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Abstract

We investigate the implementation and benefits of loop-adaptivity in Weld, a data-centric
JIT-compiling data processing framework. Loop-adaptivity is inspired by micro-adaptivity,
where a DBMS is able to pick the best operator (in terms of performance) for a given com-
bination of hardware, runtime environment and data, even when this changes over time.
Micro-adaptivity was proposed in Vectorwise, a vectorized-interpreted DBMS, but does
not fit the data-centric approach where the granularity of execution is not an operator, but
an entire for-loop that implements a full pipeline of operators. Loop-adaptivity therefore
adapts entire loops, rather than operators. Integrating this kind of adaptivity in a JIT-
compiling system is challenging because the amount of code that needs to be generated
increases exponentially in the number of adaptive decisions. This is (i) at odds with the
already high pressure to keep compilation times down, and (ii) can make it challenging to
find the best implementation in time. Moreover, to keep overheads down, getting runtime
statistics cannot be done on a tuple-at-a-time basis, which is again at odds with the data-
centric approach. In this thesis we show how to tackle most of these problems, but leave
the challenge of finding the best variation as future work. We investigate the opportunities
for loop-adaptivity in Weld, which appears to be more limited than micro-adaptivity in
Vectorwise. We evaluate how loop-adaptivity performs using both micro-benchmarks and
the TPC-H benchmark suite, and find that we can gain modest improvements, limited to
higher scale factors.
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Chapter 1

Introduction

Databases typically store data in a Relational Database Management System (RDBMS),
which allows users to efficiently structure and query large sets of data. More recently,
data processing frameworks such as Spark [51] are also being used for data science tasks.
In essence, the goal of these systems are the same: abstracting away the low-level opera-
tions required to efficiently process data, so that users can efficiently express and execute
their queries without being systems experts. For example, programs written in Spark are
automatically parallelized and distributed over clusters through a relatively simple API.
Abstractions like this become only more relevant as hardware becomes more complex.

Data processing frameworks such as Spark are increasingly turning to Just-In-Time
(JIT) compilation in order to improve performance by eliminating interpretation overhead.
However, translating a high level abstraction such as SQL into efficient machine code is
far from trivial, potentially resulting in less than optimal performance, or hard-to-find
bugs. Koch argues in [23] that, to ease the development of these systems, multiple levels
of abstraction are needed, so that the high level user facing interface can be lowered to
machine code one step at a time.

A recent interesting example of such an abstraction is Weld [32]. Weld is a low level
JIT-compiled domain specific language (DSL) that libraries can use to efficiently imple-
ment their computationally expensive operators. Code written in Weld can target both
CPUs and GPUs, is automatically parallelized and SIMDized, and can even optimize
across functions and libraries.

1.1 Micro-adaptive execution

Not only did hardware become more complex over the years, it also became more diverse.
Modern hardware platforms typically offer a wide range of features that make them more
efficient, such as branch prediction, out-of-order-execution and SIMD instructions [10].
The design process of a hardware architecture is one of making compromises between
conflicting optimizations, meaning that two different platforms can behave very differently,
even when running the same instructions. This makes generating efficient code for an
algorithm a challenging task, because some algorithmic variant that was optimized for one
machine may very well be suboptimal for another.
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1. INTRODUCTION

To make matters more complicated, there are more factors that influence the perfor-
mance of an algorithmic variation. These include:

• Compiler (settings): each compiler makes its own optimization decisions that can
lead to radically different machine code. These are also influenced by the actual
compiler settings. In JIT-compiling systems there is the additional trade-off between
faster code through optimizations at the cost of longer compilation times, meaning
that long running programs will be better off with more optimizations than short
running programs.

• Runtime constraints: the runtime environment in which a machine is operating can
influence the performance of the machine. As an example, modern CPUs will throttle
their clock speeds as a response to heat.

• Concurrent load: running an algorithm single-threaded will give different results
from running it on all cores in terms of per work-unit performance. Even if the com-
putation requires no synchronization that would slow it down. Both the computation
infrastructure (throttling down as more cores are busy) and memory infrastructure
(cache footprint, memory bus usage) will degrade due to concurrent usage.

• Data: the way data is distributed can have a significant impact on the performance
of a given algorithm. For instance, a filter can be implemented using either branching
instructions or predicated instructions. When the filter predicate is mostly true or
mostly false for the input data, the CPU will be able to effectively perform branch
predictions, so an algorithm using if-then-else (branching) instructions will perform
well. In other cases, an algorithmic variant that transforms the if-then-else into a
computation will typically be faster, as it doesn’t suffer from branch mispredictions.

All these factors mean that there is typically no one-size-fits-all implementation for
an algorithm when it comes to optimal performance. This means that to gain maximum
performance, the right algorithmic variation should be chosen for the given job.

The classical way of dealing with this problem is to build logical cost models that
estimate the number of tuples, their data distributions, as well as physical cost models
that try to predict the behavior of the underlying hardware. Although logical cost models
have their use in the optimization of query execution plans, they are error-prone and
rarely accurate [12]. With hardware becoming increasingly diverse, making an accurate
physical model is extremely challenging. Moreover, such a physical cost model cannot
account for future architectures and advances in technology. Finally, physical cost models
simply cannot account for any unexpected change in the system that might happen during
runtime. All in all, a static analysis will generally fail to predict query behavior for a
specific combination of hardware and data, and so picking the right algorithmic variation
is unlikely.

A way out of this “performance jungle” is to introduce micro-adaptive query execution
[41], where a task is decomposed of many mini-tasks. If the query engine has different
ways of executing the same task, it can measure their effectiveness during runtime, and
choose the implementation that proves to be the most effective. This approach means
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that the system can be agnostic about all the factors that may influence performance, as
it can simply base its decisions on the raw performance it observes.

1.2 Loop-adaptive execution

Micro-adaptivity was proposed in Vectorwise which uses a query processor, but has so far
not been implemented in a JIT-compiling infrastructure such as Weld. Integrating any
kind of adaptivity in a JIT-compiling system such as Weld (or Spark, or Hyper [21]) is
challenging because:

• Adaptive decisions cannot be made for each tuple, but must be done for chunks of
tuples at a time to amortize overhead. This is at odds with the data-centric JIT
approach [29] that fuses all operators in a pipeline into a single tuple-at-a-time-loop.
We need to break these loops into chunks in order to make adaptive decisions.

• Every adaptive factor between two alternatives increases the number of code paths
in the enclosed loop by two, so the amount of generated code increases exponentially
with the number of decisions. This is at odds with the need to keep compilation
times down. Also, with an exponential number of options, it becomes increasingly
harder to home in on the optimal choices. Ideally, independent choices should not
increase the number of code paths, nor the amount of options to test, but this requires
breaking up generated code in separate parts. However, introducing function calls
for every tuple introduces significant overhead.

Micro-adaptive execution differs from regular adaptive query processing in that it does
not adapt entire query plans, but single operators (hence the term micro). One should
observe that micro-adaptivity in Hyper style (data-centric) JIT systems is impossible, as
the granularity of execution is a for-loop that corresponds to one query pipeline, which
may correspond to multiple operators and many primitives. Given that the unit that can
be varied is larger (than micro), we propose loop-adaptive execution, where we implement
adaptivity in the same spirit as micro-adaptive execution, but at the larger scale of a
data-centric for-loop. We demonstrate the concept in this thesis, by implementing it in
Weld.

1.3 Research questions

This research topic raises many questions, of which the most important ones are listed
below.

1. Where are the opportunities for loop-adaptive execution in Weld, if any?

2. Should Weld be adapted, and how do we design loop-adaptive execution in Weld?

2.1. How do we deal with code explosion?

2.1.1. How does lazy compilation (during query execution) fit into Weld?

7



1. INTRODUCTION

2.1.2. How can we quickly home in on the best variations?

2.2. How do we implement instrumentation in Weld?

2.2.1. How do (global) variables fit into Weld?

2.2.2. What is the overhead of the instrumentation?

3. What are the potential speedups gained by loop-adaptivity in Weld?

Micro-adaptivity has shown to have positive effects on performance in a interpreted
database system, but has not been tried in a JIT-compiled framework yet. Therefore, the
first question is about identifying those opportunities that are specific to Weld. We are
interested in loops that can be implemented in multiple variants, each outperforming the
others in some contexts, but no variant dominating all others. An example of this may be
a loop that implements the probe phase of a hash join. The hash table lookup could be
preceded with a Bloom filter lookup, or not. Neither version should be faster in all cases,
but instead the preferable choice depends on the hit ratio of the hash table.

If we find those opportunities, there is a reason to implement it. This raises the second
part of question two, the challenging part of our research. The main problem is about
code explosion (question 2.1), the other problem is about instrumentation (question 2.2).
Code explosion is a problem for two reasons: first of all, because Weld is JIT-compiled,
code explosion will result in longer compilation times, which may nullify any performance
gains. A potential solution would be to compile only those variants when we need them.
Right now the entire Weld IR is compiled before it is executed, so how to implement
compilation-on-demand would be an interesting question (2.1.1). Question 2.2.2 is about
the other problem of code explosion. The adaptive policy from Vectorwise has shown to
quickly choose the fastest variation when there are a limited number of variations, but
this may not be the case if the number of variations grows exponentially.

For some variations we will likely need instrumentation to decide whether we want
to test it. An example of this is a hash join that can be implemented with or without
a Bloom filter. A Bloom filter can improve the performance of a hash join, but only if
the hit rate of the hash table is low enough. Therefore, to decide whether it is worth
it to build and test a Bloom filter, we will want to keep track of the hit rate of a hash
table. A potential lightweight approach of doing this would require variables, but Weld is
referentially transparent and so only offers constants. Moreover, the runtime needs to be
made aware of these variables so it can make adaptive decisions. This is what question
2.2.1 is about. Question 2.2.2 is about the additional overhead that instrumentation will
introduce. Keeping this low is imperative for loop-adaptivity to be of any use.

Finally, we want to evaluate the system by looking at potential speedups gained by
loop-adaptivity in Weld (question 3).
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Chapter 2

Related Work

This research focuses on the intersection of the field of (micro-)adaptive execution and
JIT-compiling DBMSs. As such the related work can be found in these two topics. In
section 2.1, we will take a look at adaptive query execution, and micro-adaptive execution
in section 2.2. Section 2.3 explores related work in JIT-compiling queries, while we explore
the gap between the two fields and our contributions in section 2.4.

2.1 Adaptive query processing

Because of the declarative nature of query languages for relational databases (most com-
monly SQL), a DBMS is not tied to a single strategy (or query plan) to execute it. Instead,
it is free to pick one of many equivalent query plans, as long as they all return the correct
answer to the query. Which one is faster depends on a number of factors, such as the
distribution of the data that is processed by the query. This was already recognized by
the designers of System R [1], one of the first relational database management systems
(RDBMS). Before executing a query, System R would analyze a given query and pick the
best query plan among a set of plans, using a cost model and basic statistics about each
table in the database. This manner of statically optimizing a query plan before execution
has been improved over the years, but in its essence it is still used by most query processors
[11].

Static optimization of query plans can work quite well, as long as there are sufficient
statistics available, there are few correlations in the data, and the runtime execution
is predictable. However, as queries, datasets and hardware becomes more complex, these
assumptions hold less and less often. Even when statistics on tables as a whole are perfect,
correlations between predicates can cause cardinality estimates for a query to be off by
several orders of magnitude [18]. To account for this, several extensions to static query
optimizations [3, 8, 15] have been proposed. For example, robust query optimization [3]
tries to find the plan that has the least expected cost over a range of values that the
parameters are expected to take, rather than merely using a point estimation of these
parameters. Although clearly an improvement over classical query optimization, it still
requires accurate statistics, and (like any kind of static planning) cannot account for
changes in data or execution environment during runtime.
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Adaptive query processing (AQP) is a technique that tries to counter this problem by
monitoring the query during runtime to gather more accurate statistics, and adapting the
query plan if it is found that the current one is performing suboptimal. In this section, we
will give an overview of different operators and techniques that are used to this end. We
will roughly follow the structure of [12], a comprehensive 2007 survey of AQP techniques
by Deshpande et al., but also review some more modern adaptive execution techniques
that were proposed since then. First we will take a brief look at static optimizations,
specifically for selection ordering and joins, as they form the basis for many adaptive
algorithms. We will then continue with several techniques for adaptive selection ordering,
join ordering, aggregation, as well as various other adaptive execution schemes. Many
adaptive query execution algorithms are developed specifically for streaming algorithms,
but they are mostly left out of this discussion, as we focus on more mainstream data
processing.

2.1.1 Static query optimization

According to [12], most static query optimization algorithms used can be classified as
either selection ordering or join enumeration strategies. We will briefly discuss these here
as they form the basis of many adaptive algorithms.

Selection ordering

Selection ordering refers to ordering the predicates of a selection query as efficiently as
possible. To minimize overall work, the predicate that filters out most of the tuples should
be processed first, while the least selective predicate should be last, also taking into account
the cost of evaluating the predicate itself. Let a query have n predicates, S1, . . . , Sn, each
to be applied on tuples from some table. Furthermore, let ci be the cost of evaluating
predicate Si, p(Si) the probability that a tuple satisfies predicate Si, and p(Si|Sj1, . . . , Sjk)
the conditional probability that a tuple satisfies predicate Si given that it already satisfied
the previous set of predicates {Sj1, . . . , Sjk}. If we assume the predicates are independent,
then p(Si|Sj1, . . . , Sjk) = p(Si), and selection ordering boils down to simply sorting the
predicates in increasing order of ci/(1− pi) [17].

Unfortunately, predicates of real life queries are often correlated, in which case the
above strategy will not yield an optimal selection order. If the predicates are correlated,
finding the optimal order is NP-Hard [4], so an approximation will have to do. One
method is the Greedy algorithm [4], which works by first selecting the predicate with the
lowest ci/(1− p(Si)), and then repeatedly selecting the predicate with the lowest cj/(1−
p(Sj |Si, . . .)) until no predicates remain. Although this algorithm can find reasonably
performing orderings, it does require us to know the conditional probabilities of all the
predicates, which may be unrealistic.

Join enumeration

Compared to the matter of picking a selection order, more considerations have to be made
when optimizing a query that joins two or more tables. Similar to selections, the order
in which tables are joined can heavily impact the performance of a join. The optimal
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order of a join can be determined in a fashion similar to that of selection ordering. Other
choices include the used access method for each table as well as the join algorithms used.
The access method refers to the way tuples are accessed for a table in a query, such as a
direct table scan or a using an index. The choice for an access method can influence the
choice of a join algorithm. The join algorithm refers to the implementation of the join
itself, such as (indexed) nested loops join, merge join or hash join. They each perform
differently depending on factors such as the size of the table.

2.1.2 Adaptive selection

A relatively simple algorithm for adaptively ordering selection predicates is A-Greedy [4],
which is based on the Greedy algorithm that we discussed in section 2.1.1. A-Greedy was
developed with stream processing in mind, but in principle should also work for traditional
data processing. Rather than estimating the selectivities of the predicates up-front, it
monitors them continiously during query execution. A-Greedy consists of roughly three
components: the query executor, profiler and reoptimizer. The query executor simply
executes the query according the execution plan. The profiler monitors the selectivities of
the predicates using a sliding window over the data, thereby only taking recent data into
account. Using a sample of the tuples in this window, the profiler estimates the expected
evaluation costs of each predicate. Finally, the reoptimizer is responsible for ensuring that
the plan is optimal, using the profile generated by the profiler and the Greedy algorithm.

Other algorithms for adaptive selection ordering include the usage of the Eddy oper-
ator [2], which can adapt the order in which operators are applied on a tuple-at-a-time
basis. Because of the high associated overhead, their use is mostly limited to streaming
environments.

2.1.3 Adaptive joins

An optimizer has different adaptive opportunities and decisions to make depending on
whether the (sub-)query is fully pipelined or contains materialization points. In distributed
settings we have yet another set of challenges. We will look at methods for adaptive joins
for each of them.

Pipelined execution

When the driver table is fixed, the remaining tables in a join can be ordered similarly
to selection ordering. A-Greedy can be extended to this end, as discussed in [4]. This
assumes a left-deep join tree and so does not consider bushy plans. Moreover, the choice
for a driver table is one of the most important decisions an optimizer can take with regards
to join-order [12], and so fixing the driver table is rather limiting. Symmetric hash joins
[50] or MJoins [35] can be used to change the order of a join on-the-fly, but these require
significantly more memory and are typically only used in streaming solutions.

A more flexible approach is corrective query processing [19]. In this scheme, execu-
tion cost and tuple cardinalities are continuously monitored during query execution, to
determine if the current execution plan is performing as expected. If not, the engine will
suspend execution and reoptimize the plan based on the previous statistics. It will then
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proceed to execute the new plan on the remaining data. This reoptimization may happen
an arbitrary number of times until all the data has been processed. The intermediate
results of each phase are combined in a final stitch-up phase.

In contrast, the approach in [34] only generates a single execution plan that embeds
a small number of switchable access methods in it, and can adapt the join order in mid-
execution. This avoids the overhead of generating and deciding among a large number of
alternative execution plans. It only works for indexed nested-loop joins, but in principle
can be extended to pipelined hash-joins as well.

Non-pipelined execution

Materialization points in a query plan offer natural opportunities for adaptivity. For
instance, if the result of a join is to be sorted, and then used as input for the remaining
plan, we could measure the cardinality of the result, and (re-)optimize the remainder of
the plan accordingly. Many application programs exploit this by explicitly splitting up a
query into sub-queries, writing intermediate results to temporary tables. This allows the
optimizer to gather accurate statistics on the intermediate results and therefore create a
more accurate plan for the remainder of the operation. This is referred to as plan staging
in [12].

A more general approach, which puts the execution engine in charge, is mid-query
reoptimization [20]. The main idea is that a query plan has additional checkpoint opera-
tors, that measure the cardinality of tuples flowing through it. If the cardinality is very
different from what was estimated, the remaining execution plan may be reoptimized.
This is trivial when checkpoints are placed after a materialization point, which more or
less boils down to plan staging. However, when placed in the middle of a pipeline, query
reoptimization means that intermediate results may have to be discarded, or duplicates
have to be removed. One way of dealing with this is by forcing materialization at specific
points in the execution plan [27]. Although materialization can be expensive, in some
cases it may be worth it if it allows the optimizer to avoid a bad plan that might be even
more expensive.

A related, more recent approach, is incremental execution [30]. Using this approach,
the optimizer optimizes the entire query plan as usual, using classical cardinality estima-
tions. However, if it finds that certain cardinality estimations are uncertain, it will first
execute small parts of the plan and materialize intermediate results to find the actual
cardinalities, and then optimize again. If required, a more promising query plan is picked
for the remainder of the execution.

Distributed execution

In a distributed setting an optimizer should also consider how to distribute the rows of
two tables. If the outer relation is small, it is usually best to broadcast it to all nodes, and
distribute the other rows randomly (broadcast-random). If the relation is too large, it is
best to distribute both tables by hash (hash-hash), to avoid huge transmission overheads.
[5] solves this issue with an adaptive method called hybrid-hash. In this method, a join
starts using the hash-hash method, but statistics are collected on a small number of rows
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at the beginning of execution. If the cardinality of a table appears to be sufficiently low, it
is broadcast to the remaining nodes. Otherwise it continues using hash-hash distribution.

2.1.4 Adaptive aggregation

There are multiple ways of aggregating data in a multi-threaded environment, and which
one performs depends on the data. [9] proposes a method that combines a sampling phase
and a cost model to pick the best strategy, which is a combination of decisions such as
whether to use local or global hash tables, using locking or atomic operators, and whether
to aggregate runs. Although results show that the method nearly always achieves optimal
performance, it was tuned specifically for the Sun UltraSPARC T1, and so whether the
algorithm is as effective on other machines is questionable.

For distributed settings, [5] proposes an adaptive strategy where group-by pushdown is
performed adaptively. Group-by pushdown is a technique where data is already aggregated
before distributing it over the nodes, and can heavily reduce networking overhead if there
are relatively few keys. However, it also means there is an additional computation step,
and may not pay off if the size of the data is not reduced enough. By monitoring by how
much the data is reduced locally, the system can decide whether to continue aggregating
locally, or just apply the aggregation after grouping globally.

2.2 Micro-adaptive execution

Another angle at AQP is micro-adaptive execution [41], which was first proposed and
integrated in Vectorwise [52]. Rather than adapting entire query plans, adaptivity happens
at the operator level. Vectorwise is a vectorized DBMS, which means that operators work
on vectors of tuples at-a-time, rather than tuple-at-a-time. This ammortized interpretation
overhead and provides better data locality, but also provides the opportunity to measure
the performance of an overhead at little expense, as most of the work will go towards
the actual computation. Operators are implemented by pre-compiled functions called
primitives. In the micro-adaptivity framework, multiple implementations are provided for
a primitive, which are referred to as flavors. The execution engine explores the different
flavors randomly, and continuously tracks their performance, allowing it to find the best
performing one, which is then exploited. The system only keeps recent performance data,
and keeps periodically exploring random flavors even after it all flavors have been explored.
This allows the system to deal with non-static cases where the best flavor may change over
time.

2.2.1 Multi-armed bandit algorithms

In micro-adaptive execution, the optimization problem is viewed as a multi-armed bandit
[37] problem. In multi-armed bandit problems, the goal is to maximize some reward
through a series of actions. For each action, an agent can choose from a (static) number
of options, each with an initially unknown reward. At each round, a unique reward is
observed. By repeatedly trying different options, the agent can learn about the most
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promising options and ultimately pick the most rewarding one. In the case of micro-
adaptivity, the options are different flavors, and the reward is the inverse of the execution
time.

Several algorithms for solving multi-armed bandit problems have been proposed [47],
such as the ε-greedy [49] algorithm. The ε-greedy strategy works by choosing a random
option with a probability of ε, and otherwise picking the option with the highest estimated
mean, based on the results observed thus far. Vectorwise uses an algorithm based on ε-
greedy, called vw-greedy, which only keeps recent observations to make it more robust for
dynamic cases where the best flavor changes over time. VW-Greedy has three parameters.
A random flavor is explored every EXPLORE PERIOD primitive calls, for a duration of EX-

PLORE LENGTH calls. The average cost of the primitive per tuple is then calculated for these
calls. After exploring, the best flavor is exploited in separate phases of EXPLOIT PERIOD

calls each. After each exploitation phase the average cost is updated, and whatever flavor
has the lowest average cost at that point is then exploited.

2.2.2 Large search spaces

In Vectorwise the number of flavors for a primitive is limited, and as such vw-greedy is
not optimized for large search spaces. Rosenfeld et al. extend micro-adaptivity to deal
with large search spaces in [39]. It tries to tackle the problem by generating only a limited
number of alternatives, which are kept in the working pool. VW-Greedy only selects
flavors from this pool. In between queries, the pool is updated using a search strategy
that replaces poorly performing flavors with newly generated ones.

2.3 Query compilation

Data processing systems have mostly been using the Volcano [16] iterator model for the
last two decades. In this model, a query plan is represented as a graph of operators,
where each operator continuously calls the next function of its child operator to produce
tuples. This is a nice abstraction that makes operators easily composable, but it suffers
from large overheads, which can be attributed to the fact that the next function is called
once for every tuple produced, both as final result and between operators. This means
values are not kept in registers, and many compiler optimizations such as the use of SIMD
instructions are made impossible. Because database performance used to be mostly IO
bound, this was not perceived as a problem, but with the advent of databases that operate
largely or entirely in main memory, that is not the case anymore.

2.3.1 Reducing interpretation overhead

The MonetDB [7] way of dealing with this problem is bulk processing, where operators pro-
cess entire input arrays before moving to the next operator, heavily reducing the number
of function calls. Not only does this model reduce interpretation overhead, the tight loops
with which operators are now implemented allow for automatic compiler optimizations that
are not possible in Volcano style processing, such as the use of SIMD instructions. This
idea was later refined as vectorized execution, where the next function operates on small
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vectors of tuples at-a-time, increasing locality and thereby CPU efficiency. Vectorized
execution was first proposed in MonetDB/X100 [6], which later evolved into Vectorwise
[52].

A different (and mostly orthogonal) approach is to remove the interpretation overhead
altogether by compiling queries directly into machine code. This is not a new idea; Sys-
tem R [1] experimented with query compilation, but abandoned it because this was very
expensive to maintain. Other attempts have been made since then, such as [36], which
compiles queries into JVM bytecode. However, only recently JIT-compilation is really
taking off as a way of improving DBMS performance.

2.3.2 Recent query compilers

One of the most notable examples of a JIT-compiling DBMS is HyPer [29]. HyPer intro-
duced the data-centric model as an alternative to the Volcano model. In the data-centric
model, tuples are pushed towards the root operator, rather than pulled. Query plans are
subdivided into pipelines, which are defined by operators between materialization points
(such as a sort or aggregation operation). The system produces tight loops in which tuples
are processed one at-a-time. The goal is to minimize data movement by keeping values
in registers as long as possible, and HyPer manages to obtain excellent performance using
this approach. HyPer uses the LLVM [26] compilation framework to produce efficient
machine code.

Commercial examples include (among others) Hekaton [13] and Impala [48]. Hekaton
is an in-memory database engine which is integrated in Microsoft SQL Server [28]. For the
Hekaton project, Freedman et al. set as a design goal to increase throughput by 10-100X.
To reach that goal they (i) optimized indexes for main-memory, (ii) removed all latches
from data structures and (iii) implemented JIT-compilation for stored procedures. Several
layers of abstractions are used: SQL is compiled into a mixed abstract tree (MAT) (similar
to an abstract syntax tree), which is compiled to a pure imperative tree (PIT). The PIT
in turn is compiled into C code, which is finally compiled into assembly. The decision to
first compile from MAT to PIT, rather than from MAT to C, was made because of the
large gap between SQL and C. For instance, C does not support null values or warnings
for arithmetic errors such as integer overflow. Hekaton produces code that is contained by
a single function, and operators are connected solely using labels and goto-statements, in
an effort to keep values in registers as long as possible. Unlike HyPer, Hekaton does not
go to lengths to keep compilation times down, but they report that most queries compile
in less than a second. This is deemed sufficient, as compilation only happens for stored
procedures (which, of course, makes the system somewhat limited).

Impala is an MPP database based on Hadoop [43]. It has an interpreted execution
engine, but can JIT-compile certain functions to specialize them for the query at hand, by
removing conditional statements and replacing load instructions with literals where pos-
sible, as well as replacing virtual function calls with the actual function calls. Although
it significantly improves function performance, overall speedups are relatively limited be-
cause functions are still called on a tuple-at-a-time basis.
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2.3.3 Abstraction without regret

There is a large semantic gap between a high-level declarative SQL query and low-level im-
perative machine code, which makes developing a query compiler far from trivial. Hekaton
uses multiple layers of abstraction to bridge this gap. HyPer in turn introduces relatively
high-level abstractions in C++ that are optimized away at compile-time to ease develop-
ment [31]. Yet, in [23], Koch argues that these systems still work on a level of abstraction
that is too low. Most databases (including HyPer, Hekaton and Impala) are implemented
using low-level programming languages (PL) such as C/C++, which is deemed necessary
because of the perceived low performance of high-level PLs. However, the downside of us-
ing a low-level PL is that it can hurt programmer performance, and introduce hard-to-find
bugs.

Koch argues that another downside of using a low-level PL is in fact a decrease in
performance, because (i) too much developer time is wasted on the intricate details of
using a low-level language rather than the implementation of features and optimizations,
and (ii) some automatic optimizations (such as loop fusion) are only realistic in higher
levels of abstraction. He therefore proposes a principle called abstraction without regret.
Rather than implementing the system in a low-level PL from the start, multiple levels
of abstraction are needed, so that the system can be defined in a high-level abstraction
and lowered to machine code one step at a time. Specific compiler optimizations should
be defined at each level of abstraction, such as loop fusion at higher levels, and register
allocation at the lowest level. By moving the burden of writing performant code to the
compiler, the system as a whole can be more performant than when directly written in a
low-level PL, while retaining the abstraction benefits of high-level PLs.

2.3.4 High-level query compilers

The first project to follow the abstraction without regret philosophy is LegoBase [22].
Klonatos et al. identified a number of problems with the state-of-the-art query compilers.
Virtually all of them are based on the concept of code template expansion, in which code
is generated in a single step from a query plan by replacing an operator node with a
code template. Template expansion is hard to maintain, and can make cross-operator
optimizations impossible. Moreover, all previous query compilers only compile queries,
but not the system itself, missing inlining opportunities. Finally, although systems such
as LLVM support runtime optimizations, many optimizations (such as AQP) are only
possible using abstractions that operate on a much higher level than LLVM (as we have
seen in the previous subsection).

To account for these problems, LegoBase was developed in Scala [45], a high-level
(impure) functional PL. The Scala code is compiled to optimized, low-level C code which is
specific to a given SQL query. Generative programming is applied, which allows automatic
removal of abstraction overhead and supports optimizations on multiple abstraction levels.
It is set apart from the competition by continuous runtime optimization of the whole query
engine, meaning that the entire system is recompiled based on runtime information, rather
than only queries. LMS [38] is used as the compilation framework, which can optimize
Scala code on-the-fly, but was adapted by LegoBase to also compile to C code. The
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authors claim to significantly outperform HyPer, but to gain these results they needed to
resort to non-TPC-H-compliant indexing and precomputations [44]. Also, LegoBase does
not support parallelism. Finally, it should be noted that the additional abstractions do
seem to come at a price: a compilation time of about 2s is reported [22] for compiling
TPC-H Q5, as opposed to 34ms in HyPer [29]. Similar differences can be seen for other
TPC-H queries (unfortunately, [29] only reports the compilation times of a limited number
of queries).

How to Architect a Query Compiler

How to Architect a Query Compiler [42] provides a principled methodology for building
query compilers, based on the abstraction without regret principle. The methodology is
demonstrated by the development of DBLAB, which is a re-implementation of LegoBase.
Like LegoBase, the system is built in Scala, uses LMS, and only supports single-threaded
execution. Shaikhha et al. again argue for a multi-pass compiler, progressively lowering
high levels of abstraction into low-level machine code. The paper was recently revisited by
Tahboub et al. in [44], which demonstrates that the added complexity of multiple compiler
passes is in fact unnecessary, even when using a high-level PL. The result is L2B, a DBMS
implemented in Scala, using single-pass compilation.

The main idea of L2B comes from Futamura projections [14]. Futamura found that
“compilation can be profitably understood as specialization of an interpreter, without
explicit reference to a given hardware platform or code generation strategy” [44]. Spe-
cializing an interpreter to a query boils down to removing all abstractions until all that is
left are the minimum number of operations that are required to execute the query. L2B
implements this concept by first implementing a traditional query interpreter in Scala.
Using LMS, the interpreter can be specialized (partially evaluated) given a query, which
produces optimized C code. The C code is then compiled into machine code and executed.
Specialization goes as far as simple data structures, e.g. hash maps and records are com-
piled into native C types and arrays. In this model, the task of the programmer is mostly
limited to writing an interpreter1, while the compiler is responsible for writing efficient
code. The authors claim that L2B is the first system developed in a high-level language
to match or even beat the performance of HyPer.

2.3.5 Weld

Another data processing framework that uses JIT-compilation is Weld [32]. Weld is a
runtime and programming language aimed at improving the performance of data-intensive
applications, by optimizing across libraries. This is done using the combination of a lazily
evaluated intermediate representation (IR), a runtime API, and an optimizer. Libraries
represent their computations in the IR, and submit them to Weld through the API. When
a user forces evaluation (e.g. printing a result), the IR is optimized, compiled to machine
code using LLVM, and executed. The optimizer performs optimizations such as loop fusion
and SIMDization. Because Weld code is lazily evaluated, it can perform optimizations
across functions that otherwise would not be possible, such as fusing a filter and map

1Some care needs to be taken to make sure efficient machine code can be derived from the interpreter.
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function into a single loop. This means that less data will be materialized, improving
overall performance. In a sense it follows the abstraction without regret principle: Weld
defines a high-level DSL which enables optimizations that are not possible in the much
lower level LLVM it produces. However, much like systems such as HyPer, the engine
relies on template expansion to generate code.

2.4 Contributions

While AQP and JIT-compilation can both offer significant speedups in database systems,
little work has been done on the intersection of the two. A notable exception is [24].
When a query is complex to compile, but quick to execute, the compilation time can
easily dominate the total runtime, at which point interpretation is more efficient. For
longer running queries compilation may be much faster. Kohn et al. present a strategy
that adaptively decides to interpret a query or compile it to machine code. Compiled
queries are initially not optimized by the compiler, but the system can also adaptively
decide to do so if the query runs long enough.

Although it introduces adaptivity in a JIT-compiling system, it does not do so at
the execution plan level. Integrating adaptivity in a JIT-compiling system is challenging
because the number of variants to choose from and to compile increases exponentially in
the number of adaptive choices that are made in a pipeline. Also, JIT-compilation typically
processes data tuple-at-a-time, which makes it harder to measure the performance of an
operator while keeping bookkeeping costs down. This research is a first attempt2 to
integrate adaptivity into Weld, a JIT-compiling data processing framework, and this is
therefore our main contribution. Our main focus is on keeping compilation times down,
as well as defining operator flavors in Weld. Furthermore, we introduce the concept of
loop-adaptivity, which is an extension of micro-adaptivity that is better suited to the
data-centric nature of typical query compilers.

2A recent paper ([33]) does introduce adaptivity in Weld, in the form of adaptive hash tables as well as
adaptive predication based on measured predicate selectivity. However, the first is entirely pre-compiled
and therefore not novel, while the second only considers extremely limited cases, where for-loops contain
only a single predicate. It also only considers static cases.
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Chapter 3

Weld

Weld [32] is a runtime and programming language aimed at improving the performance
of data-intensive applications, by optimizing across libraries. This is done using the com-
bination of a lazily evaluated intermediate representation (IR), a runtime API, and an
optimizer. In this chapter, we will take a look at the implementation of Weld. We will
summarize the IR, the optimizer, code generation and the runtime.

3.1 Overview

Weld consists of roughly three components: an IR in which users express their computa-
tions, a runtime API through which the computation is submitted, and finally an optimizer
that optimizes the IR and emits machine code before evaluation. The parser and opti-
mizer are implemented using Rust, which provides constructs such as pattern matching
that eases the development of a compiler. Code is generated using LLVM [26], while the
Weld runtime is mostly implemented in C++.

3.2 Internal representation

Computations in Weld are expressed using Weld’s own IR. The IR was designed with three
goals in mind:

1. Generality: the language should be general enough in order to be usable for a wide
range of data analytics applications.

2. Optimizability: the language should be well suited for optimizations such as loop
fusion and SIMDization.

3. Parallelism: the IR should be explicitly parallel so that efficient parallel machine
code can be automatically generated from the IR.

The result is a small language inspired by functional programming languages. In this
section we will give a brief (and incomplete) overview of the core of this IR.
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Table 3.1: Value types in Weld

Type notation Description

bool A boolean value

i8, i16, i32, i64 Signed integers of 8, 16, 32 and 64 bits respec-
tively

u8, u16, u32, u64 Unsigned integers of 8, 16, 32 and 64 bits re-
spectively

f32, f64 32 and 64 bit precision floating point values

vec[T] Vector with elements of type T

dict[K, V] Dictionary with keys of type K and values of
type V. Keys must be scalars or structs of
scalars.

{T1, T2, ..} A struct where the members are of type T1, T2,
and so forth.

simd[T] A SIMD register with a fixed number of values
of type T

3.2.1 Data types

The Weld IR is a functional programming language based on expressions. Because it
is functional, only constant types are supported. Data types can be roughly divided
into “value” data types and “builder” data types. Value types contain scalars such as
integers and floats, and collections in the form of vectors (growable arrays), dictionaries
(hash tables) and structs. More complex collections can be formed by nesting them. For
instance, the result of a group by operation would typically be a dictionary with a scalar
or struct as key type and a vector as value type. Other value types include strings, which
are implemented by vectors of bytes, and the SIMD type which represents a fixed number
of scalars that can be used with SIMD operations, similar to the vector type in LLVM
[26]. Table 3.1 shows a full list of value types supported by Weld.

Builder types are used to construct new value types in parallel, by “merging” values
into them in parallel and finally producing some result. The type of result depends on
the type of the builder. For instance, appender[T]s construct vectors of type T, while
merger[T,+]s can be used to generate the sum of values of type T. Table 3.3 lists the
available builders in Weld.

merger, dictmerger and vecmerger all apply a commutative binary operation on
the values that are merged into it. Currently, Weld supports addition, multiplication,
minimum and maximum operations.

3.2.2 Basic expressions

Weld supports a relatively limited number of expressions and functions. We will name the
most relevant ones to us below:

• Operators: Weld supports common binary and unary operators, both arithmetic (+,
-, /, *, min, max, pow), logical(>, <, >=, <=, ==, !=, &&, ||) and bitwise (&, |, ^).

• Let-expressions: Let-expressions are of the form let C = E1; E2. This evaluates
E1, assigns its value to a constant named C, and then evaluates E2 and returns its
result.

• Conditional expressions: Conditional expressions can be of two forms: if(C, T, F)

which first evaluates C, and then branches to either T or F and returns its result,
depending on the value of C. select(C, T, F) is the predicated version which always
evaluates both T and F, and returns T or F based on the result of C.

• Lookup: lookup(dict, key) and lookup(vec, index) return an element from
either a dictionary or a vector. The result of a dictionary lookup for a key that does
not exist is undefined.

• Key existence: keyexists(dict, key) is used to check if a dictionary contains a
value for some key.

• Struct member access: structs have unnamed members, and are indexed by an
integer using struct.$0, struct.$1, etc.
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Table 3.3: Builder types in Weld

Type notation Description

appender[T] Appends values of type T to an (initially empty) vec[T].

merger[T], binop Applies a commutative binary operation on values of type
T, resulting in an aggregated value of type T.

dictmerger[K, V, binop] Groups structs of {K, V} by K, and applies binop on the
groups, resulting in a dict[K, V]

groupmerger[K, V] Groups structs of {K, V} by K, resulting in a dict[K,

vec[V]]

vecmerger[T, binop] Groups structs of {i64, T}, where the first value is an
i64 which indexes some predefined vector. Applies binop
on each group, and results in a vec[T]

• Functions: functions in Weld are lambdas, i.e. they are anonymous. Functions are
passed as arguments to a variety of expressions, and a full Weld program is also
defined as a single lambda. The syntax is as follows: |arg1, arg2, ..| body,
where the arguments are names that can be referred to in body. A function returns
the value that body evaluates to.

3.2.3 Builder expressions

Builders are used in three expressions, which form the core of the language: merge, for
and result. merge(b, v) is used to add a value v to a builder b, and returns a new
builder representing the result. The old builder is consumed in the process. for(vector,
builders, func) also consumes and produces builders. The for-expression applies a
function of type (builders, index, element) => builders on each element of vector
to merge values into one or more builders in parallel. Because the for-expression accepts
an arbitrary number of builders as argument, a single for-loop can be used to compute
multiple values, such as a vector and a sum. Finally, result(b) can be called on a builder
to produce the value that should be produced from the previously merged values. result
should only be called once on a builder, although this is not enforced by Weld.

3.2.4 Examples

Listing 3.1 and 3.2 show code snippets demonstrating the use of builders. Note how the
the two code blocks are almost identical except for the type of builder, and therefore yield
a very different result. Listing 3.3 demonstrates a for-loop that uses two builders: one to
compute the squares of the elements of some input vector, another to compute its sum.
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Listing 3.1: Building a vector.

1 # Evaluates to [1, 2, 3]

2 let b1 = appender[i32];

3 let b2 = merge(b1 , 1);

4 let b3 = merge(b2 , 2);

5 let b4 = merge(b3 , 3);

6 let vec = result(b4);

Listing 3.2: Summing integers.

1 # Evaluates to 6

2 let b1 = merger[i32 , +];

3 let b2 = merge(b1 , 1);

4 let b3 = merge(b2 , 2);

5 let b4 = merge(b3 , 3);

6 let sum = result(b4);

Listing 3.3: Squaring a vector element wise and summing the vector in a single loop.

1 # Evaluates to {[1, 4, 9], 6}

2 let v = [1, 2, 3];

3 result(

4 for(

5 v,

6 {appender[i32], merger[i32 ,+]},

7 |bs,i,e|

8 {merge(bs.$0, e * e), merge(bs.$1 , e)}

9 )

10 )

A more complicated example is shown in listing 3.4. This is an example of a full Weld
program that joins a table R and S on R k = S k, and selects columns R k, R a and S -

b. Note that the program is a lambda, which takes the input data as arguments. First,
a hashtable mapping keys from S k to values of S b is created using the groupmerger

builder. Note the zip-expression at line 4, which can only be used in for-expressions, and
maps an arbitrary number of vectors into a vector of structs. Hence, e at line 6 is a struct
with an element of S k as the first member, and an element of S b as the second member.
When the hash table is created, we iterate over R. For each row, we check if there are
rows in S with S k = R k. If so, the values are retrieved using the lookup-expression, and
the group is iterated over in another for-expression. This for-expression simply appends
the appropriate columns to the result. If the table does not contain any values for R k,
an unchanged builder is returned, which means that no values are appended during that
iteration.
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Listing 3.4: Basic examples of builder expressions

1 |R_k:vec[i32], R_a:vec[i32], S_k:vec[i32], S_b:vec[i32]|

2 # Build a dictionary that maps S_k to S_b

3 let s_table = result(for(

4 zip(S_k , S_b),

5 groupmerger[i32 , i32],

6 |b,i,e| merge(b, e)

7 ));

8 result(for(

9 zip(R_k , R_a),

10 appender [{i32 , i32 , i32}],

11 |b,i,e_r|

12 # Check if the current R_k is in the dictionary

13 if(keyexists(s_table , e_r.$0),

14 # Append items in group on true

15 let group = lookup(s_table , e_r.$0);

16 for (group , b, |b,i,e_s|

17 merge(b, {e_r.$0 , e_r.$1 , e_s})

18 ),

19 # Return unchanged builder on false

20 b

21 )

22 ))

3.2.5 Annotations

Weld also allows expressions in the IR to be annotated using the following syntax: @(key1:
value1, key2: value2, ...). This can be done to give hints to the optimizer about
what kind of optimizations should be performed, or the kind of builder implementation
that should be used.

3.3 Optimizer

The second main component of Weld is called the optimizer, but encompasses more than
just IR optimization. It is responsible for parsing strings of Weld code that are submitted
through the API into an abstract syntax tree (AST). The optimizer then proceeds to
apply general optimizations on the IR, such as loop fusion and SIMDization. When all
the optimization rules have been applied, the Weld IR is compiled into another IR, referred
to as Sequential Internal Representation (SIR), which in turn is compiled into LLVM IR.
Finally, the LLVM IR is compiled by the hardware backend into executable machine code.

3.3.1 Optimization passes

The strength of Weld comes from its ability to optimize across libraries and function
boundaries. These optimizations are modeled after LLVM, which applies hardware in-
dependent optimizations on its IR before passing the program to a hardware backend.
Optimization happens during optimization passes, each of which can be uniquely enabled
or disabled. Passes are implemented using pattern matching rules on (sub-trees of) the
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AST. Passes are performed in a predefined order (which can be altered by the user), and
each pass is repeated until the AST does not change anymore. The following passes have
been implemented in Weld:

• Inliner: mandatory optimization pass that inlines function calls and let-expressions.

• Loop fusion: fuses loops horizontally and vertically. Horizontal loop fusion implies
fusing two loops over the same vector into a single for-loop. Vertical loop fusion
means fusing two loops where one loop produces the input of the second loop, such
as a filter operation followed by a map operation.

• Unroll static loop: unrolls small loops into a series of lookup-expressions. Requires
that the loop size is known at compile time.

• Infer size: infers the size of output vectors statically, allowing for more efficient
memory allocation.

• Short circuit booleans: transforms if-expressions of the form if(C1 && C2 .., T,

F) into if(C1, if(C2, T, F), F).

• Predicate: transforms if-expressions annotated with the predicate annotation into
equivalent unconditional select-expressions.

• Vectorize: transforms for-loops with simple inner bodies into for-loops with SIMD
data types, which are later compiled into SIMD instructions.

3.3.2 Code generation

After the IR has been optimized as much as possible, IR is turned into machine code.
Because the gap between LLVM IR and the rather functional style of Weld is quite large,
Weld is first compiled into another IR called Sequential Internal Representation (SIR). A
SIR program is composed of a series of functions, which are composed of blocks of state-
ments and function arguments. Blocks of statements are always terminated by terminator
statements, which include jumping to another function, a for-loop, or terminating the
program and returning a result. Listing 3.5 shows an example of a simple Weld program
that computes the squares of a vector x. Listing 3.6 shows the SIR code this compiles
into.

Listing 3.5: Weld program that computes the squares of each element in a vector

1 |x:vec[i32]|

2 result(

3 for(

4 x,

5 appender[i32],

6 |b,i,e| merge(b, e * e)

7 )

8 )
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Listing 3.6: SIR program that computes the squares of each element in a vector

1 F0:

2 Params:

3 x: vec[i32]

4 Locals:

5 fn0_tmp: appender[i32]

6 B0:

7 fn0_tmp = new appender[i32 ]()

8 for [x, ] fn0_tmp b i x__1 F1 F2 true

9
10 F1:

11 Params:

12 fn0_tmp: appender[i32]

13 x: vec[i32]

14 Locals:

15 b: appender[i32]

16 fn1_tmp: i32

17 i: i64

18 x__1: i32

19 B0:

20 fn1_tmp = * x__1 x__1

21 merge(b, fn1_tmp)

22 end

23
24 F2:

25 Params:

26 fn0_tmp: appender[i32]

27 Locals:

28 fn2_tmp: vec[i32]

29 B0:

30 fn2_tmp = result(fn0_tmp)

31 return fn2_tmp

The SIR program consists of three functions: F0, F1 and F2. F0 is the entry point of
the program, and takes as parameters the input data of the Weld program, in this case
the vector x. It initializes a new appender fn0 tmp, and then terminates with a parallel
for statement. The for statement takes two functions as argument: a body function and
a continuation function (F1 and F2 respectively). F1 is repeatedly called on every element
of the input vector, until the whole vector has been processed. Finally, the continuation
function F2 is called, which produces the vector of squares with the result statement, and
returns it.

3.3.3 LLVM

After generation of the SIR program, LLVM IR can be generated. The Weld team decided
against using the LLVM libraries for code generation, but instead chose to “manually” emit
LLVM IR using string concatenation. The obvious downside of this approach is that this
is relatively slow, as the IR string has to be parsed by the LLVM backend directly after
producing it before the program can be compiled.

The LLVM program produced by Weld largely follows the same structure as the SIR
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program. Each function Fx in SIR corresponds to a function @fx in Weld. On top of that,
some extra functions are generated that are meant as callbacks for the runtime. Every
Weld program contains a function @run(%i64 input). This function extracts its input
data from the provided pointer, calls the runtime to start execution, and finally collects
the result of the computation and returns it. After generating the LLVM IR it is passed
to the LLVM backend, which performs its own optimizations on the code, and finally
generates machine code.

3.4 Execution engine

The last component of Weld is the runtime API. The API is responsible for collecting
Weld code fragments, passing it to the optimizer, and finally executing the resulting code.
In this section we will focus on the implementation of the latter.

Every Weld program starts with a call to weld run begin, which takes a function and
some data for that function as arguments. weld run begin creates a data structure of
type work t, which represents a task to be executed. A work t has pointers to the task
function and data, and tracks the lower, upper and current index of loop iterations if the
task is a loop body. The task is then pushed onto the executing thread’s local work queue,
and popped again to start execution of the program.

3.4.1 Parallelism

In principle, all code is run sequentially, until a for-statement is executed. A for statement
can either be executed sequentially, by directly calling its body and continuation functions,
or in parallel, by calling the runtime function weld rt start loop. The loop is executed
in parallel when either:

• the loop is bigger than the minimum grain size1;

• the loop has an inner loop;

• the loop is specifically annotated to always use the runtime.

Note that only inner loops are ever run sequentially, even if an outer loop has a very
small number of iterations. weld rt start loop is responsible for creating tasks for the
loop, and pushing them on the queue. If the loop is an outermost loop, two tasks are
created: a loop body task and a continuation task. The body task has a pointer to the
loop body function, and tracks the lower and upper bound of the vector that the function
may iterate over. The continuation task has a pointer to the function that should be run
after the loop has finished execution. Only the body task is pushed onto the queue, but the
body task has a pointer to the continuation task so that it can be pushed onto the queue
as soon as the body task is finished. This ensures that, in a multithreaded environment,
the continuation task is never run before the end of the body task. If the loop is nested

1The grain size is a user controllable variable that defines the number of iterations that should be
processed by a single sub-task, which we will discuss shortly.
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inside some other loop, the current task (which relates to the outer loop) is aborted, and
a new task is created for the remaining iterations. This ensures that merges are correctly
ordered.

To parallelize the work of a for-loop, a work-stealing strategy is employed. Before
execution, tasks are split so that no task is larger than a user controllable grain size, and
pushed on the thread’s local queue before proceeding execution with the first task. When
no more tasks are left on the local queue, the worker repeatedly tries to steal tasks from
a random victim until it either received a new task, or the program terminated. Upon
completing a task, finish task is called. finish task checks if there are any sibling
tasks still executing. If not, the continuation task is pushed on the queue, and execution
continues. If no continuation task exists, the program terminates, after which the result
can be retrieved by means of another runtime call.
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Chapter 4

Opportunities for Loop-Adaptivity

Micro-adaptivity was first proposed in Vectorwise [52]. In [40] Răducanu et al. defined
micro-adaptivity as “the property of a DBMS to continuously choose between primitive
flavors at runtime with the goal of minimizing the overall query execution time, choosing
the most promising flavor based on real time statistics”. A primitive in Vectorwise is
a function that implements some operator (such as selection), and typically operates on
a large number of tuples (a vector) at-a-time to amortize interpretation overhead. A
primitive can have multiple flavors: different implementations of a primitive that compute
the same result in different ways. Primitives are well-suited for micro-adaptivity: because
they work on vectors rather than single tuples, the overhead of measuring is automatically
amortized. Moreover, because a primitive implements a single operation, the number of
alternative flavors is limited.

Unlike Vectorwise, Weld does not have the notion of primitive functions that operate
on multiple tuples at-a-time. Weld’s approach to eliminating interpretation overhead
is JIT-compilation, allowing it to fuse many operators together into a single pipeline.
Unfortunately, this prevents us from measuring the performance of a single operator, as
the associated overhead would be too costly. Instead, we will look at a bigger scale: parallel
for-loops (a concept which we call loop-adaptivity). As mentioned in the previous chapter,
loop bodies are executed by tasks, which are subdivided into a large number of smaller
tasks, each operating on their own part of the input data. By measuring the performance
of a single subtask we can find out how a pipeline of operators is performing while keeping
overhead low. Therefore, when we refer to flavors in Weld, we mean a set of different
implementations for the same loop body function.

The downside of this approach is that identifying flavors becomes less obvious. Instead
of a well-defined set of primitives, we can have an infinite number of different for-loops,
and consequently an infinite number of flavors of these loops. In this chapter we will look
at potential flavors for loop bodies in Weld. We are interested in flavors that perform
better than other flavors in some cases, but not all, motivating the use of loop-adaptivity.
We will only look at relatively simple loops, for which the number of flavors will be limited.
However, the system will ultimately have to be able to deal with complex loops with a
high number of flavors.
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4.1 Experimental setup

Table 4.1 shows basic information about the machines that were used for the experiments.
For each experiment a number of different flavors of the same query were run for varying
selectivity values. Each experiment was repeated 5 times, and for each experiment only
the minimum execution time was recorded, ignoring compilation times. The queries were
run on data with varying scale factors on machine 1 and machine 2, while machine 3 only
ran the smaller scale factors due to its limited memory size. Machine 1 has two of the
CPUs listed in the table, but numactl was used to make sure only one was ever used.

Table 4.1: Test machine details

Name CPU Clock Speed #Threads RAM

M1 Intel Xeon E5-2650 2.0 Ghz 16 256 GB

M2 Intel Core i7-2600K 3.4 Ghz 8 16 GB

M3 Intel Core i5-6360U 2.0 Ghz 4 8 GB

4.2 Selective versus full computation

Many real-world queries project and select data. This can be done using two separate
loops: the first filters the data and stores it in an intermediate array. The second loop
iterates over the intermediate array, performs some computation on each element, and
stores it in the final result. Weld optimizes operations like these by fusing the two loops
into a single loop. This loop iterates over the input array, checks the predicate and
immediately projects the tuple if it satisfies the predicate. This is generally more efficient
because the intermediate results are not materialized.

However, if the selection expression cannot be predicated, the loop fusion optimization
denies the possibility of SIMDizing the projection, another important optimization that
Weld applies. Therefore, in some cases it may actually be worthwhile to keep the loops
separate, so that the projection part can be SIMDizing. We expect this to be true when
execution cost of the projection calculations is higher than the time needed to materialize
the intermediate results. Another factor that should affect the effectiveness of SIMD is the
size of the data type. The fewer bytes that are needed to store a value, the more values
fit in a SIMD register, improving overall performance.

4.2.1 Flavors

As an example, take a query that computes the product of each element in two columns,
but only if the element in the first column equates to 42. Listing 4.1 shows the Weld code
for a fused loop.
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Listing 4.1: Fused selection and projection loop

1 result(for(

2 zip(v1 , v2),

3 appender[i32],

4 |b,i,e| if(e.$0 == 42, merge(b, e.$0 * e.$1), b)

5 ))

Because merge-expressions that return an appender cannot be predicated by Weld,
the loop will keep its if-expression, which cannot be SIMDized. Listing 4.2 shows Weld
code where the same query is implemented using two different loops: the first filters the
data, while the second performs the projection.

Listing 4.2: Filter first, unvectorizable projection

1 let filtered = result(for(

2 zip(v1 , v2),

3 appender [{i32 , i32}],

4 |b,i,e| if(e.$0 == 42, merge(b, e), b)

5 ));

6 result(for(

7 filtered ,

8 appender[i32],

9 |b,i,e| merge(b, e.$0 * e.$1)

10 ))

Unfortunately, neither of these loops can be SIMDized either. The problem here is
that Weld cannot SIMDize a loop when its input is a vector of structs, but only when its
input is a struct of vectors with scalar elements (using the zip-expression). The Weld code
that achieves just this is shown in listing 4.3. Here, the first loop explicitly generates two
different vectors, rather than a single vector that contains both columns. The downside
of this is that we have more merge-expressions in the selection loop, which implies more
overhead. The upside is that the projection loop can now be SIMDized.

Listing 4.3: Selection first, vectorizable projection

1 let builders = result(for(

2 zip(v1 , v2),

3 {appender[i32], appender[i32]},

4 |bs ,i,e| if (e.$0 , {merge(bs.$0 , e.$0), merge(bs.$1 , e.$1)}, bs)

5 ));

6 result(for(

7 zip(result(builders.$0), result(builders.$1)),

8 appender[i32],

9 |b,i,e| merge(b, e.$0 * e.$1)

10 ))

Another approach is full computation [41]. Rather than performing the selection first,
we can also compute the projection on the input vectors in its entirety, and selection
afterwards. Although this means that the projection loop will perform some computations
that are unneeded, it may be faster if the predicate selects most of the data. Moreover, this
implementation does not force us to use more merge-expressions than strictly necessary,
reducing the associated overhead. Listing 4.4 shows the corresponding Weld code. Note
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that the builder in the projection loop takes the length of the input vector as an argument.
This tells Weld that the vector is a fixed size array, rather than a growable one.

Listing 4.4: Full computation

1 let mapped = result(for(

2 zip(v1 , v2),

3 appender[i32](len(v1)),

4 |b,i,e| merge(b, e.$0 * e.$1)

5 ));

6 result(for(

7 zip(v1 , mapped),

8 appender[i32],

9 |b,i,e| if (e.$0 == 42, merge(b, e.$1), b)

10 ))

Because of Weld’s limitations we do not expect the unfused filter first strategies to
perform better than a fused loop. The first strategy simply cannot be SIMDized, and
therefore will only suffer from the additional materialization, while the second strategy
suffers from even higher materialization costs. However, full computation may be faster
overall if selectivity is high enough.

4.2.2 Experiment

Figure 4.1a shows how the execution time of the different flavors that were discussed
above depend on query selectivity. The query that was run is essentially the same as
the examples used above, although it now consumes 6 input columns rather than 2, and
contains a more complicated projection (11 multiplications and 1 addition). Figure 4.1b
shows the speedup of each flavor compared to the fused variant. As expected, the fused
loop performs better than filtering first. Among the two different strategies for filtering
first, outputting a struct of vectors is even worse than the outputting a vector of structs,
despite the performance gains from SIMDization. This has to do with the high overhead
of merges using an appender, which we will discuss in the next subsection. Although full
computation performs better for higher selectivity values, at no point it comes close to
the fused variant.

4.2.3 Discussion

Unfortunately, this case is not a candidate for adaptive execution, as the fused flavor seems
to be always better than other flavors. This contradicts the result in [40]. We suspect that
this has to do with poor performance of merge operations of appender types, which makes
materializing intermediate results too expensive. We identified the following problems in
the LLVM code generated by Weld that likely contribute to these materialization costs:

• For every merge operation, an appender type calls a runtime function to get pointers
to its size, capacity and data. Even if this is inlined, it still appears to cost about
10 LLVM operations per merge. There is no reason for doing this for every loop
iteration, and moving the operations out of the loop should decrease the overall
merging overhead.
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(a) Flavor runtime by selectivity (b) Speedups compared to fused loop flavor

Figure 4.1: Execution time and speedup for the different select-project flavors.

• For every merge operation, the capacity of the vector and the current number of
elements in it are compared. If the vector is full, the capacity is doubled and memory
is reallocated accordingly. The capacity check is therefore done N times in the worst
case, where N is the size of the vector that is iterated over. This could be improved
to only log(N) iterations by creating an inner loop that, after doubling capacity, will
iterate as long as the remaining capacity without performing intermediate capacity
checks.

• Even when a fixed-size appender is used (as is the case for the map first strategy),
the capacity check is performed. However, since fixed size vectors are never resized,
this could be removed entirely.

• The typical way of outputting multiple columns is by producing a vector of structs,
rather than multiple vectors1. The problem with this approach is that in these cases
a SIMD register cannot be stored in the vector by a single store operation, because
the values of a single column are not stored consecutively. Instead, the SIMD register
has to be unpacked, and each value has to be stored separately. This reduces the
benefits of SIMDization.

• Some of the above mentioned problems could likely be solved by the compiler, but
the generated LLVM code lacks the necessary compiler hints to make this possible,
such as const or noalias attributes.

Figure 4.2 shows a timeline of the different tasks of the fused loop (selective computa-
tion) as well as the full computation variant, where selectivity is set to 1. The y-axis shows

1As we have seen, building a struct of vectors is more expensive than building a vector of structs,
probably because of the aforementioned issues with appender.
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the tasks that are run for each variant. The initial task for selective computation performs
little work, as all it does is calling the runtime to start the fused selection-projection-loop.
The materialize task materializes the builder into a vector. The full computation variant
has more tasks. The map and filter tasks are responsible for the map and filter loops
respectively. Materializing the builder from the map-loop is virtually free, because this
builder is a fixed-size appender, and so all memory has been allocated up-front. The costs
for this allocation is reflected in the additional runtime in the initial task.

(a) Selective computation (b) Full computation

Figure 4.2: Timeline of different tasks for selective computation and full computation.

We can see that, despite moving the computation out of the loop, the selection loop is
barely faster than the fused loop, despite the high number of projection operators versus
a single conditional operator. This again suggests that the bulk of the execution time goes
towards materialization. The projection loop is considerably faster than the selection loop,
likely because SIMDization actually has a positive effect on materialization overhead as
well: the SIMDized loop will iterate w times less than its equivalent scalar loop, where w
is the number of values that fit in a SIMD register. This results in w less load operations
and capacity checks.

SIMDization

Another issue we encountered is the quality of the generated SIMD code. First of all,
Weld currently only supports LLVM vector types (a datatype in LLVM that represents
a SIMD register) that contain 4 values. This is a conservative approach and does not
take advantage of modern hardware that support SIMD registers with widths up to 512
bits (and so can contain 4 times as many 32 bit integers). Moreover, upon inspecting
the generated machine code we found many unnecessary shuffle in between the actual
multiplication operations. According to the Weld team this is because Weld does not
instruct LLVM to target the specific feature set that the host machine has, but instead
assumes a conservative default target with a very limited number of SIMD features.

4.3 Branching versus predication

The second potential case for loop-adaptivity that we examined was conditional branching
versus predicated operators. Branching operators first evaluate a predicate, and then
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execute one of two branches, depending on whether the predicate is true or not. Branching
is implemented in Weld by the if-expression. Its predicated counterpart is select. Unlike
if, select always executes both branches, but only returns the value of one of them, again
depending on a predicate. The major advantage of select-expressions is that they can
be SIMDized, unlike if-expressions.

4.3.1 Branch prediction and selectivity

The execution of a CPU instruction goes through a number of phases. Among other
things, an instruction needs to be fetched, executed, and a result is written back to a
register. To increase throughput, modern CPUs try to perform as many of these tasks at
the same time, e.g. while some instruction is executing, the next is already being fetched.
This technique, referred to as pipelining, works well as long as the CPU knows which
instruction will be executed next. However, this is no longer true when future instructions
depend on the outcome of earlier instructions, as is the case for conditional branching. In
this case the CPU has to predict which branch is most likely to be taken. If it is right, it
will benefit from pipelining, but if it made a misprediction the incorrect instructions will
have to be rolled back, causing a delay.

Branch prediction is based on the history of the branches taken. Branch prediction
will be accurate if a branch is rarely taken or taken most of the time. However, when
a branch’s selectivity is around 50% it becomes hard for the CPU to predict the next
branch that will be taken, resulting in relatively poor performance. Unlike branching
expressions, the performance of predicated expressions does not depend on the selectivity
of its predicate. Therefore, when the CPU has a hard time predicting the correct branch,
a predicated expression may be faster than a branching one. On the other hand, when a
CPU can accurately predict a branch, the predicated variant may perform worse because
it is doing more work than necessary. The choice between branching and predication could
thus very well be something that should be done adaptively.

4.3.2 Flavors

In this case, we are dealing with two simple flavors, where each flavor corresponds to a
different expression: if and select. Listing 4.5 shows Weld code that counts the number
of elements with a value of 42 in a vector using the classical branching approach, while
listing 4.6 shows its predicated variant.

Listing 4.5: Counting 42s using branching

1 result(for(

2 input ,

3 merger[i32 ,+],

4 |b,i,e| if (e == 42, merge(b, 1), b)

5 ))
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Listing 4.6: Counting 42s using predication

1 result(for(

2 input ,

3 merger[i32 ,+],

4 |b,i,e| merge(b, select(e == 42, 1, 0))

5 ))

The branching variant simply checks the predicate, and merges the value if it is satis-
fied. If not, the unchanged builder is returned, effectively bypassing the merge operation
entirely. In the predicated version a merge is always performed, but the value that is
merged into the builder depends on the predicate. If the predicate is true, this value is
the element itself. If it is false, 0 is merged, which has the same effect as not calling the
merge operation. Although this clearly performs more work, it does not suffer from branch
mispredictions and it can be SIMDized.

4.3.3 Experiment

The flavors of the previous subsection were ran for data with a number of different se-
lectivities, ranging from 0 to 1. The query was slightly altered to increase the execution
time of the true branch: the query loops over 6 columns, and if an element of the first
column satisfies the predicate, all columns are projected to a single value. The projection
performs 8 additions and 3 multiplications.

(a) Single thread (b) Eight threads

Figure 4.3: Total execution time of branching and predicated flavors of a query as a
function of selectivity.

Figure 4.3 shows the execution time of these queries on machine 1. The queries were
run on a single thread as well as using 8 threads, shown left and right respectively. We
can clearly see that for low and high selectivities the branching expression is preferred,
while for other values the predicated version performs better. Moreover, the point at
which predication becomes better than branching differs depending on the number of
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threads used. We can see that predication is better than branching in fewer cases in a
multithreaded environment than in a single threaded one.

Figure 4.4: Speedup of using predication versus branching depending on selectivity for
three different machines.

Figure 4.4 shows the speedup caused by using predication over branching for different
machines. We can see that, while the benefit of using predication is potentially higher for
machine 1 than for machine 2, the points at which predication is preferred to branching are
the same. However, for machine 3 predication is beneficial for a wider range of selectivity
values than for machine 1 and 2.

We have seen that the choice of using predicated expressions over branching expression
depends on the data, the execution environment as well as the platform itself. This makes
it an interesting case for loop-adaptivity.

4.4 Hash joins with Bloom filters

One way of improving the performance a hash join is by using a Bloom filter. A Bloom
filter is a data structure that can be used to check if an element is in a set or not. Although
false positives are possible, it is typically much cheaper to perform a Bloom filter check
than a hash table lookup. Because false negatives are not possible, Bloom filters can be
checked before performing the hash table lookup. If the Bloom filter returns false, we
know we do not have to perform the more expensive hash table lookup. If the Bloom filter
returns true, the hash table still needs to be checked.

It is easy to see that the choice of using a Bloom filter or not for a hash join depends
on the selectivity of the join. If the hit ratio of the hash table is low, it can be worthwhile
to build a Bloom filter on its keys and check the Bloom filter before testing the hash table.
However, if the tested keys are typically in the hash table, building the Bloom filter and
testing it only makes the operation slower.
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4.4.1 Hash tables and Bloom filters in Weld

A hash table is implemented in Weld by the dict data type. To check if a key is in the
table, the keyexists-expression should be used, which is typically followed by a lookup-
expression if the key is in the set. Bloom filters on the other hand are not currently
implemented in Weld, so we decided to implement our own version. Listing 4.7 shows an
example of how this Bloom filter in Weld is used.

Listing 4.7: Creating and using a Bloom filter in Weld

1 # Create a new Bloom filter builder

2 let b1 = bloombuilder[i32 ](256L);

3 # Add 42 to the Bloom filter

4 let b2 = merge(b1 , 42);

5 # Materialize the Bloom filter

6 let bf = result(b2);

7 # Check if the Bloom filter contains 42 (returns true)

8 bfcontains(bf, 42)

The newly introduced bloombuilder is a builder similar to appender which can be
used to construct bloom filters in parallel. Note that bloombuilder takes an integer as
argument. This number is the expected number of keys to be stored in the bloom filter,
and is used to allocate an appropriate number of bits. Calling result on it creates a value
of type bloomfilter, which is a read-only bloom filter. Testing the Bloom filter is done
using the bfcontains-expression.

An alternative way of creating the Bloom filter is to pass a dictionary directly as argu-
ment to the bloombuilder, in the form of result(bloombuilder[T](length, dict)).
This initiates a runtime call that directly extracts the hashes from the dictionary, and uses
an optimized batch insertion function to quickly build the bloom filter in parallel. Because
most of the work is implemented in the runtime, this minimizes compilation times. This
follows the philosophy of [29], which states that code should only be JIT-compiled for code
that is both performance critical, and specific to the query. Building a Bloom filter from
a dictionary is performance critical, but not specific to a query, and it can therefore be
pre-compiled.

4.4.2 Flavors in Weld

With the Bloom filter implemented, we can now implement the different flavors for a hash
join. In principle, the number of flavors for a hash join grows exponentially in the number
of different tables that are joined within a loop. For now, we will look at the simplest
example: a join of two tables. Listing 4.8 shows an example of a hash join without Bloom
filters, that joins tables R and S on R.b = S.b, and selects a, b and c. We assume here
that S.b is unique, so we can safely use a dictmerger instead of a groupmerger. Listing
4.9 shows Weld code for the same join, but now includes a Bloom filter check. Note
the additional loop to construct the Bloom filter as well as the bfcontains-expression
preceding the keyexists-expression.
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Listing 4.8: Regular hash join of two tables in Weld

1 let S_ht = result(for(

2 zip(S_b , S_c),

3 dictmerger[i32 ,+],

4 |b,i,e| merge(b,e)

5 ));

6 result(for(

7 zip(R_a , R_b),

8 appender [{i32 ,i32 ,i32}],

9 |b,i,e|

10 let a = e.$0;

11 let b = e.$1;

12 if (keyexists(S_ht , b),

13 let c = lookup(S_ht , b);

14 merge(b, {a, b, c}),

15 b

16 )

17 ))

Listing 4.9: Hash join of two tables using Bloom filters in Weld

1 let S_ht = result(for(

2 zip(S_b , S_c),

3 dictmerger[i32 ,+],

4 |b,i,e| merge(b, e)

5 ));

6 let S_bf = result(for(

7 S_b ,

8 bloombuilder[i32](len(S_b)),

9 |b,i,e| merge(b, e)

10 ));

11 result(for(

12 zip(R_a , R_b),

13 appender [{i32 ,i32 ,i32}],

14 |b,i,e|

15 let a = e.$0;

16 let b = e.$1;

17 if (bfcontains(S_bf , b),

18 if (keyexists(S_ht , b),

19 let c = lookup(S_ht , b);

20 merge(b, {a, b, c}),

21 b

22 ),

23 b

24 )

25 ))
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4.4.3 Experiment

Again, we would like to know if there are cases where one flavor outperforms another, and
vice versa. To this end, the query from the previous section was run on synthetic data
on which we vary the hit ratio for the join, as well as the size of S relative to R. Figure
4.5 shows the results for machine 1. We can see that the speedups that can be gained by
using Bloom filters can be very high, but only for lower hit ratios. As expected, when most
of rows in R can join on some row in S, using a Bloom filter is actually detrimental for
the overall execution time. Moreover, the size of S has a significant effect on when using
a Bloom filter becomes beneficial. When S is relatively small, building a Bloom filter is
cheap, and so the investment is worth it in most cases. As S becomes bigger, building a
Bloom filter pays off in less cases.

(a) |S| = 0.05× |R| (b) |S| = 0.4× |R|

Figure 4.5: Total execution time of join R and S with and without Bloom filter, for
different sizes of S and different selectivity values.

Figure 4.6 shows the speedup of using a Bloom filter for hash joins for each machine,
where |S| = 0.4× |R|. We can see that the selectivity at which it pays off to use a Bloom
filter highly depends on the platform on which the query is run.

All in all, we have shown that the choice whether to use Bloom filters or not for a hash
join depends on the selectivity of the join, the size of the smaller relation, as well as the
platform on which the query is run. This makes it an interesting case for loop-adaptivity.

4.5 Conclusion

In this chapter, we have looked at three different cases that could potentially benefit from
loop-adaptivity. Fused selection-projection loops always perform better than any other
flavor, and so there is no case for loop-adaptivity here. This likely has to do with the high
costs associated with materializing as well as poorly generated SIMD code. The choice
of using branching versus predicated expressions were far less obvious, and at the very
least depends on predicate selectivity, number of threads as well as hardware. Although
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Figure 4.6: Speedup of using Bloom filters for a hash join depending on selectivity for
three different machines.

not shown here, it is easy to see that it can also depend on query execution time, e.g.
when the selectivity in the first half of the data is significantly different than in the latter.
Finally, whether it pays off to use a Bloom filter for hash joins is also hard to predict:
using hash joins makes sense for lower join selectivity values, but the exact cross over point
depends on factors such as the relative size of the smaller relation as well as the platform
on which the query is run. All in all, we have found some cases motivating the integration
of loop-adaptivity in Weld.
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Chapter 5

Loop-Adaptivity Implementation

The main objective of this research is implementing loop-adaptivity in Weld, which we
will discuss in this chapter. Section 5.1 will give a high level overview of the different
components that contribute to the implementation of loop-adaptivity in Weld. In the
following sections we will explore each component in more detail. Section 5.2 and section
5.3 explain how flavors can be defined using Weld IR and how they are generated by the
optimizer respectively. Section 5.4 will briefly discuss the code generated by the Weld
compiler to support loop-adaptivity, while section 5.5 discusses the changes that were
made to the runtime. Finally, section 5.6 presents the algorithm used to explore and
exploit flavors, which is based on vw-greedy.

5.1 Overview

To make loop-adaptivity possible, a form of batched execution needs to be present, in
which computations are done on a few thousand tuples at a time. Unlike Vectorwise,
Weld does not have the notion of primitives that perform a simple computation on vectors
at a time. Instead, it relies on the for-expression, which perform a series of computations
on batches of data in parallel. Therefore, we introduce adaptivity in Weld by adapting
entire loops.

Figure 5.1: Overview of loop-adaptivity in Weld.

Figure 5.1 shows a general overview of the loop-adaptivity architecture in Weld. Mak-
ing loops adaptive is done in Weld IR by means of the switchfor-expression, which takes
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an arbitrary number of parallel loops as argument that we will refer to as flavors. The
flavors are typically generated from normal IR (a) by optimization passes that recognize
opportunities for adaptivity (b), but could in principle also be written by hand. A switch-

for-expression calls the runtime (c) to spawn a new task, much in the same way that a
for-expression would. It differs from a for-expression in that a switchfor task does not
have a single function pointer, but one for each flavor defined in the switchfor. It is up
to the runtime to actually explore and exploit the most promising flavors (d), using an
algorithm based on vw-greedy (e).

Because the number of flavors in a switchfor grows exponentially in the number of
adaptive choices, one of the major challenges is to keep code explosion (and thus compila-
tion times) at a minimum. This is done by (optionally) compiling only the bare minimum
flavors up front, and compiling other flavors during runtime as needed. Other mechanisms
that are introduced are lazy evaluation of let-expressions as well as instrumented loops
to measure specific features of the data.

5.2 Internal representation

The central idea of introducing loop-adaptivity in Weld is to run different flavors of a loop.
These loops are defined in the newly introduced switchfor-expression. Listing 5.1 shows
an example of a switchfor-expression that counts the number of 42s in a list. The first
flavor does this using the branching if-expression, while the second uses the predicated
select-expression.

Listing 5.1: Counting 42s with adaptive branching or predication using the switchfor-
expression.

1 let sw_bld = merger[i32 ,+];

2 result(switchfor(

3 |lb1 ,ub1|

4 for(xs , sw_bld , |b,i,x|

5 if (x == 42, merge(b, 1), b)

6 ),

7 |lb2 ,ub2|

8 for(xs , sw_bld , |b,i,x|

9 merge(b, select(x == 42, 1, 0))

10 )

11 ))

The switchfor-expression returns the same result as any of its flavors would if it were
executed in isolation, provided that all flavors are equivalent, with some exceptions (which
we will go into later in this section). A flavor can contain multiple for-loops, allowing
switchfor to adapt between entire pipelines. Note that each flavor is a lambda function
that takes two parameters as argument. These parameters hold the value for the lower
and upper bound of the current batch. Further, each for-loop has the same builder as
argument, which is the builder that is ultimately returned by switchfor. This is a general
requirement of switchfor to ensure consistent results, and makes sure we do not have to
merge the results of the different flavors at the end of execution.

Under the hood, for-loops contained by switchfor-expressions behave differently from
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vanilla for-expressions. As an example, see listing 5.2, which shows a switchfor contain-
ing a flavor that computes the sum of two dimensional list of integers. If the for-expression
were executed as a regular for-loop, a task would be created for the outer loop and split
up in subtasks that are scheduled among the workers. When a subtask for the outer
loop is then executed, it will encounter the inner loop, which invokes another runtime
call. During this call, the current task for the outer loop is canceled, and new tasks are
created for the inner loop and the remaining iterations of the outer loop (in that order).
Because the outer task then finishes executing after only a single iteration, we cannot use
it to measure the performance of the flavor, as all that we would be measuring then is
the time required to create new tasks rather than the actual computation. Therefore, any
for-expression contained by switchfor will not call the runtime, and are thus executed
completely sequentially. Parallelism is introduced by calling the for-loops themselves in
parallel, rather than the loop body. While this eases the implementation of loop-adaptivity,
the downside of this approach is that it may be a source of load imbalance. If all vectors
in lists are small except for one, one of the subtasks would be doing most of the work.
switchfor-expressions are therefore currently not suitable for these kind of queries.

Listing 5.2: Example of a nested for loop in a switchfor-expression.

1 switchfor(

2 |lb ,ub|

3 for(lists , merger[i32 ,+], |b,i,xs|

4 for(list , b, |b,i,x|

5 merge(b, x)

6 )

7 ),

8 ...

9 )

The fact that entire pipelines are parallelized, rather than just the function body, also
has an important implication for loops that take the result of another loop as argument.
Listing 5.3 shows an example of this, where the first loop projects a column y and then
selects its values based on corresponding values in column x. In regular Weld, the projec-
tion loop is executed in its entirety, materialized, and then the selection loop is evaluated.
In the example however, the projection loop is only run on a partition of input data at a
time. This means that the result-expression will not return a vector as long as y, but only
as long as the partition of y. The second loop needs to account for this by only iterating
over the corresponding partition of x. This can be done using the lower and upper bound
parameters that are passed to the flavor function. Finally, because the flavor function is
called multiple times, any result-expression in the function is also called multiple times.
Weld states that result may only be called once on a builder, and therefore only new
builders can be used as argument of a result-expression in a switchfor.
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Listing 5.3: Example of pipelined for loops in a switchfor-expression.

1 switchfor(

2 |lb ,ub|

3 for(

4 zip(

5 iter(xs, lb, ub, 1L),

6 result(for(ys, appender[i32], |b,i,y|

7 merge(b, y*y)

8 ))

9 ),

10 sw_bld ,

11 |b,i,e|

12 if (e.$0 == 42, merge(b, e.$1), b)

13 ),

14 ...

15 )

5.2.1 Instrumentation and deferred let-expressions

Deciding to use a flavor is cheap when a flavor can be completely defined in a single for-
loop, such as the flavors for the branching versus predication case. In the case of Bloom
filters it becomes more complicated: if selectivity is low, we would like to use a Bloom
filter, but that means that one should have been built in the first place. However, building
a Bloom filter when selectivity is too high could be detrimental to overall performance.
We therefore need a system that defers evaluating some expression until we actually decide
(through instrumentation) that it is required.

A naive way of implementing this would be to split the query in several parts: first
an instrumented loop runs over a sample of the data, and measures the hit rate of the
dictionary. If the hit ratio is low enough, a Bloom filter is built and a switchfor-expression
is evaluated with flavors for a regular join and a join using Bloom filters. If the hit ratio
is too high, a regular join is performed using a normal for-expression. The problem with
this approach is the amount of additional code that this requires: instead of a single
switchfor-expression and a loop for the Bloom filter creation, we now have an additional
for-loop for instrumentation, a for-loop for the regular join, as well as an if-expression
that steers control flow depending on the result of instrumentation. The amount of code
gets exponentially bigger as more dictionaries are added to the same loop, which could
drive compilation times to unacceptable levels.

We therefore took a different approach, using Weld’s annotation system. let-expressions
may now be annotated with a deferred until annotation that specifies that the right
hand side of the expression should not be evaluated until some condition is true. The
condition can only contain global variables (more on the use of global variables in section
5.2.1). Instrumentation is performed using the switch instrumented and count calls

annotations. switch instrumented denotes that a flavor is instrumented, which tells the
runtime to call that flavor before running any others, and to run it only once so that
instrumentation costs are amortized. It also informs the runtime which global variables
that hold the instrumentation data are updated. count calls can be annotated on any
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expression, and simply increments a global variable by one each time the expression is
evaluated.

Listing 5.4: Example of an instrumented flavor, a deferred let expression, as well as a
flavor that depends on the deferred let. Parts of the code were left out for brevity.

1 @(deferred_until: @ht_hit == 0 || @ht_try / @ht_hit < 0.5)

2 let bf = result(bloombuilder[i32](len(ht), ht));

3 switchfor(

4 @(switch_instrumented:@ht_try ,@ht_hit)

5 |lb ,ub|

6 for(xs , sw_bld , |b,i,e|

7 @(count_calls:@ht_try)

8 if (keyexists(ht, e),

9 @(count_calls:@ht_hit)

10 merge(b, {e, lookup(ht , e)}),

11 b

12 )

13 ),

14 ..., # Regular flavor

15 @(switch_if_initialized: bf)

16 |lb ,ub|

17 for(xs , sw_bld , |b,i,e|

18 if (bfcontains(bf, e),

19 # Join

20 ...

21 )

22 )

23 )

Listing 5.4 shows an excerpt of an adaptive hash join using instrumentation and a
deferred let-expression. The right hand side of line 1, the creation of the Bloom filter, is
not evaluated immediately. Instead, it is ignored and switchfor is evaluated. The runtime
first runs the instrumented loop to measure the hit ratio of ht. When it is done, it will
check any deferred let-expressions that depend on the global variables that are given as
arguments to switch instrumented, i.e. bf. If the condition is true, control flow is passed to
the creation of the Bloom filter, after which the switchfor-expression continues execution
on the remaining data, and all flavors (except the instrumented) can be explored. If the
condition is false, switchfor continues executing, but will ignore any flavors that depend
on the deferred let-expression. A flavor can be annotated using switch if initialized to
inform the runtime on which values it depends.

Global variables

To support instrumentation we also introduced global variables, which are preceded by the
@ symbol. The global variables allow us to count the number of times an expression was
evaluated, without having to resort to more heavyweight mergers. They are only allowed
in the annotation system, because introducing them in the language itself would break the
static single assignment (SSA) property of Weld. Global variables can be defined using
the run vars annotation, which is only allowed at the beginning of the Weld program.
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5.3 Flavor generation

With the new expressions for defining loop-adaptivity in place, we can now generate the
actual flavors. This is implemented by new Weld IR optimization passes that detect
opportunities for adaptivity, and generate corresponding switchfor-expressions. In this
section we will give an overview of the three implemented passes. Note that, due to
time constraints, the passes are exclusive: any for-expression already contained by a
switchfor-expression will not be further adapted. However, users can specify in which
order the adaptive optimizations should be performed.

5.3.1 Selection-projection loop reordering

Although we have not found any benefits of full computation versus a fused selection-
projection loop (see section 4.2), we did implement an optimization pass that generates a
switchfor-expression with both flavors from a fused loop. This was done partly because
it still allows us to verify if the system can find the fastest running flavor, but also because
the optimization may actually be beneficial if the cost of materialization is reduced in
future updates of Weld.

Listing 5.5 shows the general shape of for-loops that are matched by the optimization
pass. Listing 5.6 shows the resulting switchfor-expression. The first flavor is a copy of
the original fused loop, and remains unchanged. The second flavor first executes a loop,
which is the input of the outer loop. Note the use of the lower and upper bound parameters
on line 12, for reasons as discussed in the previous section.

Listing 5.5: Shape of a for loop that is eligible for adaptive selection-projection reordering.

1 for(data , bld , |b,i,e|

2 if (condition(e),

3 merge(b, project(e)),

4 b

5 )

6 )
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Listing 5.6: Shape of the switchfor expression resulting from the adaptive selection-
projection reordering optimization.

1 switchfor(

2 |lb1 ,ub1|

3 for(data , bld , |b,i,e|

4 if (condition(e),

5 merge(b, project(e)),

6 b

7 )

8 ),

9 |lb2 ,ub2|

10 for(

11 zip(

12 iter(data , lb2 , ub2 , 1L),

13 result(for(data , appender [?], |b,i,e|

14 merge(b, project(e))

15 ))

16 ),

17 bld ,

18 |b,i,e|

19 if (condition(e.$0),

20 merge(b, e.$1),

21 b

22 )

23 )

24 )

5.3.2 Branching versus predication

The second adaptive optimization pass is adaptive predication. The pass recognizes if-
expressions that could be transformed into select-expressions, and annotates them with
@(predicate:true). The regular predication pass will then transform them into actual
select-expressions. Listing 5.7 shows the general shape of expressions that are matched
by the pass, while listing 5.8 shows the result. Note that whatever the number of if-
expressions in the original loop is, there will always only be two resulting flavors. The
reason is that if-expressions are quite numerous in the TPC-H queries that we tested,
mostly for null checks, and so compilation times became too high when we allowed a flavor
for every combination. A way around this would be to annotate which if-expressions in
the generated code should not be adapted (for instance, null-checks) to reduce the number
of options. However, because of limited access to the code generator this was not feasible.

Listing 5.7: Shape of a for loop that is eligible for adaptive predication.

1 for(data , bld , |b,i,e|

2 ...

3 if (c1, t1, f1)

4 ...

5 if (cn, tn, fn)

6 ...

7 )
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Listing 5.8: Shape of a switchfor expression resulting from the adaptive predication pass.

1 switchfor(

2 |lb1 ,ub1|

3 for(data , bld , |b,i,e|

4 ...

5 if (c1, t1, f1)

6 ...

7 if (cn, tn, fn)

8 ...

9 ),

10 |lb2 ,ub2|

11 for(data , bld , |b,i,e|

12 ...

13 @(predicate:true)

14 if (c1, t1, f1)

15 ...

16 @(predicate:true)

17 if (cn, tn, fn)

18 ...

19 ),

20 )

5.3.3 Adaptive Bloom filters

The last adaptive optimization pass is the adaptive Bloom filters pass. It works in two
phases. The first phase matches for-expressions that contain keyexist-expressions, and
finds the set of dictionaries that are probed in that for-loop (including nested loops).
In the second phase, a Bloom filter expression is created for each dictionary, and for-
expressions are made for each possible flavor, as well as an instrumented for-expression.
These for-expressions are encapsulated by a switchfor-expression, which is preceded by
deferred let-expressions that build the Bloom filters. Listing 5.9 shows the general shape
of loops that are matched by the optimizer, while listing 5.10 shows the final Weld IR. In
the latter, N = 2n.

Listing 5.9: Shape of a for expression eligible for adaptive Bloom filters.

1 for (data , bld , |b,i,e|

2 ...

3 if (keyexists(d1, k1),

4 ...

5 if (keyexists(dn, kn),

6 ...

7 )

Listing 5.10: Shape of a switchfor expression resulting from the adaptive Bloom filters
pass.

1 @(deferred_until: @d1_try > 0 && @d1_hit / @d1_try > 0.2)

2 let d1 bf = result(bloombuilder[?](len(d1), d1));

3 ...

4 @(deferred_until: @dn_try > 0 && @dn_hit / @dn_try > 0.2)

5 let dn bf = result(bloombuilder[?](len(dn), dn));
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6 switchfor(

7 @(switch_instrumented: @d1_try , @d1_hit , ..., @dn_hit , @dn_try)

8 |lb0 ,ub0|

9 for (data , bld , |b,i,e|

10 ...

11 @(count calls: @d1 try)

12 if (keyexists(d1, k1), @(count calls: @d1 hit) ...

13 ...

14 @(count calls: @dn try)

15 if (keyexists(dn, kn), @(count calls: @dn hit) ...

16 ...

17 ),

18 |lb1 ,ub1|

19 for (data , bld , |b,i,e|

20 ...

21 if (keyexists(d1, k1),

22 ...

23 if (keyexists(dn, kn),

24 ...

25 ),

26 @(switch_if_initialized: d1_bf)

27 |lb2 ,ub2|

28 for (data , bld , |b,i,e|

29 ...

30 if (bfcontains(d1 bf, k1) && keyexists(d1, k1),

31 ...

32 if (keyexists(dn, kn),

33 ...

34 ),

35 ...,

36 @(switch_if_initialized: d1_bf , ..., dn_bf)

37 |lbN ,ubN|

38 for (data , bld , b,i,e|

39 ...

40 if (bfcontains(d1 bf, k1) && keyexists(d1, k1),

41 ...

42 if (bfcontains(dn bf, k1) && keyexists(dn, kn),

43 ...

44 )

45 )

5.4 Code generation

After the adaptive optimization passes have produced adaptive Weld code, LLVM code
needs to be generated for it. In this section we will give an overview of the code that is
generated for switchfor, deferred let-expressions and instrumentation and global vari-
ables.

5.4.1 Switchfor

The code generated for a switchfor-expression is similar to that of a for-expression. A
wrapper function is generated that computes the size of the input vectors and performs
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bounds checking. If it passes the check, information about every flavor is collected in
runtime structures that are then passed to a final runtime function call that creates tasks
for the switchfor. Further, it generates callbacks for each flavor that are used by the
runtime to execute them. Unlike the for-expression, this callback calls the function for
the first for-expression defined in a flavor, rather than the function for its loop body.
Because the switchfor wrapper already checks the size of the input vectors, the wrapper
function of each for-loop inside a switchfor does not perform this check (unlike regular
for-loops). Finally, a callback function is generated for the continuation of the switchfor.

5.4.2 Deferred let

When the compiler encounters deferred let-expressions, it generates a build function for
the right hand side of the let-expression as well as a condition function that evaluates
the condition. These functions are meant to be called by the runtime. The build function
terminates with a runtime call (weld rt set deferred) that sets the result of the deferred
expression. At the point in the program where normally the assignment would be per-
formed, a runtime function call (weld rt register deferred) is generated that registers
the deferred let so that the runtime is aware of its existence. The left hand side is set
to null, and otherwise treated as if it were a regular value in the rest of the code. During
SIR generation the control flow graph (CFG) is traversed to find the first usage of the de-
ferred value. Just before the value is used, another runtime call (weld rt get deferred)
is inserted that overwrites the null value with the actual value, provided the runtime has
decided to call the build function.

5.4.3 Instrumentation and global variables

Global variables are implemented using LLVM’s global variables, and are initialized at
the start of the run function. Whenever a count calls-annotation is encountered, the
value of the associated global variable is loaded, incremented by one, and written back
again. This is not optimal because these counters are not kept in registers as long as
strictly possible, but is sufficient because the instrumentation overhead is still negligible
compared to the overall execution time.

5.4.4 Lazy function compilation

To decrease compilation times, not all functions are compiled up front. Recall that before
generating LLVM IR, the Weld IR is first compiled into SIR. During SIR generation,
functions can be marked as lazy : while SIR is generated for it, the LLVM generator will
ignore it. The execution engine will keep an handle to the SIR code during execution
which it can pass to the compiler if it decided to run a flavor which requires a function to
be compiled. For now, only flavors that depend on a deferred let-expression are marked
as lazy, because the the outcome of instrumentation makes the choice of whether compiling
the function is worth it relatively easy. The build function of a deferred let-expression
could in principle also be a candidate for lazy compilation. However, in our case deferred
let-expressions are only used for building Bloom filters. This is handled by a pre-compiled
runtime function, and therefore the cost of compilation is very low.
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5.5 Runtime

While the IR and code generation is responsible for the definition and implementation of
flavors, the runtime is responsible for exploring and exploiting the flavors. In this section
we will look at the most important changes that were made to the runtime to integrate
loop-adaptivity in Weld.

5.5.1 Switchfor

Adaptive execution is kicked off when weld rt start switch is called. This function is
similar to weld rt start loop, but takes multiple flavors as arguments as well as metadata
about each flavor, such as whether a flavor is instrumented or not. If an instrumented
flavor exists, a separate instrumented task is created for it and pushed on the queue.
The instrumented task will be configured so that it will only run the maximal number of
iterations that fit in a single subtask (referred to as the grain size). Another body task is
created that has pointers to all the remaining flavors, as well as a continuation task for
when switchfor has finished executing. If an instrumented task was created the body
task is not pushed on the queue, but set as the continuation of the instrumented task to
ensure that the instrumented task is completed entirely before the remaining flavors are
explored. For the remainder of this section, we will assume an instrumented task was
created.

Instrumentation and lazy compilation

When the task that invoked the weld rt start switch call finishes executing, the in-
strumented task is popped off the queue and executed by a worker thread. It is run like
any other task, but upon its completion the execution engine will inspect the deferred
let-expressions that are associated with the global variables that were updated by the
instrumented task. For each of those deferred lets, its condition function is evaluated. If
it returns true, a new build task is created with a pointer to the build function, and pushed
on the queue. The build task is similar to a parallel loop task, and can thus be split up
and parallelized. The execution engine then proceeds to check if there are any flavors that
should be compiled. If so, a compilation task is created that compiles the relevant flavors.
The compilation task is pushed first to ensure that a worker will execute it as early as
possible. The build tasks will be executed by the remaining workers, and are enforced to
finish them before executing the body task. If this were not the case we would risk the
scenario where the majority of workers are already executing the switchfor, but cannot
execute the most promising flavors because a single worker is still busy evaluating the
deferred let. By moving the build tasks first, the total runtime should decrease (provided
that the flavors depending on the deferred expressions are faster). The body task will
not wait for completion of the compilation task. This task cannot be parallelized, so time
would be wasted by waiting for its result.

51



5. LOOP-ADAPTIVITY IMPLEMENTATION

Executing the body task

When the build tasks have finished executing, the body task is pushed to the queue and
split in subtasks that can be stolen by other workers. Before execution of each subtask
the worker has to find out which flavor it is supposed to run, which is stored in a central
data structure. After executing the task it will update statistics about the flavor, and
periodically choose a new flavor to explore or exploit. We will examine the adaptive
algorithm in more detail in section 5.6.

5.5.2 Deferred let-expressions

Deferred let-expressions are implemented in the runtime by the weld rt defer build,
weld rt set deferred result and weld rt get deferred result functions. The first
function is responsible for registering a deferred expression, and keeps track of the build
and condition functions, the global variables that are evaluated in the condition function
and the result of the build function (if any). set deferred result is called by the build
function, and stores its result, while get deferred result is called by functions that
depend on a deferred let-expression. Checking if the build function should be called, as
well as building it, is the responsibility of an instrumented task, as described in section
5.5.1.

5.6 VW-greedy

The key component of a micro-adaptivity (or loop-adaptivity) system is the adaptive
optimizer, which selects the flavors to run. In Vectorwise, this is implemented using the
vw-greedy algorithm, which alternates between exploration and exploitation phases. In
the exploration phase a random flavor is tested, while during the exploitation phase the
flavor that performed best thus far is run. Only recent performance statistics are kept to
ensure that the statistic reflect the current data, and are not influenced by factors that
may not be true anymore (such as the selectivity of a predicate).

To implement loop-adaptivity in Weld, we use the vw-greedy algorithm, as it has
proven its performance in Vectorwise. However, [40] does not specify how the algorithm
works in a parallel setting. Particularly, it is not specified what happens if the explore
period is shorter than the number of worker threads. In this case, if all threads run the
flavor that is to be explored at the start of the phase, we will end up having executed too
many instances of an exploration flavor, possibly resulting in suboptimal performance. To
solve this problem only one worker (the explorer) will be responsible for exploring new
threads, while all other workers (the exploiters) are restricted to exploiting the best flavor.
The exploring thread is not fixed, but is set to be the thread who finishes the last task
in an explore period. This is done to ensure that the thread who is chosen to explore is
actually available, which may not be the case for all threads (e.g. when a worker is still
compiling a flavor in the background).

Listing 5.11 shows the adaptive algorithm used in Weld. Before a task is run the
worker checks if it is the explorer, and depending on the result it runs the appropriate
flavor. After the task has finished executing updateFlavor is called, which updates flavor
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statistics. If the thread was an explorer, and just finished executing EXPLORE LENGTH

tasks, it becomes an exploiter, and the average cost of the explorer flavor is updated. If
the thread was an exploiter, and the exploiters finished executing EXPLOIT PERIOD tasks
since the phase began, the average cost of the exploited task is updated, and the best flavor
is reevaluated. Finally, if the total number of calls since the last explore phase exceeds
EXPLORE PERIOD, the current thread becomes the explorer, and the least currently used
flavor will be explored. Note that this is different from vw-greedy, which picks a random
flavor for exploration. Using the least recently used flavor minimizes the time before all
flavors are explored.

Another difference with vw-greedy is that we do not explore all flavors before exploiting,
for cases of code explosion where there are too many flavors to explore. However, because
we explore the least recently used flavor rather than a random one, the order in which
flavors are explored for the first time is deterministic. This can be exploited by ordering
flavors in such a way that the most promising flavors will be explored first. Other than
that, this algorithm boils down to vw-greedy if it is executed by a single thread. In that
case, exploration and exploitation phases effectively alternate. In multithreaded settings
however, exploration phases overlap with exploitation phases.

Listing 5.11: Loop-adaptive algorithm in Weld in pseudo code, accounting for multithread-
ing.

1 def runTask(task):

2 // Check whether the current thread is an explorer. If so,

3 // run the explore flavor. Otherwise run best flavor.

4 imExplorer = (myId == task.exploreThread)

5 if imExplorer:

6 task.localFlavor = task.exploreFlavor

7 else:

8 task.localFlavor = task.exploitFlavor

9
10 // Run flavor and measure time

11 start = getCycles ()

12 task.localFlavor.run()

13 end = getCycles ()

14
15 // Update statistics

16 updateFlavor(task , imExplorer , end - start)

17
18 def updateFlavor(task , imExplorer , cycles):

19 // Increase global counter

20 task.calls ++

21
22 // Update statistics on the flavor we just executed

23 myFlavor = task.localFlavor

24 myFlavor.totCycles += cycles

25 myFlavor.totTuples += (task.upper - task.lower)

26
27 // Update average cost and stop exploring when explore length is

28 // over

29 if imExplorer and --task.exploreRemaining == 0:

30 myFlavor.avgCost = (myFlavor.totCycles - myFlavor.prevCycles) /

31 (myFlavor.totTuples - myFlavor.prevTuples)
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32 task.exploreThread = -1

33
34 // Update average cost and find best flavor when exploit period is

35 // over

36 if !imExplorer and --task.exploitRemaining == 0:

37 myFlavor.avgCost = (myFlavor.totCycles - myFlavor.prevCycles) /

38 (myFlavor.totTuples - myFlavor.prevTuples)

39 task.exploitFlavor = getBestFlavor(task)

40 initFlavor(task.exploitFlavor , task.calls)

41 task.exploitRemaining = EXPLOIT_PERIOD

42
43 // Check whether it is time to explore again. If so, the current

44 // thread will be the explorer for EXPLORE_LENGTH calls. The least

45 // recently used flavor will be explored.

46 if task.calls > task.exploreStart:

47 task.exploreFlavor = getLruFlavor(task)

48 initFlavor(task.exploreFlavor , task.calls)

49 task.exploreThread = myId

50 task.exploreRemaining = EXPLORE_LENGTH

51 task.exploreStart += EXPLORE_PERIOD

52
53 def initFlavor(flavor , currentCall):

54 flavor.lastChosen = currentCall

55 flavor.prevCycles = flavor.totCycles

56 flavor.prevTuples = flavor.totTuples
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Chapter 6

Results and Discussion

To evaluate the performance of the loop-adaptivity system, we ran a variety of micro-
benchmarks as well as the TPC-H benchmark suite [46]. In most cases we measure both
execution times as well as compilation times, and see at which point (if any) the increased
performance of loop-adaptivity makes up for the increased compilation times. Section
6.1 covers the setup that was used to perform the experiments. Sections 6.2, 6.3 and 6.4
discuss micro-benchmarks that specifically test how well the three adaptive optimization
passes perform. In section 6.5 we look at the performance of various methods of creating
Bloom filters. In section 6.6 we examine the overhead of instrumentation, while section
6.7 covers the results of the TPC-H experiments.

6.1 Experimental setup

Table 6.1 shows basic information about the machines that were used for the experiments.
In general, each experiment was repeated 5 times, and for each experiment both the
compilation time and execution time was recorded. The queries were run on data with
varying scale factors. The TPC-H queries were run on M1 only, while all machines were
used for the micro-benchmarks.

Table 6.1: Test machine details

Name CPU Clock Speed #Threads RAM

M1 Intel Xeon E5-2650 2.0 Ghz 16 256 GB

M2 Intel Core i7-2600K 3.4 Ghz 8 16 GB

M4 Intel Xeon E5-4657L v2 2.4 Ghz 24 1024 GB

6.2 Adaptive predication

The first micro-benchmark aims to evaluate the performance of code produced by the
the adaptive predication optimization pass. We used the same query and data that were
discussed in section 4.3, but now also run the adaptive algorithm.
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(a) M1, scale factor 1, single
threaded.

(b) M4, scale factor 30, single
threaded.

(c) M2, scale factor 30, eight
threads.

(d) M1, scale factor 1, single
threaded.

(e) M1, scale factor 30, single
threaded.

(f) Normalized compilation
times.

Figure 6.1: Results of the adaptive predication benchmark. The top row shows execution
time depending on selectivity for the branching and predicated flavors as well as adaptive
Weld for different machines, scale factors and numbers of threads. The bottom row shows
total runtimes including compilation times, as well as the isolated compilation times.

The top row of figure 6.1 displays the execution time for each variant for varying
machines, scale factors and numbers of threads. We can see that the adaptive variant
accurately tracks the fasted flavor, even though the best flavor depends on multiple factors.
In figure 6.1b we can even see that adaptive Weld is faster than any other variant. This
might have to do with the fact that switchfor tasks use a smaller grain size than for

tasks, which could lower the number of cache misses.
However, execution time is only part of the full picture. Figure 6.1d shows the total

runtimes (including compilation times) of the query on machine 1, for a scale factor of 1.
Although we have just seen that the adaptive variant always matches the fastest flavor in
terms of raw execution speed, its benefit is lost because of the increased compilation time,
which dominates the total runtime. Predication is also never faster than branching in this
case, because the predicated version is SIMDized by Weld. This requires significantly more
LLVM code and thus takes longer to compile. Figure 6.1e shows results of the same query,
on the same machine, but for a dataset that is 30 times larger. Because the total runtime
is now dominated by execution time, we can see that at any time the adaptive version
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is only slightly slower than the faster flavor. Finally, figure 6.1f shows the normalized
compilation time of each variant. The adaptive variant takes roughly 50% more time to
compile than branching only. All in all this suggests that adaptive predication works well,
provided that the execution time dominates the total runtime.

6.3 Adaptive selection projection order

The second micro-benchmark evaluates adaptive full computation. As we have seen in
section 4.2, full computation in Weld never outperforms a fused loop, so all we can hope
for here is that loop-adaptivity recognizes this and chooses the fused variant with minimal
overhead. We used the same query and data as described in section 4.2 for this experiment.

(a) Scale factor 1. (b) Scale factor 10. (c) Scale factor 30.

Figure 6.2: Total runtime depending on selectivity for the fused and full computation
flavors as well as adaptive Weld on machine 4, for varying scale factors.

Figure 6.2 shows the total runtime of the query, depending on selectivity and for
different scale factors. Again, we see that adaptivity performs better for higher scale
factors, as compilation times get amortized. Although the adaptive code takes about
8% longer to compile than the map first strategy, it outperforms it even for the smallest
scale factor. Across all machines and scale factors, the slowdown of the adaptive variant
compared to the fused variant ranged from 0.77% in the best case to 40.17% in the worst
case. Speedups compared to the full computation variant ranged from 2.08% to 213.51%.

6.4 Adaptive Bloom filters

To evaluate the performance of the adaptive Bloom filters optimization, we ran a number
of benchmarks that use different join queries: a simple dictmerger join of two tables, a
three-way join using dictmergers and a three-way join using groupmergers.

6.4.1 Simple join

The first benchmark is a simple join of the form R ./ S, which we have also seen in section
4.4. Figures 6.3a, 6.3b and 6.2c show the total runtime of this query for varying scale
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factors. Again, for the lowest scale factor loop-adaptivity never pays off. Lazy function
compilation shows a modest improvement when the join selectivity is above 20%, which we
set as the threshold for building Bloom filters. However, below that point lazy compilation
is actually worse: it seems that lazy compilation is relatively expensive, and makes more
sense when the number of flavors is much higher than the expected number of flavors to be
explored. Loop-adaptivity performs better for higher scale factors, but eager compilation
outperforms lazy compilation in all cases. Also, the threshold for building a Bloom filter is
rather pessimistic. This is an unavoidable characteristic of using heuristics, but can surely
be improved by using better cost models. This is outside of the scope for this research,
and left for future work.

(a) M4, SF-1, 1 thread. (b) M4, SF-10, 1 thread. (c) M4, SF-30, 1 thread.

(d) M1, SF-30, 1 thread. (e) M1, SF-30, 2 threads. (f) M1, SF-30, 8 threads.

Figure 6.3: Results of the simple join micro-benchmark, showing total query runtimes
depending on selectivity for the regular hash join, Bloom filter hash join, adaptive Weld
and finally lazily compiling adaptive Weld. The top row shows the singlethreaded runtimes
on machine 4, for varying scale factors. The bottom row shows runtimes on machine 1,
scale factor 30, and varying numbers of threads.

Figures 6.3d, 6.3e and 6.3f show how the total runtime of the query varies for different
numbers of threads. All variants scale relatively well, except lazy function compilation,
making it worse than regular hash joins for even the lowest selectivity values. This contra-
dicts our expectation that lazy compilation would especially benefit from multithreading,
as the compilation can be performed in the background while build tasks are being exe-
cuted.
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To get a better of understanding what is going on, we profiled the tasks that are
executed by both eagerly and lazily compiling adaptive Weld, which can be seen in figure
6.4. We can see that joining the tables scales quite well for the regular adaptive variant.
However, when lazy compilation is introduced, this is not the case. When using two
threads we do get the benefits of latency hiding for the build task, but the runtime of
the join task does not improve at all. For 8 threads we do see some improvement, but
not nearly as much as it does for eagerly compiling Weld. Logs show that the Bloom
filter flavor is used as soon as it is compiled, so that cannot explain the poor performance.
Ultimately the cause appeared to be a bug, where any thread that executes a compilation
task stops working after the task is finished, except in single-threaded scenarios. The issue
is now solved, but this is not reflected in the results.

(a) Eager, 1 thread. (b) Eager, 2 threads. (c) Eager, 8 threads.

(d) Lazy, 1 thread. (e) Lazy, 2 threads. (f) Lazy, 8 threads.

Figure 6.4: Timeline of tasks executed by the adaptive variations of the join query. The
upper row shows eagerly compiled adaptive Weld, while the bottom row shows lazy com-
pilation. The creation of the dictionary is omitted.

6.4.2 Three-way dictmerger join

To demonstrate the use of lazy compilation, we ran a micro-benchmark joining four tables,
of the form R ./ S ./ T ./ U . We again vary the selectivity of the join of R on S, but keep
the hit rates of S ./ T and T ./ U fixed at 0.55. Because this is higher than the threshold
to build a Bloom filter, a maximum of only two out of eight flavors should be explored.
Data was generated such that the right hand side of each join is unique, so each key in
each dictionary maps to a single value, allowing us to implement the join with a single
for-loop.

Figures 6.5a and 6.5b show the runtimes of each program for scale factor 10 and 50,
respectively. For scale factor 10 the benefit of lazy function compilation is more convincing.
Although it still shows a performance penalty over non-adaptive flavors, it is significantly
less than what we see for eagerly compiling Weld. For scale factor 50 compilation times
are ammortized, and eager and lazy compilation perform similarly. Figure 6.5c shows
the normalized compilation times for each program. While lazy loop-adaptive Weld takes
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significantly longer to compile than normal Weld, it still shows a large improvement over
compiling all flavors up front.

(a) M2, SF-10, 1 thread. (b) M2, SF-50, 1 thread.
(c) Normalized compilation
times for each program.

Figure 6.5: Results of the three-way dictmerger join micro-benchmark, showing total query
runtimes depending on selectivity for each program, for varying scale factors, as well as
normalized compilation times.

6.4.3 Three-way groupmerger join

Another micro-benchmark we ran is similar to the one from section 6.4.2, but using group-

mergers to construct the hash tables instead of dictmergers. This means that the dictio-
nary values will not be single elements, but vector types, and therefore we need nested
loops to perform the join. Because the data generated is the same as for 6.4.2, each vec-

tor in fact only contains a single element, and so the join will showcase the worst case
overhead of the task creation that happens for nested loops in Weld.

Figure 6.6 shows the execution time of each program. We can see that adaptive Weld
performs significantly better than even the best strategy for normal Weld, despite adaptive
Weld running either the normal join or the Bloom filter join. The improved performance
can therefore not be the result of loop-adaptivity. Instead, it is a side-effect of the fact
that the runtime is disabled for any for-loop in a switchfor-expression. In normal Weld,
every for-expression that has an inner loop invokes a runtime call each time it is evaluated,
which evidently is the cause of significant overhead costs for this type of query.

To be able to properly measure the effects of loop-adaptivity, we added a configuration
setting that disables the runtime for any nested loop. Figure 6.7 shows the performance of
the same join query using this configuration, as well as a regular nested loop, a nested loop
in a switchfor, and one using only a single loop (where the hash tables were constructed
using dictmergers). We can see that disabling the runtime for nested loops indeed per-
forms similarly to a nested loop in a switchfor-expression. Although much faster than
a regular nested loop, it is still outperformed by a single loop. This makes sense, as a
for-loop in Weld is implemented by a function call in LLVM, which is still expensive
(although not as much as the runtime call that creates an additional task).
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Figure 6.6: Execution time of nor-
mal flavors and adaptive variants for
the three way groupmerger join.

Figure 6.7: Execution time of
a three way join comparing dict-
merger, groupmerger in regular
Weld, groupmerger and a switchfor,
and groupmerger with the runtime
limited to creating tasks for outer
loops only.

6.5 Bloom filter creation

In Weld, there are three ways of creating a Bloom filter. The Bloom filter can either be
created while the dictionary is being constructed (fused loop), in a separate loop or by
passing a dictionary as argument to the bloombuilder-expression (which we will refer to
as batch insert). We expect the first to be the fastest in terms of execution time, as it
minimizes data movement and can be implemented using only few additional operations.
However, for adaptive queries this is not possible, as the Bloom filter will be created only
after we know the hit rate of a join operation, for which the dictionary should already
be materialized. In this case the batch insert method is used, which should minimize
compilation times as it is mostly implemented by a runtime call, and also perform better
than a regular loop as it only requires a single function call for a batch rather than one for
each insertion. To verify this, we ran a benchmark that, for each variant of Bloom filter
creation, creates a dictionary of 25 million keys as well as a Bloom filter for the dictionary.
As a baseline we run a program that only creates the dictionary. It took 62 ms to compile,
and 7958 ms to execute.

Figure 6.8a shows the additional compilation time for each method of building a Bloom
filter. Interestingly, the fused loop compiles even faster than the runtime call, although
both versions are a lot more efficient than a separate loop. Figure 6.8b shows the perfor-
mance of each variant in terms of execution time. Contrary to the philosophy of Weld,
which always tries to fuse loops, a separate loop actually performs significantly better
than a fused loop. This may be related the findings in [40], where in some cases loop
fission (splitting a loop into two separate loops) outperforms the compound loop, due to
improved locality of reference. Finally, the batch insert (runtime) method outperforms the
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(a) Compilation times. (b) Execution times.

Figure 6.8: Additional compilation and execution times for various methods of building a
Bloom filter in Weld, with 25M insertions.

other two by a large margin. This is because the batch insert method only needs a single
function call to insert its elements in the Bloom filter, rather than one for each element.
Moreover, it is implemented in pure C++ and compiled by Clang [25], which typically
generates more efficient machine code than Weld does.

6.6 Instrumentation overhead

Our final micro-benchmark evaluates the overhead caused by instrumentation. In partic-
ular, we look at the execution cost of the count calls annotation, which increments a
global variable whenever the expression that is annotated is evaluated. We evaluated a
Weld program with a single if-expression, and a merge and multiplication in each branch.
The merge-expressions were done with an appender, which (as we have seen in section
4.2) is relatively expensive. The if and appender ensure the loop is not SIMDized. Both
the if and merge-expressions were annotated with count calls, for a number of two
count calls for each iteration. Each count calls increments a different variable.

Table 6.2: Cost of instrumented loop compared to its regular variant, for different ma-
chines.

Machine Type Cycles/Tuple Cycles/count calls

M1 normal 20.39
instrumented 21.48 0.54

M2 normal 23.82
instrumented 24.79 0.48

M4 normal 24.10
instrumented 24.64 0.27

Table 6.2 shows the results of the experiment. We can see that the impact of the
count calls annotation is relatively limited. In the worst case (M1), the slowdown per
annotation is (20.39 + 0.54)/20.39 = 1.03. Considering that count calls are meant to be
used in instrumented switchfor-flavors that are only run on a fraction of the complete
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data, this should be negligible.

6.7 TPC-H benchmarks

Next to the micro-benchmarks we ran a selection of queries from the TPC-H benchmark
suite to see how loop-adaptivity in Weld performs on more realistic data. The Weld IR
was generated using a Weld implementation in MonetDB [7] (which was the result of a
separate research project on Weld). The selected queries are 1, 3, 5, 8, 9, 10, 12, 13 and
17. The reason for selecting these queries was that they were the only ones for which
the MonetDB implementation could generate valid Weld IR. MonetDB does not produce
Weld IR for query 17 that produces a correct result, but the IR itself is otherwise still
executable and valid, and so we decided to keep it in anyway. Finally, none of the TPC-H
queries include order by statements, because of limitations in Weld. Scale factors 1, 10
and 30 were used, both single threaded and using eight threads, and the benchmarks were
run exclusively on machine 1.

We benchmarked four different versions of Weld. The first, Normal, is unmodified
Weld. The second, Limited Runtime, is normal Weld, with the exception that nested loops
are never parallelized and thus do not call the runtime. This is used as the baseline to
which we compare our adaptive versions, to measure only the effects of loop-adaptivity and
not the fact that nested loops in switchfor-expressions are never parallelized. The other
two versions are Adaptive and Lazy, both using the adaptive optimization transformations,
and the latter also using lazy flavor compilation.

6.7.1 Varying scale factors

Figure 6.9a and 6.9b show the results of single-threaded execution for SF-1 and SF-30,
respectively. As we can see, for SF-1 compilation times often dominate the total runtime
and so adaptive execution provides little benefits in this case. The exception is query
17, which has a highly selective join and thus benefits greatly from using Bloom filters.
The lazy variant is slower however, because there is only a single dictionary so there
is no real code explosion. As we have seen in section 6.4, lazy compilation only starts
paying off for large numbers of flavors. Query 8 shows a clear effect of code explosion:
the adaptive variant takes nearly 20 seconds to compile, much longer than the execution
time. The code explosion comes from a switchfor-expression that has 128 flavors, one
for every combination that can be made with seven Bloom filters. The lazy variant brings
compilation times down by a large amount, but it’s not enough to get it close to normal
levels. All in all we can conclude that adaptive execution is not desirable for this scale
factor.

Things look much better for SF-30. For the largest part the speedups must be at-
tributed to disabling the runtime for nested loops, as we can see by the difference in
runtime between normal Weld and the limited runtime version. However, the adaptive
versions do provide some additional (albeit mostly marginal) speedups. In query 1 the
optimizer applied adaptive predication, which resulted in no change in runtime. There are
only two flavors so there is little increase in compilation time, and branching was picked
about as often as predication by vw-greedy, possibly indicating that none of the flavors
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(a) SF-1. (b) SF-30.

Figure 6.9: Total single-threaded runtime of selected TPC-H queries for different versions
of Weld, for varying scale factors.

provided any real benefit over the other. For all the other queries the optimizer applied
adaptive Bloom filters, of which the best showcase is query 17. In most cases we can
see that lazy compilation provides a performance increase over eagerly compiled adaptive
Weld. Most notably, for query 8 adaptivity does not pay off when all flavors are compiled
up front, while the lazy variant does.

6.7.2 Varying thread counts

Figure 6.10 shows the results for SF-30 using a single thread as well as using eight threads.
With the exception of query 1 and 17, all queries actually take longer to finish rather
than shorter. It appears that this has to do with the fact that all these queries use
groupmergers, which apparently parallelize poorly. Unfortunately, adaptivity aggrevates
the situation, especially in the case of lazy function compilation. We have discussed the
cause of this in section 6.4.1.

(a) 1 thread. (b) 8 threads.

Figure 6.10: Total runtime of selected TPC-H queries for different versions of Weld, for
varying numbers of threads, on SF-30.
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6.7.3 Overall speedups

Figure 6.11 summarizes our findings with the TPC-H benchmarks. First of all, taking into
account single-threaded execution, adaptivity clearly does not pay off for the lowest scale
factor, but shows a moderate yet significant increase for higher scale factors. In general,
lazy compilation shows a slight performance gain over eager compilation. Unfortunately
the results are less bright when we execute the queries using multiple threads. We already
discussed the poor performance of lazy compilation in multi-threaded environments due
to a bug, but also eagerly compiling adaptive Weld performs worse than in the single-
threaded case. This may be attributed to the fact that there is some additional locking
whenever runtime statistics are updated, as well as the fact that we use slightly lower
grain sizes for switchfor-tasks than for for-tasks. We have paid no specific attention to
optimizing loop-adaptivity for parallelization, so there is likely plenty to gain. That said,
using multi-threading in Weld rarely seems wise for the TPC-H queries anyway.

(a) 1 thread. (b) 8 threads.

Figure 6.11: Geometric mean of the speedup of the selected TPC-H queries, for varying
scale factors and numbers of threads. Limited runtime is used as the baseline.
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Chapter 7

Conclusion

For this thesis we integrated loop-adaptivity in Weld, a JIT-compiling data processing
framework. While it shows that (loop-)adaptivity is definitely possible in a JIT-compiling
system, it is much less straightforward than doing this in a vectorized-interpreted DBMS
like Vectorwise. We recall the research questions of this research.

Where are the opportunities for loop-adaptive execution in Weld, if any?

We have seen that opportunities for loop-adaptive execution in Weld are somewhat lim-
ited to those found in Vectorwise. Full computation never pays off, because of the poor
code generation for appenders, as well as poor SIMD code. More promising however,
is switching between branching and predicated expressions, as well as adaptively using
bloom filters in hash joins. However, compared to Vectorwise we have only explored a
limited number of opportunities.

Should Weld be adapted, and how do we design loop-adaptive execution in
Weld?

We have seen at least two opportunities for loop-adaptivity in Weld, so its integration
makes sense from a performance standpoint. Its design is the most challenging part of
this research, for a number of reasons. The first two problems relate to code explosion:
compilation times may increase to unacceptable amounts, as well as the time it takes to
home in on the best variation. The third problem is instrumentation: how do we measure
runtime statistics in a data-centric loop, while minimizing overhead?

Compilation times. We demonstrate two methods of keeping compilation times down:
pre-compilation and lazy flavor compilation. The first method reduces compilation times
by compiling functions for common tasks up-front. This should only be done for tasks that
are both generic and pipeline breakers, so that nothing can be gained by JIT-compilation,
as is the case for adaptively constructing Bloom filters after an instrumentation pass. By
compiling flavors only as we need them, we can further reduce compilation times. How-
ever, compiling a single flavor in Weld is relatively expensive compared to compiling it
up-front, because of shared functions that have to be compiled each time a Weld module
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is compiled. It is therefore important to find a balance between eager and lazy compilation.

Exploiting the best flavor. The decision to implement adaptivity at the level of a
for-expression rather than the operator level does mean we can only measure the ag-
gregated performance of a pipeline rather than that of a single operator, which makes it
harder to choose the right flavor. In the case of adaptive Bloom filters we are aided by
an instrumented loop which measures the hit rate of dictionaries and can therefore often
eliminate most flavors, but for adaptive predication we chose to simplify the optimization
pass to never produce more than two flavors, which may be too simplistic. In all, we have
not answered the question of how to timely find the best variation in the face of flavor
explosion. Answering the remaining questions appeared to take so much time that it fell
outside the scope of the project.

Instrumentation. For loop-adaptivity we need to measure the performance of oper-
ators while keeping the associated overhead down. Like many JIT-compiled systems Weld
fuses operators into a single tuple-at-a-time pipeline, but this did not pose a challenge
because the tasks for the for-loops in which they are implemented are split into sub-tasks
by Weld, of which we can easily measure the execution time.

For instrumented loops we do measure on a tuple-at-a-time basis, but this is only
done on a fraction of the data, amortizing the measuring overhead. We introduced global
variables in Weld to be able to count the number of hits and misses in a dictionary. Weld is
a functional language, so global variables do not fit well with the language. Our solution
is implementing it only in annotations, which means that the core language keeps its
functional properties.

What are the potential speedups gained by loop-adaptivity in Weld?

Looking at the micro-benchmarks, the speedups of loop-adaptivity are significant, but
never dramatic. This is similar to the findings in Vectorwise. Lazy flavor generation shows
clear benefits of compiling everything up-front, but only if the number of flavors that are
never tried is reasonably larger than the number of explored flavors. Also, the query size
needs to be sufficiently large so that the execution time dominates the compilation time.
Similar findings come from the TPC-H benchmarks, where adaptivity only starts paying off
at scale factor 10 and higher. Most queries gain some speedups from loop-adaptivity, but
there are also queries that in fact perform worse, especially when lazy flavor compilation
is not used.

Other challenges

Although not explicitly includes as a research question, another challenge was defining the
flavors. In an interpreted system there is a predefined number of functions that implement
each operator, for which we can then define a limited number of flavors. However, because
we have to base adaptivity on the for-expression level, we have a virtually infinite number
of loops for which there can then be an infinite number of flavors. We therefore resort to
defining the various flavors during the Weld IR optimization stage. We have defined three
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7. CONCLUSION

different optimization passes that can detect different opportunities for loop-adaptivity,
and that can produce adaptive Weld IR accordingly, using the newly introduced switch-

for-expression.
The final challenge is Weld itself. We have seen that Weld suffers from a number of

problems that make it harder to implement loop-adaptivity. One of them is the high costs
of using appenders, which makes that full computation never outperforms a fused loop.
Also, the machine code that is generated in general is quite poor, mostly due to lacking
compiler hints. Another problem is the poorly scaling implementation of dictionaries, in
particular groupmerger, tainting the performance picture of parallel experiments. Finally,
the high compilation times of Weld in general, which means that adaptivity only pays off
for relatively high scale factors, and that lazy flavor generation can take up a large portion
of execution time.

7.1 Future Work

A number of topics are left for future of work. First of all, we have only looked at code
explosion with regards to the increase of compilation times, but we still have to tackle the
increased search space, which vw-greedy cannot comfortably deal with. In [39], Rosenfeld
et al. extended micro-adaptivity to deal with larger search spaces, which may also work
for loop-adaptivity in Weld.

Compilation times are already significantly reduced by lazily generating and compiling
LLVM for some flavors, but this could be further brought down by also lazily generating
its Weld IR. Also, compilation tasks can only be run sequentially, but if we could make the
compiler thread safe we could do this in parallel to decrease the latency of lazy compilation.
Moreover, we would like to investigate how compilation times could be further reduced by
exploiting the similarity between flavors. For instance, two flavors of a join may be highly
similar, and only differ in the existence or absence of a Bloom filter check. If we could
somehow make sure that the code for the similar part is generated just once, we might
keep compilation times much closer to that of normal Weld.

Another topic for future work is combining loop-adaptivity with cost modeling. The
decision to build a bloom filter is based on an extremely simple threshold for now, and could
be much improved by using more advanced cost models. Although perhaps conflicting with
the philosophy of micro-adaptivity, in some cases it seems inevitable to resort to these kind
of heuristics.

Finally, there are more opportunities for loop-adaptivity in Weld to be discovered.
For instance, we have seen that building the Bloom filter in the same loop as building a
dictionary is often more costly than building the Bloom filter in separate loop. Yet, in most
other cases fused loops seem to outperform separate loops. This, and other situations, may
be a case for loop-adaptivity.
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Appendix A

Literature Study

Table A.5 displays the selected literature for the literature research. Table A.1 and table
A.3 show the criteria that were used to include or exclude tables respectively. For each
paper we note whether we read only the title (T), abstract (A) or the full text (F). For
papers that present some query compiler, we also note whether the system uses multiple
levels of abstraction (MA), and whether it follows the abstraction without regret principle
(AWR) [23]. We use a slightly more loose definition than Koch: we do not explicitly
require the system to use multiple levels of abstraction, but the system should be built
using a high-level programming language, while retaining maximum performance.

Table A.5: Literature inclusion table.

# Rel. Authors Title Year Topic
Incl. E. Read JIT systems
1 2 3 4 1 T A F MA AWR

1 - G. Graefe Volcano - An Ex-
tensible and Paral-
lel Query Evaluation
System

1994 Other x x

2 + S. Babu et
al.

Adaptive ordering of
pipelined stream fil-
ters

2004 AQP x x

3 + Z. Ives et
al.

Adapting to source
properties in process-
ing data integeration
queries

2004 AQP x

4 + J. Ver-
morel et
al.

Multi-Armed Bandit
Algorithms and Em-
pirical Evaluation
BT

2005 MA x x

5 + J. Rao et
al.

Compiled query ex-
ecution engine using
JVM

2006 JIT x x no no

6 ++ A. Das-
phande et
al.

Adaptive Query Pro-
cessing

2007 AQP x x x

7 ++ J.
Cieslewicz
et al.

Adaptive aggre-
gation on chip
multiprocessors

2007 AQP x x
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8 ++ L.
Quanzhong
et al.

Adaptively reorder-
ing joins during
query execution

2007 AQP x x

9 + A. Das-
phande et
al.

Adaptive Query Pro-
cessing: Why, How,
When, What Next?

2007 AQP x x

10 ++ T. Neu-
mann

Efficiently compiling
efficient query plans
for modern hardware

2011 JIT x x no no

11 - A. Kemper
et al.

HyPer: A Hybrid
OLTP & OLAP
Main Memory
Database System
Based on Virtual
Memory Snapshots

2011 Other x x

12 ++ B. Radu-
canu

Master Thesis - Mi-
cro Adaptivity in a
Vectorized DBMS

2012 MA x x x

13 ++ B. Rad-
ucanu et
al.

Micro adaptivity in
Vectorwise

2013 MA x x x

14 + T. Neu-
mann et
al.

Taking the Edge off
Cardinality Estima-
tion Errors using In-
cremental Execution

2013 AQP x x

15 + S. Bel-
lamkonda
et al.

Adaptive and big
data scale parallel
execution in oracle

2013 AQP x x

16 ++ C. Koch Abstraction with re-
gret in data manage-
ment systems

2013 JIT x x

17 ++ C. Freed-
man et
al.

Compilation in
the Microsoft SQL
Server Hekaton
Engine

2014 JIT x x yes no

18 ++ T. Neu-
mann et
al.

Compiling Database
Queries into Machine
Code

2014 JIT x x no no

19 + S.
Wanderman-
Milne et
al.

Runtime Code Gen-
eration in Cloudera
Impala

2014 JIT x x no no

20 ++ C. Koch Abstraction Without
Regret in Database
Systems Building: a
Manifesto

2014 JIT x x

21 - A. Dutt et
al.

Plan Bouqets: Query
Processing without
Selectivity Estimatin

2014 AQP x x x

22 ++ V. Rosen-
feld et al.

The Operator
Variant Selection
Problem on Hetero-
geneous Hardware

2015 MA x x
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23 - M. Lee et
al.

A JIT compilation-
based unified SQL
query optimization
system

2016 JIT x x ? ?

24 ++ A.
Shaikhha
et al.

Building Efficient
Query Engines in a
High-Level Language

2016 JIT x x yes yes

25 ++ A.
Shaikhha
et al.

How to Architect a
Query Compiler

2016 JIT x x yes yes

26 ++ S. D. Vi-
glas

Processing declara-
tive queries through
generating impera-
tive code in managed
runtimes

2017 JIT x x ? ?

27 ++ S. Palkar et
al.

Weld: Rethinking
the Interface Be-
tween Data-Intensive
Applications

2017 Weld/JITx x yes yes

28 ++ S. Palkar et
al.

Evaluating End-to-
End Optimization
for Data Analytics
Applications in Weld

2018 Weld/AQPx x x yes no

29 ++ A. Kohn et
al.

Adaptive Execution
of Compiled Queries

2018 AQP/JITx x x

30 ++ R. Tah-
boub et
al.

How to Architect a
Query Compiler, Re-
visited

2018 JIT x x no yes
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Table A.1: Inclusion criteria.

Criterion Rationale

1 A study that directly proposes software
techniques or strategies to implement
query compilers.

We are interested in bridging the gap
between adaptivity and query compilers.
Approaches taken to implement the lat-
ter are therefore relevant to us.

2 A study that directly proposes software
techniques or strategies to implement
some form of adaptive query processing.

We are interested in bridging the gap
between adaptivity and query compilers.
Approaches taken to implement the first
are therefore relevant to us.

3 A study that uses or extends the concept
of micro-adaptivity.

We will bridge the gap between adaptiv-
ity and query compilers by implement a
form of micro-adaptivity in a query com-
piler. We are therefore particularly in-
terested in articles on micro-adaptivity,
as well as any extensions to it.

4 A study that provides context for at least
one of the above.

Some articles may not directly discuss
any of the above, but provide some con-
text for them anyway. These will not
be discussed in detail, but may be refer-
enced.

Table A.3: Exclusion criteria.

Criterion Rationale

1 An AQP study that are only suitable for
inter-query adaptivity, or only work in
streaming environments.

We are only interested in intra-query
adaptivity in mainstream data process-
ing.

2 A query compiler that is relatively old. We are mostly interested in the state-
of-the-art. Papers about older query
compilers will be referenced, but not ex-
plored in detail.
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