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Abstract

The Resource Description Framework (RDF) is the de facto standard for representing semantic data, employed
e.g., in the Semantic Web or in data-intense domains such as the Life Sciences. Data in the RDF format
can be handled efficiently using relational database systems (RDBMSs), because decades of research in
RDBMSs led to mature techniques for storing and querying data. Previous work merely focused on the
performance gain achieved by leveraging RDBMS techniques, but did not take other advantages, such as
providing a SQL-based interface to the dataset and exposing relationships, into account. In contrast, our
approach is the first to strive for a complete transformation of RDF data into the relational data model. For that
purpose, inherently unstructured RDF data is structured by means of semantic information, and relationships
between these structures are extracted. Moreover, names for structures, their attributes, and relationships
are automatically generated. Subsequently, using the relational schema thus created, RDF data is physically
stored in efficient data structures. Afterwards, it can be queried with high performance and in addition –
because of the generated names – be presented to users. Our experiments show that structures exist even
within Web-crawled RDF data which is considered dirty. Using our algorithms, we can represent 79% of the
DBpedia dataset (machine readable part of Wikipedia) by using only 140 tables. Furthermore, our survey
shows that the generated table names get an average score of 4.6 on a 5-point Likert scale (1 = bad, 5 =
excellent). Our approach therefore enables users to gain a fast and simple overview over large amounts of
seemingly unstructured RDF data by viewing the extracted relational model.

Zusammenfassung

Das Resource Description Framework (RDF) ist der de-facto-Standard zur Repräsentation von semanti-
schen Daten, wie sie zum Beispiel im Semantic Web oder in datenintensiven Forschungsbereichen wie
den Life Sciences verwendet werden. Daten im RDF-Format lassen sich effizient in relationalen Daten-
banksystemen verarbeiten, weil diese seit Jahrzehnten entwickelten Systeme über ausgereifte Techniken
zur Datenspeicherung und -abfrage verfügen. Bisherige Arbeiten verwenden relationale Datenbanksysteme
lediglich zur Steigerung der Performanz von Abfragen über RDF-Daten. Weitere Vorteile dieser Systeme,
etwa das Herausstellen von Beziehungen und das Anbieten einer SQL-Schnittstelle zu den Daten, wurden
bislang nicht beachtet. Unser Ansatz strebt erstmals eine vollständige Transformation der RDF-Daten in das
relationale Datenmodell an. Dazu werden die inhärent unstrukturierten RDF-Daten mit Hilfe semantischer
Informationen strukturiert und Beziehungen zwischen den Strukturen extrahiert. Sowohl für Strukturen als
auch für ihre Attribute und Beziehungen werden unter Zuhilfenahme semantischer Informationen Namen
erzeugt. Mittels des so generierten relationalen Schemas werden RDF-Daten in effizienten Datenstrukturen
gespeichert, können performant abgefragt werden und zusätzlich, aufgrund der vergebenen Namen, auch
Nutzern präsentiert werden. Unsere Experimente zeigen, dass selbst per Webcrawler gesammelte „dreckige“
Daten, Strukturen enthalten. Mit unseren Algorithmen können 79% der DBpedia-Daten (DBpedia enthält
den maschinenlesbaren Teil der Wikipedia) auf nur 140 Relationen abgebildet werden. Die automatisch
generierten Tabellenamen wurden im Durchschnitt mit 4,6 auf einer 5-Punkt-Likert-Scala, bei der 1 die
schechteste und 5 die beste Bewertung darstellt, bewertet. Somit ermöglicht unser Ansatz einen einfachen
Überblick über große Mengen eigentlich unstrukturierter RDF-Daten.
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CHAPTER 1. INTRODUCTION

1. Introduction

In the last years, both the scientific community and industry have picked up the need for efficient RDF
(Resource Description Framework) data stores. However, an inherent problem of RDF data, missing insight
into data due to the lack of schema information, has not yet been tackled. This thesis presents techniques for
finding and naming structures in RDF data that can be presented to the users to overcome this disadvantage of
the RDF data model. The work described in this thesis is part of the MonetDB/RDF project that aims to fully
integrate RDF data into the relational database system MonetDB. The MonetDB/RDF project is located at the
Database Architecture group at Centrum Wiskunde & Informatica (CWI), where the MonetDB product family
is developed.1

Section 1.1 of this chapter motivates the MonetDB/RDF project and the research that is done as part of it. In
section 1.2, we define the scope of this thesis and name our research questions and contributions. Section 1.3
briefly introduces our approach to tackle the research questions. Finally, section 1.4 introduces a running
example that is used throughout this thesis.

1.1. Motivation

The Resource Description Framework (RDF), the de facto standard for exchanging data on the Web [29], is
much used in the Semantic Web, for example for annotating e-commerce items or social networks as well
as for DBpedia2, the machine readable version of Wikipedia. Besides the Semantic Web, RDF is widely
accepted in data-intense domains such as geography (e.g., for weather forecasts and spatial data), life sciences
(e.g., for taxonomies and drug databases), and also open government data (e.g., economic statistics or court
decisions). This implies that RDF is used for large datasets, which raises a couple of problems on how to
efficiently store, query, and explore RDF datasets.

RDF data is stored in triples. Each triple consist of a subject, a predicate, and an object. The terms
subject, predicate, and object do also define grammatical components of sentences; and RDF triples can
easily be seen as sentences talking about a resource (subject) having a certain value (object) in a category
(predicate). Each triple therefore contains one fact about its subject. From another perspective, RDF data
can also be interpreted as graph data, where subjects and objects are nodes and properties represent directed
edges.

In comparison to regularly shaped data (as in the relational database model) graphs are much less restricted
to a certain form. Because of this diversity, techniques for storing and querying RDF graph data tend to
be more complicated and less efficient than techniques used in RDBMS. The simplest way to store RDF
data is a so-called triple store, consisting of a single table with three columns subject, predicate, and object.
Even for simple queries such as “Give all information about a certain subject S”, difficulties arise: To collect
all facts (rows in the tripe store table) about a subject, many self-joins are necessary. Besides that, no data
locality is ensured for information that is often asked for in common, such as facts about a common subject.
In addition, the lack of an explicit schema in graph data makes it difficult to pose the right queries to an
RDF dataset, because it is not possible to present simple meta-information, as a relational schema would
be.

1My stay at CWI was partially funded by Studienstiftung des deutschen Volkes (German National Academic Foundation).
2DBpedia http://dbpedia.org/
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However, in practice, RDF data tends to be quite structured [20, 23]. Therefore attempts have been made to
cluster RDF data and transform it to relational tables. By using relational databases, one can benefit from
decades of experience in building RDBMS’s, the well-known query language SQL, and relational tables as a
familiar data model.

Well-researched techniques from relational database systems can be leveraged to optimize query plans [5, 8,
16, 20], improve storage layout [18, 34, 35], and build fast indices [1]. However, previous research focused
on performance gains only, and did not tackle the problem of missing insight into RDF datasets. From a
usability point of view, the lack of inherent structure in RDF graphs makes it hard for humans to gain insight
into the data, which is necessary to formulate useful queries on it. Therefore, tools to outline and visualize
RDF graphs have been implemented [7, 10, 11, 22]. Instead of creating graph visualizations to support users,
we propose enhancing the relational schema of transformed RDF data to make it explorable and searchable by
users.

Current research on MonetDB/RDF aims to combine these advantages of structuring RDF data by i) storing
the data in such a way that both SPARQL and SQL queries can handle it efficiently, ii) structuring the triples
into a relational schema, iii) labeling the data and providing a keyword search over the schema, and iv) making
it available over an SQL interface, which makes structured RDF data usable via existing SQL visualization and
exploration tools. The storage layout of MonetDB/RDF is based on so-called characteristic sets (CS’s) [20],
sets of predicates that occur on the same subjects [23]. Hence, CS’s often correspond to real-world concepts,
e.g., concept book with predicates title, author, or publisher. Grouping the data in concepts leads to human
understandable partitioning into the synthetically created tables.

This thesis will focus on ii) and iii), detecting structures in RDF data, creating human readable names for tables,
attributes, and relations (i.e., foreign key attributes), and transformation into a relational schema. It will also in-
clude evaluating the understandability of the resulting data representation.

1.2. Research Questions

The topics of this research can be divided into three research questions that will be answered in this the-
sis.

Q1: Detecting relational structures in RDF data How can RDF triples be grouped and transformed
to finally be represented as relational tables? Which concepts of the relational world are found during
this process? Which information can be extracted from the RDF data itself, which additional data
sources can be used?

Q2: Labeling the detected structures How can meaningful labels for these structures be created?
Which information can be extracted from the RDF data itself, which additional data sources can be
used? Is there a way to adopt labeling techniques from other domains?

Q3: Measures and evaluation How can the quality of the found structures be evaluated? How can “good
labels” be measured (both technically and asking humans)? How to the quality of structure and the
label quality connect?

1.2.1. Goals

In this master’s thesis we develop a prototype for detecting relational structures in RDF data and labeling the
structures. This work is part of the MonetDB/RDF project that aims for full integration of RDF data into the
relational database system MonetDB. The software prototype to be developed will provide comprehensibility
for large amounts of RDF data. A detailed list of goals and criteria is developed as part of this thesis and
can be found in section 3.4. This detailed list differentiate between goals and criteria for structuring/merging
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1.2. RESEARCH QUESTIONS

RDF data and for labeling these structures. Furthermore, additional criteria that have to be met for production
readiness of the MonetDB/RDF module. These are listed as well. To define the scope of this thesis more
detailed, non-goals are listed in the next section.

1.2.2. Non-Goals

Besides structure detection and labeling, MonetDB/RDF consists of physical data transformation, optimized
algorithms to answer queries and an SPARQL interface. These tasks are not part of this thesis, but are
researched and implemented by Pham [23]. Within the structure detection and labeling part of MonetDB/RDF,
the following limits apply:

• The whole idea of MonetDB/RDF relies on structured RDF. Our research therefore focuses on the
majority of structured RDF data only, the small percentage of outliers will not be included in the
relational tables.

• Our approach requires multiple interlinked structures in the RDF dataset. Datasets that consist of
one structure only, e.g., a large list of persons (subjects with the attributes name, birthDate, and
birthPlace), cannot be structured using our approach and will end up as one large relational table.
However, we aim to create good structures and labels for varying datasets, including e.g., Web-crawled
data and DBpedia.

• As our approach only relies on predicate names and triple data as basis for label creation, the generated
labels will never be as good as those generated from texts. We therefore do not aim for label quality
comparable to those generated from texts.

• We currently do not support updating the dataset or adding new data to an existing dataset.

• Graphical representation of graph data is also out of scope, we only focus on tabular representation as
provided over an SQL interface.

1.2.3. Related Work

Some research has been done on all research questions and is presented in the corresponding chapters of this
thesis. Research on RDF stores can be found in section 2.2.1. Research on structuring (Q1) is presented in
section 3.1. Research on labeling (Q2) can be found in section 4.2. Research on measures and evaluation
(Q3) is presented in section 7.1.

1.2.4. Contributions

Structure detection in RDF data and labeling is our first contribution. We advance the property table
approaches as well as characteristic sets to efficiently find structures in RDF data. We do not only take
structural information into account as the afore-mentioned approaches do, but are the first to enrich an RDF
dataset with additional semantical information from ontology values.

Secondly, we show that techniques from Information Retrieval are useful for structuring RDF data to
computing similarity or exploit names. We use tf-idf (term frequency, inverse document frequency, a score
on how good a term describes a document) to compute similarity of structures in RDF data, give special
attention to certain properties (corresponding to field weighting in Information Retrieval), and exploit anchor
text information and facts encoded in URIs itself.

Our third contribution is leveraging relationships between RDF subjects for structuring/merging and labeling.
The previous work ignored these relations because they are not relevant for their performance improvement
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goals, but humans can grasp a connected set of tables better than one without explicit connection, so we
include relationship extraction.

Finally, we transform RDF data into a relational schema that is fast to query, efficient to store, and human
readable. We are the first to include foreign key relationships into shredded RDF data. We therefore present
the transformed schema to the users, what has not been done before in similar approaches. The relational
schema we create is similar to schemas created by humans.

1.3. Approach

In this section, we will introduce our approach to answering the three research questions posed in sec-
tion 1.2.

Structure Detection and Data Transformation Characteristic sets are used to detect the base struc-
tures in RDF data. To achieve larger structures, the algorithms allow small derivations in structure as missing
values and data errors require a certain fuzziness. We discover that this structural approach is substan-
tially improved by taking semantical information into account. Therefore the dividing line between the
structuring and labeling tasks blurs, allowing each part to benefit from information gathered in the other
one.

Information Extraction and Labeling All available textual information within the database should be
taken into account for creating labels. Therefore, textual information has to be extracted from URIs and – if
available – schema information. In a second step, external ontologies might be considered. The extracted data
has to be transformed into meaningful labels for tables, attributes, and foreign key attributes. The algorithm
to be chosen has to create labels that distinguish tables from each other and can be understood by humans.
The labels should consist of one headword.

Evaluation To allow for judging the quality of the detected structures, measures have to be found, spanning
e.g., the percentage of RDF data covered by a given number of relational tables, or the distinctness between
each pair of relational structures. As our goal is to improve ease of use and comprehensibility, an evaluation
method to measure these factors has to be designed. It should measure the correctness and comprehensibility
of generated structures and its labels. Furthermore, several variants of the algorithms should be evaluated,
to reason the decisions we make during designing these algorithms. For measuring comprehensibility for
humans, a questionnaire has to be designed.

1.4. Running Example

We will introduce a running example that is used throughout this thesis. In this section, we show the
transformation of RDF data into relational data in several steps. The process shown here is just meant to
give a first overview. The details of each steps are described in chapters 3 to 5. Section 2.3 introduces the
underlying data format Resource Description Framework (RDF), and the details of the identifiers (URIs) used
within RDF data.

Figure 1.1 shows a small RDF graph. We will use this example to show the process of structuring, labeling, and
merging RDF data. In reality, edges of RDF graphs are labeled with Uniform Resource Identifiers (URIs) rather
than with words as shown in the figure. Examples of URIs are http://dbpedia.org/ontology/
country and http://xmlns.com/foaf/0.1/name. As described in section 2.3.4, URIs in the
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RDF context consist of a prefix and an identifier. For example, http://xmlns.com/foaf/0.1/
is the prefix, denoting the namespace “Friend of a friend ontology”. name is the identifier within the
namespace. Figure 1.1 shows the input for the structuring and labeling algorithms that are presented in this
thesis.

2013 UEFA Champions League Final

FootballMatchtype

2013-05-25date

2012 UEFA Champions League FinalpreviousEvent

United Kongdom

country

Arjen Robben

playerOfTheMatch SoccerPlayertype

ArjengivenName

Robben

surname

European Parliament election 2009

Electiontype

2009-06-07date

European Parliament election 2004previousEvent

European Union

country

José Manuel Barroso

majorityLeader OfficeHoldertype

José ManuelgivenName

Durão Barroso

surname

Figure 1.1.: Example: RDF graph

In a first step, the input RDF triples are grouped by subject. Each subject is uniquely identified by its URI.
The result for the small example graph is shown in figure 1.2.

{2013 UEFA Champions League Final, type:FootballMatch, date:2013-05-25,
previousEvent:2012 UEFA Champions League Final, country:United Kingdom,
playerOfTheMatch:Arjen Robben}

{European Parliament election 2009, type:Election, date:2009-06-07,
previousEvent:European Parliament election 2004, country:European Union,
majorityLeader:José Manuel Barroso}

{Arjen Robben, type:SoccerPlayer, givenName:Arjen, surname:Robben}

{José Manuel Barroso, type:OfficeHolder, givenName:José Manuel,
surname:Durão Barroso}

Figure 1.2.: Example: RDF data grouped by subjects

For each subject, the set of its properties is computed. Subjects with the same property set (here: Arjen
Robben and José Manuel Barroso share the same property set {type, givenName, surname}) can be
grouped together. The result is a list of property sets with its associated subjects. These property sets are
called characteristic sets (CS’s) [20]. The CS’s built from this RDF graph are shown in figure 1.3a. CS 1 con-
tains the subject 2013 UEFA Champions League Final, CS 2 contains European Parliament
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election 2009, and CS 3 contains the two subjects Arjen Robben and José Manuel Barroso.

In the example, the values FootballMatch, Election, and Person of the predicate type are compre-
hensible choices for table names. In fact, the type information is available quite often (e.g., for nearly all
subjects in DBpedia dataset), making it an important data source for labeling. To keep the example simple we
do not consider other sources like ontology classes and foreign key relationships here. Information on these
sources, as well as details about the usage of type properties for labeling is given in section 4.3. We assign
each CS a label, as shown in figure 1.3b

 
subject

type
date

country
previousEvent

playerOfTheMatch

 
subject

type
date

country
previousEvent
majorityLeader

subject
type

givenName
surname

(a) Characteristic sets

FootballMatch
subject

type
date

country
previousEvent

playerOfTheMatch

Election
subject

type
date

country
previousEvent
majorityLeader

Person
subject

type
givenName

surname

(b) Labeled characteristic sets

Figure 1.3.: Example: Detection of characteristic sets and initial labeling

At this point, we have a high number of similar CS’s. For example, the birth date is known for most
persons, but not for all. Therefore, we end up with at least two CS’s that contain persons, one with a
birthDate property, and one without. As our final goal is to achieve a small relational schema, we merge
similar characteristic sets to reduce the amount of CS’s. The merging rules are explained in section 5.1.
In our example, the CS’s FootballMatch and Election are quite similar. The only difference is the
playerOfTheMatch property which is missing in Election, and the majorityLeader property which
is missing in FootballMatch. The other four properties (type, date, country, previousEvent)
are shared. Therefore, these two CS’s are merged, as shown in figure 1.4a.

Besides the similarity of property sets, additional resources are integrated for merging. One important resource
is the category hierarchy which is built from ontology information (cf. section 4.3). A category hierarchy
allows for semantical comparison between two concepts. For example, the concepts FootballMatch and
Election belong to the same subtree Event. This means they have a common set of properties that is
defined by Event and some individual additional properties for their specific type of event. The name of
the common ancestor is a good choice for a CS label of the merged CS. The resulting names are shown in
figure 1.4b.

Afterwards, the intermediate UML schema can be computed. It consists of the merged CS’s plus relationships
between them. The values of the property majorityLeader within Event are usually persons, meaning
they can be found in the Person CS. These relationships are added to the CS’s to build the UML schema, as
shown in figure 1.5a.

The final step is the transformation into a relational schema. A possible transformation into relational tables is
shown in figure 1.5b. As MonetDB is a column-store, each property is stored in its own “table” with only
one data column. To keep this example simple, difficulties with data types, NULL values, and multivalued
properties were left out. They are explained in section 5.4.
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subject

type
date

country
previousEvent

playerOfTheMatch
majorityLeader

subject
type

givenName
surname

(a) Merged characteristic sets

Event
subject

type
date

country
previousEvent

playerOfTheMatch
majorityLeader

Person
subject

type
givenName

surname

(b) Labeled merged characteristic sets

Figure 1.4.: Example: Merging of characteristic sets and final labeling

Event

+ subject : URI
+ type : URI
+ date : datetime
+ country : string

previousEvent
0..1

0..1

Person

+ subject : URI
+ type : URI
+ givenName : string
+ surname : string

playerOfTheMatch
0..1

0..n

majorityLeader
0..1

0..n

(a) UML diagram

Event

Person

majorityLeader

subject

playerOfTheMatch previousEvent

countrydatetypesubject

surnamegivenNametype

(b) Relational schema

Figure 1.5.: Example: Transformation of RDF graph data to relational structures
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Organization The rest of the thesis is organized as follows. Chapter 2 describes the fundamentals of
MonetDB and MonetDB/RDF. Furthermore, the basics of Semantic Web Technologies such as the Resource
Description Framework (RDF) are covered. Chapter 3 discusses the detection of structures in RDF data, and
the implementation of the proposed algorithms in MonetDB/RDF. Chapter 4 introduces algorithms to label
these structures by exploiting RDF metadata. In Chapter 5, we discuss how the labeled structures can be
further refined and transformed into relational structures. Chapter 6 describes the integration of the developed
algorithms into the MonetDB/RDF module. Experimental results are discussed in chapter 7. A conclusion
and outlook is given in chapter 8.
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CHAPTER 2. FUNDAMENTALS

2. Fundamentals

In section 2.1, the RDBMS MonetDB is introduced. MonetDB is the base system that will be extended
to support RDF data by the MonetDB/RDF project. We describe the MonetDB fundamentals to make
design decisions made MonetDB/RDF understandable. In addition, the MonetDB architecture is intro-
duced, this is necessary for later descriptions of the interactions between MonetDB and the MonetDB/RDF
module.

MonetDB/RDF, the module of the relational database system MonetDB handling RDF data, is introduced
in section 2.2. This thesis contributes to MonetDB/RDF, therefore this introduction to the module explains
the basic concepts of the module only. Section 6.3 contains further information about the architecture of
MonetDB/RDF.

In section 2.3, this chapter explains the basics of Semantic Web Technologies, e.g., the Resource Description
Framework (RDF), the query language SPARQL, and ontologies. Scope and content of this work are directly
influenced by data formats, query languages, and standards that exist around the Semantic Web. We therefore
introduce these technologies.

2.1. MonetDB

Being based on the relational database management system (RDBMS) MonetDB3, MonetDB/RDF makes
heavy use of features and concepts of the database system. We therefore introduce MonetDB, its fundamental
concepts, and architecture.

The implementation of the open-source database system MonetDB started in 1993 at the Database Architecture
group at CWI, the national research institute for mathematics and computer science in the Netherlands. Today,
MonetDB is still being actively developed there.

Though implementing the whole SQL 2003 standard, MonetDB is mainly built to support OLAP workloads
on large datasets, e.g., for business intelligence and e-science. The system therefore is used for example in
telecommunication companies and astronomy projects [13]. Besides the relational model, MonetDB supports
XML data and array data. With MonetDB/RDF, support for RDF data is added.

Features The large amount of main memory that is available on present-day systems is exploited by
MonetDB [17] to increase performance while keeping the advantages of storing data on disk, i.e. persistence.
Performance is further improved by using run-time query optimization, i.e., the algorithms to be used in the
execution of a query are chosen when the query is run to exploit additional information, e.g., whether the data
is already sorted, available at that point in time.

The database system names itself “column-store pioneers”, as MonetDB was one of the first database
systems using a vertical data layout instead of the classical horizontal, tuple-centered data layout. While
databases with a horizontal data layout have advantages to return full tuples, column-store systems are
usually faster to return aggregates over single columns. In column-stores, each relational table is split into

3MonetDB http://www.monetdb.org/

9

http://www.monetdb.org/


CHAPTER 2. FUNDAMENTALS

two-columnar tables. A relational table with n columns is split into n two-columnar tables as shown in
figure 2.1.

person
subject type givenName surname

Arjen Robben SoccerPlayer Arjen Robben
José Manuel Barroso OfficeHolder José Manuel Durão Barroso

(a) Horizontal data layout (row-store)

person_subject
ID subject
1 Arjen Robben
2 José Manuel Barroso

person_type
ID type
1 SoccerPlayer
2 OfficeHolder

person_given_name
ID given_name
1 Arjen
2 José Manuel

person_surname
ID surname
1 Robben
2 Durão Barroso

(b) Vertical data layout (column-store)

Figure 2.1.: Horizontal and vertical data layout in RDBMSs

Every two-columnar table stores one column of the original relational table, together with object identifiers.
In MonetDB, the two-columnar tables are called Binary Association Tables (BATs). The two columns in a
BAT are called head and tail, with the head containing object identifiers (OIDs) and the tail containing the
values. Values in different BATs that belong to the same tuple are associated with the same OID, thus OIDs
allow tuple reconstruction as shown in figure 2.2.

person_subject
ID subject
1 Arjen Robben
2 José Manuel Barroso

person_type
ID type
1 SoccerPlayer
2 OfficeHolder

person_given_name
ID given_name
1 Arjen
2 José Manuel

person_surname
ID surname
1 Robben
2 Durão Barroso

Figure 2.2.: Tuple reconstruction in vertical data layout, based on same OIDs

MonetDB reconstructs tuples as late as possible during a query execution. Processing BATs instead of
tuples allows for a vector-like execution model with few function calls and high instruction locality in the
algorithms [13]. OIDs do not need to be stored explicitly because they represent positions in the BATs, similar
to array indices that are neither stored explicitly.

Data types of variable length, e.g., strings, are stored using dictionary encoding. Strings that appear multiple
times in the dataset are stored only once, and each usage of this string refers to an entry in the dictionary. This
also allows for easier string comparison, as pointers to the dictionary have to be compared instead of strings.
These pointers are represented as OIDs in MonetDB and can be compared fast. Figure 2.3 shows an example
dictionary and how it is used in BATs.

Architecture MonetDB has a three-tier architecture [13]. The database system can be queried using SQL,
JDBC, XQUERY, or – in our case – SPARQL. The front-end transforms these queries to – in case of SQL –
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ArjenR
obbenJ
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nuelDu
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1
2
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1
3

person_givenName

1
2

givenNameID

Figure 2.3.: Dictionary encoding and a BAT using dictionary OIDs

relational algebra which is then translated to MAL. MAL, the MonetDB Assembly Language, is a low-level
language used for query execution within MonetDB.

The query plan in MAL is then send to the back-end. The back-end optimizes the plan, similar to a compiler,
and adds rules for resource management.

The third tier is the kernel of MonetDB. Within the kernel, the BAT storage structure is provided. Furthermore
the kernel offers relational operators, transformed to support the vertical storage layout. Several MAL
implementations for each operator exist and are chosen at runtime.

One key feature of MonetDB is its extensibility. By adding new modules, the systems functionality is enhanced.
For example, MonetDB/RDF is a module.

MonetDB/RDF makes use of some features mentioned afore-head, namely vertical storage (BATs) and dictio-
nary encoding. An overview of MonetDB/RDF is given in section 2.2.

2.2. MonetDB/RDF

MonetDB/RDF is an enhancement of MonetDB to provide support for RDF data. The main idea is the usage
of characteristic sets [23] to physically cluster data that belongs to the same subject or similar subjects.
Afterwards, storing and querying techniques for relational data can be adapted and re-used for RDF data.
Therefore, the MonetDB/RDF module is a lightweight component.

The following sections describe the core ideas of MonetDB/RDF storing and querying and the challenges of
usability that will be dealt with in this thesis.

2.2.1. Storage

Related Work The typical implementation of RDF database systems as triple store led to query plans
characterized by a high number of self-joins, for which RDBMS are not optimized. Therefore, two other
storage possibilities were implemented: Decomposed stores [1] consist of one table per predicate. Hence, every
table consists of two columns, subject and object. As the data is ordered by subject, linear joins can be used to
improve performance compared to triple-stores. Property table stores [8, 34, 35] store data by subjects. A set
of subjects that has the same set of predicates is grouped in a table. This layout reduces the amount of joins as
the majority of RDF queries sample one concept only. Combinations of both layouts have been proposed by
Levandoski and Mokbel [16] to further improve performance.

A similar approach to property tables has been proposed by Matono and Kojima [18]. The authors propose
paragraph tables that store data structured by subjects, but assume that the order of subjects within an
RDF data file implies correlation. Their approach therefore works for well-structured RDF files only, but
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not for Web-crawled data or generated RDF files. For example, the DBpedia data files are sorted roughly
alphabetical.

Recently, Bornea et al. [5] built an RDF store on top of a relational system. However, instead of exploring the
underlying concepts, they use hash functions to shred RDF data into few tables regardless of the concepts
the triples belong to. Although achieving notable performance, their schema does not contain relationships
between concepts and is not design to be understood by humans.

Neumann and Moerkotte [20] use characteristic sets (CS’s) to improve cardinality estimation, this idea will
be adopted and used for data storage in MonetDB/RDF by Pham [23]. Characteristic sets group subjects with
the same set of predicates, similar to property table stores. In contrast to property tables, characteristic sets
are built without human effort by computing the predicates per subject and grouping subjects with the same
predicates.

However, none of the previous work had the need to label the tables or make them searchable as they were
not presented to users.

Extensions to Characteristic Sets The idea of characteristic sets is tuned to allow its usage as storage
model [23]. By allowing NULL values in the CS’s, many similar CS’s can be joined. This leads to less CS’s,
therefore better storage structure and better comprehensibility by users. Figure 2.4 shows the two types of
merging: Including a complete subset into its superset, and merging similar CS’s. In opposition to what is
shown in the figure, more than two CS’s can be merged at a time. For the latter case, a similarity metric based
on tf-idf is used to compute whether two CS’s are similar enough to be joined. The details of CS’s and CS
merging in MonetDB/RDF are described in sections 3.2 and 5.1.

A

B

C

A

B

C

D

(a) A CS is merged into an existing CS which is
a superset

A

B

C

A

B

C

D

A

B

D

(b) Two similar CS’s are merged into the newly
created CS, their least common superset

Figure 2.4.: Types of similarity between CS’s

If the predicate set is the only criterion for creating CS’s, values with different data types fall into the same
CS. For example, values of a predicate price could be integers or floats. MonetDB/RDF creates separate
CS’s for each combination of data types in the attribute set [23].

CS’s as described by Neumann and Moerkotte [20] had no need to keep track of links between CS’s, i.e., an
object in CS 1 is a subject in CS 2. In MonetDB/RDF, these relationships are stored as foreign keys to keep the
linkage information that was found in the RDF data. Attributes with multiple values per subject are split up to
a separate CS to normalize the data according to the relational model.
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Data Sorting and Storing To avoid random access pattern in RDF query plans, the subjects are grouped
by CS and physically clustered [23]. Within CS’s, further ordering can be achieved by using predicates as
additional indices. Inside these clusters, the records are ordered by object literals to simplify (range) predicate
evaluation. The resulting clustered storage structure is a triple store.

After the structures in the RDF data are extracted, MonetDB/RDF explores foreign keys and possible primary
keys within the CS’s.

2.2.2. Querying

The CS-wise clustered storage can lead to efficient retrieval of sets of subjects with much less joins. To
achieve this, new operators have been created.

If a query covers one CS only, no join is needed because all data to be received is stored aligned. The operator
used in this case is called RDFscan [23] and provides a CPU efficient scan over the queried CS. For more
complex queries, where subjects from more than one CS are covered, an operator RDFjoin is provided.
RDFjoin, originally proposed as Pivot Index Scan by Brodt et al. [6], takes a binding for one CS and a linkage
to the other CS as input and delivers a list of objects.

Example RDFscan is used to answer queries like “Show the names of all persons of type Soccer-
Player”, because only one CS is involved. Unlike simple RDF index scans, the RDFscan operator in
MonetDB/RDF delivers multiple objects per resulting subject. To answer “Show all football matches whose
player of the match is left-footed”, which queries two CS’s, RDFjoin is used. The operator gets two inputs:
the information that the person’s footedness has to be left-footed and the information that the CS’s are linked
using the playerOfTheMatch predicate.

2.2.3. Usability

If RDBMS provide better storing and querying solutions for (structured) RDF data, why not using RDBMS
techniques to improve the usability of RDF data? This is where the research in this thesis starts.

To overcome the lack of usability of RDF triples, some visualization tools have been created over the last
years. Both graphical tools for exploring the graph [10, 11, 22] and hierarchical utilities that work on a simple
table-like representation of RDF data [7] exist. However, these solutions are additional stand-alone software
products that provide much less integration with querying and processing tools than the standard SQL interface
that we strive for. Furthermore, our solution will enable the users to explore similar subjects by grouping
them into tables. In addition, relational tables are a well-known and dense format to represent data. Graph
representations visualize links to other parts of the data. This feature will be provided in MonetDB/RDF by
fetching neighbor tables using foreign keys and hierarchical relationships.

Based on the concepts of relational tables and relationships between them, labels can be created to describe
the contents of the generated tables. Chapter 4 discusses research on labeling and how these solutions can be
applied to our task.

2.3. Semantic Web Technologies

The goal of this work is to extend MonetDB for supporting data in the Resource Description Framework format
(RDF). RDF is a data format standard in the Semantic Web. We therefore briefly introduce the Semantic Web,
the Resource Description Framework (RDF), and other related technologies.
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2.3.1. Semantic Web

The World Wide Web Consortium [32] defines the Semantic Web as follows:

The Semantic Web is about two things. It is about common formats for integration and combina-
tion of data drawn from diverse sources, where on the original Web mainly concentrated on the
interchange of documents. It is also about language for recording how the data relates to real
world objects.

Thus, the Semantic Web aims for machine-readability and standardized ways of interlinking data. These
common formats and language are described in the following section.

The ideas of the Semantic Web can be found in different applications. Examples are

• Semantic Search, where search queries are enriched or refined using semantic information like synonyms
or temporal context, e.g., a search for “bike rental” also giving results containing “bicycle rental”,

• Semantic Wikis, where human readable wiki texts are enriched with machine readable information,
ensuring – for example – machine-readability of relations without trimming the variety of expressing
relations in human languages,

• and Geotagging, where geographical data is enriched with a standardized geo format that allows e.g.,
computing the distance between entities.

2.3.2. Linked Data

Linked data, also referred to as graph data, deals with bits of information connected to each other, hence
forming a graph. Linked data can be found on the Web, as links are a main feature of the WWW. Further-
more, linked data representation is also applicable for all datasets about networks, e.g., datasets describing
computer networks or social networks. Linking information enables users to interactively browse data,
e.g., by using graphical tools as pointed out in section 1.1. Well-known examples for linked datasets
are DBpedia, a machine readable subset of Wikipedia data, and UniProtKB4, containing protein informa-
tion.

It is also possible to set links to a different dataset. This is called interlinking. For interlinking different data
sources, equivalences or relations between entities in both datasets have to be defined. This is done inside
each dataset by explicitly naming equal entities that can be found in other datasets, or listing hypernyms
and hyponyms. If this information is present, it is possible to automatically traverse both datasets as if they
were one dataset. Interlinked data sources offer additional information, e.g., data from social networks
can be enriched with additional geographical information. Interlinkage of many datasets, including the
afore-mentioned DBpedia and UniProtKB, is provided by the LOD (Linked Open Data) community and the
LOD2 project5.

To allow interlinking and usage of linked data, standards are needed. These standards are described in the
following section. The Resource Description Framework (RDF) serves as language for linked data, providing
the general concept of resources and triples. Various syntaxes exist to express linked data in RDF format.
Another standard is needed for querying these datasets: the query language SPARQL is the standard query
language for accessing RDF databases. Additional vocabulary is needed to describe relations between facts
in the datasets. Basic vocabulary is provided by RDF Schema and the Web Ontology Language (OWL).
Vocabularies can easily be build based on the ontology concept. Vocabularies for domains like e-commerce6,

4UniProtKB http://www.uniprot.org/
5LOD2: Creating Knowledge out of Interlinked Data http://lod2.eu/
6Good Relations [12] http://www.heppnetz.de/ontologies/goodrelations/v1.html
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social networks7, or drugs8 are already established. Equipped with these standards, it is possible to create
datasets that can be extended and analyzed by others easily.

2.3.3. Resource Description Framework (RDF)

Segaran et al. [29, p. 64] define RDF as

language for expressing data models using statements expressed as triples.

RDF has become a W3C recommendation in 1999 [15], and is therefore the de facto standard to express
semantic data. For “expressing data models”, the first part of the definition by Segaran et al. [29], RDF
conceptualizes everything as resource [29, p. 65]. To avoid ambiguities, resources are identified using a
Universal Resource Identifier (URI), e.g., an URL pointing to a Web resource or an ISBN identifying a book.
The syntax of URIs is described in section 2.3.4. As the second part of the definition mentions, RDF data
is expressed as triples. These triples consist of a subject, a predicate, and an object. The terms subject,
predicate, and object do also define grammatical components of sentences; and RDF triples can easily be
seen as sentences talking about a resource (subject) having a certain value (object) in a category (predicate).
Each triple therefore contains one fact about its subject. A common serialization format for RDF triple date is
N-triples. N-triples is a plain text format where each line contains one triple (subject, predicate, object) with
the three elements separated by spaces.

Picking up the example triple used in the introduction, we are now able to extend the example to re-
flect the graph structure of RDF data. In (2013 UEFA Champions League Final, country,
United Kingdom), the resource 2013 UEFA Champions League Final has a value for the cat-
egory country which is United Kingdom. United Kingdom itself can serve as subject in other
triples, e.g., (United Kingdom, capital, London), and 2013 UEFA Champions League
Final can be the object value in other triples, respectively. To answer the question “What is the area of the
capital of the United Kingdom?” we need a query language to traverse the graph. This language is introduced
in the following section.

2.3.4. Uniform Resource Identifier (URI)

https:︸ ︷︷ ︸
scheme

//creativecommons.org︸ ︷︷ ︸
authority

/ns︸︷︷︸
path

#license︸ ︷︷ ︸
fragment

Figure 2.5.: Example of the URI syntax

Uniform Resource Identifiers are used to distinguish resources. Syntax and the process for resolving
URIs are defined in the Internet Standard 66 [4]. Figure 2.5 shows an example. An URI consists of
a scheme (e.g., http) followed by a colon), an optional authority (e.g., a domain name), an optional
path, an optional query starting with a question mark, and an optional fragment beginning with a pound
sign.

URIs take different roles in RDF triple data: If used as subjects, URIs are a unique identifier for instances. If
used as predicates, URIs define a relationship between subject and object.

Objects values can be either literals (strings, dates, numbers) or URIs. Object URIs are either links to subjects
within the dataset (foreign keys) or links to subjects in external data sources. An example for the latter case
are RDF triples like the one shown in figure 2.6 where the object URI refers to the external GoodRelations
ontology to classify the subject.

7FOAF http://xmlns.com/foaf/spec/
8DrugBank http://www.drugbank.ca/
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<http://example.com/onlineshop/product/leather_armchair>,
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,
<http://purl.org/goodrelations/v1#ProductOrService>

Figure 2.6.: Example of an object URI linking to the external GoodRelations ontology

2.3.5. SPARQL Protocol and RDF Query Language (SPARQL)

SPARQL is the query language for RDF data. SPARQL searches for given patterns in an RDF graph as shown
in figure 2.7. First, the URI prefix http://purl.org/goodrelations/v1# is abbreviated to gr to
improve readability. The query searches for entities o that fulfill the requirements listed in the WHERE clause:
The sought entity has to be of type Offering which is a class defined in the GoodRelations namespace
gr. The sought entity has to have the value gr:Cash for the predicate gr:acceptedPaymentMethods.
gr:Cash is a so-called predefined individual. Predefined individuals can be seen as enumeration values. They
avoid ambiguities caused by, for example, spelling mistakes if string literals would have been used instead. In
conclusion, the SPARQL query returns all offers that can be paid cash.

PREFIX gr:<http://purl.org/goodrelations/v1#>

SELECT ?o
WHERE {

?o a gr:Offering.
?o gr:acceptedPaymentMethods gr:Cash.

}

Figure 2.7.: SPARQL query to find all offers that can be paid cash using GoodRelations ontology

To answer the question from the previous section, we could use the query in figure 2.8 that uses the capital ?c
as internal intermediate hop but does not include it in the result.

SELECT ?a
WHERE {

<United Kingdom> <capital> ?c.
?c <area> ?a.

}

Figure 2.8.: SPARQL query to find the area of the capital of the United Kingdom

2.3.6. Ontologies and the Web Ontology Language (OWL)

In information science, ontologies are formal descriptions of concepts and structures. Ontologies cover a
limited area such as e-commerce9, proteins10, or business cards11. Ontologies use cross-references to define
relationships between similar concepts (e.g., the concept of a comment exists in multiple ontologies). As
mentioned before, these equivalences are essential to create interlinked datasets. The ontology concept is
independent from its syntactical representation. For their use in the Semantic Web, ontologies are often
expressed in XML/RDF, a common XML representation for RDF data.

9Good Relations [12]
10UniProt http://www.uniprot.org/core/
11vCard http://www.w3.org/TR/vcard-rdf/
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Ontologies are described using the RDF Schema12 (RDFS) and Web Ontology Language13 (OWL) ontolo-
gies, both defined by the W3C. RDFS defines basic concepts like Class, Property, and Literal as well as
basic descriptions and connections between these concepts (e.g., domain, subClassOf ). OWL is an ex-
tension to RDFS [29, p. 135] and defines more specific concepts and relationships such as unionOf or
incompatibleWith.

Figure 2.9 shows an example of a class definition in an ontology in RDF/XML format. The defined class
foaf:Person is initially described by a label. Additionally, relationships with other classes are described:
foaf:Person has two superclasses foaf:Agent and contact:Person, at which the latter superclass
belongs to a different ontology. The disjointWith property defines that a Person must not be a
Project.

<rdfs:Class rdf:about="http://xmlns.com/foaf/0.1/Person" rdfs:label="Person">
<rdfs:subClassOf>
<owl:Class rdf:about="http://xmlns.com/foaf/0.1/Agent"/>

</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Class rdf:about="http://www.w3.org/2000/10/swap/pim/contact#Person"/>

</rdfs:subClassOf>
<owl:disjointWith rdf:resource="http://xmlns.com/foaf/0.1/Project"/>

</rdfs:Class>

Figure 2.9.: (Shortened) example of a class definition in FOAF ontology

Although the Semantic Web is a relatively new research topic and its technologies are changing constantly,
some standards have been established. Standards are crucial for the Semantic Web as it depends on a large
number of contributors adding data and vocabulary. Besides the Semantic Web, RDF is widely used for
graph-formed data, e.g. in life sciences. In this section we have introduced the key techniques we need to
build an RDF module for MonetDB.

12RDF Schema http://www.w3.org/TR/rdf-schema/
13OWL http://www.w3.org/TR/owl-ref/
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3. Finding Structure in RDF Data

Adding structure to RDF data and transforming the RDF data into relational data leads to improvement
in two dimensions: i) Data retrieval via SPARQL can be accelerated by using relational operators. These
operators need to be adjusted to the characteristics of RDF data, but do still benefit from the decades of
experience in relational databases. ii) Users can benefit from relational techniques and the tool chain of
relational databases. Being able to use these well-known and mature techniques supports their understanding
of the data.

In this chapter, we describe how structures in RDF data are identified and how these structures are leveraged to
create an understandable, high-performance data representation in the MonetDB/RDF module. In section 3.1,
we present related work on structuring RDF data. Section 3.2 introduces characteristic sets, a structure
defined by Neumann and Moerkotte [20] and used as base for finding broader structures in RDF data in our
work. In section 3.3, we describe the complete process of finding structure in RDF data. The goals and criteria
of the structuring/merging and labeling task are collected in section 3.4. Sections 3.5 to 3.8 describe the steps
of the process in detail.

The structuring process described in this chapter is followed by the labeling step (chapter 4), that adds ontology
information to RDF data to allow for labeling the detected structures, and the merging step (chapter 5), that
further simplifies the structures by merging similar ones. The algorithms described in these three chapters
transform RDF triple data into relational data that is both fast to query and easy to understand by users, as
shown in our evaluation (chapter 7).

(Implementations described in sections 3.5 to 3.8 have been done by Pham Minh-Duc.)

3.1. Related Work

So far, structures in RDF data were explored and exploited to optimize query plans [5, 8, 16, 20], improve
storage layout [18, 34, 35], and build fast indices [1]. None of the previous work was interested in the
readability of the structures, as they were not presented to the users. The related work can therefore only be
the basis for the structuring algorithms we describe.

Property tables that group RDF triples by subject, as described by [8, 34, 35] and similar approaches (e.g.,
[16, 18]) form the basis for our structuring algorithms. In opposition to these previous approaches, we take
relationships between structures into account, and label the structures we find (cf. chapter 4). In addition, we
aim for transforming the vast majority of data in a dataset first into an UML-like representation and then into
a relational schema.

Another basis for our approach are the characteristic sets [20] that formalize the grouping idea behind
property tables and use them for cardinality estimation. Characteristic sets are therefore introduced in detail
in section 3.2.
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3.2. Characteristic Sets

A characteristic set (CS), as introduced by Neumann and Moerkotte [20], contains the properties of all RDF
data triples with the same subject. For a given subject s in a dataset R, they define a characteristic set as the
set of properties that are available for s:

CS(s) := {p|∃o : (s, p, o) ∈ R}. (3.1)

For two subjects s1 and s2, CS(s1) equals CS(s2) if the same set of properties is used to describe both s1
and s2.

Characteristic sets are used by Neumann and Moerkotte [20] to estimate cardinality in RDF queries
only. Our approach aims to leverage the idea of characteristic sets for structuring RDF data by using
the above-mentioned comparability of CS’s. We define CS(P ) as the set of triples (s, p, o) that share
the same property set. For a given set of properties P and a dataset R we define a characteristic set as
follows:

CS(P ) := {(s, p, o)|(s, p, o) ∈ R ∧ CS(s) = P}. (3.2)

Using this definition, subjects whose property set is a superset of P are not included in CS(P ). Further
mentions of the term CS in this thesis use definition (3.2).

Because of the common property set, all data in a CS can be represented as table, as shown in table 3.1.
The properties serve as columns, and each subject adds a row to the table. All table cells are filled with
objects.

subject type givenName surname

Arjen Robben SoccerPlayer Arjen Robben
José Manuel Barroso OfficeHolder José Manuel Durão Barroso

Table 3.1.: A CS represented as table

3.3. Structure Detection and Labeling Process

Transforming RDF data into a relational schema is a two-step process. The first step is transforming the RDF
data into an UML-like data model, e.g., containing class hierarchies and multivalued properties. Afterwards,
the transformation into the relational model requires eliminating hierarchies and moving multivalued attributes
into an extra table. The process described in this section performs the first step, creates the final set of CS’s
that form the basis for the targeted relational schema.

The goal is to represent as much data as possible in as few CS’s as possible. Irregular data that does not fit
well into the structure of the majority of the data is thrown away.

In the beginning, structuring and labeling where two independent steps that were executed after each other to
produce the final set of labeled relational structures. This can be seen in figure 3.1.
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Structure Detection
(CS's and

relationships)
Merging Labeling EndStart

Figure 3.1.: Flow chart for structuring (old version)

We soon discovered that merging without taking semantic information into account led to bad struc-
tures:

• More general concepts are merged into more specific concepts. For example, most mammals described
by the DBpedia dataset belong to the category Mammal. Mammal has sub-concepts to further specify
certain species, however this list is not complete. The sub-concepts introduce new properties (e.g.,
jockey for the sub-concept RaceHorse). As a result, the property set of most mammals is a
subclass of the sub-concepts’ property sets. One of our merging rules was to merge subset CS’s into
superset CS’s. Because of that rule, all mammals that did not belong to a sub-concept were nevertheless
added to a sub-concept because of the subset-superset relation of their property sets. The resulting
CS’s contained many NULL values (e.g., in the jockey property). In addition, the labels assigned to
the resulting CS’s were chosen based on the property sets and therefore represented the sub-concepts
only (e.g., label RaceHorse for the CS that contained the property jockey), ignoring the fact that
the majority of mammals does not belong to a sub-concept and should therefore be labeled Mammal.
Finally, another disadvantage was the randomness of CS merging: A subject of concept Mammal could
have been merged into any of the sub-concept CS’s, this was dependent on the order of CS detection
only.

As this example shows, merging subset CS’s into superset CS’s without further conditions results in
CS’s containing various, mixed concepts and therefore low label quality. However, merging subset
CS’s into superset CS’s is a promising way to join similar CS’s. In general, two different type of
subset-superset CS relationships exist: i) different subjects of one concept differ in some properties (e.g.,
no property firstWin for motorsport racers without any won races) ii) instances of a concept and a
sub-concept differ in some properties (e.g., the only difference between Mammal and RaceHorse is
the property jockey) Merging should be applied in the first case, but has to be avoided in the second
case. To differentiate these two cases, we add a labeling phase before applying the merging techniques.
Using the CS labels, we know whether a subset CS should be merged into a superset CS, or not, as
described in section 5.1.

• Some properties occurred for nearly every subject (e.g., wikiPageID for DBpedia subjects), hence
decisions on merging should not be based on these properties only. We overcome this issue by
introducing tf-idf -based [28] measures to evaluate the ability of each property in a CS to discriminate
its CS from others.

• The resulting schema contained many tables with same labels, because “having same labels” was not
recognized as an important indicator for merging. By changing the order of steps in the structuring
process, we can use the merging phase to merge CS’s based on their previously computed labels. This
step is explained in section 5.1.

• Foreign keys between the resulting relational tables could not be enforced because foreign key columns
where often pointing to more than one table. Relationships between CS’s were not used for structuring
and labeling purposes, but for the final physical data transformation only. We therefore introduced CS
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relationships as important data source for labeling and merging. Besides improving structure and labels,
this also leads to a schema that is compliant with the relational model. CS Relationships are introduced
in section 3.7.

Because of these drawbacks, we decided to exchange information between the structuring and labeling steps.
When we integrated semantic information for the labeling part, it was obvious that this information would
also improve structure detection quality. Therefore, we interlinked the structuring and labeling phases to
make semantic information available in a structuring phase. The resulting process overview is shown in
figure 3.2. This led to a complex mixture of steps, but significantly improved label quality. This interlinking
did not only help to improve structures, but also led to more discriminating labels and therefore better label
quality.

Structure Detection
(CS's and

relationships)

Labeling and
Enrichment with

Semantical Information
Merging EndStart

Figure 3.2.: Flow chart for structuring

Results of both versions of the process are presented in section 7.3.3.

3.4. Goals and Criteria

The overall goal of MonetDB/RDF is to build a fast and efficient RDF store over MonetDB, by transforming
RDF data to relational data. By doing so, the advantages of well-researched RDBMS can be used, e.g. efficient
join processing and the well-known query language SQL. Furthermore, the resulting relational schema should
be presentable to users to let them benefit from the induction of schema achieved by our algorithms. Hence,
MonetDB/RDF also aims for improved ease of use and comprehensibility of RDF datasets by extracting the
underlying schema in RDF data.

The structuring and merging phases of the MonetDB/RDF algorithms aim for a small, condensed relational
schema. The main goal of the labeling process is the generation and assignment of human understandable
names to tables, attributes and foreign keys. Using these names, the majority of data should be grasped fast
and simple by the users.

We establish the following criteria for structuring and merging:

Small Schema As much data as possible should be represented in as few tables as possible. Within this
trade-off, no factor must be overrated or ignored, as this would lead to an unbalanced result.

Quality vs. Complexity MonetDB/RDF follows a fuzzy 80% approach. Outlying data is not included
and summation is used to provide an overview over large RDF datasets. To act on this approach, the
algorithms have to trade quality off against complexity, leading to a simple-yet-effective approach to
structuring, merging and also labeling.

Level of Detail of Tables When merging similar tables into one, one has to be aware of the aspired level
of detail. For example, two tables about long-distance runners and sprinters should probably be merged
together, whereas merging the tables about singers and actors might not be wanted by the end users.
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Table names, as the result of the labeling process, are also judged by some additional criteria: Geraci et al.
[9] mention three factors for high label quality: well-formedness, descriptive power, and discriminatory
power. Using these and some more quality indicators, we come up with the following list of criteria for
labels:

Descriptiveness Table names have to describe the content of the table at the best possible rate. Attribute
names have to characterize the content of the columns and the binary relationship between the subjects
and the attribute (cf. [31]). Foreign key names have to describe the role of the table they point to.

Headwords The names will usually consist of one headword, e.g., Country. Lists of keywords (for ex-
ample City-states, Monarchies, Middle Eastern Countries) have to be avoided
because in that case the users would have to find a hypernym on their own to understand the contents of
the table (cf. [30]). This criterion includes the well-formedness demanded by Geraci et al. [9].

Uniqueness Column names have to be unique within a table. If possible, there should not be multiple
tables with the same name. Instead, tables with the same names should be merged (as described in
section 5.1). Similarity scores describe the rareness of possible table names within the schema and
should therefore be used to achieve unique table names.

Level of Detail of Table Names Table names should be as detailed as possible. For example, a table con-
taining soccer players could be named Person, but SoccerPlayer would give a better description
of the content.

These criteria ensure high quality of tables and labels. The structuring/merging and labeling functionality will
be included in the product MonetDB. For production readiness, additional goals arise:

No Internet Connection The process may not rely on an Internet connection to load external data or
check URIs because database servers in production environments usually have no (full) access to the
Internet. Instead, an interface for loading external metadata into MonetDB/RDF has to be provided to
the users.

Fast Transformation of RDF Data into Relational Data On the one hand, structuring, labeling, and
merging is done once after data loading and therefore directly influences to data-to-query time, i.e., the
initial startup time from data loading until the first query is answered. It should therefore be kept short.
On the other hand, users do expect waiting time when loading big datasets, so instance response is not
required. However, the user should be kept informed about the progress of data loading, structuring,
and labeling.

Few user input To meet MonetDB/RDF’s goal of being self-organizing, the software prototype should not
require additional configuration or decisions by users. Only few user interaction is acceptable for the
whole process. If possible, a (basic) structuring and labeling should be possible without any actions by
users.

Separation from Other Modules The MonetDB/RDF algorithms have to be kept separate from other
parts of MonetDB as MonetDB is generally unaware of semantics. The resulting SQL schema has to
work with all parts of MonetDB without further effort.

SQL Compatibility As the resulting SQL schema will be accessed through an SQL interface, the schema
have to be SQL standard conformable, e.g., table names have to be unique within a SQL schema, and
many-to-many relationships between tables must be represented using an additional table rather than
using multivalued properties.

The fulfillment of these criteria is discussed in section 7.5. In the following sections, the steps of the structuring
process are described in detail.

23



CHAPTER 3. FINDING STRUCTURE IN RDF DATA

3.5. Loading RDF Data

MonetDB/RDF loads RDF data in the common N-triples format introduced in section 2.3.3. During loading,
duplicate and malformed triples are removed.

MonetDB/RDF stores the data into a simple SPO table. A SPO table has three columns (subject, predicate,
object), hence one triple is stored per row. The table is ordered by subject, then predicate, then object. The
effort of sorting taken in this steps reduces the complexity in the following steps, as necessary information
can be gathered in only one pass over the SPO table.

Strings are stored using dictionary encoding, as introduced in section 2.1. As RDF data contains many dupli-
cated strings (i.e., subject and property URIs), dictionary encoding significantly reduces storage space. Pro-
cessing RDF data triples requires comparisons of these strings. By using dictionary encoding, strings are rep-
resented by numbers, which simplifies checking equality of two strings.

3.6. Exploring CS’s

Exploring CS’s takes one pass over the SPO table only, exploiting the previously described sorted SPO table:
Because of the subject order, all information for one subject is collected in one run. The predicate order leads
to a consistent order of predicates within all predicate lists.

Leveraging the consistent predicate order, comparing predicate sets can be simplified. Instead of comparing
all predicates of two subjects, the list of properties can be hashed, and the comparison can take place on these
hash values. A hash table is used to store all CS’s that have already been created. For each new subject, the
hash value is computed, and the corresponding CS is found using a hash table lookup. If no CS is found, a
new CS consisting of that subject is created and added to the hash table. Of course, one has to take care of
hash collisions.

3.7. Exploring CS Relationships

A relationship between CS A and CS B exists if an object value (of data type URI) in CS A occurs as an subject
in CS B or vice versa. An example of this situation is shown in figure 3.3.

<European Parliament election 2009>, <majorityLeader>, <José Manuel Barroso>

<José Manuel Barroso>, <givenName>, "José Manuel"

Figure 3.3.: Example of object URI <José Manuel Barroso> also being a subject URI (i.e., describing
a resource)

Again, frequencies of these relationships are stored. Relationships are eliminated if they are infrequent,
meaning that the percentage of instances in CS A referring to CS B via a specific property is below a certain
percentage. Infrequent relationships would bloat the schema by adding too many relationships. Therefore
they will not be used in the further process.

The relationships between CS’s will be transformed to foreign key references in the final relational schema.
It is still possible that one property of a CS links to multiple other CS’s. As this is not possible for foreign
keys, further transformations of the CS’s are done in the following steps. First, it is possible that the different
CS’s a property links to should be joined (cf. section 5.1). If there are still multiple link destinations left, the
property is split (cf. section 5.4).
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3.8. Dropping Irregular Data

Only CS’s with enough instances are kept for the next steps. The threshold for keeping these CS’s is the only
parameter defined by the user, as the algorithm runtime depends on the number of CS’s used throughout the
structuring process.

CS relationships help identifying important CS’s. A CS that is referred to by many instances is considered
important and is kept even if it does not have enough instances. The numbers of instances that reference
a table are not only computed for direct references, but also for indirect references over one or more in-
termediate hops. By also taking indirect references into account one can also recognize important tables
that are only referenced by other small but important tables. If this rule had not been used, small dimen-
sion tables (e.g., the NATION table in the TPC-H schema) would have been dropped in the structuring
process.

Dropping infrequent CS’s is the first time we are omitting irregular data to increase the structuredness of the
remaining data.

After the CS’s have been found and the relationships have been detected, labels are assigned to the
CS’s. This is described in chapter 4. Afterwards, the CS’s are refined by merging them, as chapter 5
describes.
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4. Labeling Structures in RDF Data

Assigning labels to CS’s is the second main part of this thesis. Using the list of CS’s, their relation-
ships, and additional ontology information, a ranked list of possible names for each CS is created and
the best candidate is chosen and assigned to each CS. This chapter describes how human readable names
are assigned to CS’s. Labeling of properties is done at a later point in time, this is described in sec-
tion 5.2.

The rest of this chapter is organized as follows. The main ideas and terms for labeling are introduced in
section 4.1. Section 4.2 discusses previous work on labeling different kinds of data. Section 4.3 describes
the data sources used to generate the labels. The extraction of human readable headwords from URIs is
described in section 4.4. In sections 4.5 to 4.9, the extraction of label candidates is described as well as the
assignment.

4.1. Idea

Figure 4.1 shows a schema before (top) and after (bottom) labeling. The column names can directly be created
by looking at the URIs (cf. section 4.4), whereas the table name generation requires more effort. The process
to generate the CS’s at the bottom is described in sections 4.5 to 4.9.

Organization
type
name

tel
address

Address
street-address
postal-code

locality
country-name

address

CS 171
http://www.w3.org/1999/02/22-rdf-syntax-ns#type

http://rdf.data-vocabulary.org/#name
http://rdf.data-vocabulary.org/#tel

http://rdf.data-vocabulary.org/#address

CS 2857
http://rdf.data-vocabulary.org/#street-address
http://rdf.data-vocabulary.org/#postal-code

http://rdf.data-vocabulary.org/#locality
http://rdf.data-vocabulary.org/#country-name

http://rdf.data-
vocabulary.org/

#address

Figure 4.1.: Schema before (top) and after (bottom) labeling

Different parts of a SQL schema have to be labeled:

Tables Table names are the most important names within a SQL schema. They are the first labels a user
looks at when trying to understand a schema. Table names usually contain of a headword describing
all the objects within a table. There are also SQL tables not describing any objects but linking
objects in a many-to-many relationship. Those tables are not considered here as CS’s can contain
multivalued attributes hence not raising the need for relationship tables. However, when transforming
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the intermediate schema to relational tables as described in section 5.4, multivalued properties will be
separated into an additional table, but is not labeled as it does not represent a concept.

Attributes Attribute names describe the content of data columns and are certainly necessary to understand
the meaning of the values and the relation of this data to the subjects.

Foreign Keys Foreign key relationship names describe the role of the referenced table, e.g., within a
table book, the relationship author describes the role of the linked table Person. In the relational
schema foreign keys are modeled the same way as attributes.

The resulting names have to be conforming to the SQL standard. For example, table names have to be
unique and labels must no contain spaces. Additional criteria for the labeling process are established in
section 3.4.

The main data sources for labels are Uniform Resource Identifiers (URIs). URIs usually contain a good de-
scription of their meaning, e.g., https://creativecommons.org/ns#license describes a license.
As predicates in RDF triples transform to columns in relational tables, predicate URIs are the main candidates
for attribute names. Another useful data source are ontologies. Ontologies describe the structure the triples
were created according to and provide names for these structure, hence being a helpful resource for naming
structures.

Table labeling requires multiple techniques and data sources. However, they should contribute to Mon-
etDB/RDF’s overall goal of Data Exploration which leads to a fuzzy approach using heuristics and ignoring
outliers. The following techniques are used to create table name candidates: Many tables contain one or more
attributes named type or the like. A type attribute refers to the concept instantiated by a subject. These type
attributes usually contain only few different values because the set of attributes within a CS roughly defines the
concepts described by the CS, though only subjects with specific type values form a table. The values of type
attributes therefore make up good table name candidates. For instance, a table with attributes birthDate
and deathDate might have type values Artist, Politician, and Person, but no values describing
different concepts, like Food or City. A second source for generating table name candidates are ontologies.
Ontologies usually contain classes that can be matched to tables by comparing the attributes of the ontology
classes and the attributes of the tables. The third and last source for table name candidates are the URIs of
incident foreign keys. Incident foreign keys are links from another table pointing to this table. For example, a
table describing books has an adjacent (outgoing) foreign key named author. Author therefore is a table
name candidate for the target table of the foreign key. Out of the list of table name candidates, the final table
name has to be chosen. A scoring and weighting algorithm therefore has to be applied to the list of table name
candidates.

4.2. Related Work

Labeling is researched on a variety of data including HTML table data, clustered data, and search queries.
It is an important task within Information Retrieval. Because RDF data does not contain sentences or
other sequences of words, most of the research on entity labeling and Information Retrieval [3, 14] cannot
be applied. Instead the main source for labeling will be the URIs that are used to identify subjects and
predicates.

Neumayer et al. [21] describe Semantic search with (almost) no semantics to improve the quality of ad-hoc
search results in the Semantic Search Challenge whose data is in RDF format. To achieve better results,
they introduce three simple techniques: First, the authors assign higher weighting to fields which names end
with name, title, or label to treat title data preferentially. Preference of some predicates will not be
applied to our system as all attributes are treated equal in SQL tables. Second, Neumayer et al. [21] favor
data from trusted sources (DBpedia in their case). Favoring of data from specific sources is not needed in
our task as the user defines the set of data he wants to explore himself by loading it into MonetDB. The last
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technique introduced by the authors is URI preprocessing to extract additional textual information. Their
simple extraction method is to extract the last part of the URI (after the last slash). This idea is proven by
Neumayer et al. [21] to significantly improve the quality of search results over their baseline without URI
preprocessing. A slightly more sophisticated version of the extraction technique will be part of the labeling
process in MonetDB/RDF as described in section 4.4.

Venetis et al. [31] recover semantics of Web tables by creating attribute names from hypernyms of the columns’
contents. The hypernyms are created using an external isA database. Their approach has to go without whole
sentences and is therefore comparable to our task. They mention that their labels often do not occur in the
table itself. We experienced the same and therefore decided to include external data (ontologies) for the
labeling process. The authors describe that many tables consist of a subject column containing the subjects,
and other columns that have a binary relationship with the subject column. RDF has a similar view as all
objects are linked to subjects using a binary predicate. In the relational model, relationships are not modeled
as links, but as attributes. For foreign keys, these attributes contain special values, for links within tables there
is no explicit documentation of this fact. In the relational tables we created from RDF data it stands out that
verbs occur as column names, e.g., has_creator or operatedBy, instead of nouns that would probably
have been used if the data was modeled as relational data in the beginning (creator, operator). Venetis
et al. [31] mention poor recall because of poor quality of Web tables. As an example, they refer to tables that
are used for layout purposes only. As relational tables have a fixed structure, we assume better recall when
the approach is applied to relational data.

Ranking label candidates in hierarchical clusters using a linear model has been studied by Treeratpituk
and Callan [30]. Their approach takes hierarchy into account by computing term frequencies for clusters
and parent clusters. The authors mention that a headword is often a more useful label than a list of terms
because in the latter case a human has to infer the general term from the list. The same applies for our
labeling process where the list of type values often does not describe the overall topic of a table but contains
descriptions of parts of the data (e.g., list Day_school, Independent_school, State_school
does not explicitly contain the concept represented by the CS, which is School). Like Venetis et al. [31],
Treeratpituk and Callan [30] show that documents often do not contain self-descriptive terms. Instead, they
use anchor texts (pieces of texts on and next to hyperlinks to the document) to find better labels. We use
a similar idea by inferring names from foreign key names which are the relational equivalent to hyperlink
texts. Hyperlink descriptions can contain spelling errors, synonyms, and generally all issues of free-form text
whereas foreign key names are built from the set of URIs provided by the ontology. Therefore frequencies
of terms used in foreign keys can easily be calculated and used for measuring descriptiveness of certain
terms. A linear model is used by Treeratpituk and Callan [30] to rate the descriptiveness of label candidates
which is comparable to our approach using tf-idf-like similarity scores. However, their linear model needs
to be fitted with training data what is not possible in the MonetDB/RDF scenario that tries to avoid user
interaction.

Some research has been done on finding subtopics (i.e., categories, facets, or senses of a topic) of search
queries used for Search Result Diversification. Wang et al. [33] propose a clustering algorithm based on term
frequency for extracting subtopics and automatically labeling them. The authors compute the so-called core
term of a cluster by applying a tf-idf-like relevance measurement. They claim that the core term has to be
expanded to represent the contents of the cluster better and to look more like a search query suggestion. To
expand the core term into a core phrase, words are appended to the core term left and right alternatively if
they exceed a co-occurrence threshold. The approach by Wang et al. [33] uses more context than available for
our labeling task, their approach of extending a term to a phrase is therefore not applicable for MonetDB/RDF.
To our mind using one headword only instead of half sentences is sufficient for our task as we label objects
instead of pieces of connected information.
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4.3. Data Sources

Data sources can roughly be divided into two categories, internal and external data sources. The internal data
source for label generation are the URIs in the RDF triple data. In the RDF world, URIs are used for subjects,
predicates, and (partially) objects. As predicates, URIs are candidates for attribute labels. As objects, URIs
might mark relationships between CS’s and are therefore candidates for table names (for the table names the
relationship points to).

In general, external data sources should not be used because we may not rely on an Internet connection.
Inclusion of the large external data sources such as dictionaries is also not an option because label gener-
ation is just a minor feature of the MonetDB database system and therefore should not require that many
resources. Ontologies are small and a small number of ontologies covers the vast majority of RDF, as
shown in section 4.3.2. Ontologies are therefore the only external data source that will be used. How-
ever, the user has to take care of integrating these external ontologies into MonetDB/RDF by loading
them.

4.3.1. URIs: Type Values and Foreign Key Names

URIs (cf. section 2.3.4) are used as identifiers with RDF datasets. URIs usually contain a rough description
of their meaning, they are human readable. This meaning can be extracted and used for labeling. As
URIs are taken from ontologies, we can be sure that the same meaning will be represented by the same
URI, so we do not have to take care of spelling errors, synonyms, and other difficulties in analyzing
texts.

Within our labeling process, URIs are used twice: First, we exploit self-descriptiveness that is available in
many datasets by analyzing the values of properties named type or similar (e.g., http://www.w3.org/
1999/02/22-rdf-syntax-ns#type). Second, we store the property URIs that values link to other
subjects. These property URIs describe relations between subjects, or – in relational terms – name foreign
keys. Using URIs is the intuitive way of analyzing RDF data because they are a central concept of the RDF
idea and are already available within the dataset.

4.3.2. Ontologies

Ontologies, as described in section 2.3, contain vocabulary to describe RDF data. RDF datasets that use
a certain ontology can be structured and labeled more easily if the additional information on classes and
hierarchies in the ontology is exploited.

For example, most of the RDFa data (RDF in Attributes, small snippets of RDF data on Web pages) contained
in a segment of the Common Web Crawl 14 uses only few ontologies (cf. table 4.1). Furthermore, also the
statistics of the Linking Open Data community project15, semanticweb.org16, and prefix.cc17 imply that a small
number of ontologies covers the vast majority of RDF data. We therefore decided to include the most popular
ontologies (according to the Common Web Crawl, semanticweb.org, prefix.cc, and the Linking Open Data com-
munity project) in MonetDB/RDF when doing our experiments. We think this approach matches user behavior
best because it covers the vast majority of data with little loading effort.

14Common Web Crawl http://webdatacommons.org/
15LOD Community Project http://lod-cloud.net/state/
16Semantic Web http://semanticweb.org/
17prefix.cc http://richard.cyganiak.de/blog/2011/02/top-100-most-popular-rdf-namespace-

prefixes/
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4.4. URI SHORTENING

Ontology Occurrences

Facebook Open Graph Protocol 53%
Google Data Vocabulary 19%
RDF Schema 14%
DublinCore Terms 3%
GoodRelations 2%

Table 4.1.: Top 5 ontologies in the Common Web Crawl
Open Graph is used to link Web pages to Facebook, e.g., by including a Like button.
Data Vocabulary is markup code that is supported by the Google search engine.
RDF Schema is basic vocabulary such as comment or label offered by W3C.
DublinCore Terms describes resources, e.g., books, videos, or Web pages.
GoodRelations [12] offers e-commerce markup.

The most popular ontologies according to the afore-mentioned sources include DublinCore Terms, Face-
book Open Graph Protocol, Simple Knowledge Organization System (SKOS), Friend of a Friend (FOAF), Geo,
Geonames, GoodRelations, and the “meta ontologies” owl, rdf, and rdfs.

4.4. URI Shortening

Attribute labels are simply extracted from predicate URIs using URI shortening. URI shortening re-
duces the URIs to one headword according to the goals defined in section 3.4. Predicate URIs, e.g.,
http://xmlns.com/foaf/0.1/name, usually contain the predicate information as last part. The
heuristic described by Neumayer et al. [21] uses the part after the last slash as a predicate name. However,
some ontologies use a slightly different scheme, e.g., an URI part marker (hash sign #) (e.g., https://
creativecommons.org/ns#license) or dividing the predicate information by slashes (e.g., http:
//search.yahoo.com/searchmonkey/media/duration). The URI schemes of the most popular
ontologies are included into MonetDB/RDF to ensure correct and complete extraction of relevant parts for
these widely-used ontologies. As a fall-back for ontologies unknown to our system, the heuristic described by
Neumayer et al. [21] is used.

4.5. Labeling Process

The RDF data itself, the information derived from the CS structuring algorithm introduced in chapter 3,
and the data sources described in section 4.3 form the input for the labeling process described in fig-
ure 4.2.

Collect Type
Attributes

Collect Onto-
logy Classes

Collect Incident
Foreign Keys

Assign
Names EndStart

Figure 4.2.: Flow chart for labeling

Starting with no table names we include techniques for table name candidate extraction bit by bit, analyze
the candidates each techniques selects, and incorporate more sophisticated techniques including foreign data
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sources. Along the way we define reasonable thresholds and identify the pros and cons of each technique,
resulting in the assignment algorithm described in section 4.9.

The following sections 4.6 to 4.8 describe how table name candidates are extracted from the data sources. After-
wards, a table name is chosen out of these candidates, as described in section 4.9.

4.6. Collection of Type Values

Many ontologies include a predicate called type or similar. The values of these attributes describe the
concept the subject belongs to.

4.6.1. Loading of Type Property List

A list of common type predicates from the most popular ontologies is stored within MonetDB/RDF. These
type properties are listed in appendix C.

4.6.2. Process

During the extraction phase, our algorithm loops through all subjects and extracts the values for the type
predicates. Type values are either URIs linking to an ontology or string literals. String literals in RDF can
contain a marker for their language (e.g., "website"@en-us) which is ignored for this analysis as the type
values are the same for every language. Using the frequencies of the names, a histogram per CS and per type
predicate within the CS is created. An example can be found in table 4.2.

Hierarchy Level Type # of Subjects % of Subjects

0 Thing 1084 100
1 Species 1084 100
2 Eukaryote 1084 100
3 Animal 1084 100
4 Bird 546 50
4 Mammal 284 26
4 Fish 185 17
4 Amphibian 27 2
4 Reptile 15 1
4 Insect 11 1
4 Crustacean 10 1
4 Mollusca 3 0
4 Arachnid 1 0

Table 4.2.: Type property values in a CS about animals

Algorithm 4.1 specifies the process in detail. We noticed that type attributes tend to be multivalued properties.
This is also the case in table 4.2. In DBpedia, the type values represent the whole class hierarchy a subject
belongs to. For example, a subject describing a soccer player has type values SoccerPlayer, Athlete,
Person, Agent, and Thing.

In a first version of the type value algorithm, we were not aware of this fact and therefore had two problems: i)
we reached only low percentages that often did not exceed our threshold because we divided the frequencies
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Algorithm 4.1: Collecting type value statistics
input : triple data, list of type attributes
output : type value frequency per CS and type attribute

/* compute histogram of type value frequencies */
forall the subjects do

forall the type attributes do
get the CS the subject belongs to
collect all type values of that subject and that type attribute
forall the type values do

if type value already exists for this Cs and this type attribute then
increase bucket counter by one
else

create bucket
set bucket counter to one

end
end

end
end

end

/* sort type values */
forall the CS’s do

forall the type attributes do
sort list of type values descending by frequency

end
end

/* assign percentages */
forall the CS’s do

forall the type attributes do
forall the type values do

percentage of this type value is frequency of that value divided by the number of subjects in the
CS

end
end

end

by the number of type values rather than by the number of subjects in the CS (e.g., for a table containing
persons, the histogram looked like this: 33% Person, 33% Agent, and 33% Thing, and even worse for
deeper hierarchies), ii) we got too generic name candidates (e.g., Thing is the root of the DBpedia hierarchy
and therefore the most common type value).

In the second version, we therefore decided to i) change the computation of the percentages and ii) change
the rules for choosing a table name candidate out of the list of type values. The percentages assigned in
the algorithm do not sum up to 100% per CS and type attribute anymore, but to a higher value, e.g., 100%
Thing, 99% Agent, 90% Person, because we denote the number of subjects in a CS as 100%, and not
the sum of all type values found within a CS. This also implies that the value with the highest per cent value
is not the best CS name candidate because it is too generic. We therefore use a high threshold (e.g., 80%) and
take a closer look at all type values that exceed this threshold: By adding ontology hierarchy information, we
get to know the hierarchical level of each remaining type value, and therefore how specialized each value is.
We choose the most-specific value out of the remaining as table name candidate. The process of choosing the
best label is described in section 4.9.
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4.6.3. Discussion

On the one hand, type values tend to be too specific and describe only parts of the table contents. This might be
caused by the low quality of self-description as shown by Treeratpituk and Callan [30] or because several small
concepts are merged into one CS that represents a parent concept then. On the other hand, type values can also
be too generic, e.g., (geological) Feature if villages are described, or Thing for DBpedia subjects. After
recognizing the multivaluedness of type values and changing the way we choose the best table name candidate,
we do achieve the wanted level of detailedness in the candidates.

If type value information is available, a candidate that exceeds the threshold is found almost every time.
Therefore, CS’s that mix up different concepts (e.g., City and Animal) end up with a very general candidate
such as Thing. However, these CS’s do not represent one concept what makes it hard to label them, so Thing
is the best name we can achieve.

Some tables do not have type information, we therefore need additional labeling techniques. Two additional
label techniques are described in sections 4.7 and 4.8

4.7. Collection of Ontology Classes

Matching attribute sets of SQL tables with attribute sets of ontology classes requires external data. The use
of external data should be avoided in the labeling process because it introduces space and licensing issues
when this data is shipped with MonetDB, or would require additional loading steps when this data is needed.
However, ontologies provide very good table name candidates as RDF datasets are usually created according
to ontologies. Ontologies offer a hierarchy that helps to overcome the main problem of type value candidates
as described by Treeratpituk and Callan [30]: Self-descriptions tend to be on a lower hierarchy level than
useful for table labeling. Because of the relatively small size of ontologies and the big help they are in labeling,
we decided to use this external resource.

4.7.1. Loading of Ontology Data

MonetDB/RDF makes use of class names, attribute lists per class and the class hierarchy to find the best table
name candidates using ontologies.

Ontologies can be loaded into MonetDB/RDF by users using a generalized format. For each class in the
ontology, URI, class name and – if available – superclass URI are needed. In addition, pairings of property
URIs and class URIs where they belong to are necessary. This includes inherited attributes, meaning that
a class inheriting from another class also inherits the property sets of the superclass. We therefore use two
tables to store this information, one with class and class hierarchy information, the other one with property
information. Appendix B contains the SPARQL statements for transforming the well-known ontology
DBpedia to this format. Other ontologies require similar code for transformation. MonetDB/RDF offers an
interface for loading transformed ontologies before applying the structuring/merging and labeling algorithms.
In the future, a more sophisticated uploading procedure might be implemented to allow ontology loading for
users that are not familiar with transforming ontologies (cf. section 8.2).

4.7.2. Similarity

A measure for the similarity and discriminatory power of tables/classes is used to support the goal of highly
descriptive and unique names. Similarity is needed when comparing a table to an ontology class. In an
early version of the labeling process a table was considered similar to a class only if the set of columns
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of the class was an exact subset of the attributes of the ontology class. However, this strict criterion led
to non-intuitive results due to errors in the data and the ontologies as well as loss of precision during the
CS creation algorithms. For example, the DBpedia ontology defines that railway stations do not have an
address, but the DBpedia data provides address information for stations. Another examples are species in
DBpedia. In the dataset, species have a property class, but the ontology uses the Latin word classis
instead.

We therefore decided to use a tf-idf -like [28] similarity score instead of the strict subclass criterion. tf-idf
(term frequency, inverse document frequency) is a technique used in Information Retrieval. The measure
expresses how frequent a term is used in a document in comparison to how often it is used in other documents.
tf-idf hence expresses how good a term characterizes a document (term is frequent in that document, but
infrequent in others). For every property in the RDF dataset, we compute a tf-idf-like score. By combining
these scores, we get to know how good the set of properties describes a CS and differentiates it from other
CS’s in the dataset.

The term frequency (tf) is 1 for every property, because properties occur only once per CS:

tf(p) = 1. (4.1)

The inverse document frequency is defined as the logarithm of the total number of documents divided by the
number of documents the term occurs in:

idf(p) = ln

(
# documents

1 + # documents with property p

)
. (4.2)

For tf-idf, tf and idf are multiplied, resulting in:

tf-idf(p) = idf(p) = ln

(
# documents

1 + # documents with property p

)
. (4.3)

There are two possible interpretations for document in our scenario: characteristic set (CS) and ontology
class. An advantage of the first option, counting in how many CS’s a property is used, is the independence
from the ontology: If the ontology defines properties that do not occur in the dataset, these values get a tf-idf
score assigned that can never be reached by the actual data. In addition, using the second option, counting in
how many ontology classes a property is used, has the disadvantage that the form of the ontology influences
the tf-idf scores: If an ontology uses many sub-classes to describe a concept such as Person, properties of
this concept (e.g., birthDate) occur often within the ontology and therefore get only low tf-idf scores.
However, these properties are good indicators for CS’s about Persons, but are seen as weak indicators
because they occur so often within the ontology.

But also the second option, using ontology classes as documents for tf-idf computation, has some advantages
that cannot be denied: Properties that are not part of the loaded ontologies are ignored for tf-idf computation.
Later in the process of computing ontology-based label candidates, when the tf-idf scores are summed up to
compute similarity between CS’s and ontology classes, only the second option (ontology classes) allows for
high similarity scores because these non-ontology properties have no influence on the similarity computation.
We therefore implement the second option:

tf-idf(p) = idf(p) = ln

(
# ontology classes

# ontology classes with property p

)
. (4.4)

tf-idf provides an intuitive approach for similarity calculation: Attributes that occur seldom within the ontology
are good markers for specific ontology classes (discriminatory power) whereas widely used attributes (e.g.,
name or address) are not relevant for deciding whether a CS and an ontology class describe the same
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concept. The tf-idf score of a property p, that occurs in freq(p, o) ontology classes, in an ontology o with
number of classes numClasses(o) is defined as:

tf-idf(p) := ln

(
numClasses(o)

1 + freq(p, o)

)
. (4.5)

A property that occurs in every ontology class would therefore get tf-idf score slightly below zero, and rare
properties get scores up to slightly below ln(numClasses(o)).

4.7.3. Process

Per CS attribute, the tf-idf score is computed. The score defines how important an attribute is for the table it oc-
curs in by counting how often it occurs within the ontology, as described afore-head.

The list of attributes of a table has to be grouped by ontology, because multiple ontologies can be used within a
table. Per CS attribute, the comparison with the ontology attributes is done and all ontology classes that contain
this CS attribute are added to the list of candidates of the CS attribute.

There are three possibilities for normalizing this summed tf-idf score. The first option is to compute the
summed tf-idf for the ontology class, and to divide the score by that baseline. By doing so, a high normalized
score is reached if and only if most of the attributes in the ontology are available in the CS. The second option
is to use the summed tf-idf for the CS as baseline. This emphasizes the role of the CS, and high normalized
scores are reached if and only if most of the CS properties belong to one ontology class. The third and last
option is using a mixed baseline by multiplying the square roots of both baselines. Our experiments showed
that it is common that the ontologies define many more properties than available in the dataset. It is therefore
best to use option number two. This also ensures that a CS only represents one concept, as CS’s that mix
different concepts would not reach a high normalized score.

For all ontology classes that are on the list of candidates of one or more CS attributes, the sum of the tf-idf
scores of the corresponding CS attributes is computed. The maximum tf-idf sum is the sum of all CS attributes.
The score of each ontology class divided by the maximum score is a value between 0 (no common attributes)
and 1 (table is an exact subset of this ontology class, 100% match).

If the value exceeds a certain threshold value (e.g., 0.8), the ontology class and the table are considered
similar and the ontology name is added to the list of name candidates. The list of candidates is then compared
to the ontology class hierarchy: If both a class and its superclass are on the list of candidates, the child class is
removed from the list because its parent is a more general fit. Algorithm 4.2 specifies the process in detail.
The output of the algorithm is a list of ontology class names that could be a name for the CS. It is ordered,
class names with higher tf-idf score are listed first.

4.7.4. Discussion

Not all ontologies can be included into MonetDB/RDF, and not all missing ontologies will be added by users.
Not all tables contain enough columns for a reasonable ontology lookup, or the attributes are spread over too
many ontologies.

In comparison to type values, ontology class names are on a higher hierarchy level. Leading to one headword
per table, using ontology class names instead of type values reduces the accuracy of table description if
subclass attributes are missing. For example, a table containing soccer players will be labeled as Athlete if
the tuples do not contain soccer-specific attributes.

An additional issue is added by the CS merging algorithm. If the CS structuring algorithm joins tables
that ontology-wise contain different data, the resulting attribute set does not match any ontology class. CS
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Algorithm 4.2: Collecting ontology class names
input : list of CS’s, list of ontologies
output : list of ontology class candidates per CS

/* compute tf-idf score per CS attribute */
forall the ontology classes do

forall the ontology class attributes do
if bucket for this attribute URI exists then

increase bucket counter by one
else

create bucket
set bucket counter to one

end
end

end
forall the buckets do

compute tf-idf(bucket) = ln
(

numClasses
1+ bucket counter

)
end

/* collect ontology class names */
forall the CS do

group CS attributes by ontology
forall the ontologies do

/* collect candidates per attribute */
forall the ontology attributes do

forall the CS attributes that belong to this ontology do
if ontology attribute URI equals CS attribute URI then

add ontology class URI to the list of table name candidates of this CS attribute
end

end
end

/* compute similarity score for all candidates */
forall the ontology class URIs that occur on one or more lists of candidates do

sum tf-idf scores of each CS attribute that supports the ontology class
end
calculate the optimal tf-idf score (sum all CS attribute tf-idf scores that belong to this ontology) forall
the ontology class URIs that occur on one or more lists of candidates do

normalize score (tf-idf score divided by optimal tf-idf score)
end

/* remove candidates depending on similarity and hierarchy */
remove ontology class URI from list of candidates if its tf-idf score is below a given threshold
remove ontology class URI from list of candidates if one of its superclasses is also on the list and has
a higher or equal tf-idf score

end
end
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structuring therefore has to be conservative to avoid such situations. Instead it is better to introduce a merging
phase after labeling, as discussed in section 3.3, that includes the semantic information retrieved during
labeling. This second structuring phase is described in chapter 5.

After matching with ontologies, some tables still have no table name candidates. We therefore need another
source for candidates: foreign key names, that are introduced in section 4.8.

4.8. Collection of Incident Foreign Keys

When creating SQL schemas manually, foreign keys are often named like the table they point to, e.g.,
order_id points to the order table. We therefore suggest looking at foreign key names in RDF data as
source for table name candidates.

4.8.1. Process

Unlike relational tables, relationships in CS’s may point to more than one other CS. We therefore store how
many links of a foreign key point to a specific table. Values below a given fraction are ignored because they are
probably dirty data. Using infrequent values as labels would not support the goal of Data Exploration, where
the majority of data should be grasped fast and simple by the users. Figure 4.3 shows different frequencies of
adjacent foreign keys.

TennisPlayer.birthPlace

Village362

PopulatedPlace114

Settlement103

Place
13

Lake
1

Building
1

Figure 4.3.: Different frequencies of adjacent foreign keys. The gray links are infrequent and are therefore
ignored when inferring labels from foreign key names

Incident foreign keys that are frequent enough are then stored per target table and foreign key name. Foreign
keys with the same names and the same target table but different origin tables are stored together and their
statistics are summed up. An example is shown in table 4.3.

Algorithm 4.3 specifies the process in detail. The resulting statistics per CS contain a list of incident properties,
from how many CS’s this property is used to link to the current CS, and the sum of subjects linking to this CS
using the property.

4.8.2. Discussion

Foreign key names describe the role of a table rather than the table itself. In some cases role and table
content are described using similar words (e.g., role team for table SoccerTeam), but sometimes the
words differ (e.g., roles author, chairman, and goldMedalist for table Person). In the latter case a
table is referred to using many different foreign key names, and the summarizing term of these roles is not
known.
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Foreign key name Number of CS’s with this FK name Total frequency

location 30 36502
country 18 135
birthPlace 17 40538
city 15 11146
owner 14 2741
deathPlace 10 8229
headquarter 9 1322
team 8 771
region 7 28204
district 7 14917

Table 4.3.: Example of incident foreign key names for the Village table

4.9. Assignment of Names

Table name candidates generated by looking at type values (section 4.6), foreign key names (section 4.8)
and ontologies (section 4.7) are the input for the label assignment algorithm. Furthermore, frequencies and
statistics collected while generating the candidates are handed over to the assignment procedure. The result of
the assignment process is a list of candidates, sorted descending so that the first candidate in the list is chosen
as CS label. The list contains sections for the different data sources the candidates come from: ontology, type
value, foreign key name. A fourth section is introduced when merging takes place in chapter 5 to store the CS
label of a merged CS.

4.9.1. Process

Name candidates discovered through analyzing type values are considered most important because type values
usually point to the ontology, have a hierarchy, and were explicitly added to the RDF dataset upon creation.
There is a semantic reason for choosing these names. For each type attribute (e.g., dbpedia:type and
rdf:type), the best values is chosen according to the rules described in section 4.6. Out of these, the most
frequent value is chosen.

Ontology-based candidates are good source for naming, too. Candidates discovered through matching CS’s
and ontology classes rely on comparison of multiple attributes, have a hierarchy, and the RDF data was
created with the ontology in mind. However, in opposition to type values, they were not added explicitly to
the dataset and their exploration requires fuzzy comparisons with an external data source. There is a again a
semantic reason for choosing these names. Ontology candidates are already ordered by similarity score (cf.
section 4.7), hence the ontology-based candidates can be added to the ordered list of all candidates without
further sorting.

If neither ontology names nor type values are available, names of incident foreign keys are considered.
Foreign key names describe the role of a table, not the table itself and are therefore less suitable for labeling.
A foreign key name is considered a good choice for a table name if multiple incident foreign key links
use this name (cf. section 4.8). Therefore the first criterion to choose a table name is the number of
incident foreign keys that use the link name. If several foreign key names have the highest number of
occurrences as incident foreign keys, the foreign key name with the highest total frequency is chosen as table
name.

If none of the mentioned data sources is available, no useful table name can be assigned to the table. A
dummy value is used instead. For ontology-based datasets like DBpedia, this is a very uncommon case, but
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Algorithm 4.3: Collecting incident foreign key statistics
input : list of CS’s, list of edges
output : incident foreign key statistics

forall the CS’s do
forall the attributes per CS do

forall the edges do
if edge frequency > threshold then

if bucket for this incident foreign key name exists then
increase bucket counter by one
increase bucket frequency by the edge frequency

else
create bucket
set bucket counter to one
set frequency to the edge frequency

end
end

end
end

end
forall the CS’s do

sort foreign key names descending by number of occurrences and frequency
end

it could happen in dirty datasets that are not based on a single, sophisticated ontology, e.g., Web-crawled
data.

The CS labels will be used in merging (cf. section 5.1) to decide whether two CS’s should be merged or not.
Besides the chosen name, a list of all label candidates is maintained, that is also used for deciding about
merging. Furthermore, the origin of the chosen label (type, ontology, or foreign key) is stored for evaluation
purposes. If hierarchical information is available for the chosen name (i.e. the name is ontology-based and the
ontology is loaded into MonetDB/RDF), the hierarchy is also stored. Hierarchical information will be needed
when CS’s are merged. After the merging phase, some labels need to be refined, this is done in the labeling
step described in section 5.2. This step also includes labeling properties.

The rules for label assignment are described in detail in algorithm 4.4.

4.9.2. Storing CS Labels

The name assigned to each CS is stored among each instance in the CS. This is necessary as CS’s will be
merged in the next step (section 5.1). Merged CS’s contain instances from different CS’s and will therefore
be described using a more generic name. Storing CS labels ensures that the detailed labeling information
gathered in the last steps is not lost.

4.9.3. Discussion

Before we added semantic information to the type value extraction as described in section 4.6, ontologies were
the first data source considered for assigning names. But with the ontological and hierarchical information
used in type value extraction, it is now the most-valuable data source and therefore the first data source to
look at during assignment of labels.
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Algorithm 4.4: Assigning table names
input :ontology lookup candidates, type values, incident foreign key names
output : table name, list of sorted table name candidates

forall the CS’s do
if type values exist then

add all type values to list of candidates
/* take the best candidate per type attribute */
forall the type attributes do

take the candidate with the highest ontology level that exceeds the threshold
end
out of these, take the candidate with the highest frequency

else if one or more ontology candidates exist then
add all ontology-based candidates to list of candidates
use first as table name

else if incident foreign keys exist then
add all foreign key names to list of candidates
take the foreign key name that is used by the most incident foreign keys, if there are multiple choose
the one with the highest frequency

else /* no table name found */
use dummy value

end
remove duplicate entries in candidate list

end

In general, the order of assigning uses semantics first: type values and ontology-based candidates. These
semantic candidates are for example widely available in DBpedia and other carefully constructed datasets.
As a fall-back for “dirtier” data like Web-crawled data, the non-semantic data source of foreign key names
is available. Our experiments (cf. section 7.3) show that “dirty” We-crawled data in fact takes advantage
of foreign-key-based labels, whereas semantic labels are sufficient for labeling the well-maintained dataset
DBpedia.

Algorithm 4.4 exploits that the input candidate lists are ordered by suitability, hence keeping the assignment
algorithm short and simple. We maintain the list of candidates because they are used for merging: The
decision whether two CS’s represent the same concept gets more evidence if not only the chosen names of the
two CS’s, but also the list of candidates, are compared.
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5. Merging Labeled Structures in RDF Data

After the semantic information has been added to the structures, the CS’s can be refined to increase the
structuredness of the data. We therefore introduce a set of rules to decide whether two CS’s should be merged
(section 5.1). Merged CS’s require an additional simple labeling step to adjust the CS labels (section 5.2).
The result of these steps is the intermediate schema in a UML-like representation, as introduced in section 5.3.
Afterwards, the schema has to be transformed into relational data. This is the first time we care about data
types, relationship cardinalities, and foreign key constraints. The transformation process is described in
section 5.4.

(Implementations described in sections 5.1 and 5.4 have partly been done by Pham Minh-Duc.)

5.1. Merging CS’s

The goal of this step is to reduce the number of characteristic sets. As the resulting number of CS’s determines
the number of relational tables in the final schema, it is important to get a low number of CS’s (e.g., below
1000) to reduce the overhead caused by creating and maintaining relational tables as well as to provide easier
insights in the dataset. Important small CS’s, as defined in section 3.8, are not merged but directly added to
the final schema.

Similarity of two CS’s is measured in two dimensions. CS’s can be comparable because of their labels
and ontology information, we call this type of similarity semantic similarity. Besides that, CS’s can have a
similar structure in their property sets or relationships, that is what we call structural similarity. The decision
whether two CS’s are merged is based on combinations of the following semantic and structural similarity
rules.

Semantically similar CS’s are identified based on their labels:

Rule 1: Same label Two CS’s have a same label in their top k label candidate list (e.g., k = 3). This
rule is executed per data source, meaning that the same labels have to come both from type values
(cf. section 4.6), or both from ontology (cf. section 4.7), or both from foreign key relationships (cf.
section 4.8).

Rule 2: Labels with a common ancestor For most ontologies we analyzed (cf. appendix A), hierarchy
information for class names is given. If these class names are used as labels, hierarchy information can
be exploited to find out whether two CS’s should be merged. CS’s will be merged if their labels belong
to the same hierarchy. We call the point where the two hierarchies split, i.e., the lowest-level common
hierarchy element, common ancestor.

For example, two CS’s Mayor and Senator can be merged because of their common ancestor
Politician. However, if the dataset is about politicians only, we would end up with one big CS
Politician. To avoid this clustering, no merging is applied when the common ancestor of two CS’s
is too generic (i.e., covering a large fraction of the data). We therefore compute the fraction of CS’s
described by a specific label for each label in the hierarchy. For example, if the dataset is summarized
by ten equally-sized CS’s out of which one is labeled Senator and another one Mayor, these two
CS’s would not be merged because their least common ancestor Politician covers a rather big
(20%) fraction of the CS’s. This fact is displayed in figure 5.1.
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Figure 5.1.: Politician is the lowest-level com-
mon ancestor of Mayor and Senator
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Figure 5.2.: Two CS’s that are accessed from the
same CS using the same property can be
merged

Merging justifications that come from the ontology have a high value because a dataset is usually build
according to its ontology. The ontology is therefore a good expression of the data classification the authors
of ontology and dataset had in mind. However, these semantic rules is not enough to create the small,
dense set of CS’s we want, especially if a dataset uses multiple ontologies (e.g., Web-crawled data) or
the ontologies do not provide a class hierarchy. We therefore also use merging rules based on structural
similarity.

Structural similarity is used in addition to semantic similarity to decide on CS merging. Structurally similar
CS’s are identified using their property sets and relationships:

Rule 3: Superset If the property set of a CS is a subset of the property set of another CS, the smaller CS
is merged into the bigger CS as shown in figure 5.3a. In relational terms, the value D := NULL is
added to all subjects in the smaller CS. This is only done if the two CS’s are not too different (i.e., the
superset CS must not have more than a specified number of properties more than the subset CS).

Rule 4: Similar property sets The intersection of the property sets of two CS’s is compared to the
property sets of the two CS’s. Identicalness in so-called discriminating properties, properties that do
occur often within the two CS’s but rarely in other CS’s leads to a high similarity score of the two CS’s.
If the similarity score exceeds a certain threshold (e.g., 0.8 as for the tf-idf similarity between CS’s
and ontology classes described in section 4.7), the two CS’s are merged as shown in figure 5.3b. In
relational terms, the value D := NULL is added to all subjects in the left CS, and C := NULL is
added to all subjects in the right CS.

Rule 5: Same incident references If two CS’s is referred to from the same CS via the same property,
the CS’s are merged, as shown in figure 5.2.

In the first implementation of the merging step, we merged only two CS’s at a time. Due to low performance
we switched to multiway merging, i.e. merging n CS’s at a time. Besides better performance, using multiway
merging also avoids chaining effects, where a relatively big CS that is merged with multiple smaller CS’s
can pass its label through all merging steps, although its label does not represent the majority of data of the
final merged CS. Only CS’s that are matched because of the same rule(s) can be merged at a time, e.g., all
CS’s with the same label in top k (rule 1). Multiway merging is used for rules 1 and 5. For rule 1, multiway
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Figure 5.3.: Merging CS’s: Either into an existing CS or a newly created one

merging saves a lot of effort of there are many CS’s with the same label. For rule 5, it is also natural to do
multiway merging because all different referenced CS’s have to be joined anyway and they are also detected
at the same time. For rule 2, one cannot merge all CS’s with the same common ancestor at a time because
they are not detected at the same time and the common ancestor will get too generic if one tries to merge
multiple (n > 2) CS’s at a time. Rule 3 is not applicant for multiway merging because the superset-subset
relation can be detected for only two CS’s at a time. In addition, adding a subset CS to a superset CS does not
require effort in merging properties, so the overhead introduced by sticking to merging only two CS’s at a
time is negligible. The same applies to rule 4: similarity is only defined between two CS’s. Implementations
of the five rules are shown in algorithms 5.1 to 5.5.

Algorithm 5.1: Merging Rule 1: Same label, multiway merging version
create a list of labels and the CS’s they occur in (as top k candidate)
forall the labels do

foreach data source do /* (ontology, type, fk) */
collect all CS’s that have this candidate from this data source
merge them

end
end

Algorithm 5.2: Merging Rule 2: Labels with a common ancestor

forall the pairs of CS’s do
if they have a least common ancestor then

if least common ancestor is not too generic then /* percentage of data covered by
this concept is below a threshold */

merge them
end

end
end
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Algorithm 5.3: Merging Rule 3: Subset-superset

forall the pairs of CS’s do
if CS1 is a subset of CS2 then

if CS2 has at maximum 3 properties more than CS1 then /* to avoid that small CS’s
are merged into very big CS’s */

merge them
end

end
end

Algorithm 5.4: Merging Rule 4: Similar property sets

forall the pairs of CS’s do
compute tf-idf(CS1) =

√∑
properties p of CS1 tf-idf(p)2

compute tf-idf(CS2) =
√∑

properties p of CS2 tf-idf(p)2

compute similarityScore(CS1, CS2) =
∑

properties p that occur both in CS1 and CS2 tf-idf(p)2

tf-idf(CS1) ∗ tf-idf(CS2)

if similarityScore(CS1,CS2) is above a threshold then
merge them

end
end

Algorithm 5.5: Merging Rule 5: Same incident references, multiway merging version

forall the CS’s do
forall the properties of that CS do

collect all CS’s that are frequently referenced from this property
merge them

end
end

The merging step balances two objectives for the final relational schema: On the one hand, the schema should
contain as few tables as possible, achievable by lax merging conditions. On the other hand, the tables should
not contain too many NULL values which demands strict merging conditions. Setting the thresholds to
reasonable values is essential for the quality of the resulting schema.

5.2. Labeling Final CS’s

As shown in figures 5.3a and 5.3b, merging can either result in a newly created CS, or an update to an
existing CS by adding new data to it. Newly created CS’s do not have a name assigned yet, and names of
updated CS’s have to be checked and updated if necessary. This final labeling step assigns names to the
final set of CS’s, leveraging the labels of the CS’s the merged CS consists of. Section 5.1 explains that we
switched from merging two CS’s at a time to multiway merging to increase performance. The following
explanations on labeling merged CS’s therefore assume an unknown number (≥ 2) of CS’s that are merged
together.

The labeling techniques that are applied in this step vary depending on the rules that were used to merge
the CS’s. If the CS’s are merged according to semantic rules, the label for the merged CS is already known:
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Either, the CS’s are merged because of a common name (rule 1), in this case the common name is used as
label, or they have a common ancestor in the hierarchy of their labels (rule 2), in that case the least common
ancestor is used as label. If structural similarity rules decided about merging the CS’s, the name of the merged
CS cannot be semantically inferred. Instead, the size of the CS’s decide about the final name: If the CS’s to
be merged form a subset-superset hierarchy (rule 3), the name of the superset CS is chosen as the name of
the merged structure. If the structurally similar CS’s are merged into a newly created CS because there is no
subset-superset hierarchy (rules 4, 5), the name of the biggest CS (i.e., having most subjects) that is part of
the merged CS is chosen as the name of the merged structure.

As described in sections 4.6 to 4.8, three data sources are used to compute label candidates, hence three lists of
candidates are produced. Section 4.9 describes that these lists are concatenated, starting with ontology-based
candidates, followed by type-value-based candidates, ending with relationship-based candidates. When
CS’s are merged, and CS names are updated, the candidate lists also have to be merged. All CS’s that
participate in a merged CS contribute to the merged candidate list. The candidate lists are merged per
group, hence within ontology-based, type-value-based, and relationship-based candidate lists. Within these
groups, the candidates of all participating CS’s are concatenated, starting with the most important CS (i.e.,
the superset CS or the biggest CS). Duplicated entries are removed. As this labeling step is intersected with
the merging step described in section 5.1, the merged candidate list is instantly used for further merging
decisions.

Furthermore, names for each property are defined. Property naming does not need a complex labeling
algorithm, but is done using URI shortening described in section 4.4. Property names are the column names
in the final relational schema, will be presented to the user and should hence be human readable, no cryptic
OIDs.

At this point in time, all labels are transformed from OIDs to strings. Throughout our structuring, labeling,
and merging algorithms, OIDs were used to simplify label comparison and storage, but from now on, for the
physical transformation into the relational data model, string names are needed. Hence, URI shortening as
described in section 4.4 is applied.

5.3. UML-like Intermediate Result

As mentioned in section 3.3, structuring RDF data is a two-step process. The first step, transforming RDF
triple data into an intermediate, UML-like model consisting of CS’s and their relationships has been explained
in chapters 3 to 5. This model does still contain elements that cannot be represented in a relational model,
such as multivalued properties and undetermined foreign keys. Hence, a transformation is necessary that
purges these elements. It is described in section 5.4.

5.4. Transformation to Relational Structures

To create the final relational model, the relational type system has to be taken into account. Casting between
data types has to be avoided to speed up the processing in the targeted relational schema. Therefore properties
which values belong to different data types (e.g., length_in_meters can be either of type integer or
decimal) will be represented by multiple table columns, one for each data type. These additional columns are
stored in an extra table to keep the schema of the main table short and correct. If only a small percentage
belong to a different data type, these values are removed from the main table and stored in the triple store
that is maintained for outlying data. NULL values are used if values are missing, e.g., because of CS
merging.
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In addition, properties might be split up over multiple columns if they contain foreign keys. Because the
relational integrity requires foreign key columns to point to one other table only, splitting is necessary if a
property points to multiple other tables or some values do not point to anything but contain plain values.
Because merging rule 5 merges referenced CS’s, the number of foreign keys pointing to multiple CS’s is
already low. To further reduce the number of split columns, outlying values are removed. For example, if
only 1% of the values in a foreign key column point to a specific other table, these pointers are removed from
the dataset. By removing these outliers, the regularity of the final schema is increased and only few data is
dropped.

To represent multivalued properties, an additional table per multivalued property and table is added. These
additional tables have a many-to-one relationship with the main table and contain the mapping between
subjects and multivalued values.

All data that has been dropped during structuring and merging is not stored in the relational schema,
but in a PSO table. A PSO table is a triple store that is ordered by predicate, then subject, then ob-
ject.
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Figure 5.4.: Transformation of a CS to relational tables
(Figure by Pham Minh-Duc [24])

Figure 5.4 (by Pham Minh-Duc [24]) shows this transformation in detail. A CS with six properties is
transformed into three relational tables plus the PSO table. The first step is the analysis of the CS: the data
types of its six properties are counted and the multivaluedness of the third property is recognized. The default
table has exactly the schema of the CS. It contains the most data, hence the most common data type per
property is chosen to be in the default table. For the properties that have multiple common data types, an
extra table is created. In this extra table, values of the other data type are stored. The subject column that is
available in both the default and the extra table ensures that the contents can be merged. As shown in the figure,
infrequent data types such as int for the sixth property are not transferred to the relational model. Instead,
these outliers are moved to the PSO table. For each multivalued property, another relational table is created. In
the example, only one table for the third property has to be created. An artificial Id that is used in that table as
well as in the default table ensures that all contents can be merged. For each data type that occurs frequently
in the multivalued property, a column in the new table is created.
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The schema created during transformation is used as physical data layout, not only as an abstraction layer.
The layout ensures high data locality and reduces the number of joins that is necessary for typical queries
against RDF data.

The union of relational schema and PSO table contains all data, ensuring correct results when querying it. If
only the relational schema is queried or explored, the majority of data is shown and can easily be understood
by humans. The result hence covers both needs: fast and correct querying, and a human readable, relational
presentation of the contents of the data.
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6. Implementation

The algorithms to structure and label RDF data described in chapters 3 to 5 are implemented as part of
the database module MonetDB/RDF. The following sections describe the architecture of MonetDB/RDF
and the design decisions that led to it. In addition, libraries and tools used in the module are intro-
duced.

6.1. Requirements and Constraints

As MonetDB/RDF is designed to be integrated and shipped with MonetDB, several additional criteria
arise.

Robustness Against Input Data As RDF data is often generated by Web crawls, malformed input data
has to be considered. For example, wrong usage of string escape characters by the data providers can lead
to corrupted object strings. The same applies to spelling errors in predicate URIs and the like. In addition,
RDF data (e.g., titles and description texts) is often available in multiple languages, hence correct character
encoding for many writing systems is required. Finally, duplicated RDF triples must not be added to the triple
store when parsing the RDF data as they do not provide additional information. MonetDB/RDF therefore has
to be built to cope with all mentioned malformations.

Loading RDF Metadata The structuring/merging and labeling algorithms rely on ontology class names
and hierarchy information. It is therefore essential to have the ontologies that are used in the dataset available in
MonetDB/RDF. The “moving target” RDF metadata cannot be mastered by adding ontologies before shipping
MonetDB because of the large and quickly changing set of ontologies (cf. section 4.3.2 for the distribution of
different ontologies in a Web-crawled dataset). Instead, users must be able to load new ontologies with little
effort. This is not trivial as ontologies can be written in different file formats, entailing different metadata
extraction algorithms for different ontologies. Leaving ontology loading to end-users also ensures compliance
with ontology licenses from a MonetDB point of view.

Performance During loading of RDF data into MonetDB, several resource-expensive data transformation
steps take place: First, RDF data needs to be parsed and stored into an initial triple store. Except for the
afore-mentioned error cases this means that one line in the input file results in one row in the triple store. While
storing, duplicates are eliminated and the data is ordered by subject, then predicate, then object. Afterwards,
the structuring and labeling algorithms described in chapters 3 to 5 are called, also resulting in heavy transfor-
mations and aggregations on the whole dataset. As we do not support adding data or updating the dataset by
now, these expensive transformations happen only once per dataset.

MonetDB/RDF loading performance does not affect other parts of the database system and is therefore not
critical when it comes to integration with MonetDB. However, RDF datasets can be very large and even if users
do expect waiting time when loading big datasets, loading should not take longer than necessary. Users should
be kept informed about the progress and maybe estimated duration.
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MonetDB Integration The work in this thesis is part of MonetDB/RDF which is a module of MonetDB.
Hence, integration with both the module and the whole RDBMS is necessary. To be usable as an encapsulated
module, side effects have to be avoided and a call interface has to be provided. Our algorithms have to be
called using the MonetDB Assembly Language (MAL).

MonetDB is written in C. As parts of MonetDB/RDF, namely the operators RDFscan and RDFjoin, should be
highly integrated with the database kernel [23], using C is advantageous. Persistent storing of data (i.e., data
being available after a restart of the database) has to make use of MonetDB data types and data structures, e.g.,
numerical types with certain value ranges. Integration with SQL requires sticking to the SQL table naming
rules, e.g., the first character of a table name has to be alphabetic.

6.2. Tools and Libraries

As MonetDB/RDF introduces a new approach on how to analyze, structure, label, and store RDF data
in an RDBMS, the main functionalities are implemented as part of the project and are not based on or
relying on external libraries. However, libraries come into application for parsing RDF data and string
tokenization, as these are well-researched topics where libraries – external or within MonetDB – do ex-
ist.

RDF Parser: Raptor Parsing RDF data, as described in section 3.5, is done using the RDF library
Redland librdf. For parsing and serializing, librdf provides Raptor18. Raptor can handle many RDF data
formats including N-triples and can easily be integrated with C programs. While parsing, Raptor extracts
various type information:

• For subjects, Raptor states whether they are represented by a blank node or an URI,

• for predicates, Raptor determines whether they have a proper format (URI) or not, and

• for objects, Raptor distinguishes between nodes (either blank nodes or URIs) and literals.

We use this information to correctly classify strings and to remove blank nodes. Raptor hands over one triple at
a time, enriched with type information, to be appended to the triple store in our module.

String Tokenizer To efficiently store URI strings in MonetDB data structures, the MonetDB string
tokenizer is used. The tokenizer splits strings at a given separator character. The tokens are then stored in
a Binary Association Table (BAT), the MonetDB data structure for storing values and their corresponding
object-identifiers (OIDs) [13]. A BAT represents a single column in the column-store MonetDB, with the
OID identifying the row and the corresponding values being the content.

The MonetDB string tokenizer creates an OID for every string and reconstructs strings if an OID is given.
Using MonetDBs dictionary encoding (cf. section 2.1), the tokenizer ensures that each token is stored only
once in the string storage data structure. All instances of this string get the same OID assigned. Duplicate
elimination is essential for efficient storage as URIs in RDF data often have common tokens, e.g., ontology
prefixes. Representing strings as OIDs also simplifies string comparison, which is heavily used in creating
characteristic sets and during the labeling phase.

18Raptor http://librdf.org/raptor/
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6.3. Software Architecture and Integration with MonetDB

The MonetDB/RDF module uses a three-tier architecture. The architecture is shown in figure 6.1 and explained
in the following paragraphs.

Structuring Labeling
MonetDB

SQL
front-end

Data
Loading

Metadata
Loading

Presentation 
Layer

Business Logic
Layer

Data Access 
Layer

RDFscan
RDFjoin

SPARQL

Figure 6.1.: MonetDB/RDF architecture
SQL front-end used to access MonetDB/RDF data is taken from MonetDB core

Data Access Layer On the data access layer, loading and parsing of both RDF data and metadata takes
place as well as conversion to SPO triples and relational structures, respectively. Data and metadata (i.e.,
ontologies) are loaded from plain text files, parsed and sorted. Loaded metadata is used in the labeling
algorithms to create better names for the structures. The structuring and merging algorithms use metadata,
too, to decide which CS’s are merged. The parsed results are stored in a defined database schema. By
doing so, all auxiliary data is stored in one place and can be accessed efficiently by the business logic
layer.

The operators RDFscan and RDFjoin, as introduced by Pham [23] and briefly described in section 2.2, access
MonetDB internal data structures directly to provide CPU efficient data retrieval.

Business Logic Layer The labeling and structuring parts in the business logic layer of MonetDB/RDF
are described in detail in chapters 3 to 5. As explained there, the amount of communication between these two
parts grew over the time. Extensive sharing of intermediate results is used to avoid duplicated computations
and therefore keep loading times short.

Both parts need access to the dataset: Structuring requires all subject and predicate information to find
characteristic sets (CS’s) in the triples. Labeling has to scan all triples including object values to collect
information on type values as described in section 4.6. In addition, both parts also need access to all
ontology metadata to compare CS’s with ontology classes and to exploit ontology class hierarchies (cf.
section 5.1).

As explained in section 5.3, the labeling and structuring/merging parts transform RDF data into an UML-like
presentation. Afterwards, this intermediate schema is transformed into a pure relational schema, e.g., by
adding and ensuring foreign key constraints. This is explained in section 5.4. Finally, the resulting relational
schema is stored persistently into the database.
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Presentation Layer Two front-ends provide access to the RDF data. The standard SQL front-end from
MonetDB can be used because the final schema uses features of standard SQL only. When using the SQL
interface, users can benefit from the variety of available SQL tools, e.g., for graphical schema representation
(cf. section 1.1). The SPARQL front-end allows querying the data the RDF standard way. In contrast to the
SQL front-end, the SPARQL front-end also incorporates the irregular triples that were put into the irregular
part of the triple store during the structuring and merging phase.

Interface The MonetDB/RDF interface consists of four commands: First, using the command rdf.shred,
RDF triple data in N-triples format is loaded into a SPO store within MonetDB. As part of this step, URIs and
strings are stored separately in the MonetDB dictionary as introduced in section 2.1. After the ontologies have
been loaded into the database via the rdf.copyOntologyToDatabase command, they have to be loaded
into the MonetDB/RDF module using the rdf.loadOntologies command. This function transfers all
ontologies within the database into the C code of MonetDB/RDF, and detects the ontology hierarchy used
for labeling and merging. To start the actual transformation of RDF data into relational data, the command
rdf.reorganize needs to be called, and the frequency threshold has to be set. Within this function, all
parts of the transformation process, from basic CS detection to the final psychical reorganization, are executed.
Of course, all commands keep the user updated about their current status.
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7. Evaluation

Our evaluation should cover many aspects of the work presented in this thesis. We therefore decided to not
only do experiments to evaluate the effects of e.g., different parameter choices, but also create a survey to ask
humans about the structures and labels we created.

First in this chapter, in section 7.1, we introduce some related work on evaluating labels and define the metrics
used throughout our evaluation. In section 7.2, we introduce the datasets we use for the experiments. The
experiments are discussed in section 7.3. Section 7.4 shows the survey and its results. Finally, in section 7.5,
we discuss the outcomes of the evaluations and conclude.

7.1. Related Work and Metrics

Venetis et al. [31] present some table labels to humans and ask for classification on the scale vital, okay,
incorrect. In addition, they also ask the participants to provide additional labels. However, they use this
manually created gold standard to rate the quality of their labels in the overall dataset, whereas we present all
tables and all labels to users. The authors use their gold standard to automatically classify labels created by
other algorithms, whereas we let humans rank our whole data basis and are especially interested in the order
of labels, their level of detail, and the overall quality.

For evaluating the understandability of labels, we design a survey, where humans rank the labels suggested
by our algorithms. In contrast to the afore-mentioned 3-point scale by Venetis et al. [31], we decided to
use a classical 5-point Likert scale. For the experiments, we measure the number of tables in our schema,
and the percentage of triples covered by our schema. These measures give a first overview how good the
algorithms variants are at compressing the dataset into a relational schema. In addition, label sources and
possible duplicated labels are shown to inform about label quality. All these measures can be compared over
the different experiment we carry out. Evaluation of the consumption of time and resources is not part of this
examination.

7.2. Datasets

We use two datasets for our experiments. These two different datasets represent the possible spectrum of RDF
datasets. DBpedia is a carefully administered dataset that is designed according to its ontology. This dataset
contains clearly distinguishable concepts (e.g., City, Person). The other dataset is a dirty, Web-crawled
dataset. It contains references to many different ontologies, spelling mistakes, outdated data, and other flaws.
However, we expect our algorithms to work with this kind of data, too.

7.2.1. DBpedia

The DBpedia19 dataset consists of 99 separate data files. For the tests in this thesis, we removed several
datasets: links to other datasets such as DrugBank, non-English text data, long text data such as abstracts,

19DBpedia http://dbpedia.org/
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links to external Web pages, links to images, Wikipedia internal data (e.g., page redirects, article categories).
We end up with nine datasets that are loaded into MonetDB/RDF for testing purposes: Geo Coordinates,
Instance Types, Instance Types Heuristic, Labels, Mapping-based Properties Cleaned, Persondata, PND,
SKOS Categories, and Specific Mapping-based Properties. These nine datasets contain mostly the information
one can find in the infoboxes in Wikipedia articles. These datasets have 8.8GB of CSV data, containing
68,711,383 triples.

7.2.2. Common Web Crawl

Only a small slice of the Common Crawl20 data is loaded for our tests. We chose a 700MB file of the August
2012 version of Common Crawl that contains 4,594,728 triples. The Common Crawl data is crawled from
small snippets of RDF data on Web pages (RDFa), such as date information attached to online newspaper
articles. In opposition to DBpedia, it contains properties from many different ontologies and usually only few
facts (triples) per subject.

7.3. Experiments

The experiments carried out on the two described datasets will be used to discuss the outcomes of our algo-
rithms, on different datasets and with different parameters. We start with a base experiment. This experiment
shows the final result, with all features developed as part of this thesis included and active. Afterwards, we
modify the experiment to show variances of the algorithms:

Data Sources for Labeling We remove and add data sources that are used for labeling. We start without
using any data source, then add the internal data sources foreign keys and type properties. The latter
one already uses ontologies and is therefore not a pure internal data source. Finally, we also add the
external data source ontologies and end up with the base experiment setup again.

Semantic Information for Merging Phase As discussed in section 3.3, the first version of the whole
structuring and labeling process merges CS’s that are in a subset-superset relationship without taking
semantic information into account. This experiments therefore disables the semantic checks in the
subset-superset merging phase.

Per experiment, we note the dataset and frequency threshold that are used. We present (parts of) the final
schema in tabular and graphical representation, and provide statistics about the schema and its labels as well
as the irregular data in the PSO triple store.

7.3.1. Base Experiment

The frequency threshold is the only parameter that is set by the user. It defines the number of subjects
each CS has to have at the end of the basic CS discovery (cf. section 3.8). We assume that each subject
if formed of 20 triples, this includes multivalued properties. For this experiment, we want to have less
than 100 CS’s, this adds the factor 100. Furthermore, we assume that each final merged CS consists of
10 basic CS’s. If we multiply these factors, we get 20000, hence # triples

2000 is a reasonable value for the
frequency threshold. For the Common Crawl dataset, we therefore use 250, and 3500 is used for the DBpedia
dataset.

20Common Web Crawl http://webdatacommons.org/
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Schema Overview Figures 7.1a and 7.2a show the UML-like schema generated by our algorithms. As
one can see, the Web-crawled data is kind of clustered in groups that have many links between each other but
nearly no links to other groups.
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Figure 7.1.: Base experiment: CS’s and their relationships in the Web-crawled dataset
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Figure 7.2.: Base experiment: CS’s and their relationships in the DBpedia dataset
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The clusters loosely relate to ontologies. The DBpedia dataset contains more foreign keys, but still many
CS’s without links to other tables. There seem to be central tables with many foreign key links. Fig-
ure 7.1b shows one cluster within the Web-crawled dataset: The classes and the data within them mainly
relates to the GoodRelations ontology that describes e-commerce. However, one CS has the name dummy
which means that no name could be assigned to it. Figure 7.2b shows a similar cluster in the DBpedia
dataset. As this data uses one ontology only, the clusters relate to topics rather than ontologies. This cluster
shows SoccerPlayer and related information, such as their clubs and different career stations (at dif-
ferent clubs). The class names in this magnified part of the DBpedia dataset are taken from the DBpedia
ontology.

On our evaluation machine (two 2GHz 8-core processors, 256GB main memory), the whole transformation
process takes about 3 minutes for the Web-crawled dataset, and 35 minutes for the bigger DBpedia dataset.
As table 7.1 shows, most time is spend on the initial loading of triples into the SPO table. Only 12 seconds
(Web-crawled dataset) and 4 minutes (DBpedia) are spend on structuring, loading, merging and physically
reorganizing the RDF dataset. Hence, transforming RDF data into relational data causes no significant
overhead compared to loading RDF data into a triple store. Within our transformation, the phases structuring,
labeling and reorganizing have to loop over each triple, whereas the merging phase only loops over CS’s. It is
therefore the fastest phase.

Web-crawled dataset DBpedia dataset

Loading 157 1878
Structuring 0.5 16.5
Labeling 0.6 31
Merging 0.1 1.4
Transforming 11 188

Total 169 2115

Table 7.1.: Base experiment: Runtimes in seconds (machine: two 2GHz 8-core processors, 256GB main
memory)

The statistics gathered for the base experiments is shown in tables 7.2 and 7.3. The following paragraphs
explain and interpret these numbers.

base experiment

coverage 89%
# tables 37
# labeled 35

type 78%
ontology 16%
foreign key 0%
none 5%

duplicates (#
tables)

Article (4), Com-
pany (3), Product
(2), Website (5)

Table 7.2.: Base experiment: Statistics for the
Web-crawled dataset

base experiment

coverage 79%
# tables 140
# labeled 140

type 100%
ontology 0%
foreign key 0%
none 0%

duplicates (#
tables)

Person (2)

Table 7.3.: Base experiment: Statistics for the
DBpedia dataset
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Structures and Schema The Web-crawled dataset is represented by 37 CS’s. The dimension criterion
applied to none of them. Out of the 344 properties, 24 are multivalued, meaning that they have multiple values.
An example for a multivalued property within the Web-crawled dataset is acceptedPaymentMethods
of the CS Offering that is also shown in figure 7.1b. Within the schema, 12 foreign key references exist.
As shown before, this is a relatively low number of references between CS’s, and results in some clusters and
many CS’s without any connection to other CS’s. We presume that the wide range of different ontologies
and data sources leads to this low number of foreign keys. Out of the 4,594,728 triples that the Web-crawled
dataset consists of, 4,091352 made it into the CS’S, and 503,376 are stored in the PSO triple store. This
means that 11% of the triples are considered irregular. Within these irregular triples, 77% were not assigned
to a CS in the first place. The other 23% were removed from a CS later, for example because these triples’
object types did not fit the majority of object types within a property of a CS (cf. section 5.4). By changing
the frequency threshold to a lower value, one can increase the percentage of regular triples, but will also end
up with a higher number of tables.

When run with frequency threshold 3500, as suggested by our calculations, the DBpedia dataset is represented
by 35 CS’s that do cover 55% of the triples. The reason for the bad coverage is the existence of a very
big CS covering more than 10 million triples. Our previous calculation therefore have to be adjusted. We
experimentally found out that a frequency threshold of 50 results in a good trade-off between number of tables
and coverage. We conclude that finding a good frequency threshold is not a trivial operation and discuss
other possibilities in section 8.2. With the reduced threshold of 50, the DBpedia dataset is represented by
140 CS’s, out of which zero where kept because of the dimension criterion. Within the 1759 properties, the
dataset has 690 multivalued properties. For example, type properties are usually multivalued because they
contain a whole hierarchy of types for each subject. Another example is the property starring of the
CS Film. 62 foreign key relationships exist within the dataset, hence supporting the first impression that
arose from the overview figure 7.2a. The whole dataset consists of 68,711,383 triples, out of which 79%
(54,222,943 triples) are represented by the CS’s. The remaining 14,488,440 triples are stored in the PSO
triple store. 97% of the irregular triples were never assigned to a CS, this means that the DBpedia dataset has
many property sets that occur less than 50 times in the whole dataset. When looking at the large number of
properties per CS, this sounds reasonable, and is another reason why we had to set the frequency threshold
that low.

Labeling 35 of the 37 tables in the Web-crawled dataset are labeled, two remain unlabeled. Within the 35
labels, 29 are created from the first data source, type properties. The remaining six tables get ontology-based
names. The third data-source, foreign key names, is never used to generate a label. From looking at the
schema we see that the unlabeled tables do not contain type properties, are difficult to match with an ontology
because the both contain two properties only, and have no incoming references. This is the reason they do
not get labeled. Within the 35 labeled tables, several labels occur multiple times, for example Article and
Website. The reason behind the duplicates is that the concepts of an article and a Website are defined in
multiple ontologies, hence they can be represented using different sets of properties, and are therefore not
chosen for merging.

The DBpedia dataset of 140 tables contains no unlabeled tables. All labels are generated using type properties,
the first data source. Only one table name occurs twice: Person. One can imagine that the rather generic
concept of a person can contain very diverse subjects, hence diverse property sets. This leads to not merging
the two Person tables.

The use of only one ontology leads to very good labeling results in the DBpedia dataset. We list several
possible extensions to our algorithms in section 8.2 that would help to increase the label quality in the
Web-crawled dataset. For example, by taking connections between ontologies into account (e.g., exploiting
owl:sameAs property), one could overcome the disadvantages of having multiple ontologies in one
dataset.
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Figures 7.3 and 7.4 add all table names to the hierarchy based on the ontologies. These figures show how
much data is covered by each table. For example, the SoccerClubSeason table contains only 0.3% of
the DBpedia dataset, but as the dataset is very large this is still a sufficient amount of data for the table to be
added to the final schema.
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Figure 7.3.: Base experiment: Ontology classes found in the Web-crawled dataset, zoomed in
ROOT (100.0%)

Thing (98.7%)

Agent (39.1%)

Person (21.2%)

OrganisationMember (0.3%)

SportsTeamMember (0.3%)

Cleric (0.2%)

ChristianBishop (0.1%)

Saint (0.1%)

Royalty (0.4%)

BritishRoyalty (0.4%)

Athlete (5.2%)

Boxer (0.1%)

BaseballPlayer (0.5%)

SoccerPlayer (0.7%)

IceHockeyPlayer (0.4%)

Cricketer (0.2%)

RacingDriver (0.2%) FormulaOneRacer (0.1%)

GridironFootballPlayer (0.9%) AmericanFootballPlayer (0.6%)

BasketballPlayer (0.2%)

TennisPlayer (0.3%)

Wrestler (0.1%)

RugbyPlayer (0.3%)

AustralianRulesFootballPlayer (0.0%)

ChessPlayer (0.0%)

Curler (0.0%)

GolfPlayer (0.1%)

PokerPlayer (0.0%)

DartsPlayer (0.0%)

GaelicGamesPlayer (0.2%)

Swimmer (0.0%)

VolleyballPlayer (0.0%)

HandballPlayer (0.0%)

Gymnast (0.0%)

FigureSkater (0.0%)

Skier (0.0%)

FictionalCharacter (0.2%)

ComicsCharacter (0.1%) AnimangaCharacter (0.0%)

SoapCharacter (0.1%)

Artist (5.1%) MusicalArtist (4.5%)

ComicsCreator (0.0%)

Writer (0.1%)

Actor (0.1%) AdultActor (0.1%)

Monarch (0.1%)

SportsManager (0.3%)

SoccerManager (0.3%)

Astronaut (0.0%)

Scientist (0.4%)

OfficeHolder (0.6%)

Politician (0.6%)

MemberOfParliament (0.2%)

Congressman (0.1%)

Governor (0.0%)

President (0.0%)

MilitaryPerson (0.8%)

Noble (0.2%)

CollegeCoach (0.3%)

BeautyQueen (0.1%)

Model (0.0%)

Architect (0.0%)

Philosopher (0.0%)

Organisation (17.9%)

Band (2.0%)

SportsTeam (6.6%)

SoccerClub (6.0%)

HockeyTeam (0.1%)

RugbyClub (0.1%)

BasketballTeam (0.2%)

CyclingTeam (0.0%)

AmericanFootballTeam (0.0%)

CanadianFootballTeam (0.0%)

TradeUnion (0.1%)

Company (4.7%)

Airline (0.1%)

Publisher (0.2%)

RecordLabel (1.4%)

LawFirm (0.0%)

SportsLeague (0.5%)

SoccerLeague (0.2%)

AmericanFootballLeague (0.0%)

IceHockeyLeague (0.0%)

BasketballLeague (0.0%)MilitaryUnit (0.5%)

Broadcaster (1.0%) RadioStation (0.5%)

BroadcastNetwork (0.3%)

TelevisionStation (0.3%)

EducationalInstitution (1.5%)

School (0.2%)

University (1.2%)

College (0.0%)

Non-ProfitOrganisation (0.0%)

GovernmentAgency (0.1%)

PoliticalParty (0.3%)

PersonFunction (0.0%)

TimePeriod (0.1%)

CareerStation (0.2%)

Sales (0.1%)

Event (1.8%)

Election (0.2%)

MilitaryConflict (0.9%)

SpaceMission (0.0%)

SportsEvent (0.6%)

Olympics (0.1%)

OlympicEvent (0.1%)

GrandPrix (0.1%)

WrestlingEvent (0.1%)

TennisTournament (0.2%)

MixedMartialArtsEvent (0.0%)

FootballMatch (0.1%)MusicFestival (0.0%)

FilmFestival (0.0%)

Species (2.6%)

Eukaryote (2.2%)

Animal (1.3%)

Insect (0.1%)

Mollusca (0.3%)

Mammal (0.1%) RaceHorse (0.0%)

Fish (0.1%)

Plant (0.6%) CultivatedVariety (0.0%)

FloweringPlant (0.0%) Grape (0.0%)

GreenAlga (0.1%)

Bacteria (0.0%)

Language (0.1%)

ChemicalSubstance (0.0%)

ChemicalCompound (0.0%)

Work (16.4%)

Film (4.8%)

MusicalWork (7.0%)

Album (4.3%)

Single (2.5%)

Song (0.2%) EurovisionSongContestEntry (0.0%)

ArtistDiscography (0.0%)

WrittenWork (2.0%)

Book (1.2%)

Comics (0.2%)

Manga (0.2%)

PeriodicalLiterature (0.4%)

Newspaper (0.2%)

AcademicJournal (0.2%)

Magazine (0.0%)

TelevisionEpisode (0.4%)

Software (1.4%) VideoGame (0.8%)

ProgrammingLanguage (0.1%)Cartoon (0.3%)

Anime (0.2%)

HollywoodCartoon (0.1%)

Musical (0.1%)

Artwork (0.1%)

Website (0.1%)

TelevisionSeason (0.1%)

TelevisionShow (0.1%)

Place (32.7%)

PopulatedPlace (25.0%)

Region (2.1%)

AdministrativeRegion (2.1%) ClericalAdministrativeRegion (0.1%) Diocese (0.1%)

Settlement (19.7%)

Town (0.7%)

City (4.6%)

Village (0.3%)

Country (2.7%)

Island (0.3%)

Continent (0.0%)WorldHeritageSite (0.0%)

ArchitecturalStructure (4.4%) Infrastructure (2.8%)

RouteOfTransportation (0.8%)

Road (0.7%)

PublicTransitSystem (0.1%)

Station (1.0%) RailwayStation (0.2%)

Airport (0.8%)

PowerStation (0.3%)

Building (1.5%)

Museum (0.1%)

ReligiousBuilding (0.0%)

ShoppingMall (0.1%)

HistoricBuilding (0.1%)

Lighthouse (0.1%)

MilitaryStructure (0.0%)

Hotel (0.0%)

Restaurant (0.0%)

Park (0.1%)

ProtectedArea (0.3%)

NaturalPlace (1.4%)

LunarCrater (0.0%)

BodyOfWater (1.2%)

Stream (0.9%) River (0.9%)

Lake (0.3%)

MountainRange (0.0%)

Mountain (0.5%)

SportFacility (0.4%)

Stadium (0.4%)

HistoricPlace (0.3%)

SkiArea (0.0%)

SiteOfSpecialScientificInterest (0.0%)

WineRegion (0.0%)

Monument (0.0%)

Device (1.1%) AutomobileEngine (0.5%)

Weapon (0.3%)

InformationAppliance (0.2%)

Disease (0.4%)

EthnicGroup (0.2%)

Food (0.2%) Beverage (0.0%)

TopicalConcept (0.2%) Genre (0.2%) MusicGenre (0.2%)

AnatomicalStructure (0.2%) Muscle (0.0%)

Brain (0.0%)

Nerve (0.0%)

Activity (0.2%)

Game (0.1%)

Sport (0.1%)

Currency (0.0%)

Colour (0.1%)

Drug (0.3%)

Name (0.1%) GivenName (0.1%)

MeanOfTransportation (1.7%)

Ship (0.8%)

Aircraft (0.6%)

Automobile (0.1%)

Train (0.1%)

Locomotive (0.2%)

Biomolecule (0.2%)

Protein (0.1%)

Enzyme (0.0%)

CelestialBody (0.2%)

Planet (0.2%)

SportCompetitionResult (0.0%)

OlympicResult (0.0%)

Database (0.0%)

BiologicalDatabase (0.0%)

Holiday (0.0%)

SpatialThing (0.8%) Person (0.8%)

SportsSeason (0.5%) MotorsportSeason (0.0%)

SportsTeamSeason (0.4%)

NCAATeamSeason (0.0%)

FootballLeagueSeason (0.1%) NationalFootballLeagueSeason (0.1%)

SoccerClubSeason (0.3%)

Figure 7.4.: Base experiment: Ontology classes found in the DBpedia dataset, zoomed in

7.3.2. Data Sources Experiment

Within these experiment series, we disable and enable data sources (type properties, ontologies, foreign key
references). As tables 7.4 and 7.5 show, the characteristics of the resulting schemas change when we disable
data sources.

If only CS relationships (FKs) are used for labeling, only 11 out of 40 tables in the Web-crawled dataset are
labeled. If we add more data sources, more tables are labeled, and in the end, no tables has a relationship-based
label anymore. We conclude that tables in a cluster, that have incoming relationships which names can be
used as labels, usually also have label candidates from other data sources. For example, a table with the
relationship-based label page also has a type-based label Website. The latter label describes the table’s
contents better. Our survey (cf. section 7.4) supports the fact that type- and ontology-based labels are in
general better understandable than FK-based labels. Our chosen order of data sources, using FKs only if
no other data sources lead to label candidates, seems therefore reasonable. Another observation extracted
from the table is the changing number of tables. Although the percentage of triples that is covered by our
schema slightly increases when additional data sources are added, the number of tables varies. This happens
because of the label-based merging. Labels are taken into account for the semantic merging rule 1, where
CS’s with the same labels are merged. In addition, two CS’s are merged if they both have a label from the
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none foreign keys FKs and type all

coverage 88% 88% 89% 89%
# tables 41 40 44 37
# labeled 0 11 31 35

type 0% 0% 64% 78%
ontology 0% 0% 0% 16%
foreign key 0% 28% 7% 0%
none 100% 73% 30% 5%

duplicates (#
tables)

URL (2) Article (4), Prod-
uct (2), Website
(3)

Article (4), Com-
pany (3), Product
(2), Website (5)

Table 7.4.: Data sources experiment: Statistics for the Web-crawled dataset

same hierarchy and their common ancestor name is not too general (rule 2). This rule has most effect when
type- or ontology-based labels are available, as these do often have hierarchy information attached. These two
semantic merging rules explain why the number of tables in our schema shrinks. But there is also a conserve
effect, the number of tables can also grow, as shown in table 7.4 when we add the property type values as data
source. Rule 3 of the merging rules (cf. section 5.1) merges two CS’s in a subset-superset relationship (if
their property sets are not too different), only when there is no semantic evidence against merging them. As
explained in section 3.3, this check is necessary to avoid having concepts merged into its sub-concepts. Both
effects, merging based on labels and not-merging because of labels, account for the oscillating number of
tables in our schema throughout this series of experiments.

none foreign keys FKs and type all

coverage 78% 78% 79% 79%
# tables 187 197 136 140
# labeled 0 39 136 140

type 0% 0% 100% 100%
ontology 0% 0% 0% 0%
foreign key 0% 20% 0% 0%
none 100% 80% 0% 0%

duplicates (#
tables)

Person (2) Person (2)

Table 7.5.: Data sources experiment: Statistics for the DBpedia dataset

When looking at the DBpedia dataset, we observe similar effects. The percentage of labeled tables increases
if additional data sources are enabled. As this dataset is well-equipped with property types and ontology infor-
mation, adding one of these sources suffices to have all tables labeled based on these data sources. Here, the
number of tables in our schema drops drastically when type-based labels are added to the algorithms, from 197
to 136 tables. Again, merging based on labels is responsible. Using the ontology-backed property type values,
label- and hierarchy-based merging (cf. rules 1 and 2 from section 5.1) takes place and reduces the number of
tables significantly. Only very few duplicates remain because the label-based merging merges most duplicates.
In fact, only tables with not exactly the same names remain. The two Person tables in the DBpedia dataset
come from different ontologies (DBpedia and FOAF) and are therefore not merged using rule 1. The Person
class from both ontologies are marked as being equivalent (owl:equivalentClass) in the DBpedia
ontology definition. If one had exploited this equivalence, it would have been possible to merge this two
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tables, too. This idea is further elaborated in the future work section 8.2.

7.3.3. Semantic Merging Experiment

For this experiments, we disable the use of semantics in the merging phase: No merging is done based
on labels or label hierarchies, and semantic checks in the subset-superset merging are also disabled. This
configuration emulates the initial process described in section 3.3, where merging was done before labeling
so that no semantic information was available at that point in time. As stated there, this version of the process
led so severe quality problems with the distribution of subjects to structures, as instances of a base concept
were added to structures about its sub-concepts.

without semantics with semantics

coverage 88% 89%
# tables 37 37
# labeled 35 35

type 84% 78%
ontology 11% 16%
foreign key 0 0%
none 5% 5%

duplicates (#
tables)

Article (10), Collection (2), Episode
(2), Produce (3), Website (3)

Article (4), Company (3), Product
(2), Website (5)

Table 7.6.: Semantic merging experiment: Statistics for the Web-crawled dataset

For the Web-crawled dataset, shown in table 7.6, this has only marginal effects on schema size and la-
bel sources. The distribution of label sources changes slightly towards type-based values if no semantics
are used during merging. More duplicate labels exist, these would have been merged if semantics had
been enabled. As the label Article appears even 10 times within the 37 tables, the goal of discrim-
inating table names is clearly not met by this algorithm variant. The equal number of tables is coinci-
dence.

without semantics with semantics

coverage 79% 79%
# tables 161 140
# labeled 161 140

type 100% 100%
ontology 0% 0%
foreign key 0% 0%
none 0% 0%

duplicates (#
tables)

AdministrativeRegion (2), Aircraft (2), American-
FootballPlayer (2), Athlete (3), BasketballPlayer
(3), Building (2), City (7), Company (4), IceHock-
eyPlayer (2), Lake (3), OfficeHolder (4), Person
(3), RadioStation (2), River (3), School (3), Settle-
ment (13), Stadium (2), Station (4), TennisPlayer
(2), TennisTournament (2), Weapon (2)

Person (2)

Table 7.7.: Semantic merging experiment: Statistics for the DBpedia dataset
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When looking at the DBpedia dataset in table 7.7, we see dramatic effects. Without using semantics, the
schema has about 20 tables more, among which many duplicates are found. One table name (Settlement),
is used 13 times among the 161 tables of the schema. We obtained these results in an early stage of algorithm
development, when we did not use any semantics for merging. In fact, at that time, we merged before
labeling, hence zero semantic information was available for merging. Then, merging was only based on
subset-superset relations and incident relationships. As elaborated in section 3.3, this leads to general concepts
being merged into sub-concepts. As almost all labels in this dataset are based on the DBpedia ontology,
we can compute the average hierarchy level of all labels, to flesh out that the labels are too specific when
semantic merging is disabled. The DBpedia ontology forms a hierarchical tree, with Thing being the root,
level 0. The average hierarchy level with enabled semantic merging is 2.96, without semantics it is 3.23.
For example, the level 3 label SportsLeague that is present in the semantic version, is replaced by the
level 4 labels BasketballLeague and SoccerLeague in the non-semantic version. Other examples
for too specific labels are SkiArea (instead of Place) and Plant (instead of Eukaryote). These tables
contain instances of the super-concepts (e.g., some animals in the Plant table, and are therefore considered
overly specific. Hence, the changes to our overall process, perform merging after labeling to have semantic
information available, leads to significantly better results. Not only is the label quality significantly improved
and instances of a concept are no longer labeled with a sub-concept’s name, but also the schema size is
reduced without losing coverage.

7.4. Survey

In addition to the technical experiments above, we also presented the tables and their names to 19 persons.
We evaluated two different datasets using the survey, Web-crawled data and DBpedia data. The slice of
Web-crawled data we used was transformed into 113 tables using our algorithms, out of which 107 had a
name candidate. The DBpedia data (we used the dataset used in the DBPSB benchmark21 plus the Wikedia
Pagelinks dataset from DBpedia) consists of roughly 450 million triples and is transformed to 298 tables. Out
of them, 287 tables have a name candidate. The DBpedia dataset used for this survey is more complete than
the one used in the experiments above. The afore-mentioned experiments use a smaller dataset that misses
e.g., labels in foreign languages, to keep the resulting schema smaller and better analyzable. In general, the
datasets are however comparable.

The survey consists of two parts. In the first part, tables are shown to the user. For each table, the num-
ber of tuples, up to eight columns and ten sample tuples (rows) are shown. We then ask the users to
provide one or more names for this table. In the second part, we present the top 3 table name sugges-
tions provided by our algorithms, and ask the users to rate these suggestions one a 5-point Likert scale
(bad/poor/fair/good/excellent). Each table was evaluated by at least three different participants. By letting
the users provide their ideal names first, we avoid bias introduced by seeing our suggestions. We also
shuffled the list of candidates we present to the users, so that the candidate preferred by our algorithms is not
always on position one. The survey instructions and an example sheet showing some tables can be found in
appendix D.

Web-crawled dataset DBpedia dataset

∅ rating top 3 candidates 3.6 3.8
∅ rating table names 4.1 4.6

Table 7.8.: Survey results on a 5-point Likert scale (1=bad, 5=excellent)

The first result we obtain is the average label rating, as shown in table 7.8. We find that the DBpedia
labels get a slightly better rating (3.8) than the labels of the Web-crawled dataset (3.6). We assume that
21DBpedia SPARQL Benchmark http://aksw.org/Projects/DBPSB.html
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the well-maintained DBpedia dataset with its suiting ontology produces better fitting labels than the many
different small ontologies used in the “dirty” Web-crawled dataset. However, both average ratings show that
the overall quality of labels is quite good. When only looking at the best label among the top 3 candidates,
that is also the final name chosen, we obtain average ratings of 4.1 for the Web-crawled and 4.6 for the
DBpedia dataset. As these ratings are significantly better than the top 3 average rating, we find that the order
of candidates defined by our algorithms is reasonable.

In addition, also new labels where suggested by the users. When looking at these labels, we find that most
human-provided labels fit the ones we generated. Where they differentiate, we find different types and
reasons:

More detailed labels Labels suggested by participants are more detailed and more specific, e.g., “novel”
instead of “book” and “tech article” instead of “article”. Other examples try to avoid homonyms, e.g.
“fashion model” instead of “model”.

More common words Where algorithm-wise generated labels have complex names, participants often
suggested simpler terms. For example, they would name a table “shop” rather than “location of sales or
service provisioning”.

Deducing names Where our algorithms fail to generate a hypernym that describes the class, participants do
not: they suggest e.g., “athlete” instead of “swimmer”, “handball player”. Another remarkable example
is a table with the algorithm-wise created labels “image” and “license”, that is names “copyright of
images” by the participant. All these deducing example take place without the participants’ knowledge
of the computer-generated labels.

List of concepts Sometimes, the participants cannot think of a hypernym, and give a list of concepts
instead. For example, they created the table names “plants or animals” and “prison or correctional
institution”.

Name for whole table instead of single tuples Participants tend do give table names in plural. Some-
times, they even give names for a collection of tuples rather than the tuples themselves, e.g., “news
feed” instead of “article”, and “anatomy” instead of “body part”.

Adding indirection Participants do not always choose the name of the concept, but add a layer of indi-
rection. For example, the RDF description of a book is not “book” for them, but “bookInfo”. Other
possibilities for expressing this indirection are “summary of . . . ” and “advertisement for . . . ”. This
indirection level was especially used in the Web-crawled dataset. We assume that it has to do with the
subject URIs that look more “official” and familiar in the DBpedia dataset.

Instance vs. type problem Some concepts describe individuals (e.g., “person”), whereas others do de-
scribe sub-concepts (e.g., “animal” that does not contain famous animals but species). For example, a
table listing automobile types get both “car” and “automobile type” as suggestions.

Awareness of hierarchies Participants seem to be aware of the concept of hierarchy within table names.
If they provide multiple name suggestions, they usually form a hierarchy, e.g., “wrestler”, “athlete”,
“person”, “name”.

Shifting the focus Participants are not interested in the same details as those provided by our generated
labels. For example, the table name “Australian rules football player” gets high scores, but user-provided
names skip the details: “football player”. For another table, the suggested label “US athlete” shifts the
focus to the nationality rather than the sports discipline, as the computer-generated label “basketball
player” does.

To conclude, these results clearly show that we achieve a good overall label quality, with only few and
non-systematic deviations. For example, labels are neither too specific nor too general. Sometimes, the labels
based on type property values or ontology class names get low scores because the ontology/type-based names
do not contain the right set of information (e.g., missing context, too specific information that the users are
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not interested in). We got comments that the spelling/typography of labels needs to be improved, for example
“EnglishWebsite” instead of “_website__en_gb”. Implementing heuristics to create meaningful camel-case
labels out of the existing ones would lead to a significantly better user experience without much effort. But
in an overall view, users are satisfied with our labels, with slightly better results for the considered-cleaner
DBpedia dataset.

7.5. Discussion

Having the experiments and survey results, available, we can now conclude whether our algorithms fulfill the
overall goals of MonetDB/RDF, and where the limits of our approach are.

7.5.1. Fulfillment of Criteria

In addition to survey and experiments results, our implementation is also judged based on the criteria we
established in section 3.4. Our experiments show that we are able to create a small schema (e.g., 140 tables
for DBpedia dataset) that covers the aspired 80% of the triples. But, our experiments have also shown that
achieving this balanced result required fine-tuning of the frequency threshold, the only parameter set by users:
For the Web-crawled dataset, it is possible to achieve a schema covering the vast majority of triples using
a reasonably high frequency threshold. For DBpedia, one has to set the frequency threshold low. Because
of the complex class hierarchy in the DBpedia ontology, where classes contain many properties, there are
orders of magnitude more possible property sets, hence many more initial CS’s, with therefore lower number
of subjects in it. Although it is still possible to use our algorithms with datasets based on such complex
ontologies, it is more difficult to define the frequency thresholds for those datasets. Setting the frequency
threshold parameter automatically would therefore not only improve the trade-off between schema size and
data coverage, but also fulfill another goal, requiring as few decisions as possible from users. Some ideas on
how to set the frequency threshold are discussed as a possible future work task in section 8.2. Staying at the
“few user input only” goal, the only remaining user input would then be the ontologies. Shipping ontologies
with MonetDB/RDF is difficult due to licensing issues, but a basic labeling (using incident link names) is
possible even without ontologies. However, our experiments show that adding semantic information to the
structuring and labeling process significantly improves the resulting schema, e.g., by reducing the number of
tables with duplicated names by merging them.

Another important evaluation criterion evolving from the list of goals and criteria listed in section 3.4 is
the aspired level of detail of both structures and labels. By choosing labels that are as specific as possible,
and avoiding merging different concepts together, we achieve good results in this task. For example, our
experiment with disabled semantic merging shows that overly specific tables such as SoccerLeague and
BasketballLeague are merged when semantics are enabled for the merging phase. When analyzing the
user-created labels in our survey, we found only few tables names that are found too generic by our users (e.g.,
“tech article” instead of “article”). We therefore conclude that our algorithms find the right level of detail for
creating structures and labels.

Regarding the label quality, we find very good results through our survey. The criteria for label names we
established in section 3.4, descriptiveness, uniqueness, and being a headword, are also fulfilled. Most labels
consist of one noun, although few table names would be replaced by more common headwords (e.g., “shop”
rather than “location of sales or service provisioning”). When semantic merging is enabled, only very few
duplicate table names exist. These should be merged, for example using the techniques described in the
discussion of the data sources experiments.
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7.5.2. Limits of the Algorithms

One issue we came across is missing versioning in ontologies and RDF data. Although being rela-
tively stable, ontologies do slightly change over time. For example, the class ProductOfServices-
SomeInstancesPlaceholder of the GoodRelations ontology is replaced by the class SomeItems.
As our algorithms currently do not leverage implicit version information via owl:equivalentClass
markers, we treat both classes differently. As RDF data does not get updated to newer versions of the ontology
automatically in non-maintained datasets such as Web crawls, both old and new version are used in parallel,
and this is not reflected in the RDF data itself. The above-mentioned example of GoodRelations classes
is taken from the Web-crawled dataset, where both classes are contained. Leveraging this implicit version
information is further elaborated in section 8.2.

Another nice-to-have feature is better integration of hierarchies into the final relational schema. We currently
leverage semantic hierarchy information for labeling and merging, but do not include them to the final schema.
Although the relational model does not contain hierarchies natively, there are several options on how to
include hierarchical information and therefore allow for e.g., also getting results from the Athlete table
when the Person table is queried.

As we found several data errors in DBpedia during our implementation and evaluation (cf. section 4.7.2),
we conclude that we are probably the first to merge type property information and ontology class infor-
mation. This approach – only a side product of MonetDB/RDF – could further improve the quality of
ontology-based datasets such as DBpedia. Section 8.2 further discusses this idea on data error detection and
handling.

These and more suggestions for future extensions and improvements to MonetDB/RDF can be found in the
future work section 8.2.

66



CHAPTER 8. CONCLUSIONS AND FUTURE WORK

8. Conclusions and Future Work

Section 8.1 of this chapter summarizes the major points of this thesis. At last, is section 8.2, improvements to
the prototype described in this thesis are listed.

8.1. Conclusions

In this thesis, we have presented MonetDB/RDF, an RDF store build over the RDBMS MonetDB. We claim
that although RDF data contains no schema information (schema-last approach), it has an emergent schema
that can be detected and exploited using the techniques described in this thesis. In contrast to previous
attempts to store RDF data in property tables [8, 18, 34, 35] within RDBMS, we propose full transformation
into relational data without human effort. Our experiments show that in fact the vast majority of RDF triples
can be represented using a relatively small set of relational tables, both on well-maintained datasets such as
DBpedia and considered-dirty Web-crawled RDF data.

Our self-organizing RDF store prototype therefore has to detect the underlying, emergent schema of an RDF
dataset, create a relational schema from it, and transform all RDF data into this new structure. Using the
Characteristic Sets approach by Neumann and Moerkotte [20] [20], MonetDB/RDF groups data according to
the information (set of properties) available per subject. This approach is then advanced by taking relationships
between these groups into account, and by extracting concept information from the dataset as well as from
additional external semantic information. As our discovery of several inconsistencies in the popular DBpedia
dataset show, we seem to be the first to try this approach of assigning concept information from different data
sources to RDF data. Leveraging the available concept information, two refinements are possible: First, as the
lack of self-descriptiveness of datasets is overcome by exploiting concept information, it is now possible to
automatically assign human understandable names to the structures found so far. Secondly, by leveraging
the concept and hierarchy information of structures, we can merge the structures to create a small, dense
relational schema. The final step is now to spill the RDF triples into the relational structures. To do so,
foreign key relationships have to be defined by leveraging the relationship information gathered during the
transformation process. Furthermore, the data has to be transformed to SQL data types and the relational
schema has to be normalized by adding additional tables for many-to-many relationships and non-atomic
(multivalued) elements. The whole transformation process takes place while the RDF data is bulk-loaded into
the database.

Our prototype MonetDB/RDF has an optimized physical storage that will be complemented by optimized
operators [23] for efficient querying. Providing both an SQL and an (yet to be finished) SPARQL interface,
MonetDB/RDF has the flexibility needed to provide as much support as possible for querying large, probably
unknown, RDF datasets. When used via the SQL interface, all optimizations built into MonetDB can be
leveraged. In addition, the large variety of SQL-based additional third-party tools can be used, for example
full-text search engines or schema visualization tools. Our survey shows that the generated table names
get an average score of 4.6 on a 5-point Likert scale (1 = bad, 5 = excellent). The labeled tables leads to
an improved comprehensibility, and hence improved ability to pose queries against previously unknown
datasets.
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Being the first approach that fully transforms RDF data into relational data, we claim that semantic information
should not only be used when creating RDF data or formulating SPARQL queries, but the inclusion of semantic
information can also improve storage and query performance of RDF stores.

8.2. Future Work

Although already achieving notable results in creating a dense schema and generating human understandable
names, we still have many improvements and enhancements to MonetDB/RDF in mind. The suggested future
improvements can be divided into four categories: Some ideas aim to improve the algorithms described in
this thesis. These suggestions are summarized in section 8.2.1. The tasks described in section 8.2.2 add
new features to the module. Section 8.2.4 lists ideas for further data analysis and evaluation. Finally, for
production readiness of this MonetDB/RDF prototype, several changes are necessary. These are listed in
section 8.2.3.

8.2.1. Algorithmic Improvements

The following suggestions aim to change the algorithms to improve the quality of both structures and
labels.

Usage of Type Property Values for Structuring For some predicates, the object values provide
useful insight for the structuring process. We call these predicates type properties, as they are usually
named type (e.g., http://www.w3.org/1999/02/22-rdf-syntax-ns#type). We found that
often subjects with the same property set do have different values for these type values, hence giving a
semantic reason for not putting these subjects into the same CS. For example, structuring the DBpedia dataset
led to a characteristic set with properties type, name, and country, that contained subjects from many
different concepts, for example villages, persons, and legal cases.

As the basic mapping of subjects to CS’s takes place in the exploration step described in section 3.6, that is
the best phase to enrich the CS’s with add type property value information. The values of type properties are
added to the set of predicates that characterizes a CS. Adding type property values changes the hash value
of the predicate set, hence only subjects with the same value in the type property are added to the same CS.
This leads to a higher number of CS’s, but they might be merged again in section 5.1. Merging ensures that
the final schema will not be flooded with many CS’s with similar property sets but different type property
values.

This type property value information can be leveraged by the labeling phase: CS’s that contain a type property
could get that value as name. However, it has to be ensured that the other data sources, especially ontologies,
are not obsoleted, because type property values do not always provide the best CS names. In fact, type
property values tend to be on the wrong level of detail, either too generic or to specific, as discussed in
section 4.6.

Order of Candidates from Different Ontologies Usually, datasets contain triples from a large variety
of ontologies. Figure 8.1 shows the distribution of ontologies in the Web-crawled dataset.

Therefore, a CS might have properties from multiple ontologies. At present, when computing ontology-based
candidates, each ontology that appears within a CS generates candidates, and these candidates are then merged
into a candidate list. To improve the quality of this candidate lists, ontologies that cover only few properties
of the CS should be left out. The first reason is that these ontologies cannot represent the CS content as they
are only responsible for a little part of the content (triple-wise). Another reason is that similarity scores (cf.
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Ontologies in web-crawled dataset
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Figure 8.1.: Ontologies within the Web-crawled dataset

section 4.7.2) between a CS and such an ontology rely are not meaningful because they rely on few properties
only. We suggest a threshold of e.g. 20% of the properties.

Subject URIs as Additional Data Source The last part of subject URIs (as well as the value of a
label property if available) usually contain a good description or name of the subject. One could try to infer
the common concept of these descriptions and use this common concept as CS name. Venetis et al. [31] use a
database that contains hyponym/hypernym information to do exactly this.

No Dummy Table Names If no label candidate is available, a dummy name is assigned to a CS/table as
shown in section 4.9. It might however be better to assign a name that was not chosen as candidate because
it did not exceed a threshold, than not choosing any name. To implement this feature, one has to keep the
non-candidates of at least one data source and choose one if no other name is available. Every name is better
than DUMMY.

Transformation of URIs At the moment, syntactical differences in URIs are not recognized. For
example, if an ontology prefix sometimes starts with http and sometimes with https, we do not group
these variances together. Another example are URL redirects such as ogp.me22 being an abbreviation for
opengraphprotocol.org

Besides these syntactical differences, equivalences can also be defined on a semantic level, using the
owl:sameAs or owl:equivalentClass properties. owl:sameAs defines equivalences between

22Facebook Open Graph Protocol http://ogp.me/
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instances and can hence be used to merge two subjects into one. In contrast, owl:equivalentClass
defines class-level equivalence, hence is relevant for e.g., table names.

Exploiting and Loading More Information from Ontologies As mentioned above, using the
owl:sameAs property when loading ontologies would probably improve the overall quality of structures and
labels. The same holds for some more properties in ontology definitions, e.g., owl:equivalentClass
and rdfs:subPropertyOf. The first one is used to define equivalence between different classes, for
example when a class is renamed. By using owl:equivalentClass, the old, deprecated class can
be marked as equivalent to the new class, hence introducing backward-compatibility. The second one,
rdfs:subPropertyOf, defines a hierarchy of properties that we do not use at the moment. It could be a
good idea to collapse property hierarchies to ensure that we do not miss relationships between properties but
still keep the schema simple.

There are even more properties in ontology definitions one could look at, such as owl:disjointWith
that defines that a subject cannot be an instance of two disjoint classes. This information could be used
to ensure that the concepts introduced by the two disjoint classes are kept separate structure-wise in any
case.

Including Hierarchy Information into Relational Schema We currently do not indicate hierarchies
in the relational schema. If a super-concept table and a sub-concept table exist, there is no hint in the relational
schema that they are related and share properties. Several methods exist to represent a hierarchy in relational
data. These techniques are necessary for e.g., object-relational mapping and could be used in MonetDB/RDF,
too.

Spelling of Table Names As mentioned in section 7.4, camel-case labels are preferred by our survey
participants. Currently, the spelling is taken over from the different ontologies the labels come from, hence
the labels do use different notations. A consistent camel-case syntax is a low-hanging fruit when it comes to
improving the user experience with our SQL interface.

Column Order Venetis et al. [31] benefit from the intuitive order of human-made tables with the subject
column on the left. To achieve a human-made look for our SQL schema, we should also care about the order
of the columns. Of course, the subject column that contains the URIs per subject should be the left-most
columns. Other primary key candidate columns should follow. Afterwards, the more NULL values a column
contains, the righter it should be placed in the table. Another approach would be using the tf-idf values of
columns rather than the number of NULL values in it. A third idea is exploiting the order of predicates in
the ontology. This idea assumes that the order of properties in the class definition was carefully chosen, just
as Matono and Kojima [18] argue about the order of triples in a dataset. No matter which idea is chosen, it
will be better than the order at present that is defined by when a property was first found while loading the
dataset.

Detecting and Dealing with Data Errors Web-crawled datasets, but also maintained datasets such
as DBpedia, contain data errors. For example, the current version of DBpedia classifies the topic “On-
line_backup_service” as a music genre. If the type information is used, the subject will be grouped together
with other music genres. On the other hand, if the property set of this subject is compared to ontology
classes, it does not contain properties that are typical for music genres. Therefore, by combining our two
data sources property types and ontologies, we are able to detect data errors. These erroneous subjects can
then be put into the PSO triple store. This error checking task would have to take place on an instance
level, not on a CS level, and therefore consumes huge amounts of resources for large datasets. Therefore,

70



8.2. FUTURE WORK

before including it into the MonetDB/RDF code, the performance of this task has to be evaluated. How-
ever, this kind of analysis is interesting for dataset maintainers, too, and could therefore be tackled in the
future.

Changing Parameter set by Users Currently, the only parameter presented to the users is the frequency
threshold for initial CS detection. This parameter is not easy to understand because it does not directly
influence the minimal size of the resulting tables, or any other interesting measure. Instead of letting users
set this parameter, it would be better to let them define the percentage of data that should be covered by
the relational schema, or a maximum number of tables in the resulting schema, or other useful thresholds.
In opposition the currently used parameter, these new suggestions cannot be set accurately within the
algorithms. Instead, the algorithms will have to be adjusted to meet the required threshold as accurate as
possible.

8.2.2. New Features

The following features were out of scope for this thesis. However, they should be implemented as part of the
MonetDB/RDF project and are tightly connected to the work described in this thesis.

Zooming and Exploring a Schema Although we try to create a reasonable small schema, it might still
be too big to be explored by simply looking at it. A possibility to show only few, important tables first and then
allow for zooming into the schema would simplify the exploration of big schemas. To provide a first overview,
one can simply select the biggest tables (and maybe also the important dimension tables). Other possibilities
would be scoring the importance of tables by an iterative measures such as a page-rank-like criterion. For
zooming, things get more complicated. If the user wants to zoom into a specific table, a given number of tables
(including the chosen one) should be shown can be reached from the chosen table by using foreign keys and
that cover as many data as possible. This problem is known as (Rooted) Node-Weight Connected Subgraph
Problem with Budget Constraint (B-RMWCS) and is NP-hard [2]. We therefore propose using heuristics to
compute a set of tables to be shown when zooming into a table.

Searching a Schema To quickly find a certain table in a big schema, a keyword search for table names
and property names would be helpful. Answering keyword search queries on a static set of data with a list of
relevant entities is referred to as ad-hoc object retrieval [25]. The order of the results is determined using
a weighting function that needs to be adjusted to fit the requirements. The well-known weighting function
BM25 [26] and its refined version BM25F [27] define the relevance of a document on the basis of how
often the keywords appear within the document in comparison to how often they appear in other documents
(tf-idf ). Search frameworks have to be adjusted to query schema metadata only and to retrieve a table/view.
Besides names and properties, one could store additional table name candidates and use them for the keyword
search.

Updating Datasets Currently, MonetDB/RDF does not support updates to the loaded dataset (defined
as non-goal in section 1.2.2). Neither may triples be changed, nor may new triples be added to the dataset.
However, in practice, one wants to add more RDF data to the dataset even if it already has been transformed
into a relational schema. The easiest way to achieve this would be adding new triples to the PSO store,
hence no structuring/merging or labeling algorithms would have to be changed. This approach has two major
disadvantages: i) The triple store grows and grows and the schema will eventually degenerate into an ordinary
triple store, and ii) new concepts that are added to the dataset are not recognized and therefore not added
to the relational schema. It is therefore reasonable to load the new triples into the PSO table first to have
them available immediately, but to run the whole structuring, labeling, and merging process as soon there
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is a sufficient amount of new triples. A requirement we expect when integration this update mechanism is
the re-use of the old relational schema. If the relational schema would be allowed to change totally after an
upgrade, all applications that rely on that schema would have to be rewritten. The update procedure should
therefore keep the old schema and enhance it, for example by adding new columns to tables, add foreign key
constraints, or add new tables.

8.2.3. Production Readiness and Integration into MonetDB

The prototype designed as part of this thesis lacks some essential configuration possibilities before non-experts
can operate it.

Fine-Grained Labels per Row As introduced in section 4.9.2, we store a label per subject that can
provide more fine-grained information about tuples than the table name. Until now, these labels are not shown
to the user. They should be made available upon user request.

Loading Ontologies At present, ontologies that the users want to be available in MonetDB/RDF have to
be transformed to a simple CSV format. The transformations necessary to get this format are described in
appendix B. To allow for a simpler upload of ontologies, we need to provide an interface that also checks the
formal correctness of the given files. Furthermore, we need to output the list of currently loaded ontologies.
We need to provide instructions on how to transform ontologies, and maybe even create a syntax specification
or kind of meta-ontology for this purpose.

Loading Ontology Prefixes and Type Properties Two lists of ontology prefixes and type properties
are used within MonetDB/RDF. These lists have been created to contain values for the most popular ontologies,
but do not cover all possible ontologies. It is therefore necessary to allow for enhancements to these lists. The
list containing ontology URI prefixes is used for URI shortening. If the prefix of a property is found in this
list, it is easy to extract the non-prefix part. For properties whose ontologies are not in the list, the heuristic
described by Neumayer et al. [21] is used to shorten the property URI. Including more ontology prefixes into
the list can therefore lead to better abbreviated table and property names. The list of type properties is used
for extracting candidates from type property values. If type properties of a used ontology are not on the list,
their values will not be considered for table names. Having an incomplete type properties list will therefore
lead to significantly worse label suggestions by the best label source.

JDBC Interface SQL tools that provide a graphical overview of the schema are helpful for exploring the
schema, as stated above. These tools use a “get all tables” command offered by JDBC to collect the metadata
needed to display the relational schema. A general JDBC interface is already available within MonetDB. One
could adjust this interface to allow for zooming as mentioned afore-head. If zoomed in, the JDBC “get all
tables” should return only a subset of tables and foreign key relationships.

8.2.4. Analysis and Evaluation

Further improvements can be identified if more evaluation and analysis of datasets and results takes
place.
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8.2. FUTURE WORK

Extended Survey At a later point in time, an additional, extended survey should be taken. The first
idea for this survey is asking for label ratings in different dimensions (level of detail, syntax/notion of label,
. . . ) to get a more detailed view of the label quality. Another idea is to let users rank label candidates and
compare their rankings with the one made by our algorithms. Systematic deviations could then be analyzed to
improve the label assignment algorithm (cf. section 4.9) that defines the candidate order. One cause for bad
label quality and too many NULL values in a CS is the mixture of two different concepts into one CS. An
interesting survey would therefore be to ask users to cross out columns that do not belong to a CS. Another
idea is to let users categorize tuples, by pointing out in which table (by name) they would fit best. This
hand-made mapping can then be compared to the table the subjects were put in by our algorithms. This
extended survey could also be send to more and heterogeneous participants by using an online crowdsourcing
platform.

Analysis of Outlying Data We currently drop irregular data at different positions in out algorithms. If
the outlying data still has some structure in it, one could find better data structures than the PSO triple store to
store outliers in. Other implications might be changed thresholds because too much – or too few – data is
dropped.
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APPENDIX A. HIERARCHIES IN ONTOLOGIES

A. Hierarchies in Ontologies

During the work described in this thesis we analyzed seven ontologies. All of them have a hierarchy in their
list of classes. Some have a single hierarchy with a top class that covers all classes, others have multiple
hierarchies to represent multiple base concepts, and others have only few hierarchical structures to describe
some specialized subclasses only. Some ontologies include classes from foreign ontologies in their hierarchy,
e.g. as base concept they derive their classes from.

DBpedia All classes are arranged into one hierarchy with owl:Thing being the top class. This behavior
is suggested by the W3C Recommendation on OWL 2 [19]: “owl:Thing represents the set of all
individuals.”

Eurostat23 Only few classes exist, and these are all member of a two-level hierarchy with e:Region
being the top class.

Friend of a Friend (FOAF) Four hierarchies exist, with the top classes foaf:Agent, foaf:Docu-
ment, foaf:LabelProperty, and foaf:Project.

GoodRelations Most classes in this ontology do not belong to a hierarchy, but there are small hierarchies
for e.g., price specifications and payment methods.

Lehigh University Benchmark (LUBM)24 Multiple hierarchies exist within this ontology.

Semantic Web for Research Communities (SWRC)25 This ontologies assigns its classes to multiple
ontologies.

DublinCore26 Only few classes belong to small, flat hierarchies.

23Eurostat http://eurostat.linked-statistics.org/
24LUBM http://swat.cse.lehigh.edu/projects/lubm/
25SWRC http://ontoware.org/swrc/
26DublinCore http://dublincore.org/schemas/rdfs/ (dcterms, dctype, dcam, dcelements)
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APPENDIX B. TRANSFORMING AND LOADING ONTOLOGIES

B. Transforming and Loading Ontologies

Ontologies are crucial within MonetDB/RDF, as they are an important semantic data source used for both
structuring/merging and labeling RDF data. Two types of information taken from ontologies are required
within MonetDB/RDF. First, the hierarchy of classes. Second, the properties per class. At present, this
information is loaded using a simple CSV format, as shown in figure B.1.

class URI | class label | parent URI or NULL

class URI | property URI

Figure B.1.: CSV format for subclass-superclass information as well as classes and their attributes

Most ontologies are available in RDF/XML format, that can easiest by transferred to the above-mentioned
CSV format by querying it with SPARQL. For example, the queries to transform the DBpedia ontology are
shown in figures B.2 and B.3. As presented in section 8.2, we are planning to replace the simple CSV format
with a simple meta-ontology.

SPARQL
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
SELECT ?s ?label ?p FROM <http://dbpedia.org/ontology>
WHERE {

?s rdf:type owl:Class.
?s rdfs:label ?label.
FILTER(langMatches(lang(?label), "en")).
OPTIONAL ?s rdfs:subClassOf* ?p

};

Figure B.2.: SPARQL query to get subclass-superclass information from the DBpedia ontology

Figure B.2 gets all classes and their English labels as well as – if available – their parents. The transitive
rdfs:subClassOf* ensures that also grandparents etc. are stored for each class.

SPARQL
[...]
SELECT DISTINCT ?sc ?p FROM <http://dbpedia.org/ontology>
WHERE {

?s rdf:type owl:Class.
?p rdfs:domain ?s.
?sc rdfs:subClassOf* ?s

} GROUP BY ?s;

Figure B.3.: SPARQL query to extract classes and their properties from the DBpedia ontology

Figure B.3 extracts all classes and their properties. Properties are attached to classes using rdfs:domain.
Properties are inherited. Hence, if a property is attached to a superclass, it is also available in its subclasses. By
using the transitive rdfs:subClassOf*, this constraint is reflected.
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APPENDIX C. TYPE PROPERTIES AVAILABLE IN MONETDB/RDF

C. Type Properties Available in
MonetDB/RDF

We include 18 type properties in MonetDB/RDF. These type properties are used for detecting type infor-
mation for labeling, as elaborated in section 4.6. The third one, rdf:type, is the most popular one.

char* typeAttributes[] = {
"<http://ogp.me/ns#type>",
"<https://ogp.me/ns#type>",
"<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>",
"<http://purl.org/dc/elements/1.1/type>",
"<http://mixi-platform.com/ns#type>",
"<http://ogp.me/ns/fb#type>",
"<http://opengraph.org/schema/type>",
"<http://opengraphprotocol.org/schema/type>",
"<http://purl.org/dc/terms/type>",
"<http://purl.org/goodrelations/v1#typeOfGood>",
"<http://search.yahoo.com/searchmonkey/media/type>",
"<https://opengraphprotocol.org/schema/type>",
"<https://search.yahoo.com/searchmonkey/media/type>",
"<http://www.w3.org/1999/xhtmltype>",
"<http://dbpedia.org/ontology/longtype>",
"<http://dbpedia.org/ontology/type>",
"<http://dbpedia.org/ontology/typeOfElectrification>",
"<http://dbpedia.org/property/type>"

};

Figure C.1.: List of type properties available in MonetDB/RDF
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APPENDIX D. SURVEY

D. Survey

The motivation for our questionnaire and its results are discussed in section 7.4. Two example tables presented
in the survey are shown in figure D.3. The labels suggested by our algorithms are shown in figure D.1. The
users were asked to rate these suggestions on a 5-point Likert scale (bad/poor/fair/good/excellent). Along with
the survey sheets, we sent instructions on how to fill in the survey, cited in figure D.2.

Figure D.1.: Name suggestions
Up to three name suggestions in random order

Thank you very much for joining our survey on evaluating the quality of labeling tables extracted
from RDF datasets. Please read the description before starting the survey.
This survey consists of two parts. In the first part, you will see a set of tables with their sample
data (i.e., 10 tuples for each table). For the convenience of the representation, each table will be
represented with a limited number of columns (i.e., up to 8). The detailed representation of each
table is as follows.

Table number, number of tuples
Columns which are not shown with sample data
Truncated set of columns with 10 sample tuples

Columns marked with “*” are multi-values column. The values in this column are sepa-
rated by “;”. “[Column]->[TableName]” indicates that the column is a foreign key pointing to the
table [TableName].
Please suggest (one or more) names for each table that you think describe the table and its content
best. Please write the suggested names at the end of each table. Please finish this part of the survey
before starting with the second part.
In the second part, you will see a set of names suggested by our algorithm for each table. Note that
the candidates are provided in a random order that does not reflect the priority assigned to each
name by our algorithm. By comparing each suggestion with the table and the name(s) you choose,
please rate their quality using the following ratings.

1=bad
2=poor
3=fair
4=good
5=excellent

Thank you very much!

Figure D.2.: Instructions
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