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“I am the master of my fate, I am the captain of my soul”

from Invictus, by William Ernest Henley

ii



Abstract

No hardware is immune to random faults. Numerous studies have shown that

faults in main memory happen quite frequently either due to external causes

or internal damage. Industrial hardware are equipped with error correcting

codes but even those do not provide full protection. Databases rely on the

main memory to perform calculations and present accurate results. It is not

well understood, how a database system can handle bit-flips in memory. To get

a better understanding of these faults and their effects on databases we adapt

chaos engineering to them, a fault tolerance evaluation methodology defined

by Netflix. We run large scale experiments on databases that involve injection

of bit-flips into running queries. We find that silent data corruption or even

database file corruption has an unexpectedly high probability of happening.

With the increasing trend of devices coming with more and more memories

and the world increasingly depending on data, this issue will only get worse in

the future. A prototype named AHEAD tries to remedy this by attempting

to detect bit-flips during query execution. It does so by hardening data using

AN encoding. We evaluated this prototype with our experiments and found

that AHEAD has great potential to prevent silent data corruptions. However,

AHEAD has several flaws that need ironing out before this solution can be

considered mature. In this thesis we present our approach to detecting bit-flips

during query runtime. We implemented two different techniques into an exist-

ing database called DuckDB. After evaluating the protected DuckDB with our

chaos experiments, we find that one of the two techniques can prevent up to

96% of all silent data corruptions. However, the current implementation has a

large performance overhead. With enough performance improvements we be-

lieve that bit-flip detection would be a valuable addition to databases designed

for analytical workflows. The results of our chaos engineering experiments

clearly show that the prevention of silent data corruption is possible.
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1

Introduction

1.1 Context

Hardware and software failures can happen anytime and without any notice causing degra-

dation or outages in entire complex systems. For most services, high availability is one

of the most important aspects of product quality. An unexpected hardware fault could

cause system failures resulting in costly damages. Various measures can be taken to make

systems resilient to failures, but without testing them in real world scenarios we cannot be

confident in the fault tolerance of such measures.

With the rise of large-scale distributed systems, it becomes increasingly more difficult to

ensure fault tolerance, as the number of ways these systems can fail also increases (2). To

better understand how their entire system behaves in a chaotic environment, Netflix have

created a tool called Chaos Monkey(9) to subject their production system to real-life fault

scenarios. Subsequently, they have developed their own method for fault tolerance testing

called Chaos Engineering(5).

We observe an increasing trend of the world depending on data. We rely on database sys-

tems to consistently store an manage large amounts of information for us. There have been

many studies in production environments pointing out the relevance of hardware memory

faults(17, 25, 26, 31, 32, 33, 38, 40, 43). However, the nature of hardware memory faults

and their effects on databases are not well understood. More often than not, databases

are not developed with the possible chaotic environments in mind. Commodity memory

hardware do not usually come equipped with error correcting codes (ECC) and even if

they do, they have their limitations and are not able to protect against all of the faults. A

bit flip in the main memory can cause several different issues. The most severe problem

these faults can possibly cause is silent data corruption.
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1. INTRODUCTION

1.2 Research Question

We defined the following research questions for our thesis work.

• How can we adapt the disciple of Chaos Engineering to databases to evaluate fault

resiliency of databases?

In order to better understand how they behave in a chaotic environment, we need to

perform chaos engineering experiments on database systems. Chaos engineering is a well

defined methodology making it suitable for adapting to other areas in the field.

• How susceptible are modern database systems to hardware memory faults and silent

data corruption?

By adapting chaos engineering to databases, we are able perform chaotic experiments

on them. With these experiments we aim gain insight into how databases behave under

chaotic environments.

• What measures can we take to make databases resilient to these faults and what are

their costs?

Once we have a better understanding of the nature of hardware memory faults, we need

to consider the possibility of mitigating the effects. These defensive measures will come

with performance and storage costs that need to be evaluated.

1.3 Research Method

To adapt chaos engineering to databases we need to simulate a chaotic environment for

databases to run in. For this we inject bit flips into the main memory and use TPC-H to

reproduce a production level workload. Emulation of bit flips is possible with fault injection

tools. Although there are numerous existing fault injection tools, we decided to create our

own from scratch to meet our needs. We designed an experiment that evaluates the fault

resiliency of databases by running queries while injecting faults. We present the results of

these experiments in this thesis. Additionally we present our implementation of bit flip

detection integrated into DuckDB and evaluate its performance in preventing silent data

corruption. We also evaluate the detection performance of AHEAD, a prototype database

that also claims to be able to detect bit flips during query execution.
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2

Background and Related Work

2.1 Terminology

The definitions of faults, errors and failures can be unclear but generally speaking a failure

is caused by an error and an error is caused by a fault. For example, a malfunctioning

database software returning incorrect results is a failure, caused by corrupted memory

content which is an error. The root cause of such an error can be particle strike that

changed the content of the memory.

In the context of memory errors, the number of affected bits can be different based on

the type of the error. If the root cause affects more than one bit, it is called a multi-bit

error. Otherwise it is called a single-bit error. Multi-bit errors are typically chip-level

errors, meaning that they are caused by a faulty row, column or an entire bank. These

are usually caused by hardware defects and permanent damage. They are called hard or

non-transient errors and they are easier to detect because they are repeatable. Soft or

transient errors however can be much harder to detect because they are only a temporary

error usually caused by an external fault, such as magnetic interference or a particle strike.

High-grade and industrial memory hardware is often equipped with an error correcting

code (ECC) that can detect and even correct memory errors. These codes cannot correct

every error as they are limited to correcting faulty words that have a low Hamming distance

to the original word. Hence memory errors can be categorized into correctable errors (CE)

and uncorrectable errors (UE).

3



2. BACKGROUND AND RELATED WORK

2.2 Memory Errors in the Field

There have been studies on soft memory errors under controlled environments(7, 19, 29,

34, 46, 47). However, the results of these studies are limited because they were not con-

ducted on large scale production environment running real world applications. To better

understand the nature of these errors in a real world environment, prior work has done

surveys on large data centers(26, 27, 32, 38) and supercomputers(17, 40, 43).

A three months long study on more than 200 Ask.com machines with a total of 800

gigabytes of memory detected 8288 suspected hard errors and 2 suspected soft errors(25).

Later the study on the same machines, but over nine months recorded an error rate of 2006

FIT without error correcting codes (ECC) and 1000 FIT with ECC. They also studied the

effect of errors on applications and found that 48% of the errors were activated, meaning

the they were accessed in memory. And 62% of the activated errors caused the application

to crash or give an incorrect result(26).

Another study on the Google server fleet was done over 2.5 years on 6 different hardware

platforms. They observed FIT rates of 25,000 to 70,000 per megabit, which is much higher

than assumed(38). One factor that could contribute to the high error rate is the usage

of older technologies such as DDR1 and DDR2. They also found that if a device had an

correctable error, the increase in the probability of having an error in the same month can

be more than 90x and the increase in the probability of having one the next month can

reach 200x. They also come to the conclusion that error rates are likely to be dominated

by hard errors rather than soft errors.

(32) studied the entire Facebook server fleet over 14 months examining 6 different plat-

forms. They do not report an FIT rate for the devices, but found that overall 9.62% of

the servers were affected by correctable errors. Each month 0.03% of all the errors are

uncorrectable and there is a mean average of 497 correctable errors per month. Of all

the errors 7.8% are categorized as spurious errors. These errors do not share a common

component and do not repeat making them highly likely to be transient errors. Spurious

failures affected 56.03% of the servers with errors. They justify the lower error rate com-

pared to the study on Google servers with newer technologies and a more aggressive repair

policy. They performed analysis on page offlining and found that it could reduce the error

rate by 67%(32).

There are some work on studying memory errors in super computers. A study that

involved a Blue Gene supercomputer at Lawrence Livermore National Laboratory, a Blue

Gene supercomputer at Argonne National Laboratory and a high-performance computing
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2.3 Chaos Engineering

cluster at the SciNet High Performance Computing Consortium found that 2.5-5.5% of

nodes were affected by errors(17). The error patterns in the study link the majority of

memory banks to hard errors and 15% of the errors activated Chipkill, a multi-bit ECC(14).

Schroeder et al. also found that an incident of an error greatly increases the probability

of a multi-bit error. They have also tested page retirement and found that up to 96% of

all errors could be avoided. A study on Cielo, a supercomputer at Los Alamos National

Laboratory, calculated a error rate of 0.044 FIT/megabit, which translates to about one

error every 11 hours across the whole system(40, 43). Their data shows that about 50% of

all faults are transient.

There were also studies on memory errors in commodity systems. Experiments on the

susceptibility of commodity systems have shown a possible activated error rate of 687

FIT(31). Another study analysed data from the Windows Error Reporting (WER) system.

WER reports contain information about hardware faults that lead to system crashes. They

found that the probability of a first failure due to a bit flip in kernel memory in 30 days is

1 in 1700(33). This probability increases by more than two orders of magnitude after the

first failure was observed. Unlike industrial hardware, commodity systems do not typically

come equipped with ECC making the more susceptible to failures caused by bit flips.

From these studies we can conclude that the probability of a hardware fault in memory

is higher then we would expect. Although hard errors dominate, which is not surprising,

transient errors still do happen quite often. These transient errors are harder to detect

and can cause damaging data corruption, therefore the importance of protecting against

these faults is not negligible.

2.3 Chaos Engineering

Netflix is one of the biggest streaming platform with a large infrastructure of distributed

systems. To ensure high availability of their system, they have created a set of tools called

the Netflix Simian Army(9). Chaos Monkey, the first member of the army, was a tool

that randomly selects virtual machine instances in production and shuts them down to

see how the whole system would respond to such a failure. Later they created the Chaos

Automation Platform (ChAP), which is a complex system that safely automates chaos

experiments in their production environment as well as generating experiment designs for

new components(10)(6). This eventually led to the definition of chaos engineering, the

disciple of experimenting on a software system in production to test and build confidence

in its resiliency(5). Basiri et al. define four principles that embody chaos engineering.

5



2. BACKGROUND AND RELATED WORK

Firstly, build a hypothesis around steady-state behaviour. Engineers at Netflix

need to know what it means for their system to "work properly". They use the number

of streams started per second as a metric to indicate the system’s overall health. Any

observed irregularity can be an indication of a degraded system performance. In case of

database systems we would want it to successfully answer a query and give the correct

result every time.

The second principle is varying real-world events. Any event in the real world that

can happen, will happen and is a good candidate to create experiments for. Netflix engi-

neers used inputs such as virtual-machine termination, request latency between services,

request failure between services or making an entire Amazon region unavailable. In this

thesis we focus on transient hardware faults in the main memory that can cause silent data

corruptions.

The third principle is running experiment in production. The Netflix infrastruc-

ture is too big making it impossible to deploy the whole system onto a single machine.

Traditional software-testing approaches are insufficient to fully recreate the production en-

vironment. They do not believe in reproducing the system in a test context as there will

always be slight differences. For databases we will use TPC-H1 database benchmarking

tool to reproduce production workload.

Lastly, chaos experiments are automated to run continuously. The distributed sys-

tem at Netflix is constantly changing as the engineers continuously update different services

at the same time. To ensure confidence in the results of these experiments, they need to

be run repeatedly as the system evolves. It is near impossible to automate experiments

for databases and transient errors as the memory usage pattern changes all the time and

also depends on the operating system. Statistical experiments similarly to the ones done

in this thesis could be run in a weekly or monthly fashion.

2.4 Data Resiliency, Error Detection and Correction

Techniques to protect memory hardware from errors already exist. Memories in industrial

devices often come with some kind of error detection and correction code (ECC) to protect

against hardware errors. For example single error correct double error detect (SECDED)

codes can correct single-bit errors and detect multi-bit errors. A stronger protection called

chip-kill can correct multi-bit errors and is also able to handle completely broken memory

1http://www.tpc.org/tpch/
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2.5 Fault Injection

chips(14). Recent work has introduced Multi-ECC, a multi-bit error correction code that

has a lower overhead and lower power consumption than chip-kill(18).

Errors that can be corrected by these codes are called correctable errors and errors that

may be detected but not corrected are called uncorrectable errors. Correctable errors are

mostly invisible to applications but comes with a small overhead of logging and the per-

formed correction. A read access to an uncorrectable error can often lead to a catastrophic

failure. Most commodity devices like desktops and laptops do not come with ECC. An

error that normally be correctable will act as uncorrectable errors in those machines and

can cause a system failure as we have seen in (33).

To our knowledge transient DRAM errors did not receive much attention in the context of

database research. Existing work relies on resilient frameworks, protect against detectable

errors or only address smaller aspects in data management(11). One recent work introduced

a lightweight resiliency-aware data compression that utilises AN-encoding(22, 23). Later

they created AHEAD, a prototype columnar store, that uses this compression to protect

the data from bit flips during query execution(24). It claims to be able to detect multi-

bit flips while having a lower overhead compared to dual modular redundancy. Although

calculations of the probabilities of silent data corruptions show promising results, the

prototype has not been tested in a chaotic environment with bit flip injection.

2.5 Fault Injection

Although the concept of chaos engineering is recent, the practice of fault injection to test

the resiliency of a system is not new. Fault injection tools can fall into two main categories:

hardware implemented fault injection (HWIFI) and software implemented fault injection

(SWIFI)(30).

HWIFI tools require additional hardware that is usually specialized for injecting faults

into other hardware. This can be done without contact using radiation or with direct con-

tact to the circuit pins. RIFLE(28) and MESSILANE(3) are both direct contact HWIFI

tools and FIST (Fault Injection System for Study of Transient Fault Effect) employs both

contact and contactless methods to inject faults(21). FOCUS is an automation environ-

ment designed for tracing the effects of a transient fault(13).

Nowadays, SWIFI tools are more popular because they are easier to use, create a more

controlled environment and they do not require expensive hardware. Software fault injec-

tion can happen during compile-time and during runtime(30). During runtime an injection

can be triggered in three different ways:

7



2. BACKGROUND AND RELATED WORK

• Time-out: The injection is triggered by a timer.

• Exception/trap: A hardware exception or software trap transfers the control to the

fault injector.

• Code insertion: Instructions are added to the target program that allows fault injec-

tion.

There are a number of fault injection that already exists. FERRARI (Fault and Error

Automatic Real-Time Injection) is a tool developed at the University of Texas at Austin,

that uses software traps to inject CPU, memory and bus fault(20). FTAPE (Fault Tol-

erance and Performance Evaluator), developed at the University of Illinois, is a tool that

can inject faults into user-accessible registers in CPU modules, memory locations and

the disk subsystem(37). FIAT (Fault Injection-based Automated Testing), developed at

Carnegie Mellon University, is an automated fault injection environment, that gives the

experimenter the ability to design fault experiments(4). Xception, developed at University

of Coimbra, is a tool that uses the advanced debugging and performance monitoring fea-

tures of modern processors to inject fault(12). DOCTOR is an integrated software fault

injection environment developed at University of Michigan, that can inject CPU, memory

and network communication faults(39). EXFI is a fault injection system for embedded

microprocessor-based boards developed at Politechnico di Torino, Italy(8). NFTAPE, de-

veloped at the University of Illinois, aims to provide multiple fault injection tools for

distributed systems(44). GOOFI (Generic Object-Oriented Fault injection), developed at

Chalmers University of Technology in Sweden, aims to provide a user-friendly fault injec-

tion environemnt that supports multiple injection techniques and multiple systems(1). Its

successor, GOOFI-2, includes a large number of improvements and extensions(42).

There are three additional categories fault injection techniques can fall into. Simulation-

based fault injection involves simulation models developed with a hardware description

language such as Very High Speed Integrated Circuit Hardware Description Language

(VHDL). In emulation-based fault injections, the circuit to analyze is implemented onto

an FPGA. Then a host machine connects to the board and used to define fault injec-

tions. Finally, hybrid fault injection combines two or more of the previous fault injection

types(45).
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3

Fault Injection

To perform our experiments, we need a tool to inject bit flips into the memory of a running

process. This chapter describes our rationale behind choosing to implement our own tool

instead of using an existing one. We also describe the details of the implementation of the

fault injection tool.

3.1 Requirements

The fault injection tool needs to be able to inject hardware memory faults into a running

process. Different database systems use different amounts of memory and take a differ-

ent amount of time to respond to a query. If we inject the same amount of bit flips to

two different systems, it would not be a fair comparison for the database that uses less

memory. To normalize the number of injected faults over space (amount of used mem-

ory) and time (runtime of a query), we define the metric called fault rate with the unit of

faults/megabytes/second. This input parameter ensures that the amount of injected faults

increases in proportion to the used memory and time taken to answer a query.

The faults must be continuously injected into the process over time and not just once.

Meaning the faults must be injected periodically. The period can be calculated with the

following equation, where P is the time between each fault, M is the current size of the

used memory and r is the fault rate provided by the user.

P =
1

M ∗ r

Additionally the tool must make sure that at least one fault is injected into the target

process. This is because if the input fault rate low enough, the time between faults might

be longer than the time it takes for the query to finish.

9



3. FAULT INJECTION

Finally, the tool should record all outputs needed to evaluate the experiments. To be

able to tell if there was a silent data corruption, the standard output of the target process

needs to be captured. Furthermore, the exit code of the process, the termination signal

that caused the process to stop and the standard error output all need to be captured to

give us insight into the reason of a failure of a query.

3.2 Technique

As we have seen in Section 2, there are many ways to inject bit flips into the main memory.

Hardware-based fault injection requires specialized hardware and it is almost impossible

to create a fully controlled fault injection environment. We need to be able to fully control

the target address of the injected bit flip, so hardware-based fault injection is not suitable

for our experiments. A virtual machine based fault injection tool would let us have full

control over memory of the guest operation system. However, we want to run queries

millions of times, which can naturally take a long time and the overhead from virtual

machine based fault injection can significantly increase the runtime of the experiments.

Therefore software-based fault injection is the most suitable for our experiments as it can

give us the most control with a low overhead. However, most existing software implemented

fault injection (SWIFI) tools require modifications to the kernel or root permissions on the

machine or they are specialized for a specific hardware or operating system.

To run experiments on many different database systems, we have decided to implement

our own generic fault injector that can work on any process on Linux systems. Our tool

does not need any special permissions allowing us to run the experiments on a cluster in

a safe manner isolated from the other processes. We want to flip bits in the area of the

memory that is used by the database system. We utilize the ptrace(2) Linux system

interface as it lets us access and modify the internal state of another process(41). The

interface was originally designed for debugging other processes. The data flow between

the debugging and tested processes is checked by the kernel so tampering with the process

cannot affect other processes making our experiments self contained.

The ptrace(2) interface can be found in most Unix systems making the injection tool

near operating system independent for Unix based systems. One only needs to be able to

compile the source on the target system. Windows systems have similar system calls that

read from and write to the memory of another process. In theory, the injection tool should

be relatively easy to be ported to be Windows compatible.

10



3.3 Implementation

3.3 Implementation

To utilize ptrace(2) and other system interfaces and minimize performance impact on the

tested process, the tool is implemented in C++. The source code of the injector is publi-

cally available online1. We used the C++ 11 standard for the injector. Any configuration

described in this chapter can be set using command line options when running the fault

injector. A high level overview of the fault injector can be seen on Figure 3.1.

Linux kernel

Child process

ptrace(2)

read/write

injector
process

SQLite
process

Memory SQLite process
memory

Figure 3.1: High level fault injector diagram

To debug a process it either needs to call ptrace with PTRACE_TRACEME to indicate

that it is to be traced or the debugging process has to attach to the tested process with

PTRACE_ATTACH. The former would require modifications to the database system’s

sources, while the latter does not. However, the kernel prevents attachment to another

process unless the user has root permission or the tested process is the child process of the

attaching process. We will run experiments in an environment without root privileges, so

the injection tool runs the database system process as a child process in order to be able

to write to the memory of it. This way, it will not be able to access other sensitive parts of

the memory that might crash the entire machine. The command to run a database query

or server is passed to the injector through command line arguments and the child process

is created with the fork(2) system interface.

Linux systems use virtual memory to make the management of the physical memory

easier for the user. The injection tool needs to know which virtual memory address spaces
1https://github.com/Longi94/chaos_db
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3. FAULT INJECTION

the child process uses to write bit -flips into the content of the process’ memory. The maps

file under the /proc/<pid> directory contains all the memory regions used by the process.

The file describes the exact regions used for the heap, stack or anonymous regions used by

a process. To parse this file, we use the existing proc_maps_parser1 tool. The tool had

to be slightly modified as in rare occasions the parsing process ends up in an infinite loop

due to race conditions on the maps file.

Usually the heap contains the data that can be corrupted silently. However some binaries

might use the mmap(2) system call to allocate memory, which usually creates anonymous

mappings in the memory of the process. Even the traditional malloc(3) system call’s

implementation might use mmap() silently if the requested allocation size is large enough.

The injector can only inject bit flips into the heap and the stack in its current implemen-

tation. We found that the size of the region of the memory used by the stack is constant

and the actual stack only uses a small part of it. Therefore, we only inject faults into the

heap in our experiments.

To inject faults into the child process, the injector runs on its own clock and at each

tick it decides whether to inject a fault or not based on the input fault rate and the size

of the memory used by the child process. When calculating the size of the used memory,

only regions where the tool is instructed to inject faults into are accounted for. By default,

faults are injected periodically at a consistent interval that is calculated using the formula

in the previous section.

If the provided flip rate is low enough, a database query might finish before the injector

had a chance of injecting a bit flip. To ensure injecting at least one fault the minimum

runtime of a query has to be known by measuring it without fault injection prior to the

experiments. When the process starts, at each tick there is a small probability that the

first fault is injected. This probably increases with time and reaches 1 before the query

process finishes. This has the added benefit of randomizing the start of the periodic fault

injection, making it more realistic.

Faults do not occur in a fixed rate in real life. Therefore, the tool offers the option

to randomize the interval between each bit flip to simulate a more realistic environment.

However, using this option in our experiments would result in each run being slightly

different and gives us less control overall over the experiment input. We find that enabling

this option is not useful for case, so we leave it disabled.

The process of injecting bit flips is fairly simple. The sequence diagram of the process is

shown on Figure 3.2. First the injector attaches to the child process using ptrace(2) with
1https://github.com/ouadev/proc_maps_parser
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loop

injector
process

read()

flip()

write()

SQLite
process

fork()

ptrace(PTRACE_ATTACH)

ptrace(PTRACE_DETACH)

inject
loop

Figure 3.2: Process of injecting a fault

PTRACE_ATTACH. This causes the child process’ execution to stop. The injector opens

the /proc/<pid>/mem file as it can be used to access the pages of a process’ memory. It

chooses a random address based on the content of the maps file. Then it reads a single byte

at the chosen address using read(2), flips a bit inside the byte with a XOR operation and

writes it back to the same address using write(2). Finally, the process detaches from the

child using ptrace(2) with PTRACE_DETACH. To avoid slowing down the experiment

with frequent ptrace calls, the injector uses its own timer to group multiple injections into

a single ptrace call, hence the nested loop structure in the diagram.

Once the query has finished running, the injection tool records the information about

the process including the exit code, the termination signal, the number of faults injected,

whether the process timed out or not and the maximum recorded size of the memory. We

also need to save the standard output of the query so we can compare it to the expected

output. During our experiments we found that saving the output to a file produces millions

of files and can cause a file system degradation. This impacted the performance of the

queries and could only be solved by reinstalling the device. To avoid this issue the all the

result and output is saved into a SQLite database.

We differentiate two ways a database query can run that affects how our SWIFI tool

13
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fork()

Injector
process

Query process

(a) Embedded system

fork()

Injector
process

socket

Query process

Server process

(b) Server-based system

Figure 3.3: Difference between injecting faults into embedded and server-based database
systems

operates. This difference is demonstrated by a high level diagram shown in Figure 3.3. Most

of the time, embedded databases, such as SQLite3, have a single process that executes the

query and also delivers the result. The tool will simply run this query as a child process and

inject bit flips into its memory (shown on Figure 3.3a). Other database systems are server-

based, therefore queries will involve two or more processes. The client process initiates the

request and presents the results, while the server process does all the heavy calculations.

In this case the fault injection tool runs the database process as the child process, while

the query itself is initiated by a separate process (shown on Figure 3.3b). The injector

opens a TCP socket where it will wait to be notified when the query is started. It will

then start injecting bit flips and wait for another message that tells it to stop.

3.4 Limitations

The injector uses the virtual address space of the memory to inject fault. Without knowing

how the kernel translates these addresses to physical addresses it is impossible to emulate

some other faults like row and column faults. It might not even be possible to reliably

convert a virtual address to a physical address in most operating systems.

Injecting faults into bigger database system like PostgreSQL might involve multiple

processes as they can spawn their own child processes creating a complex tree of processes.

While not impossible, it becomes troublesome to discover these processes and keep track

of the shared memory spaces. The overhead caused by this might even make it infeasible

to run large scale experiments.
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3.4 Limitations

With this method it is currently only possible to inject transient faults into memory.

Injecting permanent faults could possible in single step mode. However, this mode is very

slow as the CPU is debugged step by step. This would drastically increase the runtime of

a database query making it unsuitable for large scale experiments.

As mentioned before, the injector can only inject faults into the heap and the stack in

its current implementation. This means that systems that use memory maps and create

anonymous areas avoid the bit flips. Additionally, the injector needs more information

about the stack if we wish to inject faults into it.
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4

Experimental Setup

This chapter describes how the experiments are carried out and the environment they are

carried out in. The aim of these experiments is to see how database systems can respond to

unexpected bit flips in memory. In particular, we want to show that silent data corruptions

are possible.

4.1 Environment

We needed to execute rather long running database queries millions of times. All ex-

periments are ran on rocks2 machines on the SciLens cluster1 to minimize the runtime

allowing us to run millions of database queries in a relatively short amount of time. These

machines are equipped with one Intel R© Xeon R© E3-1270 v3 processor and 64 GB of main

memory. Experiments were ran under 64-bit Fedora 30 and all the binaries needed for the

experiments were compiled on the cluster using GCC 9.1.1.

4.2 Setup

A list of database systems used in the experiments is shown in Table 4.1. SQLite is the most

used database engine in the world(15), making it statistically the most vulnerable to bit

flips in the real world. DuckDB is an embedded database similar to SQLite(36). However,

DuckDB is designed for analytical workloads, making it much faster than SQLite but uses

more memory to perform queries. We also implemented simple mitigation techniques into

DuckDB to try and detect bit flips in memory during query execution. Since AHEAD was

1https://projects.cwi.nl/scilens/
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profiled without the injection of memory faults(24) we ran experiments on it to see how

well the hardened data fares against bit flips.

Name Version
SQLite 3.29.0
DuckDB 638c98d6e1efd2f5cabecfc61791fb1505c76edd
AHEAD ca98604f339276080991171fec36607cb4f59c77

Table 4.1: Databases used in the experiments

Since DuckDB was in early stages in development and AHEAD is an unreleased proto-

type, the version used is identified by the commit hash created by the git version control

system. We needed to slightly modify the AHEAD source to successfully compile it for the

operating system on the SciLens cluster. The version of AHEAD is the latest commit on

the master branch of the original repository at the time of running the experiments. The

source code of the modified AHEAD system is available online1. To give bit flips a higher

chance of affecting the process we need queries that run long enough to give time to inject

faults. To achieve this, we used the TPC-H benchmarking tool to generate a large enough

workload.

4.3 Sample Evaluation

There are many things that can happen when a database process encounters a bit flip in its

memory. We categorize the outcomes into these categories: ok, abnormal, crash, incorrect,

corrupted and timeout.

There is a chance that a process goes unaffected by bit flips as these transient errors can

simply be overwritten by the process or not accessed at all. In these cases, the faults are

completely undetected and the query will return the expected result. These results are

classified as ok.

We are most interested in silent data corruptions (SDC), as they are not detectable

if the expected output is unknown. SDCs can result in inaccurate query results, which

can cause misbehaviour in critical systems. For example, SQLite is deployed with aircraft

software(16), where minor changes in accuracy can be catastrophic. Since in the context

of the experiments the expected query output is known, we can detect SDCs and classify

the result as incorrect.
1https://github.com/Longi94/AHEAD
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The rest of the categories are all detectable errors, so they are less fatal as the system

can attempt recovery when these events are encountered. Crashes caused by unhandled

UNIX signals are categorized as crash. When the query process does not crash but returns

with a non-zero exit code along with a usually meaningful message printed to standard

error, we categorize the result as abnormal. As we will see in the experiment results, in

very rare cases, a bit flip can cause a query execution to enter and infinite loop. For this

reason, there is a limit on how long the query can run. If this time limit is reached, the

process is terminated by the injector and the result is categorized as timeout.

The corrupted outcome is only applicable to experiments with write queries. The

database can get corrupted when corrupted data is written back to it and in a worst case

scenario, it can corrupt the whole database on disk. This can render any data inaccessible

or worse, lose all the data stored in the database.

4.4 Running on the cluster

To orchestrate the entire experiment, we wrote python scripts to bring everything together.

These scripts are available online aswell in the same repository as the source of the injector

resides in1. On a single machine there are multiple components involved in running the

queries.

The runner is responsible for initializing the database, running the query with the

injector and then cleaning up after running the query. If the tested database runs as a

server it is also responsible for running the server process. Initializing the database involves

copying a prepopulated database to a directory so the sample can be fully separated from

other samples.

The injector outputs information to standard output that needs to be collected. To avoid

filling up the injectors buffer causing it to hang, the monitor runs on a separate thread

to constantly read and store information from the standard output of the injector. Once

the query is done, the monitor will evaluate any information collected from the sample to

classify the result to a category as mentioned in section 4.3.

The orchestrator is responsible for coordinating the whole experiment on a single ma-

chine. It uses the runner to run queries thousands of times and store the results returned

by the monitor in a SQLite database. It will run multiple samples at the same time using

python’s multiprocessing module. Each sample will run in its own directory to fully sep-

arate them from each other. When a server-based database system is tested, the injector
1https://github.com/Longi94/chaos_db
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opens a TCP socket. To avoid port collision the orchestrator creates a pool of port numbers

for both the injector and the database server. This way multiple instances of the database

server can run at the same time. However, sometimes the operating system might keep

ports reserved for a while after terminating the server process. While the injector handles

this, the database server might fail to initialize and keep running without the injector

knowing. The runner will try to connect to the server multiple times and if the limit is

reached, the orchestrator will simply skip the sample. A more complex handling of this

issue could be implemented on the future.

Finally, to leverage the power of the cluster we wrote a simple python script to run the

orchestrator on multiple machines. The script uses clush1 to run commands on multiple

machines from the master node. At the end of an experiment, it copies all the SQLite

databases from the machines to the master node using clush in file copy mode and combines

them into a single database file.

4.5 Input Variables / Workload

To simulate real world workload in the database system, we use the TPC-H benchmarking

tool as it simulates an ad-hoc querying environment(35). We use a scale factor of 1 to

generate the database tables, that are later imported into the database. We use the TPC-

H 1 query to run bit flip experiments on.

We want to get a good idea of the chances of silent data corruptions and other possible

results and how the fault rate can affect this probability. First we run the experiment for a

specific database with a fault rate of 10−1. For each consequent experiments we increment

the exponent by 0.25 and the highest fault rate we test for is 102. For each fault rate we

run the query 97500 times. This is because we would want to have around 100000 samples

for each experiment, however, the experiments were run on 13 machines and 13 is not a

divisor of 100000.

Although our work mainly focuses on read-only queries, we additionally run experiments

on write queries to see whether the data in the system can be corrupted by faults or not.

For this we use the update statements generated by the TPC-H benchmarking tool. For

the updates we chose a scale factor of 50 to make it large enough to have the query run for

long enough. For now we only run update experiments on SQLite. SQLite uses memory

mapped files on disk, therefore update queries perform considerably large amounts disk

I/O operations. This means that queries running in parallel on a single system would
1https://clustershell.readthedocs.io/en/latest/index.html
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overload disc I/O and result in major performance impact. We are unable acquire as many

samples as we could with read-only queries. We run the update query 13000 times for each

query.

Since SQLite is a single-file database system, checking the file for integrity errors is

fairly simple. After the update queries we can do a quick hash calculation on the database

file. If the computed hash value is correct, we know that database is not corrupted and

the updated records are correct. If the hash is not correct, than the sample falls into

the incorrect result. Additionally, if the calculated hash is not correct, we do additional

integrity check to see if the database file got corrupted or not.
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5

Initial Results

In this chapter we present the results of our exploratory experiments and if possible, explain

why we received these results. All experiments described in this chapter were performed

on unmodified database systems in order to establish a baseline for the affects of memory

faults. The experiment results and the generated diagrams in the figures are all available

online in the form of SQLite databases and Jupyter notebooks1.

5.1 SQLite

5.1.1 Read-only queries

Figure 5.1a shows the plot of the results of running TPC-H 1 queries on an SQLite database.

Each line represents a type of result described in section 4.3. The X axis represents the

bit flip rate in bit flip/megabyte/second unit and is in a logarithmic scale. The Y axis is

a linear scale of the number of outcomes for the given result. There are 97500 samples for

each fault rate. The rest of the fault rate plots are all set up similarly.

As we increase the rate of bit flips in memory, the crash rate of SQLite rapidly increases

reaching 95.3% at the fault rate of 10. SQLite only uses around 2.5 megabytes of heap

memory and uses memory mapped files for the actual data. Since little memory is used

there is a high chance that a bit flip happens in an area critical for execution causing a high

rate of crashes. Over 90% of the crashes are caused by a segmentation fault signal, which

occurs when a bit of a pointer is flipped causing it to point to an inaccessible memory

address.

Abnormal results are the next most common error results reaching 3.2% also at the fault

rate of 10. The rate of abnormal results start to decrease slowly as crashes dominate at
1https://github.com/Longi94/chaos_jupyter
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Figure 5.1: SQLite results

higher fault rates. SQLite does have some resiliency features as it can detect malformed

disk images or disk I/O errors and abort execution when it does.

Figure 5.1b focuses on incorrect results, by scaling up the graph by the X axis. It is

clear on the zoomed in plot that although silent data corruptions (incorrect results) are not

common, there is a slight chance that they will happen due to a bit flip. The probability

of SDCs peak at around 2% between the fault rate of 1.778 and 3.162. It quickly starts

to decrease and tend to 0 when correct results also reach 0. Since SQLite uses memory

mapped files on disk, the bit flips will not affect the persistent data. The computed result

can only be affected by modifying the intermediate data in the main memory. It is likely

that these intermediates are rather short lived, giving the injector less chance to hit it.

This can be an explanation for the low rate of silent data corruptions as bit flips do not

happen on disk.

There is a very small probability of the process entering an infinite loop and in the case

of SQLite the probability stays below 0.16% for all fault rates. Sometimes this results in

the SQLite binary printing out the same row in the infinite loop which can rapidly fill up

the I/O buffer. It is unclear what the conditions are for this to happen.

5.1.2 Write queries

The results for update queries are shown on Figure 5.2a. Although the curve of the lines

resemble Figure 5.1a, the number of incorrect results is a lot higher than expected. The

rate of incorrect results reaches almost 90% early on. There are a lot of different messages
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5.1 SQLite

printed to the standard error output by the SQLite process, therefore we cannot draw a

definite conclusion to why there are so many incorrect results. The logs indicate the most

common error to be a malformed disk image or malformed database schema. Since SQLite

uses little memory, it is possible that the database schema, that is loaded into the memory

for update queries, takes up a relatively large part of the memory.

10−1 100 101 102

Fault rate (bit-flip/mb/s)

0

2

5

7

10

12

C
ou

nt
(t
ho

us
an

ds
)

ok
incorrect
crash
abnormal
timeout

(a) All results

10−1 100 101 102

Fault rate (bit-flip/mb/s)

0

2

5

7

10

C
ou

nt
(t
ho

us
an

ds
)

(b) SQLite database corruptions

Figure 5.2: SQLite results for update queries

The graph for the rate of database corruption is shown on Figure 5.2b. We observe that

the chance of the SQLite database file getting corrupted reaches 88% at the fault rate of

1.778. At that rate, most of the queries received 8 fault injections. It is quite surprising

how such a low amount of bit flips can almost guarantee a corrupted database. On higher

fault rates this probability starts going down. This is likely due to the rapidly increasing

rate of crashes. The process has less time to write anything to the file on higher fault rates.

Overall, we can conclude that even though SQLite uses little memory, it is still vulnerable

to memory faults. Considering that it is the most widely used database in the world, the

2% chance of getting a silent data corruption translates to a relatively frequent rate. Write

queries looked especially susceptible to silent data corruption or entire data loss due to

database integrity corruption. This is quite concerning considering SQLite is the most

widespread database in the world.
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5.2 AHEAD

To our knowledge, AHEAD is the only recent work that focuses on resiliency against bit

flips in databases. However, the prototype Kolditz et al. have built has not been actually

experimented on with injected bit flips in memory. They have only run performance

measurements and compared it to the unprotected version of the prototype. The reasoning

behind this is that they have calculated the probability of a silent data corruption so fault

injection experiments are not necessary(24). However, this probability might not reflect

reality. We run our own experiments with our fault injector to see how the AHEAD

prototype actually fairs in chaotic environments.

Data that is protected by the AN-encoding is called hardened data. Data is encoded

on disk, which has the advantage of it being protected against bit flips at any point in

time during query execution. But it also means that hardened data file format differs

from non-hardened data, which can complicate the storage file format. AHEAD has five

query processing variants. The normal variant is the baseline, data is not hardened and

no bit flips will be detected. The Early Onetime Detection variant checks for bit flips

the first time it touches the data. The Late Onetime Detection the detection may take

place in a late stage of the query execution plan. The Continuous Detection variant has

bit flip detection built into every single operator. There is an additional variation of the

continuous detection where the operators also reencode the data with a new constant after

checking for bit flips.

We ran the experiment for all five variations of AHEAD. The graphs in Figure 5.3

show the fault rate graphs for the normal, early onetime detection, late onetime detection,

continuous detection and continuous detection with reencoding respectively. The prototype

was modified in a way that when a bit flip is detected, the program only exits with a non-

zero exit code. This means that the line that represents the abnormal behaviour actually

represents bit flip detection.

Running experiments on the normal variation yielded results similar to the results of the

SQLite experiments. The rate of good results quickly plunges to zero. However, the rate

of incorrect results is much higher reaching 66% at the fault rate of 100.75. One of the

reasons for this could be that AHEAD has the raw implementation of the queries with the

physical operators. There is no query parsing, planning or optimisations phase where a bit

flip would most likely crash the process. AHEAD also loads the entire tables into memory,

making the sensitive data a large target for bit flips.

26



5.2 AHEAD

10−1 100 101 102

Fault rate (bit-flip/mb/s)

0

20

40

60

80

C
ou

nt
(t
ho

us
an

ds
)

(a) Normal

10−1 100 101 102

Fault rate (bit-flip/mb/s)

0

20

40

60

80

100

C
ou

nt
(t
ho

us
an

ds
)

(b) Early detection

10−1 100 101 102

Fault rate (bit-flip/mb/s)

0

20

40

60

80

C
ou

nt
(t
ho

us
an

ds
)

(c) Late detection

10−1 100 101 102

Fault rate (bit-flip/mb/s)

0

20

40

60

80

100

C
ou

nt
(t
ho

us
an

ds
)

(d) Continuous detection

10−1 100 101 102

Fault rate (bit-flip/mb/s)

0

20

40

60

80

100

C
ou

nt
(t
ho

us
an

ds
)

(e) Continuous detection with reencoding

ok
incorrect
crash
abnormal
timeout

(f) Legend

Figure 5.3: AHEAD results
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The graph in Figure 5.3b for the early variant of AHEAD shows an surprising result.

One would expect that since the detection happens in the beginning, the injected faults

would have more chance at corrupting the data after loading the data into memory. A

reasonable explanation would be that since AHEAD loads the entire tables into memory,

most of the time will be spent on loading the data into memory. After that, the whole

data is inside the memory, only small fraction of the query time is spent on the rest of the

operators as they will be very fast in-memory calculations. Our experiments show that

the chance of SDC is negligible and reaches 0% quickly. The rate of incorrect results start

with 0.52% at a fault rate of 10−1 and quickly reaches 0% at the fault rate of 100.75.

Experiments on the late variant also gives us unexpected results shown on Figure 5.3c.

One would expect that late detection would catch more bit flips than early detection, but

the results say otherwise. The rate of incorrect results still reach a very high value of 47%

at the fault rate of 100. Although detected faults and crashes quickly take over at higher

fault rates, it is unclear what the reason for this is without knowing the implementation

details of AHEAD. In their work they do mention that the late variant may detect bit flips

in the late stages of the execution plane. This can indicate that it works less efficiently

than the other variants.

The continuous detection variant yielded similar results both with and without reencod-

ing the data after each operator. The rate of SDCs is also pushed down to 0% on fault

rates of 100.25 and higher. However, they start at a slightly higher rate of 6.8% without

reencoding and 5.8% with reencoding at the fault rate of 10−1 compared to early detection.

We observe that AHEAD performs considerable well at detecting bit flips in a chaotic

environment with the exception of the late detection variant. AHEAD claims the that

detection queries only takes 1.19 times longer on average then normal queries (24). This

seems quite impressive considering it can prevent almost all of the silent data corruptions.

However, AHEAD has several flaws that needs ironing out before it can be considered a

final solution for query runtime bit flip detection.

Firstly, AHEAD hardens data on disk and this hardening results in the storage usage

being doubled. This can be a deal breaker for devices that do not have a lot of free storage.

Secondly, AHEAD works with special operators that work on AN encoded data. Unless

the system exclusively supports AN encoded data, all operators need to be implemented

twice, making development and maintenance unnecessarily more tedious.

Although early detection performed really well, it also had the highest overhead and can

be up to 50% slower than the normal variant. The two continuous modes also seemed

to perform well. But if we take a closer look at the graphs, they performed just like
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the normal variant on lower fault rates, which is the more realistic scenario on healthy

hardware. Finally, the AHEAD prototype has the Star Schema Benchmark queries hard

coded without query parsing or query optimization. It also loads the entire tables into

memory on start, therefore the performance benchmark results should be taken with a

grain of salt.

Overall, AHEAD performs considerable well at detecting bit flips in a chaotic environ-

ment with the exception of the late detection variant. However, it still has several problems,

that makes this solution immature for production systems.

5.3 DuckDB

Figure 5.4a shows the plot of the results of running TPC-H 1 queries on a DuckDB database.

This plot of DuckDB results closely resembles the plot of SQLite results in Figure 5.1a,

which is not surprising as both are embedded database systems. However, the main dif-

ference is in the probability of silent data corruptions. As it can be seen on Figure 5.4b

the rate of incorrect result is a lot higher in case of DuckDB. The chance of getting an

SDC reaches 19.2% at the fault rate of 1.778, which is almost 10 times higher than the

probability of getting SDC from SQLite. While SQLite is designed to use as little mem-

ory as possible, DuckDB is designed for OLAP (Online Analytical Processing) workloads

and can use more than 100 times the memory SQLite uses. This drastically increases the

probability of a bit flip landing in parts of the memory where it can cause an SDC.
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Figure 5.4: DuckDB results without protection
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Even with those differences between SQLite and DuckDB, the similarities between the re-

sults of the experiments are quite interesting. It seems like in a rather chaotic environment,

where we are flipping bits randomly, there is some kind of a system in the consequences.

We expect this trend to continue when we move on to experimenting with other database

systems.

Data accuracy is of key importance and OLAP databases are becoming increasingly

important in data science. Data getting corrupted by a single bit could yield a wildly

different result. As we have seen in Chapter 2, a surprisingly large amount of transient

faults happen in hardware and the chance of such a fault causing a silent data corruption

is fairly high. Since most consumer memory hardware comes without ECC, software level

protection against bit flips would be necessary.
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Mitigation Implementation

In this chapter we describe our prototype implementation of DuckDB that attempts to de-

tect bit flips in memory during query execution. We present the results of the experiments

performed on DuckDB prototypes that have a combination of these mitigation techniques

implemented.

6.1 Intermediate Protection

DuckDB has a vectorized execution engine, which means that the physical operators process

data in chunks. They operate with two basic units called DataChunks and Vectors. A

vector contains a section of a column, a data chunk contains multiple columns as multiple

vectors. These data chunks are created on the fly by the operators and are passed from

operator to operator during a query execution making them vulnerable to bit flips.

O1 O2

VectorHash

XOR

Figure 6.1: Intermediate protection

To protect detect unexpected changes in this intermediate data, we implemented a simple

checksum verification on individual vectors. A simple diagram of this protection is shown on

Figure 6.1. This checksum is computed by XOR-ing the values inside the vector together.

When an operator has finished its computation on the chunks received by another operator,
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6. MITIGATION IMPLEMENTATION

it verifies the checksum by recomputing it and checking against the first checksum value. If

the verification fails, a bit flip is detected and the query execution is immediately stopped

by throwing an exception.

6.2 Block Protection

The database of DuckDB is stored in a single file. Inside this file data is stored in blocks

and the entire block is loaded into memory when data as read from it. A simple diagram

of the structure of the block is shown on Figure 6.2. DuckDB already checks the integrity

of the block after loading it into the memory. Every block has a header that contains a

checksum value over the entire block. This checksum is verified upon loading the block into

memory and if the verification fails, the data file is assumed corrupted and an exception

is thrown.

Header

V1 V2 V3 V4
V

Figure 6.2: Block structure

We can take advantage of this checksum value and use it to detect bit flips inside entire

blocks that reside in the main memory. The physical table scan operator reads vectors from

these blocks. After reading data from the block we can redo the checksum verification to

check whether the contents of the block changed or not. If the verification fails, we assume

the block in the memory got corrupted and immediately stop the execution by throwing

an exception.

6.3 Limitations and Performance Implications

The approach of intermediate protection has its limitation, some parts of the intermediate

data are still not protected. The initial checksum calculation is not done before the operator

has finished its job. The data chunks created by the operators are typically filled up with

data gradually by the operator, making them vulnerable while they are being created. For
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6.4 Results

a column of string data type, the vectors only contain pointers and the actual string values

live in the string heap that belongs to the data chunk. When computing the checksum, only

the values of the pointers are XOR-ed together, the strings themselves are not protected.

Additionally, the hash table is also not protected even though it is a very important part

of the query execution.

Naturally, this mitigation will have negative impacts on query performance. Currently we

are mainly interested in the effect of these protections on the rate of silent data corruption.

The implementation of reverification of the blocks is not optimized and we expect a major

performance impact because of it. Blocks can contain multiple vectors and currently the

checksum is reverified every time a single vector is read from the block. This can result in

an undesirably large amount of checksum computations on the entire block. Additionally,

the vectors are relatively small and we are checking the whole block just for reading a small

part of it.

6.4 Results

We ran experiments on three variants of DuckDB that have a combination of protections

enabled. One has only protection of intermediate data created by the operators. One has

only block protection that is loaded into memory. Lastly, one has both intermediate and

block protection. We ran the usual fault injection experiments on all variants. Additionally,

we also measured the runtime of all variants on a number of TPC-H queries to asses how

such mitigation techniques affect the performance of the database queries.

6.4.1 Performance

First we measured the performance of all the variants including the original version without

fault protection implemented. We differentiate cold runs from hot runs. A cold run is the

first query of a database system when first starting the process. It can take significantly

longer as it needs to load data from persistent storage into memory or it needs to compile

queries into native code. Subsequent queries are hot runs and are often faster as the

operating system also caches the accessed data. Figure 6.3a shows the normalized run times

of cold runs and Figure 6.3b shows the normalized run times of hot runs. The runtime

axis has a logarithmic scale. On average, queries with intermediate protection only took

1.18 times longer for cold runs and 1.26 times longer for hot runs. Block protection had

a significant impact on the performance, taking 6.24 times longer for cold runs and 9.16

times longer for hot runs to finish the query. The combination of the two protections added
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6. MITIGATION IMPLEMENTATION

up in runtime. Cold runs for the combined variant took 6.36 times longer for cold runs

and 9.36 times longer for hot runs on average.

The slight impact of intermediate protection is expected as XOR-ing values is a fast

bit-wise operation without copying values around. However, the block protection has

an undesirably big impact on the performance of queries. This is due to the inefficient

implementation of the bit flip detection. Data is stored in blocks and each block can

contain multiple vectors of data. The bit flip detection is performed every time a single

vector is read from the block. This means that the whole block is scanned and the checksum

is calculated for every vector that is read from the block. Although this implementation

is expected to have a high coverage in space, both used and unused space in the memory

is scanned multiple times, even though once would be enough. We will discuss possible

improvements to block protection in Section 7. The main objective of these experiments is

to show that simple checksumming over memory can significantly reduce the rate of silent

data corruption.

6.4.2 Fault-rate

When DuckDB detects a bit flip and exception is thrown. Normally, the database engine

catches these exceptions and returns the error. This behaviour would mask the bit flip

detection event and hide it from our testing framework. We have wrote our minimal

program that uses DuckDB as a library and when an error is returned, it exits with a

non-zero exit code. This abnormal behaviour with a non-zero exit code only happened

twice out of almost a million runs with the variant that had the protections disabled. If

we observe a this abnormal behaviour in later experiments with bit flip detection enabled,

it will be highly likely caused by the detection. Similarly to AHEAD in Section 5.2, the

lines indicating the abnormal behaviour in the graphs accurately represents the bit flip

detection rate.

The fault rate graphs for the intermediate protection only variant of DuckDB is shown

on Figure 6.4. We observe that, although a low amount, bit flips are indeed detected.

This technique can detect memory faults in up to 6.2% of the queries. However, we find

that on lower fault rates there are actually more incorrect results than in the unprotected

version. We suspect that this is due to the slight increase in runtime due to the checksum

calculations done by the operators. Since the query runs a little longer, slightly more bit

flips are injected, giving data corruptions a higher chance to occur. As we increase the

fault rate, more and more incorrect results are prevented until the crashes take over. As

we have seen in the last section, this protection increases the runtime of queries by about
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Figure 6.3: Benchmark of implemented mitigations using TPC-H
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Figure 6.4: DuckDB with intermediate protection only

20%. This performance impact is quite large considering the small impact it has on the

rate of SDCs.

The block protection variant performed much better than the intermediate protection

did in terms of suppressing silent data corruptions. We can see on Figures 6.5a and 6.5b

that the rate of detected bit flips out number even the crashes and the rate of SDCs is less

than 0.32% which means that almost all of the queries detected a memory fault. However,

block protection has a significant impact on performance as we have seen in section 6.4.1,

therefore in order to better measure the percentage of suppressed incorrect results we

also ran experiments on a version of DuckDB that has the protections implemented, but

exceptions are not thrown when bit flips are detected. This gives us a better comparison

between a protected and an unprotected version of DuckDB as they will have the same

performance. The fault rate graphs for this variant is shown in Figure 6.6. The graphs

look quite similar to graphs of the normal DuckDB in Figure 5.4. Note that the X axis of

the graphs for variants that include block protection start at 10−2 instead of 10−1 because

the queries in these experiments take a long time to finish. This means more bit flips for

each fault rate visually shifting the graph to the left along the X axis. once we take a look

at the exact numbers, we can observe that block protection reduces the rate of SDCs to

almost zero.

Finally, we ran experiments on DuckDB that has both intermediate and block protec-

tion implemented. Results are shown in Figure 6.7. The graph looks near identical to

previous one with minor differences. Adding intermediate protection to block protection
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Figure 6.5: DuckDB with block protection only
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Figure 6.6: DuckDB with block protection without raising errors
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Figure 6.7: DuckDB with both intermediate and block protection

has a relatively small effect on an already low rate of SDCs, which is to be expected after

experimenting on intermediate protection only.

The small impact of intermediate protection on SDC rates can be explained by the fact

that the operators usually perform simple operations on the vectors. These vectors are also

rather small making them short lived as they are quickly deallocated once the operator is

done. Considering this, the probability of a bit flip hitting a vector in memory and the

fault actually getting detected is very small, because the given space and time frame is

equally very small. On the other hand, protecting the blocks that contain these vectors

has a significant improvement on SDC rates almost completely suppressing all incorrect

results. This is likely due to the blocks being larger in size compared to vectors, making

them a big target for bit flips. Unlike intermediate data chunks, blocks are also retained

in memory for longer as multiple vectors can be read from them throughout the lifetime

of the database connection.

In conclusion, we observe that protection against bit flips in main memory for databases

is certainly possible. Block protection prevented silent data corruptions in almost all of

the queries while intermediate protection only prevented them in a fraction of the samples.

However, the runtime performance of block protection is terrible, and performs a large

amount of unnecessary computation. There are many ideas on how we could improve the

performance of block protection. These possible improvements are discussed in the next

chapter.
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Future Work

7.1 Fault injector

Our fault injector is currently a rather simple platform independent program that only

supports the injection of single bit flips in the main memory. This is quite far from covering

the wide range of faults that can happen in hardware. Bit flips are transient faults, however,

some of the studies have shown that corrupted memory content is dominantly caused by

hard faults(17, 27, 32), such as stuck bits. Although soft and hard faults are effectively

the same for single reads, it would not reflect reality to simulate hard faults with simple

bit flips. We suspect that it is not possible with ptrace to stick a bit at an address to a

constant 0 or 1. It may be possible to emulate hard or intermittent faults using the single

step mode of a CPU(41). However, single step mode is incredibly slow, making large scale

experiments like the ones we conducted not viable.

Additionally, the fault injector only supports one type of fault in terms of affected space.

The injected bit flips only happen to bits in the memory that are independent from each

other. A fault can affect entire words, rows, columns or banks of a memory hardware.

Linux systems utilize virtual addresses, that are translated from physical addresses to

make memory management easier for user software. Without knowing how this translation

happens, it is impossible to simulate faults like row, column, etc. hardware faults. The

area of injecting hard faults requires more investigation and will likely require an interface

or tool different from ptrace.

The main memory is not the only place where data can reside. Bit flips can also happen

on disk, but it is easier to protect data on disk against soft faults. File checksums are

a widely used technique for ensuring file integrity and it is already utilized by DuckDB.

Moreover, the RAID (Redundant Array of Independent Disks) technology can be used to
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apply redundancy to stored data, to protect against unexpected disk failures. However, bit

flips can also happen in other components of a computer, such as CPU registers, the CPU

cache or FPUs. The ptrace interface can give us access to the registers of the traced process,

but this is not present on all Linux architectures. CPU caches work transparently and are

architecture dependent. Some CPU architectures might provide debugging interfaces to

inspect at modify the CPU cache. This kind of fine grained access to this CPU cache would

probably require elevated permission, which potentially negatively impacts the viability of

large scale experiments on clusters.

When using the ptrace system call, the kernel acts as a middleman between the tracer

and the tracee. This doubles the number of context switches compared to usual sys-

tem calls causing a significant overhead. Additionally, while the process is attached with

ptrace, the child execution of the child process is stopped, further increasing a runtime

of a query during an experiment. This overhead could potentially be avoided by using

the process_vm_readv(2) and the process_vm_writev(2)1 system calls to modify the

memory of another process. Although ptrace is still required for the permission to modify

the memory content, this method does not stop the execution of the tracee. This could

give a noticeable performance boost when running experiments millions of times.

Lastly, our tool currently only supports injecting faults into single process database sys-

tems, like SQLite and DuckDB. We implemented support for single process server based

database systems, but ultimately yielded invalid when we ran our experiments on Mon-

etDB. We suspect that it is caused by some kind of a bug in the injector and the way

MonetDB allocates memory, and it would need further investigation. More complex sys-

tems may have their own child processes and these processes may or may not have shared

memories. It is theoretically possible to inject faults into systems like this as it is possible

to build the child process tree and keep track of what address spaces are used by each

process.

7.2 Mitigation

We implemented a prototype of DuckDB with certain protections against silent data cor-

ruptions caused by bit flips in memory. We believe we achieved promising results, but our

approach could be further improved in several ways.

Although small percent, there are still parts of the memory that is not protected during

a query execution. The vectors created by operators are only protected after the operator
1http://man7.org/linux/man-pages/man2/process_vm_readv.2.html
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has finished, they are not protected while they are being slowly filled with data. Some

would consider the chance of a bit flip happening during vector creation to be negligible.

However it is not zero, and protection against it must be considered. Additionally, strings

are stored in the string heap and the vectors only store the pointers to a location in the

heap. This string heap is not currently protected. Strings are a data type that take up

a relatively large chunk of the memory making them a big target for bit flips. Only the

pointers to the strings inside the vectors are protected against bit flips. Lastly, the hash

table, which is a rather important part of a query execution, is also not protected. Hash

tables can be bigger than other intermediates and live longer than the vectors created by

the operators.

We have seen in section 6.4.1 that the performance of our implementation of block

protection is quite poor with TPC-H queries taking many times longer than normal queries.

For database systems this is unacceptable as one of the key requirements users tend to

have is fast query performance. We have several ideas how it could be optimized for better

performance. One possibility to protect data in the blocks is to utilize a similar technique

we used for protecting intermediate vector data. DuckDB could additionally store the

vector checksum values inside the blocks and when they are read from the block we only

need to calculate the checksum for the vector instead of doing it for the whole block. We

expect this approach to detect less bit flips overall but suppress SDCs equally well.

Other possible methods include storing a hash tree in the header of the block instead of

a single hash for the entire block. The hash tree would contain multiple hashes and each

hash would correspond to different parts of the block. And when we read a vector from

the block we only need to calculate a smaller number of hashes again for the parts of the

block that were touched. This approach has the benefit of not having to modify the binary

format of the file to add headers to the stored vectors. Similarly to the previous method,

we expect this one to improve the query performance and prevent SDCs just as efficiently.

Lastly, a simpler method would be to only run the checksum calculation after multiple

reads to the block. This can be considered as late bit flip detection, since a corrupted

memory could be read and used multiple times before the software has a chance to detect

the error. While this method offers a much better performance than our current imple-

mentation, this is not an ideal solution as the bit flip has a higher chance of causing a

software failure and can go undetected.

These are only our initial ideas for improving query performance while maintaining good

fault protection performance. With continuous research in this largely unexplored area,

we believe that it is possible to achieve better and better performance over time.
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Conclusion

The practice of testing resiliency with fault injection has been around for a while(30).

Netflix took this concept further and defined four principles of chaos engineering they use to

run fault tolerance tests on their production system(5). We found that three out of the four

principles can easily be adapted to run fault tolerance experiments on database systems.

The only problematic part is running tolerance test continuously. In our experiments we

need to run queries millions of time, which takes a long time even on a cluster.

There have been several studies on hardware memory faults in the field (17, 25, 26, 31,

32, 33, 38, 40, 43). From these surveys we concluded that memory faults happen more often

than one would expect. Additionally these studies agree that this issue is slowly becoming

bigger with devices coming with more and more memory equipped and the world depending

on more and more data. There is a need to understand the nature of these faults and their

effect on software applications and services.

Therefore we need to somehow simulate a chaotic environment with bit flips and run the

database systems in it. The existing fault injection tools did not meet our requirements

so we implemented our own using the ptrace Linux interface. We used our injection tool

to perform experiments on SQLite, DuckDB and AHEAD. We could already tell that

SQLite and DuckDB can be quite vulnerable to silent data corruptions. SQLite yielded a

staggeringly high chance of getting the database file itself corrupted if the bit flip happens

during an update query. We could conclude from these baseline experiments, that these

databases do not handle chaotic environments well. The AHEAD column store prototype

claims to be able to detect bit flips during query execution time with minimal overhead. We

ran our experiments on AHEAD and although the prototype had some promising results

in our experiments, there is still quite a lot of room for improvement.
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8. CONCLUSION

We implemented two simple techniques into DuckDB to detected bit flips during query

execution time. While intermediate protection only detected a fraction of the injected bit

flips, block detected managed to prevent more than 96% of all silent data corruptions.

However, block detection has poor performance in its current implementation, but we

already have several ideas on how to improve it. And compared to AHEAD, which has

other drawbacks, performance is the only negative side effect of our implementation. We

believe that block detection could be a valuable addition to analytical databases, where

the incorrectness of data is unacceptable.

We now have a better understanding of how transient faults can affect database systems.

We know that it is possible to prevent silent data corruptions in databases on a software

level so it can be used on commodity systems as well. We believe that we have established a

good basis for database chaos engineering. The area of experimenting with fault tolerance

in databases unexplored and we have seen in Section 7 that there are still a lot of work to

in our study.
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Appendix

9.1 Literature Study

Our work involves injects main memory faults into database systems and protecting against

these faults. Since this is quite a specific and not well explored area of study, there are

only a few directly related works. We defined to following broader research question

to define our topic of interest and identify interesting publications: The prominence of

hardware memory faults, their affect on database software and possible techniques for

mitigation.

We initially search for papers using keywords and phrases such as chaos engineering,

fault injection, DRAM faults, bit flips, databases and silent data corruption. From then

on we explore additional works that are referenced in the papers we have already found.

All the papers are organized into a large table. Table 9.2 represents that table with a

subset of the columns. To help with the organization, we classified every paper into one of

the four categories shown in Table 9.1.

Although we found 130 papers, not all of them were relevant enough or some of them

had an overlap in the contained information. To filter out the papers and find the most

relevant ones, we defined several inclusion criterion shown in Table 9.2. These criterion are

not hard requirements, their aim is to help us decide whether we should include a study

in our literature study or not. Papers included in the literature study marked by an X in

the column named S. in Table 9.2.
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Categories
Chaos Engineering (ce) Studies presenting the chaos engineering concept or the appli-

cation of chaos engineering in the field.
Fault Study (fs) Studies presenting surveys on DRAM faults in large scale envi-

ronments and emphasize the importance of dealing with such
faults.

Fault Injection (fi) Studies presenting solutions for fault injection based testing
for fault tolerance evaluation.

Resiliency (r) Studies that present various solutions for implementing of
hardware fault resiliency on different platforms.

Table 9.1: Categories
Inclusion criteria Rationale
1 A study that that proposes DRAM fault

resiliency solutions for databases.
We are interested in papers closely re-
lated to our research, that we can com-
pare our approach with. We can also
possibly apply our experiment to these
solutions.

2 A study that contains relevant and use-
ful information for our thesis.

Studies that are related to our work
might contain information that is redun-
dant or irrelevant for our work.

3 A study that falls into at least on of the
categories listed above.

The area of hardware faults in databases
is largely unexplored. We are interested
in these categories that are related to
parts of our research.

4 A study that is developed by either aca-
demics or practitioners.

Both academic and industrial solutions
are relevant to this study.

5 A study that is written in English. For feasibility reasons, papers written
in other languages than English are ex-
cluded.

Table 9.2: Inclusion criterias

# Title Author Year Cat. S. Inclusion
1 2 3 4 5

1 Chaos Engineering Ali Basiri et al. 2016 ce x x x x x
2 Chaos Monkey Increasing SDN Reliability

through Systematic Network Destruction
Michael Alan
Chang et al.

2015 ce x x x

3 Chaos engineering and its application to
parallel distributed processing with chaotic
neural networks

Kazuyuki Aihara 2002 x x

4 Automating Failure Testing Research at
Internet Scale

Peter Alvaro et al. 2016 ce x x x

5 A Platform for Automating Chaos
Experiments

Ali Basiri et al. 2016 ce x x x x x
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# Title Author Year Cat. S. Inclusion
1 2 3 4 5

6 A realistic evaluation of memory hardware
errors and software system susceptibility

Xin Li et al. 2010 fs x x x x x

7 Increasing relevance of memory hardware
errors: a case for recoverable programming
models

Dejan Milojicic et
al.

2000 fs x x x

8 DRAM errors in the wild: a large-scale field
study

Bianca Schroeder
et al.

2009 fs x x x x x

9 Resilience Engineering: Learning to
Embrace Failure

Jesse Robbins et al. 2012 fi x x

10 Simple Testing Can Prevent Most Critical
Failures: An Analysis of Production
Failures in Distributed Data-Intensive
Systems

Ding Yuan et al. 2014 x x

11 Fault Injection Techniques - A Brief Review Rakesh Kumar
Lenka et al.

2018 fi x x x

12 Automating Chaos Experiments in
Production

Ali Basiri et al. 2019 ce x x x x x

14 Designing reliable systems from unreliable
components: the challenges of transistor
variability and degradation

Shekhar Borkar 2005 r x x

15 Do we need anything more than single bit
error correction (ECC)?

Michael Spica et al. 2004 r x x x

16 Cosmic rays don’t strike twice:
understanding the nature of DRAM errors
and the implications for system design

Andy A. Hwang et
al.

2012 fs x x x x x

17 Reliable Software for Unreliable Hardware -
A Cross Layer Perspective

Semeen Rehman 2016 r x x x

18 Flipping bits in memory without accessing
them: an experimental study of DRAM
disturbance errors

Yoongu Kim et al. 2014 x x

19 Memory Errors in Modern Systems: The
Good, The Bad, and The Ugly

Vilas Sridharan et
al.

2015 fs x x x

20 A Case for Memory Content-Based
Detection and Mitigation of
Data-Dependent Failures in DRAM

Samira Khan et al. 2017 r x x x

21 Detecting and mitigating data-dependent
DRAM failures by exploiting current
memory content

Samira Khan et al. 2017 r x x x

22 Online bit flip detection for in-memory
B-trees on unreliable hardware

Till Kolditz et al. 2014 r x x x x
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# Title Author Year Cat. S. Inclusion
1 2 3 4 5

23 Fault injection techniques and tools Mei-Chen Hsueh et
al.

1997 fi x x x x x

24 Xception: a technique for the experimental
evaluation of dependability in modern
computers

João Carreira et al. 1998 fi x x x x x

25 Understanding the propagation of hard
errors to software and implications for
resilient system design

Man-Lap Li et al. 2008 fs x x x x x

26 Comparison of physical and
software-implemented fault injection
techniques

Jean Arlat et al. 2003 fi x x x

27 Definition and analysis of hardware- and
software-fault-tolerant architectures

Jean-Claude Laprie
et al.

1990 fs x x x

28 Software-Implemented Hardware Fault
Tolerance

Olga Goloubeva et
al.

2006 r x x x

29 Fault injection tools based on Virtual
Machines

Maha Kooli et al. 2014 fi x x x

30 Fast Simulation of Stuck-At and Coupling
Memory Faults Using FAUmachine

Hans-Jörg Höxer et
al.

2005 fi x x x

31 Evaluating fault-tolerant system designs
using FAUmachine

Stefan Potyra et al. 2007 fi x x x

32 MAFALDA: Microkernel Assessment by
Fault Injection and Design Aid

Manuel Rodríguez
et al.

2000 fi x x x x x

33 Fault injection experiments using FIAT Manuel Rodríguez
et al.

1990 fi x x x x x

34 Xception: Software Fault Injection and
Monitoring in Processor Functional Units

João Carreira et al. 1998 fi x x x

35 FERRARI: a tool for the validation of
system dependability properties

Ghani A. Kanawati
et al.

1992 fi x x x x

36 Improving the reliability of commodity
operating systems

Michael M. Swift 2003 r x x x

37 Fast byte-granularity software fault
isolation

Miguel Castro et
al.

2009 r x x x

38 Protecting Commodity Operating System
Kernels from Vulnerable Device Drivers

Shakeel Butt et al. 2009 r x x x

39 Building a Self-Healing Operating System Francis M. David
et al.

2007 r x x x

40 CuriOS: Improving Reliability through
Operating System Structure

Francis M. David
et al.

2008 r x x x
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1 2 3 4 5

41 Characterization of operating systems
behavior in the presence of faulty drivers
through software fault emulation

João Durães 2002 r x x x

42 Why Do Computers Stop and What Can
Be Done About It?

Jim Gray 1985 x x

43 High-availability computer systems Jim Gray et al. 1991 x x
44 Tolerating hardware device failures in

software
Asim Kadab et al. 2009 r x x x

45 FERRARI: a flexible software-based fault
and error injection system

Ghani A. Kanawati
et al.

1995 fi x x x

46 An Approach to Designing Fault-Tolerant
Computing Systems

Richard D.
Schlichting et al.

1981 fi x x x x x

47 Ensuring data integrity in storage:
techniques and applications

Gopalan Sivathanu
et al.

2005 r x x x

48 Construction of a Highly Dependable
Operating System

Jorrit N. Herder et
al.

2006 r x x x

49 Failure Resilience for Device Drivers Jorrit N. Herder et
al.

2007 r x x x

50 Dealing with Driver Failures in the Storage
Stack

Jorrit N. Herder et
al.

2009 r x x x

51 A Survey on Fault Injection Techniques Haissam Ziade et
al.

2004 fi x x x x x

52 Fault injection for dependability validation:
a methodology and some applications

Jean Arlat et al. 1990 fi x x x

53 AHEAD: Adaptable Data Hardening for
On-the-Fly Hardware Error Detection
during Database Query Processing

Till Kolditz et al. 2018 r x x x x x x

54 Needles in the Haystack âĂŤ Tackling Bit
Flips in Lightweight Compressed Data

Till Kolditz et al. 2016 r x x x x x x

55 Resiliency-aware Data Compression for
In-memory Database Systems

Till Kolditz et al. 2015 r x x x x x x

56 Resiliency-Aware Data Management Till Kolditz et al. 2011 r x x x x x x
57 Using memory errors to attack a virtual

machine
Sudhakar
Govindavajhala et
al.

2003 x x

58 Susceptibility of commodity systems and
software to memory soft errors

Alan Messer et al. 2004 fs x x x x x

59 Protecting critical data in unsafe languages Karthik
Pattabiraman et al.

2008 r x x x
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60 The Rio File Cache: Surviving Operating
System Crashes

Peter M. Chen et
al.

1996 r x x x

61 Redundancy in Data Structures: Improving
Software Fault Tolerance

David J. Taylor et
al.

1980 r x x x

62 Large Scale Studies of Memory, Storage,
and Network Failures in a Modern Data
Center

Justin Meza 2019 fs x x x

63 Revisiting memory errors in large-scale
production data centers: analysis and
modeling of new trends from the field

Justin Meza et al. 2015 fs x x x x x

64 A large-scale study of flash memory errors
in the field

Justin Meza et al. 2015 fs x x x

65 A study of DRAM failures in the field Vilas Sridharan et
al.

2012 fs x x x

66 Feng shui of supercomputer memory:
Positional effects in DRAM and SRAM
faults

Vilas Sridharan et
al.

2013 fs x x x x x

67 Extra bits on SRAM and DRAM errors -
more data from the field

Nathan
DeBardeleben et
al.

2014 fs x x x

68 Analysis and Modeling of Memory Errors
from Large-scale Field Data Collection

Taniya Siddiqua et
al.

2013 fs x x x

69 Cycles, Cells and Platters: An Empirical
Analysis of Hardware Failures on a Million
Consumer PCs

Edmund B.
Nightingale et al.

2011 fs x x x x x

70 A Memory Soft Error Measurement on
Production Systems

Xin Li et al. 2007 fs x x x x x

71 What can we learn from four years of data
center hardware failures?

Guosai Wang et al. 2017 fs x x x

72 Lifetime memory reliability data from the
field

et al. 2017 fs x x x x x

73 Error Sensitivity of the Linux Kernel
Executing on PowerPC G4 and Pentium 4
Processors

Weining Gu et al. 2004 x x

74 Error Detection Using Dynamic Dataflow
Verification

Albert Meixner et
al.

2007 r x x x

75 Virtualized and flexible ECC for main
memory

Doe Hyun Yoon et
al.

2010 r x x x

76 Software Design for Resilient Computer
Systems

Igor Schagaev et al. 2016 r x x x
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77 Cooperative Application/OS DRAM Fault
Recovery

Patrick G. Bridges
et al.

2011 r x x x

78 Generative software-based memory error
detection and correction for operating
system data structures

Christoph Borchert
et al.

2013 r x x x

79 SystemC-Based Minimum Intrusive Fault
Injection Technique with Improved Fault
Representation

Rishad Ahmed
Shafik et al.

2008 fi x x x

80 Detection and correction of silent data
corruption for large-scale high-performance
computing

David Fiala 2012 r x x x

81 Bamboo ECC: Strong, safe, and flexible
codes for reliable computer memory

Jungrae Kim et al. 2015 r x x x

82 Low-power, low-storage-overhead chipkill
correct via multi-line error correction

Xun Jian et al. 2013 r x x x x x

83 Quantifying the Impact of Single Bit Flips
on Floating Point Arithmetic

James Elliott et al. 2013 fs x x x

84 Improving DRAM Fault Characterization
through Machine Learning

Elisabeth Baseman
et al.

2016 fs x x x

85 Unprotected computing: a large-scale study
of DRAM raw error rate on a
supercomputer

Leonardo
Bautista-Gomez et
al.

2016 fs x x x

86 Measuring the Impact of Memory Errors on
Application Performance

Mark Gottscho et
al.

2016 fs x x x

87 Software-defined error-correcting codes Mark Gottscho et
al.

2016 r x x x

88 Characterizing Application Memory Error
Vulnerability to Optimize Datacenter Cost
via Heterogeneous-Reliability Memory

Yixin Luo et al. 2014 x x

89 Classifying soft error vulnerabilities in
extreme-scale scientific applications using a
binary instrumentation tool

Dong Li et al. 2012 fi x x x

90 Application-Level Correctness and its
Impact on Fault Tolerance

Xuanhua Li et al. 2007 x x

91 Fault injection framework for system
resilience evaluation: fake faults for finding
future failures

Thomas Naughton
et al.

2009 fi x x x

92 Soft error vulnerability of iterative linear
algebra methods

Greg Bronevetsky
et al.

2008 fi x x x
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93 Experimental Framework for Injecting
Logic Errors in a Virtual Machine to Profile
Applications for Soft Error Resilience

Nathan
DeBardeleben et
al.

2011 fi x x x

94 Assessing fault sensitivity in MPI
applications

Charng-da Lu et
al.

2004 fi x x x

95 Characterizing the impact of soft errors on
iterative methods in scientific computing

Manu Shantharam
et al.

2011 fi x x x

96 Analyzing the soft error resilience of linear
solvers on multicore multiprocessors

Konrad Malkowski
et al.

2010 fi x x x

97 A framework for efficiently analyzing
architecture-level fault tolerance behavior
in applications

Harshad Sane 2008 fi x x x

98 Algorithm-based fault tolerance for matrix
operations

Kuang-Hua Huang
et al.

1984 r x x x

99 Algorithm-based recovery for iterative
methods without checkpointing

Zizhong Chen 2011 r x x x

100 Algorithm-based fault tolerance for dense
matrix factorizations

Peng Du et al. 2012 r x x x

101 Using Process-Level Redundancy to Exploit
Multiple Cores for Transient Fault
Tolerance

Alex Shye et al. 1976 r x x x

102 Evaluating the viability of process
replication reliability for exascale systems

Kurt Ferreira et al. 2011 r x x x

103 Design, modeling, and evaluation of a
scalable multi-level checkpointing system

Adam Moody et al. 2010 r x x x

104 A Case for Multi-Level Distributed
Recovery Schemes

Nitin H. Vaidya 1994 r x x x

105 A model of roll-back recovery with multiple
checkpoints

Erol Gelenbe 1976 r x x x

106 DOCTOR: an integrated software fault
injection environment for distributed
real-time systems

Seungjae Han et al. 1993 fi x x x

107 EXFI: a low-cost fault injection system for
embedded microprocessor-based boards

Alfredo Benso et
al.

1998 fi x x x x x

108 NFTAPE: a framework for assessing
dependability in distributed systems with
lightweight fault injectors

David T. Stott et
al.

2000 fi x x x x x

109 GOOFI-2: A tool for experimental
dependability assessment

Daniel Skarin et al. 2010 fi x x x x x
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110 GOOFI: generic object-oriented fault
injection tool

Jan Aidemark et
al.

2001 fi x x x x x

111 Assessing Dependability with Software
Fault Injection: A Survey

Roberto Natella et
al.

2016 fi x x x

112 ORCHESTRA: a probing and fault
injection environment for testing protocol
implementations

Scott Dawson et al. 1996 fi x x x

113 FIG: A Prototype Tool for Online
Verification of Recovery Mechanisms

Pete Broadwell et
al.

2002 fi x x x

114 Fault-Injector using UNIX ptrace Interface Volkmar Sieh et al. 1993 fi x x x x
115 Framework for testing the fault-tolerance of

systems including OS and network aspects
Kerstin Buchacker
et al.

2001 fi x x x

116 Plug and Play Fault Injector for
Dependability Benchmarking

Pedro Costa et al. 2003 fi x x x

117 Alpha-particle-induced soft errors in
dynamic memories

Timothy C. May et
al.

1979 fs x x x x x

118 Single event upset at ground level Eugene Normand
et al.

1996 fs x x x x x

119 Soft errors in advanced computer systems Robert Baumann
et al.

2005 fs x x x x x

120 Scaling and technology issues for soft error
rates

Allan H. Johnston 2000 fs x x x x x

121 IBM experiments in soft fails in computer
electronics (1978-1994)

James F. Ziegler et
al.

1996 fs x x x x x

122 Cosmic Ray Soft Error Rates of 16-Mb
DRAM Memory Chips

James F. Ziegler et
al.

1998 fs x x x x x

123 A white paper on the benefits of
chipkill-correct ECC for PC server main
memory

Timothy J. Dell 1997 r x x x x x

124 RIFLE: A general purpose pin-level fault
injector

Henrique Madeira
et al.

1994 fi x x x

125 FOCUS: An experimental environment for
fault sensitivity analysis

G.S. Choi et al. 1992 fi x x x x x

126 Fault injection for dependability validation
of fault-tolerant computing systems

Jean Arlat et al. 1989 fi x x x x x

127 Using heavy-ion radiation to validate
fault-handling mechanisms

Johan Karlsson et
al.

1994 fi x x x x x

128 An evaluation of the error detection
mechanisms in MARS using
software-implemented fault injection

Emmerich Fuchs 1996 fi x x x
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129 Resiliency Mechanisms for In-Memory
Column Stores

Till Kolditz et al. 2018 r x x x x

130 New TPC benchmarks for decision support
and web commerce

Meikel Poess et al. 2000 x x

Table 9.3: Related papers
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