
Vrije Universiteit, Amsterdam

Faculty of Sciences,
Computer Science Department

Sînziana Maria Filip, student no. 2514775

A scalable graph pattern matching
engine on top of Apache Giraph

Master Thesis in Parallel and Distributed
Computer Systems

Supervisor:
Dr. Spyros Voulgaris, Vrije Universiteit

Second supervisor:
Claudio Martella, Vrije Universiteit

Second reader:
Prof. Dr. Peter Boncz, Vrije Universiteit, Centrum Wiskunde & Informatica

Amsterdam, December 2014



Abstract

Many applications are switching to a graph representation of their data in order to take advan-
tage of the connections that exist between entities. Consequently, graph databases are becoming
increasingly popular. A query in such a graph database can be expressed as a graph pattern
matching problem, which is NP complete, a problem especially relevant in the presence of large-
data. To overcome the need of fast and scalable graph processing, this project leverages the open
source project Apache Giraph, a system based on the Bulk Synchronous Parallel model of dis-
tributed computation. We built on top of Giraph a scalable graph pattern matching engine that
accepts queries equivalent with the ones that can be expressed with a subset of Cypher. Unlike
existing graph databases which were designed to provide interactive queries and thus strive for
low-latency, we focused on offline graph analytics queries. These types of queries operate with
large amounts of data and are better suited for distributed environments. As such the evaluation
of our system showed that it scales and supports queries for data sets of 16 million entities.
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Chapter 1

Introduction

This chapter introduces the background and the motivation for our system, named Lighthouse.
It presents the Pregel model and the open source implementation leveraged by Lighthouse. The
related work for our system can be divided in three subdomains: graph data models, graph
pattern matching algorithms and graph processing systems. The graph data model subsection
presents the possible options for the underlying representation of the data. An overview of the
algorithms that perform subgraph isomorphisms is advanced in Subsection 1.3.2. Section 1.3
ends with an analysis of the three types of graph processing systems: graph databases, graph
engines and graph query systems. Last section sketches the research questions employed by our
system.

1.1 Background and Motivation

Graphs are a powerful representation technique, capable of capturing the relationships between
entities. This feature caught the attention of some of the most successful IT companies: Google,
Facebook, Twitter. Google uses graphs to model the web and the links between pages. These
relationships are used in the page rank algorithm employed by Google search. Facebook and
Twitter model the relationships between their users as entities in a graph.

Subgraph isomorphism is a highly used graph algorithm. It has applications in various do-
mains. In Cheminformatics, it is used to find similarities between chemical compounds from
their structural formula. In Bioinformatics it is used for protein interaction networks [20].
Social Networks and Semantic Web make use of this algorithm extensively as their data is
naturally modeled as graphs. Subgraph isomorphisms is a NP problem that was tackled by
many scientists. Ullmann was the first one that proposed a solution for this problem [14]. He’s
backtracking algorithm was further improved during time and adapted for different systems.
A subgraph isomorphism application can be model as a query in a database. Consequently,
there are many systems that can process a subgraph isomorphism query. Traditional relational
databases and NOSQL support these type of queries. However, most of them cannot scale to
big data sets on graph queries, require specialised hardware or are expensive. Hence, graph
systems started being developed for the information management field. Their architecture was
designed to store and process graph modeled data. There are two big subcategories of this
branch: graph databases and graph processing engines.

The underlying structure of a graph system is dictated by its purpose. The main difference
between graph databases and graph processing engines is the type of queries they address.
Graph Databases focus on online queries, while graph processing frameworks focus on offline
queries. Online queries strive for low latency, while offline queries require high throughput [3].
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CHAPTER 1. INTRODUCTION 2

Applications that access data in real time use online queries. A typical example is “Given
a person find all his/her friends with a certain name”, the equivalent of a Facebook search
among your friends. Offline queries focus on analytics on large datasets. For example, “How
many relationships, on average, does everyone in a social network have?” could be a statistic of
interest for a social network [10].

Usually databases have an attached query language, that makes them easy to learn and use. For
graph databases there is not a standard query language. They either support the RDF query
language, SPARQL, or implement their own API. This is the case for Neo4j [8] database that
can be queried using the Cypher [9] query language. Cypher is a declarative query language
that focuses on expressing clearly what to retrieve from a graph, not on how to retrieve it [9].
It stands up by being an expressive, relatively simple and powerful query language. On the
other hand, in order to query graph engine the user has to write a program. Most of them are
easy to learn and use for an experienced programmer. For simple queries, they only require
implementing a method. The problem appears when the query becomes complex and requires
more coding or when the queries that are used are often changed, being hard to manage.
To overcome these problems we developed a system that accepts queries equivalent with the
ones supported by Cypher on top of a graph engine. Our system would enable the access to
offline graph processing for data scientists that mainly program in R, python or other high-
level languages and that are less interested in graph processing, distributed systems and all the
underlying difficulties associated with these systems.

We leverage the open source project Apache Giraph, a system based on the Bulk Synchronous
Parallel model of distributed computation. A giraph program runs as a Hadoop or YARN
application. Hence, our system can run on any Hadoop cluster, it does not require special
hardware. We focus on the scalability of the system. It is known that it is hard to query large
amounts of data. Therefore, just a sample from a data set is used. We think that the graph
representation of data and the usage of a distributed graph processing framework can improve
the scale of data that can be processed. Our system could help businesses gain better results
from data analytics, offering their customers a better experience and also increasing their own
revenues. Furthermore, our system is developed to be general-purpose, flexible and easy to use.

1.2 Pregel/Giraph

1.2.1 Pregel Model

The interest of the research community in analyzing the web graph and the increasing popularity
of social networks were some of the considerations that made Google develop a framework
dedicated specially for graphs. Moreover, graph algorithms exhibit poor locality of memory
access, little work per vertex and a changing degree of parallelism over the course of execution,
making them unsuitable for the general purpose systems such as MapReduce [2].

In 2010 Google announced Pregel [2] a distributed graph processing framework based on the
Bulk Synchronous Parallel (BSP) model [1]. This model was designed to be an efficient bridge
between software and hardware for parallel computation, the parallel analog of von Neumann
model. Its goal was to provide a certain level of abstraction so that programmers do not have
to deal with distributed memory management, communication between machines or synchro-
nization. The main idea is to keep some parallel “slack” that can be used by the compiler to
schedule efficiently communication and computation. Consequently, the programs are written
for v virtual parallel processors to run on p physical processors, where v > p × log p. BSP
is based on three attributes: a number of components that perform computations or memory
management, a router that delivers messages and synchronisation facilities.
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Figure 1.1: Supersteps and the message passing model

Pregel adopted the concepts proposed by the BSP model and added some extra functionality
to enhance its usage for graph algorithms. In the following, I will present Pregel’s computation
model, the main programming concepts and some implementation details.

Computation model

• Input/Output. The input of a Pregel program is a directed graph. Each vertex has a
unique string id and a user-defined value. Edges are represented as tuples containing the
source vertex, destination vertex and a user-defined value. The output of a computation
is composed of the values written by each vertex.

• Supersteps. Supersteps are the main component of Pregel. Similar to the BSP model, a
Pregel computation consists of a sequence of supersteps. During a superstep each vertex
executes in parallel a user-defined function. Messages belong to a specific superstep. The
messages sent in superstep s − 1 will be available at their destination in superstep s.
This process is shown in Figure 1.1. In superstep s − 1 several messages are sent to v1.
These messages are available at v1 in superstep s. v1 sends a message to v2, v3 and v4 in
superstep s. These messages are processed by v2, v3 and v4 in superstep s + 1. Besides
performing computations, receiving, creating and sending messages, a vertex can modify
its value or its outgoing edges in the course of a superstep.

• Message passing. Pregel uses the message passing model because it is sufficiently
expressive and it offers a better performance than shared memory, that requires locking
mechanisms.

• Termination. Termination is based on every vertex voting to halt. In superstep 0 all
vertices are active. A vertex can deactivate itself by voting to halt, but it is reactivated
when it receives a message. During a superstep only active vertices perform computations.
The execution finishes when all vertices are inactive and there are no messages in transit
that could activate a vertex.
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Figure 1.2: Combiners

Figure 1.3: Aggregators

Programming concepts

• Combiners. Besides the BSP components [1], Pregel [2] offers some extra functionality.
One of the concepts that it provides are combiners. Their purpose is to reduce message
traffic. For example, if the graph’s vertices store a value and the algorithm is only in-
terested in computing the maximum value of the values passed through messages that
arrive at vertices, then a combiner could be used. Instead of keeping all the values in the
outgoing message queue and then computing the maximum at the destination, only one
value is stored in the message queue. Consequently, if this value has to be sent over the
network then the space for buffered messages and the traffic is minimised. An illustration
of how combiners work can be seen in Figure 1.2. The values of the vertices from the first
and second workers are passed to the corresponding combiners. The values of these two
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Figure 1.4: The order of the mechanisms employed by Pregel to achieve determinism.

combiners can be used in the next superstep to set the value of the vertex v7 from Worker
3.

• Aggregators. Pregel provides through aggregators a mechanism for global coordination,
monitoring and statistics computation. The difference between combiners and aggrega-
tors is that combiners are doing local aggregation of outgoing/incoming messages, while
aggregators are doing global aggregation of user-defined quantities. Pregel’s approach is
based on local computations. Hence, aggregators enable the possibility to compute global
metrics. The aggregators’ value are stored by the master. During a superstep vertices can
send a value to an aggregator which applies a commutative and associative function. The
result is available for all the vertices in the next superstep. Typical aggregators functions
are min, max, sum, count. In order to reduce the overhead, the aggregators collect the
partial values from each worker in a tree based data structure. Figure 1.3 depicts this
process. The figure represents the tree structure generated by the partial aggregators.
Each worker will pass its partial aggregated value to the next level of the tree until the
final values will reach the master.

• Topology Mutations. Pregel employs partial ordering and handlers in order to re-
solve conflicting requests to the graph’s structure. First, it performs removals, with edge
removal and then vertex removal. Afterwards it executes additions requests. Vertex addi-
tions have higher priority than edge additions. Next in order is the user defined function
executed by all the active vertices. The remaining unresolved conflicts can be treated in
user defined handlers. This order can be visualised in Figure 1.4

Implementation

• Master. Pregel [2] is based on a Master-Worker architecture. The master coordinates
the computation of the workers. At the beginning of the computation, it partitions the
graph and assigns one or more partitions to each worker. Afterwards, it notifies workers to
perform supersteps or save their portion of graph. Moreover, coordinates fault detection
and recovery.

• Worker. Workers keep their portion of the graph in memory. During a superstep they
compute the user defined function and communicate directly with each other in order to
exchange messages.

• Fault tolerance. Fault tolerance is achieved through checkpointing. Workers save their
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local informations and the master saves the aggregators’ values. As mentioned before,
the master is responsible for fault detection. It sends regular pings to the workers. If
a worker does not reply it marks that worker as failed. Depending on how often the
workers save their state, in the case of a failure the computation might have to repeat
all the operations from some previous supersteps. If a worker does not receive a ping
message from the master within a period of time it terminates.

1.2.2 Giraph

Giraph [24] is an open source implementation of Pregel released under the Apache licence. An
overview of its architecture can be seen in Figure 1.5. Being part of the Hadoop ecosystem
offers a number of advantages. It can easily be integrated with other Hadoop technologies
and it can run on any Hadoop cluster. A Giraph computation runs as a MapReduce1 job or
as a YARN2 application [22] and it uses ZooKeeper [23] for coordination. It can read/write
data from/to HDFS3, HBase4, HCatalog5, Cassandra6 or Hive7 tables. Although it has the
same computation model as Pregel, Giraph comes with some differences in order to make the
system more reliable, flexible and scalable. In the following, I will briefly present some of these
extensions.

• ZooKeeper. Giraph uses ZooKeeper [23] to perform part of the master’s attributions
from Pregel. ZooKeeper is a distributed coordination system based on a shared hier-
archical name space. It provides mechanisms for group membership, leader election,
configurations, monitoring, barriers. Its fault tolerant services are based on an algorithm
that resembles Paxos [23]. By using this coordination system, Giraph eliminates the single
point of failure introduced by the master present in Pregel.

• Sharded aggregators. Unlike Pregel, where the master was in charge of aggregation,
Giraph uses sharded aggregation [24]. Each aggregator is assigned to one worker that
receives the partial values from the all the other workers and is responsible for performing
the aggregation. Afterwards, it sends the final value to the master. Consequently, the
master does not perform any computation. Moreover, the worker in charge of an aggre-
gator sends the final value to all the other workers. This design decision was adopted
in order to remove the possible computation and network bottlenecks generated by the
master in the case of applications where aggregators are used extensively.

• Out-of-core capabilities. The main policy adopted by Pregel and Giraph is to keep
everything in memory in order to avoid expensive reads and writes from the disk. Un-
fortunately, in some cases the graph or the messages can exceed the cluster’s memory.
Therefore, Giraph extended Pregel with out-of-core capabilities, meaning that some of
the graph’s partitions and part of the messages can be saved to disk based on some user
defined values and flags [24].

• Master compute. Giraph extends the Pregel model by adding a master compute
function that it is called in each superstep before the vertex compute function [22]. It can
be used to register, initialize aggregators or to perform centralised computations that can
influence the vertex computations.

1http://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/
MapReduceTutorial.html

2http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
3http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
4http://hbase.apache.org/
5http://hortonworks.com/hadoop/hcatalog/
6http://cassandra.apache.org/
7https://hive.apache.org/

http://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
http://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
http://hbase.apache.org/
http://hortonworks.com/hadoop/hcatalog/
http://cassandra.apache.org/
https://hive.apache.org/
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Figure 1.5: Giraph integration with the Hadoop ecosystem. Image taken from [22].

(a) Hypergraph (b) Property graph

Figure 1.6: The hypergraph and property graph corresponding to the same data

1.3 Related Work

1.3.1 Graph data models

Graph modeled data can be represented in different ways. The most common representations
are property graphs, hypergraphs, and triples [10].

Property graphs

Data is represented as nodes and relationships between them. Each node contains properties
(key-value pairs). Relationships are named, directed and can contain properties. This repre-
sentations is common within graph databases. For example, Neo4J adopted it. We also use this
representations because it is expressive and it is suitable for the Giraph model. More details
about our data model can be found in the next section.

Hypergraphs

A hypergraph is a more generalised representation of a graph [10]. Unlike the previous rep-
resentations where an edge can only have one start node and one end node, here an edge can
connect multiple nodes. Hence, at each end of the edge there can be multiple nodes. For ex-
ample, Andrei, Anda and Stefan inherited from their parents an apartment and a house. All
of them own these properties. Therefore there is an edge that connects each of the childrens
with the apartment and house. The graph can be seen in Figure 1.6a. This graph can be easily
converted to the property representation, shown in Figure 1.6b. The corresponding property
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graph has 6 edges instead of one, but it can hold more information than the hypergraph. It can
keep what percentage does each person owe from the property, if it leaves in that property etc.

Triples

Triples are subject-object-predicate data structures that are used in the Semantic Web field.
On their own triples do not provide complex informations, but their connection provides useful
knowledge [10]. Hence, they are not exactly a graph structure, they can be seen as a query
pattern. For example, Trinity.RDF [7] and TripleRush [6] use this representation. Both of these
systems support SPAQRL queries. Usually, triples or RDF data are associated with this query
language. It is not necessary that triples are represented internally in the same format. Graph
databases can support SPARPQ queries while still keeping their own representation. Therefore,
we could add support for SPARQL queries in the future.

1.3.2 Graph Pattern Matching Algorithms

Queries applied to a graph database or a graph system can be seen as a pattern graph. There-
fore, these application are reduced to a subgraph isomorphism problem, which belongs to the
NP-hard class [17]. We define an undirected labelled graph G as a triple (V,E, L), where V
is the set of vertices, E(⊆ V × V ) is the set of undirected edges and L is a labelling function
which maps a vertex or an edge to a set of labels or label [17]. This formalisation can easily be
extended to match the property model used by our system. We could add another function P
that maps a vertex or an edge to a set of properties.

Given a query graph (pattern graph) Q = (V,E, L) and a data graph G = (V ′, E′, L′) we define
a subgraph isomorphism as being an injective function M : V → V ′ such that:

1. ∀u ∈ V , L(u) ⊆ L′(M(u))

2. ∀(ui, uj) ∈ E, (M(ui),M(uj)) ∈ E′ and L(ui, uj) = L′(M(ui),M(uj))

Subgraph isomorphisms has applications in various areas such as social networks, chemistry,
biology. Therefore, many algorithms that target this problem were developed. They apply
different pruning rules, join orders and auxiliary neighbourhood information [17].

The first algorithm for subgraph isomorphism was introduced by Ullmann [14]. It is based on a
recursive backtracking approach. It first constructs a mapping matrixM of size |V |×|V ′|, where
|V | is the cardinal of V . M(i, j) = 1 if it is possible that ui ∼ vj in some subgraph isomorphism,
where ui ∈ V and vj ∈ V ′. They use the vertex’s degree as a criterion for matching vertices
from the pattern graph to vertices from the data graph. Compared to a brute force solution
that would choose at each step a possible mapping for one vertex of the pattern, the Ullmann
algorithm applies a simple pruning method. Considering two vertices ui ∈ V and vj ∈ V ′, if
ui ∼ vj then all of ui’s neighbors have to have a corresponded in vj ’s neighbors. If M(i, j) = 1
and there is a neighbor of ui that does not have a correspondent in vj ’s neighbors then M(i, j)
is set to 0. The pruning is done at each step in the backtracking algorithm. The effectiveness
of the pruning procedure depends on the order of the vertices. Hence, the algorithm orders the
vertices such that high degree vertices of Q are first.
It is possible to adapt Ullmann’s algorithm to work with Giraph, but a pure adaptation will
have to check the neighbours at each step, which will produce many messages. Furthermore,
the computation will produce many supersteps. A more suitable approach is the brute force
algorithm based on backtracking. One could think that each vertex keeps in memory one
column from the matrix presented in Ullmann’s algorithm. The computation could traverse the
pattern graph and at each stage checks if the vertex from the data graph matches the current
vertex from the pattern graph. One vertex from the data graph cannot be used for more than
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one vertex from the pattern graph. Since the traversal will be focused on the vertices, at the
end of the traversal, the computation would have to check if all the edges from the pattern have
a corresponding in the possible subgraph found in the data graph. Our approach resembles
Ullmann’s algorithm in the sense that we are performing a traversal of the pattern graph and
the algorithm can be seen as a backtracking. Our algebra adds more structure and flexibility
to the brute force and Ullmann’s algorithm.

VF/VF2 [15, 16] algorithms employ a depth-first search strategy. The VF2 algorithm improves
the VF algorithm by reducing the memory used. For each intermediate state s the algorithm
computes the set P (s) of the node pairs that can be added to the current state. A state s of
the matching process can be associated with a partial solution. A node is added to P (s) if
it fulfils some feasibility rules. They consider two types of feasibility: syntactic and semantic.
The syntactic feasibility depends only on the structure on the graphs. The semantic feasibility
depends on the attributes. The number of states generated in the process is reduced by adding
a set of rules, named k-look-ahead rules, which check in advance if a consistent state s has
no consistent successors after k steps. Ullmann and VF2 algorithms are similar considering
that both check each possible solution. The difference is made by the pruning technique. The
pruning employed by the VF2 algorithm is expected to have a smaller complexity.
Giraph’s computations are vertex centric, each vertex stores only information about itself.
Hence, a k-look-ahead rule would imply to send k messages or to cache locally information
about the neighbours. With large data sets, storing additional information about neighbours
could add significant memory overhead. Giraph’s out of core capabilities could be used to store
on disk what does not fit in memory. Writing to disk or having a high number of supersteps
makes the computation slow. Therefore, it is not clear if such an approach could improve the
running time. In order to have a better understanding of what could be improved, for the first
version of Lighthouse we wanted to see Giraph capabilities and how the system behaves with a
simple approach. Consequently, this type of pruning could be adapted for Giraph and studied
in the future.

The main idea behind GraphQL algorithm [18] resembles the one behind Ullmann’s [14] and
VF/VF2 [15, 16] algorithms, but they extend the pruning mechanisms. They use three pruning
techniques. The first technique prunes the possible mates of each node from the pattern and
retrieves it efficiently through indexing. They consider the neighborhood subgraphs of each
node within a distance r. It is the same pruning technique used by the VF2 algorithm. Besides
what VF2 was proposing, they also consider the possibility of adding some indexes and they
extend the pruning with another two techniques. The second technique prunes the overall
search space by considering all nodes in the pattern simultaneously. They construct at each
iteration a bipartite graph to test if a node is feasible mate of a node. The last technique
applies ideas from traditional query optimization to find the right search order. GraphQL was
designed for large graphs. Thus, it is more structured than the previous algorithms. It employs
a graph algebra that has a select operator similar to Lighthouse’s select operator. Regarding its
possible adaptation for Giraph and its efficiency, there are the same concerns expressed before
for the VF2 algorithm.

SPath [19] introduces a different approach, it matches a path at each step, not a vertex. The
query graph is decomposed in multiple shortest paths, which are matched against the data
graph. Then, the paths are joined together in order to rebuild the query graph. They studied
which pattern has the best performance for subgraph isomorphisms. They considered three
different patterns: paths, trees and graphs. For each of them they evaluated two types of cost:
feature selection and feature pruning cost. The feature selection cost identifies a pattern from
a k-neighbourhood subgraph. The feature pruning cost matches a pattern in a k-neighborhood
subgraph. For all the structures the feature selection cost is linear. The difference is made
by the feature pruning cost, which is linear for paths, polynomial for trees and NP-complete
for graphs. Thus, they decided to split the query graph into paths. We decided to follow this
direction. A path structure can be easily computed with Giraph by matching one vertex in
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each superstep and sending messages to the next possible vertex from the path. Hence, our
approach follows the vertex at a time model, but adopts the paths pattern proposed by SPath.
The paths generated from the query plan are joined by a HashJoin operator. More details
about the paths and the operators can be found in Chapters 2 and 3. In the future, we could
study if a different decomposition of the query pattern is more efficient.

Besides the aforementioned algorithms, there are many more algorithms that tried to improve
the performance and scalability of subgraph isomorphism. A study that compared these algo-
rithms by implementing them with a common framework showed that there is not an algorithm
that outperforms the others on all the datasets and all the patterns [17]. Most pruning tech-
niques behave better under certain circumstances. Therefore, we studied these algorithms and
started with the most simple adaptation of a subgraph isomorphism algorithm for Giraph. A
vertex centric distributed system adds some extra challenges to the problem. Thus, the simple
approach could reveal the bottlenecks and the possible areas for improvement.

1.3.3 Graph Systems

Graph Databases

Graphs databases focus on online querying where low latency is required. Compared to rela-
tional databases they have better performance for adjacency and graph traversal queries [13].
The query language used by the graph databases can be one criterion for classification. There
is no standard language. Therefore, databases implement their own API or support SPARQL
queries. Our decision to use Neo4j’s attached query language, Cypher [9], was determined
by the expresivity of the language. Some of the most popular graph databases are: DEX1,
Neo4j [8], HyperGraphDB [11], OrientDB2, Titan3. A study that compared these databases
showed that there is no database that outperforms the rest for all workloads [12].

Graph Engines

Graph engines focus on offline queries that are mostly used for analytics. The Pregel model
presented in Subsection 1.2.1 was the source of inspiration for many graph engines. Pregel is
not available to the public. Hence, the open source community provides some implementations:
Giraph [24], GoldenOrb4, Phoebus5. Giraph is presented in Subsection 1.2.2. Like Giraph,
GolderOrb is written in Java, uses Hadoop and it is released under an Apache licence. The
difference is that it requires additional software installation6. Moreover, it does not seem to be
supported anymore. Phoebus is a system written in Erlang that supports a distributed model
of computation similar to MapReduce. Apart from the Pregel implementations there is also
Hama7 a system that provides only BSP functionality and that it is realeased under an Apache
licence.
Besides Pregel [2], there are other engines that target offline queries. One of them is Trinity [3].
This system can actually be included both at graph databases and graph engines as it supports
online query processing and offline graph analytics. As Pregel, Trinity does all the computations
in memory. They use a key-value store on top of a memory cloud in order to achieve the
performance needed for online and offline queries. Another graph engine is Signal/Collect [4].
It is similar with Pregel in the sense that it uses a MPI model for communication. Compared

1http://www.sparsity-technologies.com/dex
2http://www.orientdb.org/
3http://thinkaurelius.github.io/titan/
4https://github.com/jzachr/goldenorb
5https://github.com/xslogic/phoebus
6http://blog.acaro.org/entry/google-pregel-the-rise-of-the-clones
7https://hama.apache.org/

http://www.sparsity-technologies.com/dex
http://www.orientdb.org/
http://thinkaurelius.github.io/titan/
https://github.com/jzachr/goldenorb
https://github.com/xslogic/phoebus
http://blog.acaro.org/entry/google-pregel-the-rise-of-the-clones
https://hama.apache.org/
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to Pregel that offers only synchronous computation, Signal/Collect provides both synchronous
and asynchronous models. Signal/Collect extends the vertex centric approach by providing the
same functionality for edges as for vertices. The downside of the system is that it runs on a
single machine.

Graph Query Systems based on Graph Engines

The idea to build a query system using a graph engine was already implemented. There are
two query systems STwigs [5] and Trinity.RDF [7] build using Trinity [3] and one query system
TripleRush [6] build on top of Signal/Collect [4]. Trinity.RDF computes a SPARQL query, while
STwig’s query pattern is a labelled graph. The main concept used by the computation of the two
algorithms is the same. One difference is the pattern used to decompose the query. STwig splits
the graph into trees of level two, called STwigs. Trinity.RDF decomposes the query in RDF
patterns. The root node of tree pattern can have more children. In Trinity.RDF the pattern
has one entity at each side, a root with one child. Thus, the pattern employed by STwig is more
complex. Another difference is the type of index used. STwig uses a local index to find the
vertices with a certain label. Each machine keeps track for each label which local vertices have
that label. Trinity.RDF used some indexes for the predicates. It keeps a local predicate index
and a global predicate index. The local index is used by vertices to find quickly if they have a
certain predicate, while the global one stores which subjects and objects refer that predicate. It
stores a list of ids for each machine, where an id points to the list of subjects/objects that are
stored on that machine and are related to the predicate. TripleRush [6] has the same purpose
as Trinity.RDF to answer a SPARQL query and it is based on a index graph. In the following
I will refer to STwig because its approach matches our goals.
As mentioned before, STwig split the query into tree structures of level two. The authors chose
a small pattern in order to avoid additional indexes. The downside of this solution is that it
produces a large number of joins and intermediary results. Hence, the STwig decomposition
and order selection have a big impact on the performance. Their approach can be adapted
for Giraph. The label frequencies could be computed in the first superstep of the computation
using an Aggregator. Another possibility is to read them from a statics file, similar to our
current approach. Afterwards, the STwigs can be generated. We could divide the computation
in phases, where each phase computes partial result for a STwig. There are two possible ways
to match a STwig. One could start from the root or from the children of the root. Starting from
the root would produce three supersteps for each STwig. In the first superstep of a phase each
vertex checks if its label corresponds with the root label of the phase pattern. If the condition
is true then it sends a message to all of its neighbours with its id. There are two possible
optimisations. Firstly, if the number of outgoing edges is less than the number of elements
from the pattern then the computation abandons that partial solution. Secondly, the vertices
could store the labels of the neighbours. The second time a vertex is considered as root for a
STwig, it does not have to generate additional computation for finding the labels. Therefore,
the pattern could be matched in one superstep. If the second optimisations is not employed,
then in the second superstep the vertices that received a message send back their id and their
label. In the third superstep the root vertex checks the labels of the children and generates
the possible solutions. Starting from the children of the root would produce two supersteps.
In the first superstep the children would be scanned and would send a message to the root. In
the second superstep the root would generate all the possible solutions. The performance of
these solutions depends on the topology of the data and pattern graph. Based on the statistics,
one could use a combination of these approaches. The algorithm proposed by STwig computes
STwigs based on a order that prunes the number of solutions. A variation of the algorithm that
could be investigates is to compute all STwigs in parallel and just merge them sequentially.
The disadvantage is that the partial solutions might not fit into memory. The benefit of this
approach is that the computation would have less supersteps and the overall running time might
be smaller than in the previous case.
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1.4 Research Questions

1. Could a NP complete problem benefit from the distributed environment? Would it help
to scale? How much can it scale?

2. What are the different options of mapping Cypher into Giraph? Which are the advantages
and disadvantages of each option?

3. Could all the functionality from Cypher be translated into Giraph?

(a) Would it be more scalable than Neo4j?

(b) How much slower would it be?

(c) Would it be scalable for all the queries?

(d) Would there be operators/functions that could be considered bottlenecks for the
system? Which are those operators/functions? Why they cannot be expressed effi-
ciently with Giraph?



Chapter 2

Lighthouse Design

This chapter presents a high level overview of Lighthouse. I first present the data model
used by our system. Then, I introduce the supported query language. Afterwards, I advance
Lighthouse architecture and algebra. In the last section I describe the types of query plans used
by Lighthouse.

2.1 Data Model

We use the property graph model to represent the data. Giraph’s [24] API allows users to define
their representation of vertices and edges values making this model the perfect candidate for
our underlying system. Each edge in Giraph has one target vertex and one destination vertex,
consequently the hypergraph data model is less practical for this configuration. Triples are less
expressive than the property graph and less flexible when it comes to adding new data.
Our data model is based on properties and labels, where:

• Properties are key value pairs, the key is conceptually a String1, while the values can
be any basic type.

• Labels are Strings.

Vertices and edges are the elements that store information:

• Vertices can have one or multiple labels and zero or more properties.

• Edges have one label and zero or more properties.

An example can be seen in Figure 2.1. There are 5 vertices and 4 edges. v2, v3 and v4 are
labelled with Person. v1 has two labels Person and Employee. v5 is labelled with Company. v1,
v2, v3 and v4 have two vertex properties: FirstName and Birthday. All the edges are labelled
with WORK_AT and two of them (v1, v5), (v3, v5), have one property: start.

2.2 Query language

Our goal is to express with Lighthouse part of the functionality offered by the Cypher query
language [9]. We are currently focusing on the read queries. The structure of the queries that
we support can be seen in Table 2.1. We currently do not provide ORDER BY, LIMIT, SKIP

1In the implementation we convert Strings to numbers in order to increase performance, but they can be
thought of as being Strings.

13
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Figure 2.1: Example of a graph

Cypher Read Query Structure Lighthouse Query Structure

[MATCH WHERE]
[OPTIONAL MATCH WHERE]
[WITH [ORDER BY] [ SKIP ] [ LIMIT ] ]
[RETURN [ORDER BY] [ SKIP ] [ LIMIT ] ]

[MATCH WHERE]
[WITH]
[RETURN]

Table 2.1: Cypher/Lighthouse Query Structure

capabilities. The expressions in the WHERE clause can use the operators shown in Table 2.2.
Unlike Cypher, we do not offer collection and regular expression operators.
An example of a Cypher query supported by Lighthouse is depicted in Cypher Query 2.1. The
query looks for people named Antonio that use the browser Chrome and work at a company
that is located in the same country as the university he attended.

2.3 Lighthouse Architecture

Figure 2.2 presents an overview of Lighthouse’s architecture. Our system receives as input a
Cypher query [9] and a graph. The cypher query is parsed and transformed into a internal
representation of the query. Afterwards, the query optimiser chooses the best query plan. This

Operators
Mathematical +,−, ∗,∧,%, /
Comparison =, <>, <, >, <=, >=
Boolean AND, OR, XOR, NOT
String +

Table 2.2: Cypher and Lighthouse Operators
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Cypher Query 2.1

MATCH (person:Person {firstName:"Antonio"}) - [:WORK_AT] -> (company)
- [:IS_LOCATED_IN] -> (country) <- [:IS_PART_OF] - (city)
<- [:IS_LOCATED_IN] - (university) <- [:STUDY_AT] - (person)

WHERE person.browser = {"Chrome"}
RETURN company.id, company.name, country.id, country.name, city.id, city.name,

person.id, person.firstName, university.id, university.name

Figure 2.2: Lighthouse architecture

plan and the graph input are passed to the engine. The engine reads the graph and processes
the query. The result is written to HDFS. In the following, I will briefly present each of these
components. More details can be found throughout this thesis.

• Cypher Query. As mentioned before, our system accepts as input queries expressed in
the Cypher query language. More information about the subset of the Cypher queries
supported by Lighthouse can be found in Section 2.2.

• Query Parser & Planner. The Cypher query is parsed and a query graph is created
out of it. Afterwards, the statistics file, which contains information about the input graph,
is read. These statistics are used for approximating the cost of an operation. In order
to produce the best physical plan a branch-and-bound approach is used. It first chooses
the cheapest solution and then prunes other solutions if the cost is above the minimum
found. At each step all possible operations and their costs are checked.

• Execution engine. The execution engine leverages Apache Giraph [24]. An overview of
this system can be found in Subsection 1.2.2. The algebra used by the engine is presented
in Section 2.4. More details about the implementation can be found in Chapter 3.

• Input Graph. The input graphs were generated with the LDBC DATAGEN – A realistic
social network data generator1 which produces data simulating the activity of a social
network site during a period of time. The data follows the same distribution as the one
from a real social network and it uses information from DBPedia2.

• Query Output. At the end of the computation each worker writes its results of the
queries to HDFS.

1http://ldbcouncil.org/blog/datagen-data-generation-social-network-benchmark
2http://dbpedia.org/

http://ldbcouncil.org/blog/datagen-data-generation-social-network-benchmark
http://dbpedia.org/
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Specification 2.1 Basic Types used by the Lighthouse Algebra

1: Constant⇒ [< Text, Property >]
2: Property ⇒ [key : Text, value :< Text, LongWritable >]
3: Properties⇒ {p|\p← {property : Property}, p.key is unique}
4: Expression⇒ +(e1 : Expression, e2 : Expression) |

−(e1 : Expression, e2 : Expression) |
∗(e1 : Expression, e2 : Expression) |
/(e1 : Expression, e2 : Expression) |
∧(e1 : Expression, e2 : Expression) |
AND(e1 : Expression, e2 : Expression) |
OR(e1 : Expression, e2 : Expression) |
XOR(e1 : Expression, e2 : Expression) |
NOT (e : Expression) |
= (e1 : Expression, e2 : Expression) |
> (e1 : Expression, e2 : Expression) |
< (e1 : Expression, e2 : Expression) |
≤ (e1 : Expression, e2 : Expression) |
≥ (e1 : Expression, e2 : Expression) |
property : Property |
text : Text |
number : int

5: ColumnList⇒ {||expression : Expression||}
6: QueryPath⇒ {|| < Scan, Select, Project,Move, StepJoin > ||}
7: QueryP lan⇒ {QueryP lan}

2.4 Lighthouse Algebra

At the beginning of this section are presented the types used by the algebra and a formalisation
of Giraph and Lighthouse computations. Afterwards, I specify the Lighthouse algebra opera-
tors. We divide them in local and global operators.
Since we wanted to have a clear picture of Giraph capabilities, our approach was to materialize
all of the operators from the algebra. Therefore, we were able to see the properties of each
operators and test if they potentially could be a bottleneck. Another benefit of this decision is
that the system can easily adapt based on the performance of an operator. After a part of the
query plan is executed, there are some reliable information about the output, consequently the
query plan can be modified accordingly. Further extensions or changes of this algebra can be
found in Chapter 6.
The types specification follows the comprehension syntax [25]. An overview of the basic types
used in the Lighthouse Algebra can be seen in Specification 2.1. These types are used as param-
eters for the operators or by the main types to express different parts from the data model. The
components of the main types: Edge, Vertex, Message are presented in Specification 2.2. In the
aforementioned section we also define Lighthouse’s central data structure: the MessageBinding.
We primarily refer to it throughout the thesis as the binding. It is the main component of the
Messages and it stores the partial results computed during the execution of a query. Conceptu-
ally, it can be seen as a table row from a tradition database. Specification 2.4 presents a higher
level overview of a giraph computation. The core of the Lighthouse algorithm is described in
Specification 2.3. This is the computation performed by each vertex in each superstep.
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Specification 2.2 Main types used by the Lighthouse Algebra

1: EdgeV alue⇒ [label : Text, properties : Properties]
2: Edge⇒ [value : EdgeV alue, targetId : LongWritable]
3: MessageBinding ⇒ {|| < V ertexId, LongWritable, Text,NullWritable,

BooleanWritable, F loatWritable > ||}
4: Message⇒ [path : byte, step : byte, binding : MessageBinding]
5: Messages⇒ {Message}
6: V ertexId⇒ [type : byte, id : Long]
7: HashJoinBindings⇒ [leftBindings : {MessageBinding},

rightBindings : {MessageBinding}]
8: HashJoinMap⇒ {entry|\entry ← {id : int,

hashJoinBindings : HashJoinBindings}, entry.id is unique}
9: V ertexV alue⇒ [labels : {Text}, properties : Properties, hashJoinMap : HashJoinMap]

10: V ertex⇒ [id : V ertexId, value : V ertexV alue, edges : {Edge}, active : Boolean]
11: V ertices⇒ {V ertex}

Specification 2.3 Lighthouse Computation

1: Computation ⇒ [ context : Context [queryPlan : QueryPlan],
2: procedure compute(vertex,messages)
3: for all message in messages do
4: context.getQueryItem(message.path,message.step).compute(this, vertex,message)
5: end for
6: vertex.voteToHalt()
7: end procedure]

2.4.1 Local operators

This type of operators perform computations based on the local information of the vertices.
They do not increase the number of supersteps. Lighthouse’s algebra has four local operators:
Scan, Select, Project, HashJoin. In the following, I will present their specification.

Scan

Scan operator is equivalent to a broadcast. Currently, it is only used as the first operator of a
query plan. Its purpose is to reduce the number of starting vertices by applying an initial filter.
It can filter based on the label of the vertices or on a property of a vertex. Its specification can
be seen in Specification 2.5.

Select

The Select operator is used to filter potential solutions that do not meet a criterion, which is
expressed as a boolean expression. A description of its outcome is presented in Specification 2.6.

Project

The Project operator is used to retrieve information stored by the vertex other than the vertex
id. For example, it can retrieve a subset of the columns from the initial binding, add to the
binding vertices’s property values or to add to the binding expression values. Its specification
can be seen in Specification 2.7.
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Specification 2.4 Giraph Computation

1: GiraphComputation ⇒ [ context : Context [queryPlan : QueryPlan],
2: procedure compute(vertices)
3: superstep← 0
4: while countActiveV ertices() > 0 or messagesInTransit() == true do
5: for all vertex in activeV ertices do
6: messages← getMessagesOfTarget(vertex.id)
7: computation.compute(vertex,messages)
8: end for
9: superstep← superstep+ 1

10: end while
11: end procedure]

Specification 2.5 Scan Operator

1: Scan ⇒ [ constant:Constant,
2: procedure compute(computation, vertex,message)
3: if constant.eval(null, vertex.value, null) == true then
4: message.binding.add(vertex.id)
5: message.step← message.step+ 1
6: nextOperator ← computation.context.getQueryItem(message.path,message.step)
7: nextOperator.compute(computation, vertex,message)
8: end if
9: end procedure]

Hash Join

At a higher level the HashJoin operator can be seen as the operator that joins two pattern
graphs. It merges two branches of the query tree. The combined messages from the left and
right paths will follow the left path of the HashJoin node. An overview of its actions can be
seen in Specification 2.8. It is not recommended to be used in the query plan if many solutions
are produced by both sides of the operator, since it will keep in the vertex memory the partial
solutions.

2.4.2 Global operators

Global operators increase the number of supersteps because they involve sending messages.
Basically, the number of global operators determines the number of supersteps. Our algebra
has two global operators: StepJoin and Move.

Move

The Move operator moves the computation from the current vertex to a vertex that was previ-
ously visited and its id is in the binding table. This operator was introduced in order to be able
to retrieve at a later stage information that is no longer local. We can access the local informa-
tion of a previous vertex or its edges. If the query graph is an Eulerian Graph then the Move
operator is not necessarily needed, unless we want to access the properties of a vertex after the
computation has already passed that vertex. Its specification can be seen in Specification 2.9.
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Specification 2.6 Select Operator

1: Select ⇒ [ expression : Expression,
2: procedure compute(computation, vertex,message)
3: if expression.eval(message.binding, vertex.value) == true then
4: message.step← message.step+ 1
5: nextOperator ← computation.context.getQueryItem(message.path,message.step)
6: nextOperator.compute(computation, vertex,message)
7: end if
8: end procedure]

Specification 2.7 Project Operator

1: Project ⇒ [ columnList : ColumnList,
2: procedure compute(computation, vertex,message)
3: for all column in columnList do
4: message.binding.add(column.compute(message.binding, vertex.value))
5: end for
6: message.step← message.step+ 1
7: nextOperator ← computation.context.getQueryItem(message.path,message.step)
8: nextOperator.compute(computation, vertex,message)
9: end procedure]

Step Join

The StepJoin operator filters the solutions based on the validity of an expression applied on the
edges of a vertex. If an edge satisfies the StepJoin condition then the computation is moved to
the target vertex of that edge. An overview of its actions can be seen in Specification 2.10.

2.5 Query Plans

Our system supports two types of query plans: left deep and bushy query plans. The type of
the plan is determined by the presence of the HashJoin operator.

2.5.1 Left Deep Query Plans

In left-deep trees, the right-hand-side input for each operator is their parameter, not another
operator. In Query Plan 2.1 is depicted a possible query plan of the Cypher Query 2.2. An
overview of the query plan tree can be seen in Figure 2.3. The query looks for the countries
where are located companies that have as employees people named Antonio that use the browser
Chrome. The Lighthouse query plan starts by scanning people named Antonio. Then it filters
the partial solutions based on whether they use the browser Chrome. Afterwards, a Project
operator is used in order to add to the solution the first name of the person. The last two op-
erators are two StepJoin operators that make the connection with the corresponding Company
and Country vertices.
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Specification 2.8 HashJoin Operator

1: HashJoin ⇒ [ id : int, side : <Left, Right>,
2: procedure compute(computation, vertex,message)
3: vertex.vertexV alue.hashJoinMap.add(message, id, size)
4: pat← getMessagePath(id, side)
5: step← getMessageNextStep(id, side)
6: nextOperator ← computation.context.getQueryItem(path, step)
7: opposideBindings← getOpposideBindings(vertex.value.hashJoinMap, id, side)
8: for all binding in opposideBindings do
9: newBinding ← Bnding(binding,message.binding, side)

10: newMessage←Message(path, step, newBinding)
11: nextOperator.compute(computation, vertex, newMessage)
12: end for
13: end procedure]

Specification 2.9 Move Operator

1: Move ⇒ [ column : int,
2: procedure compute(computation, vertex,message)
3: id← message.binding.get(column)
4: message.binding.remove(column)
5: message.binding.add(id)
6: message.step← message.step+ 1
7: computation.sendMessage(id,message)
8: end procedure]

Query Plan 2.1 Left Deep Query Plan

1: StepJoin(
2: StepJoin(
3: Project(
4: Select(Scan(firstName:Antonio), =({browser}, Chrome))
5: [$1, {firstName}]),
6: WORK_AT),
7: IS_LOCATED_IN))

Figure 2.3: Left Deep Query Plan Tree
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Specification 2.10 StepJoin Operator

1: StepJoin ⇒ [ expression : Expression,
2: procedure compute(computation, vertex,message)
3: for all edge in vertex.edges do
4: if expression.eval(message.binding, edge.value) == true then
5: newBinding ← Binding(message.binding)
6: newBinding.add(edge.targetId)
7: newMessage←Message(message.path,message.step+ 1, newBindng)
8: computation.sendMessage(edge.targetId, newMessage)
9: end if

10: end for
11: end procedure]

Cypher Query 2.2

MATCH (person:Person {firstName:"Antonio"}) - [:WORK_AT] -> (company)
- [:IS_LOCATED_IN] -> (country)

WHERE person.browser = {"Chrome"}
RETURN person.id, person.firstName, company.id, country.id

2.5.2 Bushy Query Plans

Bushy trees are generated by the HashJoin operator, whose right hand side is a sequence of
operators, not just a parameter. In QueryPlan 2.2 is presented a possible query plan of the
Cypher Query 2.3. A visualisation of the query plan tree can be seen in Figure 2.4. The query
looks for people named Antonio and John that use the browser Chrome and work at the same
company. The query is also interested in the country where the company is located. It has
two main branches. The first one scans people named Antonio. It applies a Select to filter the
persons that do not use the browser Chrome. Then it does a StepJoin to go to the Company
labelled vertices. The second branch does the same operations, the only difference is that it
scans for people named John. These two branches are merged by the HashJoin operator. The
last operator is a StepJoin towards Country labelled vertices.
This type of query plan can be efficient if there are a few number of solution coming from both
sides of the HashJoin operator. In some cases it can be the only way to unify two pattern
graphs. In other situations it can be provide a more cost efficient plan. Lets assume that there
are edges connecting companies and employees and there are many companies and all of them
have a significant number of employees. In this case a possible plan could scan the companies,
perform the computations for one of the branches, then move the computation back to the
company and perform the computations for the second branch. It is clear that the busy plan
is more efficient as the two branches are computed in parallel, consequently there are fewer
number of supersteps. Moreover, if the names of the people are uniformly distributed there are
a just few people named Antonio and John.
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Query Plan 2.2 Bushy Query Plan

1: StepJoin(
2: HashJoin(
3: StepJoin(
4: Project(
5: Select(Scan(firstName:Antonio), =({browser}, Chrome))
6: [$1, {firstName}]),
7: WORK_AT),
8: StepJoin(
9: Project(

10: Select(Scan(firstName:John), =({browser}, Chrome))
11: [$1, {firstName}]),
12: WORK_AT)),
13: IS_LOCATED_IN)

Figure 2.4: Bushy Query Plan Tree

Cypher Query 2.3

MATCH (person1:Person {firstName:"Antonio"}) - [:WORK_AT] -> (company)
- [:IS_LOCATED_IN] -> (country), (person2:Person {firstName:"John"})
- [:WORK_AT] -> (company)

WHERE person1.browser = {"Chrome"} AND person2.browser = {"Chrome"}
RETURN person1.id, person1.firstName, person2.id, person2.firstName,

company.id, country.id



Chapter 3

Lighthouse implementation

This chapter presents a low level overview of Lighthouse. Firstly, I introduce the process
that transforms the query plan string into operators. Then, I present the binding table, some
implementation details of the operators and show illustrations of their actions. In the last
section, I shown on an example the computations done by Lighthouse when executing a query
plan.

3.1 The Lexer and Parser

The Execution Engine receives the query plan as a string. Each worker parses this input and
constructs the query plan tree. This transition is done using CUP1 parser and JFLEX2 lexer.

3.2 Query Paths

We split the query plan tree into multiple paths. For left deep plans we only generate one
path. For busy query plans the number of paths is determined by the number of HashJoin
operators. Each HashJoin operator joins the paths that come from the left and right hand side.
The paths are computed in parallel and after the join the messages will follow the left path, as
the right path will always finish at the HashJoin operator. For example, from the query plan
tree depicted in Figure 2.4 the system generates two paths:

1. The first path that is generated can be seen in Query Path 3.1. It includes all the elements
from the left side of the tree, similar to a left deep plan.

2. The second path that is generated from the query tree can be visualised in Query Path 3.2.
The path is the right hand side of the HashJoin operator. It stops at this operator since
after the merge the left path is continued.

Messages keep track of the path they follow and of the step from the path that has to be
executed. Therefore, each message follows its path independently.

1http://www2.cs.tum.edu/projects/cup/index.php
2http://jflex.de/
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Query Path 3.1 Left Side

1: StepJoin(
2: HashJoin(
3: StepJoin(
4: Project(
5: Select(Scan(firstName:Antonio), =({browser}, Chrome))
6: [$1, {firstName}]),
7: WORK_AT),
8: IS_LOCATED_IN)

Query Path 3.2 Right Side

1: HashJoin(
2: StepJoin(
3: Project(
4: Select(Scan(firstName:John), =({browser}, Chrome))
5: [$1, {firstName}]),
6: WORK_AT)),

3.3 Binding Table

The bindings are the core data structure of Lighthouse. They store intermediate results and
were inspired by traditional databases tables. We started from this concept and adapted it to
our distributed, vertex centric environment. Giraph provides two storing units: vertices and
edges and a message passing model for communication. Therefore, one option to construct
the solution is to embed the binding table into messages. During a superstep vertices receive
messages that are further passed to the corresponding operators from the query plan. These
operators process the message based on the vertex and binding table information. Hence, in
the binding table are added all the information that are needed either to prune the solution
at a later stage or in the final result. It is a list of vertex ids, property values and expression
results. Bindings are the horizontal partition of a table, that are constructed sequentially based
on the local information of the vertices. Conceptually, during a superstep the columns of a row
are “updated”.

3.4 Operators

In the following, I will present more details about the implementation of the operators and I will
describe their execution on some example applied on the input graph depicted in Figure 3.1.

3.4.1 Local operators

Local operators do computation based on the information stored by the vertices. Afterwards,
they pass the computation to the next operator from the path or store the solution in case it
is the last operator from the path.

Scan

As mentioned before, Scan operator is the first operator from a query plan. For example, if the
query plan starts with a Scan(Person), there will be 8 vertices that will create a binding as
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Figure 3.1: Input graph

(a) Scan
(b) Project

Figure 3.2: Scan and Project bindings

(a) Select (b) Hash Join

Figure 3.3: Select and Hash Join bindings
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there are 8 vertices labelled with Person. These bindings contain the id of vertex that created
them. They can be seen in Figure 3.2a.

Select

The Select operator has the purpose to trim down the number of solutions based on some
boolean expression. Lets assume that we are not interested in all the Persons. We want to
know something about persons whose first name is John. The query plan could have after the
previous Scan operator a Select(=({firstName}, John)). All the vertices that have a binding
apply this boolean expression on their local information. There are only three vertices v1, v2, v8
that satisfy the condition. The remaining bindings are shown in Figure 3.3a.

Project

The previous operators were only adding to the bindings vertices ids or filter the solution. In
order to retrieve the information stored by the vertices the project operator has to be used.
For example, we would like to have in the solution the first name and the birthday of the
people. The query plan could apply a Project([$1,{firstName},{birthday}]) after the Select
operator. The first element from the column list denotes that we keep the first element from
the binding. The second and third elements add to the binding the value of the properties
,{firstName},{birthday}. The outcome of this operator can be seen in Figure 3.2b.

Hash Join

The implementation of the HashJoin operator follows the ideas of the Pipeling hash-join pre-
sented by Wilschut et al. [21]. The join process consists of only one phase, unlike other types of
implementation. One advantage of this approach is that it produces output faster. Moreover,
it is more appropriate for the pipeline approach presented in the Chapter 6. Other types of
implementation would imply adding an additional superstep to the computation.
The HashJoin operator has an important role, to merge paths, but is also the most costly op-
erator from a memory point of view. It is the only operator that uses additional memory. The
other operators perform computations on the messages that arrive at a vertex in a superstep,
without storing any additional information. On the contrary, for each HashJoin operator each
vertex stores a table containing the bindings that came from the left and right side of the tree.
These tables are kept in memory. In order to increase the scale of the system the out of core
capabilities provided by Giraph could be used. To illustrate HashJoin’s actions lets assume
that we are interested in people named John and Maria that work at the same company. The
query plan could use a HashJoin operator to merge the path that scans for people named Maria
that work at a company with the one that scans for people named John. An overview of the
process is shown in Figure 3.3b. Vertex 5 has stored in the table associated with this HashJoin
operator two bindings that came from the left side. When a message with a binding from the
right side arrives at this vertex, it is merged with the bindings from the table. The operator
will produce two bindings containing the binding from the left side first and then the binding
from the right side. At the end of the binding it is added the id of the current vertex, namely
5.

3.4.2 Global operators

The global operators establish the communication between vertices. They are the only operators
that call the sendMessage method provided by the computation class. Consequently, they
produce network traffic and increase the number of superstep.
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(a) Step Join (b) Move

Figure 3.4: StepJoin and Move bindings

Step Join

StepJoin operator adds to the path a new vertex based on a label or edge expression. For exam-
ple, we consider that the query plan from the Project operator contains a StepJoin(WORK_-
AT) after the Project operator. Vertices 1, 2, and 8 will check which of their outgoing edges
satisfy this condition. Each of these vertices has one edge that satisfy the condition of the
operator: (v1, v4), (v2, v5), (v8, v5). They add in the binding table the id of the target vertex
and send the message to this target. A visualisation of the process can be seen in Figure 3.4a.

Move

The Move operator can be used to access information that is no longer local. Let’s assume that
after the previous StepJoin the query plan has a Move($1). This means that the computation
goes back to the vertex whose id is the first in the binding. Vertex 5, has two bindings, it moves
the ids situated on the first position at the end of the bindings as it can be seen in Figure 3.4b.
We always keep on the last position of the binding the target id of the future message. The first
binding from vertex 5 will be send to vertex 2, while the second binding will be send to vertex
8. The same computations are done by vertex 4 which sends a message to vertex 1. These
messages will be available at their destination in the next superstep.

3.5 Lighthouse Example

In the following, I will present the computations done by Lighthouse when executing the Cypher
Query 3.1 with the Query Plan 3.1. The query looks for two people named Antonio and John
who work at the same company and Antonio is two years younger than John. The computation
produces from this query plan two query paths: QueryPath 3.3 and QueryPath 3.4. The
solutions will be produced in four supersteps:

• In superstep 0, each path does a Scan and a StepJoin. The bindings produced by each
path are presented in Table 3.1. They contain the id of the current vertex and the id
of the target vertex. Only the vertices that store the information for a person named
Antonio or John created a binding. Each of these vertices has only one edge labelled with
“WORK_AT”. These bindings are sent to the target vertex.

• In superstep 1, vertices receive the messages sent in the previous superstep. The bindings
present at each vertex are shown in Table 3.2. These bindings are combined by the
HashJoin operator. The result can be seen in Table 3.3. Afterwards, the first Move
operator is applied, which moves the computation back to the first visited vertex from
Path 0. The first column is moved to the last position in the binding as it can be seen
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in Table 3.4. The bindings are packed into messages and sent to their target, which is
vertex id from the last column.

• In superstep 2, the first Project operator is applied in order to get the birth year of the
persons named Antonio. The bindings are presented in Table 3.5. Afterwards, the second
Move operator computed. It moves back the computation to the first vertex from the
second path. The structure of the bindings before the messages are sent can be seen in
Table 3.6.

• In superstep 3, the second project operator retrieves the birth year of the second person.
The bindings are shown in Table 3.7. At the end a Select operator, that checks if the
difference between the birth year of two persons is 2, trims down the solutions. As it can
be seen in Table 3.8 there are only two results for this query.

Query Plan 3.1 Example of query plan

1: Select(
2: Project(
3: Move(
4: Project(
5: Move(
6: HashJoin(
7: StepJoin(Scan(firstName:Antonio), WORK_AT),
8: StepJoin(Scan(firstName:John), WORK_AT)),
9: [$1]),

10: [$1, $2, $3, year({Birthday}])),
11: [$1]),
12: [$1, $2, $3, $4, year({Birthday}), −($3, year({Birthday}))]),
13: = ($6, 2))

Query Path 3.3 Query Path 0 of QueryPlan 3.1

1: Select(
2: Project(
3: Move(
4: Project(
5: Move(
6: HashJoin(
7: StepJoin(Scan(firstName:Antonio), WORK_AT),
8: [$1]),
9: [$1, $2, $3, year({Birthday}])),

10: [$1]),
11: [$1, $2, $3, $4, year({Birthday}), −($3, year({Birthday}))]),
12: = ($6, 2))

Query Path 3.4 Query Path 1 of QueryPlan 3.1

1: HashJoin(
2: StepJoin(Scan(firstName:John), WORK_AT))
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Cypher Query 3.1

MATCH (person1:Person {firstName:"Antonio"}) - [:WORK_AT] -> (company)
<- [:WORK_AT] - (person2:Person {firstName:"John"})

WHERE person1.birthyear - person2.birthyear = 2
RETURN company.id, person1.id, person1.birthyear, person2.id, person2.birthyear,

person1.birthyear - person2.birthyear;

Path 0 Binding
Vertex $1 $2

0 0 4
6 6 4
9 9 5

Path 1 Binding
Vertex $1 $2

1 1 4
2 2 5
8 8 5

Table 3.1: Superstep 0

Path 0 Binding
Vertex $1 $2

4 0 4
4 6 4
5 9 5

Path 1 Binding
Vertex $1 $2

4 1 4
5 2 5
5 8 5

Table 3.2: Superstep 1 before the HashJoin operator is applied

Binding
Vertex $1 $2 $3

4 0 1 4
4 6 1 4
5 9 2 5
5 9 8 5

Table 3.3: Superstep 1 after the HashJoin
operator is applied

Binding
Vertex $1 $2 $3

4 1 4 0
4 1 4 6
5 2 5 9
5 8 5 9

Table 3.4: Superstep 1 before the Move op-
erator sends the messages

Binding
Vertex $1 $2 $3 $4

0 1 4 0 1980
6 1 4 6 1985
9 2 5 9 1990
9 8 5 9 1990

Table 3.5: Superstep 2 after the Project op-
erator is applied

Binding
Vertex $1 $2 $3 $4

0 4 0 1980 1
6 4 6 1985 1
9 5 9 1990 2
9 5 9 1990 8

Table 3.6: Superstep 2 before the Move op-
erator sends the messages
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Binding
Vertex $1 $2 $3 $4 $5 $6

1 4 0 1980 1 1978 2
1 4 6 1985 1 1978 7
2 5 9 1990 2 1988 2
8 5 9 1990 8 1985 5

Table 3.7: Superstep 3 after the Project op-
erator is applied

Binding
Vertex $1 $2 $3 $4 $5 $6

1 4 0 1980 1 1978 2
2 5 9 1990 2 1988 2

Table 3.8: Superstep 3 after the Select oper-
ator is applied



Chapter 4

Evaluation

This chapter presents the evaluation of Lighthouse’s performance and bottlenecks. Firstly, I
introduce the setup used for the experiments. Afterwards, the scalability results are depicted.
They showed that our system is network bound. The last section targets this issue by informing
of a possible solution.

4.1 Setup

For the experiments we used Giraph 1.1.0. Each worker had assigned 16G of Heap. In the
following are presented more information about the data set and cluster.

4.1.1 Data set

For Lighthouse’s evaluation we used three data sets that simulate the activity of a social network.
The number of entities from the main types used in our queries are shown in Table 4.1. We
consider the central point of our data set the persons. Therefore, I will refer to a data set with
the number of the person from that data set. 10K is the data set that has 10000 persons.

4.1.2 Cluster

We ran the experiments on the Surf Sara Hadoop Hathi cluster1. The cluster has 90 data/com-
pute nodes with 720 CPU-cores2.

1https://surfsara.nl/systems/hadoop/hathi
2https://surfsara.nl/systems/hadoop/description

DataSet #Person #Comment #Post #Tag
10K 10.000 896.995 95.058 12.858
50K 50.000 6.428.749 679.267 64.734
100K 100.000 14.921.364 1.576.380 129.906

Table 4.1: Data set entities
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4.2 Scalability

We tested the scalability of our system in three directions: worker, thread and size scalability.
The results are presented in the following.

4.2.1 Worker scalability

Our first experiment varied the number of workers in order to see if we can get a time im-
provement. For this evaluation we used the Cypher Query 4.1, the query plan presented in
Query Plan 4.1 and the 10K data set. The query looks for comments that have as author a
male that liked a post for which the browser used was Chrome. The results can be seen in
Figure 4.1. In the chart we can see the time for all the supersteps and the total time. There
is no time improvement when increasing the number of workers. Consequently, our system is
network bound. Increasing the number of workers can actually lead to a time increase because
there will be more communication. We verified this hypothesis by running the same experiment
with messages that had double size. The running time was almost double compared with the
previous case. Thus, most of the time is spent on communication.

Cypher Query 4.1

MATCH (comment:Comment)-[:has_creator]->(person:Person)-[:likes]->(post:Post)
WHERE post.browserUsed = {"Chrome"} AND person.gender = {"male"}
RETURN comment.id, person.id, friend.firstName, friend.creationDate, friend.gender,

post.content, post.creationDate;

Query Plan 4.1 Plan used for the worker/thread scalability evaluation

1: Project(
2: Select(
3: StepJoin(
4: Project(
5: Select(,
6: StepJoin(Scan(Comment), has_creator),
7: = ({gender},male))
8: [$1, $2, {firstName}, {creationDate}, {gender} ]),
9: likes),

10: = ({browser}, Chrome)),
11: [$1, $2, $3, $4, $5, $6, {content}, {creationDate}])



CHAPTER 4. EVALUATION 33

Figure 4.1: Worker scalability

4.2.2 Thread scalability

In order to prove that Lighthouse is network bound we also tried varying the number of threads.
For the experiment we used Query Plan 4.1, 64 workers and the 10K data set. The results are
depicted in Figure 4.2. Since the system is not CPU bound and most of the time is spent on
communication, we can see that there is no time improvement.

Figure 4.2: Thread scalability

4.2.3 Size scalability

Giraph scales when the size of the dataset is increased. Consequently, one of our expectations
was that Lighthouse will scale from the size perspective. For the experiment we varied the
number of persons from the dataset and kept the number of workers constant. We used the
Cypher Query 4.2 with the Query Plan 4.2, 64 workers and the data sets from Table 4.1. The
query looks for persons that have a friend that have a friend named Jacques, hence a two step
relation. The results are depicted in Figure 4.3. It can be seen that the running time increases
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proportional with the size of the data set. Therefore, our system does scale from the size per-
spective.
This experiment also proofs that a NP complete problem can benefit from a distributed en-
vironment. It is highly unlikely that a single machine could query data sets of more than 16
million items. We have resumed to three datasets, but we are confident that for this query and
the same setup the system can scale even more. Queries that scan all the comments and pass
their information might need a higher number of machines or heap memory. The scalability of
a query is influenced by the resources allocated for the job, the number of messages and their
size.

Query Plan 4.2 Plan used in the size scalability evaluation

1: Project(
2: Select(
3: StepJoin(
4: StepJoin(Scan(Person), has_knows),
5: knows),
6: = ({firstName}, Jacques)),
7: [$1, $2, {firstName}, {creationDate}, {gender}, {browserUsed}, {locationIP}])

Cypher Query 4.2

MATCH (person1:Person)-[:knows]->(person2:Person)-[:knows]->(friend:Person)
WHERE friend.firstName = {"Jacques"}
RETURN person1.id, person2.id, friend.firstName, friend.creationDate, friend.gender,

friend.browserUsed, friend.locationIP;

Figure 4.3: Size scalability

4.3 Late/Early projection

Since our system is network bound one way to improve the running time is to minimise the
number of bytes sent through the network. One method to reduce the communication is to use
late projection instead of an early projection. In order to test this hypothesis we used Cypher
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Query 4.3 with Query Plans 4.3 and 4.4. Both of them execute the same query that outputs
the content, creation date, browser used and location ip of the comments that have as autor a
person interested in William III of the Netherlands. Query plan 4.3 does an early projection.
Hence, after the Scan it adds to the message all the information stored by the comments.
Afterwards it does two StepJoins that will carry the information from the comments through
the network twice. At the end the query plan applies the Select that trims down the solutions.
On the other hand, Query plan 4.4 does an late projection. It applies the Scan the two Step
Joins and then the Select. Afterwards, it goes back to the comments and gets the information
stored by the comments. This query plan produces one superstep more than the previous one
since it has three global operators, but it will not pass through the network the comments’
attributes.
We ran the experiment using 64 workers and the 10K data set. The results of these two query
plans are shown in Table 4.2. We can see that overall, the late projection has a smaller running
time, although it has one superstep more than the early projections. This difference is generated
by the fact that we are sending less data. If we are looking at the number of bytes sent in the
first and second superstep, you can observe that we are sending more than 10 times less data.
It turns out that there are only 69 people interested in William III. Therefore, if it is known
that the number of solutions will decrease it is worth going back to a vertex at a later stage
to get additional data. Hence, the query optimiser has an important role, as it is in charge in
figuring out which query plan is the best.

Cypher Query 4.3

MATCH (comment:Comment)-[:has_creator]- >(person:Person)-[:has_interest]
->(tag:Tag)

WHERE tag.name = {"William_III_of_the_Netherlands"}
RETURN comment.id, person.id, tag.id, friend.firstName, comment.content,

comment.creationDate, comment.browserUsed , comment.locationIP;

Query Plan 4.3 Early Projection

1: Select(
2: StepJoin(
3: StepJoin(
4: Project(
5: Scan(Comment),
6: [$1, {content}, {creationDate}, {browserUsed}, {locationIP}]),
7: has_creator),
8: has_interest),
9: = ({name},William_III_of_the_Netherlands))

Query Plan 4.4 Late Projection

1: Project(
2: Move(
3: Select(
4: StepJoin(
5: StepJoin(Scan(Comment), has_creator),
6: has_interest),
7: = ({name},William_III_of_the_Netherlands))
8: [$1]),
9: [$1, $2, $3, {content}, {creationDate}, {browserUsed}, {locationIP}]),
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Early projection Late projection
Total time (ms) 122192 84848

Superstep 0
Time (ms) 2007 1595
msgCount 896.995 896.995

msgBytesCount 485.529.918 35.967.591

Superstep 1
Time (ms) 49837 17179
msgCount 20.886.597 20.886.597

msgBytesCount 11.491.718.390 1.024.210.282

Superstep 2
Time (ms) 8044 765
msgCount 0 69

msgBytesCount 0 4.738

Superstep 3
Time (ms) - 344
msgCount - 0

msgBytesCount - 0

Table 4.2: Early and Late projection results
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Conclusions

In conclusion, we were able to express with Giraph part of the functionality offered by Cypher.
The advantage of our materialization approach is that it provides a clear picture of how the
operators perform. Moreover, the query optimizer could adjust the plan based on the partial
results, not based on statistics. On the other hand, a pipelineable approach could scale even
more. Lighthouse’s materialization algebra has six operators, divided in local and global oper-
ators. The local operators are used to start and trim down solutions, retrieve local information
or join paths. Global operators assure the communication between vertices. Their purpose
is to move the computation in order to get information that is no longer local or to reduce
the number of solutions based on edge information. The HashJoin operator can be seen as a
possible bottleneck. It is the only operator that stores additional information. Since the partial
tables used by this operator could exceed the memory, Giraph’s out of core capabilities could
be used to save to disk part of the information. This solution will allow the system to scale up,
but it will add a significant overhead considering that it is slow to write/read from disk.

Aggregators and path queries, the operators that are missing and that will complete Light-
house’s functionality are presented in more detail in Chapter 6. Adding path queries would
not require much effort as we already support fixed path queries. An index could store the
number of steps traversed. Based on the statistics of the data set a path can be abandoned
after a certain number of step. Giraph provides aggregation mechanisms, which could be used
for the aggregator operators. They would increase the number of supersteps and would require
some coordination if it is not the last operator from the query plan. We did not compare the
performance of Neo4j and Lighthouse because of these missing features. For online queries we
expect that Neo4j is much faster than Giraph, which has a high initialisation time. Moreover,
the communication and coordination of a distributed system adds overhead. At the current
stage Giraph can only outperform Neo4j if the data set does not fit in the memory of a single
machine. Hence, the distributed environment can improve the scale, but not the running time.

The experiments showed that the system is network bound. Most of the running time is spent
on communication. The operators are not CPU intensive. Hence, it does not scale when the
number of workers or threads is increased. However, it does scale when the data set size is
increased. Thus, we showed that a NP complete can benefit from a distributed environment.
We tested the scalability up to 100K persons (16 million entities). In order to increase the data
scale factor, there are several optimisation that can be adopted. One improvement is to use late
projection instead of early projection. With this method the messages’ size is decreased and
the computation has a higher number of supersteps. Consequently, we can increase the data
set size as the system can send more messages. Moreover, the running time can be decreased
using this method. Other changes that can improve the scale are presented in the next chapter.
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Chapter 6

Future Work

This chapter presents possible enhancements of the first version of Lighthouse. The engine’s
future work can be divided in two direction: extending the functionality by adding new operators
to the algebra and improving the performance by adopting a different implementation. There
are two main Cypher features that are not yet supported by Lighthouse: aggregators and path
queries. I will introduce these components in this chapter. The scalability can be improved
by using temporary tables or a pipeline approach. More details can be found throughout
Sections 6.3 and 6.4.

6.1 Aggregators

Aggregators are useful for graph analytics and business intelligence. Our system is focused
on offline queries that are useful for statistics. Therefore, it will prove the real efficiency of
Lighthouse as it could scale more than other systems. Furthermore, this operator will bring us
closer to our target, to support all the functionality provided by Cypher.

6.2 Path queries

Path queries are useful for knowledge management queries. Sometimes reachability is the target
of the queries, no matter how many steps it implies. Thus it cannot be expressed through our
initial algebra, that accepts only a fixed number of steps. The engine should be enhanced to
support: variable length and shortest paths queries. Path queries have applications in areas
such as semantic, social, and biomedical networks.

6.3 Temporary tables

Temporary tables could be used to store partial solutions. Part of the binding could be left in
the memory of the current node and send just the other part of the binding. It can be an efficient
alternative to late projection. The tables would store all the information that are not needed
throughout the later computation. At a later stage, the computation would go back at the vertex
storing the partial binding in order to fetch the data. This approach might be useful when the
current binding is big and it contains attributes from more than one vertex. Therefore, with late
projection the computation would have to revisit multiple vertices, adding to the computation
several supersteps. Moreover, if the current vertex generates a significant number of messages
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that is not reduced until the end of the computation, not sending extra information and going
back to just one vertex could improve the running time and data scalability.

6.4 Pipeline operators

Pipeline operators would improve the scalability of the system. The messages processed by a
vertex in one superstep could be partitioned in order to keep a limited number of messages in
memory. Lets assume that we have three consecutive StepJoin operators in our query plan and
in superstep x, vertex v receives 1 million messages that are the input to the first StepJoin.
Instead of processing all the messages in one superstep, we could split the messages in chunks
of 2000 messages. In this way the first StepJoin can process the first 2000 messages and send
them to the corresponding vertices that will apply the next StepJoin operator. Basically, in
superstep x + 1 vertex v will compute the first StepJoin over messages 2000-3999, while the
second StepJoin will be applied over message 0-1999 by other vertices. The query results will
be computed in a higher number of supersteps than in the naive implementation, but it will
improve the scalability of the system.
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