in the format as shown in figure 4.17.
The format contains:

52

4.4 Compressed column format

Figure 4.15: Format of a column compressed with 1-to-1 Dictionary compression
schemes, including a fixed size header and variable sized data
chunk.

53

4 Design and Implementation

Figure 4.16: Format of a column compressed with 1-to-N Dictionary compression
schemes, including a fixed size header and variable sized data
chunk.

• Null-Reference Value: integer containing the reference value used for
source values that are null.

• Data: contains the data chunk for the dictionary containing the reference
value used for each source code.

Figure 4.17: Format of a column compressed with DFOR compression schemes,
including a fixed size header and variable sized data chunk.

The Single-Column Compression Data chunk contains the compressed target values
generated by the scheme.

54

4.4 Compressed column format

4.4.7 Compressed Dictionary-Sharing Scheme Format

A pair of columns compressed with the Dictionary-Sharing Scheme does not
need any Multi-Column Compression Data, since the dictionary is stored with
the dictionary-encoded source column, and the compressed codes of the target
column are stored in the Single-Column Compression Data chunk.

4.4.8 Compressed Dictionary Format

Dictionaries of multi-column compression schemes and the Multi-Column Com-
pression Data of columns which were dictionary encoded as the source column
of a multi-column compression scheme are stored as shown in figure 4.18. The
format contains:

• Data Type: identifier encoding the data type of the values in the dictionary.

• Data: contains the data chunk with the dictionary values.

Figure 4.18: Format of a compressed dictionary, including a fixed size header
and variable sized data chunk.

4.4.9 Compressed Exceptions Format

All exceptions of multi-column compression schemes are stored in the format as
shown in figure 4.19. The format contains:

• Exception Values Offset: offset in bytes to access the exception values.

• Data: contains a data chunk containing the exception indexes and a data
chunk containing the exception values.

55

4 Design and Implementation

Figure 4.19: Format of compressed exceptions, including a fixed size header and
variable sized data chunk.

4.4.10 Compressed Nullmap Format

Some multi-column compression schemes store nullmaps of the target columns
separately, since they completely replace the target column chunk with dictio-
naries and exceptions. In these cases, the Single-Column Compression Data chunk
is empty and the target nullmap is stored in the Multi-Column Compression Data
chunk as shown in figure 4.20. The format contains:

• Nullmap Type: identifier encoding whether the nullmap is filled with only
ones or zeros, or the bits were flipped for better Roaring compression.

• Data: contain the data chunk containing the Roaring bitmap.

Figure 4.20: Format of a compressed nullmap, including a fixed size header and
variable sized data chunk.

56

5 Results and Discussion

We evaluated the compression ratios achieved by our compression framework
on the tables listed in table 2.2.

5.1 Baseline

As a baseline measurement, we disabled all multi-column compression schemes
and only used the single-column compression schemes as described in section
4.1. The tests are run on a single row group.

Figure 5.1 shows the compression ratios achieved for each table, with a
mean compression ratio of 6.72. These results represent the compression ratios
achieved with regular single-column compression schemes.

5.2 Individual Multi-Column Schemes

Next, we evaluate how much compression benefit each individual multi-column
scheme can add compared to the baseline. For testing each scheme, we disable
all other multi-column schemes. We test each scheme with 8 different sample
sizes, representing roughly 0.5%, 1%, 5%, 10%, 25%, 50%, 75%, 100% of total tuples.
Since the multi-column schemes do not exploit patterns between consecutive
tuples of columns, we do not need the samples to contain runs of tuples. We set
the size of sample run size to 1 and use only the sample run count to adjust the
sample size. The sample sizes affect the accuracy of the estimated compression
ratios of the multi-column schemes, which are used to pick which schemes to
compress with. We only use a single row group of each table for these tests.

Figure 5.2 shows how much each multi-column scheme improves the com-
pression ratio of the baseline results on average when used individually. The
mechanism to reverse multi-column schemes, if they compress worse than ex-
pected, is disabled for these tests. Table 5.1 shows the number of occurrences and
average compression ratio improvement for each scheme, when using a sample
size of 100%. The table suggests that correlations in the form of dictionary
mappings between two columns are the most common type of correlation in the

57

5 Results and Discussion

Figure 5.1: Compression ratios for each table using only single-column compres-
sion schemes.

58

5.2 Individual Multi-Column Schemes

dataset, whereas the Equality and Dictionary-Sharing schemes have the highest
average compression improvement. Figure 5.3 shows the proportions of multi-
column schemes used, and gives an estimate on how much each multi-column
scheme contributes to the overall compression ratio improvement. 1-to-1 and
1-to-N Dictionary schemes are by far the most used, and the Numerical scheme
is by far the least used.

Table 5.1: How often each multi-column scheme was used and the average
compression ratio improvement when scheme is used individually.
Using 100% sample size. Dataset contains 2223 columns in total.

1-to-1 D. 1-to-N D. Equality D.-Sharing DFOR Numerical

Scheme count 489 363 111 163 137 30

Avg. Compr.
Ratio Improv. 3.5x 2.8x 4.8x 4.2x 1.5x 1.4x

1-to-1 Dictionary Scheme. The compression ratio of the 1-to-1 Dictionary
Scheme drops off sharply for sample sizes under 5% of total tuples. This can
be explained by the difficulty of estimating the number of exceptions using
very small sample sizes. Given a small sample, the probability is high that each
unique sample of the source column is only encountered once, and consequently
the sample contains no exceptions. This probability rises the more unique
values the source column has, leading to false positives which seem to have few
exceptions, but in reality, have many. These cases can lead to an even worse
compression ratio than using single-column schemes, and drag down the average
improvement. With sample sizes of 5% and higher the estimated compression
ratios improve significantly and the 1-to-1 Dictionary Scheme improves the
compression ratio of the baseline by roughly 17%. The average exception ratio is
only 0.5%, which is much less than the upper limit we set of 10% (with 100%
sample size).

1-to-N Dictionary Scheme. The 1-to-N Dictionary Scheme achieves around
20% improved compression ratios compared to the baseline for large sample
sizes. The compression ratio drops off for sample sizes between 0.5% and
10%. The accuracy of the estimated compression ratios sinks since samples are
needed to estimate the size of the mapping dictionary, which is dependent on
the number of unique mappings between source and target values. Similar to
the 1-to-1 Dictionary Scheme, the compression ratio drop-off for small sample
sizes can be explained as false positives, in which the real compression ratio is
worse than estimated.

59

5 Results and Discussion

Figure 5.2: Compression ratio improvement of using individual multi-column
compression schemes compared to the baseline result, using different
sample sizes for computing estimated compression ratios of the multi-
column schemes.

60

5.3 Combining All Schemes

Equality Scheme. The Equality Scheme achieves the third-highest compres-
sion ratio improvement of roughly 7 − 8%. The compression ratio is relatively
stable across all sample sizes, even though the estimated compression ratio is
fully reliant on samples. This suggests that for column pairs in which a 0.5%
sample is equal, there is a very high chance that most other values will be equal
as well. The slight drop in compression ratio for the highest sample sizes is
unexpected and may be due to the greedy algorithm of the correlation graph
running into local minima. The average exception ratio of the Equality scheme
is around 0.8%, much less than the upper limit we set of 10% (with 100% sample
size).

Dictionary-Sharing Scheme. The Dictionary-Sharing Scheme achieves roughly
5% improved compression ratio. The compression ratio is relatively stable across
all sample sizes, with little decrease for small sample sizes. This is because
computing the estimated compression ratio does not need samples, but instead
relies only on the unique values of the columns, which are provided by the
column statistics. However, the sample size is still used as an upper limit on
how many unique values to use for computing the estimated compression ratio.
This explains why there is a slight compression ratio drop-off for low sample
sizes, even though no direct column samples are used.

Dictionary-Frame-of-Reference Scheme. The Dictionary-Frame-of-Reference
Scheme achieves roughly 3% improved compression ratio compared to the
baseline for large sample sizes. The compression ratio improvement drops to
almost 0 for small sample sizes, signifying the difficulty of accurately estimating
the compression ratio with few samples. Low sample sizes lead to many false
positives, in which correlations are falsely identified and have bad compression
ratios.

Numerical. The Numerical Scheme achieves only around 0.5% improved
compression ratios compared to the baseline. Table 5.1 shows that although the
scheme improves compression ratios by an average of 40%, only 30 instances
of Numerical correlation were found between integer columns in the dataset,
which explains the overall little improvement.

5.3 Combining All Schemes

We test using all multi-column compression schemes combined. Figure 5.4
shows that the improved compression ratio lies between 23 − 26%, depending
on the sample size. Surprisingly, the highest compression ratio is not achieved
by the largest sample size, but by a sample size of 50%. Analyzing the output
shows that this improvement only comes from two tables, and is not due to more

61

5 Results and Discussion

Figure 5.3: Proportion of how often each multi-column scheme is used, when all
schemes are enabled and with sample size 65536.

62

5.3 Combining All Schemes

accurate estimated compression ratios, but due to the greedy algorithm picking a
more optimal combination of multi-column schemes from the correlation graph.
This shows that there is potential to further increase the compression ratios
by implementing a more sophisticated algorithm for picking schemes from the
correlation graph.

Figure 5.4: Compression ratio improvement when using all schemes combined.

5.3.1 Reversing Bad Multi-Column Schemes

We repeated the same test with the mechanism of reversing multi-column
schemes turned off. Figure 5.5 shows the compression ratio improvement
with and without reversing schemes. For sample sizes between 0.5 − 10%, the
compression ratio improvement improves by up to 5% with scheme reversing
enabled. The smaller the sample size, the more it benefits from being able to
reverse multi-column schemes. From sample sizes of 25% and onwards, there is
no difference in compression ratios, signifying that a sample size of 25% is large
enough to avoid any significant amount of false positives when searching for
correlations.

63

5 Results and Discussion

Figure 5.5: Compression ratio improvement with scheme reversing enabled and
disabled. The bar graph shows the final number of schemes used,
and the number of reversed schemes.

64

5.3 Combining All Schemes

5.3.2 Sample run size

For all sample sizes, we only changed in the number of sample runs, but kept the
sample run size equal to 1. Contrary to single-column schemes, multi-column
schemes do not exploit patterns between consecutive tuples. Therefore, we do
not need to sample runs of samples and individually sampled tuples should be
enough. To confirm this, we run tests with a total sample size of around 1% (660
tuples), and use different configurations for the number of sample runs and the
sample run size. Figure 5.6 shows the results, confirming that using sample runs
does not improve the overall compression ratio. The highest compression ratio
was achieved by sampling individual tuples.

Figure 5.6: Compression ratio improvement with different sampling strategies.

5.3.3 Multi-Row Group: Sharing Correlations

To evaluate the effectiveness of sharing correlations between row groups, we run
tests with up to 10 row groups for each table. The average number of row groups
per table in this test is 9.1, since some tables have less than 10 row groups in
total. For the Hatred table, we include only the first row group, since the second

65

5 Results and Discussion

row group contains contents that can not be parsed by the BtrBlocks CSV parser.
Figure 5.7 shows the average compression ratio improvements with different
options for sharing correlations between row groups. The compression ratio
improvement for sharing the correlation graph and sharing only the final schemes
is similar and is around 1% lower compared to not sharing any correlations
and finding them from scratch for every new row group. The bar graph shows
the total amount of expected compression ratios that are computed for each
option, with scheme sharing needing to compute roughly only 10% the amount
of expected compression ratios compared to no scheme sharing. The results
show that reusing correlations found in one row group and sharing these with
other row groups can drastically reduce the overhead of finding correlations,
while sacrificing only very little compression ratio.

Figure 5.7

5.3.4 Compression Ratio Improvement per Table

Figure 5.8 shows the compression ratios of only using single-column compression
schemes and the improved compression ratios of using both single- and multi-
column schemes. The results show that the benefit of multi-column schemes

66

5.3 Combining All Schemes

is highly dependent on the presence of column correlations. Many tables do
not benefit at all from multi-column schemes, suggesting that those tables do
not contain any correlations that are exploitable by our multi-column schemes.
The compression ratio improvements shown in prior figures are the average
improvement over all tables. The table with the most exploitable correlations is
compressed 2.75x better by using our multi-column schemes. The compression
ratio improvement of the 10 most improved tables is 1.6x.

Figure 5.8: The compression ratio improvements by using multi-column schemes
for each table in the dataset.

67

6 Conclusion

In this thesis, we explored the potential of exploiting column correlations for
columnar LWC. We revisit our research questions defined in section 1.1 and
discuss future work.

6.1 Research Questions

1. How can we exploit column correlations to improve compression? We
proposed and implemented six multi-column compression schemes that improve
compression by exploiting different kinds of correlations. Each scheme exploits
correlations between a pair of source and target columns. The schemes we
proposed are the Equality Scheme, 1-to-1 Dictionary Scheme, 1-to-N Dictionary
Scheme, Numerical Scheme, Dictionary-Frame-of-Reference Scheme, and the
Dictionary-Sharing Scheme.

2. How can column correlations be efficiently detected? Our results on
the PublicBI benchmark show that a small sample size of only 0.5% is able to
detect column correlations. When combined with a mechanism to reverse falsely
detected correlations, the 0.5% sample size improved compression ratios by
1.23x, only slightly lower than the 26% gained by using the full row group as a
sample.

3. How can multi-column LWC schemes that exploit column correlations be
used in combination with typical single-column LWC schemes? We extended
a typical LWC framework to be able to support our multi-column compression
schemes. This included collecting column statistics, computing the expected
compression ratios for multi-column schemes for all column pairs, greedily
picking the most beneficial multi-column schemes from a correlation graph, and
reversing the use of multi-column schemes if necessary.

4. How much compression benefit does exploiting column correlations
provide in real-world datasets compared to existing LWC schemes? We tested
our implementation on the Public BI Benchmark containing real-world datasets
and achieved an average compression ratio improvement of around 20%. We saw
that many tables in the benchmark contained little to no exploitable correlations.
The 10 tables with the most correlations had improved compression ratios of

69

6 Conclusion

60% on average.
5. If compressing multiple row group groups, can we amortize the overhead

of finding correlations over multiple row groups by reusing correlations found
in one row group with other row groups? Using the PublicBI benchmark, we
showed that by sharing the correlations found in the first row group with up to
10 following row groups, we could amortize the overhead of finding correlations
and reduce the number of expected compression ratios computed by a factor of
10. The compression ratio improvement only decreased by 1%, confirming that
the large majority of correlations hold over multiple row groups.

6.2 Future Work

During the design and implementation of our multi-column compression schemes
and the compression framework, we used results on the Public BI benchmark to
optimize multiple design parameters. By using the Public BI benchmark both
as a training and testing dataset, our parameters may be overfitted specifically
to the Public BI benchmark. It would therefore be valuable future work to
confirm the results by testing the benefits of our multi-column compression
schemes on other benchmarks with real-world data. Additional future work for
exploiting correlations for compression includes benchmarking the compression
and decompression speeds for the multi-column schemes. The authors of the
Whitebox Compression paper claim that most correlations they found were only
present after they applied transformations such as splitting prefixes of strings
into separate columns [15]. We plan to evaluate how much compression ratios
improve when combining these transformations with our multi-column schemes.
Lastly, we believe that there are many more types of exploitable correlations
to be found in real-world datasets, that are not covered by the six schemes we
proposed here.

70

List of Figures

2.1 An integer column is compressed using one-value encoding. . . 6
2.2 A string column is compressed using Frequency Encoding. . . . 7
2.3 A string column is compressed using Run-Length Encoding. . . 7
2.4 An integer column is compressed using bit-packing. 8
2.5 An integer column is compressed using Frame of Reference en-

coding. 9
2.6 A float column is compressed using Pseudo-decimal encoding. . 10
2.7 A string column is compressed using Dictionary encoding. . . . 11
2.8 A string column is compressed using FSST encoding. "UM" is

replaced with the symbol "0", "BRA" is replaced with the symbol "1". 11

4.1 Overview of the compression workflow. Columns of a row group
are analyzed to collect statistics, which are used in conjunction
with samples to compute estimated compression ratios (ECR)
for all compression schemes. The best schemes are selected and
applied to compress the columns. 23

4.2 An example of an encoded string column containing 6 strings.
Given n strings, n+1 integer offsets are used to find the start and
end of each string. All string characters are stored in a single
chunk after the offsets. 25

4.3 A pair of columns encoded with the Equality compression scheme. 27
4.4 A pair of columns encoded with the Numerical compression scheme. 29
4.5 A pair of columns encoded with the 1-to-1 Dictionary compression

scheme. 31
4.6 A pair of columns encoded with the 1-to-N Dictionary compres-

sion scheme. 33
4.7 A pair of columns encoded with the DFOR compression scheme. 35
4.8 A pair of columns encoded with the Dictionary-Sharing compres-

sion scheme. 37

71

List of Figures

4.9 An example of a correlation graph. Nodes represent columns and
weights on the edges represent the estimated amount bytes saved
by using the multi-column scheme over single-column schemes.
For example, the 1-to-N Dictionary scheme can be applied between
the source column 7 and target column 10, and would save an
estimated 32994 bytes, compared to using the best single-column
schemes on both columns. 42

4.10 The final edges chosen by the greedy algorithm, applied to the
correlation graph shown in Figure 4.9. The algorithm picks edges
greedily in an attempt to maximize the number of bytes saved
by using multi-column schemes. The order of edges picked is
(11 → 10), (11 → 3), (7 → 2), (7 → 5), (7 → 4). 43

4.11 Format of a compressed column, including a fixed size header
and variable sized data chunk. 49

4.12 Format of a value chunk compressed with single-column com-
pression schemes, including a fixed size header and variable sized
data chunk. 50

4.13 Format of a column compressed with Equality compression schemes,
including a fixed size header and variable sized data chunk. . . . 51

4.14 Format of a column compressed with Numerical compression
schemes. 52

4.15 Format of a column compressed with 1-to-1 Dictionary compres-
sion schemes, including a fixed size header and variable sized
data chunk. 53

4.16 Format of a column compressed with 1-to-N Dictionary compres-
sion schemes, including a fixed size header and variable sized
data chunk. 54

4.17 Format of a column compressed with DFOR compression schemes,
including a fixed size header and variable sized data chunk. . . . 54

4.18 Format of a compressed dictionary, including a fixed size header
and variable sized data chunk. 55

4.19 Format of compressed exceptions, including a fixed size header
and variable sized data chunk. 56

4.20 Format of a compressed nullmap, including a fixed size header
and variable sized data chunk. 56

5.1 Compression ratios for each table using only single-column com-
pression schemes. 58

72

List of Figures

5.2 Compression ratio improvement of using individual multi-column
compression schemes compared to the baseline result, using dif-
ferent sample sizes for computing estimated compression ratios
of the multi-column schemes. 60

5.3 Proportion of how often each multi-column scheme is used, when
all schemes are enabled and with sample size 65536. 62

5.4 Compression ratio improvement when using all schemes combined. 63
5.5 Compression ratio improvement with scheme reversing enabled

and disabled. The bar graph shows the final number of schemes
used, and the number of reversed schemes. 64

5.6 Compression ratio improvement with different sampling strategies. 65
5.7 . 66
5.8 The compression ratio improvements by using multi-column

schemes for each table in the dataset. 67

73

List of Tables

2.1 Compression schemes and data types supported by BtrBlocks.
Many schemes support cascading compression, where the output
can be recursively compressed further. 13

2.2 Tables of the Public BI benchmark subset, with statistics on column
count and data type. 15

4.1 The single-column compression schemes of BtrBlocks, modified to
represent regular LWC schemes with limited cascading compression. 24

4.2 Data type requirements for multi-column compression schemes. 39
4.3 Column-pair pruning rules for multi-column compression schemes

using column statistics. 40

5.1 How often each multi-column scheme was used and the average
compression ratio improvement when scheme is used individually.
Using 100% sample size. Dataset contains 2223 columns in total. 59

75

Bibliography

[1] Apache Parquet. accessed: 27.11.2023. url: https://parquet.apache.org/.

[2] Apache ORC. accessed: 27.11.2023. url: https://orc.apache.org/.

[3] M. Kuschewski, D. Sauerwein, A. Alhomssi, and V. Leis. “BtrBlocks: Effi-
cient Columnar Compression for Data Lakes”. In: Proceedings of the ACM
on Management of Data 1.2 (2023), pp. 1–26.

[4] D. Abadi, S. Madden, and M. Ferreira. “Integrating compression and
execution in column-oriented database systems”. In: Proceedings of the 2006
ACM SIGMOD international conference on Management of data. 2006, pp. 671–
682.

[5] M. Zukowski, S. Heman, N. Nes, and P. Boncz. “Super-scalar RAM-CPU
cache compression”. In: 22nd International Conference on Data Engineering
(ICDE’06). IEEE. 2006, pp. 59–59.

[6] Facebook. Facebook/ZSTD: Zstandard - fast real-time compression algorithm.
accessed: 27.11.2023. url: https://github.com/facebook/zstd.

[7] D. Abadi, P. Boncz, S. Harizopoulos, S. Idreos, S. Madden, et al. “The
design and implementation of modern column-oriented database systems”.
In: Foundations and Trends® in Databases 5.3 (2013), pp. 197–280.

[8] J. Goldstein, R. Ramakrishnan, and U. Shaft. “Compressing relations and
indexes”. In: Proceedings 14th International Conference on Data Engineering.
IEEE. 1998, pp. 370–379.

[9] P. Boncz, T. Neumann, and V. Leis. “FSST: Fast Random Access String
Compression”. In: Proc. VLDB Endow. 13.12 (July 2020), pp. 2649–2661.
issn: 2150-8097. doi: 10.14778/3407790.3407851. url: https://doi.org/
10.14778/3407790.3407851.

[10] CWIDA. cwida/publicbibenchmark : BIbenchmarkwithusergenerateddataandqueries.
accessed: 27.11.2023. url: https : / / github . com / cwida / public _ bi _
benchmark.

[11] P. G. Brown and P. J. Haas. “BHUNT: Automatic discovery of fuzzy alge-
braic constraints in relational data”. In: Proceedings 2003 VLDB Conference.
Elsevier. 2003, pp. 668–679.

77

https://parquet.apache.org/
https://orc.apache.org/
https://github.com/facebook/zstd
https://doi.org/10.14778/3407790.3407851
https://doi.org/10.14778/3407790.3407851
https://doi.org/10.14778/3407790.3407851
https://github.com/cwida/public_bi_benchmark
https://github.com/cwida/public_bi_benchmark

Bibliography

[12] I. F. Ilyas, V. Markl, P. Haas, P. Brown, and A. Aboulnaga. “CORDS:
Automatic discovery of correlations and soft functional dependencies”. In:
Proceedings of the 2004 ACM SIGMOD international conference on Management
of data. 2004, pp. 647–658.

[13] H. V. Nguyen, E. Müller, P. Andritsos, and K. Böhm. “Detecting correlated
columns in relational databases with mixed data types”. In: Proceedings of
the 26th International Conference on Scientific and Statistical Database Manage-
ment. 2014, pp. 1–12.

[14] B. Ghita, D. G. Tomé, and P. A. Boncz. “White-box Compression: Learning
and Exploiting Compact Table Representations.” In: CIDR. Vol. 1. 2020,
p. 27.

[15] B. Ghita. Self-learning Whitebox Compression. 2019. url: https://homepages.
cwi.nl/~boncz/msc/2019-BogdanGhita.pdf.

[16] X. Lyu, A. Kipf, P. Pfeil, D. Horn, J. Giceva, and T. Kraska. “CorBit: Lever-
aging Correlations for Compressing Bitmap Indexes”. In: (2023).

[17] V. Raman, G. Attaluri, R. Barber, N. Chainani, D. Kalmuk, V. KulandaiSamy,
J. Leenstra, S. Lightstone, S. Liu, G. M. Lohman, et al. “DB2 with BLU
acceleration: So much more than just a column store”. In: Proceedings of the
VLDB Endowment 6.11 (2013), pp. 1080–1091.

78

https://homepages.cwi.nl/~boncz/msc/2019-BogdanGhita.pdf
https://homepages.cwi.nl/~boncz/msc/2019-BogdanGhita.pdf

	Acknowledgments
	=Abstract
	Contents
	Introduction
	Research Questions
	Outline

	Background
	Lightweight Compression Schemes
	One Value Encoding
	Frequency Encoding
	Run-Length Encoding (RLE)
	Bit-packing
	Frame of Reference (FOR)
	Pseudodecimal Encoding (PDE)
	Dictionary Encoding
	Fast Static Symbol Table (FSST)

	BtrBlocks
	Public BI Benchmark

	Related Work
	Exploiting Column Correlations
	BHUNT
	CORDS
	DeCoRel

	Column Correlations for Compression
	Whitebox Compression
	CorBit: Leveraging Correlations for Compressing Bitmap Indexes

	Design and Implementation
	Single-Column LWC Schemes
	Multi-Column LWC Schemes
	Equality
	Numerical
	1-to-1 Dictionary
	1-to-N Dictionary
	Dictionary-FOR
	Dictionary Sharing

	Compression Framework
	Finding Correlated Columns
	Choosing Correlated Compression Schemes
	Compression
	Decompression
	Multi-Row Group Compression

	Compressed column format
	Single-Column Scheme Compressed Format
	Compressed Equality Scheme Format
	Compressed Numerical Scheme Format
	Compressed 1-to-1 Dictionary Scheme Format
	Compressed 1-to-N Dictionary Scheme Format
	Compressed DFOR Scheme Format
	Compressed Dictionary-Sharing Scheme Format
	Compressed Dictionary Format
	Compressed Exceptions Format
	Compressed Nullmap Format

	Results and Discussion
	Baseline
	Individual Multi-Column Schemes
	Combining All Schemes
	Reversing Bad Multi-Column Schemes
	Sample run size
	Multi-Row Group: Sharing Correlations
	Compression Ratio Improvement per Table

	Conclusion
	Research Questions
	Future Work

	List of Figures
	List of Tables
	Bibliography

