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Abstract

This thesis investigates the bene�ts of micro adaptivity in a high performance DBMS. A micro
adaptive DBMS is able to tune itself to the context in which it is running, by having multi-
ple implementations of performance critical sections and a mechanism that chooses the best
(fastest) one during runtime. This is di�erent than other adaptive database systems, such as
those that continuously tune the execution plan at runtime because these do so at the coarser
operator level. Our goal is to augment the Vectorwise system with micro adaptivity which
should increase performance and also reduce performance variation due to data characteris-
tics, hardware or system state. We �rst present the factors that cause changes in performance
(e.g. di�erent hardware features, data selectivity) and show the opportunities that they create.
Then, we introduce the micro adaptivity sub-system and describe how it is implemented within
Vectorwise. The thesis concludes with an analysis of results obtained on the TPC-H decision
support benchmark.
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Chapter 1

Introduction

Recent hardware advances (increasing parallelism, memory size) have led to the redesign of well
established technologies, such as the Database Management System (DBMS). The expanding
data volume that needs to be processed by these systems has made performance more important
than ever.

The object of this research project is Vectorwise [Zuk09], an innovative high performance ana-
lytical database system developed at CWI and now a product of Actian. Its e�cient vectorized
execution engine gives us the opportunity to apply methods that previously did not appear
in database systems. In this case, our goal was to enrich Vectorwise with micro adaptivity.
This means the execution engine will tune itself at runtime by choosing between functionally
equivalent performance-critical functions, which produce the same results but are implemented
or compiled di�erently. The goal of this is to increase performance by taking advantage of
di�erent optimizations but also to make the performance more robust (i.e. less in�uenced by
hardware variation, data characteristics or system state).

A number of cases, presented in Chapter 3, suggest that adaptivity will be bene�cial. For these,
Vectorwise already uses simple heuristics. However, these are often not optimal, because they
rely on constants that were determined experimentally on one platform, so they might not be as
good on other platforms. Therefore, a secondary goal of this project is to implement a generic
framework that will maximize the bene�t of these existing cases and possibly that of the new
ones.

This thesis is structured as follows. Chapter 2 presents key aspects about the Vectorwise
execution engine, relevant to this research. Chapter 3 contains case studies that form the
argument for micro adaptivity as well as a base for our prototype. Chapter 4 describes our
micro adaptivity implementation, showing how we generate, store and load �avors. Here, we
also analyze the underlying optimization problem and our solution. Finally, in Chapter 5 we
show concrete results obtained on the TPC-H analytical DBMS benchmark.

1



CHAPTER 1. INTRODUCTION 2

1.1 Motivation

The Vectorwise engine (discussed in more detail in Chapter 2) contains over 5000 specialized
functions, called primitives, which perform the actual data processing when executing a query.
There are primitives for arithmetic operations, comparison operations (equality, inequalities),
aggregations, etc. A SQL query is translated to an operator tree and then data �ows between
operators (see also Section 2.3). Every operator (e.g. Select, Join, Project) calls some of
these primitives to perform its task. For example, the query SELECT l_orderkey FROM
lineitem WHERE l_quantity > 40 involves a Select operator which will call a primitive
that performs greater than comparisons on integer values. The amount of CPU cycles spent
executing this query is shown in Table 1.1. The operators are initialized in the preprocessing
stage and called in the execute stage. Almost all the time is spent in this stage (99.92%) and
within this stage, almost all the time is spent in primitives (92.17%). Thus, the performance
of these primitives is critical to the overall performance.

Table 1.1: Example of time spent in di�erent query execution stages
stage CPU cycles %

preprocess 1679694 0.03%
execute 4321561972 99.92%

primitives 3983412990 92.17 %
postprocess 807654 0.01%

total 4324736514

The performance of primitives is a�ected by many factors, including: hardware (e.g. processor
speed, cache size, branch predictor, memory speed), compiler (e.g. optimizations, use of SIMD
code), query context (e.g. selectivity), manual optimizations (e.g. loop unrolling, loop fusion,
loop �ssion, branching removal), machine state (e.g. other threads thrashing the cache, or using
memory bandwidth). As a result, di�erent implementations of the same primitive can
behave di�erently, depending on the context.

1.1.1 Example

A good example of context dependent performance are branching and non-branching implemen-
tations of selection primitives. The branching primitives use if statements to test a predicate
while the non-branching primitives use logical operators and index arithmetic to completely
remove any branching. The primitive in Listing 1.1 performs selection on a vector. It accepts
as arguments a vector col of ints and its size n, a vector res where to store the result and a
constant val. It produces a selection vector with the indices of the elements in the input vector
which have a value strictly less than the constant value. The selection vector is then passed to
other primitives (see also Section 2.5.2). The implementation in Listing 1.1 uses a branch to
perform its work while the primitive shown in Listing 1.2 is branch free. These implementations
are equivalent (i.e. they will produce the same result).

Modern processors attempt to predict the outcome of branches, with the aim of executing future
instructions, in case there is not enough work at the moment, thus increasing e�ciency. This
prediction relies on heuristics, so it has its limits. It will do a good job when there is a simple
pattern (e.g. the branch condition is always true or always false). In our case, this pattern
depends on the data being processed. Consequently, if we use branches, the performance
of the primitive will depend on the data.

Without branches, there is no need to rely on heuristics to predict which instruction is next, so
performance will not depend on data and the processor is free to execute future instructions.
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More details about the e�ects of branch prediction on query execution performance can be
found in [Ros04] and [CG02].

1 size_t select_less_than(size_t n, int* res, int* col, int* val){
2 size_t k = 0, i;
3 int v = *val;
4 for(i = 0; i < n; ++i){
5 if(col[i] < v]) res[k++] = i;
6 }
7 return k;
8 }

Listing 1.1: A simple selection primitive with branching

1 size_t select_less_than(size_t n, int* res, int* col, int* val){
2 size_t k = 0, i;
3 int v = *val;
4 for(i = 0; i < n; ++i){
5 res[k] = i;
6 k += (col[i] < v);
7 }
8 return k;
9 }

Listing 1.2: A simple selection primitive without branching

1.1.2 Need for adaptivity

The non-branching implementation always does the same number of arithmetic operations,
while with branching, this number depends on the data. If the data is such that the branch is
almost never taken, then the non-branching implementation will do a lot of unnecessary work,
while the branching implementation will do exactly the required amount of work and bene�t
from branch prediction (since the pattern is simple). So, which is the fastest implementa-
tion depends on the data. This can be seen in Figure 1.1, where selectivity is the probability
that the branch condition will be true. We can see that for very low and very high selectivities,
branching is the fastest implementation while non-branching is the fastest in the other cases.
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Figure 1.1: Performance of branching and no branching primitives on synthetic bench-
mark (from [Zuk09])

Figure 1.2 is a preview of a case study that will be presented in Section 3.4. It shows how the
performance varies within the same query, due to the changes in data selectivity. In this example
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Figure 1.2: Performance of branching and no branching primitives on TPC-H Query
12

(which is from TPC-H Query 12), the primitive is called 126976 times and for most calls, the
branching primitive is faster (by around 20%, from 5 cycles/tuple to 4 cycles/tuple). Towards
the end of the query, the selectivity changes and no longer favors the branching implementation
which starts to perform much worse than the non-branching one. This is because that selectivity
makes it more di�cult to predict the outcome of the branch and the processor incurs a penalty
whenever it mispredicts (extra cycles are needed to �ush out the wrong instructions from the
pipeline).

1.1.3 Summary

This section showed an example of how one can have two equivalent primitive implementations
that perform di�erently depending on the selectivity, demonstrating data dependent perfor-
mance. We also showed that during execution the context may change, so di�erent primitive
implementations may perform better at di�erent stages of the execution of a single query.
There are many other possibilities worth exploring: e.g. implementations with di�erent loop
optimizations, implementations targeting di�erent hardware features, etc.. We can even have
some implementations that perform poorly, except in just a few cases, where they are better
than the standard implementation.

The Vectorwise execution model that concentrates computational e�ort of a query in the vec-
torized primitives thus gives us a unique opportunity to further increase the performance of
DBMS-es by using a technique that is not usually used in database systems. This project aims to
make the execution engine micro adaptive. This means that the execution engine should be able
to adapt to the current context by switching to the best performing primitive implementation.
This technique is sometimes used in numerical applications, which also have computationally
intensive parts that can be implemented in di�erent ways. Other DBMS-es do not have this
exact architecture, but micro adaptivity can still be useful. The requirement is to be able to
identify computationally intensive kernels within the execution engine.

1.2 Related Work

There are quite a few projects that have successfully created adaptive systems, but there is yet
no DBMS, that we know of, to use this paradigm. This is because, unlike Vectorwise, other
DBMS-es do not have these distinguishable performance-critical vectorized primitives.



CHAPTER 1. INTRODUCTION 5

1.2.1 Adaptive scienti�c applications

FFTW [FJ98] is a library that computes the Discrete Fourier Transform and tunes itself to the
hardware that it is running on to achieve better performance. Adaptivity in FFTW is achieved
by using a planner which, prior to computing the actual transform, tests multiple execution
plans and chooses the fastest for that machine. An execution plan is a decomposition of the
problem into simpler sub-problems. The simplest sub-problems are solved by specialized code
fragments called codelets. For example, there could be a codelet that is optimized for solving
real transforms, one for complex transforms, codelets that use SIMD instructions, etc. They
are generated automatically based on the problem size, but one can also hand write them (for
example, to make use of some machine speci�c feature). In a way, these codelets are similar
to Vectorwise primitives, which too are generated automatically for di�erent specializations
(e.g. there is a primitive for every arithmetic operation and every possible operand data type
combination, primitives that make use of SIMD or loop optimizations). However, in the case
of Vectorwise, the performance of primitives is also data dependent, so it will not be su�cient
to only rely on a planner that chooses the best primitive �avors once. Our system will need to
be continuously adapting, to handle changes in query types, selectivities, etc.

The ATLAS project [APD00] is another example of how adaptivity can achieve a good and
portable performance, this time for linear algebra operations (e.g. matrix multiplications). AT-
LAS has an install phase where it �rst probes the hardware (e.g. determines the L1 cache size,
availability of fused multiply add instructions). Based on these parameters, it then generates
di�erent implementations and benchmarks them to �nd the fastest. For example, it produces
di�erent matrix multiply implementations, varying the blocking factor or the loop unroll factor.

Adaptivity can be pushed even further, to support, not only things such as di�erent cache sizes,
but also completely di�erent architectures (e.g. NUMA, GPU). [DMV+08] presents a system
for computing stencil operations that is able to generate di�erent implementations targeting
various architecture speci�c features (e.g. NUMA, DMA).

The previous three projects attempt to achieve performance portability (i.e. get roughly the
same performance no matter on which hardware they run). A slightly di�erent approach is
presented in [LGP04]. Here, the aim is to have an adaptive sorting library. Again, the perfor-
mance of this library will depend on the hardware (cache size, number of registers, etc.) but,
this work shows that data (i.e. array to be sorted) also has an a�ect on performance. So,
based on some statistics about the data, the library chooses the best sorting algorithm. This is
similar to what we intend to have, although, in the case of a DBMS it is not possible to com-
pute statistics on all the data in advance (because query plans and data values vary between
queries). Computing statistics on the vector that is about to be processed is possible, but since
most of the Vectorwise primitives are simple loops, this would create too much overhead. A
more lightweight approach is needed.

1.2.2 Adaptive Query Processing

Adaptivity in DBMS-es is often implemented in the execution plan level, e.g. by modifying
the plan at runtime or changing the order in which data �ows between operators. As noted in
[DIR07], adaptive query processing (AQP) attempts to overcome the di�culties encountered
by DBMS-es that use the traditional optimize than execute approach. The optimize phase
relies on having estimates about the cardinality, selectivity, etc. and in modern workloads these
might be unreliable or even impossible to produce (e.g. streaming queries, remote data sources).
[IC91] shows that the error for these statistics increases exponentially with the number of joins.
This would mean that for complex queries, such as those processed by analytical systems, the
chosen execution plan could be far from optimal. Additionally, when executing long running



CHAPTER 1. INTRODUCTION 6

queries, the context parameters (data characteristics, system state) may change, so a static
plan approach would lead to poor performance.

The Symmetric Hash Join operator is one way to introduce adaptivity in query processing.
Traditional Join operators have a build phase in which they create a hash table with keys from
the smaller table and a probe phase in which tuples from the other table are looked up in the
hash table. Deciding which is the smaller table is done in the query optimization phase and
changing this in the execution phase is costly. Furthermore, the standard Join operator has
to wait for the build phase to complete before it can produce results. The Symmetric Hash
Join (SHJ) operator solves both problems by building hash tables on both tables. By doing
this, the operator can produce results immediately. Also, the SHJ operator naturally handles
the case when tuples arrive in an interleaved order (alternating between the two tables), which
might happen in wide area environments. This operator introduces some adaptivity on its own,
but it is also suited to be part of a broader adaptive system, which continuously changes the
execution plan, because it supports changing the join order.

The Eddy operator, described in [AH00] achieves adaptivity by changing the order in which
tuples are processed by operators (tuple routing). Every operator receives input tuples from
an Eddy and sends output tuples back to the same Eddy, which will then send them to other
operators. When a tuple is processed by all operators, the Eddy will send it to the output.
Eddies build statistics about each operator and use them to decide where to route tuples. Since
every tuple passes through Eddies, they can build �ne grained statistics for each operator.

The MJoin operator is a generalization of the binary Symmetric Hash Join to multiple inputs.
Similar to the Eddy operator, it routes tuples from one hash table to another.

The adaptive query processing methods presented in this section can be complemented by micro
adaptivity since this operates on a lower level and is not a�ected by changes in the execution
plan.

1.3 Research questions

There is already strong indication that Vectorwise will bene�t from adaptivity. For example,
some primitives are faster when Vectorwise is built with a certain compiler (see Section 3.5).
So, in the �rst phase of the project we will �nd out what are the factors that a�ect
primitive performance (Q1). Here, we are interested in optimizations which result in im-
provements in some contexts, but not in all 1 . Practically, this involves evaluating many
primitive implementations (e.g. branching, non-branching, SIMD, non-SIMD, di�erent loop
unrolls). Additionally, we want to determine the context in which one implementation
is better than another (Q2). Knowing what triggers this change in performance will help us
design a selection method (Q3), which will choose between implementations, at runtime.
The selection method will also keep a state (e.g. performance history for each primitive), so it
can make better decisions. What this state consists of and how often a selection occurs depends
on the �ndings for Q2. For example, the selection method can be called between queries (a
query possibly involving millions of primitive calls) or within a single query. In the end, we will
emphasize the bene�ts of adaptivity in a high performance DBMS and also present
the key requirements for a DBMS to have any bene�t from adaptivity.

1Of course, if there is some optimization that is always improving the performance, there is no need for
adaptivity. But even what seem to be obvious improvements, like using SIMD, might be detrimental in some
cases.



Chapter 2

Vectorwise engine

Vectorwise is a high performance RDBMS (relational DBMS) for analytical workloads, i.e.
workloads that involve complex read operations on large data-sets. In this domain, it is currently
one of the fastest systems, according to benchmarks such as TPC-H. Its performance comes
from innovations in data storage, where it uses e�cient compression algorithms to increase data
throughput, as well as in execution which is vectorized in order to bene�t more from modern
hardware features. This chapter describes how a query is executed within Vectorwise.

2.1 Relational database model

The relational model[Cod69] was introduced in 1969 and is still used today. In this model, data
is viewed as a mathematical relation: given n sets S1, S2, ..., Sn, a relation R is a subset of
S1 × S2 × ...× Sn. For example, if we want to keep information about some products, we can
use the sets prod_id = {1, 2, ...}, in_stock = {yes, no}, color = {blue, black, orange}. These
relations are typically known as tables, the sets as columns and elements of relations as rows
or tuples. A row usually describes some entity (e.g. a product) for which the columns can be
thought as attributes. Sometimes, one or more attributes can be combined to uniquely identify
the entity, in which case this combination is called a key.

There are a few operations with relations that form the basis of this model and are implemented
in any RDBMS. A projection of a table is obtained by removing some columns, e.g. keeping
only the prod_id column. A selection is obtained by removing some of the rows, e.g. keeping
only the products that have the blue attribute. A join operation combines data from
multiple tables based on some condition. For example, we might want to combine data from
the products table with data from the sales table. We combine the rows that have the
same prod_id attribute. In a RDBMS, these operations are implemented in operators and
there can be more than one possible implementation for a given operation.

2.2 Query optimization

To run a SQL statement, a DBMS �rst has to build an execution plan for it. This is done by
the query optimizer component, which looks at all the possible plans for a query and chooses
the one it considers to be the most e�cient. This decision is made by computing an estimated
cost for each plan. For example, di�erent plans can be built by changing the order in which
relations are joined. Another way to generate di�erent plans is to use di�erent implementations
of the same operator, e.g. a join can be a HashJoin, MergeJoin, etc.

7
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2.3 Operators

Operators are the basic components of an execution plan. They implement the logic of the
relational operations. Vectorwise, like many DBMS-es, executes queries in a pipelined fashion,
similar to the Volcano model described in [Gra94] (see also Figure 2.2). In this model, operators
act as iterators and expose the open(), close() and next() methods. open() and close
() are used for initialization and cleanup of an operator, while next() is called to process
data.

An execution plan is a tree of operators (Figure 2.2). During query execution, data �ows from
the bottom of the tree to the top. An operator processes data pulled from its children. The
leaves of the tree, which have no children, are operators which act as data sources. They either
generate data or read it from storage.

On the lowest level of the operator tree there is usually a Scan operator, which reads raw data
from database storage and acts like a source of data for the other operators. It accepts as
arguments: the name of the table and a set of columns. The Select operator is used to �lter
out tuples that do not match some criteria and the Project operator is used to select a subset
of columns, by name, or create new columns with arithmetic expressions. The Join operators
are used to combine tables and there are a number of algorithms that can be used to implement
them (e.g. MergeJoin, HashJoin).

2.4 Vectorized execution

Vectorwise proposes a compromise between the tuple at a time model and the column at a time
model. The former has the advantage that intermediate result materialization is not needed,
which would otherwise require a lot of memory (which is the case for column at a time). The
penalty for this is increased interpretation overhead, ine�cient cache usage, incompatibility
with superscalar execution, and others [Zuk09]. So, instead of processing one tuple at a time,
Vectorwise processes arrays of tuples, called vectors. The vector size should be small enough
so that there is a high chance that the data will �t in the cache, but it should not be too small
because then the advantages of vectorized execution are lost. Currently, the default vector size
is 1024.

With vectorized execution there is more useful computation in each pipeline stage, amortizing
the overhead of passing data between operators. Furthermore, there is a good spatial locality of
data, which allows more e�cient caching. Vectorized execution also makes better use of hard-
ware features such as instruction level parallelism, SIMD instructions and memory prefetching.

2.5 Primitives

In Vectorwise, operators call primitives to do the actual processing of data. There are primitives
for arithmetic operations, relational operations, hash table lookups, bloom �lter lookups, string
operations, aggregates, etc.

Each primitive is identi�ed by a signature. For example, the select_int_lt_int_col_int_val
primitive signature contains the type of the primitive (select), the return type (int, i.e. signed
int), the relational operation (lt, i.e. less than) and the two argument types: a column with
signed int values (col) and a vector with constants of type signed int (val). A map primitive
performs some computation and produces an output of the same size as the input, while a
select primitive applies a condition and returns a subset of the input tuples.
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mul1

mul2

add1

l_tax

l_extendedprice

l_quantity

netto_value

tax_value

total_value

Figure 2.1: Query plan with primitives (from [Zuk09])

Listing 2.1 shows a map primitive which multiplies two integer columns. Here, n is the size of
the vector, res is the results vector, col1 and col2 are vectors with attributes from the two
columns.

Modern compilers will generate SIMD code for this loop, which, depending on the data type
(the primitive shown here multiplies words, but there are similar primitives for shorts and
longs), can give a great speedup (see also Section 3.8 and Figure 3.15).

1 size_t map_int_mul_int_col_int_col(size_t n, int* res, int* col1, int* col2) {
2 size_t i;
3 for(i = 0; i < n; ++i){
4 res[i] = col1[i] * col2[i];
5 }
6 }

Listing 2.1: Example of integer multiplication primitive

2.5.1 Primitive instances

We use the term primitive instance to distinguish calls to the same primitive in di�erent con-
texts. For example, a map primitive can be called from a Project operator to multiply 2 pairs
of columns, such as for the query shown in Listing 2.2. The plan for this query is shown in
Figure 2.1, where mul1 and mul2 are two instances of a multiplication primitive.

1 SELECT l_quantity * l_extendedprice AS netto_value,
2 netto_value * l_tax AS tax_value,
3 netto_value + tax_value AS total_value
4 FROM lineitem

Listing 2.2: Example query that uses 2 primitive instances for a multiplication primitive

It is important to make this distinction because di�erent primitive instances process di�erent
streams of data so their performance characteristics can be di�erent.
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2.5.2 Selection vectors

1 size_t map_int_mul_int_col_int_col(size_t n, int* res, int* col1, int* col2, int* sel
) {

2 size_t i, j;
3 if(sel) {
4 for(j = 0; j < n; ++j){
5 i = sel[j];
6 res[i] = col1[i] * col2[i];
7 }
8 } else {
9 for(i = 0; i < n; ++i){
10 res[i] = col1[i] * col2[i];
11 }
12 }
13 }

Listing 2.3: Multiplication primitive with selection vector

Many primitives accept an optional selection vector which de�nes the subset of input tuples
that needs to be processed (see also Figure 3.11). Listing 2.3 shows such a primitive, which
accepts the argument sel as the selection vector. Selection primitives generate these vectors
which are then passed to other primitives, so that they avoid doing the unnecessary work of
copying all column vectors after a selection operator, to eliminate the tuples that did not pass.
However, sometimes it is bene�cial to ignore this argument, as shown in Section 3.8.

2.5.3 Primitive �avors

We also introduce the term primitive �avors to refer to equivalent implementations of the
same primitive in a micro adaptive system. The idea is to have a collection of �avors for
each primitive, so the system can test out di�erent implementations at run time and decide
empirically which to use. Note that during query processing on a large table with a billion
tuples, a map primitive used for some computation on all tuples is called about 1 million times
inside the same query (for a vector size of 1000). Thus, there is an opportunity for the system
to experiment with multiple �avors and decide on which is best. Section 4.1.1 describes how
we can easily generate �avors using the Mx macro language and compiler �ags.

2.6 Example

Figure 2.2 shows a simple query along with the operators and primitives involved in the execu-
tion of this query. In this example, the Scan operator retrieves data from storage and passes the
attribute vectors to Select (i.e. id = [1, 2, 3, 4], name = ["Jan", "Anna", "Elise", "Hanna"],
age = [...], income = [...]). Select would then invoke the select_int_lt _int_col_int_val1
primitive function with the income values as the input vector. This primitive will apply the
condition on the input vector and produce another vector, which will be passed to the Project
operator to �lter the tuples. Project uses themap_int_mul_int_col_int_val2 primitive
to compute an attribute vector corresponding to the expression income∗1.2 and then produces
the �nal result.

1selects tuples from a signed int column which are less than some signed int constants
2multiplies values from a signed int column with a vector of signed int constants
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SQL Query
select name, age, income, income * 1.2 as raise from people where income < 5000

people
id name age income
1 Jan 21 4000
2 Anna 23 5200
3 Elise 28 5800
4 Hanna 26 4800

results
id name age income raise
1 Jan 21 4000 4800
4 Hanna 26 4800 5760

Scan
people

Select
income < 5000.0

Project
name, age, income, 

income * 1.2 as raise

select_sint_lt_sint_col_sint_val()

map_sint_mul_sint_col_sint_val()

Figure 2.2: Example of Vectorwise execution of a SQL query. Light blue objects represent
operators while dark blue objects represent primitives.

2.7 Hash join

A Join operation combines tuples from multiple relations based on some condition. An Equi-
Join is a Join operation for which the condition is expressed only with equalities between
attributes. One algorithm to implement the Equi-Join is the HashJoin.

A HashJoin operation is performed in 2 phases. In the build phase, a hash table is constructed
with all the tuples from the smaller relation (to minimize memory usage), indexed on the
attribute that is part of the Join condition, called the key. The second phase is the probe phase,
in which the tuples from the other relation are checked against the hash table.

2.7.1 Bloom �lter

Hash table lookups are expensive because of the random memory access pattern that causes
many cache misses. Because of this, a bloom �lter (BF) is used to discard some tuples before
they are checked against the hash table.

The bloom �lter is a compact, randomized data structure used to perform set membership tests.
It can produce false positives, with a known probability, so hash table lookups will always be
needed to produce the �nal result. However, it cannot produce false negatives, i.e. if the check
routine returns false, then it is certain that the key does not exist.

A bloom �lter consists of a bit map and a set of K hash functions. The bit map has constant
size, determined by the bloom �lter width. The width is the number of bits per key. To store
a set of n keys, we can use a bit map of size m. m

n is the width of the bloom �lter.

The false positive rate (FPR) decreases when increasing the width. Every false positive will be
checked against the hash table, so decreasing the FPR will increase the performance. On the
other hand, increasing the width will be detrimental to performance because of more data and
TLB cache misses.

Each hash function maps a key to a position in the bit map. Inserts are done by setting the
K bits obtained by hashing the key with the di�erent hash functions. The FPR also decreases
when increasing the number of hash functions. Of course, with more hash functions, we will
have more computations and more memory operations.
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One of the big advantages of bloom �lters is that they allow for this trade o� between a low
FPR and a low membership check cost. By default, Vectorwise uses a width of 5 bits and 1 or 2
hash functions. For a small number of keys (below some threshold), Vectorwise uses only 1 hash
function. The checks against this BF are considerably faster than those for the 2 hash function
BF, which is used for most relations. As an optimization, the 2 hash functions are designed to
map a key to 2 positions inside the same 64-bits word, which allows for more e�cient memory
loads and guarantees that the positions are also in the same cache line.

2.8 Summary

In this chapter we brie�y described the Vectorwise execution model. We introduced terms that
will be used throughout the thesis, such as primitive, primitive instances, primitive �avors,
operators, vectors, etc. This chapter also described the bloom �lter data structure which
greatly speeds up hash joins.



Chapter 3

Micro Adaptivity Opportunities

We de�ne micro adaptivity as the property of a DBMS to continuously choose between primitive
�avors at runtime with the goal of minimizing the overall query execution time, choosing the
most promising �avor based on real time statistics, such as the average number of clock cycles
per processed tuple. This type of adaptivity, implemented in the query execution engine, is
di�erent than methods such as those presented in [DIR07], [AH00] which work by tuning the
execution plan. Both types of adaptivity have the same goal: enable the DBMS to adapt to
di�erent platforms and data streams. The other adaptivity methods attempt to achieve this at
a higher level by tuning the plan during execution while micro adaptivity does it at a lowest
level by swapping primitive �avors.

This section compares di�erent primitive �avors and shows that their performance can vary for
reasons that are hard to predict, so an empirical micro adaptivity framework has the potential
to reap the bene�ts of some, possibly obscure, optimizations that might not work in most
common scenarios.

3.1 Levels

Looking at how primitive �avor performances changes we can identify di�erent levels of micro
adaptivity in a DBMS.

Platform adaptivity is when a �avor of a primitive is always the best on a certain platform.
In this case our system should quickly discover this �avor and switch to it. We have observed
this kind of adaptivity with compiler-�avors, presented in Section 3.5.

Instance adaptivity occurs when a �avor is best for a primitive instance. The reason why
this could happen is the di�erence in data streams that are processed by the instances. For
example, the streams can have di�erent selectivities.

Call adaptivity is the most challenging case and a big reason why micro adaptivity is needed.
In this scenario, the best �avor can change even for the same primitive instance. These �avors
are in�uenced by data stream characteristics, and possibly machine state (which also change
within the same instance).

13
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Name Architecture RAM Size LLC1 Size Branch Misprediction Penalty
Machine 1 Nehalem 48GB 12MB 17 cycles
Machine 2 Core2 8GB 4MB 15 cycles
Machine 3 AMD K8 62GB 1MB 12 cycles
Machine 4 Sandy Bridge 16GB 8MB 15 cycles

Table 3.1: Test machine details

3.2 Experimental setup

For the experiments discussed in the next sections we used micro benchmarks and TPC-H
benchmarks on 4 machines with characteristics shown in Table 3.1. The reason for choosing
these machines was to have di�erent architectures. Machines 1 and 3 are used for most TPC-H
experiments because of their bigger memory size.

3.3 Performance graphs

During execution of a query some primitives are called many times. It would be nice to be able
to generate a graph of their performance history for that query. Unfortunately, there can be
millions of calls, so it is not ideal to record a value for every one of them. Instead, we build
an approximated performance history (APH) with only a few values. In this thesis we used
512 values. We found these graphs very useful when trying to understand the di�erent types
of adaptivity.

Each APH value represents the average of a number (power of 2) of consecutive primitive call
performances. We call these values bins because they hold information from multiple calls.
Figure 3.1 shows how an APH is built for 4 bins. Initially, the bins are empty and their size
is 1, i.e. they can only hold information about 1 primitive call. The performance of the �rst
primitive call is added to the �rst bin, the second to the second bin and so on until we reach
the 5th call for which there is no empty bin. At this point, the array of bins is shrunk and the
bin size is increased to 2. To shrink, values from 2 consecutive bins are added together in one
bin. This leaves half of the bins completely full and half of the bins completely empty. The
next calls will �ll the second half of the bins at which point another shrinking occurs which will
increase the size of the bins to 4.

For example, if there are 10K calls (like in Figure 3.2), each value in the approximated graph
is the average of 32 actual values. The APH for this primitive is shown in Figure 3.3 and uses
312 bins.

3.4 Control vs. data dependency

In Section 1.1.1 we saw how the same primitive can be implemented with branches and without
branches. The branching implementation has a control dependency because some instructions
are executed depending on the outcome of previous instructions (in this case, the conditional
branch is the previous instruction). The non-branching implementation has a data dependency,
i.e. the outcome depends on data.
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Figure 3.1: Approximated Performance Graph build process for the 8 primitive calls
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Figure 3.2: Original primitive call performance graph

3.4.1 Branch prediction

Current CPUs use pipelined execution to increase instruction throughput. There can be many
instructions in the pipeline at a time, in di�erent stages (e.g. one instruction could be in the fetch
stage while another is in the execute stage, where fetching means loading an instruction from
memory and executing means performing the actual work, like doing an arithmetic operation).

To �ll the pipeline, processors speculatively execute future instructions (those which do not
depend on the result of earlier instructions). A major obstacle for this model is conditional
branching. The processor has to guess which way a branch goes in order to add future instruc-
tions to the pipeline. If the guess is correct, everything continues normally. But, if the guess
is incorrect, then the wrong instructions have to be �ushed from the pipeline, causing a delay.
The unit responsible for these guesses is called the branch predictor and it uses the history of
a branch to predict its outcome.
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Figure 3.3: Approximated primitive call performance graph
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Figure 3.4: Selection primitive with and without branches on Machine 3, TPC-H Query 7

3.4.2 Selectivity

Data selectivity in�uences the e�ectiveness of the branch predictor. If, due to low(high) selec-
tivity, a branch is almost never(always) taken, then the predictor will easily notice this and the
processor will execute future instructions. However, a selectivity of 50%, for example, makes
it hard to predict the branch outcome. This is because the predictor tries to �nd a repeating
pattern in the branch outcome and such a pattern might not exist in the data that is processed.
If this happens, there will be a lot of mispredictions which cause extra delays. [Fog12] contains
more information about branch predictors in di�erent architectures.

By removing the branch, we stop relying on the branch predictor, but we can potentially
introduce more instructions, which might hurt performance.

Figure 3.4 and Figure 3.5 show performance graphs for the primitive select_int_ge_int_col_-
int_val called for TPC-H Query 7. This primitive selects tuples with an attribute value greater
than or equal to some constant. The data dependency �avor has a constant performance while
the control dependency �avor has an irregularity in the beginning of the query. The dotted
blue line shows how the data selectivity varies for this primitive. The selectivity increases from
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Figure 3.5: Selection primitive with and without branches on Machine 1, TPC-H Query 7

0.0 to 1.0 in the �rst 30000 calls. For these calls, the control dependency �avor performs worse
than the data dependency �avor. The performance degrades as the selectivity increases from
0.0 to 0.5, where it achieves the worst performance. After this, it starts to improve and when
the selectivity reaches 1.0 the control dependency �avor becomes the fastest and maintains a
constant number of CPU cycles / tuple until the end of the query.

3.4.3 Heuristic

Vectorwise uses a con�gurable threshold for enabling data dependency. By default, if the
selectivity of the previous primitive call is between 0.1 and 0.9 then data dependency is enabled
for the next call. This is illustrated in Figure 3.4 and Figure 3.5 with thick lines. The heuristic
works well in this case because the selectivity goes from 0.0 to 1.0 quickly. So, even if the
heuristic is not correct for some selectivities, the impact on performance is negligible. However,
we can see from Figure 3.5 that the heuristic is not perfect. On this machine, it would have been
better to use data dependency for some selectivities greater than 0.9. The two machines used
in these tests have signi�cantly di�erent branch misprediction penalties. Machine 1 (Nehalem
architecture) has a penalty of around 17 cycles while Machine 3 (AMD K8) has a penalty of
only 12 cycles. Thus, if the heuristic causes extra mispredictions, the e�ect will be ampli�ed
on Machine 1.

3.4.4 Summary

This section presented a case where two �avors have di�erent performance due to changes in
data characteristics. This is related to a hardware feature called branch prediction which does
not work so well on some data patterns. The current heuristic used by Vectorwise uses static
thresholds and seems to work well on the TPC-H benchmark. However, close analysis shows
that this heuristic can be sub-optimal due to the hard-coded parameters, so replacing it with
micro adaptivity should make performance more robust (good performance every time).
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3.5 Compilers

Compilers use various heuristics to optimize the code. Vectorwise is compiled on one machine
and those binaries are distributed to customers, which could be running them on any hardware.
So, it is not easy to predict which compiler or �ags are optimal. Optimizations made by a
compiler could work well on some platforms but not on others.

To investigate this, we built 3 versions of the Vectorwise engine using icc, gcc and clang compil-
ers. We ran the TPC-H benchmark for each of them and recorded pro�le data. We use the term
compiler-�avor to refer to �avors obtained by changing the compilation process (i.e. using dif-
ferent compilers and/or di�erent optimization �ags). The compilation �ags used for generating
these �avors are those used by the standard Vectorwise build process. The optimization level is
O3 for all compilers and SIMD code generation is enabled. At this stage we did not investigate
the e�ects of compilation �ags (except for loop unrolling which is presented in Section 3.7), but
this could be part of future research.

3.5.1 Platform adaptivity
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Figure 3.6: Platform adaptivity example with merge join primitive called in Query 2. The
fastest �avor depends on the machine.

In Figure 3.6 we plotted the average clock cycles spent per tuple for a primitive that performs
a merge join, called when executing TPC-H Query 2. Here, the gcc �avor is the slowest on all
3 machines. However, the fastest �avor is either clang or icc, depending on the machine. On
Machine 3, it is clang while on Machine 2 it is icc. The reason for this might be the fact that
Machine 2 has an Intel CPU while Machine 3 has an AMD CPU. The icc compiler is tuned for
Intel hardware, so it should not be surprising if it produces faster �avors1.

3.5.2 Instance adaptivity

The select_==_sint_col_sint_val primitive is called while executing TPC-H Queries 2
and 21. Figure 3.7 shows how the 3 compiler �avors perform in these two instances. For Query
2, the gcc �avor is the fastest, followed by icc and then clang while for Query 21 clang is the
fastest, followed by icc and then gcc. So, even on the same machine, it is unknown which �avor
is the best.

1In fact, icc is infamous for producing binaries that are slow on AMD CPUs [Fog09].
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Figure 3.7: Instance adaptivity example with merge join primitive. On the same platform
(Machine 3), the fastest �avor depends on the primitive instance

3.5.3 Call adaptivity

An even more interesting case is when the input data processed by a primitive instance changes
in such a way that it triggers di�erent performance changes for each �avor. An example of
this (Figure 3.8) is an instance of the select_==_sint_col_sint_val primitive, called in
Query 21. clang is the best �avor until there is some change in the input data and gcc becomes
better.
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Figure 3.8: Call adaptivity example with selection primitive called in TPC-H Query 21. The
performance ranking of the �avors changes at some point in the query.

3.5.4 Summary

This section presented one opportunity to improve performance by simply building multiple
versions of the database system with di�erent compilers. While we might be able to determine
a priori which �avor is best for a given hardware platform, to fully exploit this we need to
have an adaptive system that also works when performance is in�uenced by the data that is
processed.

3.6 Loop �ssion

In this section we look at another optimization that can in�uence performance. The loop �ssion
optimization is done by splitting a loop into multiple loops over the same range. The goal is to
improve locality of reference. The code in Listing 3.1 does not use the cache as e�ciently as the
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equivalent code in Listing 3.2. In the �rst example, both a and b arrays should be prefetched
into the cache at the same time to maximize performance, while in the second example only one
array has to be prefetched. And, as we will see in this section, another reason for loop �ssion is
to remove data dependencies that might stand in the way of generating parallel memory loads.

1 for(i = 0; i < n; ++i){
2 s += a[i] * 2 + b[i] * 3
3 }

Listing 3.1: Example of loop without �ssion

1 for(i = 0; i < n; ++i){
2 s += a[i] * 2;
3 }
4 for(i = 0; i < n; ++i){
5 s += b[i] * 3;
6 }

Listing 3.2: Example of loop with �ssion

3.6.1 In bloom �lter

The bloom �lter (see Section 2.7) supports membership tests through a collection of check
primitives, one for each key type. A simpli�ed version of the check primitive for 1 bit bloom
�lters is shown below.

1 size_t sel_bitfiltercheck(size_t n, size_t* res, uchr* bitmap, ulng* keys) {
2 ulng ret = 0;
3 size_t i;
4 for (i = 0; i < n; ++i) {
5 slng hv = bf_hash(keys[i]);
6 res[ret] = i;
7 ret += bf_get(bitmap, hv);
8 }
9 }

Listing 3.3: Bloom �lter check primitive

Each key is �rst hashed and the hash value is then mapped to a bit position in the bloom �lter
bit map. If that bit is set, the check is positive and the index of this key is added to the result.
Normally, there would be a branch in the loop, if(bf_get(bitmap, hv)), but, as in many other
places, Vectorwise replaces it with data dependent code.

This simple function can be made signi�cantly faster in some cases by breaking the loop body
in two. The �rst loop will query the bloom �lter and store the results in a temporary array.
The second loop will �ll the result vector using the data from the temporary array.

1 size_t sel_bitfiltercheck2pass(size_t n, size_t* res, uchr* bitmap, ulng* keys) {
2 ulng ret = 0;
3 size_t i;
4 for (i = 0; i < n; ++i) {
5 slng hv = bf_hash(keys[i]);
6 tmp[i] = bf_get(bitmap, hv);
7 }
8 for (i = 0; i < n; ++i) {
9 res[ret] = i;
10 ret += tmp[i];
11 }
12 }

Listing 3.4: Bloom �lter check primitive with �ssion
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Figure 3.9: Bloom �lter check with/without �ssion on Machine 1

Figure 3.9 shows the performance comparison between the two versions in terms of clock cycles
/ key processed. For this experiment we varied the number of build keys from 212 to 227, which
required bloom �lters with sizes from 4KB to 131072KB.

We can see that for large bloom �lters the �ssion code performs much better, sometimes 50%
faster. We can also see that for small bloom �lters, the �ssion code can actually be slower,
sometimes by 10%. Bloom �lter checks are often one of the most time consuming operations
in a query with hash joins, so even small improvements here will be noticeable on the overall
query time.

To understand why the �ssion version is faster, let us look at the memory operations done by the
non �ssion code. bf_get loads from a random memory address and it will be the slowest of all
the memory operations due to many cache misses. keys[i] and res[ret] are accessed sequentially,
so the cache hit rate will be high for them. The real culprit here is the ret variable, which causes
a dependency between the res[ret] store and the load in bf_get. The store instruction cannot
start until the loads from all the previous iterations are complete. In contrast, for the �rst loop
of the �ssioned code, the store/load pairs are independent and can be executed in parallel. ret
still causes a dependency in the second loop, but now the load operation is much faster, since
the temporary array is small and �ts in the cache.

In conclusion, the �ssion code is faster because the dependency introduced by ret is now between
memory operations on cache resident arrays. This also suggests that there is no bene�t from
�ssion when the bloom �lter bit map is so small that it �ts in the cache. Figure 3.9 supports
this theory. We see that �ssion is actually a little slower for bloom �lters smaller than 4096KB.
For these small bloom �lters, �ssion is slower, because it executes more instructions than the
normal version, without gaining anything.

Figure 3.10 shows the speedup obtained by loop �ssion on di�erent machines. For example, we
can see that on Machine 4 there is speedup later than on Machine 3.
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Figure 3.10: Bloom �lter check with/without �ssion speedup on di�erent machines

3.6.2 Summary

This section analyzed loop �ssion inside the bloom �lter check primitive. In micro benchmarks
we observed that the e�ciency of this optimization depends on the size of the bloom �lter.
We also saw that the threshold size after which it becomes e�cient depends slightly on the
platform.

3.7 Loop unrolling

Many Vectorwise primitives consist of loops with only a few instructions. Consider the following
pseudo-assembly code for the integer multiplication primitive in Listing 2.1.

1 loop:
2 LOAD col1[i]
3 LOAD col2[i]
4 MULTIPLY res[i], col1[i], col2[i]
5 STORE res[i]
6 INCREMENT i
7 COMPARE i, n
8 JUMP loop // jump if i < n

Listing 3.5: Multiplication primitive without loop unrolling

There are 4 instructions that are needed for computing 1 result element (2 loads, 1 multiplication
and 1 store) and there are 3 extra instructions for loop control (increment, compare and jump).
In total, it takes 7 instructions to compute 1 result element.

Loop unrolling [HP06] is a technique for reducing the loop control overhead. It can be applied
manually, by transforming the code, or automatically by an optimizing compiler. The idea is
to replicate the loop body a number of times (called unroll factor). The code below shows how
we unrolled the previous loop by a factor of 2.
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1 loop:
2 LOAD col1[i]
3 LOAD col2[i]
4 MULTIPLY res[i], col1[i], col2[i]
5 STORE res[i]
6 INCREMENT i
7
8 LOAD col1[i]
9 LOAD col2[i]
10 MULTIPLY res[i], col1[i], col2[i]
11 STORE res[i]
12 INCREMENT i
13
14 COMPARE i, n
15 JUMP loop // jump if i < n

Listing 3.6: Multiplication primitive with loop unrolling of 2

The new loop needs 6 instructions per result element, compared to the 7 of the original loop. If
we unroll by a factor of 8, the loop will need an average of 5.25 instructions per result element.
This, of course, is a big advantage, but it is not the only one. By unrolling, we also reduce the
number of branches, so the processor can now use out of order execution more e�ciently, by
combining instructions from di�erent loop iterations.

One disadvantage of loop unrolling is that it increases the code size. Thus, an unrolled loop will
cause more instruction cache misses. Code size increases with unroll factor so, there will be a
point after which unrolling no longer pays o�. But even a small unroll factor can be detrimental
to performance because it might prevent the compiler from generating SIMD code.

3.7.1 Side e�ects

Many Vectorwise primitives are manually unrolled with a factor of 8. To check if this can have
side e�ects, we tested the primitive from Listing 2.1 with and without manual unrolling as well
as with and without compiler auto unrolling. The code was compiled with gcc using the default
Vectorwise �ags, which include ftree-vectorize which enables auto vectorization of loops as
well as funroll-loops which enables auto loop unrolling. Section 3.7.1 shows the average cycles
per tuple processed by the primitive.

For this experiment, the best performance is obtained when manual unrolling is disabled but
compiler unrolling is enabled. In this case, gcc unrolls the loop and also generates SIMD
code. This makes it achieve close to 1 cycle per tuple. The next best performance is obtained
by disabling both compiler and manual unrolling, but leaving vectorization. In this case the
compiler only generates SIMD code, which is around 15% slower without unrolling. If manual
unrolling is used, gcc no longer generates SIMD code for the loop. In this case an average of
1.73 cycles is used for a tuple. So, for this primitive manual unrolling hurts performance by
almost 70%.

Table 3.2: Cycles per tuple with/without compiler and manual loop unrolling on Machine 1

Manual
Compiler On O�

SIMD no SIMD SIMD no SIMD
On 1.73 1.73 1.73 1.73
O� 1.03 1.74 1.18 2.59

Running the same binary on Machine 3 produces slightly di�erent results (Table 3.3). The
manually unrolled version still has constant performance, since the compiler generates the same
code for it in every case. However, now the manually unrolled version is the fastest. The second
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best performance is obtained when auto unrolling is on but vectorization is o�. On this machine
it seems SIMD code is considerably slower than unrolled code.

Table 3.3: Cycles per tuple with/without compiler and manual loop unrolling on Machine 3

Manual
Compiler On O�

SIMD no SIMD SIMD no SIMD
On 2.02 2.02 2.02 2.02
O� 3.61 2.15 3.55 4.03

3.7.2 Summary

This section showed another case when a single implementation is not optimal in all cases.
We observed that on one machine manual loop unrolling hurts performance while on another
machine it improves it.

3.8 Full computation

Many primitives in Vectorwise accept a selection vector argument (e.g. Listing 2.3, Sec-
tion 2.5.2). It contains the indices of the tuples that need to be processed by the primitive.
For example, a selection primitive creates the selection vector shown in Figure 3.11 which will
then be passed to a multiplication primitive that does some computation on the selected tuples.
Only the required tuples are processed (marked here with white background) and the result
vector will have unde�ned values in the positions not in the selection vector (grey background).
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Figure 3.11: Selective computation
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Figure 3.12: Full computation

For some operations it is possible to ignore the selection vector and still produce correct results.
The multiplication primitive in Figure 3.12 processes all tuples, even though some of the results
are not needed. This turns out to open possibilities for performance improvements.

For the experiments presented in this section, we used a vector size of 1024 and varied the selec-
tion vector size from 64 to 1024. The selectivity axis, expressed in percentages, represents the
ratio selection vector size

vector size . The selection vector is �lled with unique random positions (between
0 and 1023) and then the primitive is called with and without full computation.
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Figure 3.13: Micro benchmark showing full computation bene�t with SIMD

3.8.1 With SIMD

Without the selection vector, the compiler can generate SIMD code which has lower cost per
operation and might be faster overall, despite doing more work. Figure 3.13 shows the impact
of full computation in a micro benchmark that uses the map_int_mul_int_col_int_col map
primitive with SIMD code generation enabled.

Full computation always does the same amount of work (it processes the whole vector) while
selective computation will only do as much work as needed, according to the selection vector.
Thus, it is expected that when the selection vector is small, full computation will not be e�cient.
But, there is a point after which it does become e�cient. In Figure 3.13 this happens when the
selectivity goes above 30%.

3.8.2 Without SIMD

Not all primitives can be SIMDized (e.g. those that compute division, trigonometric functions).
Furthermore, some operations need too many CPU cycles which makes it impossible to amortize
the overhead of full computation. We can see this in Figure 3.14. It shows the speedup
of primitives which compute 4 byte integer multiplication (SIMD disabled), 4 byte integer
division and 8 byte integer division. The integer multiplication primitive, for which we disabled
SIMD code generation (with -fno-tree-vectorize compiler �ag) still gains some bene�t from
full computation. This happens for higher selectivities than with SIMD and is likely because
full computation does not use the selection vector so there is less pressure on the cache and
fewer instructions per tuple. However, for the other two primitives, there is little bene�t, at
selectivities near 1.0.

3.8.3 Adaptivity

The selectivity values for which full computation is faster are not the same on all test machines.
Figure 3.15 shows that the threshold after which full computation performs better (speedup > 1)
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Figure 3.14: Micro benchmark showing full computation bene�t without SIMD

is di�erent on each machine. Calculating this threshold is di�cult because it could depend on
a number of factors, such as SIMD hardware performance or memory speed.

The bene�t from full computation will also depend on the data type size, as the SIMD registers
have �xed sizes. This can be seen clearly in Figure 3.16. For 2 byte multiplication, there is
speedup as soon as the selectivity passes 10%, while for 8 byte multiplication there is no bene�t
at all.

3.8.4 Heuristic

Vectorwise currently does full computation, inside primitives which can be SIMDized, when the
condition n∗16 > vector_size∗width is true. n is the size of the selection vector, vector_size
is the size of the input vector (1024, in these experiments) and width is width of the input
data types. The heuristic is based on the observation that SIMD has higher bene�t for smaller
data types. Since this expression evaluates to the same number on all platforms, the current
heuristic might be completely inappropriate for some machines. The vertical line in Figure 3.15
marks the point after which full computation is enabled by the heuristic. As it can be noticed,
this happens much too early for some machines, causing a slowdown.

3.8.5 Summary

This section presented an optimization called full computation which is bene�cial for some
primitives (especially those that can be SIMDized). The bene�t can be substantial but the
point when this optimization should be enabled depends on the platform. Because of this, the
current mechanism is sometimes sub-optimal and a more generic method is needed.
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Figure 3.15: Micro benchmark showing full computation speedup on di�erent machines.
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Chapter 4

Micro Adaptivity System

We designed and implemented micro adaptivity system within the Vectorwise query execution
engine. A description of the system architecture with details about the �avor library manage-
ment is given in Section 4.1. Section 4.2 presents the machine learning problem related to micro
adaptivity along with our proposed solution. We conclude the chapter with an evaluation of
the proposed solution on data gathered from the TPC-H benchmark.

4.1 Architecture

This section describes our approach to generating, storing and loading primitive �avors. We
also show how the micro adaptivity subsystem is integrated into the Vectorwise query execution
architecture.

4.1.1 Generating �avors

Vectorwise primitives are written in a macro language called Mx [KSvdBB96], which was de-
veloped for MonetDB [Bon02]. Each primitive has a template which is expanded to C code
before the actual compilation. Listing 4.2 shows the template used to generate the code for map
primitives that apply some operation on two columns. In a source �le that contains primitive
implementations, the macro impl_op_binary will be called with 4 parameters that are used
to expand @1, @2, @3, @4 and @5. In this particular example, @1 represents the name of
the operation which will be included in the primitive signature but also the name of a macro/-
function that performs the actual computation. Listing 4.1 shows such a macro, int_add.
@2 and @3 represent the types of the two operands and @4 is the type of the result. Invok-
ing the macro as impl_op_binary(int_add, int, int, long) will generate code for
a primitive that adds two int vectors and produces a vector of longs. The @impl macro is
used to reshape the code. In this example, it generates code that checks if the selection vector
argument is null or not and calls the corresponding macros (implnosel or implsel) that
produce the �nal code. The actual @impl, used in Vectorwise, also contains code for the full
computation heuristic and for loop unrolling. This is omitted here.

28
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1 @:def(int_add,(r,x,y), r=((x)+(y)))@
2 @= implnosel
3 {
4 size_t i=0;
5 for(i=0; i<n; i++) { @1; }
6 }
7 @= implsel
8 {
9 size_t i=0,j=0;
10 for(j=0; j<n; j++) { i = sel[j]; @1; }
11 }
12 @= impl
13 {
14 if(sel){
15 @:implsel(@1)@
16 } else {
17 @:implnosel(@1)@
18 }
19 }

Listing 4.1: Mx macros used by all primitive templates

1 @=impl_op_binary
2 size_t map_@1_@2_col_@3_col(size_t n, @4* res, @2* col1, @3* col2, size_t*

sel)
3 {
4 @:impl(@1(res[i], col1[i],col2[i]))@
5 }

Listing 4.2: Generic binary operation primitive written in Mx. This impl_op_binary macro can
be used to generate primitives that perform some operation on two columns

Using templates it is easy to write and maintain code for a large collection of primitives but it
also gives us a quick way to generate �avors. For example, in Listing 4.3 we slightly modi�ed
the @impl macro to generate full computation �avors for all primitives (see Section 3.8). If
the option FULL_COMPUTATION_FLAVOR is active, then we set the size of the input vector to
sel[n-1]+1, where sel[n-1] is the index (0-based) of the last tuple to be processed. Now,
the primitive will process all tuples from 0 to sel[n-1]. Additionally, we set sel to null so
the branch without selection vector is taken.

1 @= impl
2 {
3 #ifdef FULL_COMPUTATION_FLAVOR
4 if(sel)
5 {
6 n = sel[n-1] + 1;
7 sel = NULL;
8 }
9 #endif
10 if(sel){
11 @:implsel(@1)@
12 } else {
13 @:implnosel(@1)@
14 }
15 }

Listing 4.3: Modi�ed @impl macro used to generate full computation �avors
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4.1.2 Flavor libraries

Vectorwise maintains a dictionary with all the primitives (indexed by the signatures). A SQL
query is translated to an operator tree and each operator calls one or more primitives to do the
actual work. The primitives are referenced by their signature and a hash table is used to quickly
�nd the function pointer of a primitive given its signature. We extended this mechanism to
work with primitive �avors.

A �avor library is a collection of �avors for di�erent primitives. In any library, there is at most
one �avor for each Vectorwise primitive. For example, there is a �avor library called for full
computation which contains all the Vectorwise primitives, but with full computation always
enabled. This library, together with the full computation o� library can be used to have a
simple micro adaptive system that exploits the bene�ts of full computation, where they exist.

Each �avor library is stored as a dynamically linked library. To build the library, it is possible
to use the standard Vectorwise build process. At the end, we simply link together the object
�les that contain primitive implementations, to create a dynamically linked library.

To activate a certain �avor we use the compiler define �ag.
For example, passing -DFULL_COMPUTATION_FLAVOR to the compiler will activate the full
computation �avor (see Listing 4.3). Additionally, the �avor library exposes a function, flavor_name
(), which simply returns the name of the �avor. This is currently used for gathering pro�ling
data, so we can �nd out which �avor is active at every primitive call. The value returned by
this function is also set using the define �ag (e.g. -DFLAVOR=full_computation_on).

4.1.3 Loading �avor libraries

Flavor libraries are loaded with the POSIX dlopen function during the Vectorwise kernel
initialization, before any query is received. The same symbol (e.g. a function) can exist in
more than one library, so, normally, it is uncertain how the symbol is resolved. Luckily, on
Linux, dlopen can be called with the RTLD_DEEPBIND argument. With this, the symbols
referenced by a �avor library are resolved by �rst looking inside the same library, whereas
without the argument, symbols are resolved using previously loaded libraries. This argument
is not standardized, so for other platforms, like Windows, we might need to �nd a di�erent
approach.

During initialization, Vectorwise will register all �avors found in the "�avors" directory. Reg-
istering a �avor means adding it to the global primitives dictionary, the same way primi-
tives are currently registered. This mechanism is su�cient for implementing the two functions
get_random_flavor() and get_best_flavor() needed for the adaptive optimizer, dis-
cussed in Section 4.2.

4.1.4 Adaptivity loop

The standard Vectorwise query execution process starts with the parse stage where an operator
tree is constructed for the given query. Execution (pull-based) is done by repeatedly calling
the next() method of the top-most operator. Each operator will �rst pull vectors of tuples
from its children (by calling their next() methods) and then process them using the necessary
primitives. To make the execution micro adaptive, we added an extra stage (Figure 4.1) which
occurs after every primitive call. After each call, performance data is sent to the micro
adaptive module which uses it to decide which �avor is the best one for that primitive and
switch to it.
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Figure 4.1: Adaptive Vectorwise query execution �ow

4.1.5 Summary

This section presented practical aspects regarding the implementation of a micro adaptive
system within Vectorwise. We showed how �avor libraries can be quickly generated using the
Mx macro language. These are stored as dynamically linked libraries and loaded at runtime.
Within the execution engine, micro adaptivity acts as a feedback loop, gathering information
from primitives and changing their state based on this.

4.2 The optimization problem

The key component of our micro adaptivity system is what we call the adaptive optimizer.
Its role is to select the best performing �avor for a given primitive instance. We saw that per-
formance can be data and platform dependent, so supervised learning strategies (e.g. arti�cial
neural networks) which rely on an o�-line training phase are not a good �t for our optimizer
because we will not be able to build a training data set that is representative for every possible
workload. Optimization strategies such as genetic algorithms, hill climbing, simulated anneal-
ing, etc. might work well on platform adaptivity and instance adaptivity cases, where they can
converge to the optimal �avor. However, in the case of instance adaptivity, when there could
be di�erent optimal �avors in di�erent sections of the query, these algorithms will get stuck in
one of them and fail to �nd the others. Therefore, we seek an algorithm with real-time learning,
i.e. one that is able to adjust to sudden context changes.

Consider that for a given primitive there is a number of �avors available in the system. Before
each expression evaluation, the optimizer is called to select the most promising of these �avors.
We can say that each �avor brings a reward proportional to its performance. These rewards
are not constant and the reward of a �avor is unknown until the system actually
calls that �avor and records its performance. So, the most promising �avor, chosen by
the optimizer, has to be the �avor that will lead to the maximum total reward. After each
choice, the optimizer updates his knowledge about the �avors, so it is able to make better
decisions in the future. This type of problem is called a multi armed bandit problem [Rob52].
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Expected regret

Assume that the rewards of the K �avors of a primitive follow some probability distributions
R1, R2, ..., RK and let µ1, µ2, ..., µK be the expected values of these distributions and µ∗ =
maxk{µk} the maximum expected value. During the execution of a query, the system will
make T �avor choices. At the end, we can compute the total expected regret, as RT = T ∗
µ∗ −

∑T
t=1 µj(t), where j(t) is the index of the �avor that was actually chosen by the system

at iteration t. The regret tells us how good our selection strategy is, i.e. the smaller the regret
the better.

We can also express the regret as RT = T ∗ µ∗ −
∑K
j=1 µjE[T (j)], where T (j) is a random

variable for the number of times that �avor j was chosen and E[T (j)] is the expected value of
this number. For certain reward distributions, it can be proven that the regret grows at least
logarithmically with the number of iterations, i.e. RT = Ω(lnT ) [LR85] .

Exploitation vs. exploration

After a number of iterations, the system will have some knowledge about the rewards of each
�avor. Based on this, it can determine the best one to choose. But there is a hidden danger
here. If the system keeps choosing the same �avor, it will build more knowledge about it and the
knowledge about the other �avors will become stale. In the meantime contextual parameters
that determine the performance of a primitive (e.g. selectivity, cache/memory tra�c) may
change, so another �avor could become the best one and our system will fail to switch to it.
To overcome this, the optimizer should sometimes choose a �avor that is not optimal based on
the knowledge so far. Often, this means choosing a random �avor. Of course, this cannot be
done too often, because it is probable that the chosen �avor is indeed not optimal, so it will
hurt performance. Using the knowledge gathered so far to choose the most promising �avor is
called exploitation while choosing a random �avor to try and �nd new opportunities is called
exploration. Thus, the key to the problem is to �gure out how much exploration and how much
exploitation to do.

Stationary case

Each �avor can be viewed as a random process with one random variable which represents the
call performance. A random process is called stationary if its probability distribution does not
change in time. Statistical properties such as mean or variance, if they exist, are constant in
such a system. For this case, there are known algorithms that solve the MAB problem optimally
[ACBF02], i.e. the regret increases logarithmically with the number of games.

Unfortunately, in our case, we cannot be certain that the �avors are stationary processes since
the performance can be in�uenced by data, for example. This means that the theory behind
these algorithms no longer applies so they might perform poorly in practice. Because of this,
we chose to base our approach on one of the simpler algorithms, ε-greedy, which was easier to
alter so it performs better in the non-stationary case.

4.3 The Solution

The multi armed bandit problem has applications in many di�erent domains (e.g. clinical trials,
routing, online advertising) so it has been the subject of extensive research which produced a
number of solutions. One family of simple and yet e�cient solutions is called the ε − greedy
strategy [Wat89].
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4.3.1 ε-greedy strategy

With the ε-greedy approach, a random �avor is chosen (exploration) with probability ε and the
�avor with the best estimated reward (exploitation) is chosen with probability 1− ε. This deci-
sion is made at every primitive call. For each �avor, the algorithm maintains the performance
mean and uses it to choose the best �avor in the exploitation phase. The mean is updated after
each call.

The e�ciency of this method depends on the ε parameter (chosen by the user). If it is small
(less exploration, more exploitation) there is less time wasted testing sub-optimal �avors, but
it also means that it will take more time to �nd the optimal �avor.

A variant of this approach, the ε− first strategy, is to �rst do the exploration completely and
then the exploitation. If it is known that there will be T primitive calls, then the �rst εT calls
will be to random �avors. After the exploration phase comes a pure exploitation phases which
just picks the best �avor based on the computed means. This would work well in cases where
the �avors keep their performance ranking for the entire query. So, the knowledge built in
the beginning will be accurate until the end of the query. So, it could work well for platform
adaptivity cases but it will not work so well for instance or call adaptivity. The performance
ranking can change at any moment, even towards the end of the query, because of changes in
data characteristics, system state, etc. Additionally, the performance of the �rst few primitive
calls might be much worse than the rest because some objects are not in the cache yet (e.g. the
data vectors).

The ε-greedy strategy is not optimal. Since ε is constant, the regret will increase linearly with
the number of iterations. With the ε-decreasing strategy, ε is decreased after every iteration
and [ACBF02] shows that this strategy can achieve optimal regret when ε decreases at a rate
of 1/n, n being the number of calls so far.

4.3.2 SoftMax strategy

SoftMax is a probability based approach which does not have clear exploration/exploitation
phases. Instead, at every call, the algorithm chooses �avor k with probability pk. The proba-
bilities are calculated based on the performance means. Flavors with higher means will have
higher probabilities. pk = e

µk
t ∗ 1Pn

i=1 e
µi
t
, where µk is the current mean of �avor k and t is an

algorithm parameter called the temperature.

4.4 vw-greedy

To solve the MAB problem for our optimizer we designed the vw-greedy algorithm (List-
ing 4.4), based on the ε-greedy strategy, but with the following di�erences:

1. exploration and exploitation alternate in a deterministic pattern, instead of a random
pattern

2. to choose the best �avor, we look at recent information about performance, instead of
keeping an overall average of performance

The main goal of these changes is to improve the e�ciency for the non-stationary case. The
standard ε-greedy method computes the performance mean for each �avor using all calls since
the beginning of the query. In the stationary case, this mean will eventually converge because
the true mean is constant. But in our case it does not make sense to compute the overall mean.
Instead, we compute the mean of recent calls only. This lets the algorithm handle sudden
changes in performance, but makes it more vulnerable to noise.
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Using a deterministic pattern of exploration/exploitation phases makes it easier to compute the
mean of recent calls. Otherwise, the algorithm would need to keep an array with performance
for recent calls to compute an accurate mean or use an approximating algorithm. It also helps
when analyzing the results of the algorithm.

Suppose that in a query there are QUERY_LENGTH calls to a primitive. The vw-greedy al-
gorithm performs exploration every EXPLORE_PERIOD calls. Exploration means choosing a
random �avor, ignoring any performance information we have gathered so far. This random
�avor is then used for the next EXPLORE_LENGTH primitive calls. The regret caused by ex-
ploration will grow linearly with the number of calls by an amount proportional to the ratio
EXPLORE_LENGTH
EXPLORE_PERIOD . Additionally, every EXPLOIT_PERIOD primitive calls, the algorithm
chooses the best �avor and uses this for the next EXPLOIT_PERIOD calls. This pattern is
shown in Figure 4.2.

4.4.1 Relation to ε

EXPLORE_PERIOD and EXPLORE_LENGTH are related to the ε parameter used by ε-greedy
and ε-�rst strategies. ε controls the number of explorations: in ε-greedy and ε-�rst there
will be roughly ε ∗ QUERY_LENGTH exploration calls. Our algorithm will do roughly

1
EXPLORE_PERIOD ∗QUERY_LENGTH explorations, so we can consider this algorithm to

have ε = 1
EXPLORE_PERIOD .

EXPLORE_PERIOD calls

EXPLORE_LENGTH
calls

choose random flavor

EXPLOIT_PERIOD
calls

EXPLOIT_PERIOD
calls ...

choose best flavor choose best flavor

EXPLORE_PERIOD calls EXPLORE_PERIOD calls

QUERY_LENGTH calls

...

Figure 4.2: vw-greedy algorithm pattern

4.4.2 Learning process

For determining the best �avor, we compute the average number of tuples processed per CPU
clock cycle. The best �avor is then the �avor for which this value is the maximum. This average
is computed only for the calls in the same phase (either exploration or exploitation). So, it is
an estimate of the performance of recent calls only. During a given phase, the chosen �avor
is called a number of times (either EXPLOIT_LENGTH or EXPLOIT_PERIOD) and we sum the
number of tuples and the number of CPU cycles for all calls. At the end of the phase, we assign
this performance to the �avor. After this, a decision is made using the new information about
this �avor together with old information for the other �avors.
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4.4.3 Algorithm

1 function vw-greedy(primitive, last_call_perf) {
2 // this determines the exploration/exploitation pattern
3 adp_idx = primitive.adp_idx
4 // get information about the currently active flavor
5 cflavor = primitive.current_flavor
6 // get the performance of the currently active flavor
7 cperformance = primitive.performance
8 new_flavor = cflavor
9
10 // at the end of each phase we update statistics
11 if(adp_idx % EXPLOIT_PERIOD == EXPLORE_LENGTH){
12 set_perf(cflavor, cperformance)
13 reset_perf(primitive)
14 }
15 if(adp_idx == 0) {
16 // start a new exploration phase
17 new_flavor = get_random_flavor()
18 } else if(adp_idx % EXPLOIT_PERIOD == EXPLORE_LENGTH) {
19 // end of an exploration or exploitation phase
20 new_flavor = get_best_flavor()
21 } else {
22 // within a phase
23 update_perf(primitive.performance, last_call_perf)
24 }
25 // switch to another flavor
26 primitive.current_flavor = new_flavor
27 // update algorithm state
28 primitive.adp_idx = (adp_idx + 1) % EXPLORE_PERIOD
29 }

Listing 4.4: vw-greedy algorithm

The vw-greedy function, shown in Listing 4.4, is called after every primitive call to update
the knowledge about the current �avor and to select a new �avor if it is the case. The explo-
ration/exploitation pattern is given by the adp_idx variable. This is incremented after every
primitive call. Alternating phases is done in the following way.

1. if adp_idx == k * EXPLORE_PERIOD, for some k: start a new exploration phase

2. if adp_idx == k * EXPLOIT_PERIOD + EXPLORE_LENGTH, for some k: end the
current exploration or exploitation phase, update the knowledge for the current �avor
and start a new exploitation phase

3. in any other case it means we are currently inside a phase: sum the statistics of the last
call

4.4.4 Simulations

This section discusses two simulations that show how the algorithm works. For these examples
we used EXPLORE_PERIOD = 1024, EXPLOIT_PERIOD = 256 and EXPLORE_LENGTH = 32.
The performances of the three �avors used here were generated randomly but they do not obey
any probability distribution.

In the �rst experiment we simulated a primitive for which the performance ranking of its 3
�avors remains the same throughout the entire query execution.

In Figure 4.3, the orange curve is the performance trace of the vw-greedy algorithm. It almost
completely covers the red curve, which shows the performance of flavor 1, the fastest �avor
for this experiment. So, for this simple test, the algorithm does use the best �avor most of the
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time. The small black vertical lines at the bottom of the chart mark the start of an exploration
phase. The distance between them is therefore equal to EXPLORE_PERIOD. Because of the
exploration phases, there are a lot of spikes in the performance. We can also see that at the
start of the query, the algorithm is unlucky and �rst chooses the worst �avor, then the second
worst and only after 2 exploration phases it �nds the best �avor.
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Figure 4.3: vw-greedy algorithm simulation with constant performance ranking

For the second experiment, the algorithm is simulated with 3 �avors for which one of them is
always the best, except for a portion of the query, where another �avor becomes the best. In
Figure 4.4 we see that usually flavor_1 is the fastest, except near the middle of the query,
where flavor_3 becomes the best, for a short while. The algorithm reacts to this switch as
well as the switch back.

4.4.5 Evaluation

The experiments in this section were performed on pro�le data gathered from a TPC-H SF-100
benchmark on Machine 1. The data contains over 300 primitive instances. The number of calls
to these primitives ranged from 16K to 32K. For these preliminary evaluation we used 3 �avors
(gcc, icc and clang).

To decide how good an algorithm is, we compare its performance with the optimal performance.
Optimal performance is achieved by choosing the best �avor for every primitive call. The opti-
mal performance for a query is the sum of the optimal performances of its primitive instances.
The score for a query is the ratio between the performance obtained by the algorithm and the
optimal performance of that query, i.e. the lower the score, the better.

Parameters

First, we calibrated the vw-greedy parameters by trying di�erent combinations of parameter
values. The values {64, 128, 256, 512, 1024, 2048} were used for EXPLORE_PERIOD while
the other parameters were powers of 2, so that EXPLORE_PERIOD > EXPLOIT_PERIOD >
EXPLORE_LENGTH. Table 4.1 summarizes the results. For each query, the table shows the best
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Figure 4.4: vw-greedy algorithm simulation with one performance ranking switch

and worst parameter combinations. There is no clear winning value for EXPLORE_PERIOD,
while for the other two parameters smaller values seem to lead to better scores. The worst
combination for any query always has a high value for EXPLOIT_PERIOD. Among the best
scores, the worst (1.034) is obtained for Query 20. This score means that, for this query, the
algorithm is within 4% of the optimal performance.

For the entire benchmark, the best overall score, 1.014 was obtained by the combination
(1024, 8, 2) while the worst overall score, 1.07 was for (128, 64, 1).

Algorithm comparison

To see how our algorithm compares with the others, we evaluated 3 instances of each algorithm
on this data set. The results are summarized in Table 4.2. The parameters for vw-greedy are
those that obtained the best 3 scores in the calibration experiment. For the others, we chose
parameters similar to the ones evaluated in [VM05]. For the ε-greedy and ε-�rst algorithms
we also chose one parameter that we thought is equivalent to the vw-greedy parameters (as
described in Section 4.4.1, e.g. for EXPLORE_PERIOD of 1024 we chose ε = 0.001).

The best overall performance (Table 4.2) is obtained by an ε-�rst algorithm, although the
scores for all algorithms, with the exception of SoftMax, are very similar (as it also concluded
in [VM05]). SoftMax is not so e�cient on this benchmark probably because there is often not
a big di�erence between �avor performances, thus the �avor selection probabilities will also
be similar (see Section 4.3.2). A bigger temperature parameter would make it less likely that
a sub-optimal �avor is chosen, even if the performance di�erence is small. This is because
pk = (et)µ, so increasing t ampli�es the di�erence between �avors. However, increasing the
temperature will lead to less exploration, which will hurt in other cases, e.g. when there are
many �avors.

Although the ε-�rst strategy has the best overall score on this benchmark, its average score
per primitive is slightly worse than that of vw-greedy. In fact, vw-greedy has the best
average score, which means its e�ciency is more stable and if we choose a random primitive,
we expect vw-greedy to perform better than the other algorithms. But, seeing ε-�rst perform
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Table 4.1: vw-greedy best parameter combinations for each TPC-H query

Query
Best Worst

Parameters ε Score Parameters ε Score
Q01 (512,16,4) 0.002 1.001 (128,64,1) 0.008 1.018
Q02 (2048,8,4) 0.0004 1.010 (64,32,1) 0.0004 1.088
Q03 (64,8,2) 0.016 1.010 (1024,512,1) 0.001 1.058
Q04 (2048,32,2) 0.0004 1.001 (64,32,1) 0.016 1.080
Q05 (256,16,2) 0.004 1.004 (128,64,1) 0.008 1.043
Q06 (512,8,1) 0.002 1.011 (512,256,1) 0.002 1.075
Q07 (512,4,1) 0.002 1.008 (2048,1024,1) 0.0004 1.051
Q08 (128,8,2) 0.008 1.010 (128,64,1) 0.008 1.072
Q09 (2048,32,2) 0.0004 1.001 (64,32,1) 0.016 1.042
Q10 (512,4,1) 0.002 1.006 (64,32,1) 0.016 1.036
Q11 (128,8,2) 0.008 1.010 (1024,512,1) 0.001 1.066
Q12 (2048,4,1) 0.0004 1.005 (2048,128,16) 0.004 1.044
Q13 (256,16,2) 0.004 1.001 (128,64,1) 0.008 1.026
Q14 (256,8,2) 0.004 1.007 (2048,1024,2) 0.0004 1.079
Q15 (256,4,1) 0.004 1.006 (2048,1024,1) 0.0004 1.101
Q16 (2048,16,2) 0.0004 1.001 (2048,1024,1) 0.0004 1.081
Q17 (512,16,2) 0.002 1.020 (2048,1024,1) 0.0004 1.214
Q18 (1024,8,2) 0.001 1.000 (1024,512,1) 0.001 1.070
Q19 (1024,8,2) 0.001 1.015 (128,64,1) 0.008 1.066
Q20 (128,8,2) 0.008 1.013 (2048,1024,1) 0.0004 1.111
Q21 (512,4,1) 0.002 1.009 (64,32,1) 0.016 1.134
Q22 (256,8,2) 0.004 1.001 (2048,512,1) 0.0004 1.024

so well also says something about the �avors we tested. If a strategy that only explores in
the beginning obtains such a good score, it means that often the performance ranking remains
the same (perhaps one �avor degrades, which will be noticed by ε-�rst, but rarely will a �avor
improve and become better than the others). Based on this, we added a initial exploration
phase to our algorithm. In the �rst EXPLORE_PERIOD calls we randomly choose �avors. After
this phase the algorithm continues with the standard strategy of alternating exploration with
exploitation.

4.4.6 Summary

This section described the vw-greedy algorithm which was implemented within Vectorwise to
solve the optimization problem needed for the micro adaptive system. It follows the ε-greedy
approach, slowly building up knowledge about the performance of the �avors using exploration
phases which need a fraction of the primitive calls. We evaluated the e�ciency of this algorithm
on data from a TPC-H benchmark and compared it with other algorithms. Results showed that
vw-greedy might not obtain the best overall e�ciency but it is more stable.



CHAPTER 4. MICRO ADAPTIVITY SYSTEM 39

Table 4.2: Overall performance of the 5
MAB algorithms with di�erent parameters

Algorithm Score Avg.
eps-�rst(0.001) 1.012 1.016
vw-greedy(1024,8,2) 1.015 1.011
eps-greedy(0.001) 1.015 1.015
vw-greedy(2048,8,1) 1.015 1.015
eps-decreasing(1.0) 1.015 1.016
eps-decreasing(0.1) 1.015 1.016
eps-greedy(0.05) 1.017 1.015
eps-�rst(0.1) 1.017 1.023
vw-greedy(2048,8,2) 1.018 1.013
eps-greedy(0.1) 1.018 1.021
eps-�rst(0.05) 1.020 1.019
eps-decreasing(5.0) 1.022 1.015
SoftMax(0.001) 1.073 1.115
SoftMax(0.05) 1.073 1.118
SoftMax(0.1) 1.081 1.122

Table 4.3: Best MAB algorithm for every
TPC-H query

Query
Best

Algorithm Score
Q01 vw-greedy(1024,8,2) 1.001
Q02 vw-greedy(1024,8,2) 1.011
Q03 eps-decreasing(0.1) 1.015
Q04 vw-greedy(1024,8,2) 1.001
Q05 eps-decreasing(0.1) 1.002
Q06 vw-greedy(1024,8,2) 1.012
Q07 vw-greedy(1024,8,2) 1.009
Q08 eps-decreasing(0.1) 1.007
Q09 eps-decreasing(1.0) 1.000
Q10 eps-decreasing(1.0) 1.004
Q11 eps-decreasing(0.1) 1.010
Q12 vw-greedy(2048,8,2) 1.005
Q13 vw-greedy(2048,8,2) 1.002
Q14 vw-greedy(1024,8,2) 1.011
Q15 vw-greedy(1024,8,2) 1.012
Q16 eps-decreasing(5.0) 1.001
Q17 vw-greedy(2048,8,2) 1.030
Q18 eps-decreasing(0.1) 1.000
Q19 eps-�rst(0.001) 1.009
Q20 eps-greedy(0.05) 1.019
Q21 eps-greedy(0.001) 1.006
Q22 vw-greedy(1024,8,2) 1.001



Chapter 5

TPC-H Experiments

In this chapter we discuss experiments with the TPC-H benchmark. In the �rst section we go
back to the case studies of Chapter 3 and show examples of queries where they occur. We also
compare the performance of the micro adaptive system with that of the standard system. The
next two sections describe how we measured the variation of �avor performance on the same
platform and across platforms. In the end, we also report the improvement in overall query
times obtained by micro adaptivity on the TPC-H SF-100.

5.1 Flavors

This section revisits the cases presented in Chapter 3 and shows examples of where they occur
in the TPC-H queries. Once more, we try to explain what happens in each case and also show
that our algorithm is able to exploit these micro adaptivity opportunities and that the heuristics
currently used by Vectorwise are not perfect. In every graph, the thick orange line shows the
performance obtained with micro adaptivity while the dotted black line shows the performance
of the standard Vectorwise build.

5.1.1 Compilers

Static case

As an introductory example, let us look at how the adaptive system works for a string compar-
ison primitive, select_==_str_col_str_val called by a Select operator during execution
of Query 3 on Machine 3.

The graph in Figure 5.1 shows the performance of the 4 compiler-�avors of this primitive, along
with the performance of the micro adaptive system. We can notice that the 4 �avors have
di�erent costs per tuple, but these costs are constant for the entire execution. The gcc �avor is
the fastest while the clang �avor is the slowest. The micro adaptive systems picks the fastest
�avor for almost all the primitive calls.

The vw-greedy initial exploration phase, which lasts EXPLORE_PERIOD calls, is noticeable in
Figure 5.1. The unstable performance in the beginning of the query is due to this phase, when
vw-greedy performs a random switch every EXPLORE_LENGTH calls. The low performance
peaks are caused by the normal exploration phases, that occur every EXPLORE_PERIOD calls
for the entire duration of the query.

40



CHAPTER 5. TPC-H EXPERIMENTS 41

 16

 18

 20

 22

 24

 26

 28

 0  64  128  192  256  320  384  448  512

C
P
U

 c
y
cl

e
s 

/ 
tu

p
le

14649 calls in 512 bins

icc
clang

standard (gcc)
opencc

micro-adaptive

Figure 5.1: Micro adaptive execution with 4 select_==_str_col_str_val compiler-�avors
in TPC-H Query 3 on Machine 3

Dynamic case

Figure 5.2 and Figure 5.3 illustrate the instance adaptivity case �rst presented in Section 3.5.
For Query 2, gcc is the fastest �avor and the micro adaptive system is able to detect and exploit
this. For the primitive instance called when executing Query 21 gcc is no longer the best choice.
For the majority of primitive calls, clang is faster than the rest. However, towards the end of
the query, gcc becomes the fastest again.
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Figure 5.2: Micro adaptive execution with 4 select_==_sint_col_sint_val compiler
-flavors in TPC-H Query 21. An example of call adaptivity.

5.1.2 Data dependency

In this experiment we investigate the data dependency and control dependency �avors of the
same selection primitive as in section Section 3.4, select_int_ge_int_col_int_val, but
this time called in TPC-H Query 6. Again, we can see that the current heuristic does a good
job except for a very small fraction of the calls for which it incorrectly chooses the control
dependency �avor (Figure 5.4). The micro adaptive algorithm is able to exploit even this very
small opportunity. Of course, the bene�t of this on the overall query time is marginal, but this
example proves that the heuristic is not perfect. It is not unlikely that some query will exhibit
precisely this selectivity that beats the heuristic.
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Figure 5.3: Micro adaptive execution with 4 select_==_sint_col_sint_val compiler
-flavors in TPC-H Query 2
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Figure 5.4: Micro adaptive execution with control dependency and data dependency �avors of
a selection primitive called in TPC-H Query 6

5.1.3 Full computation

We saw in Section 3.8 that full computation is very e�ective when the primitive can be SIMDized
and the data type is small. Figure 5.5 shows the performance of a short integer multiplication
primitive called in Query 1. The full computation �avor of this primitive (shown in blue) is
almost always faster in this test and the micro adaptive system is able to detect and exploit
this. However, towards the end of the query there is a sudden performance degradation. The
full computation �avor becomes slower. Fortunately, at this point, the micro adaptive system
switches to the other �avor. The reason for the performance degradation is a change in input
data characteristics. The dotted blue line represents the number of tuples processed by every
primitive call. For most of the query, this primitive processes 1024 tuples (which is the default
vector size). The performance drops near the end because the number of tuples also drops and,
as noted in Section 3.8, the e�ectiveness of full computation decreases with the input vector
size.

In Figure 5.6 we see the reverse of the scenario from Figure 5.5. Here, full computation is almost
never an improvement, except for a section in the middle of the query (around bin number 192).
Again, we see the correlation with input vector size. Full computation becomes better as the
vector size increases. In the middle of the query, full computation is slightly better than the
standard primitive.

Finally, Figure 5.7 shows a case when full computation is never e�ective. This is due to the
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constant small input vector size (around 40).
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Figure 5.5: Full computation bene�t for short integer multiplication primitive called in TPC-H
Query 1
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Figure 5.6: Full computation call adaptivity. Full computation is bad for most of the query
except for a section in the middle. TPC-H Query 15, long integer column multiplication prim-
itive

5.1.4 Loop �ssion

The micro benchmarks in Section 3.6 proved that loop �ssion is not always bene�cial, at least not
when applied to the Vectorwise bloom �lter check primitive. Furthermore, the bene�t depends
on the size of the bloom �lter. In this section we extend that analysis with two examples from
the TPC-H benchmark.

For one bloom �lter check primitive instance, in Query 7, loop �ssion is always better. Figure 5.8
and Figure 5.9 shows the performance of this primitive instance on Machine 1 and 3. Both
the standard Vectorwise and the micro adaptive Vectorwise favor the �ssion �avor. In this
static scenario, standard Vectorwise will have slightly better performance than micro adaptive
Vectorwise. The former makes a decision to use �ssion after the bloom �lter is built and the
whole probe phase is executed with �ssion while the latter periodically switches to the non
�ssion �avor, during the probe phase, to check if it somehow became faster. So far, we saw that
�ssion e�ciency depends on the bloom �lter size (see Section 3.6), which does not change during
the probe phase, so perhaps micro adaptivity is not useful for these two �avors. However, we
can see in Figure 5.8 and Figure 5.9 that the �ssion �avor does have some dependence on data -
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Figure 5.7: Full computation is ine�ective with small vectors. TPC-H Query 11, long integer
column multiplication primitive

the performance of this �avor in the beginning and in the end of the query, on both machines, is
slightly better. Therefore, we should not rule out call adaptivity for these �avors. Furthermore,
if Vectorwise is ever extended with other adaptive query processing methods, like the MJoin
operator (see Section 1.2.2), then the size of the bloom �lter might not be constant during the
probe phase.

In Figure 5.9 we see that on Machine 3 the non �ssion �avor is almost 3 times slower than the
�ssion �avor, so if the current heuristic is ever inaccurate, the penalty will be great, especially
considering that bloom �lter checks are often one of the most time consuming operations in a
query. Figure 5.10 and Figure 5.11 shows such an example. This happens in the same TPC-H
Query but in another hash join operator instance. Here, the bloom �lter contains around 80K
keys (which use approx. 700KB of memory) and the default heuristic threshold to activate
�ssion is 100K keys. In the previous example, the bloom �lter contained over 1M keys.
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Figure 5.8: Micro adaptive execution with �ssion and non �ssion �avors of a bloom �lter check
primitive called in TPC-H Query 7 on Machine 1

5.1.5 Loop unrolling

These examples are from TPC-H Query 1. Figure 5.12 and Figure 5.13 show the same primitive
instance on di�erent machines (1 and 3). This primitive performs long integer addition between
a column and a constant. Many Vectorwise primitives are unrolled with a factor of 8 and we see
that this can be good on a machine (Figure 5.13) but bad on another machine (Figure 5.12).
However, it does not mean that unrolling is always bad (or always good) on a certain machine.
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Figure 5.9: Micro adaptive execution with �ssion and non �ssion �avors of a bloom �lter check
primitive called in TPC-H Query 7 on Machine 1
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Figure 5.10: Micro adaptive execution with �ssion and non �ssion �avors of a bloom �lter
check primitive called in TPC-H Query 7 on Machine 1. A case when the current heuristic is
inaccurate

Figure 5.14 shows that unrolling by 8 is bene�cial on Machine 1 for a long integer column
multiplication primitive.

5.2 Flavor variation on the same platform

In this experiment we ran a TPC-H SF-100 benchmark for each of the 32 �avors on Machine
1, single threaded. For every primitive instance we calculated the relative standard deviation
of the performances of its �avors. The purpose of this experiment is to get a measure of how
di�erent, in terms of performance, the various �avors are on a given machine. If they are not
so di�erent, i.e. the performance deviation is small, then it would mean that there is less need
for micro adaptivity.

Table 5.1 shows the deviation for the most time consuming primitives of each query. For each
primitive we also identi�ed the slowest and fastest �avors and their times in CPU clock cycles.
We can see that for some queries the deviation is small (3% to 7%) but for more than half of
the queries the deviation is bigger than 10%. For example, for Query 6, the deviation is 68%
and the fastest �avor is more than two times as fast as the slowest �avor. This clearly shows
that there is a great potential for micro adaptivity on this machine.
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Figure 5.11: Micro adaptive execution with �ssion and non �ssion �avors of a bloom �lter
check primitive called in TPC-H Query 7 on Machine 3. A case when the current heuristic is
inaccurate
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Figure 5.12: Micro adaptive execution with/without loop unrolling for a long integer addition
primitive called in TPC-H Query 1 on Machine 1. Loop unrolling by a factor of 8 leads to poor
performance.

5.3 Flavor variation on di�erent platforms

Suppose that for a certain workload on a certain machine we know the best �avor for every
primitive instance. We could then con�gure Vectorwise to use only the best �avors. So, how will
this static con�guration perform on di�erent machines? The data in Table 5.2 was obtained by
running Vectorwise on all 4 machines using the best �avors for Machine 1. The column named
"Static" represents the slowdown due to the �avor con�guration. The slowdown is the ratio
between the performance of the static con�guration execution and the optimal con�guration
execution. The static con�guration is the one obtained on Machine 1 while the optimal con-
�guration is speci�c to each machine. Looking at the values of this slowdown on Machines 2,
3 and 4 we can conclude that there is indeed a signi�cant variation in the �avor performances
on these machines. The static con�guration approach does not use the entire potential of this
�avor collection. However, it does seem to perform better than the standard Vectorwise. The
column marked "Std." shows the slowdown of the standard Vectorwise while the column marked
"Adp." contains the slowdowns for the micro adaptive system. In many cases micro adaptive
Vectorwise has the lowest slowdown, but there are cases where it performs poorly.
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Figure 5.13: Micro adaptive execution with/without loop unrolling for a long integer addition
primitive called in TPC-H Query 1 on Machine 3. Loop unrolling by a factor of 8 is slightly
better than no loop unrolling.
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Figure 5.14: Micro adaptive execution with/without loop unrolling for a long integer column
multiplication primitive called in TPC-H Query 1 on Machine 1. Loop unrolling by 8 is bene-
�cial.

5.4 Evaluation

We conclude this chapter by showing the performance improvement obtained with micro adap-
tivity on two TPC-H SF-100 benchmarks, on Machine 1 and on Machine 3. In these experiments,
we compared the standard Vectorwise, built with gcc, with the micro adaptive Vectorwise which
features 32 �avors. We compared the overall times of each query and determined the speedup
as the ratio between the standard time and the micro adaptive time. The results (Table 5.3)
show that micro adaptivity is often an improvement, although not a great one. However, we did
not expect to see substantial improvements in TPC-H overall query times, with these �avors.

Looking at the geometric mean of the query times, in Table 5.3, we can say that micro adaptivity
improves the time of a TPC-H query by 5%. Consequently, micro adaptivity increases the power
of the database engine - number of queries that can be executed per hour - with 30 on Machine
1 and 14 on Machine 3.

5.5 Summary

In this chapter we extended the analysis from Chapter 3 with concrete examples from the TPC-
H benchmark. We also attempted to quantify the �avor performance variation and concluded
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that the variation is signi�cant across platforms as well as on the same platform. In the end
we showed the improvement obtained by micro adaptivity on the overall query times in the
TPC-H benchmark.
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Table 5.1: Flavor performance variation on the same machine. For each query the most time
consuming primitive is shown. The numbers are CPU clock cycles. Deviation is the relative
standard deviation
Query Primitive Slowest Fastest MicroAdaptive Deviation

Q1 aggr_sum
gccunroll1
1355922312

openccunroll1
1169271584 1209802928 3%

Q2 map_mergejoin
opencc�ssiono�
72946036

iccfullcomputeon
37135944 54626468 26%

Q3 select_==_str
gccdatadep
85618092

clangunroll1
65465636 69749952 6%

Q4 map_fetch
icc�ssiono�
273071728

clangnodatadep
190541204 194576312 13%

Q5 sel_bit�ltercheck
openccfullcomputeo�
330998564

iccdatadep
236935884 249322428 10%

Q6 select_<=
openccnodatadep
445397728

opencc�ssiono�
93634572 101971156 68%

Q7 map_mergejoin
openccnodatadep
529049272

icc�ssionon
311473596 325718104 22%

Q8 map_mergejoin
opencc�ssiono�
644260776

icc�ssiono�
365033352 385578560 20%

Q9 sel_bit2�ltercheck
gcc�ssiono�
9176788956

clang�ssionon
4998605484 6278899336 17%

Q10 gen_put
gccfullcomputeo�
1127053206

icc�ssiono�
848556718 1017373346 9%

Q11 sel_bit�ltercheck
opencc�ssionon
211538568

icc
121954856 152534536 13%

Q12 select_!=_str
gccnodatadep
891499244

clangunroll1
728454376 746825608 5%

Q13 map_match
clang
11719979740

gccfullcomputeon
8409661034 8689464164 9%

Q14 gen_put
iccunroll1
626982434

iccdatadep
562460158 572536980 3%

Q15 aggr_sum
openccunroll1
444898244

clangfullcomputeon
253627764 261066304 17%

Q16 map_recheck
iccnodatadep
810380064

gccunroll1
612402064 658416136 10%

Q17 sel_bit�ltercheck
opencc�ssionon
1490432344

iccnodatadep
801953636 893472456 16%

Q18 sel_di�
clang�ssiono�
1573604792

gccfullcomputeo�
1284350388 1314197656 6%

Q19 select_!=_str
clangfullcomputeo�
2118934056

clangunroll1
1678897088 1731130116 6%

Q20 sel_bit2�ltercheck
openccunroll1
502904260

opencc�ssiono�
404689144 461457752 7%

Q21 sel_bit2�ltercheck
clang�ssiono�
1900119904

icc
1347695124 1457196956 10%

Q22 sel_bit2�ltercheck
opencc
797822296

iccfullcomputeon
642834300 667607116 6%
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Table 5.2: Flavor performance variation across platforms. The numbers represent slowdowns
compared to the optimal �avor con�guration

Query
Machine 1 Machine 2 Machine 3 Machine 4

Static Std. Adp. Static Std. Adp. Static Std. Adp. Static Std. Adp.
Q01 1.00 1.16 1.03 1.12 1.26 1.22 1.13 1.22 1.06 1.05 1.27 1.05
Q02 1.00 1.27 1.13 1.16 1.16 1.11 1.19 1.21 1.11 1.28 1.20 1.13
Q03 1.00 1.24 1.10 1.10 1.17 1.07 1.17 1.16 1.08 1.15 1.20 1.09
Q04 1.00 1.21 1.02 1.08 1.34 1.04 1.03 1.17 1.04 1.07 1.22 1.04
Q05 1.00 1.14 1.11 1.08 1.31 1.02 1.15 1.16 1.05 1.05 1.11 1.06
Q06 1.00 1.49 1.03 1.03 1.38 1.06 1.04 1.13 1.07 1.07 1.12 1.18
Q07 1.00 1.26 1.06 1.12 1.21 1.13 1.20 1.31 1.10 1.09 1.23 1.09
Q08 1.00 1.15 1.10 1.06 1.09 1.08 1.21 1.20 1.08 1.09 1.13 1.09
Q09 1.00 1.05 1.04 1.08 1.04 1.15 1.15 1.15 1.03 1.17 1.04 1.04
Q10 1.00 1.16 1.08 1.08 1.13 1.06 1.12 1.13 1.06 1.41 1.35 1.07
Q11 1.00 1.08 1.05 1.10 1.06 1.05 1.21 1.22 1.09 1.06 1.09 1.05
Q12 1.00 1.16 1.02 1.13 1.27 1.04 1.06 1.07 1.02 1.06 1.10 1.02
Q13 1.00 1.05 1.01 1.12 1.07 1.04 1.12 1.20 1.01 1.16 1.14 1.08
Q14 1.00 1.05 1.03 1.04 1.04 1.03 1.14 1.19 1.01 1.09 1.05 1.09
Q15 1.00 1.14 1.03 1.07 1.09 1.04 1.09 1.18 1.05 1.03 1.10 1.03
Q16 1.00 1.08 1.05 1.10 1.05 1.03 1.04 1.14 1.02 1.06 1.06 1.08
Q17 1.00 1.08 1.04 1.03 1.13 1.04 1.27 1.25 1.04 1.03 1.06 1.08
Q18 1.00 1.21 1.02 1.02 1.24 1.07 1.07 1.27 1.02 1.09 1.27 1.08
Q19 1.00 1.13 1.03 1.04 1.16 1.10 1.07 1.09 1.05 1.06 1.09 1.09
Q20 1.00 1.12 1.04 1.07 1.10 1.07 1.15 1.15 1.08 1.05 1.10 1.07
Q21 1.00 1.14 1.04 1.09 1.13 1.06 1.14 1.16 1.03 1.16 1.11 1.05
Q22 1.00 1.09 1.05 1.10 1.09 1.08 1.17 1.14 1.04 1.11 1.11 1.08
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Table 5.3: Micro adaptive Vectorwise vs. standard Vectorwise on TPC-H SF-100 benchmark,
Machine 1 and Machine 3, single threaded.

Query
Machine 1 Machine 3

Micro
adaptive
time (s)

Standard
time (s)

Speedup Micro
adaptive
time (s)

Standard
time (s)

Speedup

Q1 27.04 29.68 1.10 37.8 41.99 1.11
Q2 1.48 1.5 1.01 2.44 2.59 1.06
Q3 1.28 1.35 1.05 2.37 2.53 1.07
Q4 1.22 1.38 1.13 1.77 1.95 1.10
Q5 4.74 4.9 1.03 11.6 12.84 1.11
Q6 1.52 1.73 1.14 2.37 2.42 1.02
Q7 6.59 7.09 1.08 13.32 15.06 1.13
Q8 6.6 6.73 1.02 13.18 14.43 1.09
Q9 44.61 46.66 1.05 133.18 138.46 1.04
Q10 6.66 7.3 1.10 24.09 24.04 1.00
Q11 2.01 2.05 1.02 4.24 4.62 1.09
Q12 5.45 5.99 1.10 6.91 7.02 1.02
Q13 40.56 41.24 1.02 204.74 193.45 0.94
Q14 2.97 3.07 1.03 10.05 10.2 1.01
Q15 1.33 1.42 1.07 3.23 3.4 1.05
Q16 8.98 9.38 1.04 27.42 27.93 1.02
Q17 9.63 9.92 1.03 16.44 17.82 1.08
Q18 19.61 20.7 1.06 27.54 29.23 1.06
Q19 19.12 19.67 1.03 29.28 30.01 1.02
Q20 5.5 5.83 1.06 10.25 10.95 1.07
Q21 27.08 29.23 1.08 54.84 57.4 1.05
Q22 8.05 8.37 1.04 21.03 21.65 1.03

Geo. mean 6.309 6.673 1.05 13.266 13.968 1.05
Power 570.64 539.52 271.38 257.74



Chapter 6

Conclusion and Future Work

This thesis introduced micro adaptivity, a new method to improve query execution performance
and robustness. We identi�ed and analyzed cases that justify the need for such a method. Ad-
dressing the scienti�c questions posed in Section 1.3, we showed how primitive performance is
a�ected by implementation (Q1), by investigating di�erent algorithms (e.g. data dependency,
full computation), di�erent optimizations (e.g. loop unrolling, �ssion) or di�erent compilers.
Additionally, we showed that performance is in�uenced by the execution context (Q2): hard-
ware con�guration, input data peculiarities like selectivity. This study formed the basis of our
prototype implementation within the Vectorwise database engine. We modeled the underlying
machine learning problem (Q3), which needs to be solved by this system, as a multi armed
bandit problem and proposed a variation of the ε-greedy algorithm as a solution.

Preliminary tests showed that our micro adaptive system brings a performance improvement
to the Vectorwise engine. Although on the TPC-H SF-100 benchmark the speedup is not
exceptional, we believe that in other workloads the gains can be more signi�cant.

6.1 Future work

6.1.1 New �avors

So far, we identi�ed a few �avors (compiler �avors, data dependency, etc.) which already
demonstrate the utility of micro adaptivity. In the future, more �avors should be discovered
and the analysis tools created for this project make this process easier. Ways to automate the
search for new �avors should also be sought.

6.1.2 Prefetching

Hash join operations are very costly on large data sets because of their random memory access
patterns. For example, for many TPC-H queries the most time consuming primitives belong to
join operations (bloom �lter checks, hash table checks). Therefore, any improvement in these
primitives would be noticeable in the overall query time. One way to optimize hash joins is by
using memory prefetching [CAGM07]. The problem with this approach is that it is known to be
unpredictable. Its success can depend on the platform, on the prefetch distance, on the system
state, etc.. This is the type of situation where micro adaptivity can be very useful. We could
add prefetching to hash joins without the risk of su�ering a severe performance degradation
on some machine. This would require an extension of the current micro adaptive framework.

52
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Prefetching in one primitive could lead to bene�ts in another primitive, so the framework should
be extended to support primitive groups. Flavors for the primitives inside a group are chosen
so that the overall performance of the group is improved.

6.1.3 Bloom �lters

One of the advantages of bloom �lters is that they support a trade o� between accuracy and
performance, which can be exploited by micro adaptivity. The challenge is that usually a bloom
�lter has a build and a probe phase. Once the build phase is complete, the probe phase, which
is the costly one, must use the same number of bits. One solution is to use multiple small bloom
�lters. The micro adaptive system will decide how many of them to probe. Probing just one
would be faster but the system should also take into account the cost caused by false positives
that reach the next stages of the hash join. This would also require the �avor groups extension.

6.1.4 Just in time compilation

One of the challenges of the Just-in-time (JIT) compilation system currently being developed
for Vectorwise is determining when it is bene�cial to use compilation. One of the conclusions
of [Som] was that JIT is not always bene�cial and it could even hurt performance sometimes.
One solution is to try to create a cost model for JIT, but a simpler alternative is to use the
optimizer from the micro adaptivity system.

6.1.5 Selection algorithm

For our prototype implementation of micro adaptivity we designed a simple algorithm similar to
ε-greedy. However, there are other algorithms worth investigating, such as POKER, described
in [VM05], which claims to be signi�cantly more e�cient than the algorithms we examined so
far.
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