
Institut für Praktische Informatik und Medieninformatik
Fakultät für Informatik und Automatisierung

Fachgebiet Datenbanken und Informationssysteme

Master thesis

Achieving many-core scalability in
Vectorwise

vorgelegt von: Tim Gubner

Matrikel: 44130

Betreuer: Prof. Dr.Ing. Kai-Uwe Sattler
Prof. Peter Boncz

September 4, 2014

Zusammenfassung

Diese Masterarbeit erfüllt zwei Zwecke: 1. gibt sie einen Überblick über die Probleme,
welche die Skalierbarkeit von Vectorwise auf Mehrprozessorsystemen einschränken und 2.
stellt sie einen Ansatz zur Modernisierung der - im Datenbankbereich - vorherrschenden
Technik der Intra-Query-Parallelisierung, dem Volcano-Modell-Parallelismus, dar.

Die Analyse der Probleme, welche die Skalierbarkeit von Vectorwise behindern, wurde
größtenteils über die Menge der TPC-H Anfragen durchgeführt. Es wurde herausgefun-
den, dass die Hash-basierte Synchronisation und Neuverteilung der Daten der Producer-
Threads hin zu den Consumer-Threads teil dieser Probleme ist. Weiterhin zählt das se-
quentielle Aufbauen der Hash-Tabelle beim HashJoin-Operator und der Reuse-Operator,
welcher, da dieser komplett sequenziell abläuft, ein vorheriges Zusammenfügen und u.U.
spätere Neupartitionierung der Datenströme erfordert, dazu. Weiterhin wurde aufgezeigt,
dass Sperren in der E/A-Schicht ebenfalls zu diesen Problemen zählen. Ein generel-
les Problem, dass bei der Verarbeitung von Anfragen auftreten kann, ist eine unglei-
che Verteilung der Arbeitslast, welche u.U. dynamisch während Datenbankanfragen auf-
tritt. Der Volcano-Modell-Parallelismus bietet, aufgrund seiner statischen Natur, keine
Möglichkeit dieses dynamische Auftreten auszugleichen. Es bestünde die Möglichkeit das
Parallelismus-Modell zu ändern, was aber in einem bestehenden System zu einem enormen
Anpassungsaufwand führt, da im Volcano-Modell die Parallelarbeit selbst ausgelagert ist
und vor den Operatoren verborgen bleibt.

Diese Arbeit stellt einen Versuch zur Modernisierung des Volcano-Modell-Parallelismus
dar. Es wurde gezeigt, dass dass die Hürden der Volcano-Herangehensweise überwältigt
werden können. Der Ansatz hierfür war die Benutzung einer signifikant höheren Anzahl
an Threads (im Vergleich zu der Anzahl an Prozessoreinheiten) und eine permanter Kon-
trolle der Threads durch einen User-Level-Scheduler, wobei dieser versuchte dynamisch
auftretende Effekte zuvermeiden bzw. abzulindern. Dabei war der Auflaufkoordinierungs-
Algorithmus (Scheduling-Algorithmus) daraufhin ausgerichtet alle Threads, welche Tei-
le der Anfrage bearbeiten auf den gleichen Fortschritt zu bringen bzw. zurückliegende
Threads zu bevorzugen oder ggf. zu beschleunigen.

Zusammenfassend kann gesagt werden, dass es möglich war die Probleme des statischen
Volcano-Modell-Parallelismus auf einem effizienten Weg zu umgehen, was sich anhand
der Messergebnisse, von teilweisen Messungen der Balance, die der User-Level-Scheduler
erzielen konnte, bis hin zu TPC-H zeigen lässt.

Abstract

This thesis has two major purposes: (1) to analyze the issues hindering (many-core)
scalability in Vectorwise and (2) to modernize the still dominant approach for intra-query
parallelization: Volcano-model parallelism.

The analysis was conducted over the TPC-H queries which showed that hash-based
(re-)distribution from producer threads to consumer threads is one of factors limiting
scalability. Other issues limiting scalability were the sequential building of HashJoin’s
hash table and the Reuse operator which runs sequential and forces parallel stream to be
joined before and forked afterwards. Further the survey showed that locking in the I/O
layer can become a scalability issue. A general issue in parallel query evaluation is skew
which may dynamically appear in query plans. The Volcano-model parallelism provides
no way handling dynamic effects due to its static nature. It is possible to change the
parallelism model, which - in an existing system - usually involves a big re-engineering
overhead, because - in case of the Volcano-model parallelism - the parallelism is ”encap-
sulated” and operators are kept unaware of parallelism.

This thesis provides an attempt to modernize the Volcano-model parallelism. It was shown
that it is possible to overcome the problems of the Volcano-approach to parallelism by
using significantly more threads than processors and scheduling these in order to reduce
dynamic effects. This was reached by a scheduling algorithm which tries to keep all query
evaluation threads at the same progress and boost threads lagging behind.

Summarizing it was possible to find an efficient way out of the static Volcano-model
parallelism - as can be shown over microbenchmarks and the TPC-H benchmark.

Contents

1. Introduction 9
1.1. Motivation . 10
1.2. System details . 11
1.3. Vectorwise algebra . 14
1.4. Contribution . 15
1.5. Structure . 16

2. Survey 18
2.1. Hardware features . 18
2.2. Parallelism model . 19

2.2.1. Chosen parallelism . 19
2.2.2. Xchg operator . 20
2.2.3. XchgHashSplit operator . 21
2.2.4. Case study: XchgHashSplit operators in Q21 21
2.2.5. Summary . 25

2.3. Sequential fraction . 26
2.3.1. Sequential phases . 27
2.3.2. Sequential query parts . 29
2.3.3. HashJoin operator . 31
2.3.4. Reuse operator . 32
2.3.5. Locking . 33
2.3.6. Summary . 35

2.4. Memory locality . 37
2.4.1. MScan operator . 38
2.4.2. Shared VHT HashJoin . 39
2.4.3. Summary . 40

2.5. Skew . 40

3. Related work 43
3.1. Parallelism model . 43
3.2. User-level scheduler . 44

6

Contents

3.3. Query progress estimation . 45

4. Progress estimation 48

4.1. Approach . 49
4.2. Definition . 50
4.3. Conventions . 52
4.4. Scan operators . 54
4.5. Streaming operators . 55
4.6. Blocking operators . 56
4.7. Buffering operators . 57
4.8. Implementation . 59
4.9. Evaluation . 60

4.9.1. Linearity . 60
4.9.2. Monotonicity . 67

5. User-level scheduler 71

5.1. Approach . 71
5.1.1. Time to completion . 72
5.1.2. Workload metric . 73
5.1.3. QEP decomposition . 74
5.1.4. Scheduling . 75

5.2. Implementation . 76
5.2.1. Overallocation . 76
5.2.2. Thread API emulation . 76
5.2.3. Fibers . 78
5.2.4. Context switching . 81
5.2.5. Scheduling . 83
5.2.6. Cooperative multitasking . 89

5.3. Evaluation . 90
5.3.1. Balancing behaviour . 90
5.3.2. Microbenchmark . 95
5.3.3. TPC-H . 97

6. Conclusion 103

6.1. Survey . 103
6.2. Progress estimation . 104
6.3. User-level scheduler . 104

7

Contents

7. Future work 107
7.1. Survey . 107
7.2. Progress estimation . 108
7.3. User-level scheduler . 108

List of Figures 111

List of Tables 113

Appendices 119

A. Source code of the ping-pong microbenchmark 120

8

1. Introduction

According to [Sut09] single-core CPU performance reached its zenith which forces ap-
plications to use parallelism in order to accelerate their computations. But not every
parallelism model is efficient in every scenario. One would define parallelism to be effi-
cient when the applciation is able to take advantage by using additional computing power.
This can be referred to by using the term scalability in which the applications performance
shall scale with the amount of resources used.

It is possible to introduce parallelism in multiple ways into a DBMS in order to accelerate
query processing. Two popular methods are:

• Inter query parallelism, which means that multiple queries are allowed to run con-
currently, and

• Intra query parallelism where a query is accelerated by using parallelism.

These two methods are completely orthogonal to each other and can be combined. Where
the latter one (intra query parallelism) can be refined into

• Inter operator where different operators are executed concurrently and

• Intra operator where parallelism is introduced inside an operator.

Vectorwise is an analytical database system. It is known for efficiency by exploiting
modern processor’s features like instruction-level parallelism and excessive use of on-chip
caches [BZN05]. Vectorwise utlizes

• Inter query parallelism by using at least one kernel thread per query (until a con-
figurable limit) and

• Intra query parallelism by the following techniques:

– Inter operator parallelism is introduced by a set of - so called - exchange oper-
ators [Gra94, p. 105] which parallelize their subtrees.

– Further intra operator parallelism is exploited through the usage of SIMD1 and
pipeline parallelism inside the processor(s).

1Single instruction, multiple data

9

1. Introduction

Note that the concept of exchange operators is the currently dominant approach used.
For example it is used in Microsoft SQL Server [LBKN14, p. 11], Oracle [LBKN14, p. 8],
Vertica [LFV+12, p. 1797] and indeed Vectorwise. The reason for this is that exchange
operators ”encapsulate” parallelism [Gra94, p. 102] in a way that original relational query
operators (e.g. Join, Sort and Aggregation), are unaware of parallelism. In case these
operators were implemented in a non-parallel way, they could automatically take advan-
tage of parallelism without any modification of the operators itself. Hence introducing
parallelism using exchange operators minimize software re-engineering cost. In contrast,
recently developed database systems, such as HyPer [LBKN14] and BLU [RAB+13], argue
against the concept of exchange operators and make each operator aware of parallelism. In
the approach chosen by HyPer and BLU each operator divides the work into many small
tasks and uses a queue to distribute tasks dynamically between the processors (hence
task-based parallelism). Such an approach arguably can achieve

• better load-balance between the processors,

• better NUMA2 locality and

• better workload adaption

compared to the exchange approach which partitiones work (for each thread) statically
at query compilation time.

1.1. Motivation

Figure 1.1.: Speedup gained by Hyper (red line) and Vectorwise (purple line) over TPC-H
scale factor 100 on Nehalem EX from [LBKN14, p. 9]

Consider TPC-H Q1. Figure 1.1 visualizes the speedup gained by HyPer and Vectorwise
over Q1 in TPC-H scale factor 100. It can be seen that Hyper, represented by the red line,
shows a speedup of 30 when using 32 processors. While ”Vectorwise has similar single-
threaded performance as HyPer” [LBKN14, p. 8] its speedup gained, visible as the purple
line, by using 32 processors is approximately 7. [LBKN14] relates the different speedups
to the ”use of the Volcano model for parallelizing queries in Vectorwise” [LBKN14, p. 8].

2Non uniform memory access

10

1.2. System details

Considering these disadvantages of the exchange approach to parallelism, it would involve
a lot of re-engineering to move from the exchange based parallelism to the task-based
parallelism as it is used by HyPer.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
0

5

10

15

20

25

30

TPC-H query

Sp
ee

du
p

Speedup (32 processors) Speedup (64 processors)

Figure 1.2.: Speedup gained for the TPC-H queries using 32 and 64 processors on scale
factor 500

Going back to the scalability of Vectorwise which is visualized Figure 1.2. It visualizes the
speedup using 32 processors and 64 processors for each TPC-H query when using scale
factor 500. The best speedup (according to Figure 1.2) was achieved by Q1. It provides
a speedup of ≈ 29 by using 64 processors, but it is obvious that Q1’s response time does
not scale linearly with the number of processors.

This thesis will provide reasons (here called ”scalabilty issues”) that substantially hinder
the speedup of Vectorwise.

1.2. System details

All benchmarks (in this thesis) were measured on a single system. This system will be
explained in the following.

NUMA: Using modern mainstream server hardware it is possible to build a system with
64 processors (4 sockets with a processor package hosting 16 processors each) and a
large amount of main memory without requiring special hardware. This hardware uses a

11

1. Introduction

special kind of interconnection between the CPUs, because the ”bus-based, global-memory
architecure of small systems does not scale because the shared bus quickly becomes a
system bottleneck as [..] more processors are added” [ZB91, p. 1]. Thus these hardware
systems use a different approach to efficiently support a high number of CPUs.

One possible approach is to trade ”the idea that all memory modules have the same access
time” [Tan01, p. 511] for better scalabilty (i.e. a higher number of CPUs). Such systems
are called NUMA. They have the important property that all CPUs can access one single
address space, but accessing the memory might take different time. There are two types
of memory accesses:

• There is local memory access and

• remote memory access

The difference is that it can be assumed that ”remote memory [access] is slower than
access to local memory” [Tan01, p. 511]. These types result from the partitioning of main
memory over all memory controllers. This is usually realized through using the memory
banks proximite to the memory controller. When considering multi-core processors - each
with its own memory controller - this forms regions where a memory controller can access
the memory local to itself (its partition). Such a region is called NUMA node. This
implies that on each NUMA node, there is local memory accessed by a local memory
controller. Multiple local processors that have local access to the local memory and a
network connection to allow remote processor (from other NUMA nodes) to access the
local memory (remote access).

Hardware: Used was a four-socket mainboard using four AMD Opteron 6376 with 32
GiB memory attached to each socket, summing up to 256 GiB in total. Further on each
socket sits a processor package hosting two dies. Each die has its own memory controller,
a shared L3 cache with a capacity of 16 MiB and a link to the other die. Futhermore each
die hosts four Piledriver modules. Further each Piledriver module hosts two cores which
are sharing the instruction-fetcher and decoder, the L2 cache and the FPU3. Each die is
considered a NUMA node because it has its own memory controller. One might assume
that these 8 NUMA nodes are all connected i.e. to the other 7 (NUMA) nodes. This is
clearly not the case. Figure 1.3 shows the link topology of all eight NUMA nodes where
the NUMA nodes with odd numbers (o) are on the same socket as o − 1 e.g. 0 and 1; 2
and 3 are on one socket.

Furthermore this figure shows which NUMA nodes are connected: The NUMA node with
even numbers are connected with all other nodes with even numbers (excluding themself).

3Floating point unit

12

1.2. System details

Figure 1.3.: Link topology [DGT13, p. 4]

Each even (NUMA) node is also connected with the other node on its die which has an
odd number and all nodes with odd numbers are connected with all other nodes with odd
numbers (excluding themself). Interpreting Figure 1.3 as a network graph, the shortest
distance from one node to another can be one hop or two hops depending which node
communicates with which.

Cache hierarchy: As stated by [Dre07, p. 16] AMD prefers to use a concept called
exclusive caches where each cache (L1, L2, L3) holds a disjoint set of cache lines. When
a cache line is evicited from a cache, then - according to [Dre07, p. 16] - it needs to evict
a cache line from a cache one step closer to main memory or the main memory itself. For
example, when a cache line is evicted from L1 cache, it needs to push the cache line into
the L2 cache, which also needs to evict a cache line and so on until the main memory
is reached. ”A possible advantage of an exclusive cache is that loading a new cache line
only has to touch the L1d and not the L2, which could be faster” [Dre07, p. 16].

Cache coherency: In order to remain a consistent view of the memory (including
the caches) a cache coherency protocol is needed. According to [AMD13b, p. 169] the
AMD Opteron processors are using - in contrast to Intel Xeon - the MOESI4 protocol for
maintaining cache coherency. The MOESI protocol allows a cacheline to have one of the
following five states:

• ”A cache line in the modified state holds the most recent, correct copy of the data.
The copy in main memory is stale (incorrect), and no other processor holds a copy”
[AMD13b, p. 169].

• Each ”cache line in the owned state holds the most recent, correct copy of the data.
The owned state is similar to the shared state [...]” [AMD13b, p. 169], but unlike
”the shared state, however, the copy in main memory can be stale (incorrect). Only
one processor can hold the data in the owned state” [AMD13b, p. 169] where -
according to [AMD13b, p. 169] - all other processors must hold the cache line in
shared state.

4Modified Owned Exclusive Exclusive Invalid

13

1. Introduction

• ”A cache line in the exclusive state holds the most recent, correct copy of the data.
The copy in main memory is also the most recent, correct copy of the data. No
other processor holds a copy of the data” [AMD13b, p. 169].

• ”A cache line in the shared state holds the most recent, correct copy of the data.
Other processors in the system may hold copies of the data in the shared state,
as well. If no other processor holds it in the owned state, then the copy in main
memory is also the most recent” [AMD13b, p. 169].

• Each Invalid cache line do[es] not hold a valid copy of data, as stated by [AMD13b,
p. 169]. Further ”valid copies of the data can be either in main memory or another
processor cache.” [AMD13b, p. 169].

1.3. Vectorwise algebra

The query evaluation in Vectorwise is built upon operators, which reassemble a ”rather
standard relational algebra” [BZN05, p. 231]. These operators form a tree (further referred
to as QEPs5) and ”operate in a demand-driven schema” [Ani10, p. 13].

In the following the operators, used in this thesis, will be described:

• The Project operator allows introducing new attributes, renaming attributes and to
filter entire attributes from a dataflow.

• The Select operator allows to filter out tuples from a dataflow that do not match a
predicate.

• The Aggr operator which allows ”to represent a set of items by a single value or to
classify items into groups and determine one value per group” whereas the OrdAggr
is an optimization of Aggr for the case when ”group-members will arrive right after
each other” [BZN05, p. 232] in the dataflow.

• The HashJoin (HashJoinN) operator builds a hash table from its left input dataflow
and afterwards probes tuples of the right input dataflow through the hash table.
For each match in the hash table an tuple in the output dataflow is created.

• HashJoin01 operator is an optimization of the HashJoinN operator for zero or one
match in the hash table.

• The MergeJoin operator resembles the merge part of the Sort-Merge-Join algorithm,
hence it has two input dataflows.

5Query execution plans

14

1.4. Contribution

• The Sort sorts the dataflow.

• The TopN operator allos to determine the top-n tuples by a given sorting criteria.

• The Reuse operator provides the functionality to break out of the operator tree. It
allows to store tuples and returns the input dataflow while other instances of the
Reuse operator can read these stored tuples.

• The As operator allows to rename the input dataflow’s table qualifier.

• The Xchg operator resemble the exchange operator from [Gra94]. This operator pro-
vides a synchronization point between m producer threads and n consumer threads.
It parallelizes its subtree using m threads and buffers the results from each thread
in order to be consumed by the n consumer threads. Note when a subtree is al-
ready parallelized using a Xchg operator it will not be parallelized again, instead it
redistributes data between the producer and consumer threads.

• Based on the Xchg operator the XchgUnion and the XchgHashSplit operator can
be defined: The XchgUnion is a special case of the Xchg operator with only one
consumer thread. The XchgHashSplit is another special case in which the consumer
thread of each tuple is determined via a hash function.

• Last but not least, the MScan operator allows to scan a relation which is on-the-fly
merged with deltas gained from the modifcation of the dataset and converted into
a dataflow.

1.4. Contribution

This thesis will contribute an analysis Vectorwise’s weakpoints with regard to many-core
scalability and will further present feasible solutions how to overcome these weakpoints.

One of these weak points is the static Volcano-model parallelism which cannot react to dy-
namic workload changes as they may be introduced by skew. In this work the assumption
is that it is not possible to deviate (much) from the exchange approach to parallelism while
still being able to achieve a similar efficiency as obtained by recent systems like Hyper or
BLU. As such, one of the main contributions in this thesis is a design for user-level thread
scheduling, where many threads, running (parallelism unaware) database operators, are
scheduled on a significantly smaller number of processors. Each thread is scheduled with
the goal to make all threads, working on the same query operator, finish (almost) si-
multaneously, by taking the into query progress account. Thus achieving load-balance
and giving the possiblity to adapt to workload changes. Further it will be argued that
the proposed approach should be complemented with limited awareness of parallelism to

15

1. Introduction

implement NUMA optimizations. As such the work in this thesis is an attempt to mod-
ernize the exchange approach to parallelism in order to allow existing systems to flourish
on modern many-core machines.

1.5. Structure

This document is structured into the eight chapters:

The following chapter Survey provides an analysis of scalability issues in Vectorwise. It
starts with Section 2.1 which describes which hardware features hinder scalability. It is fol-
lowed by an analysis of used parallelism model in Section 2.2. The subsequent Section 2.3
provides an analysis of the sequential portions in the TPC-H queries that - according to
Amdahl’s law - have negative impact on scalability. This analysis itself is involves an
analysis of sequential phases (Section 2.3.1), sequential query parts (Section 2.3.2), of the
HashJoin (Section 2.3.3) and Reuse operator (Section 2.3.4) as well as an analysis of the
overhead involved by locking (Section 2.3.5). Further the influence of memory locality on
the query response times is explained in Section 2.4, which is structured into an analysis
of the memory locality inside the MScan operator (Section 2.4.1) and HashJoin operator
(Section 2.4.2). This is followed by Section 2.5 which describes the influence of skew on
scalability.

After that an overview about related research will be given in the Chapter 3. It is split into
an overview about state-of-the-art parallelism models for query evaluation (Section 3.1),
followed by related work about user-level scheduling, which is described in Section 3.2,
and by Section 3.3 which gives an overview about schemes for estimating the progress of
a running query.

Chapter 4 will introduce a model which allows to estimate the progress of a query or even
a part of a query. It starts with the introduction of the used approach, which is described
in Section 4.1 and is followed by Section 4.2 which defines of query progress, as it will be
used in this thesis, provides a set of conventions that will be used in the following sections.
The consequent sections define the progress over disjoint sets of operators, starting with
Section 4.4 which defines the progress for the set of scan operators. In Section 4.5 defines
the progress for the set of streaming operators, followed by Section 4.6 which defines the
progress for blocking operators and Section 4.7 which defines the progress for buffering
operators.

At the end of the Chapter 4 - in Section 4.9 - the presented model will be evaluated
regarding different properties. At first the linearity of the estimated progress is analyzed
in Section 4.9.1, then in Section 4.9.2 will be proven that the progress is monotonic.

16

1.5. Structure

The subsequent Chapter 5 describes an approach for making static Volcano-model par-
allelism dynamic by using overallocation and load-balancing. Chapter 5 starts an ex-
plaination of the used approach (Section 5.1). This approach is further structured into
four sections: Section 5.1.1 explains how to calculate the time to completion from the
estimated progress, followed by a - in Section 5.1.2 described - workload metric based
on the time to completion. The subsequent Section 5.1.3 explains how a query is split
into multiple parts, which is further used for implementing the scheduling algorithm.
The following Section 5.1.4 highlights the ideas that were used in order to implemented
scheduling algorithm. Afterwards the implementation of the user-level scheduling is de-
scribed in Section 5.2, which is further partitioned into the following six sections: First
the integration of overallocation into the rewriter is explained in Section 5.2.1. The subse-
quent Section 5.2.2 describes how the thread synchronization using mutexes and condition
variables is implemented in cooperation with the user-level scheduler. It is followed by Sec-
tion 5.2.3 which describes a low-level abstraction of switching from one thread’s execution
context to another. Based on this, the following Section 5.2.4, explains how a context
switch is realized in the user-level scheduler. In the consequent Section 5.2.5 the used
scheduling algorithm will be described, followed by a description of how time quantums
are used in a cooperative multithreading environment to extend cooperative multithread-
ing with a spice of preemption (Section 5.2.6). After the implementation details have been
described, the implemented user-level scheduler will be evaluated in Section 5.3, starting
with a short analysis of the achieved balance using a small set of short-running queries
(Section 5.3.2). Further in Section 5.3.2 a microbenchmark will demonstrate that the
combination of overallocation and user-level scheduling is able to achieve load-balance in
the presence of skew. This is followed the the evaluation of this combination over the set
of TPC-H queries (Section 5.3.3).

The subsequent Chapter 6 summarizes the knownledge gained from the previous chapters.
This is split into three part, starting with Section 6.1 which describes the conclusions that
can be drawn from the survey of scalability issues done in Chapter 2. The subsequent
Section 6.2 summarizes the, in Section 6.2 explained, query progress estimation, followed
Section 6.3 which provides a summary of the user-level scheduling as it was described in
Chapter 5.

Lat but not least the Chapter 7 gives insight about future extensions of the analysis about
the scalability issues (Section 7.1), the query progress estimation (Section 7.2) and the
user-level scheduler (Section 7.3).

17

2. Survey

In order to find out which problems are hindering scalability an analysis has been done,
therefore the TPC-H benchmark (using scale factor 500) was run on the system described
in Section 1.2.

Scenario: In order to analyze the scalability issues the survey was restricted to the
following scenario:

• The Vectorwise server process (x100 server) is the only running process on the used
machine.

• Furthermore all queries are evaluated in-memory only.

• The data stored is not modified during queries.

• CPU frequency boost was disabled for the measurement, because frequency boost
is switched off when many cores are used, linear scaleup would be impossible by
definition.

• Further in case of only using 32 processors, only the processors with even number
where used (one per Piledriver module), because when two threads that shared the
same Piledriver module would be used, the fact that inside a Piledriver module
computation resources are shared would cause interference between them, making
linear scaling impossible by definition.

2.1. Hardware features

The used hardware provides features which make it impossible to achieve linear scalability
(of the query response time with the number of utilized processors). These features will
be described and their implications, on scalability, analyzed in the following paragraphs
of this section.

18

2.2. Parallelism model

Frequency boost: One is the frequency boost which is activated when only a few
processors are activly running on an AMD Opteron processor package. This behaviour
is called Turbo mode and kicks in, when ≤ 8 processors are active. This feature boosts,
according to [AMD13a, p. 1], the standard frequency (when all 16 processors are running)
from 2.3 GHz up to a frequency of 3.2 GHz.

Shared processor components: The processors on the used AMD Opteron (proces-
sor) packages are not completely independent, because they share components. Each (of
the used) AMD Opteron packages is partitioned into dies sharing a memory controller
and the L3 cache. Each die hosts four ”Piledriver” modules of which each module share

• one instruction-fetch & decode unit,

• one FPU

• and one L2 cache.

Both features make it theoretically impossible to achieve linear scalability, because using
more cores may slow down the whole processing. Further the frequency boost was disabled
and the frequency of all processors was fixed to the standard frequency by disabling power
management features.

2.2. Parallelism model

In this section the parallelism model used in Vectorwise will be discussed, which was im-
plemented in the frame of [Ani10]. The used model is the Volcano-model, first described in
[Gra94], which allows to keep most operators unaware of parallelism using parallelization
operators. These are introduced through a cost-based optimizer.

2.2.1. Chosen parallelism

This cost-based optimizer chooses the parallelized QEP and determines the degree of
parallelism used. Sometimes the optimizer limits the chosen degree of parallelism below
the number of available processors. This may happen e.g. due to concurrently running
queries or, in the case of only a single query, due to certain overheads that grow with the
chosen level of parallelism. Figure 2.1 shows the maximal degree of parallelism given by
the optimizer. Further it visualizes the the speedup gained by using the parallelized QEP
compared to the sequential QEP. It can be seen that even with a high degree of parallelism
(e.g. 64) the average speedup is ≈ 10. So that, in the measured TPC-H workload, the

19

2. Survey

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
0

10

20

30

40

50

60

70

TPC-H query

Sp
ee

du
p

Speedup (64 processors) Chosen parallelism

Figure 2.1.: Speedup gained for the TPC-H queries (on 64 processors)

scalability is not limited by the optimizer. But it can be seen in Figure 2.1 that most
queries cannot exploit the maximal degree of parallelism provided by the hardware.

2.2.2. Xchg operator

In Vectorwise intra-query parallelism is introduced using a QEP rewriting rule which
introduces Xchg operators [Ani10]. Each Xchg operator provides a data redistribution
between m producer and n consumer threads. As implemented in Vectorwise it uses
buffers to temporarly store the data (from the vectors). These buffers can be seen as
a memory region shared by producer and consumer threads over which they (producer
threads and consumer threads) communicate.

Memory locality: The buffers are shared by multiple threads. This makes these buffers
are a potential subject to memory locality! Further buffers are firstly written by the
producers. Applying Linux’ first-touch policy to that implies that the buffers are residing
on the NUMA node where the producer thread was running on. Based on the semantics
of a Xchg operator there can be made serveral assumptions about the memory placement.

• In the case of a Xchg with one producer thread (i.e. m = 1) this might be one
NUMA node because only one thread writes into the buffers and making them local
to the NUMA node that made the first write to the buffer. This NUMA node might
become a potential bottleneck for memory access!

20

2.2. Parallelism model

• When having more than one producer thread the buffers are residing on random
NUMA nodes, because there cannot be made any statement which thread will write
first into a buffer.

Increasing effort: At some point producer threads and consumer threads have to find
a buffer to write to (producer thread) or read from (consumer thread). This uses linear
search to find a buffer matching the producer or consumer thread’s requirements and will
not scale for a large number of threads. The cost of the linear search could be amortized
at the expense of memory consumption i.e. using larger buffers.

2.2.3. XchgHashSplit operator

The XchgHashSplit operator is a special-case of the Xchg operator and provides a hash-
based data redistribution of m input/producer threads to n output/consumer threads.

Memory consumption: In order to achieve that it needs (theoretically) at least one
shared buffer for each producer and consumer thread. Practically, to amortize locking
overhead, it uses at least 2 per producer-consumer pair. This leads to at least 2 ·m · n
Buffers.

Thundering herd: In case the buffers for a consumer are full or empty the accessing
thread waits on a condition variable (producer cond, consumer cond). But the wakeup
(i.e. signalling the condition variable) is triggered as a broadcast which is forcing all
threads to reacquire the mutex again. 1 This leads to contention of the mutex.

After reacquiring the mutex each thread starts looking for its buffer and, in the worst-case,
checks all (2 · n · m) buffers. Since all producer or consumer threads got woken up by
the condition variable this worst-cast happens often, because only a few succeed finding a
buffer specifically addressed to them. The ones that did not succeed finding a buffer are
put to sleep again.

2.2.4. Case study: XchgHashSplit operators in Q21

It can be shown in an experiment that the XchgHashSplit operator is a scalability is-
sue. This experiment uses a slightly modified version of Vectorwise with the following
modification:

1According to the pthreads specification [Gro14] waiting on a condition variable only be done in com-
bination with a mutex. The general pattern is explained in Section 5.2.2.

21

2. Survey

• The rewriting rule which introduces parallelism was changed in order to introduce
Xchg operators with a higher degree of parallelism into the QEP.

• Further a patch that works around the - previously mentioned - thundering herd
problem was applied which only wakes specific threads Xchg operator and not all.

The changed rewriting rule leads to parallelized QEPs of Q21, as visualized in Figure 2.2
where n is the degree of parallelim. Further it can be seen that this QEP contains
five XchgHashSplit operators where each XchgHashSplit operator has an index i in its
superscript and the number of producer threads and consumer threads in its subscript.
Note that in this experiment the number of producer and consumer threads is both n.

TopN

Project

As

XchgUnionn,1

Aggr

XchgHashSplitop=5
n,n

Aggr

XchgHashSplitop=4
n,n

Project

Select

HashJoinN

XchgHashSplitop=1
n,n

lineitem

HashRevAntiJoin

XchgHashSplitop=2
n,n

Select

lineitem

XchgHashSplitop=3
n,n

MergeJoin

Select

orders

HashJoin01

Select

lineitem

XchgUnion1,n

MergeJoin

Select

nation

supplier

Figure 2.2.: QEPs of parallelized Q21

In general XchgHashSplit operator has exactly one mutex that protects the operator’s
shared state against concurrent access. Further the following different mutex times for

22

2.2. Parallelism model

10 20 30 40 50

0

0.5

1

1.5

·1012

n

C
on

te
nt

io
n

tim
e

t c
o
n

t

XchgHashSplitop=1
n,n

XchgHashSplitop=2
n,n

XchgHashSplitop=3
n,n

XchgHashSplitop=4
n,n

XchgHashSplitop=5
n,n

10 20 30 40 50

0

0.5

1

1.5

2

2.5

·1010

n

A
cq

ui
sit

io
n

tim
e

t a
cq

10 20 30 40 50

0

1

2

3

4

5

·108

n

t c
o

n
t

n

Figure 2.3.: tcont, tacq and tacq

n
for each XchgHashSplitop=i

n,n from Q21

each XchgHashSplit operator will be analyzed:

• The length section of code protected by the mutex against concurrent access, the -
so called - critical section - was measured as tcont. Note that tcont defines the sum
of all critical section protected by operator’s mutex. Further tcont is measured in
cycles.

• A mutex allows only one thread to succeed entering the critical section at a time
and other threads trying to enter that critical section have wait until a thread leaves
the critical section. The sum of all these waiting times is measured as twait in cycles.

23

2. Survey

Figure 2.3 shows tacq, twait and twait

n
with a degree of parallelism n ∈ {8, 16, 24, 32, 40, 48}.

In general it can be seen that the operators XchgHashSplitop=3
n,n , XchgHashSplitop=4

n,n and
XchgHashSplitop=5

n,n show no considerable times in the plots in Figure 2.3.

Table 2.1.: Tuples flown through each XchgHashSplitop=i
n,n

i Number of tuples Number of buffers
1 4.93 · 107 752.09
2 3.12 · 107 475.52
3 1.14 · 106 17.47
4 1.17 · 105 1.78
5 6.08 · 104 0.93

Contention time: In the tcont plot it can be seen that in 2 of 5 XchgHashSplit operators
- more precisely XchgHashSplitop=1

n,n and XchgHashSplitop=2
n,n - tcont scales super-linearly

in relation to n. Further in Table 2.1, which shows the number of tuples flown through
each XchgHashSplit operator, these two operators are the ones with the highest number
of tuples flown through. This moves the cost-center away from startup and teardown i.e.
startup and teardown mutex contention is getting less relevant. In the Xchg operator
the mutex is acquired during query execution everytime a producer or consumer thread
needs to find a buffer. It can be shown that finding a buffer using linear search has a time
complexity Θ(n2) in average case: Let the number of buffers used be b. Further let the
data be distributed from m = n producer threads to n consumer threads, because only
XchgHashSplitn,n are considered. This leads to

b = 2 · n ·m = 2 · n2

Each search for a buffer, which must be done on both (producer and consumer) sides,
is implemented as linear search over all buffers b, leading to an average case number of
comparisons of ∑b

k=1 k

b
= b + 1

2 = 2 · n2 + 1
2 = n2 + 1

2
which is leading to a time complexity of

Θ(b) = Θ(n2)

in the average case.

This search to be done for each producer and consumer thread when a new buffer is needed
for temporarely materializing tuples or reading tuples from a buffer. Further assuming
that the average length of the critical section is dominated by the search for a buffer. This

24

2.2. Parallelism model

leads to a theoretical mutex contention time (in the average case) of

tcont,theoretical = Θ((2 · n) · (n2 + 1
2)) = Θ(n3 + n)

which is a cubic function.

In reality this model is only a coarse approximation for many reasons:

• Buffers may reside on remote NUMA nodes which increases memory access latency.

• Further caches is not considered in this approximation.

Given that the contention time scales super-linear with the degree of parallelism and that
- from the sense of mutual exclusion - only one thread can execute the critical section at
a time, the contention time of a mutex is a purely sequential fraction. Hence it is limiting
the speedup according to Amdahl’s law using a sequential fraction that increases with the
number of threads.

In case the mutex is already contented threads trying to access the critical section have
to wait. This implies that a longer critical section will force threads to wait longer, in the
contented case.

Acquisition time: Further a longer contention time will also increase the chance to
wait for acessing the critical section. Thus the sum of these waiting times - tacq - may
also increase. In Figure 2.3 can be seen that tacq increases with the number of cores. This
implies that the mutex must be contented in most of the cases where a thread wants to
acquire the mutex. Further this waiting time could also be seen a sequential fraction,
because a waiting thread cannot make progress and in the given scenario there is no other
thread that could be efficiently be scheduled on this processor, because the other threads
are already running on their processors. This could be done by calculating the average
waiting time for one thread, as it was done in Figure 2.3, as tacq

n
.

2.2.5. Summary

In general it can be summarized that locking can become a scalability issue in Xchg
operators. Furthermore there is a need for an efficient solution for finding buffers in the
Xchg operator in order to damp the problems caused by locking.

Lock-free Xchg operator: In Section 2.2.3 it was shown that Xchg operators can
behave very badly in given scenarios. In the case of the XchgHashSplit the time waiting on
the mutex and the time spent in a critical section was problematic in terms of many-core

25

2. Survey

scalability. One way out of this may be a lock-free Xchg operator. In [TFB+11] it
has been shown that with a few restrictions it is possible to build a high-performance
lock-free n-producer-m-consumer queue. This would be a nice fit for Xchg operator’s
implementation where such a queue is implemented using locking!

Further one problem occurs, how to synchronize faster/slower producers and consumer
efficiently while not waiting for a potentially too long period? That will remain an open
problem for future research.

2.3. Sequential fraction

Sequential percentages in parallel programs can substancially limit scalability, but it is
impossible to completely eleminate these due to synchronization, setup and teardown
overhead.

Amdahl’s law: Equation (2.1) shows the formula known as Amdahl’s law (as stated
by [HM08, p. 34]) where f is the fraction of program’s time that is parallelizable over m

processors, hence 1− f is the sequential fraction of the program.

S := 1
(1− f) + f

m

(2.1)

Further ”Amdahls law states that if a portion of a computation,f , can be improved by
a factor m, and the other portion cannot be improved, then the portion that cannot
be improved will quickly dominate the performance, and further improvement of the
improvable portion will have little effect.” [SC09, p. 184]

Assuming an infite number of processors used for parallelizing the maximal speedup is
bound by

lim
m→∞

S = lim
m→∞

1

(1− f) + f

m︸︷︷︸
=0

= 1
1− f

Figure 2.4 shows the speedup, according to Amdahl’s law, for different fractions of paral-
lelizable work f where the number of processors runs from 2 to 128. It can be seen that
even a sequential fraction of 5% (f = 0.95) is limiting the scalability to the speedup of
≈ 10.

26

2.3. Sequential fraction

−5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
0

10

20

30

40

Processors m

Sp
ee

du
p

S

f = 0.75 f = 0.90 f = 0.95 f = 0.99

Figure 2.4.: Speedup according to Amdahl’s law with differing parallelizable fraction f

2.3.1. Sequential phases

Figure 2.5 visualizes the architecture of the Vectorwise DBMS. It can be seen that no SQL
queries reach Vectorwise only query plans reach Vectorwise and go through a predefined
process, which is explained in the following:

• First the query (which is a textual representation of the QEP) is parsed into a tree
structure (referred as QEP).

• Then the QEP goes through the rewriting process in which rewriting rules like
parallelization may be applied (Rewriter).

• After rewriting on the basis of the QEP in the Builder a physical operator tree is
constructed.

• This physical operator tree is then used for the Query Execution (Engine).

• after query execution completed the allocated resources are freed.

Note that all these phases are run sequential and therefore represent a given sequential
part limiting scalability (regarding Amdahl’s law).

It was found out that the length of the rewriting phase and the phase in which the physical
operator tree is built scale with the number of processors (here n) and start to become
problematic with n ≥ 64.

Rewriting: The most time consuming part of rewriting process is the parallelization
rule which in the worst-case tries all parallelism levels between 2 and n. This worst-case

27

2. Survey

Client Application

SQL Parser

Optimizer

Rewriter

Builder

Query Execution Engine

Buffer Manager

In
gr

es
Ve

ct
or

w
is

e

data request

physical operator tree

annotated plan (VW alg.)

query plan (VW alg.)

parsed tree

client query (SQL)

re
su

lts

data

I/O request data

Storage

Figure 2.5.: Vectorwise DBMS architecture [CI12, p. 4]

happens everytime when a scalable QEP is detected i.e. when the cost of the QEP has its
minimum with using all n processors. In this case all possible solutions for all processors
starting with 2 until 64 were examined.

Build: After rewriting the QEP is finished the physical operator tree is built which builds
any operator in the QEP recursively. In the Vectorwise system, building an operator
means instantiating and initializing an operator object, which includes allocating and
initializing its memory structures. Furthermore when a QEP is parallelized it has to
build the whole parallel QEP n times, where n is the level of parallelism used.

Considering the example QEP in Figure 2.6, which consists of 7 operators, in sum 322
physical operators have to be built whereas Table 2.2 visualizes the calculation.

This means that the more parallelism added, the more expensive its get to build all these
operators.

Sequential phases: According to Amdahl’s law sequential percentages are a scalabil-
ity bottleneck and the described sequential running phases are part of such sequential
percentages. Figure 2.7 visualizes the fraction of each phase to the query response time.

28

2.3. Sequential fraction

Aggr

XchgUnionn=64

HashJoin

XchgHashSplitn=64

orders

XchgHashSplitn=64

lineitem

Figure 2.6.: Example QEP to build

Table 2.2.: Example calculation of the operators built
Operator Count
Aggr 1
XchgUnion 1
HashJoin 64
left XchgHashSplit 64
Scan lineitem 64
right XchgHashSplit 64
Scan orders 64∑ 322

Whereas Not covered means that the percentage shown was not included in the profile
information gathered by Vectorwise where

not covered = total − (scan− parse− rewrite− build− execution− profile− free).

Note that in extreme cases, for example in Q10 only ≈ 70% for the whole query response
time are caused by query execution. Other extreme examples are

• Q4, where 80%, and

• Q14, where 70%, of the query response time is spent on executing the query.

2.3.2. Sequential query parts

Most parallelizable queries (even Q1) have one or more operators at the top-level of the
QEP which are not parallelized at all. In case of Q1 these operators aggregate the partial
results from the parallel subtrees, apply projections and sort the results. These top-level
operators are executed sequentially which hinders scalability by introducing sequential
work.

29

2. Survey

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

0

20

40

60

80

100

TPC-H query

Fr
ac

tio
n

of
qu

er
y

tim
e

in
%

Scan & parse Rewrite Build Execute
Profile Free Not covered

Figure 2.7.: Time spent in sequential phases in % of query time (on 64 processors)

Further the Reuse operator was not parallelizable (in the used version of Vectorwise) and
forces the streams of the lower subtree to be joined and afterwards to be partitioned
again. This obviously introduces sequential work and synchronization overhead where
both is limititing scalability.

Another reason for sequential parts of the QEP is that depending on the cost model of the
parallelism rewriter, for which it may appear cheaper to share a scanned relation instead
of scanning it twice.

Figure 2.8 visualizes importance of the previously mentioned problems as a percentage of
the query time (on 64 processors).

Figure 2.8 also shows that the sequential operators at the top of the QEP is a scalability
killer for Q11 where ≈ 97% of the query time is spent on doing sequential work while only
a small part of the QEP was parallelized.

Further it can be seen that Q2, Q15 and Q17 spent more than 10% of their query time
in the Reuse operator which therefore introduces a considerable sequential percentage.

The cost-based sequentially scanned relations which are shared afterwards may be a prob-
lem for very high scalability scenarios, but in the analyzed TPC-H queries it is a minor
scalability issue because only < 1% of query time is spent there.

30

2.3. Sequential fraction

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

0

20

40

60

80

100

TPC-H query

Fr
ac

tio
n

of
qu

er
y

tim
e

in
%

Sequential top Sequential around Reuse Sequential before broadcast

Figure 2.8.: Time spent in sequential parts as % of query time (on 64 processors)

2.3.3. HashJoin operator

In Vectorwise HashJoin operators can be parallelized in two ways:

• As independent HashJoin operators with (XchgHashSplit) on both sides, in which
each HashJoin operator can process data independent of the HashJoin operators
run by the other threads.

• The other way of parallelizing HashJoin operators is using a shared VHT2 where
all threads with a same build side wait until the VHT is constructed and - after the
building has finished - share the same data structure. 3

Shared VHT: In the Vectorwise system a shared VHT HashJoin involves one thread
that builds the VHT. After the building has been completed multiple threads can probe
in parallel using the same VHT. Note that sharing the VHT built by one thread and -
according to Linux’ first touch policy - assigned to one NUMA is very likely to become a
bottleneck for memory access.

Table 2.3 shows the time (as a percentage of the whole queries response time) spent in
building the VHT sequentially. Note that queries without a shared VHT HashJoin or a
percentage below 0.1 % are not listed. It can be seen that for Q18 ≈ 44% of the query

2Vectorized hash table
3Note that shared VHT HashJoins are a departure of the pure Volcano-model parallelism, because the

synchronization to wait for the shared VHT to be built introduces limited awareness of parallelism.

31

2. Survey

time is spent on building the shared VHT sequentially. A less extreme example is Q3
where ≈ 26% on building the shared VHT. It can be claimed that these queries could be
accelerated when the VHT could be built in parallel.

Table 2.3.: Shared VHT build time (on 64 processors)
Query Shared VHT build time in %

3 26.4
5 13.5
7 10.2
8 9.1
9 5.9
17 0.1
18 44.4
20 1.3
21 0.1

Parallel shared VHT building: The sequential building of the VHT is a scalability
issue which forces multiple streams to be combined into one which then builds the VHT.
Thus introducing synchronization overhead and giving away the possible performance
improvement by multiple threads hashing and inserting into the VHT in parallel.

Independent HashJoin operators: The scalability of independent HashJoin operators
is limited by the XchgHashSplit operators which is dicussed in Section 2.2.3.

2.3.4. Reuse operator

The Reuse materializes tuples to be reused in other parts of the QEP. In Vectorwise this
operator is implemented completely sequential and is not parallelized in any way. This
forces for example in Q2 the parallel streams to be merged and, after the reuse, to be
partitioned again which introduces additional synchronization overhead for an operator
which already consumes ≈ 19% of the whole query time.

Table 2.4 shows - for each query containing a Reuse operator - the percentage of query
time spent in the Reuse operator and the percentage of (query) time spent in the operators
consuming the reused tuples.

Parallel-Reuse: Having a Reuse operator being aware of parallelism would avoid that
bottleneck and would eleminate the - in this case - unnecessary synchronization.

32

2.3. Sequential fraction

Table 2.4.: Time spent in Reuse (on 32 processors)
Query Time spent in %
2 18.9
11 < 0.5
13 7.6
15 12.3
17 5.3
19 ≈ 0
22 ≈ 0

2.3.5. Locking

Locking protects a critical section against concurrent access so that only one thread can
run intructions inside the critical section at a time. Thus this time spent in the critical
section can be counted as sequential fraction of a parallel program.

In Vectorwise locking is used in many places e.g. locking a block in the buffer pool, during
updates, ... where inside Xchg operators and in I/O layer are critical places that will be
examined in the following.

Xchg

Each Xchg operator provides a synchronization point between producer and consumer
threads where the shared state is protected against concurrent access using one mutex
per Xchg operator. This mutex is acquired during setup of each producer or consumer
thread, during query execution and during teardown. In each case the most time is spent
on the search for a new buffer as explained in Section 2.2.2. Further that mutex is only
acquired when a new buffer is needed or the producer or comsumer thread is woken up
and the thread needs to check its sleeping condition again.

As known from Section 2.2.3 the XchgHashSplit operator is a victim of mutex contention.

Table 2.5 shows the time spent in the critical section tcont of each TPC-H query where
the critical section visualized is the one with the maximal tcont. Further it shows that
fraction of the whole parallelized query’s time spent in this critical section. In Q10, Q13,
Q14, Q16, Q19, Q20, Q21, Q22 this percentage reached to at least 10%.

Further a lock-free solution has been proposed in Section 2.2.5.

33

2. Survey

Table 2.5.: Contention time in Xchg mutex (on 64 processors)
Query Contention time tcont Fraction of query time in %

1 4.1 · 106 0
2 2.3 · 107 0.5
3 5.7 · 107 1.1
4 1.5 · 106 0.1
5 1.3 · 107 0.1
6 2.3 · 106 0.2
7 4.4 · 106 0.1
8 6.6 · 107 0.4
9 1.9 · 108 0.2
10 4.3 · 109 10.1
11 2.4 · 106 0
12 3·106 0.1
13 2.1 · 1010 34.2
14 1.3 · 109 13.3
15 3.8 · 108 8.8
16 1.7 · 109 11
17 2·108 2.5
18 7.7 · 107 0.2
19 4.5 · 109 18.1
20 1.5 · 109 11.2
21 9·109 21.8
22 1.6 · 109 15.1

PBM

It was noticed that during the initialization of the MScan operator there was a relatively
high cost per (afterwards scanned) tuple. This was traced to the I/O layer of Vectorwise,
which uses a component called PBM4 [SBZ12]. The PBM manages buffer replacement
of the buffer pool. It is based on the idea that the ”buffer manager has quite a bit
of information on the workload in the immediate future” [SBZ12, p. 1759] by actively
watching ”the progress of all scan queries” [SBZ12, p. 1759]. Based on this information
it is possible to ”to estimate the time of next consumption of each disk page” [SBZ12,
p. 1759] and create ”an approximation of the ideal [...] algorithm” [SBZ12, p. 1759]. This
involves locking to protect PBM’s workload metadata against concurrent access.

Figure 2.9 shows two TPC-H runs one with the standard configuration with PBM enabled
and another one with the fallback LRU strategy. It can be seen that the PBM introduces
noticeable overhead in Q9 and Q18.

Further after analyzing the profiling information gathered this overhead was caused by the

4Predictive buffer manager

34

2.3. Sequential fraction

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
0

5

10

15

20

25

30

35

TPC-H query

T
im

e
in

s
PBM LRU5

Figure 2.9.: Query response times with PBM and with the LRU strategy (on 64 proces-
sors)

locking inside PBM which was critical during startup and teardown of a MScan operator
when many threads are scanning in parallel.

With the help of the profiling information, it is possible to get an overview about the
overhead introduced by locking. This was done for the main mutex in PBM (PBM main
lock). Table 2.6 visualizes the time the mutex was contented (contention time tcont), its
fraction of the query response time and the time spent waiting on the mutex (acquisition
time tacq). It can be seen that the fraction of query time spent inside PBM’s main mutex
is extreme for Q6 and Q17. But for most queries this fraction is under 5%. Consider
Q9’s contention time which is around 1.6

2.3 = 0.7s spent sequential. Note that a rather long
contention time can imply an a relatively high acquisition time, which is 1010 cycles in
case of Q9. From the tacq it is possible to calculate the average time that each processors
spent waiting, in Q9 this is 1010

64 = 1.5 · 108 cycles that are not spent on doing work.

2.3.6. Summary

In the previous sections it had been shown that in some queries - for example Q11 - there
is an high (> 90%) percentage of work done in sequential compared to the percentage (of
work) done in parallel. Figure 2.10 visualizes the work that has to be done sequentially
per query as a fraction of the query time where each query was parallelized. Note that
this plot cannot show every part of the query that is processed sequentially, because

35

2. Survey

Table 2.6.: Contention and acquisition time in PBM main lock (on 64 processors)
Query Contention time tcont Fraction of query time in % Acquisition time tacq

1 4.5 · 108 3.1 4.6 · 109

2 2.1 · 107 0.5 7·106

3 2.3 · 108 4.3 5·109

4 7.2 · 107 6 1.2 · 109

5 2.9 · 108 2.7 6.8 · 109

6 1.1 · 108 8.1 1.9 · 109

7 2.5 · 108 3 3.2 · 109

8 2.8 · 108 1.8 1.3 · 109

9 1.6 · 109 2 1·1010

10 2·108 0.5 1.3 · 109

11 3.7 · 107 0.1 1.7 · 108

12 1.4 · 108 4 4.1 · 109

13 1.4 · 108 0.2 3.9 · 108

14 3.3 · 108 3.4 2·109

15 1.6 · 108 3.8 1.3 · 109

16 3.5 · 107 0.2 2.5 · 108

17 9.8 · 108 12 9.7 · 109

18 3.9 · 108 1.2 4.8 · 109

19 3.4 · 108 1.4 1.8 · 109

20 3.1 · 108 2.3 1.4 · 109

21 4.9 · 108 1.2 1.8 · 109

22 1.5 · 108 1.4 5.2 · 108

e.g. different mutexes may interfere (it is possible to lock a second mutex while being
in the critical section of a mutex), Further effects like waiting times are not included in
Figure 2.10. But still, Figure 2.10 can be seen as an per-query indication of scalability
issues. This sequential fractions shown include:

• The - in Section 2.3.1 explained - sequential phases except for the query execution
phase (execution).

• Furthermore it includes the time spent for building shared VHT(s) which are ex-
plained in Section 2.3.3 and

• parts of the QEP executed sequentially (sequential parts further explained in Sec-
tion 2.3.2) and

• the length of the critical section of two mutexes: the PBM’s main mutex and Xchg
operator’s mutex with the longest critical section - as explained in Section 2.3.5.

Furthermore it can be seen that most queries have a relatively high sequential fraction (in
the parallelized case) where linear scalability by Amdahl’s law would still require such a
sequential fraction to be zero or at leat near zero.

36

2.4. Memory locality

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

0

20

40

60

80

100

TPC-H query

Fr
ac

tio
n

of
qu

er
y

tim
e

sp
en

t
w

ith
se

qu
en

tia
lw

or
k

in
%

Sequential phases (scan & parse, rewrite, ...) Building shared VHT
Sequential top-level operators in QEP Sequential around Reuse

Sequential before broadcast PBM’s main mutex
Xchg’s mutex

Figure 2.10.: Time spent sequential in % of query time (on 64 processors)

2.4. Memory locality

In order to find out the properties of Vectorwise’s memory locality and in order to spot
potential bottlenecks the following experiment was done: TPC-H was ran one time with
no changes i.e. vanilla Vectorwise and one time with all memory of the x100 server process
distributed round-robin over all NUMA nodes on a per-page granularity, which is referred
to as interleaved memory. This involves a high probability of having to access memory on
a remote NUMA node which will cause additional overheads, but reduces the probability
of only a few NUMA nodes getting the bottleneck for memory access.

This led to the query response times as visualized in Figure 2.11. Further this led to an
improved query response time, in the case of Q1, Q3, Q5, Q6, Q7, Q8, Q9, Q12, as well as
regressed query response times in Q10, Q11, Q13, Q14, Q15, Q16, Q18, Q19, ..., Q22. It
can be summarized that using interleaved memory has mixed influences on performance.

Furthermore interleaved memory had caused an extreme improvement in Q9, what almost
halved the query response time.

In the following the memory locality of the MScan operator and the shared VHT HashJoin
will be analyzed.

37

2. Survey

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
0

5

10

15

20

25

30

35

TPC-H query

T
im

e
in

s
Standard memory placement Interleaved memory

Figure 2.11.: Memory placement (on 32 processors)

2.4.1. MScan operator

In the tested scenario all MScans read the data from the blocks already cached in-memory.

The blocks were read by I/O worker threads which issue the read requests from persistent
memory. These threads are not bound to any processor or NUMA node. That implies
that even when Linux’ first-touch policy can be applied the data of block might reside
on a more or less random NUMA node. This implies that the reading/decompression
speeds will be varying which is the case. As an example, in Q6 the columns quantity,
extendedprice, discount and shipdate are scanned. Table 2.7 shows the times needed for
decompression per column in cycles

tuple over three runs. It can be seen that the minimum and
the maximum differs by a factor of at least 2.

Table 2.7.: Decompression speed of Q6’s scanned columns
Column Minimum Mean Maximum
discount 3.1 6.9 15.3

extendedprice 3.7 8.8 15.9
quantity 5.2 9.5 16.7
shipdate 4.1 7.3 14.4

An experiment was performed in which Q6 was ran without changes and with interleaved
memory, which forces all (memory) pages to be distributed over all NUMA nodes in a
round-robin fashion. Table 2.8 shows the decompression time which is comparable to
Table 2.7. It can be seen that the minimum speed is approximatetly equal (the difference

38

2.4. Memory locality

Table 2.8.: Decompression speed of Q6’s scanned columns with interleaved memory
Column Minimum Mean Maximum
discount 2.7 3.2 6.4

extendedprice 3.4 3.9 7.1
quantity 4.6 5.5 11.5
shipdate 3.9 4.8 10

is < 1 cycles
tuple).

Further it can be seen that the mean, represented by the column Mean, approximately
halved. In other words the variant with ”no” locality (i.e. interleaved memory, very low
probability for local access) is - in average - faster than the standard strategy.

This leads to the conclusions that:

1. the standard strategy is far from optimal (in Q6) and that

2. it must be limited by the memory bandwidth, which is caused by a few nodes - on
which the blocks reside - becoming the bottleneck for memory access.

Note that the second conclusion can also be drawn from the maximal time of the decom-
pression (column Maximum) which reduces by ≥ 5 cycles

tuple .

2.4.2. Shared VHT HashJoin

The - in Section 2.3.3 - explained parallelized HashJoin where one thread builds a VHT
and all parallel threads probe through this shared VHT afterwards.

One problem is that the one thread that builds the VHT makes its memory region local to
its NUMA node (first-touch policy), because it is the first who writes to it. That implies
that in a scenario using n ≥ 8 (kernel) threads the VHT is local to only 8 threads and
all other n − 8 threads have to access the VHT through remote memory access. In a
worst-case scenario the VHT will be accessed remotely by all threads.

This leads to slower access in sense of latency as described in Section 1.2. Further the
NUMA node hosting the VHT may become a bottleneck.

Table 2.9.: Shared VHT HashJoin probing time in cycles
input tuple in Q3

Memory Minimum Mean Maximum
standard 304.39 727.74 1,881.59

interleaved 194.64 243.4 334.87

Table 2.9 shows the time needed probing one tuple in the VHT in cycles
input tuples , with forced

39

2. Survey

interleaved memory and with the standard memory allocation that Vectorwise DBMS
provides. More precisely it shows the shared VHT HashJoin in Q3 in which 31 threads
are probing concurrently through the VHT . The thread which builds the VHT and after
the build probes was excluded.

Using interleaved memory decreased the per-tuple cost in general. This leads to the
conclusion that using interleaved memory reduces single NUMA node / or only a few
NUMA nodes being a bottleneck for memory access in parallel HashJoin operators using
a shared VHT.

2.4.3. Summary

In Section 2.4.1 and Section 2.4.2 it was shown that the query response time could be
reduced by using interleaved memory when only a few NUMA nodes are becoming the
bottleneck for memory access. In case of the shared VHT HashJoin in Section 2.4.2 the
thread building the VHT sets the memory locality to its local NUMA node which makes
this NUMA node a possible candidate for being a bottleneck for memory access.

Proposed solution: The bandwidth limitation due to the single NUMA node becoming
a bottleneck can be overcome by using interleaved memory for the buffer pool and for
the shared VHT. This allows to balance the memory accesses over all NUMA nodes and
hence eleminating the single node bottleneck as such.

2.5. Skew

According to Amdahl’s law, the maximal speedup can be reached when the sequential
percentage is zero and all parallel streams are running for an equally long time. But
in practice this is almost never the case. Typically these different parallel stream have
different processing speeds. This might be due to memory locality (e.g. cold caches,
NUMA), OS6 scheduling issues (e.g. different time quantums), etc.

Consider an example where one query is processed which consists of two pipelines e.g.
first building a hash table and afterwards probing tuples through the built hash table.
Each pipeline is executed using 4 kernel threads which run parallel to each other. It is
highly probable that not all threads complete their work at the same time. Consider
the drawing in Figure 2.12 which visualizes this example. Note all threads of the first

6Operating system

40

2.5. Skew

Time0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Pipeline 1 Pipeline 2

Figure 2.12.: Skew in a query consisting of two pipelines

pipeline (Pipeline 1) need to be completed, before the second pipeline (Pipeline 2) can
be evaluated.

Vectorwise maximally uses as much threads as available processors, which implies that
given different processing speeds, threads complete their work later or earlier than the ”av-
erage” thread. That makes linear scalability impossible, because it requires full utilization
of the processors which cannot be reached anymore.

This imbalance is referred as execution skew. Further execution skew could also occur in
the presence of imbalanced data distributions. This is referred as data skew. There are
multiple ways data skew can be introduced. Two are described in the following:

• on the hand-side the data may not be partitioned into equal-sized chunks

• or the parallel running QEP operators may have different selectivities and therefore
discard different amounts of tuples.

Effects: Further the maximal speedup gained in the presence of skew was evaluated in
[BFV99, p. 106] using a model, based on the following assumptions:

• According to [BFV99, p. 106] that model assumes that only one operator introduces
skew.

• That, the one operator introducing skew, has a rank r which determines its position
in the pipeline chain where r = 1 determines the top-most operator in the pipeline,
as stated by [BFV99, p. 106].

• Further - according to [BFV99, p. 106] - it was assumed that every operator has the
same cost.

• Skew introduces using a ”tuple [that] produces k % of that operator’s result”
[BFV99, p. 106] where ”p threads allocated to the query” [BFV99, p. 106].

Figure 2.13 shows the maximal speedup reached by different fractions of skew k for dif-
ferent positions r of the operator that introduces skew. Further it can be seen that the

41

2. Survey

Figure 2.13.: Maximal speedup in the presence of skew [BFV99, p. 106]

”speed-up gets worse as the skewed operator reaches the beginning of the chain” [BFV99,
p. 106] and that the maximal speedup reached it limited by the ”skew factor k” [BFV99,
p. 106] and, obviously, ”the number of threads p” [BFV99, p. 106].

Existence in queries: The execution skew S over a set of thread runtimes T can be
quantified by the difference between the maximal runtime and the minimal runtime of a
thread which leads to

S = max(T)−min(T)
max(T)

under the assumption that each thread started at the same time.

Table 2.10.: Skew S below the top-most Xchg operator over TPC-H query set restricted
by queries with only one Xchg operator

Query Skew S · 100
Q1 31
Q4 66
Q6 29

Q12 38

This formula leads for a subset of the TPC-H queries (with one Xchg operator only) to
results as can be found in Table 2.10. In these queries it was found out that not all thread
process an equal amount of tuples (over their whole QEP). Further if threads process a
nearly equal amount the processing speeds of each thread differs which is caused e.g. by
different memory access times.

42

3. Related work

This chapter will present recent research done about general parallelism models, user-level
scheduling and progress estimation. Further it will be anaylzed whether these approaches
are usable in Vectorwise, regarding parallelism models and in the frame of this thesis.

3.1. Parallelism model

Because of the disadvantages of the Volcano-model parallelism, the recently developed
database systems HyPer and BLU chose parallelism models that drifted away from the
exchange-base parallelism towards task-based parallelism.

Morsel-driven parallelism: [LBKN14] proposes a concept in which the data is parti-
tioned into fine grained chunks, called morsels. These morsels could run in parallel to
each other and are dynamically distributed over the available cores by a Dispatcher. This
allows to ”to assign a core to a different query at any time” [LBKN14, p. 5] which further
”also guarantees load balancing and skew resistance” [LBKN14, p. 5]. In general all oper-
ators are aware of parallelism and provide implementations optimized for NUMA locality
and parallelism. For example [LBKN14] proposes a lock-free and parallel implementation
of the Hash-Join algorithm with the hash table being aware of NUMA.

Note that in Hyper was written from scratch with operators being aware of parallelism
which is not easily feasible in Vectorwise, because the parallelism model implemented
(Volcano-model parallelism) keeps operators unaware of parallelism. In this thesis we try
to see how principles from such system can be used to refloat the Volcano model, using
in my existing database systems.

BLU-like parallelism: As stated in [RAB+13, p. 1083], BLU divides a query into poten-
tially multiple, so called, single-table queries. Each for these will be executed using a set
of kernel threads. Further this model was implemented from scratch with operators being
aware of parallelism which makes it hard to be integrated into the existing Vectorwise
code base.

43

3. Related work

3.2. User-level scheduler

The drawbacks of heavyweight, kernel-supported threading such as pthreads are well-
known [...], leading to the development of a plethora of user-level threading models”
[WMT08, p. 7]: Most approaches (e.g. Intel TBB1 ([Rei07, p. 2]), even Hyper ([LBKN14,
p. 4])) concentrate on task-level scheduling which decomposes bigger parts of work into
possibly many tasks and tries to keep all cores/processors busy with executing tasks
(through using a pool of worker (kernel) threads). The schedulers in TBB and Hyper
do not support context switching in the sense of switching from one task (A) to another
(B) and afterwards continuing with A. But this makes them hardly usable in Vectorwise
where thread can wait a long period on a resource to be available. In the case of Intel
TBB this would block a worker thread, or a morsel in case of morsel-driven parallelism
([LBKN14]). Some of these waits occur in the implementation of the Volcano-model alike
Exchange operator and in the implementation of the scan operators where a scan would
wait on I/O2. Both would require many distributed changes in different components to
fit longer waits into the task-driven parallelism model.

It is possible to avoid these changes with user-level scheduling that allows context-switching
inside a unit of work (a user-level thread).

Protothreads are ”extremely lightweight stackless [...] threads” [DS05, p. 6] which
”only requires only two bytes of memory per protothread” [Dun14]. As stated by [DS05,
p. 6], Protothread base on the concept of, so called, local continuations. In the frame of
[DS05] these local continuations are implemented using a function f , a state s and the
C switch statement on the state s in combination with a case statement for each state.
”A protothread is driven by repeated calls to the function [f] in which the protothread
is running” [Dun14] in combination with a starting state s = 0. Then via the switch
statement the control flow jumps to the case where s = 0 is handled. In general this
allows it to jump to any state s with a case statement. In case of a context switch
between different Protothreads, the s is set to the next state for the Protothread which
shall be left, allowing to continue at the new state. After setting the next state the return
statement is used to leave the function f which allows another function to run.

This concept of threads comes with the advantage of being lightweigth, because the stacks
can be shared between the Protothreads implying that very many of these can be run
without excessive memory usage. The cost of this advantage is that ”automatic variables -
variables with function-local scope that are automatically allocated on the stack - are not

1Thread Building Blocks
2Input / output

44

3.3. Query progress estimation

saved across a blocking wait” [DS05, p. 9] where ”blocking wait” is equivalent to a context
switch. This disadvantage makes Protothreads - despite its advantage of being lightweight
- a bad fit, because it cannot be guaranteed that these automatic variables are saved
between context-switches. Allowing to save these automic variable across context-switches
will require the usage of stack memory and explecitely saving the current context of
execution as it is done by the following.

Shared-stack Cooperative Threads try to reduce the memory overhead that is in-
volved with many threads using shared-stacks as stated in [GKHC07, p. 1184] where each
”cooperative thread occupies a fixed-size stack like the way of multithreaded systems”
[GKHC07, p. 1184].

[GKHC07] works around having a fixed-sized stack for each thread by differentating be-
tween the stack of active threads and inactive threads. ”There is a single shared-stack
used as a runtime stack for all threads [...] which is called the shared-stack” [GKHC07,
p. 1184] where ”only the stack of the currently running thread occupies the shared-stack”.
At a context-switch ”it allocates a buffer in heap and copies its thread context to the
buffer” [GKHC07, p. 1184] whereas the ”thread that will run next copies its thread con-
text to the shared-stack and resumes its execution” [GKHC07, p. 1184].

GNU Pth allows to emulate multiple threads. Further ”Pth doesn’t require any ker-
nel support, but can NOT benefit from multiprocessor machines” [Eng14] where that
restriction is a major one, because it explicitely excludes the use of multiple processors.

Qthreads ”provides basic lightweight thread control and synchronization primitives in
a way that is portable to existing highly parallel architectures” [WMT08, p. 7]. ”This
technique marks each word in memory with a ”full” or ”empty” state, allows programs
to wait for either state, and makes the state change atomically with the words contents”
[WMT08, p. 2].

3.3. Query progress estimation

”The need for accurate SQL progress estimation in the context of decision support ad-
ministration has led to a number of techniques proposed for this task” [KDCN11, p. 382]:

Machine learning: [MZZ08] proposes a concept of learning how long a query takes
with a given system state. The authors propose a machine learning technique of creating

45

3. Related work

RESPONSE
TIME

TEST
QUERY

SYSTEM
STATE

OLTPSYSTEM

MACHINE
LEARNING

RESPONSE TIME
MODEL

0

10 20 40 5030

10

20

Thickness
X-Axis

1

1 1

1

Figure 3.1.: Progress estimation by machine learning [MZZ08, p. 491]

46

3.3. Query progress estimation

a classification tree based on the system’s state in combination with the query during
the learning phase as visualized in Figure 3.1. After the learning phase the created
classification model is used to estimate query’s progress.

GetNext() model: [CNR04] describes an alternative way to determine to progress of a
QEP based on the number of GetNext() calls of an operator in the QEP in combination
with the type of operator (e.g. Scan, Join, ...). That method ”assumes that the total
work (i.e., CPU overhead, I/O, etc.) is amortized across the GetNext calls issued across
all nodes in the execution plan. Hence, the fraction of the total GetNext calls executed at
any point in a query can be used as an estimate of its progress” [KDCN11, p. 384] where
total GetNext calls means the ”total number of GetNext() calls that will be performed
over all nodes in the query” [CNR04, p. 806]. [CNR04] states that estimating the total
”number of GetNext() calls for an operator in the query execution plan is the cardinality
estimation problem faced by query optimizers” [CNR04, p. 805].

As stated by [CNR04] the progress of a single pipeline can be estimated by estimating
its - so called - Driver Node which is the node/operator that introduces data into the
pipeline (e.g. Scan operators, Sort operators when they output their sorted tuples ...).
Further [CNR04] defines the Driver Node’s estimated progress the fraction of the number
of GetNext calls in the Driver Node divided by the estimated total number of GetNext
calls in the Driver Node.

In [CNR04] the authors extend the scheme for queries consisting of multiple pipelines
by summing, per pipeline, the current number of GetNext() calls divided by the sum of
all estimated total number of GetNext calls of each pipeline. In [CNR04] each pipeline
is represented using its Driver Node while utilizing optimizer’s cardinality estimates for
deriving the total number of GetNext calls.

The in [CNR04] presented model was refined by [MK07] and [KDCN11].

47

4. Progress estimation

The technique - presented in this chapter - shall estimate the progress of a given QEP
and will be used in Chapter 5 to estimate the time left until a stage of query execution is
completed and as criterion of priority between QEPs in the same scenario as explained in
Chapter 2. As it will be used for assessing the relative progress between threads running
the same QEP and not the overall QEP progress, it differs from query progress estimation
techniques like these presented in Section 3.3.

Desirable properties: According to [MZZ08, p. 490] desirable properties for query
progress estimation are:

• Monotonicity i.e. the reported progresses cannot go ”backwards”,

• Low overhead, low interference with query execution and

• ”Leveraging feedback from execution: as query execution progresses, more infor-
mation based on (intermediate) results of execution can become available. Ideally,
an estimator should be able to take full advantage of such information” [MZZ08,
p. 490].

Simplifications: Given the later usage of the progress estimation scheme and the sce-
nario the following simplifications can be made:

• I/O does not need to be considered.

• Disk spilling is not considered.

• Scan ranges are static.

• Futhermore for the usage inside the user-level scheduler the progress estimation
needs to be fine granular estimation inside a stage of query execution where other
estimation techniques - as described in Section 3.3 - want a high accuracy for the
estimation of whole query, which is not needed.

48

4.1. Approach

4.1. Approach

Consider an example query like described in Figure 4.1 which consists of two physical
operators:

Select

lineitem

Figure 4.1.: Simple example QEP

• A Scan which reads the relation lineitem and

• a Select operator that filters out tuples which do not match a given predicate.

The progress of this query could be described by the progress of the Scan operator which
could be measured by the amount of tuples already read (produced) and the total number
of tuples to read total. This implies that such a progress progress(Scan) can be measured
by progress(Scan) = produced

total
.

Further to construct the progress of the QEP the progress of the Select operator has to be
measured. There are different ways with different advantages and disadvantages in order
to achieve that.

• It is possible to describe the progress of the Select operator analogue to the progress
of the Scan operator. In that case the Select operator needs to know the cardinality
at its output which then could be used as total. This cardinality could be gathered by
estimates from the optimizer. These estimates are created on the basis of statistics
gathered by the system and may be extremely inaccurate due to potentially coarse
grained statistics.

• Further it is possible to ignore the progress of the Select operator by using the
progress of the Scan operator. This implies that only the progress of the opera-
tor introducing data into the QEP is measured. In the context of this thesis this
is referred to as Source progress. On one hand-side this completely avoids using
the optimizer’s cardinality estimates. But on the other hand this may not exactly
represent the real progress at the Select operator. Consider the following example:
Given that the progress of the Scan operator is 1 or - in other words - the Scan
operator read everything it is supposed to read. By applying the previously men-
tioned concept the progress of the Select operator would be 1 too, even if there is a
stride left to process. This happens after the stride has been produced by the Scan
operator and not yet consumed by the Select operator.

49

4. Progress estimation

Summarizing this example it is possible to estimate the progress by estimating the progress
of the operator which introduces data into the QEP.

Aggr: This scheme can be extended for more complex QEPs. Consider a query defined
by the QEP in Figure 4.2, which e.g. eleminates duplicates of the previous example query
(Figure 4.1) via the Aggr operator.

Aggr

Select

lineitem

Figure 4.2.: More complex example QEP

The Aggr operator has two different phases. In the first phase it consumes all input tuples
and stores it. Afterwards it reads the stored tuples in order to produce its resulting tuples,
which is the second phase.

The progress of the first phase can be estimated by estimating the operator that introduces
data into the QEP i.e. the operator scanning lineitem. This progress may not necessarily
represent the progress of the whole Aggr operator which happens e.g. when time spent
in the operators above in the QEP is large.

Further the progress of the second phase can be estimated by seeing the second phase
as a virtual Scan operator on the stored values. Also this progress may not necessarily
represent the progress of the whole Aggr operator, e.g. it may happen that the time spent
in the sub-tree below the Aggr operator is significantly larger than the time spent in the
operators above.

As can be seen none of both estimated progresses of the first phase and the second phase
estimates the progress accurately in all cases. But the estimated progress could be made a
tuple or vector instead of a scalar value where one element defines in which phase the QEP
is in and another element that represents the estimated progress of the current phase.

4.2. Definition

Defining the estimated progress of an QEP as a tuple [stage, advancement] ∈ Progress

where

Progress :=
{
[stage, advancement] ∈ (N ∪ {0})×Q

∣∣∣ (0 ≤ advancement ≤ 1)
}
.

50

4.2. Definition

Stage: It is possible to partition query execution into different consecutive phases which
are run sequentially. The stage of the [stage, advancement] tuple describes in which phase
the query execution is in and is further called stage number. Consider the example QEP
visualized in Figure 4.3. Visualized is a QEP consisting the following operators: Aggr,

Aggr

HashJoin

lineitemSelect

part

Figure 4.3.: Example QEP

HashJoin, Select and the scans of the relations part and lineitem. The Aggr and HashJoin
operators have blocking phases. Implying that the whole QEP (Figure 4.3) has in sum 3
phases which are executed sequentially

• At first the phase called HashJoin build is executed. This phase involves scanning
the relation part, selecting tuples by the Select operator and putting them in the
hash table of the HashJoin operator.

• The second phase HashJoin probe & Aggr build runs after the first phase (HashJoin
build) has been completed and involves scanning the relation lineitem, probing them
through the hash table of the HashJoin operator and materializing them (the tuples
for which exists a match in HashJoin’s hash table i.e. the not discarded tuples) into
the hash table of the Aggr operator.

• The last phase of the example QEP is called Aggr produce. It involves producing
the result tuples from the Aggr ’s hash table.

Aggr produce

HashJoin probe & Aggr build

HashJoin build
Time

Phase

Figure 4.4.: Phases of the example QEP

Figure 4.4 shows the sequential execution of these phases (HashJoin build, HashJoin probe
& Aggr build and Aggr produce). Claiming that it is possible the estimate the progress
of a (sub-)QEP inside such a phase, it is also possible to estimate the progress of the
whole QEP by giving each phase a stage number. The stage number given to each phase

51

4. Progress estimation

is determined by the sequential execution order starting with stage number 0. In the
example (see Figure 4.3 and Figure 4.4) the 3 phases will get the following stage numbers:

• HashJoin build will get the stage number 0 because it is the first phase,

• the second phase (HashJoin probe & Aggr build) will get the number 1 and

• the third/last phase called Aggr produce will the stage number 2.

A stage number has the following properties:

• The stage number stage is bounded by 0 and the maximal stage number stagemax(op)
of a QEP with its top-most operator op ∈ Operator i.e. 0 ≤ stage ≤ stagemax(op)
Note that the maximal stage number can be determined by counting the blocking
phases and adding 1.

• It (the stage number) is strictly monotonic increasing and

• contains only consecutive numbers.

Advancement: In the previous paragraph it was claimed that it is possible to estimate
the progress inside a phase of query execution. This (progress inside a phase) is described
by advancement of the [stage, advancement] tuple.

Each phase of query execution reads a determinable number of tuples. For example: A
Scan operator ”knows” how many tuples it will scan and which tuple is it currently pro-
cessing. For a Aggr operator it is possible to determine the number of tuples materialized
in the hash table and the current tuple at the output of the Aggr operator.

Through this fact it is possible to express the progress inside a phase and combined with
the stage number (i.e. [stage, advancement]) it is possible to estimate the progress of a
whole QEP consisting of an abitrary number of phases as will be shown in the following.

Progress estimation function: In order to retrive the estimated progress of a given
QEP, represented by its top-most operator op ∈ Operator, it is necessary to have a
function progress(op) : Operator → Progress. This function calculates a progress p ∈
Progress from the state of the operator op.

4.3. Conventions

In the following general conventions will be defined in order to make the definition of
estimated progress short and concise.

52

4.3. Conventions

• nil determines a special value and is defined as [0, 0]

• left and right denote the children of a operator. With being left the left child and
right the right child. In the case of unary operators (for example Aggr) both (left

and right) represent the same child.

• Based on the defined progress the relations <, >, =, ≤ and ≥, with S ⊂ Progress;
a, b ∈ Progress, can be defined :

a < b := (stage(a) < stage(b)) ∨(
(stage(a) = stage(b)) ∧ (advancement(a) < advancement(b))

) (4.1)

a > b := (stage(a) > stage(b)) ∨(
(stage(a) = stage(b)) ∧ (advancement(a) > advancement(b))

) (4.2)

a = b := (stage(a) = stage(b)) ∧ (advancement(a) = advancement(b)) (4.3)

a ≤ b := ((a < b) ∨ (a = b)) (4.4)

a ≥ b := ((a > b) ∨ (a = b)) (4.5)

Based on the relations defined by Equation (4.1), Equation (4.1), Equation (4.3),
Equation (4.4) and Equation (4.5) the minimum in a set of progresses S can be
defined by Equation (4.6).

min(S) :=

x where ∃x ∈ S \ {nil} : ∀y ∈ S \ {nil} : x ≤ y if |S \ {nil}|≥ 2
x where x ∈ S if |S \ {nil}|= 1
nil otherwise

(4.6)

Further analogue to the minimum it is possible to define the maximum over such a
set S as defined by Equation (4.7).

max(S) :=

x where ∃x ∈ S : ∀y ∈ S : x ≥ y if |S \ {nil}|≥ 2
x where x ∈ S if |S \ {nil}|= 1
nil otherwise

(4.7)

53

4. Progress estimation

• Further it is helpful to have functions that provide direct access to the components
of a progress p ∈ Progress where p = [stage′, advancement′]:

stage : Progress→ N ∪ {0}

stage([stage′, advancement′]) := stage′

advancement : Progress→ Q

advancement([stage′, advancement′]) := advancement′

• Each operator can have an annotation in the subscript of their name. These anno-
tation describes the phase they are in or at which side (producer or consumer) they
are. Phases are described by a G and possible phases are G = build, G = probe and
G = produce. Further sides are described by a side in the subscript, where possible
sides are side = Consumer and side = Producer.

Further the whole set of operators in Vectorwise DBMS can be partitioned into 4 sets of
operators:

• Scan operators,

• Streaming operators,

• Blocking operators and

• Buffering operators.

4.4. Scan operators

Scan operators read data from a table and it is possible to specify ranges (of tuples) to
be read.

Scan ranges: Based on that it is possible to define a scan range to be a tuple [lowRID,

highRID] where lowRID and highRID defines an interval starting with the record at position
lowRID and ends with highRID with lowRID, highRID ∈ N ∪ {0} and lowRID ≤ highRID.
Note that a record represents a tuple. That imples that a scan range [lowRID, highRID]
consists of highRID − lowRID tuples.

Furthermore a Scan operator is not restricted to only read tuples of one scan range, it
reads a set of not overlapping scan ranges, called ScanRanges.

54

4.5. Streaming operators

Progress: With the help of ScanRanges it is possible to determine the total number
of tuples that a Scan operator will read. This total number is definied by the following
equation:

tuplestotal =
∑

[low,high]∈ScanRanges

(high− low)

This total number of tuples tuplestotal will be only calculated once because the set of scan
ranges (ScanRanges) is static for Scan operators and will therefore not change after the
first call of the next() function. In addition to that each Scan operator keeps track of how
many tuples it has produced in sum which is denoted as tuplesproduced. When combining
both (tuplesproduced and tuplestotal) it is possible to describe the progress of a Scan like
defined in Table 4.1.

Note that in Vectorwise there is also an Array operator which generates data using various
dimensions (Dimensions) where each dimension d ∈ Dimensions has a size size(d) and
produces tuples from 0 to size(d)−1. The Array operator produces the cartesian product
of all these dimensions.

Table 4.1.: Scan operators
progress(MScan) = [0,

tuplesproduced

tuplestotal
]

progress(Array) = [0,
tuplesproduced∏

d∈Dimensions
size(d)]

This leads to the formulas that can be seen in Table 4.1 which defines the function
progress(op) for the operators MScan and Array.

4.5. Streaming operators

Streaming operators (in Vectorwise DBMS) only materialize a small amount of tuples in
memory. Therefore it is assumed that these operators do not have a big influence on the
progress. This leads to the progress formulas visualized in Table 4.2 where the progress
of a streaming operator is represented by the progress of its child operator(s)/sub-tree(s).

Table 4.2.: Streaming operators
progress(MergeJoin) = max{progress(left), progress(right)}
progress(OrdAggr) = progress(left)
progress(Project) = progress(left)
progress(Select) = progress(left)

55

4. Progress estimation

4.6. Blocking operators

Blocking operators consume at least one input side fully.

Stages: Blocking operators have different stages in which they consume, process or
produce tuples. These stages have a determined order which depends on the type of
operator and are denoted using a G in the subscript of the operator.

In the following the different operators and their stages will be described:

Aggr: The Aggr operator has two stages:

• In the first stage it consumes all its child operator’s tuples and stores them. This
stage is referred as build stage and Aggr operator behaves like a streaming operator
in this stage. Thus it uses the progress of its sub-tree.

• Afterwards Aggr ’s second stage starts where it iterates of its stored tuples. This
stage is called produce stage. In this stage the Aggr operator. Hence its introduces
tuples it can be seen as a Scan operator over the virtual relation defined by the
stored tuples over which is iterated.

This leads to the formulas for the Aggr operator as in Table 4.3.

HashJoin: The HashJoin operator also has two stages:

• During the build stage it consumes all tuples from its right child operator and
inserts every tuples into a hash table. Hence - progress-wise - it can be seen as a
streaming operator where the progress of its right sub-tree determines the progress
of HashJoin’s build stage.

• After that stage, the probe stage follows, in which it consumes the tuples from its
left child operator and tries to find a match in the hash table. If that is not the case,
the tuple is discarded. Also in this stage - progress-wise - the HashJoin operator
can be seen as a streaming operator where the progress of the HashJoin operator is
determined by the progress of its left sub-tree.

Both stages lead to the formulas for the HashJoin operator as in Table 4.3.

AntiJoin/SemiJoin: Also other join algorithms like these implemented by the Anti-
Join or SemiJoin operator have two stages like the HashJoin operator. Furthermore
progress-wise they use the same formula as the HashJoin operator.

56

4.7. Buffering operators

RevJoin/RevSemiJoin/RevAntiJoin: In Vectorwise there exists a class of operators
implementing reverse joins. Compared to the HashJoin operator they have a third stage
where - like in the Aggr - the result is produced through iterating over the VHT, leading
to the formulas in Table 4.3.

Table 4.3.: Blocking operators
progress(AggrG=build) = progress(left)
progress(AggrG=produce) =

[
stage(progress(left)) + 1,

tuplesproduced

tuplesin hash table

]
progress(SortG=build) = progress(left)
progress(SortG=produce) =

[
stage(progress(left)) + 1,

tuplesproduced

tuplesmaterialized

]
progress(HashJoinG=build) = progress(right)
progress(HashJoinG=probe) =

[
stage(max{progress(left), progress(right)}) + 1,

advancement(progress(left))
]

progress(HashRevJoinG=build) = progress(left)
progress(HashRevJoinG=probe) =

[
stage(max{progress(left), progress(right)}) + 1,

advancement(progress(right)
]

progress(HashRevJoinG=produce) =
[
stage(max{progress(left), progress(right)}) + 2,

tuplesproduced

tuplesin hash table

]

4.7. Buffering operators

Buffering operators can be seen as a hybrid of streaming operators and blocking operators,
because they buffer an amount of tuples for a time span for later consumption by their
respective parent operators.

Sides: Buffering operators have two sides:

• a Produce side which inserts tuples into a buffer and

• a Consume counterpart which reads tuples from a buffer.

The - in this document presented - formulation uses a subscript opside=s for a buffering
operator op ∈ Operatorbuffering ⊂ Operator to signal which side s ∈ Produce, Consume

it represents.

Reuse: The Reuse operator allows to reuse tuples that are produces in a different
subtree of the same query. According to this fact the progress of the consuming side of
the Reuse operator (Reuseside=conume) is the progress of producing side (Reuseside=produce)
at any time. This leads to the formulas for the Reuse operator as in Table 4.4.

57

4. Progress estimation

Xchg: Xchg operators a operators which introduce parallelismn into a QEP. They
create a set of threads for their Produce side. Each thread then retrieve the tuples from
their child operators and stores these tuples into a shared (by all threads of one Xchg
operator) set of buffers (called Buffers). These two sides are represented in the progress
estimation model: Producer threads store the estimated progress of their child operators
in the buffers. Consumer threads read (estimated) progress stored in the buffers.

Furthermore Xchg operators can have buffers for a specific consumer (for example XchgHash-
Split). Therefore it is necessary to choose the ”right” buffers for determining the progress
of the child operator. This is modeled by the selectxchg(buffer) : Buffers → {0, 1}
function definied in Equation (4.8) which takes a buffer ∈ Buffers and returns 1 when
the buffer shall be chosen by the consumer or (otherwise) 0.

selectxchg(buffer) =

 1 buffer is explicitely marked as for this consumer
0 otherwise

(4.8)

Furthermore it is possible to define a function progressbuffer : Buffer → Progress which
returns the progress p ∈ Progress stored inside a buffer b ∈ Buffers as progressbuffer(b) =
p.

That makes it possible to retrieve the progresses of an Xchg operator by finding the
minimum over all in the buffers (Buffers) stored progress values. Note that using that
minimum as progress might not be always monotonic. Consider the following two cases:

• No progress values are stored in Buffers i.e. no visible (by the Xchg operator)
progress has been made. Therefore no minimum can be found and the result shall
be nil = [0, 0] ∈ Progress.

• All producers already completed their processing work and in the current step there
are no stored progress values too and the result would be nil too. This would violate
the monotonicity property.

As workaround a consumer can store the last progress progress′ ∈ Progress returned
and compare the above considered result currentprogress ∈ Progress and computes the
maximum of both (i.e. max{progress′, currentprogress} as defined above). This ensures
monotonicity of progress(op) ∈ Operatorbuffering and leads to the formulas in Table 4.4.

58

4.8. Implementation

Table 4.4.: Buffering operators
progress(Reuseside=P roduce) = progress(left)
progress(Reuseside=Consume) = progress(producer(Reuse))
progress(XchgUnion) = max

{
progress′,

[0, advancement(min
b∈Buffers

progressbuffer(b))]
}

progress(XchgBroadcast) = max
{
progress′,

[0, advancement(min
b∈Buffers

progressbuffer(b))]
}

progress(XchgHashSplit) = max
{
progress′,

[0, advancement(
min

(b∈Buffers)∧(selectxchg(b)=1)
progressbuffer(b))]

}
progress(XchgRangeSplit) = max

{
progress′,

[0, advancement(
min

(b∈Buffers)∧(selectxchg(b)=1)
progressbuffer(b))]

}

4.8. Implementation

The progress (value) p = (stage, advancement) ∈ Progress is implemented as a structure
with the size of a native machine word. In that structure stage is implemented as an
unsigned integer with a length of 32 bit and is therefore limited to 232 − 1 as a maximal
stage number (with 0 being the first stage number). The field stage represents stage(p) in
the above described model. The progress inside a stage (advancement(p)) is implemented
as a 32-bit unsigned integer. Its range is limited from 0 to 232 − 2, because 232 − 1 is
reserved for a purpose of representing invalid progress values, which is the case when - for
example - finding the minimal progress over all Xchg buffers (of a Xchg operator is not
possible.

Progress estimation function: The - above described - progress estimation function
progress(op) with op ∈ Operator being the top-most operator of a given QEP (whichs
progress shall be estimated). Is implemented as a part of the in, Vectorwise used, operator
interface, which can be seen partially in Listing 4.1.

59

4. Progress estimation

1 s t r u c t Operator {
/∗ . . . ∗/

3

/∗∗ f i l l the ve c t o r s with more tu p l e s ∗/
5 i n t (∗ next) (s t r u c t Operator ∗) ;

7 /∗∗ tup l e counter s ∗/
i n t produced , proce s sed ;

9

/∗ . . . ∗/
11

/∗∗ Estimates the p rog r e s s o f the operator ∗/
13 ProgressEst imate (∗ g e t p r o g r e s s) (s t r u c t Operator ∗) ;
}

Listing 4.1: Implementation of a progress estimation function progress(op) where op ∈
Operator

4.9. Evaluation

The presented and implemented progress estimation will be analyzed in following with the
aim to show that it has some of the - in Chapter 4 explained - desirable properties. First
the linearity of the progress estimation scheme will be analyzed over the set of TPC-H
queries. Afterwards it will be proven that this progress estimation scheme is monotonic.

4.9.1. Linearity

As explained in Chapter 4 linearity of the estimated progress (of a QEP) is a desirable
property. In order to analyze the linearity of the progress estimation measurements were
done. Each measurement was done with the scheduler code base and the following changes

• Queries were run without parallelism

• The time slice were set to the minimum time slice (≈ 20ms)

• Logging progress estimates on yield

That implies that at least after ≈ 20ms a progress estimate is logged.

Projected progress: In order to visualize the estimated progress it is helpful to nor-
malize the two-dimensional progress p ∈ Progress into a one-dimensional progress n ∈ Q.
This has been done by applying function n = proj(p) where

60

4.9. Evaluation

proj(p) = 100% · stage(p) + 100% · advancement(p)

and will be referred as projected progress.

Stage change: After changing the stage the progress is calculated using other (com-
pared to the previous meaurement) values. For example in case of an Aggr operator
the previous stage’s progress is calculated using Aggr ’s child operator. After changing
the stage the progress of the Aggr operator is calculated based on the number of tuples
produced and the number of tuples stored - according to the formula in Table 4.3. This
can lead to a changed slope in the projected progress proj(p), caused by the changed
advancement part of the estimated progress. This is expected non-linear behaviour for
this kind of progress estimation and could be damped e.g. by filtering with a low pass.

10 20 30 40 50 60 70 80 90 100

0

50

100

150

200

Time in %

pr
oj

(p
)

in
%

Q1 Q3

Figure 4.5.: Projected progress of Q1 and Q3

Q1: Expected from the QEP - visualized in Figure 4.6(a) - would be 3 stages (0, 1 and
2), but visualized - in Figure 4.5 - is only one (0% ≤ proj(p) < 100%). That stage
must be the first stage (i.e. stage 0) where the Aggr operator consums its input tuples.
According to the profiling information gathered this - time spent in Aggr operator and
its subtree in the QEP - takes ≈ 100% of the whole query time. Further this implies that
the other stages will take ≈ 0% of the whole query’s time and therefore are likely not to
be measured and also likely not to be visible.

61

4. Progress estimation

Sort

Project

As

Aggr

Project

Select

lineitem

(a) Q1

TopN

Project

As

OrdAggr

Project

MergeJoin

HashJoin01

Select

orders

Select

customer

Select

lineitem

(b) Q2

Figure 4.6.: QEPs of Q1 and Q3

Q3: In Figure 4.5 can be seen that in the first ≈ 16% query time the projected progress
goes linearly to 100% and stays at 100% for 10 ≈ % of query time. According to profiling
information gathered ≈ 16% of query time is spent during TopN consume & HashJoin01
build & Scan lineitem. The progress is determined by the maximum of the progress of
the left and the right child, according to Table 4.2. Both children may run concurrently
(from the view of the progress estimation).

• On the right side there is the HashJoin01 operator building its VHT involves ≈ 16%
of the query time.

• Further on the left side scanning (and decompressing) lineitem and selecting tuples
takes ≈ 27% query time.

Assuming that both sides start at the same time then the right-hand side will show a
completed stage ([stage, 1]) after ≈ 16% query time and therefore a proj(p) which is a
multiple of 100% (proj(p)

1% mod 100 = 0). In combination with the estimation formula of
the MergeJoin operator, the maximum of both progresses (left-hand side and right-hands
side progress) is taken as progress of the MergeJoin, the MergeJoin operator reports a
completed stage (here: 100%).

Further the rest of query time (≈ 84%) is spent in the next stage (stage 2) of query
execution. According to the QEP in Figure 4.6(b) this can only be one of these stages:

• TopN consume & HashJoin01 probe or

• TopN produce

62

4.9. Evaluation

According to the profiling information this cannot be the latter one (namely TopN pro-
duce), because ≈ 0% of query time is spent there. Implying that the time must be spent
the stage where TopN consume & HashJoin01 probe takes place which therefore reports
its progress.

10 20 30 40 50 60 70 80 90 100

100

150

200

250

300

Time in %

pr
oj

(p
)

in
%

Q9 Q10

Figure 4.7.: Projected progress of Q9 and Q10

Q9: According to the QEP - visualized in Figure 4.8(a) - Q9 has the following stages:

1. Sort build & Aggr build & HashJoin build & HashJoin build,

2. Sort build & Aggr build & HashJoin build & HashJoin probe,

3. Sort build & Aggr build & HashJoin probe,

4. Sort build & Aggr produce and

5. Sort produce.

According to the profiling information≈ 0% query time is spent in the first stage Sort build
& Aggr build & HashJoin build & HashJoin build, implying that this stage is not visualized
in the plot in Figure 4.7. The following stage Sort build & Aggr build & HashJoin build
& HashJoin probe, consumes ≈ 5% query time where as this is the first stage visible in
the plot (Figure 4.7) where proj(p) steadily increases from 100% to 200%. The stage Sort
build & Aggr build & HashJoin probe, which follows on the previous stage, where ≈ 95%
query time is spent and thus visible in the plot where proj(p) increases from 200% to
300%. All other stages do not consume a considerable fraction of query time - according
to the profiling information - and therefore are not visible in the plot (Figure 4.7).

63

4. Progress estimation

Sort

Project

As

Aggr

Project

Project

MergeJoin

ordersHashJoin01

HashJoin01

MergeJoin

Select

part

partsupp

MergeJoin

nationsupplier

lineitem

(a) Q9

TopN

Project

As

Aggr

Project

HashJoin01

HashJoin01

MergeJoin

Select

Select

orders

Select

lineitem

customer

nation

(b) Q10

Figure 4.8.: QEPs of Q9 and Q10

Q10: The projected progress of TPC-H Q10 which uses the QEP shown in Figure 4.8(b),
is plotted in Figure 4.7. It can be seen that the projected progress proj(p) increases
starting from 100% until 300%. This indicates that the first stage (deepest HashJoin01
build) is skipped which can be backed by the time spent on that stage which is ≈ 0% of
the whole query time - according to the gathered profiling information.

The second stage, where proj(p) increases from 100% up to 200%, is where the probe
phase of the previously mentioned HashJoin01 operator and the build phase of its parent
operator takes place. Further also this can be backed by the profiling information, because
≈ 65% of query time is spent there - as also visualized in Figure 4.7 (from 0%) until ≈ 65%
of query time.

The third stage, which according to the plotted projected progress, takes ≈ 35% of query
time (starting from ≈ 65 query time). Acoording to the profiling information during the
build phase of the Aggr operator which is a stage at its own.

Further according to the profiling information the other stages (e.g. TopN produce, TopN
build & Aggr produce) take no considerable time.

Q17: The QEP of Q17, as visualized in Figure 4.10(a) suggests 5 stages whereas the
projected progress - visualized in Figure 4.9 - only shows 2 stages. According to the

64

4.9. Evaluation

10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

Time in %

pr
oj

(p
)

in
%

Q17 Q20

Figure 4.9.: Projected progress of Q17 and Q20

profiling information gathered ≈ 100% of the query time are spent in the lower Aggr
operator and its subtree. Hence stages introduces by the operators above are not visible
in the plot. This reduces the number of the potentially visible stages to the following
ones:

• The first stage of Q17 is the stage where HashJoin01 ’s VHT is built. According to
the profiling information gathered this takes ≈ 2% of Q17’s response time, as it is
visible in Figure 4.9.

• In the following stage the tuples are probed through HashJoin01 ’s VHT and are
consumed by the Aggr operator, which takes ≈ 98% of the query response time
according to the profiling information.

• The following stage, where Aggr ’s produce and upper HashJoin01 builds its VHT,
is not visible.

Q20: Another query’s projected progress is visualized in Figure 4.9: Q20. The plot
suggests that Q20 has the five stages with the first stage being skipped. Further the
QEP - visualized in Figure 4.10(b) - suggests 7 stages. The stages except for the QEP
below the top-most Aggr are listed with their percentage of query time (according to the
profiling information gathered), because - according to the profiling information - < 1%
query time is spent in the (top-most) Aggr and above:

1. The stage where the bottom-most HashJoinN ’s build phase takes place where ≈ 0%

65

4. Progress estimation

Project

Reuse

As

Project

Aggr

Select

HashJoin01

As

Reuse

As

Aggr

Project

As

Reuse

Project

HashJoin01

lineitemSelect

Select

part

(a) Q17

Sort

Project

Aggr

Project

MergeJoin

Select

HashJoinN

partsuppHashJoinN

As

Aggr

Project

HashJoin01

Select

Select

lineitem

Select

part

MergeJoin

Select

nation

supplier

Select

part

(b) Q18

Figure 4.10.: QEPs of Q17 and Q20

query time is spent,

2. The stage where the bottom-most HashJoin01 ’s build phase takes place where ≈
18% query time is spent,

3. In the stage where the bottom-most HashJoin01 ’s probe phase and bottom-most
Aggr ’s build phase takes place, where ≈ 48% query time is spent,

4. The stage where the bottom-most Aggr ’s produce phase and the bottom-most
HashJoinN probe-phase takes place, consumes ≈ 0% query time and

5. The stage where the top-most Aggr build phase happens, where the rest of the query
time is spent.

66

4.9. Evaluation

4.9.2. Monotonicity

As can be seen in Figure 4.5, Figure 4.7 and Figure 4.9 , the projected progress is mono-
tonic increasing. Further it is possible to prove that the progress p ∈ Progress returned by
p = progress(op) for a QEP represented by the top-most operator op ∈ Operator is mono-
tonic increasing. That means that for a given operator op ∈ Operator two evaluations of
progress(op), with no loss in generality, the first evaluation produces a ∈ Progress and
the second b ∈ Progress, a ≤ b will always be a tautology. This means that the progress
retrieved by progress(op) cannot ”go backwards”.

Proof. Assuming two progresses p and p′ where p ∈ Progress was measured before p′ ∈
Progress. The goal is to show that p ≤ p′ is a tautology.

This will be proven via induction over height h of the QEP (which forms a tree).

In the case of binary operators it is necessary to define right, right′, left, left′ ∈ Progress

where:

• right/right′ represents the progress of the subtree on the right-hand side in the
first/second measurment.

• left/left′ are representing the left-hand side subtrees in the first/second measur-
ment.

Transformation: It is necessary to eleminate Reuse operators which can be done by
replacing the consumer side (Reuseside=Consume) by the subtree of the producer side
(Reuseside=P roduce) S. That transformation is valid because it cannot change the mono-
tonicity, because when progress(S) is monotonic, the same has to be valid for a copy of
S.

Base case: In the base case (h = 1) the QEP can only consist of a Scan operator.
According to the defined progress the following is valid under the assumption that the
totals do not change (i.e. tuplestotal = tuples′

total):

(p ≤ p′) apply formula⇐========⇒
(
[0,

tuplesproduced

tuplestotal

] ≤ [0,
tuples′

produced

tuples′
total

]
)

stage(p)=stage(p′)⇐=========⇒
(tuplesproduced

tuplestotal

≤
tuples′

produced

tuples′
total

)
tuplestotal=tuples′

total⇐===========⇒ (tuplesproduced ≤ tuples′
produced)

As tuplesproduced (and tuples′
produced too) is a counter in the Scan operator which is incre-

67

4. Progress estimation

mented for each tuple flowed through.

• In case the Scan operator has not produced any tuple between the two progress
measurements: tuplesproduced = tuples′

produced is valid.

• When the operator has produced tuples tuplesproduced < tuplesproduced is valid.

Either one of both cases has to be fullfilled and therefore tuplesproduced ≤ tuplesproduced is
true.

Induction step: Using the base case is is possible to do the induction step (from tree
with height h− 1 to h) in the following way:

By using the operator partitioning - described in Section 4.3 - all operators can be split
into four disjoint sets:

• Scan operators can only exist on subtrees with height h = 1 and are not considered
in the induction step.

• Streaming operators.

– The operators Select, Project and OrdAgg are trivial cases.

– In case of MergeJoin monotonicity can be proved like described in the following:
Assuming that left ≤ left′ and right ≤ right′ holds for a subtree of height h−1
(i.e. children of the operator), it is possible to make to following implication:

((left ≤ left′))∧(right ≤ right′)) =⇒
(
max{right, left} ≤ max{right′, left′}

)
which turns

(
max{right, left} ≤ max{right′, left′}

) apply formula⇐========⇒ (p ≤ p′)

into a tautology.

• Blocking operators, as described in Section 4.6, can have different phases. These
phases get a different stage numbers in the progress. As described in Section 4.2
these phases are also ordered (and get a stage number according to their order).
Further a progress with a smaller stage number is always smaller as defined by
Equation (4.1).

That implies that it is only left to prove the monotonicity inside the same phase/stage.

The operators Aggr and Sort (the Sort operator only has slightly different names
for the phases) can be handled in the following way:

68

4.9. Evaluation

– The phase G = build is analogue to Select and is therefore monotonic.

– The phase G = produce can be handled as described in the following:

(p ≤ p′)

apply formula⇐========⇒([
stage(progress(left)) + 1,

tuplesproduced

tuplesin hash table

]
≤[

stage(progress(left′)) + 1,
tuples′

produced

tuples′
in hash table

])

From the subtree with height h− 1 is known that left ≤ left′.

(left ≤ left′) =⇒
(
stage(progress(left)) + 1 ≤ stage(progress(left′)) + 1

)

With the previous implication it is possible to reduce the formula to the
advancement:

tuplesproduced

tuplesin hash table

≤
tuples′

produced

tuples′
in hash table

tuplesin hash table=tuples′
in hash table⇐=====================⇒

(tuplesproduced ≤ tuples′
produced)

Assuming that the counter tuplesproduced (and tuples′
produced) will be only in-

creased, the operators Aggr and Sort will have monotonic progress estimates.

In case of the HashJoin operator which only differs in G = build from Aggr (with
changing the name of the stage from G = produce to G = probe) one can use the
same implication as in the previous case and reduce the case to the trivial case
(Select/Project ...).

In the case of the HashRevJoin operator it is possibe to prove monotonicity analogue
to HashJoin, but with a third step G = produce which is analogue to the second
step (G = produce) of Aggr.

• The fourth set of operators are the Buffering operators. This set can be reduced
into two operators: the Reuse operator and the Xchg operator.

– The first one was already eleminated from the QEP by applying a transforma-

69

4. Progress estimation

tion.

– The latter one abstracts all Xchg operators like e.g. XchgHashSplit or XchgU-
nion.

It is possible to abstract the progress of all Xchg operators using a buffer
selection function selectxchg(b) i.e. in case of XchgUnion and XchgBroadcast
one can define: ∀b ∈ Buffers : selectxchg(b) = 1.

By construction the previously returned progress of the Xchg operator p is
remembered and therefore: p′ = max

{
p, [0, a]

}
with

a = advancement(min
(b∈Buffers)∧(selectxchg(b)=1)

progressbuffer(b))

This implies p ≤ p′.

With the previous statements it was proved that the - in this chapter - presented query
progress estimation is monotonic.

In the following chapter this progress estimation will be used to provide a scheduling
strategy that facilitates context specific information (compared to the OS scheduler).

70

5. User-level scheduler

As mentioned in Section 2.2 Vectorwise uses static parallelism during query execution
which leads to a number of problems. In the following it will be assumed that the level
of parallelism used is less or equal to the number of cores available. One of issues is the
disability to react to dynamic workload changes. Such dynamic workload changes can
occur on intra-query level where for example one or more parallel stream(s) suddenly
complete their work and therefore a full utilization of all cores cannot be guaranteed.
Hence linear scalability cannot be achieved.

Further it will be claimed that static Volcano-model parallelism can be made dynamic
using virtually more threads than cores and carefully balancing these threads across the
cores.

Overallocation: This problem is assumed to be solvable efficiently through overalloca-
tion i.e. using more threads and using those extra threads to balance out the different
processing speeds of each thread. In the best case all threads would finish their work at
the same time and there will be no skew (except for the serial main (kernel) thread, which
collects the data from the parallel (kernel/user-level) threads).

5.1. Approach

Overallocation in this context means that the system uses more threads than the hardware
can process in parallel i.e. on the 64 core system e.g. 80 threads. This involves distributing
the data over virtually more threads which decreases the amount of data to be processed
per ULT1 and therefore the time needed, until a bound.

These extra threads can be used to close the gaps. These gaps are created by threads
which are completing earlier and would therefore produce skew. Consider the following
example.

1User level thread

71

5. User-level scheduler

Table 5.1.: Example workload without overallocation and with 50 % overallocation
Thread Time without Time with 50 %

overallocation overallocation
1 10 7.5
2 4 3
3 5 3.75
4 7 5.25
5 - 3.5
6 - 3

1

2

3

4
Time0 1 2 3 4 5 6 7 8 9

Skew

(a) no overallocation

1

2

3

4

5

6

Time0 1 2 3 4 5 6 7 8 9

Skew

(b) 50 % overallocation i.e. two additional
threads

Figure 5.1.: Example with 4 threads and 6 threads (50% overallocation)

Example: Imagine a workload as given by Table 5.1 in which 4 threads are running on
a theoretical system with 4 processors. Further it can be seen that there is execution skew
- as visualized in Figure 5.1(a). Further given that the example workload is parallelizable
using 6 threads on the same (4 processor) system. Then it is possible - as visualized in
Figure 5.1(b) - to balance these across the processors in order to keep the processors uti-
lized. Further Figure 5.1(b) shows that this combination of scheduling and overallocation
reduced (execution) skew.

5.1.1. Time to completion

Based on the progress of a QEP, it is possible to estimate the time to completion (of a
stage).

It was assumed that the speed of an operator (and its subtree) will change temporarily
which might happen when a QEP runs on a different processor and might be caused by
serveral reasons cold caches, NUMA effects i.e. non-local memory access, ...

Windowing: Therefore 2 windows consisting of the last n = 4 samples were used, one
for recording the progresses and one for the time needed to reach each progress for a QEP

72

5.1. Approach

q. It is possible to define a window P0, P1, ..., Pn−1 consisting of the last n progresses
made in a time slice and a window T0, T1, ..., Tn−1 consisting of the last n time units the
task has run inside its time slice. So that the speed v(q) for a QEP q can be calculated
over these windows as in Equation (5.1).

v(q) =

n−1∑
i=0

Pi

n−1∑
i=0

Ti

(5.1)

Time to completion: With the help of the speed v(q) and an estimated progress
progress(q) it is possible to define the time to completion (of a stage) ttc with Equa-
tion (5.2).

ttc(q) = 1− advancement(progress(q))
v(q) (5.2)

Note that ∀p′ ∈ Progress: advancement(p′) has an upper bound which is, by definition, 1
(see Section 4.2) and that p′ is monotonic increasing. This implies that constant 1 denotes
the highest value advancement(p) can reach. Implying that ttc ≥ 0 is a tautology.

5.1.2. Workload metric

Based on the estimated time to completion in Section 5.1.1, it is possible to construct a
workload metric, which represents an estimation of the work left in a stage: For a given
set of QEPs to run Q it is possible to build such a metric W by summing the estimated
time to completions for all QEPs, which results in Equation (5.3).

W (Q) =
∑
q∈Q

ttc(q) (5.3)

With the help of this metric W it is possible to detect, for two sets of QEPs A and B,
underload and overload situations. A is underloaded compared to B when A has less work
left than B or using Equation (5.3) when

∑
q∈A

ttc(q) <
∑
q∈B

ttc(q).

73

5. User-level scheduler

Futher A is overloaded compared to B when

∑
q∈A

ttc(q) >
∑
q∈B

ttc(q).

This metric will be used in the following in order to decide whether a scheduler accepts
to run a QEP which is located on a remote NUMA node or not.

5.1.3. QEP decomposition

In Vectorwise the Xchg operators provide a natural splitting point for seperating producer
and consumer sides where - from the view of the Xchg operator the producer threads are
running the QEP below the Xchg operator and the consumer threads the QEP above.

In order to keep producer and consumer sides active, independent of the per-thread
scheduling strategy, it was necessary to split the QEP at these points i.e. at each Xchg
operator.

Project

Aggr

XchgUnion

Aggr

Project

HashJoin

XchgHashSplit

part

XchgHashSplit

Select

lineitem

Figure 5.2.: Example QEP

As visualized in Figure 5.2, a parallel QEP can be decomposed into parallel running query
pipelines (also QEPs) by splitting at these Xchg operators (here these are XchgUnion and
XchgHashSplit). This leads to QEPs as visualized in Figure 5.3.

Each of those decomposed QEPs are part of a system-wide QEP-pool and will be scheduled
by the alogrithm described in Section 5.2.5.

These QEPs can be run by multiple threads (the top-most QEP cannot be run in parallel).
which is usually a higher number than the number of kernel threads in the worker (kernel)
thread pool, except the rewriter decides only to introduce a smaller degree of parallelism.

74

5.1. Approach

Project

Aggr

XchgUnion

(a) A

XchgUnion

Aggr

Project

HashJoin

XchgHashSplitXchgHashSplit

(b) B

XchgHashSplit

Select

lineitem

(c) C

XchgHashSplit

part

(d) D

Figure 5.3.: Example QEP

5.1.4. Scheduling

In case that the currently running thread may cooperatively yield the processor or are
waiting on a synchronization primitive (i.e. mutex or condition variable), it is necessary
to make a decision which thread to run next or whether the processor should idle instead.

Stage-based scheduling: As explained in Section 4.2, the evaluation of a query/QEP
can be partitioned into stages which are active sequentially. Further skew is possible at
the end of each stage. This implies that it is necessary to achieve balance at the end of
each stage.

Greedy scheduling: As described in Chapter 4, it is possible to estimate the progress of
a QEP and to, based on that, calculate an estimated time to completion (see Section 5.1.1).
With the help of the time to completion it is possible to determine which QEPs are slower
or lagging behind, because these have a higher time to completion.

In order to balance all threads equally it is necessary to accelerate these (slower or lagging
behind) query processing threads, represented by their QEPs, by scheduling them more
often. This leads the a greedy scheduling strategy where the next QEP, to be processed,
is the one with the maximal time to completion.

Adaptivity: Further a concept of time slices forces an update of the schedule and the
gathered estimated progress. The size of these time slices decreases with the time to
completion. This leads towards more fine-grained balancing (i.e. small time slices) at the

75

5. User-level scheduler

end of stage while having coarse-grained balancing (i.e. large time slices) in the ”middle”
of a stage. This helps to tackle inaccurate time to completion estimates and therefore
sub-optimal scheduling decisions. Further this helps to reduce the inefficiency introduced
by very small time slices caused by the number of scheduling decisions, cache misses,
context switches etc.

5.2. Implementation

This section presents the implementation of the user-level scheduler starting with the
implementation of overallocation in Vectorwise.

5.2.1. Overallocation

As explained in Section 2.2, Vectorwise DBMS uses an cost-based optimizer inside the
rewriter which is used to introduce parallelism into the QEP by adding Xchg operators
(in combination a level of parallelism specified) and specialized rules for each operator.

This concept can also be used to implement the overallocation by factor o by the following
changes:

• Increase the number of threads checked by factor o.

• Adapt the cost model to make higher degrees of parallelism cheaper.

5.2.2. Thread API emulation

Vectorwise has an API that abstracts

• threads,

• mutexes,

• shared-read-exclusive-write locks and

• condition variables.

In combination with user-level scheduling this API has to provide an equivalent imple-
mentation which is described in this section.

76

5.2. Implementation

Mutex

Mutex (mutual exclusion) protects a critical section against concurrent accesses and pro-
vides two function mutex lock and mutex unlock. The function mutex lock starts a critical
section protected against concurrent access and mutex unlock ends it.

Implementation: The implementation was inspired by [Inc14]. In order to improve the
performance in the uncontented/less contented case the implementated mutex waits a
short period of time actively which avoids scheduling and context switching overhead in
the mentioned case when there is less contention.

After waiting that short period and not being in the critical section, the ULT will be put
to sleep until it will be woken up in mutex unlock.

Condition variables

Condition variables allow to put a thread to sleep while waiting for a variable to change
or a resource to become available. It provides the following two basic functions:

• cond wait, which might wait until the thread will be woken up by one of the following
functions:

• cond broadcast, which notifies all waiting threads and

• cond signal, which notifies one waiting thread.

cond wait: A user-level thread calling wait causes a context switch (see Section 5.2.4)
after that it is moved into the condition variable’s queue.

cond broadcast: When cond broadcast is called all threads that are in the queue of the
condition variable are made runnable again i.e. they were enqueued into the appropriate
queue of the scheduler. Note that a condition variable is always used in combination with
a mutex. This implies that potentially many threads are made runnable again which all
try to lock the mutex (mutex lock) where only one thread can succeed, the others are
actively waiting for a short period and then put to sleep to be woken up by mutex unlock.
This is known as the thundering herd problem. In case of XchgHashSplit with many
threads on both (producer and consumer side), this was found out to be a performance
problem.

This makes it possible to implement the following optimization that works around the
explained thundering herd problem in a way like the Linux kernel & pthreads solved it: In

77

5. User-level scheduler

case of a contented mutex, it is possible to move all threads from the condition variable’s
queue into the queue of the mutex, because a thread leaving the critical section, calls
mutex unlock which makes one thread from the mutex’ queue runnable again. In case of
an uncontented mutex, only one thread has to be made runnable again which makes the
mutex contented and the optimization’s contented case can be used again.

cond signal: A condition variable also makes it possible to only wake one thread
waiting on it. This is handled by cond signal. Further cond signal is handled like
cond broadcast.

5.2.3. Fibers

”A fiber are [light-weight] unit of execution that must be manually scheduled by the ap-
plication” [Mic14]. This concept was used as an abstraction of low-level context switching
in order to hide the real implementation of context switching behind an interface.

Creating fibers: In general it is possible to create a fiber in two ways:

• It is possible to convert parts of the current thread of execution into a fiber or

• to create a fiber from functions.

Switching: It is possible to switch from one fiber (fiber A) to another fiber (called fiber
B), which involves saving fiber A’s registers, loading fiber B’s registers and jumping to
fiber B’s instructions.

Implementations

Through the abstraction provided by fibers it is possible to implement context switching
between threads of execution on different ways:

• POSIX2 swapcontext

• setjmp/longjmp

• using multiple kernel threads and control the ability to run over condition variables

• ...
2Portable operating system interface

78

5.2. Implementation

In the frame of this thesis the implementation over the POSIX swapcontext and setjmp/longjmp
was done.

POSIX createcontext/swapcontext allows the create execution contexts (createcon-
text) and to switch between them (swapcontext). The implementation using POSIX swap-
context had the disadvantage that the overhead of each switch between fibers costs at least
two system calls. Further it was noticed that it produced contention in the kernel itself
when a high number of currently running kernel thread called swapcontext.

setjmp/longjmp: Because of these disadvantages were undesirable for a solution which
might switch many times between fibers and possibly many occur concurrently switches
(between fibers), an alternative method has to be found. The C standard library provides
two functions that allow to change the execution flow in a way that makes them usable
for fibers: setjmp and longjmp. The function setjmp stores the current execution context
into a buffer. The function longjmp allows to restore an execution context from a buffer
created by setjmp. The functions setjmp and longjmp have the disadvantage that they
do not save and restore the stack pointer. [Vyu14] provides a faster solution by mixing
setjmp/longjmp and swapcontext. Swapcontext and its utility functions can be used to
create an execution context (using createcontext), switch to it (using swapcontext) and
switch back using setjmp/longjmp. This lead to an environment in which it is possible
to use setjmp/longjmp to switch between fibers without losing or using the wrong stack
pointer while keeping the property of cheaper switching between the fibers (not involing
at least two system calls).

Microbenchmark: In order to compare the performance of the variants (POSIX cre-
atecontext/swapcontext and setjmp/longjmp) a microbenchmark was created. This mi-
crobenchmark consists of three fibers:

• The main fiber which firstly switches once to

• The fiber ping switches in a loop to

• Fiber pong which switches in a loop back to fiber ping.

The partial source code can be found in Listing 5.1 (the full source code is available in
Appendix A). Note that this piece of source code misses the actual implementation of
fibers. Further note that the function ticks() returns the current cycle counter on the
CPU (i.e. rdtsc). Two versions of the microbenchmark program were created, one for
each implementation. Both were compiled with GCC in Version 4.4.7 using optimization
level 3.

79

5. User-level scheduler

#d e f i n e N (1024∗1024)
2 f i b e r t p i n g f i b e r , pong f ibe r , ma in f i b e r ;

u i n t 6 4 t ping2pong = 0 , pong2ping = 0 , count = N;
4 u i n t 6 4 t d i f f [N] ;

6 void ping () {
whi le (count > 0) {

8 ping2pong = t i c k s () ;
s w i t c h t o f i b e r (&pong f ibe r , &p i n g f i b e r) ;

10 d i f f [count] = t i c k s () pong2ping ;
count = count 1 ;

12 }
s w i t c h t o f i b e r (&main f iber , &p i n g f i b e r) ;

14 }

16 void pong () {
whi le (count > 0) {

18 pong2ping = t i c k s () ;
s w i t c h t o f i b e r (& p i n g f i b e r , &p o n g f i b e r) ;

20 d i f f [count] = t i c k s () ping2pong ;
count = count 1 ;

22 }
s w i t c h t o f i b e r (&main f iber , &p o n g f i b e r) ;

24 }

26 i n t main () {
memset(&main f iber , 0 , s i z e o f (f i b e r t)) ;

28 c r e a t e f i b e r (& p i n g f i b e r , &ping) ;
c r e a t e f i b e r (&pong f ibe r , &pong) ;

30

s w i t c h t o f i b e r (& p i n g f i b e r , &ma in f i b e r) ;
32

u i n t 6 4 t sum = 0 , max = 0 , min = 42424242;
34 f o r (i =1024; i<N; i++) {

sum += d i f f [i] ;
36 count++;

max = d i f f [i] > max ? d i f f [i] : max ;
38 min = d i f f [i] < min ? d i f f [i] : min ;

}
40

p r i n t f (”Mean : %l l u \nMinimum : %l l u \nMaximum: %l l u \n” ,sum/count , min , max) ;
42 re turn 0 ;
}

Listing 5.1: Ping-pong microbenchmark

80

5.2. Implementation

Table 5.2.: Results of the ping-pong microbenchmark in cycles
Variant Minimum Mean Maximum
POSIX createcontext/swapcontext 1267 1279 81722
setjmp/longjmp 111 112 43168

From the results of the microbenchmark in Table 5.2 can be seen that setjmp/longjmp al-
lows faster context switching in the average case. Note that the minimal context switching
time is close to the average switching time. The extremely high maximal context switch-
ing time could be explained by the fact that during the microbenchmark’s runtime the
Linux kernel preempted the process, because each run took ≈ 2s. Further assuming that
system calls, as they are done by swapcontext, provide points where the Linux kernel
preferably preempts processes and the Linux kernel preempted the process two times in-
side swapcontext, it sounds reasonable that the maximal context switching time of POSIX
createcontext/swapcontext is twice as high.

5.2.4. Context switching

A context switch is the transition from a user-level thread (or the idle state) to another
user-level thread (or to the idle state).

The context switch will be triggered by a user-level thread explicitly yielding the processor
which happens through:

• waiting on a condition variable,

• noticing that the user-level thread has exceeded its time quantum,

• calling the yield function which directly yields the processor,

• or by a worker (kernel-)thread which is in the idle state to check whether it can run
a user-level thread, if that is possible it switches directly to the chosen user-level
thread.

Algorithm: This triggers the algorithm visualized in Figure 5.4.

At first the currently running user-level thread - without loss of generality called thread A
- saves its metrics which is storing its current information (e.g. time thread A was actively
running, time it spent in a critical section, time it spent waiting on a mutex, ...).

After that the statistics of thread A will be updated which means calculating the estimated
time to completion based on the estimated progress and the needed time for reaching the
current progress.

81

5. User-level scheduler

save
metricsthread A

update
statistics

dequeue B idle

has next?
reen-

queue A

switch
fibers

reen-
queue A

load
metricsthread B

switch context()

yes

no

Figure 5.4.: Context switching

Then thread A will be enqueued into one of scheduler’s queues and the scheduling algo-
rithm will decide which user-level thread to run next.

If the scheduling algorithm was not able to find a user-level thread that is runnable, it will
change its state to idle, which means sleeping a few milliseconds and then check again.

If a runnable user-level thread without loss of generality called thread B - could be chosen,
then it will initialize thread B’s fiber if necessary (only once at the first start of thread B)
and switch from the thread A’s fiber to thread B’s fiber (for switching between fibers, see
Section 5.2.3).

After that load the previously stored metrics for thread B and thread B continues its work.

82

5.2. Implementation

5.2.5. Scheduling

Basically the scheduler has to decide which user-level thread to run on the kernel thread
which is asking for work to do. That problem has a few requirements:

• It should fill the gaps that would cause skew.

• It has to take memory locality in account. That means it should prefer user-level
threads for which the memory access would be (mostly) local. That is needed to
avoid excessive transferring of remote memory over the shared bus, because the
latencies for remote memory access are higher it will slow down a user-level thread
and in the worst case, the bandwith limit of the shared bus will be reached and
remote memory access latencies will increase additionally.

• Ability to control the granularity of work each user-level thread executes. This
allows - on one hand-side - a more efficient execution (using a coarse granularity,
involving less context switching and scheduling overhead) while the user-level thread
is expected not to directly complete of that chosen granularity. On the other hand-
side this allows more fine-grained balancing when user-level threads are close to
completion (chosing a low granularity of work).

Algorithm: The scheduler employs a pool of worker (kernel) threads which repeatedly
ask for work (when there is none, they sleep for a given period).

When a worker (kernel) thread requests work, it first selects one of the many possible
QEPs, after that it selects the (user-level) thread which has the most work left until
completion. Note that multiple worker (kernel) threads might be processing different
QEPs.

• Split the QEP into sequential parts i.e. without Xchg operators, called PP3 as
defined in Section 5.1.3

• such a pipeline can be executed by multiple threads (not the same physical operator
pipeline)

• each user-level thread of such a part is spawned inside such a part and are enqueued
on the queue of their preferred NUMA node

• each queue is ordered (descending) by the estimated time to completion i.e. it will
return the user-level thread with the highest time to completion

• run that thread for an appropriate time slice.

3Parallel pipeline

83

5. User-level scheduler

PP data structure: The data structure of a PP can be seen in Listing 5.2. Each PP
holds a definite number of priority queues in which references to the runnable threads are
stored - one per NUMA node as queue. These priority queues are ordered descendingly by
the time of completion of the thread i.e. the thread with the highest time to completion
will be dequeued first. Such an priority queue exists for each NUMA node (in the PP
data structure) where the ULTs are enqueued on the NUMA node on which they are
assumed to have local memory access. Note that each priority queue is implemented
using a linked-list, because the code of the linked-list allows it to be reused for FIFO4

queues and a assumed maximal length of the queue of 10 (for 80 ULTs on 8 NUMA
nodes).

1 s t r u c t ThreadQueue {
Thread∗ head ;

3 Thread∗ t a i l ;
}

5

s t r u c t P a r a l l e l P i p e l i n e {
7 /∗ Work l e f t metr ic f o r each NUMA node ∗/

long ∗ w o r k l e f t ;
9

/∗ User l e v e l thread queue f o r each NUMA node ∗/
11 s t r u c t ThreadQueue∗ queue ;

13 /∗ Pointer to the next PP in the PP l i s t ∗/
s t r u c t P a r a l l e l P i p e l i n e ∗ next ;

15

/∗ Pointer to the prev ious PP in the PP l i s t ∗/
17 s t r u c t P a r a l l e l P i p e l i n e ∗ prev ;

19 /∗ . . . ∗/
}

Listing 5.2: PP data structure

Furthermore the PP data structure maintains statistics about the amount of work to be
done on the NUMA-node (work left) which uses the metric from Section 5.1.2 to represent
to workload on a NUMA node.

To be able to handle multiple queries or queries with more than one Xchg operator (using
the decomposition from Section 5.1.3), multiple PPs form a doubly linked-list. Hence
pointers to the next (next) and previous PP (prev) are needed.

Consider the example given in Figure 5.5 which visualizes two queries (α and β) running

4First in, first out

84

5.2. Implementation

XchgUnion XchgHashSplit XchgUnion

Query α Query β

Figure 5.5.: Linked PPs for two queries

in parallel. Query α consists of a QEP that involves two Xchg operators in sum. Using
the QEP decomposition, described in Section 5.1.3, these two Xchg operators can be
linked together. In Figure 5.5 these are XchgUnion and XchgHashSplit. Then the Xchg
operators of query β are linked in the same way. In the given example there is only a
XchgUnion operator. Further the linked-lists of query α and β are combined forming the
list as visualized in Figure 5.5.

Note that through this the hierarchy formed by queries consisting of Xchg operators is
flattened into one linked-list.

PP decision algorithm: The first decision the scheduler has to make is which part of
a query (PP) it shall run. These PPs contain different sides (producer or consumer) of
each Xchg operator where all of these sides shall kept active to avoid unneccesary context
switching and scheduling.

Therefore the round-robin algorithm is used for deciding which QEP to run next. It is
possible that a PP has no runnable threads in that case it is skipped. Note that this is
based on the assumption that every Xchg operator of each query shall be kept alive in
a best-effort fashion by scheduling the PP using round-robin. Further the round-robin
algorithm ensures a fair distribution between all PPs.

Thread decision algorithm: The thread decision algorithm - visualized in Algorithm 1
- decides which ULT to run next. For this decision the following sub-decisions have to be
made:

a) Shall that ULT be one from the local NUMA node or shall it steal work from a
remote (NUMA) node?

b) Which ULT of the chosen NUMA node shall be executed?

In the following these sub-decisions will be answered using the scheduling algorithm (Al-
gorithm 1) where the used functions defined as the following ones:

• The function FindBestThread takes a PP p and a NUMA node node ∈ Nodes

and returns the ULT with the highest estimated time to completion as defined in
Section 5.1.1. Note the function FindBestThread answers sub-decision b). The

85

5. User-level scheduler

input : PP to run (p), Set of all NUMA nodes Nodes, Current/local NUMA
node local ∈ Nodes

output: User-level thread to run
1 bestlocal ← FindBestThread(p,local);
2 best ← bestlocal;
3 foreach node ∈ Nodes \ {local } do
4 curr ← FindBestThread(p,node);
5 Nodes which are stages behind need to be boosted;
6 a ← (GetStage(curr) < GetStage(bestlocal));
7 Use theshold for nodes inside a stage, to avoid needless remote work through

load balancing;
8 b ← (WorkLeft(p,node) > threshold +WorkLeft(p,local)) ∧ (

GetStage(curr) = GetStage(bestlocal));
9 Find the best of both;

10 c ← OverwriteBest(curr,best);
11 if ((a) ∨ (b)) ∧ (c) then
12 best ← curr;
13 end
14 Remove(best);
15 return best;

Algorithm 1: Task scheduling decision

implementation of FindBestThread searches linearly in one run for the minimal
stage and the maximal estimated time to completion where is the estimated time
to completion is only considered when the stages are equal. Note that this imple-
mentation is not optimal for large amounts of ULTs per NUMA node, in the latter
case a priority queue could be used in order to find such a ULT in time complexity
of O(log(n)). The result of defining FindBestThread that way is that:

– ULTs that are lagging one or more stage behind are preferred and that

– Inside a stage ULTs with a higher time to completion are preferred.

This method consequently prefers ULTs that are lagging behind according to the
estimated progress and the time each ULT took to reach this progress.

• Further GetStage is a function that returns the stage from the last measured
progress from the given ULT as defined in Section 4.2 (as stage).

• The function WorkLeft returns the workload metric, that is defined in Section 5.1.2,
for a given PP p and a NUMA node n ∈ Nodes. WorkLeft(p, n) = W

(
{q ∈

GetQEPs(p) | GetNode(q) = n}
)

where

– GetQEPs returns the set of all QEPs in the given PP p and

– GetNode returns the NUMA node a ∈ Nodes on which q was running first.

86

5.2. Implementation

• OverwriteBest takes two ULTs (a and b) and decides whether a would be a better
choice than b. It is defined in the following way:

OverwriteBest(a, b) :=

true if GetStage(a) < GetStage(b)
true if (GetStage(a) = GetStage(b))∧

(GetTTC(a) > GetTTC(b))
false otherwise

where GetTTC returns the estimated time to completion of a given thread as defined
in Section 5.1.1.

• Remove removes the given ULT from the queue where it is currently enqueued.

Algorithm 1 works in the way that it first tries to find a ULT located on local NUMA
node using FindBestThread. Afterwards Algorithm 1 is trying to find a better ULT via
the OverwriteBest function, where only in following cases ULTs from remote NUMA
nodes are considered:

• When it detects that a NUMA node is overloaded. In that case the workload metric
of the remote NUMA node is higher than the workload metric of the local NUMA
node by at least threshold.

• A ULT is lagging one or more stages behind.

Wα,A = 3

Thread 1
(1, 1)

Thread 2
(1, 2)

NUMA node A

WB = 10

Thread 3
(0, 1)

Thread 4
(0, 9)

WC = 3

Thread 5
(0, 3)

NUMA node B NUMA node C

PP

Figure 5.6.: Scheduling example

Scheduling example: Consider the state given in Figure 5.6. Further the visualized
PP has 5 threads (Thread 1, Thread 2, Thread 3, Thread 4 and Thread 5) where all threads

87

5. User-level scheduler

are distributed over 3 NUMA nodes (A, B and C). Each ULT has a tuple (stage, ttc)
assigned where stage defines the last stage measured via the progress estimation and ttc

the time to completion calculated.

Now a scheduling decision has to be made for a processor on NUMA node A with
threshold = 5:

The best choice for running a ULT from the local NUMA node (A) is initialized using
the ULT with the minimal stage and maximal time to completion. In this example it is
Thread 2 with a stage 1 and a time to completion of 2.

Afterwards the currently best choice best is initialized to the best choice of the local
NUMA node bestlocal which is Thread 2.

Now remote NUMA nodes are considered in order to obtain a better scheduling choice
than the local choice.

1. In order to achieve this the best choice on the NUMA node B has to be found
(via FindBestThread) which is in example returns Thread 4 with stage = 0 and
ttc = 9. Now the two choices - Thread 2 and Thread 4 have to be compared: First it
needs to be checked whether a ULT from a remote NUMA node has to be preferred
because it is lagging one or more stages behind the ULT on the local NUMA node.
In this example Thread 4 is lagging 1 stage behind Thread 2 because Thread 2 has
stage = 1 and Thread 4 has stage = 0 where stages can only increase. Further b

would be false because the stages are not equal. Afterwards it need to be decided
whether the current best choice shall be overwritten, because the current choice curr

(Thread 4) is better. Given the fact that Thread 4 is lagging behind (compared to
best = bestlocal = Thread 2) it will overwrite the current best choice best.

2. Afterwards NUMA node C best choice (Thread 5) is compared with the choice from
the local NUMA node bestlocal = Thread 2. With stage = 0 and ttc = 3 Thread
5, regarding stages, is not lagging behind the local choice. Further the workload
of NUMA node A plus threshold, WA + threshold = 3 + 5 = 8, is greater than
workload of NUMA node C, WC = 3, implying that from the view of NUMA node
A NUMA node C appears not overloaded, so that NUMA node A will no consider
executing work from NUMA node C. Leading that none of the prequisites for a new
best choice is not given. Thus Thread 5 is ignored in this example.

As with Thread 5 being the best choice found so far best and all NUMA nodes being
considered, the scheduling algorithm shown in Algorithm 1 will run Thread 5 as next
thread. The chosen thread runs until it is getting preempted or blocked, then a new
scheduling decision has to be made.

88

5.2. Implementation

5.2.6. Cooperative multitasking

In order to refresh the schedule and provide fairness between the ULTs it was necessary to
implement and assert time slices. These time slices determine an approximate maximal
runtime of a ULT until the next scheduling where another ULT is getting a chance to
run, which is determined by the scheduling algorithm explain in Section 5.2.5. These time
slices are checked in a cooperative way via calling the cooperate() function in the QEP.

Time slices: The idea is to make the time slices dependent on the estimated work
left, in a way that these are getting smaller when the ULT - for which the time slice is
calculate - is getting closer to completion. Due to wrongly estimated time to completion
(during first time periods of a ULT) it was also necessary so increase the time slices in a
more pessimistic way, so that until a specified time - which the ULT - ran (tmin) only the
smallest time slices are given.

tslice = max
{
min{work

l · n
, maxtime slice} · tselect, mintime slice

}
(5.4)

Equation (5.4) denotes the used formula to calculate the time slice, where

• work is the amount of work left on the NUMA node,

• n the number of active (user-level) threads,

• l a constant depending on the NUMA locality further defined as

l =

2 if local

31 if remote

• tactive the time the (user-level) thread ran,

• maxtime slice the highest possible time slice,

• mintime slice the lowest possible one and

• tselect is defined as

tselect =

0 if tactive ≤ tmin

1 otherwise

Cooperation: In order to assert the given time slices, a mechanism of cooperation is
needed. This mechanism is realized through a function cooperate(). This function checks
whether the currently running (user-level) thread is still inside its time slice, otherwise

89

5. User-level scheduler

that function will yield back to the scheduler which decides which (user-level) thread to
run next. The function cooperate is called in every operator producing tuples (e.g. MScan,
Xchg, Aggr, ...) and the parallelization operator (i.e. Xchg) while consuming tuples. This
guarantees that cooperate() is called at least once when the results travel up the pipeline,
while trying to keep the overhead minimal by calling cooperate() only per stride (set of
vectors) and only at certain points of query execution.

5.3. Evaluation

This section evaluates the performance of the implemented user-level scheduler, starting
with an analysis of the balance that could be achieved in two short-running queries. The
second part will evaluate how the user-level scheduler behaves when the parallel-running
threads show imbalance. This will be analyzed over a microbench that provides different
degrees of skew. Last but not least it will be analyized whether the query response times
could be improved over the industry-leading TPC-H benchmark.

5.3.1. Balancing behaviour

In order to analyze the balance that is achieved 2 rather short-running TPC-H queries
were taken. These are Q2 and Q12.

Configuration: These queries were run on Vectorwise with implemented user-level
scheduling. Further it was configured in a way that 2 NUMA nodes with 4 processors
each are used. Each query was run twice:

• One time using n = 8 ULTs. In this case the implemented scheduling algorithm
provides no advantage, because it has not enough threads available to choose the
best one i.e. it can only choose between idle and one ULT.

• Another time using n = 12 ULTs, where the user-level scheduler has the possibility
to choose between different ULTs.

Note that n represents the level of concurrency.

Q2: Consider TPC-H Q2 which - after the rewriting process - has a QEP as visualized
in Figure 5.7. Note that each Xchg operator has an subscript (Xchgm,n) which defines
the number of producer (m) and consumer threads (n) used.

The QEP in Figure 5.7 suggests the following PPs:

90

5.3. Evaluation

TopN

Project

HashJoin01

As

Reuse

XchgUnionn,1

As

Aggr

Project

As

XchgHashSplit1,n

Reuse

Project

HashJoin01

XchgUnionn,1

HashJoin01

MergeJoin

Select

Select

part

partsupp

XchgUnionn,n

supplier

MergeJoin

Select

region

nation

Figure 5.7.: QEP of TPC-H Q2

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

(p
ro

g
re

ss
 i
n
 %

)
*

(1
0

0
 %

 s
ta

g
e
)

+
 o
ff

se
t

time in ms

Aggr

Aggr

Aggr

Aggr

Aggr

Aggr

Aggr

Aggr

Aggr

Hash

Hash

Hash

Hash

Hash

Hash

Hash

Hash

MSca

MSca

MSca

MSca

MSca

MSca

MSca

MSca

MSca

Reus

Reus

TopN

TopN

Figure 5.8.: TPC-H Q2 using 8 ULTs

91

5. User-level scheduler

 0

 5000

 10000

 15000

 20000

 25000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

(p
ro

g
re

ss
 i
n
 %

)
*

(1
0

0
 %

 s
ta

g
e
)

+
 o
ff

se
t

time in ms

Aggr

Aggr

Aggr

Aggr

Aggr

Aggr

Aggr

Aggr

Aggr

Aggr

Aggr

Aggr

Aggr

Hash

Hash

Hash

Hash

Hash

Hash

Hash

Hash

Hash

Hash

Hash

Hash

Hash

MSca

MSca

MSca

MSca

MSca

MSca

MSca

MSca

MSca

MSca

MSca

MSca

(nul

(nul

Reus

Reus

TopN

TopN

Figure 5.9.: TPC-H Q2 using 12 ULTs

1. The parallel scan of supplier which produces the data in order to build the VHT
sequentially.

2. The parallel probing through the VHT which has been built by the first PP.

3. Above the Reuse operator the QEP is parallelized again in order to parallelize the
As, Project, Aggr and another As operator. Afterwards the stream is sequentialized
again.

In order to visualize the balancing behaviour of the implemented user-level scheduler the
estimated progress of each ULT and the top-most sequential operators is plotted over the
common time axis, which is the x-axis in the following plots. These plots will be used to
trace the balanced achieved by the user-level scheduler.

Such a plot was created for Q2 ran using 8 ULTs. This plot is visualized in Figure 5.8.
It shows that the progress reported by

• The top-most operators as the first red line (counting from the top).

• The Reuse operator (the one below the XchgHashSplit operator) as the second red
line.

• Followed by eight red lines which represent the eight parallel scans which are men-
tioned as the first PP.

• These are followed by eight red lines that represent the eight threads probing through
the shared VHT (second PP).

• And last but not least the third PP which includes the parallel Aggr operators.

Further it can be seen that the first PP (parallel scan of supplier) may be considered as
balanced, because most ULTs complete their work at approximately the same time. In

92

5.3. Evaluation

Sort

Project

As

Aggr

XchgUnionn,1

Aggr

Project

MergeJoin

ordersSelect

Select

Select

Select

Select

lineitem

Figure 5.10.: QEP of TPC-H Q12

contrast the ULTs that probe through the VHT in parallel (second PP) are not, but still
the third PP can be considered as balanced.

Now consider the plot using 12 ULTs as it is visualized in Figure 5.9. Note that one
can see the same groups of threads in the run with overallocation. It can be seen that
the threads the scan supplier in parallel (first PP) are a slightly bit more balanced than
in Figure 5.8. The second PP, being the 16 ULTs that probe through the shared VHT,
can also be considered as balanced, except for one ULT. The one thread completing its
work early does not have a big influence on the other scheduling decisions, because there
are 3 ULTs left to be used for further balancing. Also note that this behaviour happens
when the time of completion is not estimated accurately due to fluctuations, which have
more extreme consequences in short-running queries. Further also the ULTs that run the
parallel Aggr operators (third PP) can be considered as balanced.

Q12: The second analyzed query is TPC-H Q12. Its QEP is visualized in Figure 5.10.
It can be seen that Q12 mostly consists of parallel running Aggr operators (and their
subtrees). In the plotted progress per ULT over the time. This will show a set of 8 lines
(in the first run) or 12 lines (in the second run). Consider the plot of the first run, which
is visualized in Figure 5.11. The estimated progresses over time of the mentioned parallel

93

5. User-level scheduler

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

(p
ro

g
re

ss
 i
n
 %

)
*

(1
0

0
 %

 s
ta

g
e
)

+
 o
ff

se
t

time in ms

Aggr

Aggr

Aggr

Aggr

Aggr

Aggr

Aggr

Aggr

(nul

(nul

Sort

Sort

Figure 5.11.: TPC-H Q12 using 8 kernel threads

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 500 1000 1500 2000 2500 3000 3500 4000

(p
ro

g
re

ss
 i
n
 %

)
*

(1
0

0
 %

 s
ta

g
e
)

+
 o
ff

se
t

time in ms

Aggr

Aggr

Aggr

Aggr

Aggr

Aggr

Aggr

Aggr

Aggr

Aggr

Aggr

Aggr

Sort

Sort

Figure 5.12.: TPC-H Q12 using 12 ULTs

94

5.3. Evaluation

running Aggr operators are the last 8 ones. Note that these ULTs show a noticeable
imbalance, because the times each ULT ran is highly different.

Consider the plot of the second run which uses 12 ULTs as visualized in Figure 5.12.
Further note that the last 12 ULTs correspond to the 8 ULTs of which each ULT runs
Aggr operators (and its subtrees) in parallel. It can be seen that these parallel Aggr
operators which were unbalanced in the run using 8 ULTs are balanced in this run using
12 ULTs.

5.3.2. Microbenchmark

XchgUnion

Aggr

HashJoinN

B32A

· · ·Aggr

HashJoinN

B2A

Aggr

HashJoinN

B1A

Figure 5.13.: Microbenchmark QEP

The microbenchmark uses the same query as visualized in Figure 5.13. In essence it is a
parallelized hash join’s with shared VHT where the VHT is built sequentially from the
relation A. Further the relation B is split into 32 equal-sized partitions (B1, B2, · · · , B32)
in combination different data distributions on the probe site. These different data distri-
butions lead to a differing number of matches in the hash table and therefore a different
output of the HashJoinN operator. Further a duplicate elemination on the top of each
HashJoinN operator was used to amplify the execution skew.

Table 5.3.: Query response time in microbenchmark (on 32 processors)
Query Vanilla in s 40 user-level threads in s 80 user-level threads in s

1 206.5 171.7 86.8
2 103.5 86.8 57.9
3 52.4 44 31.6
4 21.5 17.9 15.7
5 11 10.6 10.5

Response times: Running these queries on 32 processors led to the in response times
as they are visualized in Figure 5.14 which shows the time spent for evaluating the mi-
crobenchmark query with differing amount of skew. It shows the query response times of
five queries with a decreasing amount of data skew (from Q1 to Q5) utilizing:

95

5. User-level scheduler

Vanilla 40 80
0

50

100

150

200

T
im

e
in

s
Q1 Q2 Q3 Q4 Q5

Figure 5.14.: Skew microbenchmark decreasing skew from extreme data skew in Q1 to no
data skew in Q5 (on 32 processors)

• Vanilla Vectorwise,

• Vectorwise with load-balancing and overallocation, where the latter one uses 40
ULTs (visualized as ”40”), and

• Load-balanced and overallocated version of Vectorwise using 80 ULTs (visualized
as ”80”).

Q1 , which has an extreme amount of data skew, shows an improved query response
time using load-balancing and overallocation. Utilizing 40 ULTs leads to a reduced query
response time by ≈ 17% where using twice as much ULTs (80) the query response time
can be approximately halfed in Q1.

Q2 has less skew than Q1, which leads to less improvement considering query response
time where using 40 ULTs lead to a reduction by ≈ 16%. Using 80 ULTs the query
response time of Q2 could be reduced by ≈ 44%.

Q3 shows a less improved query execution time, which can be justified by the fact that
Q3 has less data skew.

Q4 shows only a slightly reduced query execution time, because it has the least skew.

96

5.3. Evaluation

Q5 has no data skew. Further it has no reasonably improved query response time in
Figure 5.14. Table 5.3 shows the query response times which were plotted in Figure 5.14.
It can be seen that even in the case of no data skew the load-balanced and overallocated
version improves the query response time by exploting waiting times for processing another
ULT.

Summarzing Figure 5.14 and Table 5.3, it can be stated that the query response time
can be reduced in the skewed case. In the case of less or no data skew, the query response
time could only be improved by exploiting possible wait times by scheduling another
thread at that point.

Further it can be stated that in this microbenchmark the improvement, regarding the
query response time, scales with the amount of skew and - of course - the number of
ULTs used for overallocation.

5.3.3. TPC-H

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
0

5

10

15

20

25

30

TPC-H query

T
im

e
in

s

Baseline
Load-balancing & overallocation

Figure 5.15.: Query response times baseline and with overallocation (on 64 processors)

The query response times for each TPC-H query are shown Figure 5.15 for vanilla Vec-
torwise and the load-balanced version as implemented in the scope of this thesis. Further
Table 5.4 shows a subset of the profiling information gathered inside the user-level sched-
uler per query where for each TPC-H query (as Query) the number of scheduling decisions

97

5. User-level scheduler

made is shown in the column #Schedules. The column #Cooperative visualizes the num-
ber of cooperative preemptions done, as well as the number of scheduling decisions caused
by these. Last but not least the time spent on making scheduling decisions can be seen
in the column Overhead in cycles. Note that this overhead does not include the overhead
for context switching and the overhead that occurs due to cold caches.

Table 5.4.: Scheduler statistics
Query #Schedules #Cooperative Overhead in cycles

1 1.08 · 104 1·104 1.17 · 108

2 3.97 · 103 5.16 · 102 1.14 · 107

3 6.27 · 103 1.22 · 103 3.01 · 107

4 1.13 · 103 3.54 · 102 3.28 · 106

5 1.3 · 104 6.77 · 103 2.26 · 108

6 1.23 · 103 4.85 · 102 6.31 · 106

7 1.15 · 104 5.74 · 103 2.15 · 108

8 2.25 · 104 1.92 · 103 1.15 · 108

9 5.07 · 104 3.41 · 104 9.07 · 108

10 2.33 · 104 5.51 · 103 1.43 · 108

11 9.11 · 103 9.1 · 102 3.49 · 107

12 3.05 · 103 1.49 · 103 1.52 · 107

13 1.76 · 105 9.36 · 103 1.07 · 109

14 1.53 · 104 1.46 · 103 1.04 · 108

15 5.72 · 103 1.08 · 103 3.43 · 107

16 1.62 · 104 3.85 · 103 1.14 · 108

17 7.64 · 103 4.85 · 103 1.2 · 108

18 3.51 · 104 1.15 · 104 1.43 · 108

19 9.03 · 103 6.3 · 103 1.12 · 108

20 1.95 · 104 3.82 · 103 8.14 · 107

21 1.43 · 105 5.56 · 103 1.14 · 109

22 4.14 · 104 2.32 · 103 1.95 · 108

Q1 shows a slightly improved response time using user-level scheduling and overalloca-
tion. As it can be seen from Table 5.4 the time spent for scheduling decisions was ≈ 108

cycles which is mainly caused by the number of cooperative preemptions. This overhead
can be reduced by enlarging the time slices, which is a trade-off between balance (smaller
time slices) and performance (larger time slices).

Q2 shows almost no improvement regarding its query response time. Further it can
be stated that Q2 is rather short-running where it is possible that thread setup and
teardown costs hindered an improved response time. Apart from the setup/teardown
costs Q2 involves a XchgHashSplit operator which is known to be an issue with a higher

98

5.3. Evaluation

number of threads (see Section 2.2.3) compared to Baseline Vectorwise. In Table 5.4 it
can be seen that the number of scheduling decisions made is ≈ 10 times the number of
scheduling decisions caused by cooperative preemptions. This ≈ 10 times higher number
is caused by the contention inside the XchgHashSplit operator.

Q3 - in contrast - involves no XchgHashSplit operators and it can be seen in Figure 5.15
that the response time of Q3 could be improved.

Q4 shows no improvement in Figure 5.15 while having one of the lowest scheduling
overheads from Table 5.4. Further the - rather short-running - Q4 does not involve
XchgHashSplit operators, but in Q4 one still has to pay rewriting and building overhead.
Further ULT startup and teardown costs hindered an improved response time.

Q5 also has noticible time spent during parallelizing and building the QEP which de-
creased the gain that could by reached by overallocation and load-balancing. Furthermore
in Q5 the scheduling overhead is ≈ 2 times the scheduling overhead of Q1, which also
hindered an improved response time.

Q6 has a structure like Q1 (regarding its QEP). In Figure 5.15 Q6 shows no improve-
ment. This can be explained by the rather short response time of Q6 where factors like
thread setup and teardown are becoming more dominant and further avoiding hindering
improvement.

Q7 shows a regressed performance as can be seen in Figure 5.15. Q7 is a query where the
implemented overallocation is going to get problematic, because it increased the time of
the rewrite phase and the build phase. According to the profiling information both phase
took ≈ 1.5 · 109 cycles in sum, which is coaresly ≈ 1 s, whereas in vanilla Vectorwise both
phases took ≈ 0.7 · 109 cycles. This increased time is caused by the higher number of
operators to be built, because the QEP of each thread is built sequentially. Note that the
load-balanced & overallocated version used 80 ULTs whereas the baseline version used 57
kernel threads.

Q8 ’s profiling information shows that the implemented overallocation strategy (through
adapting the costs in a cost-based optimizer) did not work for this query, because the
overallocated run used 12 ULTs whereas the vanilla Vectorwise could use 15 kernel threads.
This results in a regressed query response time.

99

5. User-level scheduler

Q9 shows a big improvement in comparision to the other queries. According to the
profiling information the vanilla version used 64 kernel threads whereas the overallocated
and load-balanced version uses 80 ULTs in the most expensive part of the QEP. The
profiling information showed that through dividing the work into more units i.e. ULTs it
is possible to balance out extreme differing runtimes as they happen in Q9. The runtimes
of the top-most kernel threads in the most expensive part of Q9 - in vanilla Vectorwise -
reached from≈ 45·109 cycles to≈ 120·109 cycles with a mean of - coarsely≈ 70·199 cycles.
These differing runtimes could be reduced by the overallocation so that the runtimes of
the ULTs (in the most expensive part of Q9) are reaching from ≈ 26 ·109 cycles to 75 ·109

cycles with a mean of ≈ 60 · 109 cycles. Further these more threads (with less extreme
different runtimes) could then be balanced by the scheduling algorithm, which then lead
to such an improved query response time.

Q10 is one of a few queries involving XchgHashSplit that do not show regressed response
times. Further the profiling information has shown that this is another query where the
rewrite- and build-time produces a noticible overhead which is ≈ 15% of Q10’s response
time. Further from Section 2.2.3 it is known that XchgHashSplit operator introduce more
overhead when using a higher level of parallelism. This limits the improvement.

Q11 is a query which spents a noticeable amount of the query response time in the
top-most (not parallelized) operators - as known from Chapter 2. That means that no
big improvement can be expected when using a virtually higher degree of parallelism
(overallocation) - as can be seen in Figure 5.15. The slightly regressed response time can
be explain by the higher number of ULTs for which the QEP has to be built.

Q12 shows no improvement compared to Baseline in Figure 5.15. The reason behind
this is the lower degree of parallelism chosen by the rewriter which results in a regressed
response time.

Q13 involves - according to Table 5.4 - a relatively high amount of overhead spent on
making scheduling decisions. Further Q13 involves also XchgHashSplit operators, which
are also known to scale badly. Both of these reasons avoid an improved query response
time in Q13.

Q14 shows an improved query response time in Figure 5.15 while still involving XchgHash-
Split operators. This improvement is caused by the changed cost model. Based on these

100

5.3. Evaluation

changes the rewriter decided to use 24 ULTs instead of 31 kernel threads, which in com-
bination with the XchgHashSplit operator resulted in an improved response time.

Q15 , which shows an improvement in Figure 5.15, also suffers from the same problem
as Q14: The rewriter decided to use 16 ULTs whereas the vanilla Vectorwise used 20
kernel threads. This reduced the overhead introduced by the XchgHashSplit operator.

Q16 suffers from the same problem as in Q14 and Q15 where the rewriter assigned
20 ULTs whereas vanilla Vectorwise assigned 30 kernel threads to query execution. This
reduced the overhead of the XchgHashSplit operator and lead to a slightly improved query
response time.

Q17 shows an improved query response time in Figure 5.15 while involving XchgHash-
Split operators and an overallocation of 26 additional ULTs, making 80 ULTs in sum,
whereas vanilla Vectorwise used 64 kernel threads for the most expensive part of the
QEP. This led to an increase build and rewriting time and higher overhead in combi-
nation with XchgHashSplit operators which could be amortized by load balancing the
ULTs.

Q18 ’s response time regressed using overallocation and load-balancing. Q18 the over-
allocated version used 68 ULTs for scanning the relation customer which is afterwards
sequentialized in order to build the VHT. Note that vanilla Vectorwise used 64 kernel
threads for the same. After building the VHT 80 ULTs, in the overallocated version,
probe through the VHT whereas 64 kernel threads were used in vanilla Vectorwise. The
profiling information shows that in the overallocated version ≈ 14% query time is spent
on sequentializing the parallel streams before building the VHT whereas the vanilla Vec-
torwise spent only ≈ 4% on this.

Q19 shows an improved response time in Figure 5.15. This noticeable improvement
was caused by the changed QEP through the rewriter. The QEP produced by vanilla
Vectorwise contains XchgHashSplit operators whereas the changes for the automatic over-
allocation caused the rewriter to choose XchgUnion operators instead of XchgHashSplit
operators. This resulted in less overhead and hence an improved response time.

Q20 has a low overhead for making scheduling decisions as can be seen in Table 5.4.
Despite this low overhead Q20 shows a regressed response time in Figure 5.15. The

101

5. User-level scheduler

profiling information suggests that this regression is mainly caused by the extreme amount
of time the rewriting process and - afterwards - building the QEP took. The sum of these
times increased from ≈ 5 · 106 cycles to ≈ 6.7 · 109 cycles, in the overallocated version.

Q21 ’s profiling information shows that in the overallocated version less ULTs (20) were
used than kernel threads in the vanilla Vectorwise (27). Further from Table 5.4 it can
be seen the even with 20 ULTs has a high scheduling overhead. This high overhead is
caused by the high amount of scheduling decisions which have to be made due to the
XchgHashSplit operators. Both resulted in a regressed query response time as it can be
seen in Figure 5.15.

Q22 shows a regressed response time in Figure 5.15. The profiling information shows
that this regressed is caused by the XchgHashSplit which are becoming more expensive,
when more threads are used.

Summary: All this resulted in improved TPC-H scores which can be seen in Table 5.5.
It can be summarized that Overallocated & load-balanced version improved the Total time
(∑22

i=1 ti where ti is the response time of Qi) of all as well as the Power score while still
being able to react on dynamic workload changes.

Table 5.5.: TPC-H scores
Version Total time in s Power score
Vanilla 149.14 966.10 * SF
Overallocated & load-balanced 137.47 1035.82 * SF

102

6. Conclusion

This chapter summarizes the knowledge gained from the chapters 2, 4 and 5.

6.1. Survey

The analysis done in Chapter 2 showed the scalability of Vectorwise is limited by a set of
issues.

Unscalable parallelism: One general issue in Vectorwise is the limited scalability of
the XchgHashSplit operator, which distributes data from producer threads to consumer
threads using a hash function. It was shown that the cost of involved with the XchgHash-
Split operator increases with the number of threads being used.

Sequential fraction: Another issue is the sequential fraction that due to Amdahl’s law
also limits scalability. It was found out that in short-running queries with a sufficiently
high degree of parallelism building the operator tree can become problematic.

Further the scalability some TPC-H queries (e.g. Q11) is limited by the top-most opera-
tors in the operator tree which are executed sequentially.

In analyzed version of Vectorwise it was not possible to build the hash table of a HashJoin
in parallel. It was found out that this is also a major restriction for a sufficiently large
inner relation.

Another example of a query part that is evaluated purely sequential is the Reuse operator
which allows to share the results of one sub-tree (of the operator tree) with another. In
case that this operator appear in the middle of a parallelized query plan, Reuse forces the
parallel streams to be merged and afterwards parallelized again. This - not only - involves
a potentially high sequential percentage, depending on the time spent inside Reuse. This
also involve the overhead of additional synchronization, because the streams have to be
merged and potentially afterwards parallelized again.

103

6. Conclusion

An analysis of the influence of locking on the scalability in Vectorwise has shown that
locking can become a scalability killer. Analyzed was the locking inside the Xchg operator
and inside the I/O layer. The analysis had shown that especially in XchgHashSplit locking
is a problem, because the lock is held a relatively long time where other thread have to
wait. Further the analysis had shown that the locks inside the I/O layer also have negative
impact on scalability in combination of many parallel scans.

Memory locality: Due to the NUMA nature memory access can be more or less ex-
pensive depending on which data is accessed from which processor. An experiment had
shown that destroying memory locality by distributing memory over all NUMA nodes had
mostly positive influence on the query response time. Further it was shown that especially
the access to the buffer pool and to hash tables which are shared by many threads can
benefit from this. Leading to the conclusion that the performance, using the standard
memory policy, was limited by the memory bandwith on a few NUMA nodes.

Skew: Chapter 2 also shows that skew between threads is problematic in the multi-core
scenarios. The types of skew, that were analyzed, were caused by distribution of the data
or through different processing speeds which can be due to differing memory locality or
data distributions that or not partitioned into equal chunks.

6.2. Progress estimation

Chapter 4 described an scheme which estimates the progress of queries or parts of queries
where the progress of an operator higher in the tree is based on the progress of the
data source. In Chapter 4 these data sources included scans over existing relations and
”virtual” relations like hash tables. This led to a concept of progress that is provably
monotonic increasing and provides acceptable linearity inside a stage.

One of the big drawbacks of this scheme of estimating progress is that it is non-trivial to
derive a total progress over multiple stage from the progress in one stage which satisfies
monotonicity and acceptable linearity.

6.3. User-level scheduler

Chapter 5 described a way to get out of the static Volcano-model parallelism by using
more threads than processors and carefully balancing these threads over the processors.

104

6.3. User-level scheduler

In order to achieve this a user-level thread library was created. This library included the
implementation of a user-level scheduler that actively tries to achieve load-balance. Fur-
ther this library included the implementation of synchronization data structures (mutexes
and condition variables).

Algorithm: The scheduling algorithm exploits dynamic feedback from query execution
in order to achieve a balanced situation so that all threads have the same time to com-
pletion of a stage. For this the - in Chapter 4 - described progress estimation was used to
calculate the time to completion of the current stage. Further the scheduling algorithm
also provides a concept of NUMA awareness by prefering threads on the local NUMA
node.

Performance: The efficiency of this concept was shown over a set of benchmarks. In a
microbenchmark utilizing different degrees of skew showed that it was possible to reduce
skew by by using a higher number of user-level threads and balancing these. Further it
was possible to improve the overall time and the power score over the TPC-H benchmark.

Proof-of-concept: The implementation has shown that it is possible to loosen the hard
limits set by the static Volcano-model parallelism. Exploiting overallocation makes it
possible to utilize gaps produce by dynamic effects or skew for query execution. Further
the dynamically scheduled approach has the benefit that computing resources can be
assigned dynamically and do not have to be set statically.

Drawbacks: The implemented solution has different drawbacks which are:

• In highly concurrent scenarios the scalability issues from Chapter 2 will become
more critical.

• Manual stack management and uncertainty about the stack size: a too small stack
size may overflow during query execution and too large stack size may waste memory
in high concurrency scenarios while still only a part of the stack is used.

• The usage of a O(n) scheduling algorithm, where n is the number of threads on a
NUMA node, may not be a good choice for highly concurrent scenarios. Given a
sufficiently large amount of user-level threads this will perform badly. Even worse
this time is spent in side a mutually execlusion section which only can be one thread
at a time.

• Such an almost fully-blown user-level scheduler consumes a lot of development time.
This includes especially

105

6. Conclusion

– that testing the correct behaviour is non-trivial and time consuming, because
automatization is only possible in rare cases and

– the fact that it is hard to implement an effcient scheduler including synchro-
nization APIs that, in certain scenarios, does not perform much worse than
established and mature threading library pthreads.

106

7. Future work

The work that has been done in the chapters 2, 4 and 5 may be improved by in the
future. This may involve a more detailed analysis in Chapter 2, a progress estimation
scheme which might be able to handle more cases or an improved user-level scheduler.

7.1. Survey

The analysis provided in Chapter 2 has made assumptions that are not realistic in a
general DBMS, because e.g. only hot runs on static data were considered. Furthermore
it was not detailed enough in fine-grained aspects.

Cache line contention and false-sharing: In multi-core systems it can be shown that
highly accessed cache lines are problematic because they involve a lot of cache invalidations
and hence produce a lot of additional traffic on the interconnections. This behaviour is
generally hard to analyse and therefore was omitted in Chapter 2, mainly because of
missing tools for such an detailed analysis. In [ZM13] a new tool was announced this year
for analyzing such issues which is an extension to Linux perf˙events.

Cold runs As explained in Section 2.4.1, Vectorwise uses specialized worker threads
that load the blocks from persistent storage. Further it was assumed that the NUMA
locality of the blocks read by these threads is randomized which is not realistic. Given
the case that one worker thread has an affinity regarding its NUMA locality i.e. the Linux
scheduler would preferably execute the thread on this NUMA node (or even processor),
the assignment between blocks and NUMA could be determined more accurately.

Appends, Inserts, Updates: In Chapter 2 it was assumed that the underlying data
stays constant i.e. read-only queries were considered. Appends, inserts and updates may
be critical, because they involve PDTs1 which define an delta between the stable storage

1Positional delta trees

107

7. Future work

and the last update(s) [HZN+10]. Hence they create another shared resource that may
have a critical influence on scalability.

Disk spilling In DBMS were large amounts of data are processed operator may spill to
disk according to a given policy. This - obviously - involves I/O which was avoided in the
scenario analyzed. Thus taking disk spilling into account may change the analysis of the
NUMA loclaity done for some operators.

7.2. Progress estimation

The in Chapter 4 has flaws that makes it sub-optimal in general DBMS use cases.

Handling I/O: The use case of a general DBMS may involve I/O which is currently not
well handled in the progress estimation as presented in Chapter 2 which has to be done
when blocks are loaded or written from or to persistent memory. For example operator
may spill additional data to disk, this case was not considered in the scheme of progress
estimation as described in Chapter 2.

Progress estimation with dynamic scan ranges: Future use of the - in Chapter 4 -
presented progress estimation scheme, may include the usage of DDCC2. Implementation-
wise this will include - so called - Sandwich operators which further allow to restart oper-
ators lower in the QEP [BBS12]. This cannot be handled in the, in Chapter 4 presented,
QEP progress estimation scheme, because it involves another type of Scan that has vary-
ing ranges.

7.3. User-level scheduler

The in Chapter 5 presented user-level scheduler could be improved in order to workaround
the in Section 6.3 mentioned drawbacks or to provide new functionality.

Lock-free implementation: The algorithm of the user-level scheduler could - in theory
- be implemented in a lock-free manner. This would workaround locking issues that may
occur in scenarios where a high number of scheduling decisions has to be made or a
high number of processors is used. This may be done via lock-free priority queues [ST03],

2Deep dimensional co-clustering

108

7.3. User-level scheduler

lock-free skiplists or even hardware transactional memory which is, according to [LKN14],
introduced by the Haswell microarchitecture from Intel.

Scheduling to avoid blocking: Because user-level scheduling allows the use a cus-
tomized scheduling strategy it may be possible to schedule the user-level threads in a way
that they have to wait very rarely on mutexes or condition variables. Such that, given
that it is known where the thread could potentially wait, to preempt the user-level thread
earlier (before the mutex or condition variable is reached) and schedule it again, when
the scheduler detects the it is very unlikely that the thread has to wait.

Inter-query parallelism: The implemented user-level scheduler allows it to implement
a strategy for handling inter-query parallelism. This could be done in a way that com-
putation resources can be dynamically assigned to concurrently running queries based
on a given quality of service model. For example queries with higher priorities might
be boosted in the scheduling decision and with a longer time slice or could get more
processors assigned.

109

Abbreviations

API Application programming interface
CPU Central processing unit
DBMS Database management system
DDCC Deep dimensional co-clustering
FIFO First in, first out
FPU Floating point unit
GCC GNU C Compiler
I/O Input / output
LRU Last recently used
MOESI Modified Owned Exclusive Exclusive Invalid
NUMA Non uniform memory access
OS Operating system
QEP Query execution plan
PBM Predictive buffer manager
PDT Positional delta tree
POSIX Portable operating system interface
PP Parallel pipeline
SIMD Single instruction, multiple data
SQL Structured query language
TBB Thread Building Blocks
TPC Transaction performance council
ULT User level thread
VHT Vectorized hash table

110

List of Figures

1.1. Speedup gained by Hyper (red line) and Vectorwise (purple line) over
TPC-H scale factor 100 on Nehalem EX from [LBKN14, p. 9] 10

1.2. Speedup gained for the TPC-H queries using 32 and 64 processors on scale
factor 500 . 11

1.3. Link topology [DGT13, p. 4] . 13

2.1. Speedup gained for the TPC-H queries (on 64 processors) 20
2.2. QEPs of parallelized Q21 . 22
2.3. tcont, tacq and tacq

n
for each XchgHashSplitop=i

n,n from Q21 23
2.4. Speedup according to Amdahl’s law with differing parallelizable fraction f 27
2.5. Vectorwise DBMS architecture [CI12, p. 4] 28
2.6. Example QEP to build . 29
2.7. Time spent in sequential phases in % of query time (on 64 processors) . . . 30
2.8. Time spent in sequential parts as % of query time (on 64 processors) . . . 31
2.9. Query response times with PBM and with the LRU strategy (on 64 pro-

cessors) . 35
2.10. Time spent sequential in % of query time (on 64 processors) 37
2.11. Memory placement (on 32 processors) . 38
2.12. Skew in a query consisting of two pipelines 41
2.13. Maximal speedup in the presence of skew [BFV99, p. 106] 42

3.1. Progress estimation by machine learning [MZZ08, p. 491] 46

4.1. Simple example QEP . 49
4.2. More complex example QEP . 50
4.3. Example QEP . 51
4.4. Phases of the example QEP . 51
4.5. Projected progress of Q1 and Q3 . 61
4.6. QEPs of Q1 and Q3 . 62
4.7. Projected progress of Q9 and Q10 . 63
4.8. QEPs of Q9 and Q10 . 64

111

List of Figures

4.9. Projected progress of Q17 and Q20 . 65
4.10. QEPs of Q17 and Q20 . 66

5.1. Example with 4 threads and 6 threads (50% overallocation) 72
5.2. Example QEP . 74
5.3. Example QEP . 75
5.4. Context switching . 82
5.5. Linked PPs for two queries . 85
5.6. Scheduling example . 87
5.7. QEP of TPC-H Q2 . 91
5.8. TPC-H Q2 using 8 ULTs . 91
5.9. TPC-H Q2 using 12 ULTs . 92
5.10. QEP of TPC-H Q12 . 93
5.11. TPC-H Q12 using 8 kernel threads . 94
5.12. TPC-H Q12 using 12 ULTs . 94
5.13. Microbenchmark QEP . 95
5.14. Skew microbenchmark decreasing skew from extreme data skew in Q1 to

no data skew in Q5 (on 32 processors) . 96
5.15. Query response times baseline and with overallocation (on 64 processors) . 97

112

List of Tables

2.1. Tuples flown through each XchgHashSplitop=i
n,n 24

2.2. Example calculation of the operators built 29
2.3. Shared VHT build time (on 64 processors) 32
2.4. Time spent in Reuse (on 32 processors) . 33
2.5. Contention time in Xchg mutex (on 64 processors) 34
2.6. Contention and acquisition time in PBM main lock (on 64 processors) . . . 36
2.7. Decompression speed of Q6’s scanned columns 38
2.8. Decompression speed of Q6’s scanned columns with interleaved memory . . 39
2.9. Shared VHT HashJoin probing time in cycles

input tuple in Q3 39
2.10. Skew S below the top-most Xchg operator over TPC-H query set restricted

by queries with only one Xchg operator . 42

4.1. Scan operators . 55
4.2. Streaming operators . 55
4.3. Blocking operators . 57
4.4. Buffering operators . 59

5.1. Example workload without overallocation and with 50 % overallocation . . 72
5.2. Results of the ping-pong microbenchmark in cycles 81
5.3. Query response time in microbenchmark (on 32 processors) 95
5.4. Scheduler statistics . 98
5.5. TPC-H scores . 102

113

Listings

4.1. Implementation of a progress estimation function progress(op) where op ∈
Operator . 60

5.1. Ping-pong microbenchmark . 80
5.2. PP data structure . 84

114

Bibliography

[AMD13a] AMD. Amd opteron 6300 series processor quick reference guide. January
2013.

[AMD13b] AMD. Amd64 architecture programmers manual volume 2: System program-
ming. May 2013.

[Ani10] Kamil Anikiej. Multi-core parallelization of vectorized query execution, 2010.

[BBS12] Stephan Baumann, Peter Boncz, and Kai-Uwe Sattler. Query processing of
pre-partitioned data using sandwich operators. In Workshop on Business In-
telligence for the Real Time Enterprise, Lecture Notes in Business Information
Pr, page 6. BIRTE, Springer, August 2012.

[BFV99] Luc Bouganim, Daniela Florescu, and Patrick Valduriez. Load balancing for
parallel query execution on numa multiprocessors. In Athman Bouguettaya,
editor, Ontologies and Databases, pages 99–121. Springer US, 1999.

[BZN05] Peter A Boncz, Marcin Zukowski, and Niels Nes. Monetdb/x100: Hyper-
pipelining query execution. In CIDR, volume 5, pages 225–237, 2005.

[CI12] Andrei Costea and Andrian Ionescu. Query optimization and execution in
vectorwise mpp, 2012.

[CNR04] Surajit Chaudhuri, Vivek Narasayya, and Ravishankar Ramamurthy. Esti-
mating progress of execution for sql queries. In Proceedings of the 2004 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’04,
pages 803–814, New York, NY, USA, 2004. ACM.

[DGT13] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. Everything you
always wanted to know about synchronization but were afraid to ask. In Pro-
ceedings of the Twenty-Fourth ACM Symposium on Operating Systems Prin-
ciples, SOSP ’13, pages 33–48, New York, NY, USA, 2013. ACM.

[Dre07] Ulrich Drepper. What every programmer should know about memory. Red
Hat, Inc, 11, 2007.

[DS05] Adam Dunkels and Oliver Schmidt. Protothreads-lightweight stackless threads

115

Bibliography

in c. SICS Research Report, 2005.

[Dun14] Adam Dunkels. About protothreads. Website, 2014. Available online at
http://dunkels.com/adam/pt/about.html; visited on July 28th 2014.

[Eng14] Ralf Engelschall. Gnu pth manual. Website, 2014. Available online at http:
//www.gnu.org/software/pth/pth-manual.html; visited on July 8th 2014.

[GKHC07] Boncheol Gu, Yongtae Kim, Junyoung Heo, and Yookun Cho. Shared-stack
cooperative threads. In Proceedings of the 2007 ACM symposium on Applied
computing, pages 1181–1186. ACM, 2007.

[Gra94] Goetz Graefe. Volcano-an extensible and parallel query evaluation system.
Knowledge and Data Engineering, IEEE Transactions on, 6(1):120–135, 1994.

[Gro14] The Open Group. The open group base specifications issue 7. Website, 2014.
Available online at http://pubs.opengroup.org/onlinepubs/9699919799/
functions/pthread_cond_timedwait.html; visited on July 28th 2014.

[HM08] Mark D Hill and Michael R Marty. Amdahl’s law in the multicore era. IEEE
Computer, 41(7):33–38, 2008.

[HZN+10] Sándor Héman, Marcin Zukowski, Niels J Nes, Lefteris Sidirourgos, and Peter
Boncz. Positional update handling in column stores. In Proceedings of the
2010 ACM SIGMOD International Conference on Management of data, pages
543–554. ACM, 2010.

[Inc14] Lockless Inc. Mutexes and condition variables using futexes. Website, 2014.
Available online at http://locklessinc.com/articles/mutex_cv_futex/;
visited on July 28th 2014.

[KDCN11] Arnd Christian König, Bolin Ding, Surajit Chaudhuri, and Vivek Narasayya.
A statistical approach towards robust progress estimation. Proceedings of the
VLDB Endowment, 5(4):382–393, 2011.

[LBKN14] Viktor Leis, Peter Boncz, Alfons Kemper, and Thomas Neumann. Morsel-
driven parallelism: A numa-aware query evaluation framework for the many-
core age. 2014.

[LFV+12] Andrew Lamb, Matt Fuller, Ramakrishna Varadarajan, Nga Tran, Ben Van-
diver, Lyric Doshi, and Chuck Bear. The vertica analytic database: C-store
7 years later. Proceedings of the VLDB Endowment, 5(12):1790–1801, 2012.

[LKN14] Viktor Leis, Alfons Kemper, and Thomas Neumann. Exploiting hardware
transactional memory in main-memory databases. In Data Engineering
(ICDE), 2014 IEEE 30th International Conference on, pages 580–591. IEEE,

116

http://dunkels.com/adam/pt/about.html
http://www.gnu.org/software/pth/pth-manual.html
http://www.gnu.org/software/pth/pth-manual.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/pthread_cond_timedwait.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/pthread_cond_timedwait.html
http://locklessinc.com/articles/mutex_cv_futex/

Bibliography

2014.

[Mic14] Microsoft. Fibers. Website, 2014. Available online at http:
//msdn.microsoft.com/en-us/library/windows/desktop/ms682661%
28v=vs.85%29.aspx; visited on September 1st 2014.

[MK07] Chaitanya Mishra and Nick Koudas. A lightweight online framework for query
progress indicators. In ICDE, pages 1292–1296, 2007.

[MZZ08] Mario Milicevic, Krunoslav Zubrinic, and Ivona Zakarija. Dynamic approach
to the construction of progress indicator for a long running sql queries. inter-
national journal of computers, (4), 2008.

[RAB+13] Vijayshankar Raman, Gopi Attaluri, Ronald Barber, Naresh Chainani, David
Kalmuk, Vincent KulandaiSamy, Jens Leenstra, Sam Lightstone, Shaorong
Liu, Guy M Lohman, et al. Db2 with blu acceleration: So much more than
just a column store. Proceedings of the VLDB Endowment, 6(11):1080–1091,
2013.

[Rei07] James Reinders. Intel threading building blocks: outfitting C++ for multi-core
processor parallelism. O’Reilly Media, Inc., 2007.

[SBZ12] Michal Switakowski, Peter Boncz, and Marcin Zukowski. From cooperative
scans to predictive buffer management. Proc. VLDB Endow., 5(12):1759–1770,
August 2012.

[SC09] Xian-He Sun and Yong Chen. Reevaluating amdahls law in the multicore era.
2009.

[ST03] H̊akan Sundell and Philippas Tsigas. Fast and lock-free concurrent priority
queues for multi-thread systems. In Parallel and Distributed Processing Sym-
posium, 2003. Proceedings. International, pages 11–pp. IEEE, 2003.

[Sut09] Herb Sutter. The free lunch is over: A fundamental turn toward concur-
rency in software. Website, 2009. Available online at http://www.gotw.ca/
publications/concurrency-ddj.htm; visited on March 30th 2014.

[Tan01] Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall Press,
Upper Saddle River, NJ, USA, 2nd edition, 2001.

[TFB+11] Martin Thompson, Dave Farley, Michael Barker, Patricia Gee, and Andrew
Stewart. Disruptor: High performance alternative to bounded queues for
exchanging data between concurrent threads. May 2011.

[Vyu14] Dmitry Vyukov. Faster fibers/coroutines. Website, 2014. Available on-
line at http://www.1024cores.net/home/lock-free-algorithms/tricks/

117

http://msdn.microsoft.com/en-us/library/windows/desktop/ms682661%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms682661%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms682661%28v=vs.85%29.aspx
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.1024cores.net/home/lock-free-algorithms/tricks/fibers
http://www.1024cores.net/home/lock-free-algorithms/tricks/fibers
http://www.1024cores.net/home/lock-free-algorithms/tricks/fibers

Bibliography

fibers; visited on July 28th 2014.

[WMT08] Kyle B Wheeler, Richard C Murphy, and Douglas Thain. Qthreads: An api for
programming with millions of lightweight threads. In Parallel and Distributed
Processing, 2008. IPDPS 2008. IEEE International Symposium on, pages 1–8.
IEEE, 2008.

[ZB91] Songnian Zhou and Timothy Brecht. Processor-pool-based scheduling for
large-scale numa multiprocessors. SIGMETRICS Perform. Eval. Rev.,
19(1):133–142, April 1991.

[ZM13] Done Zickus and Joe Mario. Numa - is it hurting your appli-
cation performance? Website, 2013. Available online at http:
//www.redhat.com/developerexchange/DevExchange_NUMA_Performance_
Debugging_Zickus_Mario.pdf; visited on July 20th 2014.

118

http://www.1024cores.net/home/lock-free-algorithms/tricks/fibers
http://www.1024cores.net/home/lock-free-algorithms/tricks/fibers
http://www.1024cores.net/home/lock-free-algorithms/tricks/fibers
http://www.redhat.com/developerexchange/DevExchange_NUMA_Performance_Debugging_Zickus_Mario.pdf
http://www.redhat.com/developerexchange/DevExchange_NUMA_Performance_Debugging_Zickus_Mario.pdf
http://www.redhat.com/developerexchange/DevExchange_NUMA_Performance_Debugging_Zickus_Mario.pdf

Appendices

119

A. Source code of the ping-pong
microbenchmark

#inc lude <s t r i n g . h>

2 #inc lude <ucontext . h>

#inc lude <malloc . h>

4 #inc lude <s t d i o . h>

#inc lude <un i s td . h>

6 #inc lude <s t d l i b . h>

#inc lude <s tdde f . h>

8 #inc lude <s t d i n t . h>

10 #undef FORTIFY SOURCE

12 // Def ine when only swapcontext s h a l l be used
// #d e f i n e uctx

14

i n l i n e u i n t 6 4 t t i c k s () {
16 unsigned long long a , d ;

a sm v o l a t i l e (” rd t s c ” : ”=a” (a) , ”=d” (d)) ;
18 re turn ((unsigned long long) a) | (((unsigned long long)d)<<32) ;
}

20

void ∗ a l l o c a t e s t a c k (s i z e t s i z e) {
22 void ∗ r e s u l t = NULL;

i f (posix memalign(& r e s u l t , g e t p a g e s i z e () , s i z e) != 0)
24 re turn NULL;

e l s e
26 re turn r e s u l t ;
}

28

s i z e t const s t a c k s i z e = 64∗1024;
30

/∗ Fiber implementation taken from http ://www.1024 co r e s . net /home/ lock f r e e
a lgor i thms / t r i c k s / f i b e r s

32 ∗ and modi f i ed ∗/

120

34 #i f d e f uctx
typede f ucontext t f i b e r t ;

36

void wrap ca l l (void ∗ fun) {
38 void (∗ ufnc) (void) = fun ;

ufnc () ;
40 }

42 void c r e a t e f i b e r (f i b e r t ∗ f i b , void (∗ ufnc) (void)) {
getcontext (f i b) ;

44 f i b > uc s tack . s s s p = a l l o c a t e s t a c k (s t a c k s i z e) ;
f i b > uc s tack . s s s i z e = s t a c k s i z e ;

46 f i b > u c l i n k = 0 ;
makecontext (f i b , ufnc , 1 , NULL) ;

48 }

50 i n l i n e void s w i t c h t o f i b e r (f i b e r t ∗ f i b , f i b e r t ∗ prev) {
swapcontext (prev , f i b) ;

52 }

54 #e l s e
#inc lude <setjmp . h>

56

typede f s t r u c t {
58 ucontext t f i b ;

jmp buf jmp ;
60 } f i b e r t ;

62 typede f s t r u c t {
void (∗ fnc) (void) ;

64 jmp buf∗ cur ;
ucontext t ∗ prv ;

66 } f i b e r c t x t ;

68 s t a t i c void f i b e r s t a r t f n c (void ∗ p) {
f i b e r c t x t ∗ ctx = (f i b e r c t x t ∗)p ;

70 void (∗ ufnc) (void) = ctx > fnc ;
i f (set jmp (∗ ctx > cur) == 0)

72 {
ucontext t tmp ;

74 swapcontext(&tmp , ctx > prv) ;
}

76 ufnc () ;
}

78

void c r e a t e f i b e r (f i b e r t ∗ f i b , void (∗ ufnc) (void)) {

121

A. Source code of the ping-pong microbenchmark

80 getcontext (& f ib > f i b) ;
f i b > f i b . uc s tack . s s s p = a l l o c a t e s t a c k (s t a c k s i z e) ;

82 f i b > f i b . uc s tack . s s s i z e = s t a c k s i z e ;
f i b > f i b . u c l i n k = 0 ;

84 ucontext t tmp ;
f i b e r c t x t ctx = {ufnc , &f ib > jmp , &tmp} ;

86 makecontext(& f ib > f i b , (void (∗) ()) f i b e r s t a r t f n c , 1 , &ctx) ;
swapcontext(&tmp , &f ib > f i b) ;

88 }

90 i n l i n e void s w i t c h t o f i b e r (f i b e r t ∗ f i b , f i b e r t ∗ prv) {
i f (set jmp (prv > jmp) == 0)

92 longjmp (f ib > jmp , 1) ;
}

94

#e n d i f
96

f i b e r t p i n g f i b e r ;
98 f i b e r t p o n g f i b e r ;

f i b e r t ma in f i b e r ;
100

u i n t 6 4 t ping2pong = 0 ;
102 u i n t 6 4 t pong2ping = 0 ;

104 #d e f i n e N (1024∗1024)
u i n t 6 4 t count = N;

106

u i n t 6 4 t d i f f [N] ;
108

void ping () {
110 whi le (count > 0) {

ping2pong = t i c k s () ;
112 s w i t c h t o f i b e r (&pong f ibe r , &p i n g f i b e r) ;

d i f f [count] = t i c k s () pong2ping ;
114 count ;

}
116 s w i t c h t o f i b e r (&main f iber , &p i n g f i b e r) ;
}

118

void pong () {
120 whi le (count > 0) {

pong2ping = t i c k s () ;
122 s w i t c h t o f i b e r (& p i n g f i b e r , &p o n g f i b e r) ;

d i f f [count] = t i c k s () ping2pong ;
124 count ;

}

122

126 s w i t c h t o f i b e r (&main f iber , &p o n g f i b e r) ;
}

128

i n t main () {
130 /∗ do some black magic to get the f i b e r f o r t h i s thread ∗/

memset(&main f iber , 0 , s i z e o f (f i b e r t)) ;
132

s i z e t i ;
134 f o r (i =0; i<N; i++) {

d i f f [i] = 0 ;
136 }

138 c r e a t e f i b e r (& p i n g f i b e r , &ping) ;
c r e a t e f i b e r (&pong f ibe r , &pong) ;

140

s w i t c h t o f i b e r (& p i n g f i b e r , &ma in f i b e r) ;
142

/∗ ana lyze recorded s t a t s and d i s ca rd the f i r s t 1024 samples ∗/
144 u i n t 6 4 t sum = 0 ;

count = 0 ;
146 u i n t 6 4 t min = 42424242;

u i n t 6 4 t max = 0 ;
148 f o r (i =1024; i<N; i++) {

sum += d i f f [i] ;
150 count++;

max = d i f f [i] > max ? d i f f [i] : max ;
152 min = d i f f [i] < min ? d i f f [i] : min ;

}
154

p r i n t f (”Mean : %l l u \nMin : %l l u \nMax : %l l u \n” , sum/count , min , max) ;
156 re turn 0 ;
}

123

Erklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbstständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel benutzt habe, dass alle Stellen der
Arbeit, die wörtlich oder sinngemäß aus anderen Quellen übernommen wurden, als solche
kenntlich gemacht und dass die Arbeit in gleicher oder ähnlicher Form noch keiner Prü-
fungsbehörde vorgelegt wurde.

Ort, Datum Unterschrift

124

	Contents
	Introduction
	Motivation
	System details
	Vectorwise algebra
	Contribution
	Structure

	Survey
	Hardware features
	Parallelism model
	Chosen parallelism
	Xchg operator
	XchgHashSplit operator
	Case study: XchgHashSplit operators in Q21
	Summary

	Sequential fraction
	Sequential phases
	Sequential query parts
	HashJoin operator
	Reuse operator
	Locking
	Summary

	Memory locality
	MScan operator
	Shared VHT HashJoin
	Summary

	Skew

	Related work
	Parallelism model
	User-level scheduler
	Query progress estimation

	Progress estimation
	Approach
	Definition
	Conventions
	Scan operators
	Streaming operators
	Blocking operators
	Buffering operators
	Implementation
	Evaluation
	Linearity
	Monotonicity

	User-level scheduler
	Approach
	Time to completion
	Workload metric
	QEP decomposition
	Scheduling

	Implementation
	Overallocation
	Thread API emulation
	Fibers
	Context switching
	Scheduling
	Cooperative multitasking

	Evaluation
	Balancing behaviour
	Microbenchmark
	TPC-H

	Conclusion
	Survey
	Progress estimation
	User-level scheduler

	Future work
	Survey
	Progress estimation
	User-level scheduler

	List of Figures
	List of Tables
	Appendices
	Source code of the ping-pong microbenchmark

