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Abstract

With the global adoption of cloud computing, database outsourcing has become

a common practice. Growing privacy concerns have led to a demand for better

privacy of data stored in databases running on untrusted hardware. To sup-

ply this demand for privacy, many different encrypted database management

systems (EDBMS) have been proposed in recent literature. In this Thesis, we

focus on systems designed for analytical workloads. Database systems designed

for analytical workloads have been well researched over the past decades, with

many new designs and optimization techniques having been developed, such as

vectorized query execution and columnar compression. In EDBMS literature

however, these techniques have not yet been applied.

Therefore, we present an EDBMS design based on the modern analytical database,

DuckDB, that deploys both vectorized execution and compression to achieve

minimal performance overhead while providing strong security guarantees. The

design is based on Intel SGX, an instruction set extension supported by many

Intel CPUs to perform secure computation. The DuckDB-based EDBMS de-

sign is evaluated using the industry-standard TPC-H benchmark suite. In the

experimental evaluation we show that well constructed encryption scheme leads

to an overhead of 22%. Adding compressed execution is shown to further reduce

this overhead by up to 2.12×. The evaluation further demonstrates that both

presented designs for SGX integration can be viable with reasonable perfor-

mance overheads for some TPC-H queries, but for other queries suffer severely

from the limitations of the current generation of Intel SGX.
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1

Introduction

1.1 Context

1.1.1 Relevance

In recent years, cloud computing has become indispensable. For many companies outsourc-

ing computing infrastructure is favourable over purchasing on-site hardware. Instead of

owning and managing server hardware, software, platforms and even complete infrastruc-

tures are offered as services running on hardware owned by cloud providers. Database man-

agement systems(DBMS) have been no exception and the Database-as-a-service (DBaaS)

market is projected to reach US$399.5 billion by 2027 (14).

While for many companies the security and privacy of DBaaS providers is sufficient,

for some companies such as insurance providers, medical facilities or governments, the

threat of malicious/negligent cloud providers is problematic. Furthermore, privacy laws are

becoming more strict, limiting the way businesses can process private data on outsourced

hardware. Securing outsourced data by itself is not a hard problem and can be easily

solved by using encryption. Most, if not all, cloud providers offer a variety of solutions

based on encryption. The difficulties arise when trying to support searching or even rich

SQL queries over encrypted data. In scientific literature, this problem of supporting SQL

over encrypted data was recognized nearly 20 years ago (15), and has recently seen a

lot of new research. The industry itself has also been involved, with Microsoft and IBM

publishing on the subject (16)(7)(6)(8). Even some commercial products are available

today such as Microsoft’s Always Encrypted (16), which uses software-based enclaves to

allow SQL queries over encrypted columns. However, despite the comprehensive research

being done, to this day no commercial product is currently offered that supports the
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1. INTRODUCTION

full SQL standard over encrypted data while fully protecting against the threats faced in

outsourced databases.

1.1.2 Different types of EDBMS

Over the last decade, many different approaches to implementing an Encrypted Database

Management System (EDBMS) have been developed. Currently, there is no silver bullet

solution and consequently every EDBMS to date has had to make trade-offs. Generally,

EDBMS design is a trade-off between performance, privacy, and functionality. To give an

example: to achieve maximum privacy, an EDBMS should hide the queries from the un-

trusted environment, but hiding queries through special encryption schemes or using special

hardware practically always comes at the price of reduced performance. Depending on the

requirements, EDBMSs choose different priorities in the performance-privacy-functionality

trade-off. In some EDBMS, the balance in this trade-off can even be configured by the

database administrator. For example, in CryptDB (3), different encryption schemes can be

chosen per database column that will either offer more functionality or more confidential-

ity. Besides the difference in goals, EDBMSs also differ widely in what type of underlying

primitives are used to achieve security. The underlying primitives used has a large impact

on the characteristics of the resulting system. In chapter 3, we will make a clear distinc-

tion between the different types of systems and go into detail in the most relevant systems

found in the literature to date.

1.1.3 High-efficiency OLAP

While much research has been done on EDBMSs based on traditional OLTP database

systems such as Postgres (4)(3) or Microsoft SQL server (6), relatively few research has

been done focusing on creating EDBMSs optimized for OLAP workloads. The research

into OLAP-oriented EDBMSs that does exist, does not use a DBMS engine with a mod-

ern query processing model such as vectorization (17) or JIT-compilation (18). Existing

OLAP research is often based on the same traditional row-store systems that are used

for OLTP workloads (19)(4), or on distributed query processing systems such as Apache

Spark (20)(21). While this research provides valuable insight in EDBMS design, in OLAP

applications where performance is critical, these systems will always perform significantly

worse than an EDBMS using a performance-optimized query processing engine such as

MonetDB (22), HyPer (23) or DuckDB (24). This performance improvement can be cru-

cial for many real-world use cases. Generally, companies have large amounts of data to be
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1.2 Research Questions

analyzed and increased efficiency translates directly into either lower cloud provider cost,

or a more detailed analysis at the same cost.

1.2 Research Questions

This thesis will focus on designing the systems architecture of a new high-efficiency OLAP

EDBMS. The basis for this EDBMS design will be DuckDB (24), an analytical embedded

database system developed at CWI using modern techniques such as a vectorized execu-

tion engine and a columnar storage layout. To the best of our knowledge, no previous

research into implementing encryption this type of database has been done before. With

regards to the performance-privacy-functionality trade-off, this research will focus strongly

on performance. It will research the level of functionality and privacy we can achieve when

very little sacrifices in performance are to be made. So for example, query privacy or a

specific SQL functionality may be dropped from the design if it results in high performance

overheads.

Based on this goal we define the following research questions:

1. What are the use cases for encryption enabled DuckDB and what are the correspond-

ing trust and threat models?

2. How to implement encryption in DuckDB at a negligible performance overhead?

(a) What is the optimal granularity to encrypt the data? (e.g. per vector or per

value)

(b) What encryption scheme is most suitable?

(c) What functionality can we support when only a negligible performance overhead

is allowed?

3. How to integrate a trusted hardware solution into our encrypted DuckDB implemen-

tation

(a) Which solution is most suitable?

(b) How to integrate a trusted hardware solution into encryption enabled DuckDB

to improve privacy at a negligible performance overhead?

3



1. INTRODUCTION

1.3 Structure

This thesis is structured as follows. In Chapter 2, the background information essential

to the understanding of this thesis is provided. In Chapter 3 an overview of the EDBMS

research field is given along with an in-depth analysis of the most relevant related literature.

In Chapter 4, the requirements specific to a DuckDB-based EDBMS are determined by

analyzing several use-cases and their corresponding security models. In Chapter 5, a

baseline implementation of encrypted DuckDB is presented and evaluated. The baseline

implementation is then used to quantify the overhead of decryption and to demonstrate the

effectiveness of compression to mitigate decryption overhead. In Chapter 6, two designs

are given for integration of Intel SGX into the baseline implementation. These designs

are then compared and evaluated. Finally, in Chapter 7 the conclusions and answers to

the research questions from Section 1.2 are given, along with several suggestions for future

work.

4



2

Background

In this section we will discuss the background information and concepts required for un-

derstanding both the related work section and the rest of this thesis. Firstly, database

fundamentals are discussed. Secondly, the basic concepts of different types of encryption

are discussed. Finally, we discuss how security models are commonly defined in secure

systems literature.

2.1 Databases

A database (DB) is defined as an organized collection of data. In the context of our

research, this data is stored digitally in a computer system. Databases can come in a wide

variety of sizes, ranging from kilobytes up to multiple petabytes or more.

Relational databases One of the most common types of databases are relational databases

(RDB). RDBs follow the relational model introduced by Codd (25). In the relational model,

data is grouped in tuples, also known as records. Tuples represents an item in the DB and

the information about that item. Tuples are organised as a set of named properties called

attributes. Groups of tuples that share the same set of attributes are called relations.

Usually relations are described as tables organized into rows and columns. The rows rep-

resent the tuples and the columns represent the matching attributes between the tuples.

To reduce redundancy and improve data integrity, data in relational databases is stored

in normalized form. Globally, database normalization is achieved by organizing the layout

or schema of a database across different tables with specific restrictions applied. To link

data in different tables together, primary keys and foreign keys are used. Primary keys
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2. BACKGROUND

are used to uniquely identify a row, while foreign keys indicate that a row is linked to a

row in another column.

Database management systems To make sure a database remains an organized col-

lection of data, a Database Management System (DBMS) is used when interacting with a

database. A DBMS is defined by Connoly and Begg (26) as a "software system that enables

users to define, create, maintain and control access to the database". DBMSs provide a

wide range of functionality such as processing queries over the data, handling inserts and

updates, or managing and enforcing user access policies. Furthermore, DBMSs generally

guarantee certain properties over the data in the database to provide users of the database

management system with valid, predictable view of the data even in the presence of errors,

power failure, or other problems that may arise. DBMSs that focus on relational database

are often called relational database management systems (RDBMS). This is the type of

DBMS that will be focused on in this research.

SQL Most modern RDBMSs allow querying and data manipulation through the Struc-

tured Query Language (SQL). SQL was one of the first commercial query languages to

(largely) follow the relational model by Codd (25) and has become by far the most popular

query language for RDBMSs. SQL allows many different types of queries, such as simply

inserting, updating and deleting data, but also formulating complex analytical queries to

extract data from the database.

Workload types While many RDBMSs adhere largely to the SQL specification and

will therefore be able to run the same queries, RDBMSs are often optimized for specific

types of queries. The main types of workloads an RDBMS tends to optimize for are OnLine

Transactional Processing (OLTP) and OnLine Analytical Processing (OLAP). OLTP work-

loads are characterized by high numbers of transactional statements such as row-inserts,

-updates, or -deletes. OLAP workloads are characterized by queries that require scan-

ning large parts of the data, doing large grouping and aggregation, and performing large

joins. Typically this can be summarized as OLTP being write-heavy, with OLAP being

read-heavy. Additionally, a new category has risen combining the two: Hybrid OLTP and

OLAP (HTAP). DuckDB can be categorized as an HTAP RDBMS with a focus on OLAP

performance. For our research we will adapt this goal of focusing on OLAP performance

while maintaining the possibility of adding OLTP functionality.
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Storage layouts Data stored in an RDB can be stored in different layouts. Which layout

is used to store the database is generally determined by the choice of RDBMS and not

exposed to a user interacting with the database over SQL. Still, the choice of storage layout

can have a significant impact on the performance characteristics of a database system as

a whole. Traditionally, the most popular storage layout is called row-store layout. In

the row-store layout, data for each table is stored as a contiguous array of rows with

each row containing all attributes of that row. The row-store layout is generally used in

DBMS optimized for OLTP workloads. An alternative storage layout that has quickly

gained popularity is the column-store layout. This layout was popularized by systems such

as MonetDB (22) and C-store (27). The column-store layout, often supplemented with

column-wise compression (28)(29), has become the leading format for OLAP workloads in

all commercial data analytics platforms (30).

Execution models To execute queries, DBMSs generally follow the same basic pattern.

Firstly, the SQL query is parsed into a parse tree. Then, a query planner creates a logical

query plan which describes which logical operators should be used to perform the query.

Now an optimizer will analyze the logical query plan and convert it into a faster but

logically equivalent query plan. Then, the query execution engine takes the logical query

plan and converts it into a physical query plan which which describes that actual operations

that will be executed. Finally, the physical query plan is executed by the execution engine

to run the actual the query on the hardware. For the execution step of the query processing

process, different categories approaches exist. We categorize these approaches into 4 main

categories.

Volcano iterator This model was introduced in 1994 (31) and is the execution model

used by traditional row-based DBMS such as MySQL and Postgres. In the Volcano iterator

model, each operator implements a next() function that returns the next tuple in its

(intermediate) result set. The query is executed by calling the next() function on the root

operator until all tuples in the result set have been exhausted. Note that this root next()

function recursively calls the next() functions of its child operators. Also note that the

amount of next() calls is equal to the sum of all input, output, and intermediate result

tuples. With this amount of next() calls, and the fact that each call will typically require

interpretation of some query expression, the Volcano iterator model can cause significant

execution overhead. An example query plan using the Volcano iterator model is shown in

Figure 2.1(a).
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(a) Tuple-at-a-
time

(b) Vector-at-a-time (c) Column-at-a-time

Figure 2.1: DBMS execution models

Column-at-a-time The second model we distinguish is the column-at-a-time model.

This model is used by databases such as MonetDB (22). This model reduces the interpre-

tation overhead associated with the volcano iterator model and allows more opportunities

for CPU optimized code. In this model each column-wise operator is executed entirely,

instead of calling next() for each tuple in the result set. By executing the operations in

one go, typically in one loop, the execution overhead that the Volcano model suffers from

vanishes. Additionally, using large loops in the operators opens the door to many compiler

optimizations such as loop unrolling and auto-vectorization. While the column-at-a-time

execution model produces CPU-efficient query execution code, the operators require full

materialization of intermediate results, which can result in high memory consumption. An

example query plan using the column-at-a-time model is shown in Figure 2.1(c).

Vector-at-a-time The third model is the vector-at-a-time, or vectorized execution

model introduced by Boncz et. al. (17) in the VectorWise system. This is the model used

by DuckDB (24), the DBMS that is used in our research. This model combines the concepts

from the column-at-a-time and the volcano iterator model. In the vectorized model oper-

ators are similar to the volcano model where next() is called recursively, however instead

of returning a single tuple from the result set, multiple tuples are returned. This approach

profits from the same low interpretation overhead and CPU optimization opportunities

as the column-at-a-time model, but does not suffer from the large intermediates that can

8



2.1 Databases

result in a memory bandwidth bottleneck. An example query plan using the vectorized

model is shown in Figure 2.1(b).

Compiled execution The final model we discuss is the compiled execution model. In

this model an alternative approach is taken to mitigate the large interpretation overhead

caused by the tuple-at-a-time vulcano model: JIT compiling (parts of) the query into a

routine that gets executed. This approach is pioneered by HyPer (23). While JIT compiled

query execution can produce efficient code, it complicates the design and dependencies

of the DBMS as it must include compiler infrastructure. Additionally, JIT compilation

introduces significant latency for each query.

Compression Compression is a common techniques in many types of computer sys-

tems. In databases it was traditionally used to reduce the volume of data stored on

disk. Common compression schemes used for this purpose are commonly general-purpose

schemes like LZ77. In columnar databases however, more efficient light-weight compres-

sion schemes have been developed. These schemes exploit the fact that data from the

same column tends to be strongly correlated and is therefore easier to compress. These

light-weight compression techniques can be an order of magnitude faster than general pur-

pose compression schemes. These schemes are in fact so efficient, that modern in-memory

execution techniques use the compression schemes to compress data stored in main mem-

ory (32). Together with compressed execution, where data remains compressed throughout

the query execution process, this can significantly reduce the memory bandwidth and in-

crease performance.

We briefly go over the most common light-weight compression schemes that are used

in columnar databases. Run Length encoding (RLE) is a compression techniques that is

efficient for data (columns) that has many adjacent duplicate values. It works by replacing

repeating values in the data by a single instance of the value, combined with the run length.

For example, the RLE encoding of the string "AAAAABBCCCCC" would be "5A2B5C".

Patched Frame-of-Reference (PFOR) (29) is a compression technique that is suitable for

data that has good data distribution locality. Data is encoded as a difference to a base

value. This base value is then encoded once for every piece of the data (for example, for

each page). If a value happens to be below the base value, it can be stored as an exception.

PFOR-DELTA (29) is similar to PFOR, but here the values are stored as the difference

to to previous value, again with a base value for each piece of data. This scheme is highly

efficient for ordered data. Finally, PDICT (29) is most suitable for data of which the
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distribution is dominated by a small set of frequent values. In PDICT data is stored as a

separate dictionary and a list of pointers into the dictionary.

2.2 Encryption

In cryptography, encryption is the process of converting information or data into a code to

prevent unauthorized access. In its most general definition, an encryption function takes a

key and a plaintext to produce a ciphertext. The plaintext is the data in its unencrypted

form, for example an array of characters. The ciphertext is an encoded version of the same

data that should be unintelligible to any unauthorized actor. To reverse the encryption

operation, one passes the ciphertext and the key into the corresponding decryption function

to obtain the plaintext. Encryption schemes can be either symmetric where the same key

is used for encryption and decryption:

Encryptsymmetric(key, plaintext) = ciphertext

Decryptsymmetric(key, ciphertext) = plaintext
(2.1)

or asymmetric, which uses two separate keys. These keys are often referred to as the

private and public key:

Encryptasymmetric(keypublic, plaintext) = ciphertext

Decryptasymmetric(keyprivate, ciphertext) = plaintext
(2.2)

While there exist many different symmetric and asymmetric schemes, each with totally dif-

ferent characteristics, in general it holds that symmetric schemes tend to be significantly

faster than asymmetric encryption schemes. For this reason, in encrypted databases sym-

metric encryption schemes are often preferable over symmetric schemes for the bulk of the

work if possible. A common pattern in systems using encryption is to use asymmetric

encryption to exchange the key for a symmetric encryption which is then used to encrypt

the data that needs to be transmitted.

Randomized encryption It is important to understand that encryption as defined

before is not sufficient to provide confidentiality. The problem is that the encryption

process is deterministic, meaning that two identical plaintexts encrypted with the same

key will always produce the same ciphertext. This determinism opens the door to inference

attacks where an attacker can derive information from the ciphertexts by frequency and

equality analysis. To solve this, encryption algorithms will often take a random value
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called an initialization vector (IV) or nonce. The IV will need to be stored along with the

ciphertext to be able to decrypt later.

Encryptprobabilistic(key, plaintext) = {ciphertext, IV }

Decryptprobabilistic(key, ciphertext, IV ) = plaintext
(2.3)

Authenticated encryption While applying a strong randomized encryption algorithm

to encode information will provide data confidentiality, it does not provide authentication

of data. In the context of encryption, authentication of data is the guarantee that the

message was not modified after encryption. In an unauthenticated cryptosystem, an at-

tacker could modify intercepted ciphertexts to manipulate the system. This ability allows

a type of attack called chosen-ciphertext-attack, through which an attacker can reveal

(parts of) the encrypted data or even retrieve the key. Authenticated encryption schemes

solve this problem by adding an integrity check called the authentication tag or message

authentication code (MAC). Authenticated encryption can be achieved by combining a

non-authenticated encryption scheme with a secure MAC function, or by using an encryp-

tion scheme with a built-in authentication step such as AES-GCM.

Encryption modes Symmetric encryption schemes exist in two main types: stream

ciphers and block ciphers. Stream ciphers are conceptually very simple and use a pseudo-

random function(PRF) based on the key to generate a keystream that is xor-ed with the

plaintext to obtain the ciphertext. The decryption function is is identical to the encryp-

tion function as xor-ing the ciphertext with the keystream will return the plaintext. Block

ciphers are the most ubiquitous in practice today and use a different approach where the

plaintext is divided into blocks of blocksize bits for encryption. Each block of the plaintext

is encrypted separately with the key into similarly sized blocks of ciphertext. Note that

by default each ciphertext only depends on the key and the corresponding plaintext block.

This means that when identical blocks arise in the plaintext, identical ciphertexts are pro-

duced. This principle is visualized in Figure 2.2, where the non-diffusing mode AES-ECB

is used to encrypt an image of tux, the Linux mascot. As can be clearly seen, some infor-

mation on the original contents is still clearly visible. Another issue that block ciphers have

is that plaintexts may not always be a multiple of blocksize. This can become a security

problem when insecure padding schemes are used. To be able to use a block cipher securely

on plaintexts with a different size than precisely blocksize, block ciphers always require a

block cipher operation mode. The operation mode algorithm will handle the masking of

patterns and padding problems. Additionally, these block cipher mode algorithms allow
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(a) Plaintext (b) AES-ECB (c) AES-CBC

Figure 2.2: Naive usage of block ciphers does not lead to confidentiality (1)

passing of an initialization vectors for randomization or allow for authenticated encryption

through calculation of a checksum over the encrypted data.

Property preserving encryption For most use-cases, the goal of encryption is to

achieve semantic security. A system is semantically secure if only negligible information

on the plaintext can be derived from the ciphertext. In the context of encrypted query

processing, however it can be useful to relax the security requirements and reveal some

information about the data. The information that is leaked can then be used to allow

operations over the encrypted data. The type of encryption where some information on

the plaintext is deliberately leaked is called property preserving encryption (PPE). The

simplest form of PPE is to use deterministic encryption (DET). As mentioned before in

section 2.2, DET reveals equality between encrypted values which allows equality compar-

ison at the cost of potential vulnerabilities to inference attacks. A relatively new category

of PPE schemes is Order-Revealing Encryption (ORE). With ORE, there exists a function

with which the relative order between two can be determined. The simplest form of ORE is

called Order Preserving Encryption (OPE). With OPE, Ciphertexts can be directly com-

pared on their order as if they are unencrypted. While very simple to implement, OPE

does raise serious security concerns when used in an EDBMS context (33). Recently there

has been work exploring more complex types of ORE that offer better security at the cost

of a more complex comparison function (34)(35).

Homomorphic encryption Homomorphic encryption (HE) is a type of encryption that

allows computation over ciphertext without the need for decryption. A distinction can be

made between two main categories of HE: Fully Homomorphic Encryption (FHE) and

Partially Homomorphic Encryption (PHE).
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FHE In FHE schemes, arbitrary computation is possible on ciphertexts. In formula 2.4

a simple formula describing this property is shown with f being an arbitrary computation

and f∗ being a corresponding function that performs the same computation as f but

operating over the encrypted argument. For FHE there exists an f∗(x) for every f(x).

Decryptfhe(f∗(Encryptfhe(plaintext))) = f(plaintext) (2.4)

FHE was first theorized in 1978 (36) and has for over 30 years remained one of the unreach-

able holy grails of cryptography. In 2009 however, Gentry et. al. demonstrated a FHE

encryption scheme (37). Today, improved FHE schemes have been published and several

open source libraries exist implementing FHE schemes (38)(39). However, for most pur-

poses, including EDBMS, FHE remains impractically slow with overheads of many orders

of magnitude for both encryption, decryption and computation over ciphertext.

PHE A more lightweight alternative to FHE is Partially Homomorphic Encryption

(PHE). PHE schemes support, as the name implies, only a limited type of computation over

encrypted data. With this limitation to the functionality comes a massive improvement in

performance. A well known PHE is the Paillier cryptosystem. Paillier is an asymmetrical

scheme with the following homomorphic property:

EncPaillier(plaintext1) ∗ EncPaillier(plaintext2) = EncPaillier(plaintext1 + plaintext2)

(2.5)

Due to this property the sum of two encrypted values can be obtained by multiplying

the ciphertexts, followed by a decryption of the result. This property is very useful for a

variety of applications, for example in an EDBMS it can be used for addition operators or

aggregations. For other operations such as multiplications, other PHE schemes exists.

2.3 Defining the limits of secure systems

To understand the limitations of a secure system, the designers of the system generally

define the limitations through a threat and a trust model. These threat and trust models

describe the types of attacker that the system is secure against and which parts of the

system can be compromised in an attack without failing the promised security guarantees.
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Trust models In the trust model, the parts that can be compromised by an attacker

are defined as untrusted, while the parts that will lead to secure system failure are defined

as trusted. The set of all trusted components of a system is called the Trusted Computing

Base (TCB). Let us consider the classic use case of an outsourced database. The trusted

components would be all client-side hardware and software: the machines used by the users

to query the database can not be compromised as their compromise would make the system

fail. The untrusted component would consist of all server-side hardware and software. Note

that a secure system generally requires at least 1 trusted component since a system without

a trusted component would not be able to communicate trusted information with its users.

Threat models In secure systems research and engineering, it is essential to clearly

define the capabilities of a system attacker. In the field of EDBMS there are three main

attacker types that are distinguished:

Passive snapshot attacker The weakest type of attacker is the passive snapshot

attacker. Passive, also known as Honest-but-curious (HbC) in this context, means that the

attacker will not actively attempt to compromise the system, for example by manipulation

of network packets or modifying data stored on disks. Snapshot means that this type of

attacker can only view the state of the untrusted parts of the secure system once. An

example passive snapshot attacker is an adversary who can obtain a single memory dump

of the secure application.

Passive persistent attacker A passive persistent attacker is similar to the passive

snapshot attacker with one exception: instead of a single view of the secure system state,

has a persistent view of the secure system state. The persistence generally means that the

adversary has much more attack capabilities as the temporal dimension of the information

leaked can reveal much useful information.

Active attacker The active attacker, also known as a malicious attacker, has all the

capabilities of a passive persistent attacker with the addition that the active attacker can

actively try to compromise the system. This capability makes the attacker significantly

harder to protect against.

14



3

Related work

In this chapter, we will provide an analysis of the most relevant existing research in the

field of EDBMSs. First, an overview of the research field is given based on an analysis of

the secondary literature. Then, the research field of encrypted database systems is divided

in two main categories: Cryptography-based and Trusted Hardware-based. A detailed

categorization and reasoning behind this categorization is discussed in section 3.1. Then,

for each category the most relevant work is discussed in sections 3.2 and 3.3. Finally, in

section 3.4 the industry adoption is analyzed and an overview of open issues preventing

widespread EDBMS adoption is given.

3.1 Research field overview

The problem of creating a DBMS capable of operating over encrypted data is considered to

be one of the holy grails in the field of database security. It is still very much an open issue

as currently, no production-ready systems exist that offer similar functionality and perfor-

mance as traditional unencrypted DBMSs. The problem of encrypted relational databases

was first described in 2002 by Hacigümüs et al. (15). In this highly influential paper the

authors recognized the privacy problems caused by the emergence of cloud computing and

the Database-as-a-Service model(DBaaS). They were one of the first to explicitly consider

a database outsourced to an untrusted server, a model that is fundamental to the field of

EDBMSs today. Their proposed approach to achieve privacy in the DBaaS model with

an untrusted server was to split the query execution between the trusted client and the

untrusted server. Around 2011, influential works such as CryptDB (3), TrustedDB (40)

marked a beginning of a fast growing research field. With the rapid growth of the DBaaS

model and cloud computing over the past two decades, the field of EDBMS research grew

15



3. RELATED WORK

along with it. To this day many different solutions have been proposed based on a variety

of both software and hardware primitives.

3.1.1 Secondary literature

Firstly, an overview of the most relevant secondary literature is given. Due to the fast

growing nature of the field of EDBMS research, only recent surveys were included. The

goal of this is to get a better understanding of the types of solutions that have been

proposed to this date, and how these solutions are generally categorized.

Kohler et al. (2015) Kohler et al. published a work with the goal of creating a

taxonomy of confidentiality preserving DBaaS approaches (41). In their work, the authors

analyze a variety of software-based techniques such as Private Information Retrieval (PIR),

Oblivious RAM (ORAM), (Partial/Fully) Homomorphic Encryption (PHE/FHE) and split

client/server query execution using bucketization as used by Hacigümüs et al. (15). Kohler

et al. define these primitives as confidentiality-preserving indexing approaches (CPIs).

CPIs can be used to secure specific DBMS functionality such as range queries, string pattern

matching, or updates. The authors conclude that the functionality, leakage patterns and

performance penalties of the different CPIs varies widely and no silver-bullet CPI has been

found or seems likely to be found in the near future. The choice of which CPIs to use for

building a secure system will strongly depend on the system requirements.

Saleh et. al. (2016) Saleh et al. published a high-level survey that analyzes the

state of the art in query processing over encrypted data. The authors state that the field

of processing over encrypted data is yet to be well established. The authors proceed to

categorize the state-of-the art in processing over encrypted data in three main categories.

These categories contain several subcategories and are visualized in figure 3.1. The authors

conclude their research with a listing of several open issues in the research field. For

their first category, FHE, they conclude that it is remains infeasible due to performance

limitations. For PHE and OPE schemes, the limitations to supported functionality and

the inherent leakage of OPE schemes are mentioned as the main issues. Finally for TH

the authors state that the primary issue is the high cost and requirement for dedicated

hardware.
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Figure 3.1: Main categories in EDBMS literature according to Saleh et al. (2)

Fuller et. al. (2017) Fuller et. al. (42) published an in-depth survey of both protected

search primitives (comparable to the CPI definition from Kohler et. al.) and full systems

implemented using these primitives. In their work, the authors cover only cryptographic

approaches to EDBMSs and EDBMS primitives, and define TH based solutions as out-

of-scope. Fuller et al. categorize their cryptographic primitives into main categories:

Legacy, Custom, and Oblivious. The Legacy category is similar to the Partial Homomorphic

Schemes category from Saleh et. al. and covers techniques such as AHE, OPE and DET.

The Custom category contains a set of techniques using special indexing structures to

achieve various levels of security. All techniques in this category are based on relatively

new research from between 2013-2016. Finally, the Oblivious category contains techniques

that aim to hide common results between queries. The approaches in this category use

ORAM-like techniques to construct schemes supporting database functionality.

3.1.2 Categorizing techniques

In this section, we will define the categorization of the available techniques for our related

work based on the surveys from section 3.1.1 and the latest developments in the field. The

resulting categorization is shown in figure 3.2. This categorization is the combination of

the categorization by Saleh et al. and Fuller et al. with two main modifications. Firstly,

the trusted hardware category is divided into two main categories: dedicated hardware

and trusted executions environments. At the publication dates of the work by Saleh et.

al., Trusted execution environments were only just beginning to come to the attention of

researchers. However, trusted execution environments, and more specifically Intel SGX,

can be considered the main focus in EDBMS research. The second modification is the
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breaking up of PPE schemes into a separate category. This separation is motivated by the

fact that PPE schemes share characteristics on inherent leakage that are very important

to their applicability in EDBMS design. PHE techniques found in EDBMS literature such

as the Paillier and ElGamal schemes, can provide semantic security and therefore do not

suffer from these problems.

Query processing
over encrypted
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Cryptography
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Encryption
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Partially

Property Pre-
serving
Encryption

Protected Search
Index

Trusted
Hardware

Dedicated
Trusted
Hardware
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Figure 3.2: Categorization of EDBMS techniques

3.2 Cryptography based

In this section, the most relevant research in cryptography-based EDBMS literature is

covered. Using cryptographic approaches to secure outsourced databases is very attractive

with respect to the trust model: for the system to be secure the only components that need

to be trusted are the client holding the key and the cryptographic schemes that are used.

However, the rich functionality required by modern DBMSs is far from trivial to implement

using currently available cryptographic schemes. While cryptographic techniques support-

ing arbitrary computation over encrypted data do exist, as discussed in section 2.2, these

techniques suffer from high overheads rendering them infeasible for use in EDBMSs. In this

section, we will go over the most relevant work in two types of cryptographic techniques

for EDBMSs that are practically feasible.

18



3.2 Cryptography based

3.2.1 PHE+PPE

The first category of cryptography-based EDBMS that will be covered, actually combines

two of the categories in from figure 3.2: PPE and PHE. The solution proposed in these

works uses the combination of PPE and PHE to support a wide range of query processing

functionality. Note that PPE and PHE schemes are explained in detail in sections 2.2 and

2.2. The advantage of this approach is that it allows easy integration of existing DBMS.

The downside of using PHE and PPE schemes are the inherent leakage of the PPE schemes

and the computational overhead of the PHE schemes. Mitigating these issues is the main

focus in these works.

3.2.1.1 CryptDB

In 2011, Popa et. al. (3) were the first to demonstrate how a combination of PHE and

PPE schemes can be used to build an EDBMS that supports a significant subset of SQL

operations over encrypted data. With CryptDB, the authors showed that by combining a

server-side proxy with custom User Defined Functions (UDFs) an EDBMS can be built on

top of a regular unencrypted DBMS. In figure 3.3 the global architecture of CryptDB is

shown.

Figure 3.3: CryptDB architecture (3)

Supporting SQL operations with PPE and PHE To understand how CryptDB uses

PPE and PHE to run SQL queries on encrypted data, we will look at a simple example.

Let’s say we have an instance of CryptDB running with a TPC-H (43) database as data.

Now we want to run a query on the orders table to calculate our total revenue up to a

certain date. To do so, the user sends the following query to the application server:

SELECT SUM(o_totalprice) FROM orders

WHERE o_orderdate < CAST(’1995-01-01’ AS DATE);
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The application server forwards the query to the proxy server, which rewrites the query.

For the predicate in the WHERE clause this means the constant CAST(’1995-01-01’AS DATE)

is encrypted with an OPE scheme and can than be compared to an OPE encrypted version

of the o_orderdate column by regular query execution. The SUM operation is rewritten to

use the CryptDB UDFs to do homomorphic addition using a Paillier (44) encrypted version

of the o_totalprice column. The query result is returned from the DBMS to the proxy

which decrypts the result and returns it to the application server which in turn sends it to

the user.

Functionality supported CryptDB supports many different SQL operations through

various PPE and PHE schemes. an overview is given in table 3.1. In general, DET

and OPE schemes are used for evaluating search predicates on fixed-length datatypes,

the searchable encryption scheme by Song et. al. (45) is used for search predicates on

strings, and the PHE schemes Paillier and ElGamal are used for arithmetic and aggregation.

While the schemes used by CryptDB support many types of queries, there are limitations

to the queries CryptDB can process. Firstly, the SEARCH scheme used for the LIKE

operator only supports single-word search. Secondly, queries that do both computation

and comparison in a single query such as WHERE salary > age*2+10 are not supported,

as these would require a single scheme that supports both order comparison and additive

homomorphic properties. Despite these limitations, the CryptDB supports all functionality

in the TPC-C benchmark. In an experiment based on a real-world transactional data

trace, the authors demonstrated that CryptDB can support operations on over 99.5% of

all encrypted columns.

Type Scheme Supported Operations

Randomized Encryption AES CBC SELECT, UPDATE, DELETE,
COUNT, INSERT

Deterministic Encryption AES CMC equality comparators (=, !=,
<>, etc.)

Partially Homomorphic Encryption Paillier (44) GROUP BY SUM, addition
Partially Homomorphic Encryption ElGamal multiplication
Property Preserving Encryption OPE (46) MIN, MAX, ORDER BY, order

comparators (<, >=, etc)
Searchable Encryption SEARCH (45) LIKE, equality comparators (=,

!=, <>, etc.)

Table 3.1: CryptDB Encryption schemes with their respective functionalities (3)(11)
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Adjustable query-based encryption One of the main concepts in the CryptDB de-

sign is its adaptive encryption scheme. To understand the need for this adaptive scheme

we should first consider two problems that arise from the encryption schemes used by

CryptDB. The first problem of PHE-based systems is the inherent information leakage

of their encryption schemes. For some encryption schemes used by CryptDB, this data

leakage is very significant. By definition, an OPE scheme leaks the order of all the data,

which has been shown to open vulnerabilities to inference attacks (33). Furthermore, DET

encryption schemes, by definition, leak equality of encrypted data which also opens the

door to similar types of attacks. The second problem is that of storage overhead, especially

the overhead caused by Paillier encryption. Paillier has a ciphertext size of 2048bits, which

can results in a storage overhead of 32x for 32bit integers.

With these two problems in mind, we can clearly see that a naive implementation that

encrypts every database column with every encryption scheme is problematic, as it would

result in a very large storage overhead and would leak order information on every col-

umn. To mitigate this, CryptDB uses a-priori knowledge of the query load to adjust the

selection of encryption schemes for each column to match the query load. For the exact

implementation details we refer to the original paper. With the adjustable query-based

encryption, CryptDB manages to significantly decrease the storage overhead and data leak-

age. It should be noted that for systems with unpredictable queries, as is often the case

in analytical workloads, this system will be either less effective, or very limiting to which

queries can be run.

3.2.1.2 Monomi

In 2013, Tu et. al. published a work presenting Monomi, an EDBMS that builds on the

foundation laid by CryptDB. The goal of Monomi was to build a system similar to CryptDB

but with a focus on OLAP workloads instead of OLTP workloads. Tu et. al. noted that

CryptDB lacked crucial functionality for analytical workloads, only supporting 4 of the 22

queries in the TPC-H benchmark suite, with a median slowdown of 3.5×. With Monomi,

the authors aimed to both support more of the TPC-H queries and reduce the overhead.

The main concepts from CryptDB were directly adopted, with some modifications and

optimizations. The system architecture with a trusted proxy and an unmodified DBMS

running special UDFs as shown in figure 3.3 was adopted more or less unchanged. All en-

cryption schemes chosen by CryptDB as shown in table 3.1 were also used. Monomi differs

from CryptDB in two main ways. Firstly, they add the concept of spliting client/server
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execution to support more complicated queries. Secondly, several practical optimization

techniques are introduced.

Splitting client/server query execution The concept of splitting query plans across

an untrusted server and a trusted client or proxy is based on earlier work from Hacigümüs

et. al. (15)(47)(48) However, where Hacigümüs et. al. used it as the foundation for

secure processing, in Monomi it is used as a fallback for queries that cannot be fully

processed through the use of PHE and PPE schemes. To illustrate how Monomi uses split

client/server execution to extend functionality let us consider how Monomi would process

TPC-H Q11:

SELECT ps_partkey,

SUM(ps_supplycost * ps_availqty) AS value

FROM partsupp JOIN supplier JOIN nation

WHERE n_name = :1

GROUP BY ps_partkey

HAVING SUM(ps_supplycost * ps_availqty) > (

SELECT SUM(ps_supplycost * ps_availqty) * 0.0001

FROM partsupp JOIN supplier JOIN nation

WHERE n_name = :1 )

ORDER BY value DESC;

TPC-H Q11 has multiple incompatibilities with the encryption schemes used by Monomi.

Firstly, there is no efficient encryption scheme that supports multiplication over encrypted

values1. Secondly, the query requires checking whether some SUM() of each group is greater

than a sub-select expression which then computes its own SUM(). The combination of

the summation and the comparison are incompatible as they require different encryption

schemes. To be able to answer a query such as TPC-H Q11 while maintaining confiden-

tiality on the untrusted server, Monomi uses a query planner that automatically splits the

query across the local (trusted client-side) and remote (untrusted server side) domain. An

example query plan is shown in figure 3.4. For more details on the query planner algorithm

we refer to the original paper.

Optimization techniques Both the original CryptDB design and the introduction of

the split client/server query execution, suffer from several serious performance issues. To

minimize the overhead for analytical workloads, Monomi implements several optimization

techniques.
1Note that this is a claim made by the Tu et. al., but multiplicative homomorphic encryption schemes

do exists and a paper by Popa et. al. present these schemes as viable (11)
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Figure 3.4: Example query plan from Monomi query planner for TPC-H Q11 (4)

Precomputation The first optimization presented is precomputation. Precomputa-

tion is used to speed up certain queries by minimizing the need for client-side execution.

For example if we consider TPC-H Q11 again, Monomi will precompute ps_supplycost

* ps_availqty to allow calculating the SUM using Paillier on the server. To determine

which columns should be precomputed, the Monomi designer is used, which is explained

in the last paragraph of this section.

Space-efficient encryption The second optimization implemented by Monomi is the

use of space-efficient encryption methods. As mentioned in section 3.2.1.1, Paillier operates

over very large ciphertexts which can result in large overheads if implemented naively.

CryptDB worked around this by limiting the amount of columns encrypted with Paillier,

leaving further optimization to future work. Since an analytical workload generally depends

heavily on aggregates of large parts of columns, Monomi implements an optimization by

Ge et. al. (49) which allows packing values from both multiple rows and multiple columns

in a single field. This reduces per-row space overhead by 90% for a single 64-bit column

encrypted with Paillier. Another significant source of storage overhead due to ciphertext

expansion is caused by the DET encryption schemes. Using normal block cipher modes such

as AES or blowfish would produce ciphertext sizes of 128bits, resulting in large overheads

for smaller data types such as 8-bit integers. To solve this, Monomi uses the AES FFX
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block cipher (50), a format-preserving encryption scheme. This results in a 33% lower

overhead for the lineitem table of the TPC-H datbase scheme.

Packed Pallier encryption The third optimization applied in Monomi improves the

efficiency of queries that aggregate multiple values per row. For example, consider TPC-H

Q1:

SELECT SUM(l_quantity), SUM(l_extendedprice), ..

FROM lineitem WHERE .. GROUP BY ...

Query 1 has total of 7 aggregates over different columns. If implemented naively, this would

mean that the Paillier-sum would be encrypted 7 times, which can become computationally

expensive as calculating the the Paillier-sum requires multiplication modulo a 2048-bit

public key. Fortunately, the method from Ge and Zdonik (49) allows for calculating the

sum of multiple packed values in a single computation. Using this method, Monomi ensures

that the number of Paillier-sums for a query such as TPC-H is limited to one Pallier

computation per row.

Prefiltering The final optimization introduced by Monomi is conservative pre-filtering.

Analytical workloads often scan through large parts of a column or table but return only

a small part of the data by applying a filter. For Monomi this means that if the filter

cannot be calculated server-side, large amounts of data will need to be transferred to the

client for client-side filtering. This can result in infeasibly large overheads. To mitigate

this, Monomi will generate a conservative estimate of a filter that can be executed on the

untrusted data. For more detail on how Monomi generates these filters, we refer to the

original paper.

Query planner & designer Similarly to CryptDB, the Monomi design includes a de-

signer to determine the physical database design for a certain workload. The user provides

a set of example queries, the original database scheme, and a space constraint. The designer

will then estimate an optimal physical design. This design will include which columns are

encrypted with which encryption scheme and which columns should be precomputed. Note

that the Paillier packing optimization is also applied here as it will look at each query and

decide which columns should be encrypted together into a single value. The Monomi query

planner is fundamentally not very different from a non-encrypted RDBMS query planner

in that it uses a cost model with cardinality estimation estimate the most efficient query
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plan. The main difference is that the query plan is split across a local and a remote execu-

tion engine, so the cost model needs to include the transfer time of data over the network,

client side execution, and decryption time.

3.2.1.3 Seabed

In 2016 Papadimitriou et. al. (20) presented Seabed, an OLAP-oriented, Apache Spark-

based (51) system that is largely based on CryptDB and Monomi. Papadimitriou et. al.

observed that the approach taken by Monomi does not scale well for analytical workloads.

Monomi may achieve real time querying on medium-sized datasets of several gigabytes,

but for large, multi-terabyte datasets even simple queries would take hundreds of seconds.

Another issue identified by Papadimitriou et. al. is that of frequency attacks. Research

published in 2015 by Naveed et. al. (33) demonstrated that the PPE schemes used by

CryptDB and Monomi pose serious security threats. Even though intuitively OPE and

DET may seem to leak little useful information, Naveed et. al. showed that for some real-

world dataset, very significant amounts of encrypted data can be fully attained through

inference attacks. The main goal of Seabed is to mitigate both of these identified issues

and implement them into an Apache Spark based prototype. The overall architecture of

Seabed is similar to CryptDB and Monomi with an untrusted server running a database

system and a trusted client-side proxy. The main difference with CryptDB and Monomi

lies in the cryptographic schemes used. In the Seabed paper, two new encryption schemes

are introduced that are designed specifically to mitigate the aforementioned issues: ASHE

and SPLASHE, described next.

ASHE Additively symmetric homomorphic encryption (ASHE) is a symmetric, encryp-

tion scheme based on a cryptographically secure pseudo random generator (PRF). By

using a symmetric encryption scheme instead of an assymetric encryption scheme, ASHE

manages to improve performance significantly. Both encryption speed as the addition op-

eration on ciphertexts are significantly faster with ASHE than Paillier. There are however

some limitations to ASHE. Contrary to Asymmetrical AHE schemes like Paillier, where

ciphertexts have a fixed length, ASHE ciphertexts will grow as the number of additions

increases. This means that for aggregations over large columns, the memory usage and

network traffic from the ciphertext can have a significant performance impact. To deal

with this, Seabed implements several encoding and compression techniques to make the

ciphertexts as small as possible.
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SPLASHE Splayed ASHE (SPLASHE) is the second encryption scheme introduced by

the authors. SPLASHE is created to prevent the previously mentioned inference attacks

on DET encryption. SPLASHE is based on ASHE and its concept is relatively simple.

Consider a column C1 which can take one of d discrete values. Now consider the query

SELECT COUNT(C1)WHERE C1=x;. Using a traditional DET scheme as Monomi and CryptDB

do, the proxy would have C1 encrypted with DET and change the predicate in the query

to WHERE C1=DET(x). SPLASHE takes a different approach and replaces C1 with a family

of columns C1,1...C1,d. For each item in C1 with some value y, C1,y will equal ASHE(1)

while all others equal ASHE(0). Now the example query can be executed by changing

the column to C1,x and removing the predicate altogether. Note that the basic SPLASHE

described here will increase the storage required for C1 by factor d. To mitigate this, Seabed

has implemented a more advanced SPLASHE algorithm that uses a-priori knowledge of

the workload to limit the storage overhead by not creating separate columns for all values

of d. SPLASHE has some obvious drawbacks. Firstly, it depends strongly on the a-priori

knowledge of the query workload. This is very similar to both Monomi and CryptDB who

also optimize their database scheme for a specific workload. Secondly, SPLASHE may leak

start leaking some information when the distribution of data added to a column changes

dramatically.

3.2.1.4 Cuttlefish

In 2017, Savvides et. al. published a paper presenting Cuttlefish (52), another Apache

Spark-based EDBMS. The goal of Cuttlefish is to allow unlimited query expressivity while

offering the flexibility to work around the fundamental limitations of PHE schemes in an

efficient way. Cuttlefish uses a combination of PHE and PPE based on previous work,

where both the schemes used by Monomi and CryptDB are used, together with the ASHE

and SPLASHE schemes introduced by Seabed. The architecture of Cuttlefish is similar to

that of CryptDB, Monomi and Seabed in that a trusted component is required, which is

implemented as a client-side proxy. A new insight by Savvides et. al. is the possibility that

this client-side component can also be implemented in the server side using a TEE such as

Intel SGX. The advantage of this approach is that for queries that need to do additional

query processing at the client side, network traffic can be significantly reduced. In their

evaluation both approaches are implemented.

The main contribution of Cuttlefish is the secure data type (SDT) annotation system.

Cuttlefish abandons the goal of transparency offered by previous systems. Transparency in

this context means that the systems supports standard SQL and a user does not need to be
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aware of the encryption processes. By forcing users to annotate the database scheme with

fine-grained restrictions, Cuttlefish is able to offer improved expressivity and performance.

Example annotations are range(from−to) to indicate that values fall in a certain range, +

for postive values or enum(value1, value2, ...) for fields with a limited number of possible

values. The annotations are used by Cuttlefish to perform a large variety of optimizations,

such as the precomputation proposed by Monomi, to several new optimizations specific

the the SDT annotation system.

3.2.1.5 Symmetria

In 2020, Savvides et. al. published another paper presenting Symmetria (5), yet an-

other Apache Spark-based prototype. Similar to Cuttlefish, Symmetria offers full TPC-H

and TPC-DS support. With Symmetria, the authors introduce two new PHE schemes:

symmetric additive homomorphic encryption (SAHE) and symmetric multiplicative ho-

momorphic encryption (SMHE). Similarly to the ASHE scheme from Papadimitriou et.

al. (20), these schemes are symmetrical and sacrifice ciphertext compactness for perfor-

mance. SAHE was designed specifically to offer similar performance to ASHE, but with

greater query expressivity. SMHE was designed as the first symmetric multiplicative homo-

morphic encryption scheme since the authors of seabed only presented ASHE for additive

homomorphic encryption. Symmetria’s main contribution is the integration of these two

new schemes into a EDBMS prototype along with a series of query optimizations and

compaction techniques for reducing ciphertext size.

Symmetria is evaluated using the TPC-H and TPC-DS benchmarks. For their evalution,

the authors rewrote Monomi based on Spark to allow for a direct comparison to previous

literature. These results give a good insight into the OLAP performance of current state-

of-the-art in PPE+PHE EDBMSs. In figure3.5 the relative performance of the Symmetria

and the Monomi-like protoype called Asym are shown for all 22 TPC-H queries. The

results for Symmetria with an abbreviation postfix are configurations with an increasing

number of optimizations disabled in the order of which they are listed in the legend. The Y-

axis shows the normalized overhead compared to baseline Apache Spark. The scale factor

is 100 and the test setup consisted of 10 Amazon EC2 m5.2xlarge nodes. The results

show a wide variety in overheads with several large outliers, most notably Q06 with an

overhead of 2 orders of magnitude. Overall the average overhead is reported to be 5.35×
for Symmetria and 20.39× for Asym. The relative storage overheads for the Symmetria

and Asym prototypes are respectively 1.99× and 10.70×.
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Figure 3.5: Symmetria & Monomi Apache Spark prototype performance (5)

3.2.2 Secure indexing

Besides the PPE+PHE based approaches covered in section 3.2.1, a range of other crypto-

graphic primitives exists that have been researched in the context of EDBMS design. The

most prominent of these primitives are based on Symmetric Searchable Encryption (53),

Private Information Retrieval by keyword (54), Secure Multi-party Computation (55), and

ORAM (56). While the techniques listed in this category have been successfully used

to build systems with rich functionality close to that of unencrypted DBMS (57)(58), in

general these systems are further from industry adoption than their PHE+PPE and TH

counterparts for several reasons: Firstly, these systems tend to be more difficult to imple-

ment into existing DBMS systems, for example due to their execution model requiring two

separate, non-colluding servers. Secondly, many of these techniques have limitations in

which functionality can be supported, similarly to the PHE+PPE approaches from section

3.2.1.

3.2.2.1 Blind Seer

In 2014 Pappas et. al (57) published a work presenting Blind Seer. Blind Seer is a database

prototype supporting boolean search queries. Its security properties and architecture are

very different from the solutions presented so far. Blind Seer uses a three party setup

which requires two non-colluding servers: a client sending the queries, a server holding

the data, and an index server that aids in the secure querying process. Using this setup,

Blind Seer achieves significantly higher security guarantees that PHE+PPE systems as it

achieves not only data confidentiality, but also query confidentiality. In Blind Seer, data

is indexed with a search tree where each node contains encrypted bloom filters storing a

set of all keywords contained in their child nodes. To securely query the data, queries are
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transformed into boolean circuits and the client and server jointly traverse the search tree

using Yao’s Garbled Circuits (59).

In their evaluation, the authors compare Blind Seer against MySQL on a 10TB database

and demonstrate a 20% to 300% overhead. This evaluation does however depend on a high

speed local network between the client, server and index server. Since the server and index

server need to be non-colluding, this may not be the case in a practical setting where the

non-colluding servers are separated by a lower bandwidth, higher latency network. Another

possible problem with the Blind Seer system is the possibility for false positives due to the

use of bloom filters, which is a tunable parameter set to 10−6 in their evaluation.

3.2.2.2 Arx

In 2017, Popa et. al. published a paper presenting Arx. Arx is a MongoDB-based EDBMS

prototype but according to the authors, its design should apply to other databases as well.

The main motivation behind Arx are the inference attacks that PPE based systems such

as CryptDB have been shown to be vulnerable to (60)(33). To mitigate this problem,

the PPE encryption schemes used in PPE-based EDBMS have been replaced by two new

secure indexing structures: ArxEQ and ArxRange.

ArxEQ ArxEQ is used for equality queries and uses a regular index but encrypts the

values with strong encryption before insertion. To prevent leaking the equality property

to the server, each occurrence of an identical value in the index is concatenated with a

counter value and hashed with a cryptographically secure hash function. These hashes are

used as keys for the index. To be able to do lookups, the client-side proxy maintains a

counter of the number of occurrences of each value in the index. To perform a lookup,

the client-side proxy generates a list of all cryptographic hashes that have been inserted

by looking at the counter value. Note that this results in the size of search tokens scaling

linearly with the number of occurrences of a value in a column.

ArxRange ArxRange is used for range queries and replaces the ORE schemes in PHE+PPE

EDBMS. It builds a tree over the relevant keywords and stores a garbled circuit (61)(59)

at each node of this tree. The main challenge for this index is to prevent the communica-

tion steps as is present in a system such as Blind Seer. To achieve this, a technique from

literature on Garbled RAM (62) is used to chain the garbled circuits in the tree together.

This allows for a lookup throughout the entire tree in a single round of interaction. The

garbled circuits stored in the nodes of the tree can be used only once: using the same
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circuit twice would break security. Therefore, each index lookup is follow by a repair step:

in this step the client proxy needs to send new garbled circuits to rebuild the index. Note

however, that only LogN nodes need to be rebuilt for each lookup.

ArxAgg With the ArxRange index, a special optimization is possible for a common type

of queries: ranged aggregation queries. This index is called ArxAgg and can offer signifi-

cant performance improvements over the traditional Paillier addition used by PHE+PPE

systems. ArxAgg works by storing a pre-computed aggregation result in the nodes of the

ArxRange tree. A lookup in this index results in a set of LogN partial aggregates that

are sent to the client-side proxy and the final aggregation can then be computed after

decrypting the partial aggregates.

3.3 Trusted Hardware based

In this section, we will cover the second main category of EDBMS literature, those who

base their security on a specially designed trusted component running in the untrusted

server environment. The trusted hardware (TH) components used for the EDBMS design

generally support two main features: Isolation and Remote Attestation. Isolation means

that certain parts of the code and memory are hidden from the rest of the server hardware,

allowing decryption, processing and optionally re-encryption of the encrypted data. Remote

Attestation is a process that allows the remote validation of the integrity of a secure

hardware component. Through remote attestation a client can verify that the trusted

hardware running on the server side is in a consistent state and not compromised by an

adversary. Throughout TH-EDBMS literature, a variety of hardware types have been

used such as smart USB keys (63), FGPAs (6), and Secure Coprocessors (SCPUs) (40).

Recently, research on trusted hardware has been dominated by a relatively new type of

trusted hardware: trusted execution environments (TEE). In this section, the most relevant

TH-EDBMS literature will be covered starting with the earlier works based on dedicated

trusted hardware, followed by the more recent works using TEEs.

3.3.1 Dedicated hardware

The main concept of using trusted hardware goes back to the early 2000s (64)(65)(66). In

this early work, the trusted hardware used is generally a secure coprocessor, a dedicated

computer-on-a-chip that is implemented as a PCI extension card. This early research was
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mainly theoretical and explored how secure coprocessors could solve some of the privacy

issues from the DBaaS model.

3.3.1.1 TrustedDB

One of the first publications to present a prototype with full SQL support is TrustedDB

by Bajaj et. al. (40). TrustedDB is a database prototype that allows query processing

over encrypted data. TrustedDB is designed to work with a IBM 4764-001 PCIX secure

coprocessor. The design goal of TrustedDB is to offer the SQL functionality of an unen-

crypted DBMS while protecting the confidentiality of the data from a honest-but-curious

cloud provider. The TrustedDB architecture consists of two separate query engines: an

unmodified, unsecure DBMS to handle the queries over public data, and a highly modified

SQLite core running inside the secure processor. Queries are sent to the server encrypted

and forwarded to a query parser running inside the secure processor. The query parser

splits the queries into a private and a public part and forwards those parts to the corre-

sponding query engine. Due to the limited performance of the IBM coprocessor, query

processing speed on private data is significantly slower than public data. Therefore the

design of TrustedDB allows a database designer to take advantage of the fast, unencrypted

DBMS for non-sensitive data by only encrypting the sensitive column. The authors eval-

uate the performance overhead of TrustedDB through a series of benchmarks and remark

that while TrustedDB comes at a significant overhead it is still orders of magnitude faster

than cryptographic solutions such as FHE1.

3.3.1.2 Cipherbase

In 2013, Arasu et. al. published a work presenting Cipherbase. Cipherbase was in-

spired primarily by CryptDB and TrustedDB. Arasu et. al. recognized that the design

of TrustedDB where essentially a full DBMS is ran inside the trusted hardware leads to

significant performance issues. For example, the AES decryption algorithm used inside the

SCPU used by TrustedDB to decrypt the encrypted pages, only achieves decryption speeds

in the order of tens of MB/s where the same operation on hardware assisted components

such as CPUs can reach multiple GB/s. To work around this performance limitation, Arasu

et. al. propose a completely different design. Values are encrypted per individual value

and an FPGA is used to construct the trusted component that allows for computation.

The authors describe this setup as simulated fully homomorpic encryption. The operations
1It should be noted that FHE is not considered a feasible technique for secure query processing, with

performance overheads of many orders of magnitude
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supported are listed in figure 3.6. Using these operations, a query plan is constructed just

like in a regular DBMS. An example query plan is shown in figure 3.7. This architecture

Figure 3.6: Cipherbase DBMS operations on encrypted values supported through FPGA
based TH architecture (6)

Figure 3.7: Cipherbase example query plan (6)

has several advantages over that of TrustedDB. Firstly it allows offloading a larger part

of the query processing to the untrusted part of the architecture utilizing cheaper and/or

faster commodity cloud servers as much as possible. Especially when only relatively few

columns need to be protected this will be significantly faster than the TrustedDB design.

Secondly the Cipherbase design requires very little modification to the existing DBMS as

it only requires writing hooks for the operations on the encrypted data types. This allows
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for easier software development and the usage of an industrial strength query engine with

little modifications. Finally, by keeping the functionality of the TH simple, the hardware

performance of FGPAs can be used to efficiently perform the secure operations.

3.3.2 Trusted Execution Environments

In 2015 Intel launched SGX, a feature supported by most of their CPUs, that allowed the

creation of so-called secure enclaves. Intel SGX falls in a category of TH solutions called

Trusted Execution Environments (TEE). While other TEEs did exist, most notably ARM

TrustZone, the widespread usage of Intel CPUs for cloud infrastructure and the promise of

low computational performance overheads sparked the interest of many EDBMS researchers

leading to an extensive body of work on SGX based EDBMS design. In this section we will

cover the most relevant works in TEE based EDBMS literature. While research using other

TEE solutions does exist, all works in this section focus on Intel SGX as it is by far the

most prevalent. As a sidenote, Microsoft has developed software-based TEE technology

which they use for their Cloud DB service, which is covered in section 3.4.1.

3.3.2.1 EnclaveDB

In 2018 Priebe et. al. pubished a paper presenting their SGX-based EDBMS protype,

EnclaveDB (7). EnclaveDB has Full SQL compatibility and provides confidentiality for

both queries and data. Additionally it guarantees integrity and consistency of the database.

Priebe et. al. remark that this combination of security properties can not be matched

by PPE+PHE systems as those can not protect query privacy or database integrity and

consistency. Also this is an improvement over dedicated hardware approaches such as

TrustedDB and Cipherbase that do not guarantee integrity and consistency.

The architecture of EnclaveDB consists of a Microsoft SQL Server instance running on

the untrusted server. Inside the SGX enclave runs a modified Hekaton engine, Microsoft

SQL Server’s in-memory query engine. This architecture is shown in figure 3.8. Data

is split at table-granularity between sensitive and insensitive tables. Sensitive tables are

stored in secure enclave memory, while insensitive tables are stored outside the enclave.

Queries can be either on insecure tables or on secure tables, but not both. When a query on

an unsecure tables is performed it is handled by the SQL Server instance. When a query on

secure data is requested by the user, it is compiled client-side into a stored procedure. This

procedure is then passed to the in-enclave Hekaton engine. While EnclaveDB theoretically
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Figure 3.8: EnclaveDB server-side architecture (7)

offers very strong security guarantees combined with very low overheads (< 40% for TPC-

C), currently it does not work in practice. The reason for this is that EnclaveDB is designed

around the existence of a large amount of enclave memory that is available. Since enclaves

of these size are not supported, the authors created a performance overhead simulation to

benchmark their system. In their simulation, enclaves of 192GB are assumed. Whether or

not enclaves this size will be supported in the future remains unknown. The most recent

implementation of Intel SGX supports 256MB of total secure memory which results in

192MB being available to all enclaves in practice. Note that while current generation SGX

enclave memory is limited in size, a paging mechanism exists to create larger enclaves but

this imposes very large performance overheads.

3.3.2.2 StealthDB

In 2019 Gribov et. al. published a paper presenting StealthDB (8). StealthDB is similar

to EnclaveDB in the sense of it being an SGX-based EDBMS focusing on OLTP work-

loads, but takes a completely different approach. Firstly, StealthDB does not assume the

availability of large enclaves. Gribov et. al. state that it is very much an open issue

whether larger enclaves can be supported efficiently and therefore include a limited secure

memory size in the requirements for the design. Secondly StealthDB does not aim to pro-

vide query confidentiality nor does it aim to provide the lowest possible leakage profile.

StealthDB instead opts for a “reasonable“ leakage profile comparable tot the state of the

art in PHE+PPE (stated to be Cipherbase by Gribov et. al.). Additionally, the StealthDB

design is very simple to implement and has a very small Trusted Computing Base (TCB).
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The TCB is the set of all software and hardware that is trusted in the trust model. The

smaller the TCB, the more secure a system is.

The architecture of StealthDB is completely different from the EnclaveDB design and

is more similar to that of Cipherbase. Similarly to Cipherbase, it opts to minimize the

amount of code executed inside the trusted environment. For their design Gribov et. al.

consider three different approaches for StealthDB which are shown in figure 3.9. In the

Figure 3.9: StealthDB architecture consideration (8)

first design the entire DBMS resides inside the enclave. This is the approach taken by

EnclaveDB. The second design moves several components outside the enclave. Gribov et.

al. argue that both the first and second design are not feasible as they would incur large

overheads of 3× to 9× only for reading and serializing data inside the enclave. Their de-

sign follows the third architecture where only arithmetic operators and comparators are

implemented inside the enclave. To achieve this, the operators are implemented as exten-

sions on top of an unmodified Postgres instance. With the approach taken by StealthDB,

usage of enclave memory is limited and therefore avoids the expensive paging mechanism.

However this design does suffer from significant overhead from repeated entry and exit of

the enclave mode, an operation that comes at a significant overhead of roughly 9k cycles

per entry (67), this has a significant impact on performance. To mitigate this, StealthDB

uses an optimization supported by the Intel SGX SDK called Switchless Enclaves (67).

This Optimization reduces the overhead by roughly 1 order of magnitude.

3.3.2.3 CryptSQLite

In 2019 Wang et. al. presented CryptSQLite, an EDBMS based on the embedded database

SQLite. CryptSQLite is an SGX-based EDBMS with an architecture following the first of

the three designs for an SGX EDBMS described in figure 3.9. CryptSQLite places the entire

SQLite engine inside the enclave and only runs a lightweight shim on the untrusted server

for request handling, disk I/O and remote attestation. Data is stored as a single database

file on the file system and encrypted at page granularity with the authenticated encryption
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scheme AES GCM. A Merkle tree is built and maintained to ensure the integrity of the

database pages under the threat of an active attacker. Queries are executed by the SQLite

engine inside the enclave by loading and decrypting encrypted pages from the database

file into the enclave memory. Due to CryptSQLite residing entirely inside the enclave, and

data being encrypted at page granularity, the security guarantees offered are very strong

and comparable to those of EnclaveDB. Similarly to EnclaveDB, CryptSQLite suffers from

the same memory limitation as it needs to store data inside the enclave to be able to query

it. However, Wang et. al. do not mention this limitation explicitly, therefore it is unclear

how CryptSQLite handles the dataset used for their evaluation, which exceeds the enclave

size by factor 5. Regardless of which approach is used for their prototype, it will inevitably

be responsible for a high performance overheads as it will require repeated entry of the

enclave and/or decrypting of data.

3.3.2.4 EncDBDB

In 2020, Fuhry et. al. published (9) a paper presenting EncDBDB. EncDBDB is a database

prototype built on top of MonetDB, a column-store OLAP-oriented DBMS. Fuhry et. al.

acknowledge the limited amount of secure memory in SGX which is ignored by other

work such as CryptSQLite and EnclaveDB. Also they state that a leakage profile like the

one from StealthDB or PHE+PPE based solutions are a limitation in the usefulness of

those systems. In their work the authors focus on a practical system with configurable

leakage properties, for a specific type of query: range queries on strings. Fuhry et. al.

make the observation that modern OLAP DBMS such as MonetDB rely heavily on string

compression techniques such as dictionary encoding for their efficiency. For certain types

of datasets these compression techniques may even be necessary for the feasibility of doing

analytics over the data. To be able to balance the trade-off between performance and

leakage profile, EncDBDB implements a set of dictionary encoded storage layouts for string

columns.

Fuhry et. al. have defined 9 different storage layouts which differ from each other

in two axis: frequency and order. Each axis has three possible values which result in

9 permutations and thus 9 different layouts which are shown in figure 3.10. The three

order options are: sorted, rotated and unsorted. These options are pretty much self-

explanatory and mean that the dictionary values are stored respectively: sorted starting

at the lowest value, sorted starting at a random offset, or in random order. The three

frequency hiding options are: revealing, smoothing and hiding. The frequency revealing

option applies maximum dictionary encoding: identical strings will be encoded to the same
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Figure 3.10: EncDBDB dictionaries showing combinations of leakage profiles (9)

dictionary key and therefore equality between strings is leaked. Frequency smoothing uses

a randomized function and a parameter bsmax to insert between 1 and bsmax times an

encrypted copy of a string value in the dictionary. For each occurrence in the column the

id points to a random copy of the value limiting the leakage. Finally the frequency hiding

option will effectively apply no compression at all by adding a new value to the dictionary

for each encoding. This option will prevent all equality leakage.

3.3.3 Access pattern hiding

So far the solutions presented have focused mainly on data confidentiality and integrity

while leaving out a specific attack vector: access pattern leakage. Access pattern leakage

is where the adversary learns which parts of the data are accessed. These access patterns

have been shown to allow attacks revealing significant amounts of information in database

systems (68)(69)(70), especially for attackers with other means of access to the unencrypted

data. In the PHE+PPE based systems that have been covered in chapter, preventing

leakage of access pattern is very difficult, as the server needs to be able to operate on the

encrypted values and will therefore learn which tuples were accessed. In TH-based systems,

preventing access pattern leakage is possible, though not all systems try to hide the access

patterns: StealthDB, EnclaveDB, and TrustedDB consider access pattern leakage to be out

of scope. CryptSQLite also suffers from high-level access pattern leakage, but its authors

argue "that such information is very limited to the attacker". Cipherbase, the TH-based

EDBMS described in 3.3.1.2, implemented several oblivious operators based on the work

by Goodrich et al. from 2011 (71). More recently, research was published specifically

focusing on oblivious TH-based EDBMS that we will briefly cover in this section.
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3.3.3.1 Opaque

In 2017, Zheng et. al. published an Apache Spark-based oblivious query processing proto-

type called Opaque. The goal of Opaque is to efficiently implement oblivious distributed

data analytics supporting a wide range of queries. Opaque uses Intel SGX for its imple-

mentation, but is designed to work with possible future TEE technology in mind. This

is important as the current implementation of Intel SGX leaks memory access patterns

when accessing the secure memory (72). However, research (73)(74) has been published

with enclave designs that do protect against these types of access pattern leakage at little

additional overhead. Opaque offers three modes of operation each with different security

profiles: encryption-only, oblivious, and padded oblivious. In their evaluation, encryption-

only mode was found to have an overhead of up to 2.4x, while oblivious mode resulted in

an overhead of up to 46x. Padded mode was not evaluated experimentally, but would incur

even higher overheads, especially for queries with filter operations with low selectivity.

Encrypted mode Firstly, encryption-only mode provides no protection against access

pattern leakage, but only ensures data confidentiality, data integrity and computation

integrity. No attempt is made to hide any access patterns.

Oblivious mode When set to oblivious mode, Opaque uses a set of oblivious operators

to allow oblivious query execution. The oblivious operators in Opaque are based on obliv-

ious sorting. The oblivious sorting algorithm consists of intra-machine and inter-machine

sorting and is based on a sorting technique called sorting networks. Additionally, an obliv-

ious filter operator is implemented. The oblivious filter operator is very simple: instead

of filtering out tuples, tuples are marked with a 1 for passing the filter or 0 for being

rejected by the filter operator. Using the oblivious filter and oblivious sorting operators,

an oblivious aggregate and oblivious merge join operator are constructed.

Padded mode While the oblivious operators hide the access patterns, the result set

size of each operators is still leaked to the adversary. To mitigate this, Opaque supports

an oblivious padded mode, which ensures that none of the relational operators reduce the

output size except for the final operator. This is achieved using a filter push up that moves

all filter operations to the end of the query.
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3.3.3.2 ObliDB

In 2019 Eskandarian et. al. published ObliDB, an oblivious EDBMS prototype that aimed

to offer significantly improved performance to Opaque. ObliDB is also based on Intel SGX

but built with future TEE improvements in mind, similarly to Opaque. It also assumes the

oblivious memory available to the TEE is a limited resource whose size can be configured.

Also the security guarantees are similar to Opaque and a similar padded mode exists to

hide intermediate results sizes. ObliDB improves on the Opaque design in several ways.

Firstly, it adds support for insertions and updates. Secondly, it allows for efficient queries

on small subsets of data in a table such as point queries or range queries with low selectivity.

Finally, it improves performance with several optimizations and new oblivious operators.

In ObliDB, data can be stored in two modes: flat or indexed. In flat mode, data is

stored sequentially in encrypted blocks. In indexed mode, an ORAM is used with a B+

tree stored inside. For the flat layout, obliviousness is achieved by scanning the whole

table, the indexed layout relies on the ORAM to provide oblivious access. To achieve best

performance for a wide range of queries, both storage layouts can be combined. ObliDB

uses a variety of oblivious operators to cover different query types: four different select

operators, three join operators, and two aggregation/group-by operators. Some of these

operators are new, others are based on the operators presented by Opaque. ObliDB uses a

query planner to choose which operators to use based on which storage layouts are available,

the amount of oblivious memory available to the TEE, and statistical information on the

input and output table sizes. Along with its new set of operators and query planner,

ObliDB also introduces a set of new optimizations that further help improve performance.

In their evaluation, Eskandarian et. al. conclude that ObliDB performs similarly to Opaque

when using flat storage, but can improve performance by up to 19x when using the indexed

storage method. Their performance approaches unencrypted Spark SQL performance with

only 2.6x relative overhead.

3.4 Industry adoption

As demonstrated by the literature covered in this chapter so far, research into practical

EDBMS has been extensive. However, industry adoption of these techniques has been

very limited. For example, Google has experimented with adding PHE to its BigQuery

client (75) but the project has since been abandoned and remains an experimental plugin.

Several companies are mentioned repeatedly in EDBMS literature as using PHE+PPE

based techniques such as Ciphercloud, Vaultlive, and IQCrypt (Mentioned in (68) and
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(76)). However, many of the companies mentioned no longer exists or when they exists, or

seem to no longer be presenting PHE+PPE based EDBMS functionality. To the best of our

knowledge, the only well-known system in use is the Always Encrypted (AE) functionality

offered by Microsoft for its SQL server cloud service.

3.4.1 Microsoft Always Encrypted

In 2020 Microsoft published a paper (77) describing both its initial version Always En-

crypted v1 (AEv1) launched in 2016 and its updated second version AEv2, which was

launched in 2019. In their paper the authors describe how, in spite of the very limited func-

tionality offered, AEv1 has found usage by a variety organisations such as large insurance

companies, healthcare providers and financial institutions. With the recent developments

in regulatory compliance requirement due to for example GDPR, Microsoft expects this

demand to increase.

As mentioned, AEv1 supported only a very limited feature set: columns could be en-

crypted deterministically with AES in CBC mode, to support equality operations over

these columns. As described in their paper (77), AEv1 suffered from a severe limitation.

When switching an existing column to AE mode, the data would need to be sent to a

trusted machine for encryption to get encrypted. The resulting latency could be as long as

a week for some customers with large databases. Furthermore, this would result in a lot of

network traffic resulting in prohibitive cloud provider costs. Additionally, this would also

occur each time an encryption key is rotated.

In AEv2, Microsoft integrated TEE techniques into AE to solve its main problems.

Firstly, using a TEE AEv2 allows for the support of equality, range comparisons, and LIKE

pattern-matching predicates on columns encrypted with randomized encryption. Secondly,

the TEE allows encryption of data without the requirement of moving the data across

a network to a trusted clients, allowing for easier, cheaper migration and key rotation.

Interestingly Microsoft did not choose to use Intel SGX as their TEE techology. Instead it

opted to uses Virtualization-based Security (VBS) (78). VBS has an inferior trust model

compared to Intel SGX as it require the entire CPU and hypervisor to be trusted. Microsoft

mentions that an AE version supporting Intel SGX is still being worked on.

3.5 Open issues in current literature

To finalize and conclude this related work section we summarize the studied literature by

listing the main open issues found through the analysis of the research.
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Information leakage from PPE Schemes PPE Schemes inherently leak information

to an adversary. This information leakage has been shown to allow inference of significant

parts of the database (68). Especially ORE has been shown to be especially danger-

ous as the level of security ORE schemes achieve is poorly understood. Recent work on

ORE (79)(80) demonstrates that finding an efficient, low-leakage ORE schemes is still very

much an open issue.

Efficient AHE and MHE schemes Classical PHE schemes for addition an multiplica-

tion such as ElGamal and Paillier come with serious performance overheads. Optimizations

such as those by Ge et. al. (49) provide some performance gain, but overheads remain high.

Recent work (20)(5) has looked into faster AHE and MHE schemes, but these schemes sac-

rifice ciphertext compactness for performance, possibly resulting in very large ciphertexts

for certain queries. Additionally, these techniques require heavily on prior knowledge on

the expected workload.

TEE availability TEEs has been the main focus of recent TH based EDBMS research.

However, availability of TEEs at cloud providers has been limited. Even ARM Trust-

zone and Intel SGX, the most well-known technologies, have limited availability at cloud

providers. For example, AWS has no support for instances with TrustZone or SGX, Azure

only supports instances with Intel SGX.

Intel SGX limited secure memory Intel SGX has only limited secure memory avail-

able: 192MB for the most recent CPUs. Exceeding this limit severely impacts performance

due a slow paging mechanism. This limitation poses a challenge for designing fast EDBMS,

as these will generally exceed this limit by many orders of magnitude for normal workloads.

Designing an EDBMS that works around this limitation or designing TEE technology sup-

porting larger enclaves remains one of the main open problems.

Intel SGX security Finally, a recurring theme in all SGX based EDBMS literature, is

the persistent existence of a variety of attacks. Intel SGX has a history of many break-

ing attacks and during this Master’s project alone, multiple new attacks have been pub-

lished (81)(82). Additionally, Intel SGX does not protect against memory side-channel

attacks (72), unlike other, more experimental TEE architectures such as Sanctum (74)

and RISC-V Keystone (83).
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A DuckDB EDBMS

In this chapter, we outline the design of the DuckDB-based EDBMS which we will refer to

as EDuckDB from now on. The design consists of two main parts: the choice of EDBMS

primitives used and the positioning of the requirements of the EDBMS with regards to the

performance-security-functionality trade-off. Firstly, the two main types of EDBMS are

described in section 4.1. Secondly, three different use-cases for EDuckDB are covered along

with their corresponding threat models. For each threat we analyze the security offered by

each of the two designs. With the analysis of the security properties of both designs and

the analysis of the learnings from the existing literature from chapter 3, we then explain

our choice for a TH based solution. Finally, the requirements for our EDBMS design are

outlined in 4.5.

4.1 EDBMS models

As described in chapter 3, there are two main approaches to construct EDBMS in current

literature. Both approaches have their own distinct characteristics with regards to per-

formance, functionality and security. To analyze which is most suitable for our goal we

outline the two approaches by describing their global architecture and their corresponding

trust model.

CRYPTO-EDBMS Firstly we will consider the cryptography based EDBMS as de-

scribed in section 3.2. We will refer to this model as CRYPTO-EDBMS. Figure 4.1 de-

scribes the architecture of the CRYPTO-EDBMS design. The design consists of two main

components, the EDBMS Proxy and the EDBMS server. The EDBMS proxy handles the
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encryption and decryption of the data in the queries. Its main tasks include transpar-

ently encrypting secure data values in queries, transparently decrypting data in returned

queries, and client-side query processing that could not be performed server-side. Another

task of the proxy is to optimize the choice of encryption schemes for each column and

optionally generating pre-computed columns. The other main component is the EDBMS

server. This is generally built on top of an existing non-encrypted DBMS and provides the

unencrypted DBMS functionality extended with special homomorphic operators and/or

secure index handling. For our research, we have only considered the two party designs

and omit three party designs such as Blind Seer described in sections 3.2.2.1. The main

reasons for omitting >2 party designs are that two party designs fit the use-cases better

and two-party designs can be much easier integrated into existing DBMS technology.

Users
EDBMS
Proxy

EDBMS
Server

DB

Trusted Untrusted

Client-side Server-side

Figure 4.1: CRYPTO-EDBMS model

TH-EDBMS TH-EDBMS is the second model we consider. It represents an EDBMS

based on the techniques defined in section 3.3. The global architecture and trust model

are depicted in figure 4.2. The TH-EDBMS model consists of an EDBMS server and an

EDBMS TH component. Differently from the CRYPTO-EDBMS model, no client-side

component is required generally. The trust model is also different from the CRYPTO-

EDBMS as a trusted server-side component is required. In the TH-EDBMS model there

are two components that can vary significantly in their functionality. The EDBMS server

component handles the requests, but most other functionality can be performed by either

the EDBMS server or EDBMS TH components. For more details on this, see section 6.2.

4.2 Encrypted DuckDB Use-cases

To be able to design EDuckDB, we will need to understand how the EDBMS would be used

in the real world. With an understanding of the use-cases, we can determine the require-
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Figure 4.2: TH-EDBMS model

ments such a system would have and what threats can be expected and need protecting

against. In this section we define three different use-cases and list their main threats. For

each threat we identify the the current state-of-the-art security techniques and analyze

how its security would benefit from applying either of the two EDBMS models.

4.2.1 Use Case 1: Local machine

The first use-case we define is that of a database running locally on the same machine

that is used by the user to enter queries. For example, an analyst running EDuckDB on

a laptop to perform OLAP or ETL workloads. In this use-case the query processing, data

storage, and user input and output are all happening on the same physical machine. For

this use-case we identify two main threats.

Threat 1: Physical access to device The first threat is an attacker with physical

access to the device running the database. An example of a threat from this type is

a stolen laptop with the database stored on it. For this threat model we assume the

device is trusted initially, but becomes completely untrusted after loss or theft of a device.

A commonly used approach to counter this threat is to use full disk encryption (FDE)

solutions such as FileVault (84). These solutions encrypt the entire disk and often require

a password on boot or on waking up from sleeping or hibernating. FDE solutions can

be purely in software or use special hardware components. When FDE is implemented

only in software it can come with high overheads since the CPU will need to decrypt and

re-encrypt data read/written from/to the disk. Usage of dedicated hardware can reduce

the overhead to negligible amounts. Security-wise, FDE can effectively protect against

physical attacks in most common situations such as a stolen/lost laptop. There are some

limitations however: with FDE, the decryption key needs to be stored on the device to be
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able to decrypt/encrypt pages as they are read/written. The key is vulnerable to being

stolen as long as it resides in memory through attacks such as cold booting (85) or DMA

attacks (86). In similar style, FDE does not protect data stored in memory, which means

that any data stored in memory during loss/theft, such as an in-memory database, are

vulnerable to the aforementioned attacks. When we consider how the EDBMS models

could improve the security of the system under this threat, we find that both CRYPTO-

EDBMS suffers from exactly the same limitations and vulnerabilities as FDE. TH-EDBMS

on the other hand, could improve security by preventing the cold booting and DMA attacks

if we assume the TH technology used is secure against those types of attacks.

Threat 2: Compromised machine A second threat for this use-case is when the local

machine is infected by a remote attacker. In this case FDE would be completely useless as

the decryption key is available to the attacker as soon as the user logs in. Using an EDBMS

could offer some security guarantees but not against every type of attacker. If we consider

an active attacker, we cannot offer any security guarantees, because an active attacker

could do anything the user can do and for example manipulate the DuckDB application to

dump the whole database. When considering passive attacks for this use-case, an attacker

could steal the key and the data from memory or storage. With regular encryption or PPE

we can not prevent this attack since the key would reside in memory and thus be available

to the attacker. However, we could use a trusted hardware approach such as Intel SGX to

protect the key and decrypted in-use data. Note that all queries and their results would

be available to an attacker.

4.2.2 Use-case 2: Edge Computing

The second use-case we define is in securing Edge Computing, for example in Internet-

of-Things (IoT) applications. Consider a network of security cameras that scan number

plates of cars driving by and store that information locally on a storage inside each camera.

By using Edge Computing, queries on number plate data can be done quickly by sending

a query to each security camera without a need for the camera to constantly send its data

to a central database. For this use-case we identify two threats.

Threat 1: Physical attack The first threat we consider is physical attack, also called

the node capture attack (87) in this context. In this attack the attacker has full physical

access to the a device. In our example, this would mean the attacker has access to one or

more security cameras, reads their disks and/or memory, and learns which number plates
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drove by over the period for which the camera stores its data. Just like in our first use-case,

FDE could be deployed to make it harder for an adversary to read the data if it is stored

in a database on the disk. However, similar to the first threat in our first use-case, the key

will need to be stored in memory in the device and will therefore be susceptible to attacks

like cold-booting. We will now consider how the two EDBMS models could offer increased

security over a non-encrypted database.

First consider CRYPTO-EDBMS. In this model we can offer some additional security

over an unencrypted database, but there is a caveat. As discussed in section 3.2, PHE+PPE

based EDBMSs rely on a variety of encryption schemes, some symmetrical, some asym-

metrical. For our EC use-case however, no symmetrical schemes will be able to provide

any security as the key needs to be present on the device to be able to insert data into

the database and this key would be available to an attacker in the node capture attack.

Now while using only asymmetrical cryptography for a CRYPTO-EDBMS design is possi-

ble, it would come at significant performance overhead as is indicated by the tendency in

PHE+PPE literature to move away from asymmetrical cryptography (20)(5). The practi-

cality of this performance overhead is questionable.

Now consider TH-EDBMS for the EC use-case. For this design we note that increased

security can be provided if and only if a TH architecture is chosen that is secure against

attackers with physical access. While TEEs like Intel SGX are often considered in the

unsecure cloud provider trust model, these models generally assume the HbC attack model,

which we have explained in section 2.3, and exclude active physical attacks. Recently, it

has been shown that Intel SGX is vulnerable to a physical access attack by Chen et. al. (88)

which Intel has explicitly stated will not be fixed. As stated by Chen et. al., this casts clear

doubt on the fact whether any TEE solution can ever be secure under physical attacks.

Threat 2: Software compromise The second threat considered is when the software

running on an Edge node is compromised by an adversary. In this attack either the

application(s) or OS running on the edge nodes may be compromised by an attacker. The

main method to protect a system consists of either reducing the total amount of code

that can contain vulnerabilities, also known as the trusted computing base (TCB), or by

making it harder for an attacker to effectively exploit any vulnerabilities. This concept

is also know as system hardening. For example, one could use a security-focused Linux

distribution such as Alpine Linux on their edge nodes. We now consider our if our two

EDBMS models could improve the security of a hardened edge node. Firstly, we consider

CRYPTO-EDBMS. This model suffers from the same issues as under a physical attack:
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there is no way to securely store a symmetrical key on the edge node meaning that only

asymmetrical schemes can be used. Again, the practicality of the performance of such

systems is questionable. Secondly, we consider the TH-EDBMS design. We note that

this design fares very well under this threat model. TH is generally designed with active

attackers included in the threat model. For example, Intel SGX is specifically designed

against the threat of an active attacker software. A system using TH-EDBMS as a storage

on their edge nodes would be able to improve system security by reducing its attack surface

to the TH component and the code running inside the TH.

4.2.3 Use-case 3: Cloud service

The third use-case is for DuckDB to be used as (part of) as cloud service. The classic

example is an outsourced database service such as AWS RDS. In this use-case the trust and

threat models similar to the outsourced database model used by most EDBMS literature

with and untrusted server and a trusted client. For this use-case we identify to main types

of threats, which are based on the types generally distinguished in the literature: the active

and the passive attacker.

Threat 1: Active attacker Firstly, we will analyze the threat of an active attacker. The

active attacker has full control over the system and can control and manipulate all server-

side hardware and/or software in its attack. An example attack in this threat model is a

malicious cloud provider employee actively trying to attain confidential information from

the customer database for his own gain. To protect against this threat while maintaining

functionality, usage of an EDBMS is required. CRYPTO-EDBMS will most likely not be

able to provide any meaningful amount of security under this threat model as attacks as

demonstrated by Grubbs et. al. (69). In their attack, Grubbs et. al. demonstrate how an

EDBMS-like system for web applications, Mylar (89), is vulnerable to a dictionary attack

on its searchable encryption scheme. In their analysis, the authors generalize this attack

to demonstrate that all PHE+PPE systems have fundamental security issues under the

threat of an active attacker. More recent PHE+PPE based systems (5)(58) as covered

in section 3.2 do not claim security under active threats but only under passive threats.

TH-EDBMS can protect against active attackers. As described in section 3.3, several

approaches have claimed security under the presence of active attacker (72)(7)(21). Note

that not all TH-based approaches automatically provide this protection, such as is the case

for lower security systems such as StealthDB (8). Also note that similarly to use-case 2,
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attacks to the physical hardware and side-channel attacks are generally not included in the

attack model of TH-based solutions.

Threat 2: Passive attacker The passive attack model is also known in this context as

the Honest-but-Curious model and represents a cloud provider who does not interfere with

the normal operation of the service in any way, but can read all memory, storage, network

traffic and CPU state. This attack model is the attack model that is generally used in

PHE+PPE literature. CRYPTO-EDBMS would therefore be able to provide security in

against a passive threat for this use-case. As for TH-EDBMS, it supports the stronger

active attack model and therefore also holds under this weaker attack model.

4.3 Choosing the best fitting model

Based on the use-case analysis of section 4.2, we can conclude that the TH-EDBMS model

is more flexible than CRYPTO-EDBMS as it can offer security guarantees against more

of the threats we defined. We now directly compare the two models on their security,

performance and functionality to come to the final conclusion that TH-EDBMS is the

most suitable approach for our our use-cases.

Security Security-wise, both of the models have weaknesses. The TH-EDBMS model

relies on trusting a hardware component being available on the server-side such as a se-

cure coprocessor or TEE. First of all, implementing this hardware securely has proven to

be hard, as described earlier in section 3.3. Furthermore, when the attacker has physi-

cal access to the TH, some types of attacks might even be fundamentally impossible to

mitigate (88). CRYPTO-EDBMS is theoretically the more secure model as it does not re-

quire trusting any server-side component. However, CRYPTO-EDBMS suffers from other

issues. Most importantly, the PPE schemes on which most implementations rely, have

serious weaknesses that can be easily abused by both active and passive attackers. While

alternative schemes that leak less data do exist, such as secure indexing approaches like

Arx, these are less suitable for OLAP workloads. The reason for this is that Arx uses

secure indexes to be able to perform comparisons over secure data. These indexes are

efficient for point queries when small amounts of comparisons need to be made. However

for OLAP workloads, where large parts of columns are scanned and filtered, these indexes

are not efficient.
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Performance Performance-wise there are large differences between the two, especially

for our OLAP-oriented domain. As can be seen from the TPC-H results of Savvides et.

al. (5), even in a state-of-the-art PPE+PHE based design, some queries have very large

overheads of multiple orders of magnitude exist. As mentioned before, secure indexing

approaches like Arx do not perform well for OLAP workloads. Since OLAP workloads

depend heavily on the filter operation and CRYPTO-EDBMS systems either need PPE

or secure indexes to be able to provide filtering on encrypted data, the OLAP perfor-

mance of a CRYPTO-EDMS is unlikely to have low overheads. TH-EDBMS has signif-

icantly better performance characteristics. System such as StealthDB (8) demonstrate

that reasonable overheads can be achieved when allowing for data leakage comparable to

CRYPTO-EDBMS systems. Another important performance consideration is storage over-

head. Especially in the context of OLAP workloads, where queries access data volumes

in the order of the database size, minimizing storage overhead is important for achieving

good performance. For CRYPTO-EDBMS storage overhead can be very high due to the

need for encrypting columns multiple times with different schemes to provide the required

functionality. Depending on the workload this overhead can increase the database size

by multiple times. TH-EDBMS perform generally better in this regard. If sufficiently

large encryption granularity is chosen, storage overhead can get negligible with only a few

percent or less.

Functionality Finally we compare the supported functionality. Here TH-EDBMS is

clearly superior as it imposes no fundamental functional limitations. Systems such as

EnclaveDB or CryptSQLite manage to run entire DBMS systems inside TH allowing for

any functionality also supported by the used DBMS. CRYPTO-EDBMS systems generally

have significant limitations functionality-wise. Because FHE remains impractically slow

with current technology, CRYPTO-EDBMS need to rely on cryptographic schemes that

do not support arbitrary computation. While many simple operations such as addition,

multiplication, or comparison are supported, more complex operations such as user-defined

functions (UDF) over encrypted data are impossible. Also when queries require chaining

operators such as the query SELECT SUM(a*b)from table;, this proves to be problematic

as no PHE scheme supports both addition and multiplication. As described in section 3.2

there are mitigations to this problem such as client-side execution and precomputation,

but these often come at a significant performance and/or storage overhead.
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4.4 Information leakage

In a perfect EDBMS there would not be any data leakage at all. However, as we have

discussed in chapter 3, in practice achieving zero data leakage is not possible or practically

infeasible. In this section we will discuss the different types of data leakage that exist in

EDBMS, what different classes of accepted leakage are found in literature, and finally what

leakage pattern we will focus on in this research.

4.4.1 Direct vs Indirect

Information leakage can happen in two main ways: directly or indirectly. Direct data

leakage happens when data is directly visible to an adversary. This can happen in various

ways: for example, parts of the data or meta-data may be unencrypted or encrypted

with PPE schemes that inherently leak data. Direct data leakage is the easiest to protect

against as it generally happens in an easily predictable manner. Direct data leakage is the

direct consequence of a shortcoming/property of the whole system. The second type of

data leakage is indirect data leakage, also known as side-channel leakage. Indirect leakage

happens when an adversary can deduct information on the data from information leaking

from the system implementation. An example of indirect leakage is when an adversary

can see the query response times: this allows the adversary to deduct information on the

query result set size. Indirect information leakage is much harder to protect against as

the existence of side channels can be hard to notice. Figure 4.3 shows a diagram with a

non-exhaustive list of leakage that may occur in a TH-EDBMS.

Users EDBMS
Server

DB

Trusted Untrusted Trusted

EDBMS
TH

Response times

Query structure

Table names

Result set size

Intermediate size

Included Tuple IDs

Execution time

Memory access

Disk access

Figure 4.3: Examples of information leakage in the TH-EDBMS model
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4.4.2 Leakage vs performance

Furthermore, reducing side-channels completely is often practically impossible: consider

an EDBMS which sends queries over the public internet and that wants to completely

eliminate side-channels. To achieve this, the EDBMS would need to pad all queries to the

maximum query length and all result sets to their maximum size. It would also need to

delay all query responses to a constant response time equal to the worst case response time.

The resulting system is infeasible for most OLAP workloads. This leads to the conclusion

that all practical EDBMS systems need to permit some level of information leakage. When

designing an EDBMS, this leakage should be clearly defined.

4.4.3 Leakage patterns found in literature

In the EDBMS literature leakage patterns vary widely. We categorize them into 4 main

classes. We will outline each category and give examples of EDBMS for each class. It should

be noted that these categories are intended for roughly outlining the leakage characteristics

of an EDBMS, exact leakage patterns are complex and can differ in subtle ways that can

be crucial for specific security requirements.

Class 0 An EDBMS with leakage class 0 leaks a significant amount of information di-

rectly and indirectly. Furthermore the precise amount of information leaked is either

difficult to understand, or not well understood at all, leading to unexpected attacks allow-

ing retrieval of large amounts of the data. This class contains systems such as CryptDB,

Monomi, Cuttlefish and Symmetria. These systems rely on PPE and/or Searchable en-

cryption schemes which leak data in an unpredictable and/or poorly understood manner.

An example is the OPE scheme used by CryptDB. This scheme by Boldyreva et. al. (90)

leaks additional information which makes it vulnerable to attacks such as the attack by

Grubbs et. al. (68). We think EDBMS with information leakage of this class are not

suitable for real-world use as their exact security limitations are hard to understand.

Class 1 EDBMS of leakage pattern class 1 also leak information both directly and indi-

rectly, but leak direct information in a well defined, predictable manner. Example EDBMS

literature with this leakage class are Arx and StealthDB. Both these systems leak order

and equality information for data that is passed through operators that require knowing

those properties. Other properties that are generally leaked in systems in this class are the

full queries (minus the encrypted constants), which tuples are included in a query results,
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and various types of side-channel information. While systems with leakage class 1 are more

usable than those of class 0, due to their direct information leakage, inference attacks as

described in (91) can still relatively easily reveal large amounts of encrypted data.

Class 2 Class 2 EDBMS leakage patterns are those that do not directly leak information.

For EDBMS to have class 2 leakage patterns, results of individual operations need to be

hidden from the adversary. In these systems, the only leakage that occurs is through

side-channels. Side-channels are not significantly addressed, however, which means that

adversaries can still deduct significant amounts of secure data through side-channels such

as access patterns, intermediate result size, or response times. Examples of systems that

fall into this category are CryptSQLITE and EnclaveDB. In these systems entire queries

over secure data are encrypted and processed inside the TH which hides information such

as the query structure and operator results.

Class 3 Class 3 EDBMS leakage is when significant measures have been taken to mitigate

leakage through side-channels such as timing and access-patterns. Systems in this category

are ObliDB and Opaque. These systems use Oblivious operators to hide which parts of the

data are touched by each query. Additionally, padding is used to hide intermediate result

set sizes. EDBMS with class 3 leakage attempt to eliminate direct and indirect leakage as

close as practically feasible to a perfect, non-leaking EDBMS.

4.5 Encrypted DuckDB

4.5.1 Requirements

In this section we will outline the requirements for our EDBMS prototype EDuckDB based

on the finding in the previous sections and the research goals in section 1.2. An overview

of the requirements is given in table 4.5.1. For each requirement we will briefly explain

Property Requirement
Performance Minimal overhead
Functionality No significant limitations
Threat models Honest-but-curious or Malicious
Trust model TH-EDBMS
Leakage Class 1 or Class 2

Table 4.1: Requirements for encrypted DuckDB design
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it and give the motivation. Firstly, the performance of EDuckDB. As described in our

research goals in in section 1.2, the goal of this research is to create an OLAP EDBMS

with minimal performance overhead. Also, due to a lack of literature on optimized en-

crypted OLAP DBMS, no precise number can be given. To validate this requirement, a

baseline implementation should be created to which we can compare the EDBMS design.

Secondly, the functionality supported by DuckDB should not be fundamentally and sig-

nificantly impaired by the design of EDuckDB. Other research on TH based EDBMS have

demonstrated that full SQL functionality is possible for these systems and especially for

OLAP workloads having full SQL support is crucial. Thirdly, the adversary models that

will be used are the Honest-but-curious and malicious models. Ideally, EDuckDB would

be secure under the malicious threat model, but the weaker honest-but-curious model is

generally considered as a valid model for the use-cases we are targeting with EDuckDB. In

the evaluation, both models will be discussed. Fourthly, the trust model will be identical

to the general trust model followed by all TH based EDBMS, which is the trust model

depicted in figure 4.2. Finally, cvwe now consider which leakage classes are suitable for the

EDuckDB prototype. Class 0 leakage patterns will not be considered. An EDBMS with

leakage patterns that are not clearly defined or based on encryption schemes that make

it hard to understand what information is leaked is not going to provide enough security.

Class 1 leakage is a viable option for EDuckDB. For some applications leakage may be

acceptable when the data is not of high sensitivity. Especially if an EDBMS is able to

keep performance overhead low, class 1 could be useful for uses where performance is more

critical than security. Class 2 leakage is another viable option for EDuckDB. Running

large parts of the query processing in the trusted hardware seems feasible as many TH

based systems exist that seems to translate well to DuckDB. Class 3 leakage will not be

considered for implementation to keep the scope of the research manageable. Implement-

ing oblivious execution will require significant changes to operators and does not match

as well with our research goal of designing an EDBMS with minimal overhead as class 2

and class 1 systems. However in the future work section 7.2 we discuss how the EDuckDB

prototype could be expanded with oblivious execution.

4.5.2 Research setup

Now with the scope and requirements of EDuckDB clearly defined, the remainder of this

research is divided into two parts: Baseline EDuckDB and EDuckDB with Intel SGX. In

chapter 5 we will cover Baseline-EDuckDB which will cover the aspects that are indepen-

dent of the chosen TH architecture. Then, in chapter 6 we will present the SGX-based
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prototype. There are two main reasons for this structure. Firstly, the implementation of

a TH independent implementation will provide a baseline for the SGX based implemen-

tation. Since there is no previous work allowing for direct comparison, establishing this

baseline will give an idea how close the SGX based implementation is to ideal performance.

Secondly, the TH-independent implementation will provide results that are useful in a wide

range as they are not specific to one TH architecture but should apply to any vectorized

OLAP EDBMS following the TH-EDBMS model.
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Baseline Encrypted DuckDB

In this chapter, we will describe and evaluate our baseline encrypted DuckDB implemen-

tation. This is done for two reasons. Firstly, to get a baseline to compare our TEE based

implementation with. This is useful, because in the literature there are no candidate sys-

tems for direct comparison. By themselves, these results give a good understanding of what

performance can be expected when a OLAP-optimized DBMS processes analytical work-

loads over encrypted data. Secondly, with these experiments we compare various methods

to encrypt the data and select which encryption scheme to use. This can then be used in

Chapter 6 to build the TEE based implementation.

5.1 Encryption scheme

The first major consideration for EDuckDB is the choice of the encryption scheme. In this

context, the encryption scheme refers to not only which algorithm is used to perform the

actual encryption process, but also how data is grouped together into plaintexts and what

parameters are used for the encryption algorithms.

5.1.1 Granularity

First, we look at the encryption granularity. Encryption granularity means at which level

data is combined into buffers which will be the plaintexts that get encrypted into cipher-

texts. As described in section 2.2, an encryption algorithm takes a buffer of a certain size

and encodes it into a ciphertext. For a database, this means that a choice needs to be

made on how the data in the database is divided into these buffers. This choice will greatly

impact the performance, functionality and security properties of the resulting EDBMS. We

will discuss the main granularities found in the literature and evaluate their suitability for
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our design. In traditional data-at-rest database encryption such as Transparent Data En-

cryption (TDE) offered by most large DB providers such as Oracle IBM and Microsoft, the

main granularity that is chosen is a physical page, meaning that pages are encrypted/de-

crypted as single buffers when they are read/written to disk. Since pages are typically

4KB, this means that data is encrypted in chunks of 4KB. In EDBMS literature, however,

a variety of encryption granularities are found.

Per-value The first possibility for encryption granularity is per-value encryption. This

means that each value is encrypted separately and scanning a column of data requires that

the decrypt function is called for each value in the column. One of the main advantages of

this approach is ease of implementation: many DBMS already offer functionality to encrypt

individual values. A simple way to implement this is to define special encrypted data types

and define their corresponding cast operations as the encrypt and decrypt functions. Since

many DBMSs offer functionality to define custom types and cast operators, this can be

easily implemented on top of a standard DBMS. Another advantage is that no significant

changes need to be made to the execution model: operations over encrypted data can

be implemented just like any operator for a custom data type would be implemented.

This granularity is common in CRYPTO-EDBMS such as CryptDB and Monomi, as these

systems rely on PHE and PPE schemes that will generally only work when values are

encrypted individually1. For TH-EDBMS systems, encrypting individual values is also not

uncommon: Microsoft AEv2, StealthDB, and Cipherbase all encrypt individual values.

For all these systems the choice for per-value encryption is similar to that in CRYPTO-

EDBMS: it allows use of traditional query engines with minimal modifications and easy

mixing of encrypted an unencrypted data in a database. Finally, another reason to use per-

value encryption is to be able to support encrypting columns with different keys in a row-

store layout EDBMS: since data is stored with all values of a row contiguous in memory,

encrypting columns with different schemes is only possibly when values are encrypted

individually.

Per-page Another granularity found in EDBMS literature is page-level. Page-level en-

cryption moves the encryption/decryption process to a different place in the architecture.

Here, a paging mechanism such as is supported by many operating systems, is expanded

1There are exceptions to this such as a Paillier optimization used in Monomi, which packs values
together and allows operations on the grouped encrypted values, see section 3.2.1.2
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with encryption/decryption functionality: pages that are paged into the applications mem-

ory are decrypted and pages that are paged out are encrypted. This is commonly used to

abstract away the memory limit of TH architectures to code running inside the TH. Exam-

ple systems using this granularity are CryptSQLite, EnclaveDB and TrustedDB. The first

two are built around the paging mechanism that Intel SGX provides, the latter implements

its own paging module for an IBM SCPU. In per-page encryption, most of the secure query

processing is done from within the TH and pages are copied and decrypted from unsecure

memory on a page miss from within the TH. This approach can achieve significantly higher

throughput than per-value encryption on queries that require scanning large parts of the

data. The downside is that it only works for TH that support this mechanism, such as

Intel SGX, or require implementation of a custom paging module. Note that for some TH

such as Intel SGX, significant overhead is introduced by this mechanism, which we cover

in more detail in section 6.3. Also note that some systems such as TrustedDB support

switching between page-level and per-value encryption.

Per-block A third option is block encryption. Similarly to per-page encryption, data

is encrypted while grouped together. The main difference is that instead of relying on

the OS or a paging module to handle decryption, decryption is now handled by DBMS

components such as the Buffer Manager or a scan operator. In per-block encryption the

data is stored in a columnar database format with the columns encrypted in blocks of

a configurable size. This granularity is used by systems such as ObliDB and Opaque.

Per-block encryption allows for more fine-grained management of the encrypted data by

making the query processor itself responsible for encryption and decryption. This has the

advantage of being more flexible when designing a TH-EDBMS system as it allows more

control of TH memory usage and easier integration of oblivious query processing operators.

Additionally, the size of the encryption buffers is not tied to the page size, allowing the

encryption block size to be tweaked for optimal performance depending on the workload.

Finally, supporting different keys for different columns is implemented more easily in a

per-block granularity than per-page.

Why is encryption of blocks/pages so much more efficient? There are two main

reasons why encrypting at a larger granularity is much more efficient. The first reason is

that most semantically secure symmetric encryption schemes require storing some extra

data for randomization, authentication and key management. The size of this data ranges

from several bytes to more than 60 bytes per encrypted buffer. For example, the encryption
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used by Microsoft for their Always Encrypted service uses AES in CBC mode resulting

in 4 byte integers encrypting to ciphertexts of 65 bytes. For an encrypted column of

integers this results in a storage overhead of 16.25x. In table 5.1 several common symmetric

encryption schemes are shown with their relative ciphertext storage size. The second reason

Buffer size
Cipher 4096B 1536B 576B 64B 8B
ChaCha8 100.2% 100.5% 101.4% 125.0% 200.0%
AES-CTR128 100.3% 100.8% 102.1% 118.8% 250%
xSalsa20 100.6% 101.6% 104.2% 137.5% 400.0%

Table 5.1: Relative ciphertext storage size for some common symmetric stream ciphers (12)

encryption is significantly more efficient on larger buffers is that encryption algorithms have

an initialization overhead. Since this initialization overhead occurs only once per encrypted

buffer, this overhead is amortized when buffer size increases. In table 5.2 the performance

in cycles per bytes is given for several common symmetric encryption schemes. These

benchmarks are taken from the eBACS benchmark results of an 2019 Intel Xeon Gold

6248 CPU (12).

Buffer size
Cipher Long 4096B 1536B 576B 64B 8B
ChaCha8 0.28 0.29 0.39 0.53 2.75 14.50
AES-CTR128 0.63 0.68 0.76 1.11 4.03 32.25
xSalsa20 0.69 0.80 1.13 2.16 11.47 141.75

Table 5.2: Cost of encryption in cycles per byte for some common symmetric stream ci-
phers (12)

Encryption options in EDuckDB Now we know what options we have for encryption

and what is chosen in the related work, we can draw some conclusions for EDuckDB.

Firstly, both block and page encryption could be viable for EDuckDB, the approaches from

related literature using these encryption granularities have no fundamental limitations with

regards to the requirements, as identified in section 5.1.2.1.

For per-value encryption however, this is not the case. We will now explain the reasoning

behind this. While StealthDB and Microsoft AEv2 have demonstrated that implementing a

per value encrypted TH-EDBMS can be done relatively easily, these systems are row-store

DBMS aimed at a OLTP workloads. In these workloads the most common types of queries

are point look-ups and updates. For these workloads, only relatively little data needs to be
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decrypted. For our requirements however, we need to support OLAP workloads. OLAP

workloads generally consist of large scans, joins, filters and aggregates that process large

parts of columns sequentially. To achieve good decryption performance on large scans,

data should be encrypted in large granularities, as shown in table 5.2. As we will see

later in our benchmarks using block granularity in section 5.3.2, even with decryption

times of a few cycles per byte, overall performance overhead can be significant. Using

per-value encryption would result in decryption times of 1 or 2 orders of magnitude larger

which would result in very high performance overheads. Another problem with per-value

encryption for EDuckDB is the large storage overhead. In efficient, in-memory OLAP

DBMS, memory bandwidth is a scarce resource. To efficiently make use of the available

bandwidth, compression techniques are often used. Due to this compression, data size of

1 or 2 bytes per-value are very common. For data sizes this small, storage overheads can

easily reach between 10x-30x for common encryption schemes.

5.1.2 Encryption algorithm

The second main consideration for EDuckDB is which cryptosystem to use. The cryp-

tosystem is the combination of encryption/decryption algorithm, key size, initialization

vector/nonce generation, and optionally authentication scheme. The choice of these cryp-

tosystem parameter can have significant consequences on its performance and security.

For example, the performance overhead of using AES-CTR256 over AES-CTR128 is in the

order of 30-50% on modern hardware. Security-wise, the selection of the randomization

components such as the IV or nonce needs to be carefully chosen to prevent attacks such

as nonce reuse attacks (92). For selection of the best cryptosystem we first analyse what

we need for the requirements defined in section 5.1.2.1, then we analyse what is used in

the EDBMS literature and common security protocols, and make a selection of schemes to

use throughout further experiments.

5.1.2.1 Requirements

For EDuckDB, we have several requirements regarding the cryptosystem. Firstly, the

cryptosystem should be symmetrical. Symmetrical cryptosystems have much better per-

formance and require smaller key sizes. Also because TH is used, asymmetric encryption

is not necessary for inserting values from the server-side, since we can rely on the TH to

handle this. Secondly, we need both an unauthenticated and an authenticated scheme.

Since our requirements of EDuckDB specify both the HbC and malicious trust models,
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we need the unauthenticated scheme for maximum performance when assuming the HbC

model and the authenticated scheme for data integrity under the malicious model. Thirdly,

the scheme should ideally allow random access decryption to allow optimizations that can

decrypt only part of an encrypted buffer. Random access decryption can also allow paral-

lelization of the decryption process. Fourthly, the encrypted buffers need to be able to be

updated easily and securely under the threat of a persistent attacker. Finally, the overhead

of the scheme should be minimal. This should hold for both architectures with hardware

AES support and hardware without it.

5.1.2.2 Considered schemes for EDuckDB

AES When choosing a symmetric cryptosystem most common choice is AES. AES is

the standard algorithm for symmetric encryption chosen by the US National Institute of

Standards and Technology (NIST) in 2001. This scheme is widely regarded as the standard

symmetric encryption scheme. This is reflected by widespread protocols such as TLS

1.3 that define AES as the default cryptosystem. Also in EDBMS literature analyzed in

Chapter 3 we find that all of them use AES when strong, randomized encryption is required.

The next choice is which encryption mode to use. AES supports many different modes for

a variety of use cases. Looking at the TH-EDBMS literature we find that the GCM and

CTR modes are used primarily. With GCM being an authenticated encryption mode and

CTR an unauthenticated, the combination of these schemes matches our requirements well:

they support random access, allow parallel decryption for performance and, when using

hardware acceleration, are among the fastest symmetric schemes. The specific schemes we

will consider are AES GCM128 with 16byte tag and 12byte IV and AES-CTR128 with

12 bytes IV as these values are being specified as the most suitable specified in the NIST

standard (92).

Salsa/ChaCha One main problem with AES is that its performance without hardware

acceleration is relatively slow. An alternative to AES that can be an improvement when no

hardware acceleration is available is the Salsa/ChaCha family of ciphers (93). These ciphers

perform significantly better without hardware support, and on modern server CPUs may

even perform slightly better than hardware-accelerated AES (94). Partly for this reason

Salsa is the only non-AES cryptosystem included in the TLS 1.3 standard. From the

Salsa family we select several schemes for testing EDuckDB. Firstly, we pick Salsa20 as it

is the default stream cipher from the NACL library by Bernstein (95). Also we include

Salsa20/8, which is a reduced round version of the same algorithm. A reduced-round
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cryptosystem will trade security for performance. While not directly making a scheme

insecure, reduced-round cryptosystems have a higher chance of being broken in the near

future than their full-round counterparts. Finally we select XSalsa20, which is a modified

Salsa20 that allows longer, 24byte IVs. This allows randomly generating IVs without ever

needing to re-key. This can be useful in an EDBMS as it allows insertion and updating

without needing the keep track of how often a key is used. For encryption schemes with

shorter IVs such as AES-CTR, GCM or Salsa20, there are limits to how often they can

be invoked for encrypting data to prevent a nonce reuse. This number of invocations is

generally very large, e.g. 232 for AES-GCM (92). However, in the context of databases,

this limit can be reached easily: for illustration lets assume buffers of 4KB are encrypted

with AES-GCM. The key lifespan will be reached after 232× 4KB ≈ 17.18TB is written to

the database with the same key.

Cryptosystem evaluation Now we evaluate the performance of different cryptosystems

on our experiment machine to determine the cost of decryption. The specifications for this

machine are listed in Appendix A, and will be the machine used for all further experiments.

The encryption performance is crucial to query performance as we will discuss in section

5.2. In Figure 5.1 the results of our microbenchmark is shown. For this benchmark a

buffer of a variable size is repeatedly decrypted until 1GB of data has been decrypted

in total. The cryptosystem implementations used are taken from three different sources:

Firstly for AES-CTR and AES-GCM the OpenSSL library is used. Then for Salsa, the

NACL library is used. This NACL libary is also used for an non hardware accelerated

version of AES-CTR. Finally, an experimental ChaCha8 AVX1 implementation is used

from the Supercop library (96). ChaCha8 is a variant on the reduced round Salsa20/8

and this experimental AVX implementation should give a good indication of the maximum

Salsa/ChaCha performance. In the results we can clearly see the effect of the initialization

cost for all cryptosystems. Furthermore, there is a slight slowdown visible as the buffers

exceed the CPU cache size at >= 16MB. In the context of EDuckDB we can conclude

that for unauthenticated encryption, using buffers of roughly 265 bytes or larger will be

sufficient to achieve near-maximum performance. For unauthenticated encryption using

AES-CTR128 we can expect a decryption cost of around 0.7cpb for optimal buffer sizes,

while for authenticated decryption this is around 1cpb. For the Salsa ciphers, we can see

that the standard Salsa20 performs significantly worse than AES-CTR. Additionally, the
1AVX is an extension to the x86 instruction set to allow a single instruction to process multiple values

per instruction (SIMD).
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Figure 5.1: Decryption cost microbenchmark

ChaCha8 AVX implementation is only slightly faster than AES-CTR due to the CPU not

supporting the latest AVX-512 SIMD instructions, which provides up to 2x performance

increase over the older AVX2 instructions.

5.2 Implementing Encrypted DuckDB

For implementing encrypted query execution, there are two main execution models that

we consider: Block-level encryption and Vector-level encryption. Both execution models

encrypt batches of values together, but the difference is which DBMS component performs

the decryption.

5.2.1 DuckDB memory management

To understand the two encrypted implementations, we first need to cover the basics of

DuckDB memory management. In DuckDB, a buffer manager is in charge of handling

memory management for the database. The buffer manager hands out memory buffers

that can be used by the database internally. These buffers are used to store the actual

data that is stored in the database, but is also used to store intermediate data or when

operators need additional memory to perform their operation. For example, when a hash

join is performed, the hash join operator stores its hash table in buffers from the buffer
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manager. Buffers handed out by the buffer manager can be of two types: Buffers or Blocks.

Buffers are used for data that only needs to reside in memory, such as intermediate data and

in-memory tables. Blocks are used for data that needs to be backed by persistent storage.

Blocks can be read from and written to storage through another component of DuckDB, the

Block Manager. The Block Manager manages the reading, writing and allocating of blocks

to the storage. It also makes sure the blocks are not corrupted in storage by calculating

a checksum of the data on writing and verifying the checksum on reading. Via the Block

Manager, the Buffer Manager is able to read data from storage when it is requested by

an operator, or write back buffers to storage when they were modified by an operator.

DuckDB can run in two different modes: as a transient, in-memory database, or as a

persistent, file-backed database. As an in-memory database, all data in the database is

stored in buffers, and the Block Manager is never used. As a file-backed database, DuckDB

stores its data in a single file through the Block Manager. Finally, to allow for efficient

I/O, DuckDB splits columns into separate parts called Segments. Each segment holds a

contiguous part of the column starting from a certain offset. By default the block size

in DuckDB is set to 256KB, which means that for the default vector size of 1024, each

segment of a 4-byte integer column holds 256KB / 4KB = 128 vectors.

5.2.2 Encrypted blocks

The first implementation is block encrypted EDuckDB. For this implementation, a small

modification is made to the Block Manager: instead of only calculating/verifying a check-

sum of the data as its read/written to disk, the Block Manager also encrypts/decrypts the

data. This means that all data that is stored on disk, including the database headers, are

encrypted. For the block size, the default value of DuckDB is 512KB, which is sufficiently

large for efficient encryption/decryption as we saw in figure 5.1. At this block size en-

cryption has a negligible storage overhead between 0,0015% and 0,0053% for our selected

cryptosystems. Figure 5.2(a) shows a schematic depicting block encrypted EDuckDB pro-

cessing a simple query containing a filter and an aggregate. Encrypted blocks are pulled

into memory by the buffer manager through the Block Manager where they remain unen-

crypted in memory for the lifetime of the buffer. This implementation is globally identical

to the architecture of CryptSQLite (19). It should be noted that Block-level encryption

only has an effect when running in file-backed mode, as for in-memory databases DuckDB

never stores data in blocks.
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(a) Block-level en-
cryption

(b) Vector-level en-
cryption

Figure 5.2: EDuckDB execution model

5.2.3 Encrypted vectors

The second baseline implementation is vector encryption. As explained in section 2.1,

vectors are a unit of query execution in vectorized query engines that group together

batches of tuples for performance reasons. In vector encryption, we propose to use these

vectors as the granularity of encryption. Instead of encrypting the blocks entirely, such as

in block encryption, the data is encrypted one vector at a time by the vectorized insert

operation. Decryption is performed by the vectorized scan operator. The execution model

for a simple analytical aggregation query is depicted schematically in figure 5.2(b). For

each encrypted vector, a separate IV and/or tag is stored with the encrypted data. The

data for an encrypted segment therefore consists of a consecutive array of encrypted buffers

each containing the data for a single vector. This layout is shown in figure 5.3. Vector

encryption has several advantages over encrypting blocks. Firstly, by encrypting smaller

buffers, the re-encryption cost of updating data in a column is lower. When a modification

is made to an encrypted block, the whole block needs to be re-encrypted. For vector

encryption this cost is significantly lower and also configurable through adjusting the vector

size. Secondly, vector encryption allows implementing secure memory-efficient code when
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Figure 5.3: Encrypted vectors storage layout

integrated into a TH-EDBMS. This is because only the vector that is currently being

processed needs to be decrypted, while the block encrypted execution model does not

allow for this fine-grained management of secure memory. A possible weakness of vector

encryption compared to block encryption is that the reduced buffer size will lead to higher

storage and performance overhead. However, this is not a significant difference as even

at the default vector size of 1024, both encryption throughput and storage overhead are

very close to optimal. For example, for a vector of 4-byte integers, the resulting 4KB

buffer has a storage overhead between 0.20% and 1.37% for the encryption schemes we

have selected in section 5.1.2.2. Also, in figure 5.1, we have already seen that 4KB is

enough to achieve near optimal throughput. Another encryption granularity that was

considered is segment encryption, where not the vectors, but the segments are encrypted

as single buffers. This would result in a lower storage overhead and allow for even higher

query performance. Single vectors could be read from the encrypted segments by using

the random access decryption functionality of our selected encryption schemes. However,

the segment encryption has negligible performance gains over vectorized encryption, as

performance is already near-optimal, while suffering from the same re-encryption costs as

block encryption. Therefore, segment encryption was discarded as vector encryption is a

more balanced trade-off. Finally, the concept of vectorized encrypted query processing,

as presented in this section, is new in EDBMS literature. The closest work, encryption

granularity-wise, is ObliDB. In their work, columns are encrypted in sections of 512 tuples,
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but their execution model uses the value-at-a-time model.

In vector encryption, besides encrypting the data itself, there another component that

contains information on the contents of columns, the zone-maps. Zone-maps are a well-

known optimization technique in analytical query processing that allow scans with with

a filter predicate to skip parts of a column during a scan. In DuckDB the zone-maps are

implemented as the Min/Max value for each segment. This means that for each segment,

DuckDB keeps track of the smallest and the largest value in that segment, which allows a

scan to skip the segment if none of the values in the segment can match the filter predicate.

Since the zone-maps contain data directly based on the contents of the columns we also

encrypt these zone-maps. This means that on each zone-map lookup, an additional decryp-

tion step is performed. Finally, for this research only the numeric encrypted segments in

DuckDB have been implemented, the string segments are left to future work. This means

that for the remainder of this research, this implementation and the SGX-based imple-

mentations that are based on it, only support fixed-length data types such as integers and

floats.

5.2.4 Adding compressed execution

To reduce the decryption overhead associated with query processing over encrypted data,

we propose to use columnar compression. As discussed in section 2.1, compression is a

common technique in OLAP DBMS design. For EDBMS, reducing the total data volume

becomes even more beneficial as it will reduce the total amount of data that needs to

be decrypted upon querying. In the context of OLAP workloads, a compression factor

of more than 3x can be expected (29) using compression schemes such as PFOR, PFOR-

DELTA, and PDICT, reducing the total amount to data to be decrypted on scanning by

an equal amount. Vectorized decompression algorithms can be implemented efficiently and

achieve low decompression times, lower than the decryption time of our selected encryption

schemes. Therefore, the use of columnar compression in a vector encrypted database is

likely to result in a net performance gain. We note that the combination of compression

and encryption will only be useful when the data is compressed first and then encrypted,

as the encryption process maximizes the entropy of ciphertexts meaning that they will

not be compressible to any meaningful extend. Another important note is that the use of

compression introduces a new way of indirect information leakage: If an attacker knows

the compression ratio of an encrypted vector, he can deduce information on the contents

of that vector as the compression ratio directly depends on the contents. While we will
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remain aware of this newly introduced leakage, we leave a thorough security analysis of

the information leakage associated with encrypted compressed columns to future work.

5.3 Evaluation

In this section we experimentally evaluate the two encrypted implementations of DuckDB.

The goal is to first establish the performance efficiency of the vector encryption by com-

paring it to the block encryption implementation. With the efficiency of vector encryption

established, we will use vector encryption as the baseline encryption to compare against

the SGX-based implementations in Chapter 6. The second goal of the evaluation is to

quantify the overhead of encryption in DuckDB. Finally, aim to quantify the impact of

columnar compression on the decryption overhead and demonstrate how effective it can

be in reducing decryption overhead. To do this, we start by defining the benchmark setup

used in section 5.3.1, followed by the results in section 5.3.2

5.3.1 Benchmarking setup

For evaluation of the different implementations, benchmarking is done using the built-in

DuckDB benchmark runner. This benchmark runner allows running several microbench-

marks, as well as the OLAP benchmark suites TPC-H and TPC-DS. The benchmark runner

generates a test database, optionally performs a cold run to warm the caches, and then

runs a test query for a configurable number of times to get an average result for each query.

In all our benchmarks the default 5 runs per query were performed. As a benchmarking

suite, we chose to focus on the TPC-H suite. TPC-H is the industry standard benchmark

for OLAP-optimized DBMSs and aims to illustrate decision support systems that examine

large volumes of data through complex queries (43). TPC-H is also the primary benchmark

found in OLAP-oriented EDBMS literature (5)(19)(52)(4). To be able to evaluate both the

block encryption and vector encryption implementations, we use two different modes. The

experiments are run on the machine specified in Appendix A, which is used throughout

this thesis.

File-backed mode For this mode, the database is first generated into CSV files. Then

DuckDB is started in file-backed mode and all data is inserted into their respective tables.

DuckDB is then restarted to start the checkpointing process and write all data into blocks.

Now between every run of the benchmark, DuckDB is restarted to clear the tables stored

in memory and CPU cache. A single cold run is done to make sure the OS page cache
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is warm and we get consistent results across the 5 benchmark runs. The goal of the

file-backed benchmark mode is to be able to compare the block encryption and vector

encryption implementations.

In-memory mode The in-memory benchmark mode follows mostly the same setup as

file-backed with a single modification: DuckDB is not restarted between benchmark runs.

This means that the cold run will cause the buffer manager to keep all necessary blocks

in memory and the CPU caches warm for all the benchmark runs. Since all benchmark in

this research have a DB size smaller than the available memory on the system, this mode

tests performance of the system as an in-memory database. The goal of the in-memory

benchmark mode is to represent both the in-memory mode of DuckDB, as well as the file-

backed mode of DuckDB where data has already been loaded into memory by the Block

Manager.

Compressed execution To evaluate the effect of compression in EDuckDB, ideally

we would use actual compression functionality in DuckDB. However, at the time of this

research, compression has not been implemented yet, as it is expected to be implemented

in DuckDB later in 2021. To be able to evaluate compression in the current version

of DuckDB, we added a query to our TPC-H benchmark suite to emulate compressed

storage and compressed execution. The query is based on TPC-H Q06 and emulates how

DuckDB would process Q06 if it were to support compressed execution using the PFOR

compression scheme. To achieve this, the columns used by Q06 were manually converted

to a smaller data type that would still fit the data: l_shipdate was converted from

DATE to SMALLINT, l_discount from DOUBLE to TINYINT, l_quantity from

INT to TINYINT and l_extendedprice from DOUBLE to INT. Then a new query was

added to the benchmark suite named Q06_C. This query is identical to Q06, except that

it searches the compressed columns and it decompresses the data before the aggregation

operator:

SELECT SUM(CAST(l_extendedprice_compressed AS BIGINT) * CAST(

l_discount_compressed AS BIGINT)) AS revenue

FROM lineitem

WHERE l_shipdate_compressed >= 1994 AND l_shipdate_compressed < 1995 AND

l_discount_compressed BETWEEN 5 AND 7 AND l_quantity_compressed < 24;

The average resulting compression ratio for the 4 columns involved in Q06_C is 3x, which

is representative for PFOR on typical OLAP workloads (29).
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Fixed-length data type queries As stated before, we have limited our scope to fixed

length data types for the vector encryption. This poses a limitation when evaluating

the implementation using the standard TPC-H benchmark as only 2 of the 22 queries

operate on only fixed-length data: queries 4 and 6. As a work-around, we extended TPC-

H with a set of fixed-size data queries. In TPC-H, several columns of the VARCHAR type

contain strings from a very limited set of possible values. For example, l_returnflag

has only 3 possible values: "A" "N" or "R". 10 of these columns are duplicated into

equivalent dictionary encoded columns. For example, l_returnflag is duplicated into

l_returnflag_dictkey with all "A" values encoded as integer key 0, "N" gets key

1, etc. With these additional columns, 8 queries from the TPC-H benchmark can be

rewritten into fixed-size queries that are functionally equivalent. The modified queries

are post-fixed with _MOD: Q01_MOD, Q02_MOD, etc. Combined with queries that already

operate of fixed-length data types, this results in a total of 10 queries in our fixed-length

data type benchmark suite. To evaluate the representivity of the fixed-length modified

TPC-H queries, we ran the benchmarks both in their modified version and the original

query. As can be seen in figure 5.4, for some queries such as Q03, the fixed-length variants

Figure 5.4: Modified fixed-length data type queries are partially representative to original
queries

perform close to the original query, while others perform very differently. With this result,

we show that most of the selected queries are representative to their original query, whilst

other should be seen as completely different queries.
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5.3.2 Results

5.3.2.1 Comparing block encryption to vector encryption

To compare the performance of the block encryption and vector encryption implementa-

tions, the fixed-length data type queries were ran on both implementations. These queries

are chosen as the vector encryption implementation currently does not support variable-

length data types. The benchmarks were run in file-backed mode because the block en-

cryption implementation decrypts data as its read from the file. The vector size is left

to the default value of 1024 and the cryptosystem selected is OpenSSL AES-CTR with it

being the fastest scheme. The scale factor is set to SF1, which results in a database of

roughly 1GB in size. The results of this experiment are shown in figure 5.5. In this graph

the run-times are normalized to the unencrypted DuckDB run-times. From the results

we can see that both vector encryption and block encryption perform very similarly, with

some minor differences. There are some differences between the two methods, which can

be explained by some queries benefiting more from ability of vectorized encryption to limit

unnecessary decryption, while for other queries, the slightly improved decryption through-

put of block encryption is an advantage. Either way, from these results we can see that the

vector encryption implementation is a viable approach to query processing over encrypted

data when compared to the baseline block encryption. To further improve performance,

an optimization was attempted in the vector encryption implementation to allow partially

decrypting vectors using random access decryption within the vectors. However, this op-

timization did not provide any measurable performance increase but did come at the cost

of increased complexity and was therefore abandoned.

Figure 5.5: Vector encryption outperforming block encryption for most queries
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5.3.2.2 Quantifying overhead of vector encryption

With vector encryption established as a viable approach, we now evaluate the decryption

overhead for vector encryption when using different cryptosystems. The goal is to quantify

the expected overhead of encrypted data in vectorized query processing. This quantification

will later be used as a baseline for the SGX-based implementations to be able to determine

how close they are to optimal. Additionally, we aim to demonstrate the importance of

maximizing decryption throughput on query performance. The experiment that was done

contains the fixed data type queries, this time in in-memory mode. In-memory mode is

faster that file-backed mode and therefore the relative overhead decryption is the largest,

giving a realistic measurement for when EDuckDB is used as an in-memory database.

The vector size is again set to the default 1024 and the scale factor is SF1. Figure 5.6

shows the results of these benchmarks. The results show that a large variance exists

between the different schemes with an average overhead of 22% for AES-CTR and 102%

for xSalsa20. This demonstrates the importance of selecting a fast cryptosystem for efficient

query processing over encrypted data. The results also show that the cost of authentication

through the AES-GCM scheme comes at an overhead of 36% on average, which shows that

at a relatively small additional overhead, data integrity can be protected, which is essential

when building EDBMS resistant against active attackers.

Figure 5.6: Vector encryption outperforming block encryption for most queries
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5.3.2.3 Impact of compression on encryption overhead

Finally, we analyze the impact of columnar compression on the encryption overheads that

we have seen so far. To do this, we used the emulated compressed version of Q06 as

described in section 5.3.1. The emulated compressed version was run together with the

uncompressed version for all considered cryptosystems. The scale factor and vector size are

set to 1024 and SF1 respectively. In figure 5.7 we have shown the results of the experiment.

From the results, we find that the impact of compressed execution with a compression ratio

of 3x on encryption overhead is very significant. As is to be expected, especially, the slower

cryptosystems benefit from the reduced data volume. However, even for OpenSSL AES-

CTR, the decryption overhead decreases from 63% to only 30% over unencrypted DuckDB.

If we combine this result with the results from 5.3.2.2, we can deduce that the worst case

decryption overhead for all queries is 30% if compressed execution is used. Furthermore we

find that the average reduction in absolute encryption overhead is 2.46× ranging between

2.12× for AES-CTR and 2.78× for the slowest scheme, xSalsa20. These results clearly

show the benefit of columnar compression in encrypted query processing. An interesting

experiment we leave to future work is to run the same experiment with actual compressed

execution for all TPC-H queries when DuckDB has implemented compressed execution.

Figure 5.7: Using compressed storage and compressed execution significantly reduces en-
cryption overhead
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5.3.2.4 Summary

We now summarize the main findings of this section. Firstly, both vector encryption and

block encryption can allow query processing over encrypted data in DuckDB at a reason-

able, but non-negligible overhead. This, combined with its architecture where memory

stays encrypted in-memory, makes vector encryption a suitable base for an TH-EDBMS

based on DuckDB. This will be further explored in Chapter 6. Secondly, we have demon-

strated that columnar compression, a technique well-known in database research, can sig-

nificantly reduce the overheads from query processing over encrypted data. Due to the high

efficiency of modern vectorized decompression algorithms while still maintaining good com-

pression ratios, total data volume can be reduced resulting in less data to be decrypted.

With the efficiency of modern columnar compression schemes, this can result in an overall

decrease of decryption overhead. In our experiments using emulated PFOR compression,

a reduction in overhead of 2.12× was seen for AES-CTR.
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Encrypted DuckDB with Intel SGX

In this chapter, we build on the basis established in chapter 5 to design a DuckDB-based

TH-EDBMS. Firstly, we will discuss the most suitable TEE for our requirements. Then, the

different options for splitting a DBMS in a secure and unsecure part are discussed. Thirdly,

we present two different, viable approaches along with the prototypes we implemented to

validate them. Finally, we validate the prototypes by experimentally evaluating their

performance and analyzing their security.

6.1 TEE selection

As a TEE, we selected Intel SGX for this research. In this section, we will first explain this

decision by exploring the alternatives. Then, a brief overview of SGX is given. Finally, an

analysis of the main performance bottlenecks for SGX systems are evaluated.

6.1.1 SGX alternatives

Intel SGX is an obvious choice in TEE for several reasons. Firstly, it is the most widely

used TEE in recent EDBMS literature and is well documented. Secondly, it is available

on most recent x86 CPUs which are found in both server and consumer hardware, which

makes it both interesting from a practical research point of view, as well as having strong

real-world relevance. However, SGX is not the only option and we will briefly touch on

the most relevant alternatives here.

AMD SEV-SNP Intel’s main competitor on the x86 market, AMD, offers a TEE-

like technique similar to SGX. The technique is called AMD Secure Encrypted Paging

with Secure Nested Paging (SEV-SNP) and aims to offer protection for virtual machines
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(VM) running on cloud hardware. AMD SEV-SNP also offers memory encryption and

remote attestation, but differs from SGX slightly. For example, SEV-SNP has a different

trust model. Instead of a small piece of code that runs inside the enclave, SEV-SNP

protects the memory between VM and hypervisor and between VMs. This means that

the guest operating system running inside a VM with SEV-SNP enabled needs to be

trusted. SEV-SNP has two large advantages over SGX. Firstly, it does not require any

modifications to applications. SEV-SNP is implemented in the hypervisor, guest OS and

physical hardware, which means that applications can run without any modifications or

even recompilation. Secondly, its performance is superior to SGX by a large margin (97),

especially for applications that require lots of memory such as a DBMS. For this research

however, SEV-SNP however was deemed less suitable for several reasons. Firstly, the

amount of research available on AMD SEV-SNP is significantly smaller to that of SGX

both with regards to EDBMS literature as well as literature on the details of AMD SEV-

SNP itself. Secondly, the remote attestation process as is currently implemented has been

shown to be broken (98). The remote attestation step is crucial for the use cases specified

for EDuckDB. Thirdly, due to the trust model of SEV-SNP including the host operating

system, the TCB is significantly larger which limits the maximum security that can be

achieved. Finally, using SEV-SNP is less interesting from a database research perspective,

as running a DBMS application in SEV-SNP does not require any modifications. While

not chosen as TEE for this research, SEV-SNP is an interesting technology as we will

further discuss in section 7.2.

ARM TrustZone Another available TEE technology is ARM TrustZone. TrustZone

was launched in 2004 and provides security primitives necessary to implement different

types of trustworthy systems. While TrustZone supports creating a TEE similarly to

SGX, it lacks the sealing and attestation features of SGX (99). As mentioned before,

the attestation feature of TrustZone is important for the EDuckDB use cases and threat

models. Furthermore, TrustZone research is mainly focused on mobile and IoT applications

as this is what ARM chips are commonly used for. This has resulted in a significantly

lower amount of interest in TrustZone from EDBMS researchers with only limited works

available (100). Finally, as x86 is, at least for now, the leading architecture in the cloud,

our main use case, we decided against using TrustZone for this research.

Academic TEE solutions In TEE research, several academic systems have been pro-

posed, most notably Sanctum (74) and AEGIS (101). While these solutions are very inter-
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esting and sometimes offer significant improvements over industry solutions, using them

experimentally is significantly more challenging due to limited availability. Furthermore

the real-world relevance of an academic TEE-based EDBMS is limited when the required

TEE is not widely available on cloud hardware.

6.1.2 SGX overview

We will first give a brief overview of SGX. SGX is a set of hardware instructions that

allows the creation and management of special regions in memory called enclaves. The

memory set aside by SGX is called the Processor Reserved Memory (PRM). The PRM is

protected by the CPU from all non-enclave accesses, including those from the kernel or

hypervisor and DMA access from peripherals (102). Inside the PRM resides the Enclave

Page Cache (EPC). The EPC holds all code and data that belongs to enclaves. Data

inside the EPC can only belong to a single enclave and enclaves cannot access EPC pages

from other enclaves. Enclaves are initialized by untrusted software running on the host OS.

This software consists of the SGX Driver and the SGX Platform SoftWare (SGX PSW). On

initialization of an enclave, this untrusted software allocates secure memory by assigning

pages to a newly generated enclave id. The initial state of the enclave containing the code

and data is then copied into the secure memory by the CPU. After this copying process,

the CPU calculates a cryptographic hash of the initial state called the measurement hash

and the enclave is ready for execution. After initialization, a remote party can engage in a

software attestation process to verify both the enclaves measurement hash and the integrity

of the system it is running in. When an enclave is initialized, the only way for control flow

to move between unsecure code and enclave code is through the special CPU instruction

EENTER. With the EENTER instruction, the CPU makes sure that the control flow is

moved to the enclave is a secure predictable way. When the EENTER instruction has

succeeded, the CPU is now in enclave mode and can execute the code running inside the

enclave. Code running inside the enclave can access the data stored inside the enclave to

perform computation over it in a secure way, but can also access the unsecure memory.

When the code inside the enclave wants to return control flow to the untrusted code, the

EEXIT instruction is used. Note that this explanation is a simplification of the entire

process: the code for entering, exiting, and hardware exception handling is very complex,

for a detailed understanding we refer to the excellent work by Costan et. al. (102) who

explain SGX in great depth in over 100 pages. To allow development of applications for

SGX without requiring programmers to understand the complexities of using the SGX

instructions directly, Intel has provided the Intel SGX Software Development Kit (SGX

79



6. ENCRYPTED DUCKDB WITH INTEL SGX

SDK). The SGX SDK provides an abstracted, easy to use, interface for the programmer to

specify in what ways the enclave can be entered and exited. These abstractions are called

Enclave Calls (ECall) and Outside Call (OCall). ECalls are predefined function in the

enclave that can be called from outside the enclave. OCalls are the opposite, i.e. functions

in untrusted code that can be called from the enclave code.

To develop an application for Intel SGX, the code and data for an application is split

into a secure part and an unsecure part. The entry point is in the unsecure part which

calls on the SGX PSW to initialize the enclave through functions defined in the SGX

SDK. The ECalls and OCalls are defined in special header files written in the Enclave

Definition Language (EDL). A simplified example application is shown in Listings 6.1, 6.2,

and 6.3. In this example application, one ECall and one OCall are specified. To compile

this application, the SGX SDK provides scripts to compile the Enclave.cpp and Enclave.

edl into a shared object and header files. Then the App.c gets compiled with the generated

header files. App.o is linked against the headers from the SGX PSW which provides the

functions to initialize the Enclave.so shared object into a new enclave.

int main(int argc, char *argv[]) {

initialize_enclave();

ecall_secure_function("abc", 14);

}

void ocall_print_string(const char *str) {

printf(str);

}

Listing 6.1: SGX example application: App.c (untrusted)

void ecall_secure_function(const char* str, int num) {

OCall_print_string(str);

return strlen(str) + num;

}

Listing 6.2: SGX example application: Enclave.c (trusted)

enclave {

trusted {

public void ecall_secure_function([in, string]const char* str, int num)

;

}

untrusted {

void ocall_print_string([in, string] const char *str);

};

}

Listing 6.3: SGX example application: Enclave.edl
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EDL files such as the example in listing 6.3 specify the C functions that are callable

as ECalls and OCalls along with annotations for the function arguments. To securely

performance ECalls and OCalls, the arguments need to be verified on every call. This

verification step prevents a malicious host from providing arguments of unexpected shape

that can compromise enclave security. Verification of the arguments can be done in two

ways: by data marshalling or by manual checks from the programmer. Data marshalling

in SGX is done by code generated automatically by the SGX SDK using the annotations

which specify how to marshal the arguments. This code verifies that the argument is of

the expected shape. In the example application, the ecall_secure_function function has

c string argument that is passed to the enclave. With the [in,string] annotation, the

marshalling code that is generated will perform the following steps on each ECall: verify str

is a pointer to a null-terminated array of char, verify that he entire array is located inside

the untrusted memory, copy the array into secure enclave memory. In EDL, different types

of annotations exist for different types of arguments, both for arguments used as input and

as output. While data marshalling in SGX allows securely passing arguments to ECalls

and OCalls, it can be very expensive due to the buffer always being copied in and/or out of

the enclave on each call. For this reason, the data marshalling process can be disabled by

using the [user_check] annotation. With the data marshalling disabled, the programmer

of the enclave code is responsible for verifying the integrity of the buffers and to prevent

any malicious manipulation by the untrusted host.

6.1.3 SGX Performance

For SGX, there are several causes of performance overhead: ECall/OCall overhead, EPC

paging overhead, and increased LLC miss cost.

ECall/OCall overhead Every time the execution flow jumps between trusted enclave

code and untrusted code through ECalls or OCalls, this causes significant overhead. This

overhead has multiple causes, both direct and indirect. Firstly, some direct overhead is

caused by the EENTER and EEXIT instructions. These instructions are complex instruc-

tions and both take thousands of cycles. Also the SGX SDK adds code to each ECall/OCall

which adds an additional thousand cycles. The total overhead in cycles has experimentally

been found to be roughly 8k cycles for OCalls and 9k for ECalls (67). This is around 50x

slower than a regular system call. Note that this overhead does not even include the data

marshalling of function arguments. Additionally, there are also indirect costs associated

with ECalls/OCalls. Every time the EEXIT instruction is called, the TLB is flushed.
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Flushing the TLB will result in more TLB-misses and consequently some overhead from

walking the page tables. While this overhead will depend on the type of application, Oren-

bach et. al have performed an experiment doing hash tables lookups over a 2MB hash

table and have shown that the performance overhead of these TLB flushes can be more

over 200% (13).

Memory decryption on LLC misses Another important cause of performance over-

head in SGX comes from last level cache (LLC) misses. In SGX, the data stored in the EPC

is encrypted with authenticated encryption at all times. When an enclave accesses data

from the EPC, its integrity is checked and it is decrypted before being stored in the CPU

caches and usable by enclave instructions. This means that LLC misses for EPC memory

accesses come at a significant overhead. Orenbach et. al. experimentally determined the

overheads for LLC misses, their results are shown in table 6.1.

Operation Sequential access Random access
READ 5.6× 5.6×
WRITE 6.8× 8.9×
READ and WRITE 7.4× 9.5×

Table 6.1: Relative cost of LLC miss in enclave (13)

EPC Cache misses The final main source of overhead in SGX is the cost of paging

when overflowing the EPC. In SGX, the PRM and consequently the EPC is of fixed size:

for the CPU of our machine this size is 128MB, for the latest Intel CPUs it is 256MB.

For many applications, and especially (EDBMS), this is a restrictively limited amount of

memory. Fortunately, the SGX driver supports a paging mechanism to allow enclaves to

use more memory than fits in the EPC. When under PRM pressure, the SGX driver evicts

pages from the EPC by encrypting them and storing them in unsecure memory. When

the enclave accesses a page that is not in EPC, the paging mechanism retrieves the page

from unsecure memory by decryption and integrity checking before storing it in EPC. This

process is expensive for two main reasons. Firstly, it requires a extra copying, decrypting

and integrity checking step on each EPC miss similarly to when a LLC miss occurs, but

now combined with a write to memory. Secondly, the paging mechanism is implemented

in the SGX driver, which executes in user-land in non-enclave mode. This means that

for every EPC miss, an OCall is required, which gets very expensive. Experimentally, the

overhead of a single EPC page miss has been shown to be roughly 25k cycles for the paging
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process, 7k cycles for the required OCall (13), and another 8k cycles of indirect slowdown

due to the TLB flush and increased LLC cache pollution. As the indirect slowdown can

vary per application, between 32k and 40k cycles is the expected total cost for EPC page

misses.

SGX benchmark To experimentally evaluate the performance of SGX, we ran two

micro-benchmarks on the experiment machine specified in Appendix A. Both benchmarks

are small C programs created with the SGX SDK. The first benchmark, shown in Figure

6.1(a), executes a simple read benchmark that repeatedly sums the values in a buffer. In

the results, we can just see that for buffers over 2MB, a small performance overhead exists.

This small overhead is presumably caused by the increased LLC miss latency. For buffer

sizes larger than the available secure memory, we clearly see the performance overhead

increase massively to around 9× due to EPC paging. For the read+write benchmark

shown in Figure 6.1(b), a fixed integer value is repeatedly written to each position in a

C array. Here we see a significantly larger performance overhead for buffers over 2MB.

Similarly to the read benchmark, when the available EPC memory is exceeded, overhead

increases massively. We note that for these benchmarks, the cost of ECalls/OCalls is

not included in the results as the complete benchmarks are run from inside the enclave.

The results demonstrate that, without the expensive ECalls or OCalls, accessing unsecure

memory can be done without any significant penalty, while accessing secure memory can

be very expensive, depending on the memory requirements.

6.2 Partitioning DBMS code for SGX

When designing any SGX application, an important design decision is how to partition the

application in a secure and an insecure part. The choice of where to split the application

will depend on the specific requirements of an application. In this section, different design

choices for partitioning EDuckDB are explored.

6.2.1 Design choices

As described in earlier work (8), splitting an EDBMS can be done in various ways. In

Figure 6.2 three models are described that can be used for the code split. Note that these

models are not exhaustive as a DBMS can contain various components that can either be

placed in the secure or the insecure part. In the full-dbms-split model depicted in Figure

6.2(a), as much as possible is placed inside the enclave, all regular DBMS components
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(a) Read (b) Read and Write

Figure 6.1: SGX memory performance benchmarks

run inside the enclave and only a small I/O shim exists in insecure memory to provide

the enclave code access to storage, network and/or user input. In the minimal-dbms-split

model shown in Figure 6.2(c), the bare minimum is placed inside the enclave. Only the

primitive operators (e.g. +, -) and comparators (e.g. <=, ==, !=) are implemented. The

middle-dbms-split model in Figure 6.2(b) takes an intermediate, more fine-grained design

approach where some components are placed into the enclave and some are placed outside

the enclave.

(a) full-dbms-split (b) middle-dbms-split (c) minimal-dbms-split

Figure 6.2: Three design choices for partitioning an encrypted database. (8)

6.2.2 Partitioning evaluation

To analyze the partitioning design choices, a set of evaluation criteria are formulated based

on the EDuckDB requirements and the SGX characteristics explored in sections 5.1.2.1 and
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6.1. In table 6.2 each evaluation criterion is listed with their corresponding requirement as

well as a description. Even though both the evaluation criteria and the partitioning design

Evaluation Requirement Description
TCB Security Total lines of code (LoC) that runs in enclave
Attack Surface Security Total amount and complexity of ECalls + OCalls
Leakage Security Information leaked in system to untrusted components
EPC Swapping Performance Total amount of EPC swapping
ECall/OCall Performance Total ECall + OCall count
Enclave execution Performance Total number of instructions executed in enclave mode
Simplicity Implementation Simplicity of DBMS application development
Integration Implementation Ease of integration of existing DBMS application

Table 6.2: Evaluation criteria for partitioning design

models are very high-level, some important findings can be drawn from this analysis. Here

the most important difference between the models will be discussed

6.2.2.1 Security

For the security evaluation the first important difference is the size of the Trusted Comput-

ing Base (TCB). As mentioned before, the TCB is the set of components that are trusted.

In secure system design, an important factor of security is to keep the TCB as small as

possible. Clearly, the more components are placed in the enclave, the larger the TCB,

and therefore the lower the overall system scores on security. Secondly, for the leakage

criterion we can conclude that minimal-dbms-split scores the worst as it leaks information

on comparator results by design. While full-dbms-split is by no means free of information

leakage by design, it does allow integration with techniques to limit information leakage

through for example using ORAM. Finally, for attack surface we can identify a difference

but not a clear advantage to either model because while the minimal-dbms-split will most

likely have a larger number of entry points into the enclave, each secure function call will

be relatively simple. The full-dbms-split model suffers theoretically needs only one entry

point, one that accepts a SQL query, that means that an untrusted string be parsed which

is significantly more complex to secure well.

6.2.2.2 Performance

As we have seen in section 6.1.3, designing a high performance SGX application will require

a design that is considerate of the performance pitfalls of SGX. Evaluating the performance
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criteria, the first important difference is in the number of ECalls/OCalls. The full-dbms-

split needs only a single ECall when starting the application and OCalls for accessing

the host operating system for storage or network access. This number is expected to

be very low, for example reading a block from disk would require a single OCall. The

minimal-dbms-split requires an ECall for each individual comparison/operation which, in

the context of OLAP workloads, will probably mean huge amounts of ECalls are necessary1.

When considering the likeliness of EPC swapping however, we see that the full-dbms-split

model has a high likeliness of triggering EPC swapping as it need to store all application

code and memory inside the EPC. The minimal-dbms-split model is more likely to be

able to efficiently limit EPC usage. Finally, as the full-dbms-split model runs most code

in enclave mode, this model score low on enclave execution as it will likely incur more

overheads due to expensive LLC misses than a minimal-dbms-split.

6.2.2.3 Implementation

For the implementation evaluation criteria, the two extremes full-dbms-split and minimal-

dbms-split perform similarly. Minimal-dbms-split requires only rewriting very simple com-

parison and operation functions that can be integrated into an existing DBMS (8). Full-

dbms-split can be done in one of two ways: either by recompiling the application with

the SGX-SDK, or by using a LibOS solution like Graphene-SGX (10). Either approach

will require little rewriting of existing code. The middle-dbms-split model scores poorest

on this criterion as it will require significant restructuring of application source across a

secure and an unsecure part. Also the interface between these parts will need to be define

as ECalls/OCalls.

6.2.2.4 Overview

In table 6.3 an overview of the analysis is shown. The performance of each partition design

is scored with ’+’, ’+/-’ and ’-’. ’?’ is used to indicate that no meaningful score could be

given.

1In OLAP workloads, the number of values processed by queries tends to scale linearly with database
size. Due to the low cost of simple operators or comparators, the total cost of these queries remains
feasible. For ECalls however, this does not result in a feasible performance as their cost is many orders of
magnitude larger than that of basic operators or comparators.
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Category full-dbms-split middle-dbms-split minimal-dbms-split
1a: TCB - +/- +
1b: Attack surface +/- ? +/-
1c: Leakage + ? -
2a: EPC swapping - ? +
2b: ECall/OCall + ? -
2c: Enclave execution - ? +
3a: Design simplicity + - +
3b: Integration + - +

Table 6.3: Evaluation of different partitioning designs.

6.2.3 Partitioning in existing EDBMS literature

To further analyze the choice of the partitioning design, several of the most relevant works

on TEE-based EDBMS are analyzed.

StealthDB The paper on StealthDB (8) discusses this topic most explicitly and the basis

of the analysis in section 6.2.2 stems from their work. In their analysis the authors directly

compare the three models in Figure 6.2 on their suitability for an OLTP EDBMS. The

authors reason that the full-dbms-split model is unsuitable due to the limited size of the

EPC. Even with future releases of Intel SGX promising larger EPC sizes, the Merkle trees

used by Intel SGX to protect memory integrity does not scale well. Regarding security, it

is noted that this approach does have the potential to leak less data if the intel SGX side-

channels are sufficiently mitigated. The authors consider the middle-dbms-split to suffer

from the same scaling issue as full-dbms-split regarding the limited EPC as in the query

execution step tables and indexes need to be loaded into the enclave. Additionally, even if

the data necessary for query execution fits within the EPC limit, reading and deserializing

data into the enclave is expected to have a performance overhead of at least 2.8x. Finally,

the middle-dbms-split model makes the task of mitigating sidechannel attacks non-trivial.

The minimal-dbms-split ends up being chosen for its sparing use of secure memory, low

TCB size and easy mitigation of SGX sidechannel attacks. An important note is that the

overhead of ECalls/OCalls is not considered a significant issue due to the intended OLTP

workload of their system. The reason for this is that contrary to OLAP worloads, where

the number of values touched by a query tends to scale linearly to the DB size, in OLTP

workloads the number of values touched by queries is typically only constant or logarithmic

with respect to the DB size.
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EncDBDB EncDBDB (9) implements a range operator for an encrypted string column

that is integrated into MonetDB, an OLAP DBMS. In the EncDBDB design, all data

is stored encrypted into unsecure memory. Only the relatively small (1129 LoC) range

operator itself is run inside the enclave. This approach is most similar to the minimal-

dbms-model as used by StealthDB, except that it is implemented as at the physical operator

layer instead of the primitive operator level.

EnclaveDB EnclaveDB (7) implements an OLTP EDBMS based on SQL server and a

modified Hekaton engine. In their design, all tables, indexes, the modified Hekaton engine

and a trusted kernel live inside the enclave while the query parser/optimizer, query pro-

cessor and storage remain in unsecure memory. This layout mostly resembles the middle-

dbms-split model. An important observation is that the entire database with indexes

resides in secure memory. To be able to support datasets larger than the EPC limit

without prohibitively slow paging overhead, the authors make the assumption that future

implementations of intel SGX will support significantly higher EPC limits. However, at

the time of this research, no source was found suggesting significantly larger enclaves will

be supported in the near future1.

ObliDB ObliDB (72) is a database prototype implementing various common database

operators in an oblivious way using Intel SGX. These oblivious operators are combined in a

prototype database with a secure query planner and supports common SQL functionality

such as SELECT, INSERT, UPDATE, DELETE, GROUP BY. In their design, nearly

all components are placed in the enclave while the data remains encrypted in unsecure

memory. Since the query planner and query execution are placed in the enclave this design

most closely matches the full-dbms-split model. The choice for this model can be explained

by their security requirement of oblivous query exection. To allow for obliviousness ORAM

is integrated in the query execution meaning that the query execution must be inside the

enclave.

TrustedDB TrustedDB (40) is early EDBMS work using a IBM secure coprocessor as a

TEE. TrustedDB splits the DBMS into two parts each with their own database engine. For

the untrusted engine MySQL is used, while the IBM SCPU runs a modified SQLite engine.

Even though the IBM SCPU used in this research has completely different performance
1Note that while writing this Thesis, Intel did release a version supporting significantly larger enclaves,

which we discuss in Section 7.2
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characteristics to Intel SGX enclaves, the design considerations are very similar: A paging

mechanism is used to provide the SCPU with enough secure memory for large secure tables,

execution inside the secure enclave comes at performance overhead and communication

between the SCPU and CPU comes at a significant overhead.

6.2.4 Partitioning DuckDB

After evaluation in section 6.2.2 and analysis of partitioning in related literature in section

6.2.3, we can conclude that there is no clear winner to the partitioning problem from a

high-level perspective for our requirements. Both the minimal-dbms-split and the full-

dbms-split seem like viable options for this research, and we therefore focus our research

on comparing these two models in their suitability for EDuckDB. Note that the middle-

dbms-split will not be considered in this thesis as it is significantly more complex and

does not fit the time constraints of this Master thesis. To compare the full-dbms-split and

minimal-dbms-split models, two prototypes will be compared. Firstly, the full-dbms-split

model will be analyzed in section 6.3. Secondly, in section 6.3 a prototype is analyzed

which represents the minimal-dbms-split model, but does share some characteristics from

the middle-dbms-split model as we will explain it that section.

6.3 DuckDB entirely in enclave

In this section, we discuss the prototype following the full-dbms-split partitioning model.

For this model, as much of DuckDB as possible will be place inside the enclave to minimize

the number of ECalls and/or OCalls required.

6.3.1 Running DuckDB from an enclave

To run DuckDB entirely inside an SGX enclave, two different approaches are possible.

The first approach is to manually rewrite and recompile DuckDB using the SGX SDK.

The main difficulty is the limited subset of the libc and libc++ libraries that is available

to code inside the enclave. The reason for this is that system calls are not directly callable.

To work around this problem, a so-called shim layer needs to be implemented that defines

OCalls that allow the unsecure host to provide the necessary system calls. The main

advantage of this approach is that it can be tailored exactly to the specific application that

is running inside the enclave, keeping the TCB to a mininum. Additionally, as the shim

layer is as small as possible, the limited EPC can be optimally used by the application
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itself. An example of a system using this approach is CryptSQLITE (19), who define a

shim layer with the 29 syscalls that their base DBMS, SQLite, requires.

Another approach is to use an existing shim/LibOS library. Right from the launch

of SGX, researchers have acknowledged the problem the need to rewrite and recompile

existing applications to run them inside enclaves. To solve this, different systems have

been presented to support running unmodified applications in SGX such as Haven (103),

Scone (104), Panoply (105), Graphene (10), and Occlum (106). All these systems use

similar approach but move variable levels of functionality into the enclave. Now for the

EDuckDB prototype, both the manual shim method and building on top of an existing

shim/libOSB would work. However, as using an existing shim/libOS does not pose any sig-

nificant problems our limitations for our research goals, we opt for the more time-efficient

approach of leveraging an existing shim/libOS. Choosing which of the aforementioned ap-

proaches to pick is straightforward as currently of all these systems only Graphene is both

open-source, under active development, well documented, and the closest to being produc-

tion ready1. We note that while for this research, the shim/LibOS approach is taken, but

for a production-ready version, the SGX SDK build is most likely preferable for the afore-

mentioned advantages regarding security and performance. As DuckDB is an embeddable

DBMS with no external dependencies, the SGX SDK build is clearly conceivable.

6.3.2 Graphene-SGX

We start by giving a brief overview the Graphene architecture. Different LibOSs use

different methods. For example, Haven pulls a significant part of the OS functionality into

the enclave. On the other end, Scone and Panoply implement small shim layers over an API

layer like the syscall table or libc interface. Graphene follows a similar approach to Haven

and it places a libc implementation, a library OS, and a shield layer in the enclave along

with the application. In Figure 6.3, the layout of an application running in Graphene-SGX

is shown. Below the bottom black line the untrusted Linux kernel is shown with the SGX

drivers. Above the black line, which depicts the the Linux syscall interface, the platform

adaption layer (PAL) of Graphene is shown. The PAL implements functions of the host

application binary interface (ABI), against which the library OS is programmed. Above

the PAL the enclave components are shown, starting with the shield code, shield data,

manifest and file hashes. These components are responsible for verifying the security and

integrity of the calls made from the library OS to the PAL. Additionally, these components
1Graphene is currently in a prerelease and are expecting to launch a first production version in Q3

2021 (107)
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verify the hashes of any files or shared libraries that the enclave code may require. Next is

the Library OS, which works by either handling functions that can be done in the enclave

itself, or by delegating system calls to the PAL through the shield layer. Finally, on the

top of the diagram we see the shared libraries for the application and the application itself.

Figure 6.3: Graphene-SGX architecture (10)

6.3.3 DuckDB master branch in Enclave

First, we demonstrate the performance of a naive EDuckDB implementation that runs

regular unencrypted DuckDB inside Graphene. DuckDB was run from the master branch

with no modifications1. For the precise versions of both DuckDB and Graphene that are

used, see Appendix A. To run DuckDB in Graphene, a manifest file was created that

specified our desired configuration to allow the benchmark runner of DuckDB to run. This

manifest is included in Appendix B. In this configuration we specify the enclave size and

which files and shared libraries need to be accessed. For the enclave size 16GB was chosen,
1Note, a small modification was required to allow the benchmarks to run: the disabling of file locking

as this is not supported in the version of Graphene that was used. However, this has no impact on the
results.
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as this was the largest possible enclave size that would work without crashing. These large

enclaves are needed as the same environment was used for all Graphene experiments and

enclave size for our version of SGX needs to be defined at enclave initialization. In Figure

6.4, the benchmark results for running TPC-H SF1 on the DuckDB master branch with

vector size 1024 in Graphene are shown. As can can be seen in the graph, naively running

DuckDB in Graphene leads to a slowdown of 22x for the queries that did not crash or

time-out. Since in this benchmark we are storing over 1GB in EPC and most queries will

touch more than the EPC limit of memory, these overheads were to be expected and are

consistent with the SGX read+write benchmark from Figure 6.1(b).

Figure 6.4: Benchmark results for DuckDB running inside Graphene-SGX (09, Q10, Q17,
Q18, Q21 omitted due to timeouts and crashes when run inside Graphene)

6.3.4 Graphene-aware DuckDB

The poor results in section 6.3.3 can be attributed mainly to the cost of EPC swapping.

We will go into greater detail on this in section 6.5. To mitigate this problem, the EPC

usage needs to be drastically reduced, because even with the newest version of SGX with

twice the amount of EPC, only a slight improvement is to be expected. To achieve this, we

implemented Graphene-aware EDuckDB (GA-EDuckDB). For GA-EDuckDB, the buffers

allocated by the DuckDB buffer manager for storing the data are moved to unsecure

memory. To prevent loss of confidentiality for these buffers, we use the vector-encrypted

implementation from sections 5.2.3. To allow the buffer manager to allocated both secure

and unsecure memory, we extended Graphene with two system calls to allocate and free

buffers of unsecure memory. The vector-encrypted EDuckDB implementation was made

modified to use this system call to allocate memory for table data, while using regular
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memory allocation for all other allocations. The resulting GA-EDuckDB implementation

fits in the limited EPC with a TPC-H SF1 database loaded in-memory. To evaluate

the improvement of GA-EDuckDB over DuckDB, we run the TPC-H benchmarks on the

experiment machine defined in Appendix A at scale factor 1 with the default vector size

of 1024. In Figure 6.5, the results of this experiment are shown. Note that due to the

use of our EDuckDB implementation, only the fixed-length datatype queries defined in

Secion 5.3.1 are used for this benchmark. In the results we can see that all queries show

significant improvement over running DuckDB in Graphene. Especially queries with no

large intermediates such as Q06 benefit massively. Others, such as Q04, which contains a

hash join of 144k tuples, remain at well over one order of magnitude overhead. In section

6.5 we will analyze the behaviour of GA-DuckDB in more detail and compare it to the

implementation of section 6.4

Figure 6.5: Benchmark results for GA-DuckDB in Graphene (Q17 omitted due to timeout-
s/crashing)

6.4 DuckDB with operators in enclave

In this section, we discuss the prototype following the other partitioning model, the

minimal-dbms-split. For this model, the minimal amount of code is placed inside the

enclave to minimize the execution time spent in enclave mode and minimize the EPC us-

age. The goal is to reduce the LLC miss overhead and the EPC swapping overhead at the

cost of more ECalls and more information leakage. Using this model will results in more

fine-grained access pattern leakage and also some direct leakage comparable to an ideal

CRYPTO-EDBMS or a system such as StealthDB.
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Previous work using the minimal-dbms-split model for an SGX based EDBMS used per-

value encryption combined with logical operations and comparators as ECalls, essentialy

emulating PHE and PPE schemes using TH. However, for an analytical workload this

approach is impractical. Firstly, as discussed in section 5.1, per-value encryption imposes

large overheads making encryption very inefficient. Secondly, performing an ECall for

every value is extremely expensive in OLAP workloads. Consider TPC-H Q06 at SF1. In

this query 114160 tuples are produced by the FilterScan operation. For this query, the

overhead of ECalls of only the aggregation operator would already be over 764%1. Finally,

this approach inhibits the efficient use of the vectorized query execution model. One of

the goals of vectorized query execution is to defined operators in terms of simple loops

containing easily optimizable code that modern CPUs can efficiently executed using SIMD

instructions. Replacing the simple operations in the body of these loops with ECalls makes

CPU-efficient query processing very hard.

The solution is to use vectorized encryption and move the vectorized database opera-

tors inside the enclave. These enclave operators take one or more encrypted vectors as

parameter, decrypt the whole vector inside the enclave, use the same code to perform the

operation and if necessary, re-encrypt the resulting vector. Using this approach, the ECall

cost is amortized, the encryption throughput is efficient because it operates on buffers

instead of values, and the same CPU-optimized code can be used as in the regular vector-

ized operators. To implement the vectorized SGX operator EDuckDB (VSO-EDuckDB),

the vector-encrypted implementation from section 5.2.3 was used as a starting point, but

instead of decrypting the vectors immediately on scanning, the scan operator produces

vectors containing encrypted data. An example VSO-EDuckDB query plan is shown in

Figure 6.6. A consequence of the decision to re-implement query operators in SGX is that

implementing VSO-EDuckDB is significantly more work than, for example, StealthDB.

Due to time constraints, the implementation of VSO-EDuckDB was limited to the oper-

ators required to execute TPC-H Q06 and its emulated compression variant. This query

was chosen for the limited amount of operators required to implement the query, while still

being a good representative of a typical analytical query. The operators implemented are

listed in table 6.4 A total 27 ECalls were implemented to support the required operations.

The reason for different operators to have different numbers of ECalls implemented is due

to the fact that ECalls can not be defined as templates. Also some operators such as

Select, required implementations of the operator with different parameters. Finally, the

Intel SGX SDK contains an optimization option called switchless mode. This optimization
1This value is calculated by using the ECall cost from section 6.1.3

94



6.4 DuckDB with operators in enclave

Figure 6.6: VSO-EDuckDB example query plan for TPC-H Q06

Operation ECalls
Binary multiplication 2
Unary aggregate 5
Cast 3
Zone-map helper functions 7
Select 10

Table 6.4: Vectorized SGX Operators implemented in VSO-EDuckDB to support Q06 and
compressed Q06

is described in the paper by Tian et. al. (67). The optimization works by running two

threads: one is running inside the enclave, the other is running outside the enclave. With

this multithreaded setup, the ECalls and OCalls are replaced by asynchronous requests

placed in a shared buffer. This optimization essentially trades CPU cores for more ef-

ficient ECalls/OCalls. With the switchless optimization enable ECalls take 1.5k cycles

and OCalls take 1k cycles which is almost an order of magnitude shorter. For our de-

tailed analysis we include the results with and without this optimization enabled, where

the optmization-enabled version is called VSO-EDuckDB-S.
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6.5 Evaluation

6.5.1 Performance comparison

To compare the performance between the VSO-EDuckDB and GA-EDuckDB implemen-

tations, TPC-H Q06 was ran at scale factor 1, as Q06 is the only query that both imple-

mentations can run. The same machine from appendix A is used, but this time a vector

size of 8192 is chosen, which we will explain in section 6.5.2. The results are shown in

Figure 6.7. In the graph, we see that both GA-EDuckDB and VSO-EDuckDB add a sig-

nificant amount of overhead, respectively 153% and 200%. Interestingly, the amount of

overhead for the two implementations is comparable even though their execution models

differ significantly. When enabling the switchless optimization for VSO-EDuckDB, we can

see overhead drop significantly, coming close to the uncompressed, non-SGX encrypted,

vector implementation which is at 75% overhead.

Figure 6.7: Performance evaluation of all EDuckDB implementations on TPC-H Q06

6.5.2 Impact of vector size

In vectorized query execution, the vector size is a parameter can be used to optimize per-

formance. In an unencrypted DBMS using vectorized execution, the optimal vector size

depends on several factors, such as the workload, the hardware used, and characteristics of

the database such as compression ratios. For DuckDB, the vector size is hard-coded and

is set to 1024 by default. At this vector size, most vectors will fit in the L1 cache to ensure

low L1 cache misses for fast vector operations. In Figure 6.8, a plot of TPC-H is shown
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for different vector sizes of DuckDB. In the graph it can be seen that the optimal vector

Figure 6.8: Impact of vector size on baseline DuckDB TPC-H performance

size differs per query, but generally around 1k is a safe choice close to the optimum. For

EDuckDB however, the optimal vector size changes radically. In Figure 6.9, the perfor-

mance for EDuckDB running TPC-H Q06 is shown for different vector sizes. The results

Figure 6.9: Impact of vector sizes on encrypted implementations

show a large impact of vector size on performance for all SGX implementations, while the

Vector Encryption implementation and DuckDB vary only slightly. Note that the optimal
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vector size has shifted upwards significantly compared to unencrypted DuckDB. The rea-

son for this shifted optimal vector size can be explained by the performance bottlenecks

for SGX we have explained in section 6.1.3. Firstly, for VSO-EDuckDB the total amount

of ECalls depends directly on the vector size and increasing the vector size reduces the

amount of required ECalls by the same factor. This also explains why VSO-EDuckDB-S,

where the ECalls are significantly less expensive, has much less performance gain when

increasing vector size. Interestingly, GA-EDuckDB also benefits from a large vector size

significantly. While we were unable to conclusively establish the cause of this effect, we

will briefly explore the possible causes. Looking at the main SGX performance bottlenecks

from section 6.1.3, we can exclude the ECall cost as a source of overhead as no ECalls

are made during the benchmark execution. Secondly, we can exclude EPC paging, as no

EPC paging was detected during the benchmark execution. This leaves only the increased

LLC miss cost as a source of significant overhead. With LLC misses being much more

expensive in secure memory, as shown in Table 6.1, a possible explanation would be that

the increased vector size reduces the LLC misses to secure memory. However, to measure

and confirm this theory, a detailed performance analysis should be performed, which was

left to future work due to the complexity of profiling SGX code.

6.5.3 Impact of compression

To determine the impact of compression on the SGX-based implementations, the emulated,

compressed version of Q06 was used that is described in section 5.3.1. In Figure 6.10, the

results are shown for the uncompressed and compressed Q06 query for all implementations

at different vector sizes. For GA-EDuckDB the effect of compression is similar to the

effect we have seen before on the vector-encrypted implementation in an absolute sense.

The vector size has no significant impact on this effect. For VSO-EDuckDB, the emulated

compression results in a higher number of ECalls, which results in a larger total overhead.

As the vector size increases, reducing the number of required ECalls, this effect diminishes

and at 16k vector size, compression results in a small performance improvement. When

enabling the switchless optimization, ECalls are significantly cheaper and therefore the

effect is less pronounced. The best performing SGX based setup in this experiment is

compressed GA-DuckDB with a vector size of 16k, which has a performance overhead of

66%, demonstrating that a well chosen vector size together with compression can reduce

decryption and SGX overheads to reasonable amounts.
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Figure 6.10: The impact of vector size on TPC-H Q06 compressed and uncompressed

6.5.4 Scaling

Thusfar, a TPC-H scale factor of 1 has been used, which uses a database of around 1GB.

In the real world, databases can be much larger, up to several orders of magnitude. To

see how the different implementations scale compared to unencrypted DuckDB, TPC-H

Q06 was run at different scale factors. In our experiment we were limited by the GA-

EDuckDB implementation which would crash at scale factors over 8 on our machine with

32GB RAM. The vector size is set to 8192. The results are shown in Figure 6.11. Note that

performance deteriorates up to SF2 for all implementations, likely due to the data fitting

less and less in the system caches. Above scale factor 2, the overhead compared to DuckDB

remains close to linear for all implementations. While the results for Q06 in the previous

section show good scaling properties, this is mainly because Q06 does not require a lot

of memory for intermediate results. As seen before in Figure 6.5, some queries perform

reasonably well while others result in over 30x slowdown. This large difference in queries

can be explained by the overflow of the EPC. To demonstrate this, a benchmark based on

a simple join query on a TPC-H SF2 database was run. The query is shown in Listing 6.4.
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Figure 6.11: Scaling characteristics of Encrypted DuckDB implementations

SELECT avg(o1.o_orderkey)

FROM orders o1, (

SELECT o_orderkey

FROM orders

LIMIT joinsize) as o2

WHERE o1.o_orderkey = o2.o_orderkey;

Listing 6.4: Join microbenchmark

In this query the join size was set beteen 0 and 1 times the size of the orders table to

gradually increase the join table size between 0 and 1.5 million tuples. Then, to measure

EPC paging, a monitoring tool sgxstat (108) was used to measure EPC paging. The results

for this experiment are shown in Figure 6.12(a) and 6.12(b). The figures show that without

EPC paging, relative runtime is 5.33x on average. However when the EPC is full and EPC

paging starts around a join table size of 1.05 million tuples, the slowdown increases to over

2 orders of magnitude. For GA-EDuckDB, the same experiment is run for the numerical

TPC-H queries. The results are shown in Figure 6.13(a) and 6.13(b). In this graph a

similar result is visible, with queries scaling linearly until EPC paging begins, after which

the overhead increases massively, with some queries reaching the 30s timeout limit of the

benchmark runner at only scale factor 1. At scale factor 8, only 4/10 queries still scale

linearly and 5/10 queries reach the timeout of 30s. Finally, in Figure 6.14, a graph is

shown of the 4 TPC-H queries that GA-EDuckDB supports without overflowing the EPC

at scale factor 8 . These results demonstrate the overheads that are to be expected for

GA-EDuckDB if more EPC is available in newer versions of SGX.

100



6.5 Evaluation

(a) Runtime (b) EPC Paging

Figure 6.12: Impact of EPC paging on join microbenchmark performance

(a) Runtime (b) EPC Paging

Figure 6.13: Impact of EPC Paging on TPC-H performance
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Figure 6.14: GA-EDuckDB performance for queries with no EPC overflow at larger scale
factors

6.5.5 VSO-EDuckDB overhead breakdown

To better understand what causes the additional performance overheads from VSO-EDuckDB,

the vector size experiment from section 6.5.2 was run with instrumentation code to count

the number of ECalls made. With the total ECall counts and the cost of an ECall deter-

mined by Tian et. al. (67), an estimated breakdown was made for the VSO-EDuckDB and

VSO-EDuckDB-S implementations using the results for TPC-H Q06 from section 6.5.1.

The results are shown in Figure 6.15(a) and 6.15(b). In the results the impact of ECalls

of VSO-EDuckDB performance is shown clearly. For lower vector sizes of VSO-EduckDB,

over half the execution time is spent performing ECalls. Even at a vector size of 16K,

VSO-EDuckDB still has a significant overhead from ECall cost, suggesting higher vector

sizes may be worth considering. For VSO-EDuckDB-S, where the switchless optimization

is enabled, we can clearly see the 10x reduction of ECall cost. When sufficiently large

vector sizes are used, VSO-EDuckDB-S adds only a small overhead on top of the baseline

encryption.

6.5.6 Performance comparison to existing literature

Comparing EDuckDB to existing EDBMS literature directly is difficult, due to it being

the first EDBMS of this type. We will briefly go over the most relevant related work

to see globally how EDuckDB compares. A PHE+DET based EDBMS that focusses on

OLAP workloads is Symmetria. As discussed in section 3.2.1.5, the authors evaluate their

EDBMS using TPC-H SF100 running on Apache Spark across 10 machines. In their

results, which can be seen in Figure 3.5, the average runtime is 5.25x baseline Apache

102



6.5 Evaluation

(a) VSO-EDuckDB (b) VSO-EDuckDB-S

Figure 6.15: Detailed TPC-H Q06 breakdown of performance overhead for VSO-EDuckDB
and VSO-EDuckDB-S

Spark, but with several massive outliers, most notable Q06 at >35x and Q01 at >15x.

When comparing these results to those of GA-EDuckDB, we find a similar pattern. GA-

EDuckDB has large outliers when EPC is exceeded, but run times of <4x otherwise.

Interestingly, the queries that perform the worst in Symmetria, Q01 and Q06 are among

the queries that GA-EDuckDB can run reasonably efficiently at 3x and 4x. On these

results an important side-note should be made: the experiments are run on very different

systems at very different database sizes. The comparison of these results is therefore of

limited value. In the TH-EDBMS literature, options for direct comparison are limited.

Many systems either focus differnt and incomparable workloads (8)(7), use incomparable

security requirements (72)(21), and/or do not experimentally evaluate their system in a

real-world manner (6)(7). One system that does use the full-dbms-split model in SGX and

focusses on OLAP workloads in their evaluation is CryptSQLite. The authors evaluate

their system using TPC-H SF1. In their results, no precise overheads are specified. From

their graphs, overheads of around one to two orders of magnitude can be seen. Combined

with the fact that baseline SQLite TPC-H performance is multiple orders of magnitude

worse than that of baseline DuckDB on our experiment machine, we find that for Q06

both VSO-EDuckDB and GA-EDuckDB outperform CryptSQLITE by roughly 4 orders of

magnitude.
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6.5.7 Security analysis

To conclude our analysis we analyse the resulting security properties of the two designs.

First we verify that the intended minimum of leakage requirements are met, then we discuss

what would be required to improve security.

Leakage Starting with information leakage, VSO-EDuckDB achieves class 1 leakage,

similar to StealthDB or Arx. This means that an attacker will learn detailed information

on what types of queries are run, what query plan is chosen by the optimizer, and which

tables are touched. Furthermore, attackers that are persistent, will also be able to see

which tuples are included in a query result or intermediate result. The reason for this

information leaking is that the vectorized operators in DuckDB use selection vectors to

mark which tuples in a vector are included in a result. As these selection vectors are

not encrypted in VSO-EDuckDB, an attacker can learn for example which tuples are

returned from a filter scan operation. A possible improvement that could be made to VSO-

EDuckDB in an attempt to improve the leakage profile is the encryption of these selection

vectors. However, whether doing so will actually increase security by a considerable margin

is questionable as the operators currently also leak the amount of matched tuples in a

vectorized filter operation directly. GA-EDuckDB in its current implementation, has better

leakage patterns than VSO-EDuckDB. As all execution happens from within the enclave,

attackers will not directly be able to see what queries are run, what query plan is chosen, or

which tables or columns are involved. Indirectly however, the attacker can see which parts

the columns are scanned for each query, as these buffers are stored in unsecure memory.

GA-EduckDB performs similar to CryptSQLITE in this respect, with the main difference

that CryptSQLite leaks which pages are accessed and GA-EDuckDB leaks which vectors are

accessed. For both VSO-EDuckDB and GA-EDuckDB, improving their leakage to oblivious

query execution where only course-grained access patterns are leaked are possible for both

implementations. To achieve this, oblivious query operators will need to be implemented

as is demonstrated by Cipherbase, Opaque, and ObliDB.

Threat model Both GA-EDuckDB and VSO-EDuckDB currently only provide protec-

tion against passive attackers. For a class 1 leakage database like VSO-EDuckDB, active

attacks are not included in the threat model due to recent attacks such as that by Grubss

et. al. (69). For GA-EDuckDB, enabling authenticated encryption would provide secu-

rity against some active attacks, but fully securing against an active threat would require
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preventing the attacker from being able to swap two ciphertexts. Even though it would re-

quire some significant code rewriting, adding this protection to GA-EDuckDB is relatively

straightforward. Each encrypted vector would need to be encrypted with authenticated

encryption combined with a special unique identifier pinning a vector to a specific set of

rows, column and table. This unique identifier would need to be verified by each opera-

tor that needs to decrypt the vector. As shown in Figure 5.6, authenticated encryption

adds a reasonable amount of overhead to the total runtime especially relative to the total

GA-DuckDB runtime. And as checking one identifier per vectorized operation would likely

not incur a large overhead, it is expected that protection against active attackers could be

added to GA-EDuckDB at a reasonable performance overhead.

6.5.8 Conclusion

From the evaluation of the two designs VSO-EDuckDB and GA-EDuckDB, we can draw the

following conclusions. Firstly, both designs can result in reasonable overheads for TPC-H

Q06 when using an appropriate vector size and an efficient compression schemes, as shown

in Figure 6.10. Furthermore, the difference between running DuckDB inside an enclave

entirely and running as little code as possible inside the enclave are surprisingly small.

However, GA-EDuckDB was shown to suffer significantly from the limitation of 128MB

EPC. Even at scale factor 1 of TPC-H with a database size of around 1GB, EPC paging

causes large overheads for many queries. At scale factor 8 only 4/10 TPC-H queries tested

were able to run without overflowing the EPC. While VSO-EDuckDB was not evaluated

on its scaling properties, we predict that while its performance will be better than GA-

EDuckDB due to it requiring less secure memory, it will run into the same EPC limitations

as GA-EDuckDB for many TPC-H queries at similar scale factors.
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Conclusion

In this thesis we have explored building an OLAP oriented EDBMS using DuckDB and

SGX. We have done this by first exploring the use cases and corresponding threat models of

EDuckDB. Secondly, different encryption strategies were analyzed to optimize decryption

efficiency. Finally, the integration with SGX was designed, implemented and evaluated.

The main contributions of this work are the insights gained on efficient, SGX-based,

OLAP EDBMS design. We have demonstrated encryption strategies that allow efficient

querying of encrypted data. Additionally, we have presented two viable approaches for

designing an OLAP EDBMS using the current generation of Intel SGX. With the imple-

mented prototypes following these approaches, we have shown that reasonable performance

can be expected when query operations using little memory are used. For query opera-

tions requiring larger amounts of memory for storing intermediates, large overheads are

currently to be expected. With these findings we can draw the following conclusion: To

support efficient OLAP workloads in an SGX-based EDBMS, one of two things are re-

quired. Either the EPC needs to be increased significantly to allow secure and efficient

storing of intermediate query results, or new query operation and optimization techniques

need to be developed to efficiently operate within the limited amount of secure memory

currently offered by SGX. For example, one of the more memory intensive operators, hash

aggregation, could be made efficient by using a partitioned hash join to reduce the hash

table size. Together with the partitioned hash join optimized for the EPC size, Query

Optimizer rules would be designed to use the special join operator.

Another contribution of this work is the insight that the modern OLAP query processing

techniques compressed execution and vectorized execution, can significantly improve the

performance of an SGX-based EDBMS. Using compressed execution will reduce the overall

amount of data needing encryption/decryption as well as reducing the EPC usage, while
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vectorized execution allows intuitive processing of values grouped into encrypted buffers

and also helps reduce overheads in both GA-EDuckDB and VSO-EDuckDB.

7.1 Research questions

1. What are the use cases for encryption enabled DuckDB and what are the

corresponding trust and threat models? For this thesis, three use cases of Encrypted

DuckDB were analyzed: an analyst running a local instance of DuckDB, an IoT edge node,

and a cloud database. For this first use case, it was found that no significant improvement

to security was possible over existing common encryption techniques such as FDE. For the

latter two cases, it was found that a DuckDB-based EDBMS can provide security against

threats that are currently difficult to protect against. For the detailed analysis we refer to

section 4.2.

2. How to implement encryption in DuckDB at a negligible performance over-

head? For OLAP workloads, scanning and processing large amounts of tuples is very

common. For this reason, encryption needs to be implemented carefully as doing so naively

will result in large overheads. Even with a well-chosen encryption granularity and industry

standard encryption algorithms TPC-H overheads can surpass 300% as shown in Figure

5.6. However, when fast encryption schemes are chosen such as hardware-accelerated AES-

CTR, average performance overhead for a subset of TPC-H SF1 was found to be 22% as

shown in Figure 5.6. By using compressed execution, these overheads can be further re-

duced by up to 2.12× for AES-CTR, as discussed in section 5.3.2.3.

(a) What is the optimal granularity to encrypt the data? As discussed in section

5.1, choosing the right encryption granularity is crucial for OLAP workloads. In our anal-

ysis, we conclude that for our requirements, per-value encryption is not viable due to high

initialization overhead of encryption algorithms resulting in poor encryption/decryption

performance when using small buffers. The more suitable approach for OLAP workloads

is to group values into buffers and encrypting the buffers as a whole. For EDuckDB, two

viable approaches for integrating this into the execution model are shown: Block Encryp-

tion and Vector Encryption, discussed in sections 5.2.2 and 5.2.3. The performance of these

two approaches is comparable as is shown in Figure 5.5. Besides performance, choosing the

encryption granularity also impacts which component performs the encryption/decryption

at which point in the query processing. For SGX-based EDuckDB, Vector Encryption
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was chosen as it was suitable for both GA-EDuckDB and VSO-EDuckDB as described in

sections 6.3.4 and 6.4.

(b) What encryption scheme is most suitable? As discussed in section 4.3, the

class of cryptographic schemes used in cryptography based EDBMSs such as PHE and PPE

schemes, generally do not perform well for analytical workloads. This is one of the reasons

why for EDuckDB, symmetric encryption schemes are chosen in combination with the TH-

EDBMS model to allow computation over the ciphertexts. Two main types of encryption

schemes were found to be suitable for EDuckDB, depending on the required threat model.

For the passive attack model, the stream cipher AES-CTR and the family of stream ciphers

Salsa/ChaCha were found to be most suitable due to having high performance and being

well researched by the scientific community. On the moderately new hardware used in our

experiments, AES-CTR performed best with decryption costs of under 1 cycle per byte.

On more recent Intel and AMD hardware, both AES-CTR and ChaCha decryption costs

are roughly halved and get as low as 0.4 cycle per byte. When the requirements assume an

active attacker, an authenticated encryption algorithm is necessary. AES GCM was found

to be suitable as its performance is only marginally worse than AES-CTR.

3. What functionality can we support when only a negligible performance

overhead is allowed? As discussed in the answer of research question 2b and section

4.3, CRYPTO-EDBMS suffer from significant overheads for a most OLAP functionality.

The functionality that can be supported efficiently, such as equality and range compari-

son through PPE, comes with prohibitive leakage properties. For TH-EDBMS generally

lower overheads and/or better leakage characteristics can be accomplished when using a

modern TH such as SGX. However, with SGX, even for queries that require little mem-

ory, overheads of 150% to 300% were seen in our results as is shown in Figure 6.14.

Since operations involving large intermediates are very common in OLAP workloads, we

can conclude that most common DBMS functionality can currently not be supported at

negligible performance overhead when assuming our security requirements.

4. How to integrate a trusted hardware solution into our encrypted DuckDB

implementation
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(a) Which solution is most suitable? In current EDBMS literature, Intel SGX is

by far the most common TH technology used. For reasons discussed in section 6.1.1, SGX

was the most suitable TH solution for our research. However, SGX is far from perfect as

is proven by its long track record of security issues and its EPC limitation. On paper,

one of the competitor technologies, AMD SEV-SNP has the potential to outperform SGX

significantly for some use cases. In practice however, AMD is suffering from several critical

security issue as well that have yet to be solved.

(b) How to integrate a trusted hardware solution into encryption enabled

DuckDB to improve privacy at a negligible performance overhead? As stated

in the answer to research question 3, currently no available TH or TEE is able to provide

security through encryption for our defined use cases at a negligible overhead. However, in

our research we have demonstrated two viable approaches that have reasonable performance

overheads which are explained in sections 6.4 and 6.3.4. The implementations of these

approaches have TPC-H run times range from 2.5x to >40x. When using compressed

executions with a compression ratio of 3x to reduce the amount of data to be decrypted,

overheads as low as 66% were shown. The main bottleneck in these implementations is

the availability of EPC in SGX. For a performant, scalable, OLAP SGX-based EDBMSs,

either EPC needs to be increased, or efficient query operators and optimization techniques

are required to work around the limited EPC.

7.2 Future work

As the research in this thesis has been relatively broad and several parts of a fully functional

EDBMS have been considered out of scope due to time constraints, this work has multiple

obvious directions for future work.

Implementing with newest SGX versions One of the most interesting research di-

rections is to repeat the experiments with newer versions of SGX. The version of SGX used

for this research has only 128MB of EPC available, but the 10th generation of Intel CPUs

has double that amount. Even more recently and concurrently to this research, Intel has

launched their newest line of server CPUs offering up to 1TB of EPC. With these amounts

of secure memory, different architectures can be considered and reasonable performance

may even be achieved by running unmodified DBMS in SGX through Graphene.
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Using DuckDB compression With this research having shown the effectiveness of

compression in reducing overheads through emulated compressed execution. An interesting

research direction is to rerun the experiments when DuckDB has implemented compressed

execution as is expected later in 2021. Especially combined with the latest SGX version

supporting up to 1TB of memory, a DuckDB-based EDBMS seems to be a viable candidate

for a production-ready OLAP EDBMS.

Missing DBMS functionality For this research, important DBMS functionality was

left out of scope, such as string segments, updates and deletes. This functionality is evi-

dently crucial to building a fully functional EDBMS and would therefore be an interesting

subject for follow-up research. For query processing over encrypted strings, integration

with techniques such as EncDBDB (9) could be considered. For updates/deletes, relevant

techniques have been developed for ObliDB (72).

Oblivious query processing The EDBMS designs in this paper assume access pattern

leakage to be out of scope due to their complexity and high overhead. However, oblivi-

ous query processing techniques are crucial to provide security when very strict leakage

patterns are required. In recent EDBMS literature (6)(21)(72), several techniques and

operators have been developed to hide access patterns from query processing to various

degrees. These techniques are applicable to both GA-EDuckDB and VSO-EDuckDB and

are therefore interesting direction for future research.

Other TEE technology AMD SEV-SNP has the potential to offer significant perfor-

mance improvements over SGX. When the existing problems with it will most likely be an

interesting to analyse its usability in EDBMS design. While currently, x86 is still the lead-

ing architecture in cloud infrastructure, ARM may become more and more common as is

proven by Amazon working on their own line of ARM processors for their data centers that

promise significantly better cost efficiency. With this shift, other TEE technology such as

ARM TrustZone or the newly released ARM CCA become more relevant to EDBMS de-

sign. When more information becomes available on ARM CCA, analyzing its applicability

to EDBMS design will be a promising research direction.
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Appendices

A Benchmark machine specifications

Hardware

1. Intel(R) Core(TM) i5-7260U CPU @ 2.20GHz (Turboboost enabled)

2. Intel SGXv1 extension (max 128MB EPC) enabled in BIOS

3. 32GB RAM DDR4 2133 MT/s

4. 500GB NVME SSD

Software

1. Distro: Ubuntu 18.04.4 LTS (gcc 7.5.0, libc 2.27)

2. Linux kernel: 5.4.69 with FSGSBASE patches (necessary for Graphene, see https:

//graphene.readthedocs.io/en/latest/building.html)

3. Intel SGX SDK/PSW: version 2.9.100.2 (built from commit a2b90e326d4e)

4. Intel SGX Driver: https://github.com/fortanix/linux-sgx-driver (built

from commit a2b90e326d4e)

5. Graphene-SGX: https://github.com/oscarlab/graphene (built from com-

mit ab4f14df33a7)

B Graphene-SGX Manifest file

# Secure DuckDB manifest file example

#

# This manifest was prepared and tested on Ubuntu 16.04.
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################################## RUNNING ####################################

# Executable to load into Graphene and run. Note that Graphene tries its best

# to find the corresponding manifest file (by appending ".manifest" or

# ".manifest.sgx") based on the executable name, and vice versa. Still, it is

# required to have the explicit name of the executable here.

loader.exec = file:benchmark_runner

################################## GRAPHENE ###################################

# LibOS layer library of Graphene. There is currently only one implementation,

# so it is always set to libsysdb.so. Note that GRAPHENEDIR macro is expanded

# to relative path to Graphene repository in the Makefile as part of the

# build process.

loader.preload = file:$(GRAPHENEDIR)/Runtime/libsysdb.so

# Show/hide debug log of Graphene (’inline’ or ’none’ respectively). Note that

# GRAPHENEDEBUG macro is expanded to inline/none in the Makefile as part of the

# build process.

loader.debug_type = $(GRAPHENEDEBUG)

################################# ARGUMENTS ###################################

# Read application arguments directly from the command line. Don’t use this on

production!

loader.insecure__use_cmdline_argv = 1

################################# ENV VARS ####################################

# Specify paths to search for libraries. The usual LD_LIBRARY_PATH syntax

# applies. Paths must be in-Graphene visible paths, not host-OS paths (i.e.,

# paths must be taken from fs.mount.xxx.path, not fs.mount.xxx.uri).

#

# In case of Redis:

# - /lib is searched for Glibc libraries (ld, libc, libpthread)

# - $(ARCH_LIBDIR) is searched for Name Service Switch (NSS) libraries

loader.env.LD_LIBRARY_PATH = /lib:$(ARCH_LIBDIR):/lib/x86_64-linux-gnu:/usr/lib

/x86_64-linux-gnu:/home/sam/Documents/main-experiment-runner/build/release/

src/

################################# MOUNT FS ###################################

# General notes:

# - There is only one supported type of mount points: ’chroot’.

# - Directory names are (somewhat confusingly) prepended by ’file:’.

# - Names of mount entries (lib, lib2, lib3) are irrelevant but must be unique.

# - In-Graphene visible path names may be arbitrary but we reuse host-OS URIs
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# for simplicity (except for the first ’lib’ case).

# Mount host-OS directory to Graphene glibc/runtime libraries (in ’uri’) into

# in-Graphene visible directory /lib (in ’path’). Note that GRAPHENEDIR macro

# is expanded to relative path to Graphene repository in the Makefile as part

# of the build process.

fs.mount.lib.type = chroot

fs.mount.lib.path = /lib

fs.mount.lib.uri = file:$(GRAPHENEDIR)/Runtime

# Mount host-OS directory to Name Service Switch (NSS) libraries (in ’uri’)

# into in-Graphene visible directory /lib/x86_64-linux-gnu (in ’path’).

fs.mount.lib2.type = chroot

fs.mount.lib2.path = $(ARCH_LIBDIR)

fs.mount.lib2.uri = file:$(ARCH_LIBDIR)

# Mount host-OS directory to NSS files required by Glibc + NSS libs (in ’uri’)

# into in-Graphene visible directory /etc (in ’path’).

fs.mount.etc.type = chroot

fs.mount.etc.path = /etc

fs.mount.etc.uri = file:/etc

fs.mount.usr.type = chroot

fs.mount.usr.path = /usr

fs.mount.usr.uri = file:/usr

# This is ugly but it allows to use the duckdb shared lib

fs.mount.duckdb.type = chroot

fs.mount.duckdb.path = /home/sam/Documents/main-experiment-runner/build/release

/src

fs.mount.duckdb.uri = file:/home/sam/Documents/main-experiment-runner/build/

release/src

############################### SGX: GENERAL ##################################

# Set enclave size (somewhat arbitrarily) to 1024MB. Recall that SGX v1

requires

# to specify enclave size at enclave creation time. If Redis exhausts these

# 1024MB then it will start failing with random errors. Greater enclave sizes

# result in longer startup times, smaller enclave sizes are not enough for

# typical Redis workloads.

sgx.enclave_size = 16384M

#sgx.enclave_size = 1024M

#sgx.enclave_size = 2048M

#sgx.enclave_size = 2048M

# Set maximum number of in-enclave threads (somewhat arbitrarily) to 8. Recall
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# that SGX v1 requires to specify the maximum number of simulteneous threads at

# enclave creation time.

#

# Note that internally Graphene may spawn two additional threads, one for IPC

# and one for asynchronous events/alarms. Redis is technically single-threaded

# but spawns couple additional threads to do background bookkeeping. Therefore,

# specifying ’8’ allows to run a maximum of 6 Redis threads which is enough.

sgx.thread_num = 8

sgx.rpc_thread_num = 0

############################# SGX: TRUSTED LIBS ###############################

# Specify all libraries used by Redis and its dependencies (including all

# libraries which can be loaded at runtime via dlopen). The paths to libraries

# are host-OS paths. These libraries will be searched for in in-Graphene

visible

# paths according to mount points above.

#

# As part of the build process, Graphene-SGX script (‘pal-sgx-sign‘) finds each

# specified library, measures its hash, and outputs the hash in auto-generated

# entry ’sgx.trusted_checksum.xxx’ in auto-generated redis-server.manifest.sgx.

# Note that this happens on the developer machine.

#

# At runtime, during loading of this library, Graphene-SGX measures its hash

# and compares with the one specified in ’sgx.trusted_checksum.xxx’. If hashes

# match, this library is trusted and allowed to be loaded and used. Note that

# this happens on the client machine.

# Glibc libraries. ld, libc, libm, libdl, librt provide common functionality;

# pthread is needed because Redis spawns helper threads for bookkeeping.

sgx.trusted_files.ld = file:$(GRAPHENEDIR)/Runtime/ld-linux-x86-64.so.2

sgx.trusted_files.libc = file:$(GRAPHENEDIR)/Runtime/libc.so.6

sgx.trusted_files.libm = file:$(GRAPHENEDIR)/Runtime/libm.so.6

sgx.trusted_files.libdl = file:$(GRAPHENEDIR)/Runtime/libdl.so.2

# sgx.trusted_files.librt = file:$(GRAPHENEDIR)/Runtime/librt.so.1

sgx.trusted_files.libos = file:$(GRAPHENEDIR)/Runtime/liblibos.so.1

sgx.trusted_files.libpthread = file:$(GRAPHENEDIR)/Runtime/libpthread.so.0

sgx.trusted_files.duck_db = file:/home/sam/Documents/main-experiment-runner/

build/release/src/libduckdb.so

sgx.trusted_files.libgcc = file:/lib/x86_64-linux-gnu/libgcc_s.so.1

sgx.trusted_files.libstdcpp = file:/usr/lib/x86_64-linux-gnu/libstdc++.so.6

sgx.trusted_files.libcrypto = file:/usr/lib/x86_64-linux-gnu/libcrypto.so.1.1

############################# SGX: ALLOWED FILES

###############################

# Specify all non-static files used by app. These files may be accessed by
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# Graphene-SGX but their integrity is not verified (Graphene-SGX does not

# measure their hashes). This may pose a security risk!

sgx.allowed_files.duckdb_tpch_list = file:duckdb_benchmark_data/tpch.list

sgx.allowed_files.duckdb_tpch_sql = file:duckdb_benchmark_data/tpch.sql

sgx.allowed_files.duckdb_tpch_customer = file:duckdb_benchmark_data/

tpch_customer.csv

sgx.allowed_files.duckdb_tpch_lineitem = file:duckdb_benchmark_data/

tpch_lineitem.csv

sgx.allowed_files.duckdb_tpch_nation = file:duckdb_benchmark_data/tpch_nation.

csv

sgx.allowed_files.duckdb_tpch_orders = file:duckdb_benchmark_data/tpch_orders.

csv

sgx.allowed_files.duckdb_tpch_part = file:duckdb_benchmark_data/tpch_part.csv

sgx.allowed_files.duckdb_tpch_partsupp = file:duckdb_benchmark_data/

tpch_partsupp.csv

sgx.allowed_files.duckdb_tpch_region = file:duckdb_benchmark_data/tpch_region.

csv

sgx.allowed_files.duckdb_tpch_supplier = file:duckdb_benchmark_data/

tpch_supplier.csv

sgx.allowed_files.sgx_stats = file:sgx_stats

sgx.allowed_files.log_file = file:benchmark_log.txt

sgx.allowed_files.out_file = file:benchmark_output.txt

sgx.allowed_files.duckdb_database = file:duckdb_benchmark_db.db

sgx.allowed_files.duckdb_database_wal = file:duckdb_benchmark_db.db.wal

sgx.allowed_files.duckdb_database_tmp = file:duckdb_benchmark_db.db.tmp

sgx.allowed_files.custom_query = file:custom_query.sql
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