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Abstract

Data warehousing requires huge amounts of data to be stored on persistent storage. The usual
way to access this data is to perform a sequential scan that loads and processes all the data
in order it is stored. In many application areas including business intelligence, data mining
and decision support systems there are multiple concurrent queries touching a considerable
fraction of a relation. In most database management systems the data is accessed using
a „Scan” operator that sequentially issues page request to the underlying buffer manager that
caches most recently used data. In a concurrent environment, this approach may lead to
suboptimal utilization of the available disk bandwidth, as the buffer manager may evict pages
that could soon be reused by an another running scan.

Cooperative Scans is a new algorithm that improves performance of concurrent scans
by identifying and exploiting sharing opportunities arising in a concurrent workload. The
main objective of this thesis is to investigate how Cooperative Scans can be incorporated
into the VectorWise database management system. Moreover, we research new areas where
Cooperative Scans can be applied, such as order-aware operators. Finally, we develop the
Predictive Buffer Manager, a new algorithm that uses some of the ideas of Cooperative Scans,
but enables easy implementation providing similar benefits. Our experiments show significant
gain in the performance achieved by the proposed solutions. However, we argue that the
relative performance improvement strongly depends on the sharing opportunities arising in
the workload.
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Chapter 1

Introduction

1.1. Motivation and problem statement

This thesis is a result of research conducted at the VectorWise company, part of Ingres Cor-
poration. The main area of focus is improving performance of the VectorWise Database
Management System (DBMS) under I/O intensive concurrent workloads. The research was
motivated by the fact that improving performance of a DBMS in this respect may lead to sub-
stantial gain in the performance perceived by the user in many applications. The development
of modern computer hardware suggests an increasing importance of I/O as a bottleneck in
many user scenarios. Thus, buffering of data in RAM memory and increasing the buffer reuse
remains an important aspect of research in the field of Database Management Systems. To
achieve our goal, we investigate incorporating a novel approach to buffer management called
Cooperative Scans. Moreover, we extend Cooperative Scans to be fully integrated with the
VectorWise DBMS, as well as compare it with alternative solutions.

Cooperative Scans is a framework that aims at improving the performance of concur-
rent scans by introducing a flexible scheduling policy that takes information about the cur-
rent workload of database queries into account and allows data requested by a query to
be delivered out-of-order. Scans working in parallel cooperate instead of being treated in
isolation as it is done in many database management systems with a traditional buffer man-
ager. Cooperative Scans were originally introduced in MonetDB/X100 system as described
in [ZHNB07, ZBK04, Zuk09]. The motivation for researching the idea of Cooperative Scans
in MonetDB/X100 was suboptimal buffer use in many application areas. The area of applica-
bility of MonetDB/X100 includes business intelligence, decision support systems, interactive
reporting, and data mining. The exhibited workload involves scanning large amounts of data
in a sequential manner. Furthermore, it is common that queries are run in parallel, each per-
forming one or more scans. In such scenarios, the commonly used buffer management policies
often turn out to be sub-optimal [CD85, CR93, FNS91].

The objective of Cooperative Scans is to improve the perceived I/O bandwidth and query
latency by exploiting the fact that multiple queries running in parallel can share data loaded
from storage. The concept proved to be useful by attaining a considerable improvement of
performance, notably in workload with many I/O bound queries. However, the implemented
prototype was created only for research purposes and made many assumptions that simplified
the algorithm and its interaction with the system.

The objective and novelty of this work is to investigate how Cooperative Scans can be
implemented and introduced into a fully-functional DBMS taking all requirements of a mod-
ern DBMS into consideration. The challenge is to provide all functionality necessary for the
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VectorWise DBMS and to not lose performance of the prototype created for MonetDB/X100.
Moreover, it opens a way for interesting research related to other elements of the DBMS that
can exploit characteristics of Cooperative Scans to further improve performance.

Objective. Design and implement the Cooperative Scans framework and generalize it to
enable higher-level operations to benefit from it.

In this master thesis we:

(i) implement and integrate Cooperative Scans in the VectorWise DBMS

(ii) present the Predictive Buffer Manager (PBM), an alternative, simple extension to the
naive buffer manager in VectorWise that turns out to provide much of the benefits of
Cooperative Scans and is much less complex

(iii) introduce and implement Cooperative Merge Join as a generalization of Cooperative
Scans providing support for join processing on ordered data

(iv) evaluate the performance of created optimizations on large and concurrent workloads

The thesis contains detailed description of Cooperative Scans and problems arising in
the implementation and integration with the VectorWise DBMS. It presents solutions to the
software-engineering problems, as well as discusses issues related to expected performance
gain. The thesis also contributes an extensive evaluation of Cooperative Scans in terms of
the implementation and achieved performance. It finally analyzes trade-offs related to the
inclusion of Cooperative Scans in the VectorWise DBMS.

The conducted research proves both Cooperative Scans and the Predictive Buffer Manager
to be a solution providing a considerable performance gains and worth including in a modern
DBMS. However, the comparison with other solutions suggests that in a column-oriented
DBMS a similar improvement can be achieved with less complex solutions.

The rest of the thesis is organized as follows. In Chapter 2 we present the VectorWise
DBMS and stress aspects relevant for the implementation of Cooperative Scans. Chapter 3
describes the idea of Cooperative Scans. In Chapter 4 specific details concerning the imple-
mentation of Cooperative Scans are discussed. Also, Chapter 4 contains the description of the
Predictive Buffer Manager that was created as a part of the implementation of Cooperative
Scans. In Chapter 5 we present Cooperative Merge Join, an extension of Cooperative Scans.
Chapter 6 evaluates all introduced solutions with synthetic benchmarks, whereas Chapter 7
contains the final performance evaluation with the TPC-H benchmark. Finally, Chapter 8
concludes and discusses future work.
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Chapter 2

The VectorWise DBMS

In this chapter we introduce basic notions in the area of databases and Database Management
Systems. Later, we present a selection of functionalities found in VectorWise that influence
the design and implementation of Cooperative Scans. A more detailed description of Vector-
Wise can be found in [Zuk09]. Moreover, we discuss what is the impact of these issues on
Cooperative Scans.

2.1. Introduction to databases and DBMS

2.1.1. Databases and data models

A database is an organized collection of data. Database is stored in digital form according to
a certain data model. A data model reflects relevant aspects of reality and defines relationships
between them. A Database Management System (DBMS) is a software package that provides
a reliable way to store data in a database and process it. One of the main requirements of
a DBMS is to provide a coherent interface that allows application developers to manipulate
data stored in a database. For that purpose, most DBMSs use the Structured Query Language
(SQL) [CB74] that allows specifying the organization of the data, inserting, deleting and
querying the data.

The most wide-spread data model used by DBMSs is the relational model [Cod70]. In this
model data is represented as a set of relations. A relation consists of a number of attributes.
Each attribute has a specified type. The type defines what are the allowed values of the
attribute e.g. an integer, a string, a date etc. A tuple is an ordered list of values of all
attributes belonging to a certain relation. A set of tuples is traditionally represented as
a table, where rows represent tuples and columns represent attributes.

A database schema defines how data is divided into tables and what relationships there
are between the tables. An example of a database schema and a database organized according
to it is depicted in Figure 2.1. The database in Figure 2.1 consists of three tables. Each of
them has an attribute that serves as an unique identifier of tuple (ID, CityID and NatID in
the People, Cities and Nationalities tables respectively). Moreover, the schema defines rela-
tionships between tables. The NatID and CityID attributes in the People table are references
to the NatID in the Nationalities table and CityID in the Cities table respectively. We say
that NatID and CityID are foreign keys referencing the Nationalities and Cities tables.
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People

ID

Name

Age

CityID

NatID

Cities

CityID

CityName

Nationalities

NatID

CityName

(a) A simple database schema

People
ID Name Age CityID NatID
1 Adam 34 2 1
2 Eva 23 2 2
3 Tom 53 2 3
4 Katie 12 3 1
5 Chris 44 2 1
6 Jan 64 1 3

Cities
CityID CityName

1 ’Warsaw’
2 ’Munich’
3 ’Amsterdam’

Nationalities
NatID NatName

1 ’Dutch’
2 ’German’
3 ’Polish’

(b) A simple database represented as a collection of tables organized according to
schema in Figure 2.1 (a)

Figure 2.1: Example of a database schema and a database organized according to it.

2.1.2. Architecture of a DBMS

The architecture of most DBMSs follows a multilayer approach, where each layer is responsible
for other phase of processing. The main layers of the VectorWise DBMS include:

(i) client application – which issues a query to the DBMS

(ii) query parser – which parses the text representation of a query and creates an internal
representation used by the DBMS

(iii) query optimizer – which tries to find an efficient way to execute the query and creates
a query plan

(iv) query rewriter – which improves the query plan by applying chosen transformations

(v) query executor – which does the actual processing of the data

(vi) buffer manager – that loads data from the storage and buffers it in the memory for
processing

(vii) storage – which handles storing data on persistent storage device such as hard disk

Figure 2.2 (a) depicts the above-mentioned layers of the systems and shows interactions
between them. In this master thesis we mostly focus on the buffer manager layer. Cooperative
Scans influence the way data is loaded into the buffer and the decisions which data to keep
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(b) Processing of a query in Volcano model

Figure 2.2: Organization of the VectorWise DBMS

in memory. Moreover, we had to extend the Rewriter layer with transformations that need
to be applied to the query plan to actually use the Cooperative Scans framework.

2.2. VectorWise DBMS

The VectorWise DBMS (www.vectorwise.com) is an analytical database management system.
It is mainly used for applications such as online analytical processing, business intelligence,
decision support systems and data mining. The VectorWise DBMS distinguishes itself from
other systems by exploiting features and characteristics of modern hardware such as SIMD
instructions, out-of-order execution, on-chip cache memory and multiple cores per one socket.
To benefit from those features VectorWise uses a novel vectorized in-cache execution model.

2.3. Vectorized execution model

The query execution engine of the VectorWise DBMS uses the typical Volcano-like „iterator”
model [Gra94] used in many other DBMS architectures. A query is represented as a tree of
operators. We refer to it by the Query Execution Tree (QET). Each operator can be seen
as an object performing a part of processing of the data. Every operator has three methods:
open(), next() and close(). The open() method starts a new stream of data, next()
fetches a new tuple and finally close() finishes the processing. Contrary to traditional
database management systems, VectorWise uses a novel „vectorised” model [BZN05]. The
next() method returns a vector of tuples instead of a single tuple. A vector is a small in-
memory array of values, with a typical size of 100-1000 elements. Thus, the operators in
VectorWise can process multiple tuples at a time using long loops iterating over a vector of
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values. This approach has several advantages in terms of performance. First of all, processing
in long loops results in amortization of overhead related to function calls. Secondly, better
CPU cache utilization is achieved provided the processed vectors fit the CPU cache. Lastly,
processing all values in a tight loop enables the compiler to exploit SIMD instructions that can
be found in modern processors. As a result, VectorWise achieves significantly lower instruction
per tuple ratio, which has a strong impact on the overall performance of the system.

2.4. Column Storage

VectorWise uses a flexible form of columnar storage. Data is stored in pages of the same,
fixed size. Every page consists of consecutive values belonging to one column of a certain
table. The column-based approach is often referred to as the Decomposition Storage Model
(DSM) [CK85b], whereas row-based storage as N-ary Storage Model (NSM). Another ap-
proach that tries to combine advantages of NSM and DSM is PAX [ADHS01]. It is a gener-
alization of DSM allowing multiple columns to be stored in one page. Inside the page data of
each column is stored consecutively as in DSM. VectorWise uses the PAX format for storing
small tables that can fit in a single page. Thus, in this thesis focus on DSM storage, as
Cooperative Scans are aimed at improving processing of vast amounts of data.

DSM has several advantages over the traditional row storage. First of all, DSM uses
less I/O bandwidth as a query scans only a subset of columns that is necessary for query
processing. Consequently, VectorWise avoids overhead of extracting unneeded attributes,
which arises in row-based DBMSs. Secondly, storing consecutive values of the same type
enables efficient, light-weight compression techniques such as RLE, PDICT, PFOR, PFOR-
DELTA, which results in further I/O savings [ZHNB06, Zuk09].

On the other hand, column storage is less efficient when it comes to updating the database.
For instance, adding a single tuple requires multiple disk writes – one for each column of
the table. To solve this problem VectorWise uses special in-memory data structures called
Positional Delta Trees [HZN+10] (see Section 2.8).

DSM storage poses several challenges to the implementation of Cooperative Scans. The
most fundamental issue is that the data volume shared by concurrently working queries is
reduced in DSM storage [ZHNB07]. Two queries can share I/O bandwidth only if they scan
overlapping sets of columns. Figure 2.3 presents a comparison of the number of disk pages
accessed by both of the two example queries in NSM and DSM approach. As we can see the
number of pages shared by the two queries is lower in DSM, as only pages storing data of
columns c and f can be shared.

Another issue is the fact that in DSM the number of values stored in a single page varies
depending on the column type. For instance, a page with strings can contain several thousands
of values whereas a page with integers is able to hold up to several millions of values. As
a consequence, it is virtually impossible to create horizontal partitioning of a table that would
be aligned to page boundaries. Loading a range of tuples in DSM is first translated to loading
a range of pages, which is different for each column. So, for each column a superset of the
requested range will be loaded.

2.5. Min-max indices

Besides DSM storage and compression, VectorWise uses min-max indices to decrease the
need for I/O operations. In short, a min-max index is an equi-width histogram of a certain
attribute.
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Figure 2.3: Overlap of data requested by two example queries in NSM and DSM
(from [Zuk09]).

A column is divided into up to M groups, where M is a constant defined at the time of
creation of the database. Thus, for large databases a group may contain several millions of
tuples needing several MB of disk space to be stored. For each group we store boundary tuple
identifiers along with minimal and maximal value of the indexed attribute. This metadata is
stored in a summary table that is small enough to be kept in RAM memory at all times.

Figure 2.4 shows a part of the lineitem table, which is a part of the TPC-H bench-
mark [Tra11] along with min-max indices for two of its columns: shipdate and linenr.

To explain the principles of min-max indices we consider the following SQL queries:
SELECT ∗ FROM l i n e i t em

WHERE sh ipdate BETWEEN ’ 1997−11−1 ’ AND ’ 1998−1−17 ’ ;

By looking at the min-max index on the shipdate column we can derive that the range of
tuples to be loaded can be trimmed from [0, 21) (the full range) to [0, 10), thus saving half
of the originally needed volume of I/O.
SELECT ∗ FROM l i n e i t em

WHERE l i n e n r BETWEEN 1 AND 6 ;

In this case the min-max index on the linenr column does not allow to optimize the amount
of data to be loaded from disk. As we can see, all buckets in the min-max index contain tuples
failing into the requested range of values of the linenr column.

To sum up, the amount of I/O that can be avoided thanks to min-max indices depends
on the ordering of the table. The order does not need to be perfect. As long as there is
correlation with the tuple order, min-max indices are effective. In the presented example
the table is almost sorted on the shipdate column, whereas the distribution of values in the
linenr columns is less predictable. As a result, min-max indices perform well in queries with
selection on shipdate and can fail to do so in queries with selection on linenr.

2.6. Join indices and cluster trees

Join indices are not a new concept in relational databases, they were first introduced in [Val87].
An abstract definition of a join index is as follows: We consider two relations A and B. Every
tuple in a relation has a unique identifier that is denoted as ai and bi respectively.
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Figure 2.4: The lineitem table with min-max indices

We define a join index as a set:

JI = {(ai, bi)|f(ai, bi) is true}

As we can see, a join index is an abstraction of the join of two relations. Figure 2.5 shows
the lineitem and orders tables from the TPC-H benchmark [Tra11] and a join index between
them. The ID column in both tables acts as unique identifier. The join index is represented
as table with two columns: srcPos and dstPos. The srcPos column contains references to the
ID column of the orders table, whereas dstPos references ID column of the lineitem table.

Usually database management systems exploit join indices by using a nested loop index
join. This algorithm uses log(N) index search to find matching tuples, which results in random
disk accesses. This is unacceptable in VectorWise as it uses DSM storage with large page size,
thus finding a single tuple would require many I/O requests and loading a lot of not needed
data.

To solve this problem the ordering should be exploited to be able to use the merge-join
algorithm. The merge-join algorithm processes two data streams ordered on a specified key.
Merge-join finds matching tuples by performing two interleaved scans on both streams. The
first or the second scan is advanced to find the next match. In particular, if both inputs are
sorted in ascending order, the next match is found by advancing the input with lower current
value. Appropriate ordering on the join equi-key of both input streams can be achieved by
sorting. This however, is almost always slower than alternative hash-join algorithm. The only
viable scenario where sorting combined with merge-join can outperform hash-join is a join
between a small unsorted stream and a large sorted stream. For the details of hash-join
algorithm please refer to Section 2.10.5.

However, in practice we encounter joins between two or more large tables. In particular
in the TPC-H benchmark we often have to join the two largest tables, namely lineitem and
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Figure 2.5: The lineitem and orders tables along with join index

orders, which are joined on the orderkey attribute. As discussed in Section 2.10.5, the hash-
join algorithm may consume considerable amount of memory to store the inner relation in
a hash table.

To solve the above-mentioned problems, VectorWise uses clustering. The idea is to store
one table in physical order corresponding to the tuple order in the other table which is
referenced by the first table with a foreign key. We say that the referenced table is a parent
table and the referencing table is a child table. In Figure 2.6 we can see the orders table
ordered on orderkey and the lineitem table clustered on orderkey along with the clustered
version of a join index and min-max indices on lineitem as discussed below.

Clustering allows to store the join index in a simpler way. There is no longer a need
to store a separate table with two columns. Instead, we can add an additional column to
either parent or child table. Both solutions are depicted in Figure 2.6. The first solution
is to store join_index.srcPos as an additional column of the child table (column JI in the
lineitem table in Figure 2.6). The other possibility is to store the number of matching tuples
in child table for each tuple on parent side (column JI in the orders table in Figure 2.6). This
is in fact a RLE-compressed form of the join_index.srcPos column. VectorWise employs
the second variant. However, both versions are available to the query processing layer – the
uncompressed form can be created on-the-fly while scanning the child table.

2.6.1. Cluster trees

The idea of clustering two tables may be easily extended to multiple tables. We can treat
a table as a node in a tree. Nodes are connected if and only if two tables are in parent-child
relationship. That means they are connected by means of a foreign key and clustered on that
key. Figure 7.2 depicts an example cluster tree build based on the TPC-H [Tra11] schema
(see Section 7.1.1).
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Figure 2.6: The lineitem and orders tables clustered

2.6.2. Join Index Summary

There are situations when we need to find specified positions in the join index. Most frequently,
we need only a part of the joined result. To allow efficient retrieval of the partial join of
two tables, VectorWise implements a sparse index on the join index called the Join Index
Summary (JIS). Similarly to min-max indices the JIS contains at most M entries, where M
is a configurable parameter. Let us assume that a sparse index on the uncompressed join
index is created, i.e. the join index is divided into buckets. Each entry in the JIS contains
two values: parent table ID and child table ID. To conserve space, only the lower boundaries
are stored, the upper boundary is simply the lower boundary of the next bucket. Thus, the
last entry in the JIS is always equal to the total number of tuples in the parent and the child
table.

In VectorWise, the sparse index over the join index has an extra property. It is clustered on
the join key. That means that tuples with the same value of foreign key (FK) always fall into
the same bucket. This property turns out to be very important for the correct implementation
of Cooperative Merge Join (see Section 5.2).

An example JIS that is build based on the join index in Figure 2.6 is depicted in Figure 2.7.

2.6.3. Exploiting min-max indices, JIS and clustering

In many cases, min-max indices allow to minimize the volume of I/O that needs to be per-
formed for a certain query. This feature can also be exploited in a scenario where join indices
are used. Let us consider the following SQL query:
SELECT ∗ FROM l i n e i t em , o rde r s

WHERE l i n e i t em . orderkey = orde r s . orderkey
ANDBETWEEN ’ 1997−12−18 ’ AND ’ 1998−1−15 ’ ;
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Figure 2.7: Join index summary for the lineitem and orders tables

Thanks to the min-max index on the shipdate column we can derive that only tuples from
the lineitem table with ID in range [0, 10) need to be loaded. Furthermore, we can use the JIS
to translate this range from the child table (lineitem) to the parent table (orders). Indeed,
tuples in range [0, 10) fall into the first bucket of the JIS depicted in Figure 2.7. Thus, on the
parent side we only need to consider tuples in range [0, 2), namely only the first two tuples.
As we can see, combining min-max indices, clustering and the JIS can significantly reduce the
need for I/O.

2.7. Snapshot isolation

Transactional functionality of database modifications is one of the most fundamental features
of modern database management systems. A transaction is defined as a unit of work performed
on a database in a coherent and reliable way. A transaction must be atomic, consistent,
isolated and durable (ACID). We focus on isolation of transactions which is the most relevant
aspect for Cooperative Scans.

The VectorWise DBMS adopts snapshot isolation [BBG+95] to guarantee that every trans-
action operates on a consistent state of the database. Snapshot isolation is a mechanism that
guarantees that each transaction sees a consistent view of the database. The start of a trans-
action involves creating a snapshot that consists of all changes made by the last committed
transactions. A transaction working on its own snapshot does not influence working of con-
current transactions. In particular, all modifications performed by a transaction are done
to its own snapshot. Before a transaction commits, a validation step is performed to check
whether updates conflict with any other commit made by a concurrent transaction since trans-
action’s snapshot was created. A transaction is either fully committed or aborted depending
on the result of the validation. The committed changes form the master snapshot. Each new
transaction that starts its execution creates its own copy of the master snapshot that it may
subsequently modify.

The aim of Cooperative Scans is to exploit sharing opportunities that arise with concur-
rently working queries. Thus, in spite of the existence of the local snapshots of each trans-
action that may differ, Cooperative Scans should still be able to correctly identify sharing
opportunities.

2.8. Positional Delta Trees

VectorWise uses DSM storage, which is best suited for read-only workloads. To solve the
problem of costly updates in DSM, a novel in-memory data structure called Positional Delta
Tree (PDT) has been introduced. A PDT is a differential data structure that keeps the changes
that have been made to a table. By keeping changes in PDTs, the underlying DSM tables do
not have to be modified. The PDT provides logarithmic update performance with respect to
the size of the PDT. Reconstructing the latest table image in queries is also efficient, thanks
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to the fact that it organizes changes by position (the position in the table where the change
applies). All queries must apply a PDT merging operation, so that they process up-to-date
image of the table. PDTs are differential data structures, and these can be stacked denoting
differences on top of differences. PDTs can form a hierarchy with a global, large PDT at the
bottom and small transaction-local PDTs at the top. A detailed description of PDTs can be
found in [HZN+10].

The PDT merge operation works as follows. During the scan operation, data fetched
from the stable storage is merged with PDT-resident tuples from all layers i.e. new tuples
are inserted into the incoming stream and deleted ones are skipped. As we can see, there is
a difference between tuples stored on the disk and tuples visible to the query. Therefore it is
important for Cooperative Scans to load stable data in a way that ensures correctness of the
merging process.

Also, tuples stored in PDTs influence functioning of join indices, merge-join and Cooper-
ative Merge Join in particular. We discuss join indices in detail in Section 2.6.

2.9. Checkpointing

Checkpointing is an aspect closely related to PDT updates. When updates are applied to
the database, the memory usage of PDTs may grow considerably. This process can not be
sustained forever. At some point, the whole table has to be rebuilt (checkpointed). This
process involves scanning the table from the stable storage, merging updates stored in PDTs
and storing the result as a new version of the same table. After checkpointing finishes, all
incoming queries will work on the new version of the table that has just been saved. Note
that for the new version of the table, a new set of pages is allocated i.e. the old and the new
version do not share any pages.

As a result, checkpointing can lead to scenario where there are queries working on two
versions of the same table that are completely different in terms of the set of pages they are
stored in. Thus, it is far more complicated for two queries working on the old version and the
new version to share loaded data.

The checkpointing process is more complicated when there is a join index on a given
table. In that situation, checkpointing one table may lead to checkpointing all tables that are
connected by means of a join index.

2.10. VectorWise Algebra

The VectorWise query algebra is used for internal representation of queries inside the system
kernel. It is used to directly define the QET. The VectorWise algebra is based on relational
algebra, a concept used in many relational database management systems. From the user’s
perspective, the VectorWise algebra is invisible. The user issues queries that are expressed
in the SQL language which are subsequently optimized by the optimizer and translated into
the VectorWise algebra. The VectorWise kernel applies further modifications to the QET by
rewriting the tree into another equivalent representation (see Section 2.11).

In this section, we briefly describe operators implemented in VectorWise that influence
the design of the Cooperative Scans framework. For every operator we introduce notation
that will be used in further sections of this thesis.
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2.10.1. Scan

The task of the Scan operator is the retrieval of data belonging to a certain table. The Scan
operator creates a data stream that is subsequently processed by other operators. The data
stored in a table can be trimmed both vertically and horizontally. The table can be trimmed
vertically by scanning only a subset of its columns. The horizontal trimming refers to filtering
out tuples whose identifiers do not belong to specified ranges. Such tuple ranges are derived
using min-max indices and join index summaries as discussed in Sections 2.5 and 2.6.3.

We denote Scan by Scantable_name,column_list,range_list where table_name is the name of
a table to be scanned and column_list is a list of columns of that table. The range_list is
a list of continuous ranges of tuple identifiers that will be included in the output data stream.
If the range_list is not specified the whole table is scanned.

2.10.2. Select

The select operator is used to filter out tuples that do not fulfill a specified predicate.
We denote Select by Selectbool_expr where bool_expr is an arbitrary boolean expression

used to choose matching tuples.

2.10.3. Aggregation

Aggregation allows to group tuples with the same value of a certain attribute and perform
calculations on them. Calculations that can be performed in VectorWise include sum, min,
max and count. The average (avg) is simulated by a combination of sum and count.

A typical implementation of aggregation involves a hash table which is used to group tuples
with the same key together. It should be noted that this approach requires materialization of
the output. Materialization refers to processing schema where all tuples are processed before
being passed to the parent operator. This approach does not scale well in terms of memory
consumption. Therefore, materialization may become a problem when the number of distinct
aggregate key values is large.

We denote Aggregation by Aggrkeys,aggr_list where keys is a list of attributes that form
aggregate key and aggr_list is a list of aggregate functions (sum, min, max or count).

2.10.4. Ordered Aggregation

Ordered Aggregation is an optimized version of Aggregation, which exploits the fact that
data in the input stream can be clustered on a key. We say that data stream is clustered
when two occurrences of the same key value are never separated by a different value. Thanks
to that property, the OrderedAggregation operator can immediately return the result to the
parent operator when it detects a new group value in the stream. It should be noted that
ordered aggregation is considerably faster than hash-based aggregation and has lower memory
consumption. Consequently, ordered aggregation is used in query plans wherever it is possible
i.e. input stream is clustered.

Similarly to Aggregation we denote OrderedAggregation by OrdAggrkeys,aggr_list with the
same meaning of keys and aggr_list.

2.10.5. HashJoin

HashJoin is one of the most widely used algorithms for performing the join operation in
database management systems. The idea is to first build a hash table from the inner (right)
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data stream. Once the hash table is built, the outer (left) data stream is processed. For each
tuple, a hash value is used to check whether or not there is a matching tuple in the hash table.

It should be stressed that the hash table may consume a considerable amount of RAM
memory if the inner (right) relation is large. We say that HashJoin materializes the right data
stream in memory. Therefore, VectorWise also incorporates another join algorithm discussed
in the next section.

An important aspect of HashJoin is the fact that it returns tuples in the same order as its
left input. This is exploited in Section 4.9 and 5.5.

We denote HashJoin by HashJoinkeysA,keysB where keysA and keysB are equally sized
sets of columns that define the join equality predicate.

2.10.6. MergeJoin

MergeJoin is the second join operator implemented in VectorWise. MergeJoin assumes that
both input streams are ordered by join keys. MergeJoin processes data in a pipelined fashion.
Lack of materialization results in low memory usage. Also, MergeJoin is usually faster than
HashJoin. Thus, the query optimizer in VectorWise tries to use MergeJoin in QET wherever
possible. The ability to use MergeJoin in VectorWise depends on the schema. We can assume
tables to be properly ordered only if tables joined over a foreign key are in the parent–child
relationship in the same cluster tree. If there is no appropriate join index, VectorWise always
falls back to HashJoin.

Similarly to HashJoin we denote MergeJoin byMergeJoinkeysA,keysB with the same mean-
ing of keysA and keysB.

2.10.7. Sort

The Sort operator is used to sort the incoming data stream according to some order. The sort
order is defined by a list of attributes, where the order of attributes corresponds to the order
of sort keys. It should be noted that in VectorWise the Sort operator is mainly used to sort
the output presented to the user. The query execution layer relies on data already sorted on
disk as described in Section 2.6.

We denote the Sort operator by Sortsort_columns.

2.10.8. TopN

The TopN operator returns first N tuples according to specified sort order. Note that to
compute a TopN, one does not need to sort, rather a single pass inserting tuples into a small
heap suffices.

We denote TopN by TopNsort_columns,N .

2.10.9. Reuse

The purpose of the Reuse operator is to optimize execution of plans that contain multiple
copies of the same subtree. The repeating subtree can be executed only once and the result
can be buffered for future use in the query plan. Effectively, the Reuse operator allows to
support directed acyclic graphs (DAGs) as query plans. In such case the root of the reused
subtree has multiple parent nodes.
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2.10.10. Append, Insert and Delete

VectorWise uses three basic operators for applying modifications to a database: Append,
Insert and Delete. There are two different operators for adding tuples to a table. The Insert
operator inserts tuples into the memory-resident Positional Delta Trees (PDTs) structures
(see Section 2.8). On contrary, the Append operator adds new tuples directly to the stable
storage. The Append adds new tuples to the last page of each column of the table, or adds
new pages to the end of the column if the last page is full. Thus, it is only able to add tuples
at the end of the table. Finally, the Delete operator deletes tuples from the table, by marking
tuples as deleted in PDTs. Deleted tuples are skipped in the PDT merging process described
in Section 2.8.

2.10.11. Sandwich operators

The VectorWise DBMS extends the standard open(), next(), close() interface of operators
with an additional restart() method. Its purpose is to reinitialize the operator to prepare
it to accept further data flow. The underlying assumption is that the flow is partitioned
and different partitions exhibit different characteristics. Therefore, the operator that accepts
a partitioned flow may need to reinitialize its state to be able to accept the next partition. The
exact semantics of the restart() varies depending on the operator e.g. in hash operators hash
tables are flushed. In all the sandwich operators allow to use all existing algebra operators
unmodified to support partitioned stream semantics.

The new method is used by the PartitionSplit and PartionRestart operators which together
form a „sandwich” operator. The idea is to enclose existing operators between PartitionSplit
and PartionRestart. We say that an operator is „sandwiched” between PartitionSplit and
PartionRestart. The sandwiched operator is required to implement the restart() method.

Partition Split

PartitionSplit divides the input stream into groups according to a certain key. Similarly
to Aggregation, the key is defined as a list of attributes. PartitionSplit assumes that
the input stream is clustered on the key. Thus, PartitionSplit works in a similar way to
OrderedAggregation, but it does not calculate any aggregate function. Instead, it signals
end of stream to its parent operator when the end of a group is detected. However, despite
signaling end-of-stream to its parent there may still be new tuples coming. So, at the end-of-
stream the PartitionSplit merely expects a new partition key value to appear and continues
to produce more tuples when asked to do so (with the next() method).

We denote ParitionSplit as PartitionSplitkeys where keys is a list of attributes that define
the key.

Partition Restart

The PartitionRestart operator works on top of an operator that implements the restart()
method. The underlying operator can be either unary or binary. We focus on the binary
case which is more general. The task of PartionRestart is to synchronize the streams coming
from underlying PartitionSplit operators. When the end of a group is detected i.e. the son of
PartitionRestart signals end-of-stream (but in fact that is just an end-of-partition), Partion-
Restart calls the restart() method of its son and corresponding PartitionSplit operators.
PartitionRestart effectively performs a merge-join in groups, so that its son performs opera-
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tions only matching groups. PartionRestart can be also configured to allow empty groups on
one or both of the sides in a similar way outer joins are performed.

We denote ParitionRestart as PartitionRestartouter_spec where outer_spec is one of
{INNER, RIGHT_OUTER, LEFT_OUTER, FULL_OUTER} defining outer join logic.

2.11. Rewriter

The VectorWise employs an internal representation of query plans using the VectorWise
algebra introduced in Section 2.10. Those query plans are processed by the Rewriter module.
The task of the Rewriter is applying modifications to the query plan that optimize it and
prepare it to be executed. Rewriting involves two main operations. First, nodes forming
the query plan are annotated with properties. Properties are (key, value) pairs, where key
is a name of certain property and value is a parameter of arbitrary type. Secondly, the
Rewriter transforms the query plan according to a specified set of transformations that are
triggered when certain properties are set. It can replace a single node with another one, as
well as transform whole subtrees and change their shape. Tasks performed by the Rewriter
include eliminating unnecessary operators, trimming ranges basing on the min-max indices
(see Section 2.5) and parallelizing the query plan. The Rewriter serves as a tool that introduces
various optimizations implemented in VectorWise. It is also used to introduce Cooperative
Scans as described in Section 4.9 and 5.5.

2.12. Summary

This chapter presented the fundamentals of VectorWise, as well as stressed aspects relevant
for the design and implementation of Cooperative Scans. It defines issues and challenges that
will be addressed in the following chapters. Below, we provide a summary of those problems
along with references to sections describing and addressing them.

(i) implementing Cooperative Scans on top of a columnar storage (discussed in Section 2.4,
addressed in Chapter 3)

(ii) providing support for updates stored in PDT structures (discussed in Section 2.8, ad-
dressed in Section 4.5)

(iii) handling of transactions working on different snapshots (discussed in Section 2.7, ad-
dressed in Section 4.6, 4.7 and 5.6)

(iv) providing solutions for operators requiring ordered input stream (discussed in Sec-
tion 2.10, addressed in Chapter 4 and 5)

(v) transforming query plans to use the Cooperative Scans framework (discussed in Sec-
tion 2.11, addressed in Section 4.9 and 5.5)
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Chapter 3

Cooperative Scans

This chapter describes the Cooperative Scans algorithm in detail. First, the inefficiencies of
traditional approach to scan processing are discussed. It is followed by an introduction to the
principles of Cooperative Scans and details of the implementation. We introduce two new
concepts that will be used throughout the thesis: a new operator called CScan and the Active
Buffer Manager (ABM).

3.1. Traditional scan processing

Database systems are designed to support a multi-user environment with many concurrently
working queries. In such scenarios, the I/O subsystem has to deal with many requests that are
issued in semi-random access patterns leading to frequent disk-arm movements. With current
characteristics of hard disks, this behavior may lead to performance degradation as the I/O
bandwidth drops with access patterns that require many disk-arm movements. Most DBMSs
avoid this problem by executing large isolated I/O requests. As a consequence, the time of
disk arm movements is well amortized and the perceived I/O bandwidth is close to a fully
sequential scan. While helping with attaining good I/O bandwidth, this does not solve the
problem of making the right decisions about loading, assigning and evicting data, to provide
high performance under concurrent workloads.

To illustrate the need for a flexible scan scheduling policy, we consider the following
example. Assume the database is composed of 30 pages numbered from 1 to 30. The system
is equipped with a buffer pool that can hold up to 10 pages. To simplify calculations, we
assume that processing a page that is already loaded into the memory is instantaneous,
whereas loading a single page takes one second. Also, the time of loading multiple pages does
not depend on the access pattern i.e. we assume the overhead of disk-arm movements to be
well amortized. We consider two queries Q1 and Q2 reading pages from 1 to 20 and from 21
to 30 respectively. Queries Q1 and Q2 start at the same time. The buffer pool contains pages
{16, 17, 18, 19, 20, 26, 27, 28, 29, 30} thus the last 5 pages for Q1 and Q2. We can consider
various ways of executing those two queries with respect to scheduling of I/O requests and
buffer management policy. Firstly, we can assume that the buffer is governed by a LRU policy
(see Section 4.2) where page 16 is at the head of the queue and page 30 at the tail. We also
assume that queries read pages sequentially in ascending order.

The three most simple rules for scheduling I/O operations are: round-robin, scheduling all
Q1’s pages first and scheduling all Q2’s pages first. In the case of a round-robin policy with
granularity of a single page, all pages in the buffer pool will be evicted after 10 seconds when
Q1 processes pages from 1 to 5 and Q2 pages from 21 to 25. Thus, no data in the buffer pool
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Query scheduling
policy

Buffer manage-
ment policy

Q1 latency Q2 latency Average latency

round-robin LRU 40 20 30
Q1 first LRU 20 30 25
Q2 first LRU 25 5 15
out-of-order any 20 5 12.5

Table 3.1: Comparison of different approaches to processing two simple queries

will be reused. In this scenario Q2 will finish after 20 seconds and Q1 after 40 seconds. If
we decide to satisfy the whole Q1 before processing Q2, the whole buffer pool will be flushed
resulting in no data reuse. In this case, Q1 finishes after 20 seconds and Q2 after 30 seconds.
In yet another scenario when Q2 is serviced first, it loads pages from 21 to 25 resulting in
eviction of pages needed by Q1 (from 16 to 20). Then Q2 can immediately process pages
already loaded into the memory, but Q1 will again have to load all needed pages. As a result,
Q2 finishes after 5 seconds and Q1 after 25 seconds.

If we drop the implicit assumption that pages are processed in tuple order, we can further
improve performance. The best solution in our example would be to let them first process
all pages already kept in the buffer pool, and then let Q2 finish by loading all the remaining
pages from the disk. Finally, Q1 should also load all its pages and finish. In that scenario,
Q2 is ready after 5 seconds and Q1 after 20 seconds. It should be noted that the exact buffer
management policy in this case is not important as all needed pages will have to be loaded
and it does not matter which ones will be evicted to make space for new ones. However,
it certainly influences any further queries that may be executed in the system. Table 3.1
presents a comparison of all above-mentioned approaches and their performance.

3.2. Introduction to Cooperative Scans

In this section, we present the design of the Cooperative Scans framework that aims at remov-
ing inefficiencies of the traditional scan processing. The two main components of Cooperative
Scans are: a new operator in the VectorWise algebra (see Section 2.10) CScan and a new
system component, the Active Buffer Manager (ABM). Figure 3.1 presents a comparison of
the traditional Scan operator using the traditional buffer manager and the CScan operator
using the ABM. In the traditional approach, Scan operators issue requests for I/O operations
that are passed through the buffer manager that caches the data in memory according to
a specified policy. The buffer manager is only responsible for handling of those requests. In
particular, it is not aware of how many queries and Scan operators there are in the system.

Contrary to that, CScan operators register all needed data ranges to the ABM before
starting the actual scanning. The ABM is issuing requests for I/O operations on behalf of
registered CScan operators. The data is loaded in large portions (chunks) to amortize I/O
latency and allow for more sophisticated chunk-level scheduling policies. Once data is loaded,
the ABM feeds CScans with data. CScan operators accept data in chunk-at-time manner.
Chunks can be delivered to CScans in arbitrary order. We say that CScans accept data
out-of-order.
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Figure 3.1: Normal scans (left) versus Cooperative Scans (right). From [ZHNB07].

3.3. The principles of Cooperative Scans

The overall goal of the ABM is to use the information provided by all registered CScan
operators to exploit sharing opportunities arising in concurrent workloads, as well as to make
better scheduling decisions given the flexibility of out-of-order delivery.

To allow more sophisticated scheduling policies inside ABM, we divide a table into large
chunks. Their total number is one or two orders of magnitude smaller that the number of
I/O units managed by the traditional buffer manager. Chunks are logical entities, they do
not correspond directly to I/O units. To clarify the meaning of different entities used in the
ABM and the I/O subsystem we introduce a couple of definitions that we will refer to later
in this thesis.

Chunk is an area of a table containing tuples belonging to a specified continuous range. It
is a logical concept that defines a horizontal slice (restriction), but does not specify which of
the table columns are relevant.

Slice is a vertical slice of a chunk i.e. it is a sequence of values belonging to a certain column
of a certain chunk.

Page is the smallest I/O unit handled by the VectorWise DBMS. A page contains values
belonging to one column (see Section 2.4), but a page may contain data of multiple chunks
and slices. This typically happens for pages containing tuples at a chunk boundary, which
thus contain tuples belonging to two different chunks (and slices). But, highly compressed
columns may be stored in pages that contain data of even more than two chunks and slices.

In Figure 3.2 we can can see a part of the TPC-H [Tra11] lineitem table as it is stored in
the columnar storage of the VectorWise DBMS. The figure depicts chunks, slices and pages
as defined above. For each column it also mentions data type (decimal, oid, str), compression
scheme used (PFOR, PDICT, PFOR-DELTA [ZHNB06]) and average bits per tuple.

In a columnar storage each column is stored separately. As a result, columns differ in
the amount of space they occupy either due to usage of different data types or compression.
As a consequence a single page does not contain a fixed number of values, even in the same
column. Therefore, in DSM we define chunks as logical concepts. A single chunk may consist
of multiple physical pages and a single page may contain data belonging to multiple physical
chunks.
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Figure 3.2: Compressed column storage (from [Zuk09])

1: function CscanRelevance(cscan)
2: if not CscanStarved(cscan) then
3: return −∞
4: else
5: return - ChunksNeeded(cscan) + WaitingTime(cscan) / RunnningCScans()
6:
7: function CscanStarved(cscan)
8: return NumberOfAvailableChunks(cscan) < 2

9:
10: function UseRelevance(chunk, cscan)
11: cols← CscanColumns(cscan)
12: U ← ‖InterestedOverlappingCScans(chunk, cols)‖
13: Pu ← NumberCachedPages(chunk, cols)
14: return Pu/U

15:
16: function LoadRelevance(chunk, cscan)
17: cscan_cols← CScanColumns(cscan)
18: cscans← OverlappingStarvedCScans(chunk, cscan_cols)
19: cols←ColumnsUsedInCScans(cscans)
20: L← ‖cscans‖
21: Pl ← ‖ColumnPagesToLoad(chunk, cols)‖
22: return L/Pl

23:
24: function KeepRelevance(chunk)
25: starved← AlmostStarvedCScans(chunk)
26: cols← ColumnsUsedInCScans(starved)
27: E ← ‖starved‖
28: Pe ← ‖CachedColumnPages(chunk, cols)‖
29: return E/Pe

Figure 3.3: Pseudo-code of the Relevance functions
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3.4. Algorithm (pseudocode)

In Cooperative Scans the CScan operator registers itself in the Active Buffer Manager. The
ABM stores all metadata that is relevant for processing. It contains a list of registered CScans,
a list of tables that are scanned by them and chunks that those tables are divided into. The
ABM dynamically adjusts the metadata when the workload changes e.g. it registers new table
when the first CScans scanning the table registers and destroys metadata related to that table
when all scans scanning it leave the system.

Figure 3.4 presents the implementation of the main thread of the Active Buffer Manager.
Additionally, Figure 3.3 shows a set of „relevance” functions that steer this processing. The
main loop services all registered CScans making chunk loading decisions based on the current
workload. It chooses a CScan for which it thinks it should load a chunk. For that CScan,
the ABM finds the most relevant chunk. It subsequently loads all relevant slices for the
chosen chunk. This process involves finding free space in the memory, which may result in
evicting other chunks. Once the chunk is loaded, the ABM notifies all waiting queries that
are interested in it.

The ChooseCScanToProcess() function finds a CScan with the highest value returned
by the CscanRelevance() function. The CscanRelevance() function considers only starved
CScans i.e. the ones with less than two chunks already cached in the memory. It prioritizes
CScans with less chunks left to consume. In that way it avoids treating CScans in round-
robin fashion, which has negative impact on query latency. Moreover, to avoid starving longer
queries, priorities of queries are adjusted according to their their waiting time.

Once a CScan to service is chosen, the ABM has to decide which chunk to load for it. The
procedure is done in the ChooseChunkToLoad() function by finding a chunk with the highest
result of LoadRelevance() among the ones that are needed by the chosen query and are not
fully cached. The LoadRelevance() aims to promote chunks that can satisfy many starved
queries at low cost i.e. by performing little I/O. It calculates the number of CScans that are
starved and scan a set of columns that has a non-empty intersection with the set of columns
scanned by the currently serviced CScan. Also, it estimates the cost of loading a chunk by
calculating how many disk pages would have to be loaded into the memory i.e. how many
cold pages there are.

Loading a chunk in DSM is divided into loading all slices that are needed by the chosen
CScan. Every slice may occupy a different number of pages, thus the LoadChunk() function
finds free space in the memory for every slice separately. The GetFreeSlot() function makes
sure that there is enough space in the memory by possibly evicting the least relevant chunk
according to the KeepReleance(). The KeepRelevance() function favours chunks that are
useful for many queries and occupy little memory. The AlmostStarvedCScans() function
returns the number of starved and almost-starved CScans. The almost-starved CScans are
the ones having three chunks available. We do this to avoid increasing the number of starved
CScans after eviction.

Figure 3.5 presents the pseudocode of the CScan operator. The thread of CScan calls
the SelectChunk() function when it needs to get more data to process. First, with the
ChooseAvailableChunk() function it checks whether there are already cached chunks that
can be used. If there are many of them, the one to consume is chosen according to the
UseRelevance() function. The purpose of the UseRelevance() is to prioritize chunks needed
by least queries, thus allowing for faster eviction of a certain chunk. In the case there are
no available chunks in the memory, the query waits until it is notified by the ABM that one
of requested chunk was loaded. Note, that there is no explicit mechanism telling ABM that
a certain CScan is starved and waiting. CScan that hangs waiting for a chunk to be delivered
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1: function Main
2: while TRUE do
3: cscan← ChooseCScanToProcess()
4: if cscan← NULL then
5: BlockForNextCScan()
6: continue
7: chunk ← ChooseChunkToLoad(cscan)
8: LoadChunk(cscan, chunk)
9: for all cscan in cscans do
10: if ChunkInteresting(cscan, chunk) and CScanBlocked(cscan) then
11: SignalCScan(cscan, chunk)
12:
13: function ChooseCScanToProcess
14: relevance← −∞
15: chosen_cscan← NULL
16: for all cscan in cscans do
17: cr ← CscanRelevance(cscan)
18: if cscan = NULL or cr > relevance then
19: relevance← cr
20: chosen_cscan← cscan

21: return chosen_cscan

22:
23: function ChooseChunkToLoad(cscan)
24: chosen_chunk ← NULL
25: L← 0
26: for all chunk in NeededChunks(cscan) do
27: if not ChunkReady(chunk)) and LoadRelevance(chunk) > L then
28: L← LoadRelevance(chunk)
29: chosen_chunk ← chunk

30: return chosen_chunk

31:
32: function LoadChunk(cscan, chunk)
33: for all column in cscan.needed_columns do
34: num_pages← SliceSize(cscan.table, chunk, column)
35: FreeMemory(cscan, num_pages)
36: LoadChunkSlice(cscan.table, chunk, column)
37:
38: function FreeMemory(cscan, num_pages)
39: K ← 1
40: free_pages← FreePages()
41: while free_pages < num_pages do
42: for all chunk in cached_chunks do
43: if (not CurrentlyUsed(chunk)) and (not Interesting(chunk, cscan))
44: and (not UsefulForStarvedCScan(chunk)) and KeepRelevance(chunk) < K then
45: K ← KeepRelevance(chunk)
46: chunk_evict← chunk

47: free_pages← free_pages+ EvictChunk(chunk_evict)

Figure 3.4: Pseudo-code of the Active Buffer Manager

28



1: function SelectChunk(cscan)
2: if Finished(cscan) then
3: return NULL
4: else
5: if AbmBlocked() then
6: SignalQueryAvailable()
7: chunk ← ChooseAvailableChunk(cscan)
8: if chunk = NULL then
9: chunk ← WaitForChunk(cscan)
10: return chunk
11: function ChooseAvailableChunk(cscan)
12: chosen_chunk ← NULL
13: U ← 0
14: for all c in InterestingChunks(cscan) do
15: if ChunkReady(c) and UseRelevance(c) > U then
16: U ← UseRelevance(c)
17: chosen_chunk ← c

18: return chosen_chunk

Figure 3.5: Pseudo-code of the CScan operator

must be starved, thus by notifying all waiting CScans that are interested in the loaded chunk
we service all starved CScans that can be satisfied at the moment.

3.5. Related work

Disk scheduling policies are part of research carried out in the area of operating systems [TP71].
The classic policies developed include First Come First Served, Shortest Seek Time First,
SCAN, LOOK and others. Also, in the area of virtual memory [Bel66] and file system
caching policies there were several policies introduced including LRU and MRU. It should
be noted that the developed policies were aimed at access patterns and workloads different
from the ones found in an analytical DBMS. Thus, the result are possibly irrelevant in the
field discussed in this thesis.

In a database management system it is possible to identify several access patterns depend-
ing on the type of a query and used indices such as looping sequential, straight sequential
and random [CD85]. Depending on the access pattern a different buffer management may
be used. In [CD85] and subsequent work [CR93, FNS91] scans were considered trivial and
handled by either LRU or MRU policy. In such case concurrently working scans were not
exploiting sharing opportunities.

The idea of developing policies aimed at increasing data reuse in an environment with
multiple concurrent scans was introduced in commercial DBMS systems including Teradata,
RedBrick [Fer94] and Microsoft SQLServer [Coo01]. The proposed solutions used either the
elevator or attach policy that were compared to Cooperative Scans in [ZHNB07].

The idea of circular scan is exploited in systems that are designed to handle concurrent
workload with tens to hundreds of queries. The main purpose for using this technique is to
maintain high performance of the system irrespectively of the number of concurrent queries.
The Crescando system [GUM+10, UGA+09] introduces Clock Scan that services all queries
working in the system. The QPipe architecture [HSA05] is another example of a system using
a circular scan that feeds multiple operators with data. Moreover it supports a merge-join
on two sorted relations by allowing to synchronize the merge-join operator with the current
scan position. The result is generated in two batches: first the part that is shared with
currently working scan is generated. Then it is followed by producing of the not-shared part.
In Chapter 5 we propose a solution to merge-join processing that is more flexible. Circular
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scans are also researched in [CPV09]. The CJoin operator optimizes concurrent workloads on
the widely used star schema. The fact table is scanned in circular fashion to feed a pipeline
of operators used to execute all active queries.

Another approach improving data reuse in multi-scan environment was introduced in IBM
DB2 system [LBM+07, LBMW07]. The exploited idea is to group scans with similar speed
and position together to let them reuse loaded data. The groups are controlled by allowing
throttling of faster queries or recreating the groups if a considerable desynchronization occurs.
In principle, the approach changes access pattern to increase locality of references, but does
not change the order of processing, nor the buffer management policy.

In contrast to previous work, Cooperative Scans combine exploiting the knowledge about
current workload with the flexibility of out-of-order delivery. Moreover, we present a novel
approach extending the framework to support order-aware operators. Finally we discuss trade-
offs related to the complexity of proposed solutions and investigate simpler ideas that provide
similar benefits. Section 4.3 introduces the Predictive Buffer Manager that is a solution
specially designed for workload with sequential access patterns only.

Under assumption, that full information about all future page accesses is known it is
possible to formulate an optimal algorithm i.e. an algorithm that minimizes the number of
pages that have to loaded from disk to the buffer. The MIN algorithm [Bel66] governs a buffer
provided a sequence of all future references is available. A short proof of optimality of the
MIN algorithm can be found in [Roy10]. The MIN evicts a page whose next requests occurs
furthest in the future. The Predictive Buffer Manager can be seen as an approximation of the
MIN that is based on current state of the system.

3.6. Summary

Existing work on Cooperative Scans [ZHNB07] convinces that this solutions offers an oppor-
tunity of high performance improvements in an analytic DBMS. However, Cooperative Scans
have a significant influence on the system. Consequently, the implementation of Cooperative
Scans poses a number of challenges that have to be solved before all benefits of the frame-
work can be achieved. Chapters 4 and 5 provide a detailed description and solutions to these
implementation and integration problems.
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Chapter 4

Cooperative Scans in VectorWise

As discussed previously, the implementation of Cooperative Scans in the VectorWise DBMS
requires several problems to be solved. This chapter describes how Cooperative Scans de-
scribed in Chapter 3 are integrated into VectorWise. It addresses all problems listed in
Section 2.12. Note that the problem of providing support for operators requiring ordered in-
put stream is treated differently in this chapter and in Chapter 5. In this chapter we propose
a solution reconciling regular Scan operators and Cooperative Scans, so that regular Scans
are used where Cooperative Scans would lead to incorrect query results. On contrary, in
Chapter 5 we provide an extension to Cooperative Scans allowing to use the framework in all
query plans.

Also, this chapter introduces the Predictive Buffer Manager, a novel solution for buffer
management in VectorWise.

4.1. Reconciling Cooperative Scans and regular scans

Cooperative Scans work under the assumption that the data can be delivered and processed
out-of-order without influence on the correctness of query result. However, some operators
work correctly only if the data is delivered fully sequentially from the underlying storage. In
the VectorWise DBMS these include OrderedAggregation and MergeJoin (see Section 2.10).
To introduce Cooperative Scans in VectorWise this requirement must be taken into account.

Cooperative Scans as presented in [ZHNB07] have full flexibility in terms of making chunk-
level scheduling policies. All queries that ran in the system used the CScan operator, thus were
willing to accept data out-of-order. As a consequence, the order of loading and evicting chunks
was irrelevant as long as the system loaded one of the chunks with highest LoadRelevance()
value and evicted one of the chunks with lowest KeepRelevance(). Moreover, the whole
buffer space was used to cache parts of a single table. In VectorWise however, the queries
scan multiple tables possibly using both CScans and traditional scanning. Therefore, we can
no longer assume a dedicated buffer space for caching a single table. On the contrary, the
buffer pool must cache parts of several tables.

First of all, Scan operators that comprise the query plan have to be checked for the possi-
bility of replacing them with a CScan operator. Secondly, for every Scan operator a decision
has to be made whether to replace it with CScan. Finally, the buffer space has to be shared
between Cooperative Scans and regular scans. This leads to the question of a common buffer
pool policy for both types of the Scan operator in VectorWise.

The following sections present present a solution to the above-mentioned problem of pro-
viding a common infrastructure for Cooperative Scans and regular scans. We discuss the way
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data can be loaded in the integrated solution, as well as the eviction policy. Providing a com-
mon eviction policy for Cooperative Scans results in development of the Predictive Buffer
Manager that is introduced in detail in Section 4.3.

4.1.1. Loading data

Cooperative Scans introduce a novel approach to scheduling of queries. To enable lowering
the average query latency all scheduling decisions are made by the ABM thread basing on
the CscanRelevance() function. Regular scans can not use that approach as they do not
accept data delivered out-of-order. There are two possible solutions to scheduling requests for
loading the data.

One idea is to keep the previous implementation of regular scans as depicted on the left side
of Figure 3.1. Every scan has its own thread that issues request for I/O operations on behalf
of the scan. Besides, there is the ABM’s main thread that issues requests for all registered
CScan operators. It is important to stress that the data for CScans is loaded on a chunk at
a time basis, whereas regular scans issue requests for single pages. Scans and CScans share
the same buffer space. Therefore, the system has to incorporate a common policy for making
decisions on what data to evict from the buffer pool. Again, evicting data loaded for regulars
scans can be done on page level, whereas for CScans on chunk or slice level.

The other, more complicated solution is to integrate regular scans with the Cooperative
Scans framework. The idea is to treat regular scans as a special type of CScans, which we
will refer to by sequential CScan. The sequential CScan differs from CScan by only accepting
chunks in-order. Moreover, the parameters used by the scheduling policy have to adjusted. In
particular, the NumberOfAvailableChunks() function (see Figure 3.3) has to take the current
chunk that is being consumed by a sequential CScan into account. Only the chunks that
directly follow the current chunk and are fully loaded for certain query can be treated as
available. In this approach data for all scans working in the system is loaded by the ABM’s
main thread on a chunk at a time basis.

4.1.2. Evicting data

In a live system the buffer pool becomes filled with pages containing data loaded from storage.
In that state, every request for loading a page that is not in the buffer pool results in evicting
an already cached one. Similarly, loading a chunk will result in evicting several pages or
chunks as the physical size of a chunk is not fixed. This leads to the problem of a common
policy for evicting data cached in the buffer pool.

In the first solution proposed in Section 4.1.1, where the implementation of regular scans
is to be unchanged, we encounter the problem of logical-physical mismatch. In particular,
a request for loading a single page may result in evicting a chunk which is comprised of several
pages. Similarly, a request for loading a chunk can possibly lead to evicting multiple pages
and chunks. As a consequence, the regular buffer pool managing pages and the Active Buffer
pool managing chunks and slices need to be integrated to make decision on which data to
evict.

Now, we will focus on providing such an integrated policy for evicting data from the
buffer pool. The solution leads to the idea of the Predictive Buffer Manager that can be used
as stand-alone buffer manager in VectorWise, as well as integrated with Cooperative Scans.
In the next section we introduce the LRU buffer manager, that is currently used as default
buffer management solution in VectorWise. In Section 4.3 the Predictive Buffer Manager is
introduced, whereas in Section 4.4 its integration with Cooperative Scans is discussed.
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4.2. The VectorWise buffer manager

The buffer manager in VectorWise uses two priority queues governed by the Least Recently
Used (LRU) policy to distinguish pages with two possible priorities: low and high. A LRU
queue stores pages in order of the last use time. Most recently used pages are placed at the
tail of the queue, whereas those that have not been used for longer time are closer the head
of the queue. The page to evict is always popped from the head of the queue.

The policy using two LRU queue works as follows. The procedure of evicting pages tries
to evict a page from the head of the low priority queue and if the queue turns out to be empty,
pages from high priority queue are evicted. Thus, the pages that belong to the high priority
queue are never evicted before the pages from the low priority queue. The purpose of this
mechanism is to „pin” pages belonging to small tables that are frequently accessed. There
are two configuration parameters that govern pinning pages. Firstly, a page is pinned if it
belongs to a table containing the number of tuples under value specified in the configuration.
Secondly, pages that belong to columns occupying more than a specified amount of memory
are never pinned.

4.3. The Predictive Buffer Manager

In the implementation of the Predictive Buffer Manager (PBM) depicted in Figure 4.1 we
generalize the idea of multiple queues. Also, we change the way priorities are assigned to the
cached pages. The idea is to attempt to predict when a certain page that is cached will be
accessed. Provided we have such an estimate for every page it is most reasonable to evict
the one that will be accessed furthest in the future. In particular, in case all future page
accesses are known the optimal solution is to evict the page that has the highest time of next
usage. This algorithm is introduced in [Bel66] and proved to be optimal in [Roy10]. It is
not possible to know all future queries, but it is feasible to base estimates on the current
workload. The knowledge about queries working in the system at certain moment is exploited
in the Predictive Buffer Manager. It is possible to estimate the time and order of future page
references under the assumption that scans process data in-order. Thus, in the Predictive
Buffer Manager the out-of-order delivery used in Cooperative Scans is dropped. It allows the
PBM to be used as replacement for the standard LRU buffer manager in VectorWise without
further modifications, as the data is delivered in the same order to the higher layers of the
system.

In the Predictive Buffer Manager every page that is being loaded into the memory is
assigned a priority that is based on estimated time of the next consumption by one of the
scans working in the system. To enable that, every scan that enters the system calls the
RegisterScan() function passing the table, columns and ranges to register all the pages
that it is going to load. The calculation of a priority for a certain page and putting it on
a appropriate queue is encapsulated in the PagePush() function, whereas the estimation of
next consumption time is done in the PageNextConsumption() function.

The registering of a scan involves assigning a unique identifier to it, adding metadata to
each the of pages that it will scan, as well as possible change of pages’ priority. For every
page we calculate how many tuples the scan will have to consume before requesting that page.
This parameter is stored in the tuples_behind variable for each pair of Scan and page. Note
that this process has to be performed separately for each scanned column, as in DSM [CK85a]
pages do not hold a fixed number of values due to varying type widths and compression.

The PageNextConsumption() function iterates over all scans that registered need for load-
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1: function RegisterScan(table, columns, range_list)
2: id← GetNewScanIdentifier()
3: for all col in columns do
4: tuples_behind← 0
5: for all range in range_list do
6: {get a collection of pages belonging to specified column and range}
7: pages← GetPages(col, range)
8: for all page in pages do
9: {register the scan id and the number of tuples it will have to read before consuming this page}
10: page.consuming_scans← page.consuming_scans ∪ (id, tuples_behind)
11: tuples_behind← tuples_behind+ page.tuple_count
12: {recalculate the priority of the page and push to appropriate queue}
13: PagePush(page)
14: return id
15:
16: function PageNextConsumption(page)
17: nearest_consumption← NULL
18: for all (id, tuples_behind) in page.consuming_scans do
19: scan← GetScanById(id)
20: next_consumption← (tuples_behind− scan.tuples_consumed)/scan.speed
21: if nearest_consumption = NULL or next_consumption < nearest_consumption then
22: nearest_consumption← next_consumption

23: return nearest_consumption

24:
25: procedure PagePush(page)
26: if page.queue 6= NULL then
27: PageRemove(page)
28: nearest_consumption← PageNextConsumption(page)
29: if nearest_consumption = NULL then
30: QueuePush(page, not_needed_queue)
31: else
32: queue_number ← nearest_consumption/TIME_STEP
33: if queue_number ≥ Length(queues) then
34: queue_number ← Length(queues) - 1
35: QueuePush(page, queues[queue_number])
36:
37: procedure RefreshBmQueues
38: tmp← queues[0]
39: for i← 0 to length(queues) - 2 do
40: queues[i]← queues[i+ 1]

41: queues[length(queues) - 1]← NewQueue()
42: for all page in tmp do
43: PagePush(page)
44:
45: procedure EvictPage
46: if not Empty(not_needed_queue) then
47: queue← not_needed_queue
48: else
49: for i← Length(queues)-1) downto 0 do
50: if not Empty(queues[i]) then
51: queue← queues[i]
52: brake
53: page← QueuePop(queue)
54: Evict(page)

Figure 4.1: Implementation of the Predictive Buffer Manager
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Figure 4.2: Relation between the estimated time of next consumption and priority queue in
the Predictive Buffer Manager for the value of TIME_STEP equal to 100 ms

ing it. For each of them the expected time of consumption is calculated. The minimum of
those is assumed to be the final result. To estimate the time a certain scan will access a spec-
ified page three parameters are needed. As discussed, the page has associated the number of
tuples that the scan has to consume before reaching it. The scan periodically reports the num-
ber of tuples it already consumed, as well as its current speed of processing. Those parameters
are available in scan.tuples_consumed and scan.speed variables respectively. To obtain the
estimate of consumption time the number of remaining tuples to consume is divided by the
speed.

The result of PageNextConsumption() is directly used in PagePush() to assign a pri-
ority to the page and push it to the corresponding queue. If a certain page will not be
accessed by any of working scans it is placed on the not_needed_queue. Otherwise the
priorities are assigned as follows. We consider a fixed time interval represented by the
TIME_STEP constant and a fixed number of queues equal to Length(queues). A queue
with index i represents the time interval of [i · TIME_STEP, (i + 1) · TIME_STEP )
and the last queue with the index equal to Length(queues) - 1 represents the interval
[(Length(queues)−1) · TIME_STEP,∞). A page is placed on a queue basing on the esti-
mate of the next consumption. A page that is estimated to be consumed in t seconds from
now falls into a queue corresponding to the time interval that contains that moment. Fig-
ure 4.2 presents how the estimate of next consumption time relates to queue pages are placed
in. Note that the infinity point represents the not_needed_queue that stores pages that will
not be consumed by any of scans working at the moment. All other pages are placed in one
of queue[i] queues for certain i. In particular, pages with next consumption time exceeding
(Length(queues)− 1) · TIME_STEP are put to queues[Length(queues)− 1].

The procedure of evicting a page is similar to the one found in the previous implementa-
tion of the buffer manager in VectorWise. To evict a page we perform a search for a candidate
starting from the queue of the lowest priority, continuing the search with the queues of in-
creasing priority if a page is not found on the previous ones. Thus, the EvictPage() function
in the Predictive Buffer Manager is similar to the policy of the LRU buffer manager with
multiple priorities described in Section 4.2.

The queues need to be refreshed when the time interval of TIME_STEP passes. The
process involves moving the pointers to queues by one place and recalculating priorities of
pages found on the queues[0]. Provided the estimates are exact all the pages on the queues[0]
should already be consumed and pushed to the not_neeed_queue. If it is not the case the
priority of pages from that queue is evaluated again. This procedure is performed by the
RefreshBmQueues() function, which is run periodically every TIME_STEP seconds.
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1: function FreeMemory(num_pages)
2: free_pages← FreePages()
3: while free_pages < num_pages do
4: elem_evict← NULL
5: not_needed← not_needed_chunks ∪ not_needed_pages
6: if not Empty(not_needed) then
7: timestamp← NULL
8: for all elem in not_needed do
9: if timestamp = NULL or elem.timestamp < timestamp then
10: elem_evict← elem
11: timestamp← elem.timestamp

12: else
13: needed← needed_chunks ∪ needed_pages
14: next_consumption← NULL
15: for all elem in needed do
16: if next_consumption = NULL or NextConsumption(elem) > next_consumption then
17: elem_evict← elem
18: next_consumption← NextConsumption(elem)
19: free_pages← free_pages+ Evict(elem)
20:
21: function ChunkNextConsumption(chunk)
22: nearest_consumption← NULL
23: for all cscan in InterestedCScans(chunk) do
24: next_consumption← ChunksNeeded(cscan) /(2 · cscan.speed)
25: if nearest_consumption = NULL or next_consumption < nearest_consumption then
26: nearest_consumption← next_consumption

27: return nearest_consumption

Figure 4.3: Integrated eviction policy for the Cooperative Scans and regular scans

Another situation, where a page is assigned a new priority is its consumption. When
a query that requested the page finished processing of it the PagePush() function is called
again to recalculate the priority. In particular, if there are no other queries requesting that
page, it is moved to the not_neeed_queue.

4.4. Integrating the Predictive Buffer Manager with the Coop-
erative Scans

Section 4.3 discussed the implementation of the Predictive Buffer Manager in the VectorWise
DBMS. The presented solution can be used as stand-alone buffer manager or integrated with
Cooperative Scans. As outlined in Section 4.1.1 and 4.1.2, one possible solution for integrating
regular Scan operators with CScans is to provide a common policy for evicting pages. The
Predictive Buffer Manager provides metadata for determining the time of next consumption
for each cached page. This metadata is used to compare the priority of pages that were loaded
with regular Scans and chunks loaded by the ABM.

The integrated eviction policy is presented in Figure 4.3, where the FreeMemory() function
from Figure 3.4 is reimplemented. It handles both chunks and single pages cached by the
buffer. First, pages or chunks that are not marked as needed by any of running CScan/Scan
operators are considered to be evicted. If there are such pages or chunks, the one to evict is
based on its timestamp parameter. The timestamp signifies the time a page or a chunk was
last consumed. Effectively, the not needed pages and chunks are managed by a LRU policy.

In case all cached pages and chunks are needed by one of running queries, the procedure
has to evict one of them. The procedure chooses the one with highest estimate of next con-
sumption time. The NextConsumption() function handles both pages and chunks by calling
PageNextConsumption() (presented in Figure 4.1) or ChunkNextConsumption() (presented
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in Figure 4.3) appropriately. The estimation when a certain chunk will be consumed is com-
plicated due to the dynamic nature of scheduling in Cooperative Scans. Thus, we provide
a rough estimate that is based on the length and the speed of a CScan. Suppose a CScan
requesting 10 chunks is processing data at pace of 1 chunk a second. We do not know the
order in which chunks will be consumed, but on average a chunk will be consumed after 5
seconds. In the ChunkNextConsumption() we find the CScan operator that is expected to
consume a certain chunk first. The expected effect of this approach is eviction of chunks that
are needed only by long and/or slow CScans, so that they will not be consumed soon.

Alternatively, it would be possible to use the UseRelevance() score to determine in what
order already-cached chunks may be consumed. After determining the order, the time of
consumption could be calculated using the current speed of processing of a certain CSccan.

4.5. Handling of PDT-resident updates

The VectorWise DBMS uses special in-memory differential structures called Positional Delta
Trees (PDTs) [HZN+10] to handle modifications of a database. PDTs are introduced and
described in Section 2.8. The Scan operator performs a PDT merging operation to produce
output containing all applied changes. For correctness of query results the CScan operator
needs to support PDT merging as well. The main difference between the Scan and CScan
operator is the fact that the Scan operator delivers data in-order, whereas the CScan operator
delivers data out-of-order in chunk-at-time manner. The used method influences the PDT
merging operation. Below, we discuss implementation details of the support for updates in
the CScan operator.

The updates stored in PDTs are indexed by position where they have to be applied.
Consequently, in the VectorWise DBMS two types of a tuple identifier are distinguished. The
Stable ID (SID) is a 0-based dense sequence identifying tuples stored in the stable storage i.e.
the state of a table without updates applied. The Row ID (RID) is a 0-based dense sequence
enumerating the stream that is visible to the query processing layer i.e. after updates are
applied to data fetched from the stable storage. The RID is generated during PDT merging
process. The SID and RID sequences are different unless all PDTs are empty i.e. PDT
merging is an identity operation.

It is viable to provide a mechanism to translate between SID and RID. Let us focus on
RID to SID translation first. For tuples belonging to the stable storage (stable tuples) and not
marked as deleted in PDTs, the RID that is assigned to that tuple can be trivially translated
to its SID, as every stable tuple has it unique SID. Also, for tuples that are not part of the
stable storage i.e. they are stored in PDT structures it is possible to translate RID to SID.
Those tuples are assigned SID of the first stable tuple that follows it.

As a consequence, in case new tuples are inserted and stored in PDTs only, there may be
multiple tuples that are assigned the same value of SID. Thus, it is not possible to define SID
to RID conversion as an inverse of RID to SID conversion, because the RID to SID conversion
is not an injective function. However, it is possible to introduce two possible variants of SID
to RID conversion. We can either translate a certain SID into lowest RID that maps to that
SID, or the highest one.

In VectorWise PDT structures provide an interface to perform all types of above-mentioned
conversions: RIDtoSID() for the RID to SID conversion, SIDtoRIDlow() for the „low” variant
of SID to RID conversion and SIDtoRIDhigh() for the „high” variant of SID to RID conversion.

Figure 4.4 depicts an example of conversion between SID and RID. Below, we can see stable
tuples stored on the hard disk and their respective SIDs. After tuples are loaded and merged

37



P D T

0 1 2 3 4 5 76 8 9 10 11

0 1 2 3 4 5 76SID:

A B C D E F G HVAL:

RID:
A B C E Hi j k l m n oVAL:

INSERT i BEFORE A
INSERT j BEFORE A
INSERT k BEFORE E
DELETE D
INSERT l BEFORE E
INSERT m BEFORE E
DELETE G
INSERT n BEFORE H
DELETE F
INSERT o BEFORE H

inserted tuple

deleted tuple

SIDtoRIDlow()

SIDtoRIDhigh()

RIDtoSID()

Figure 4.4: Conversion between SID and RID

1: function RegisterCScanRanges(table, rid_ranges)
2: sid_ranges← ∅
3: for all rid_range in ranges do
4: sid_range← RIDtoSID(cscan.pdt, table, rid_range)
5: sid_ranges← sid_ranges ∪ sid_range

6:
7: function CScanNext
8: if Finished(current_range) then
9: if not empty(cscan.ranges_in_current_chunk) then
10: cscan.current_range← pop(cscan.ranges_in_current_chunk)
11: SetRidRange(cscan, cscan.current_range)
12: else
13: chunk ← SelectChunk(cscan)
14: chunk_rid_lo← SIDtoRIDlow(cscan.pdt, cscan.table, chunk.sid_lo)
15: chunk_rid_hi← SIDtoRIDhigh(cscan.pdt, cscan.table, chunk.sid_hi)
16: chunk_rid_range← [chunk_rid_lo, chunk_rid_hi]
17: overlapping_ranges← FindOverlappingRanges(cscan.ranges, chunk_rid_range)
18: cscan.ranges_in_current_chunk ← ∅
19: for all range in overlapping_ranges do
20: cscan.ranges← cscan.ranges\range
21: (overlap, rest)← range_trim(range, chunk_rid_range)
22: if not empty(overlap) then
23: cscan.ranges_in_current_chunk ← cscan.ranges_in_current_chunk ∪ overlap
24: if not empty(rest) then
25: cscan.ranges← cscan.ranges ∪ rest

26: cscan.current_range← pop(cscan.ranges_in_current_chunk)
27: SetRidRange(cscan, cscan.current_range)

28:
... . Further processing

Figure 4.5: Implementation of support for updates in the ABM and CScan operator
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with changes stored in PDTs, we obtain a new stream of tuples that is enumerated with RID.
Deleted tuples are marked with red, whereas the inserted ones with green. Arrows indicate
the translation between SID and RID. The blue arrows indicate results of the SIDtoRIDlow()
function, whereas the red ones correspond to the SIDtoRIDhigh(). Note that some of the
arrows are only one-way. They indicate tuples, for which it is not possible to reverse the
RID to SID conversion, because they are in the middle of a sequence of tuples with the same
value of SID. The deleted tuples are stored on the hard disk and loaded into the memory but
omitted in the PDT merging process. Thus, there is no RID that translates into SID of those
tuples. However, it is still possible to translate their SIDs to RIDs. The assigned RID is the
lowest RID that translates into a SID higher than the one of the deleted tuple.

The Active Buffer Manager has been designed to work purely on the storage level. It is
not aware of existence of in-memory updates and PDTs in particular. Thus, the ABM has
to be notified about data ranges expressed in SID i.e. RID ranges requested by the query
processing layer have to be translated into SID ranges. This process is performed in the
RegisterCScanRanges() function presented in Figure 4.5. The CScan operator is passed
a list of RID ranges that it has to produce to its parent operator. Those RID ranges are
converted into SID ranges that the ABM operates on. From now on, the ABM knows which
stable tuples have to be loaded.

Once the ABM loads a chunk and passes it to the CScan operator, an inverse process
has to be performed. As the RID to SID translation is not reversible the algorithm is more
complicated. Given a certain chunk, which is effectively a range of stable tuples that are
ready in the memory, we can determine what RID range can be generated out of them. The
process is implemented in the CScanNext() function as presented in Figure 4.5.

The CScanNext() function implements the next() method of the CScan operator (see
Section 2.3). It is called by the parent operator to request more tuples to be fetched. As
discussed in Section 2.10.1 the Scan operator (and also CScan) scans a list of specified ranges.
With every Scan we can associate a range that it is processing at the moment. The next()
method either outputs a vector of tuples in the current range or when it is finished, advances to
the next one. The CScanNext() function first checks whether the current range, that is stored
in the cscan.current_range variable, has been completely passed to the parent operator. If
so, it tries to get a new range from the cscan.ranges_in_current_chunk which contains all
ranges that can be generated with the current chunk that is provided by the ABM.

If cscan.ranges_in_current_chunk is empty a new chunk has to be requested. To do it,
CScanNext() calls the SelectChunk() function described in Section 3.4. Once a chunk is ready
to use, the CScan operator has to determine what RID ranges can be generated with stable
data of that chunk. First, the maximal RID range that corresponds to the SID range of current
chunk is determined. It is represented by chunk_rid_range. Next, ranges belonging to the
cscan.ranges collection, that overlap with the chunk_rid_range are found to generate all
ranges that can be processed fully or partially by using the current chunk. The cscan.ranges
collection contains all remaining ranges that still have to be generated by the CScan operator.
The aim is to create new contents of the cscan.ranges_in_current_chunk collection and
put ranges that will have to generated with other chunks in cscan.ranges. To find out
the overlapping and non-overlapping part the RangeTrim() function is used. It accepts two
ranges and returns two results: the overlapping part and the second argument subtracted
from the first one. The result is stored as a pair (overlap, rest), where overlap is the part of
a range that can be processed with the current chunk, whereas rest belongs to another chunk.
Both overlap and rest, if not empty, are inserted into cscan.ranges_in_current_chunk and
cscan.ranges collections respectively.

When a range to process is finally determined, the SetRidRange() function is called. It
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Figure 4.6: Transactions appending to a table

is responsible for setting the state of PDTs and the CScan operator to appropriately to start
the PDT merging process in the specified RID range. The PDT merging does not need to be
modified in comparison to the Scan operator.

4.6. Handling of concurrent appends

The VectorWise DBMS implements the snapshot isolation [BBG+95] approach to handle
concurrent transactions as described in Section 2.7. Every transaction that runs in the system
works on a local snapshot of the database. The implementation of snapshot isolation in
VectorWise is based on the Positional Delta Trees (PDTs) differential structures [HZN+10].
As explained in Section 2.8, PDTs form a hierarchy with global and large PDTs at the bottom
and small ones at the top. The top-most PDTs are local to a transaction i.e. contain only
updates visible to its transaction. The tables stored on disk remain unchanged, since all
modifications are stored in memory-resident PDTs. Therefore, in most cases the Active Buffer
Manager does not need to handle different snapshots that transactions work on separately, as
it works on the storage level and is not aware of updates stored in PDTs. To provide support
for updates stored in PDTs the CScan operator has to perform the PDT merging process as
described in Section 4.5.

In VectorWise a snapshot of each table is a memory-resident set of arrays that contain
references to pages (page identifiers) that belong to each column of the table (one array per
column). Such snapshot is not changed when modifications are stored in PDTs. However, as
described in Section 2.10.10, the Append operator adds new tuples to the table by appending
new pages with data to the snapshot of the transaction that executed the Append.

Figure 4.6 presents simple transactions that perform an Append and scan the table af-
terwards. Transaction T2 differs from the other by using the COMMIT statement to make the
changes it made persistent. Suppose T3 and T4 start after T2 ends and T1 starts before T2’s
end. An example course of execution of those transactions and snapshots that they are work-
ing on is presented in Figure 4.7. For simplicity we assume that the table consists of a single
column. Snapshot 1 represents the initial state of the table. The table consists of four pages
identified with numbers from 0 to 3. It is the master snapshot, that all transactions start with,
thus it is marked with red. The T1 and T2 transactions begin with appending new data to the
table. As a result, two different transaction-local (marked with blue) snapshots are created:
Snapshot 2 and Snapshot 3. They share references to the first four pages and contain different
last two pages that were created separately for each transaction by the Append operator. The
T2 commits applied changes and T1 does not. Consequently, the snapshot that T2 worked on
becomes the master snapshot (marked with red). From now on, all new transactions will use
Snapshot 3. Thus, transactions T3 and T4 append data to the new snapshot. Note, that the
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Figure 4.7: An example of how snapshot isolation works in VectorWise

T1 transaction may still work in the system scanning pages belonging to Snapshot 1.
The crucial observation is the fact that all transactions running in the system work on

snapshots that have a common prefix. In the above-mentioned example the common prefix
consists of pages {0, 1, 2, 3} before the transaction T2 commits. When T1, T3 and T4 work
at the same time the common prefix is {0, 1, 2, 3} as well, whereas when only T3 and T4 are
executed the common prefix is the set {0, 1, 2, 3, 6, 7}.

In the presented scenario the Active Buffer manager needs to detect transactions working
on different snapshots. The fact that snapshots have common prefixes can be exploited, so
that queries can benefit from sharing opportunities regardless of differences in snapshots. To
do that, we introduce in the ABM a notion of shared chunks and local chunks. Shared chunks
consist of pages that belong to two or more snapshots that are used by transactions at certain
moment. Pages of local chunks belong to only one snapshot. It should be noted that chunks
encompass multiple columns. Thus, a chunk can be regarded as shared only if all its pages
in all columns belong to snapshots of two transactions. In particular, even after appending
a single value to a table, its last chunk becomes local.

Figure 4.7 can be also interpreted on chunk level instead of page level. This is to some
extend a simplification, because as stated before Appends make the last chunk local. However,
this does not change the logic that handles concurrent Appends and the overall idea. Let us
focus on such a situation from perspective of the ABM. Shared chunks can be detected by
finding the longest prefix that belongs to at least two snapshots. Suppose, transactions T1,
T3 and T4 are working the system. In this case the longest shared prefix is the set {0, 1, 2, 3,
6, 7}. Consequently, we exploit that knowledge and load those chunks earlier as it increases
sharing opportunities.

Note, that the longest shared prefix can change as queries enter and leave the system.
For example, at the time T1 and T2 are the only working transactions the shared prefix is
comprised of chunks {0, 1, 2, 3}. It is also the case for T1, T2 and T3 being executed. However,
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Figure 4.8: Behaviour of a checkpoint. PDT changes are applied to create a new snapshot.

when T2, T3 and T4 work in the system the longest prefix that can be found is the set {0,
1, 2, 3, 6, 7}. An important observation is the fact that the longest shared prefix is in fact
the only shared prefix that can be found. Indeed, suppose that at certain moment there are
two transactions whose snapshots contain pages {0, 1, 2, 3, 4, 5} (Snapshot 2 in Figure 4.7)
and two transactions working on pages {0, 1, 2, 3, 6, 7} (Snapshot 3 in Figure 4.7). Having
two transactions working on identical snapshots means that this snapshot must have been
the master snapshot at the moment these transactions started, or one transaction already
committed (making its snapshot the master snapshot) before the other started. Thus, both
Snapshot 2 and Snaphost 3 must have been master snapshots at some moment. This is
impossible, because they have a non-empty intersection, but none of them is a subset of
another i.e. none of them could have been created by appending to another. In VectorWise
only one of concurrent transactions that applied modifications to its snapshot can commit its
changes and make its snapshot the master snapshot. The other transactions are detected to
be conflicting and consequently aborted. Thus, there may be concurrent transactions working
either on Snapshot 2 or Snaphost 3, but not on both.

Every time a new CScan scanning a certain table enters the system the ABM finds the
longest prefix that is shared by at least two CScan operators and marks chunks accordingly.
Chunks belonging to the found prefix are marked as shared, whereas the other ones are marked
as local. The same procedure is performed when a CScan leaves the system as it may influence
the longest shared prefix as well. Keeping track of shared and local chunks allows to maximize
sharing opportunities in case transactions work on similar, but not equal versions of the same
table. Moreover, it allows proper adjusting of matadata used for scheduling (see Section 3.4).
In particular, shared chunks have higher changes to be loaded and kept in the memory longer,
whereas the local chunks need to be loaded and used once, possibly in the final phase of
a certain CScan.

4.7. Handling of checkpoints

Figure 4.8 presents working of a checkpoint in the VectorWise DBMS. As discussed in Sec-
tion 2.9, a checkpoint involves creating a new version of the same table that contains all
changes stored in Positional Delta Trees. After checkpoint is finished, the checkpointed table
is stored in newly-allocated pages and the PDTs can be flushed. As depicted in Figure 4.8
a checkpoint results in creating a new master snapshot (marked as red) that consists of new
pages. After the checkpoint is finished and the new version of the master snapshot created.
All starting transactions will use Snapshot 2. At the same time, there may be still transac-
tions in the system working on the old Snapshot 1. Once all transaction using Snapshot 1
are finished, the Snapshot 1 can be destroyed and pages belonging to it marked as available
to be reused.
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The ABM needs to detect that a certain table has been checkpointed, as transactions
using Snapshot 1 and Snapshot 2 work on non-overlapping sets of pages, thus can not share
pages loaded in the buffer pool1. Every time a new CScan is registered, the ABM verifies the
set of pages belonging to the snapshot of transaction that CScan is part of. There are four
possible cases to handle:

(i) It is the first CScan that accesses that particular table – the ABM has to create and
initialize metadata for chunks and slices i.e. register new chunks and slices.

(ii) There are other CScans working on the same table and their snapshot is identical – the
ABM does not need to change its metatada related to tables.

(iii) There are other CScans working on the same table and a common prefix with other
CScans’ snapshots can be found – the ABM has to find shared and local chunks as
discussed in Section 4.6.

(iv) There are other CScans working on the same table and the snapshot of the new CScan
contains different pages that the other snapshot – the ABM registers new version of the
same table along with its chunks (as in (i)).

The metadata in the ABM needs to reflect changes in the database after checkpoint was
finished. Thus, every time a CScan operator finishes and unregisters itself, the ABM verifies
whether there are other CScans working on a snapshot that is identical or has a common
prefix with the snapshot of the leaving CScan. In case there are no such CScans the metadata
related to chunks belonging to that version of the table is destroyed.

4.8. Cooperative Scans and parallelism

The VectorWise DBMS employs intra-query parallelism that is implemented by means of a set
of Xchange (Xchg) operators [Gra90]. A query plan of a parallelized query is transformed
to contain multiple copies of certain subtrees that are connected with special Xchange op-
erators. Those subtrees are executed in parallel by multiple threads. An example of such
a transformation is depicted in Figure 4.9.

The subtree under the Aggr operator has been duplicated and connected with the
XchgUnion operator that merges two streams into one. On top, there is another Aggr oper-
ator added. In particular, the Scan operator has been split into two separate operators that
scan parts of the original range. In the VectorWise DBMS ranges are split equally between
working threads and assigned to each of Scans as presented in Equation 4.1.

range [a..b) =


range [a .. a + (b−a)∗1

n ) for the first Scan
. . . . . .

range [a+ (b−a)∗(n−1)
n ..a + (b−a)∗n

n ) for the n-th Scan
(4.1)

If Cooperative Scans are enabled parallelization works in the same way. The only difference
is that Scan operators are replaced with CScan operators. It has several consequences for the
Cooperative Scans framework. First of all, there are multiple CScan registrations in the
Active Buffer Manager instead of one. In the current implementation ABM is not aware that

1In principle, there are still opportunities at the logical level, but we decided to ignore them in out solution,
as it is a very rare case.
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(b) Parallel query plan

Figure 4.9: An example of a transformation of a sequential query plan into a parallel query
plan

those CScan operators belong to the same parallel query plan. One implication is a possible
difference in scheduling of loading data. In most cases, CScans belonging to the same parallel
query plan request the same number of chunks and process them at similar pace. However, if
one or more threads turns out to be much faster than the others, the ABM will start treating
one of CScans as shorter, thus prioritize it. Unfortunately, it can have negative impact on
execution time of the whole query. If the ABM choses to prioritize a subset of CScans,
the others may be waiting for data longer. As a result, the system fails to exploit speed-
up opportunities of parallel execution. Secondly, the usage of CScans in parallelized query
plans may lead to increased data skew. Regardless of the actual range to be scanned, CScan
operators process data in chunk-at-time manner and have to wait until full chunk is loaded
(the chunk range is trimmed as described in Section 4.5). A CScan, whose range encompasses
few chunks has to load more data than really needed. This problem becomes more relevant
after a single CScan is divided into multiple CScans scanning smaller ranges.

Another problem is the static division of ranges. In most cases, the threads processing
data in a parallelized plan do not need to be bound to specific data ranges. They accept any
tuples, as long as they fall into the original range of the sequential plan. With this approach
the ability of CScans to accept data out-of-order is not fully exploited.

Suppose the parallelization generates a plan with two CScan operators scanning chunks
from 0 to 4 and from 5 to 9 respectively. Let us assume that the buffer pool contains a set of the
following chunks: {3,5,6,7,9}. As we can see, there is one chunk available for the first CScan
and four available for the second one. Thus, in the current implementation the second CScan
will only have to wait for loading chunk 8, whereas the first one needs to load. Consequently,
the first CScan has to wait for much more I/O to be performed delaying the execution of
the whole query. A more optimal approach would be to distribute the already-loaded chunks
evenly between participating CScans and also distribute evenly the newly loaded chunks.
This problems leads to idea of the Cooperative Xchange Scan that is discussed further in
Section 8.2.2.

4.9. Introducing Cooperative Scans in query plans

Every query that enters the kernel of the VectorWise DBMS is expressed in the VectorWise
algebra (see Section 2.10). The query plan is expressed as a tree of operators. In all cases
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1: function RewriteCScan(root, node)
2: needs_order ← GetProperty(node, PROP_ORDER)
3: if node.type = Scan and needs_order = TRUE and StreamSize(node) > THRESHOLD then
4: NodeReplace(node, CScan)
5: else if node.type = MergeJoin or node.type = OrdAggr then
6: PropagateOrderProperty(node, TRUE)
7: else if node.type ∈ OrderDestroyingOperators then
8: PropagateOrderProperty(node, FALSE)
9: else if node.type = HashJoin then
10: left_child_needs_order ← GetProperty(node.left_child, PROP_ORDER)
11: SetProperty(node.left_child, PROP_ORDER, (needs_order or left_child_needs_order))
12: else
13: PropagateOrderProperty(node, needs_order)
14: for all child in node.children do
15: RewriteCScan(root, child)
16:
17: function PropagateOrderProperty(node, value)
18: for all child in node.children do
19: needs_order ← GetProperty(child, PROP_ORDER)
20: SetProperty(child, PROP_ORDER, (needs_order or value))

Figure 4.10: Rewriter rules introducing CScan operators in query plans

the leafs of such a tree are the Scan operators that retrieve data from the storage and pass it
to parent operators for processing. Query plans can be transformed by the Rewriter module
(see Section 2.11) that can modify them in various ways. In the case of Cooperative Scans,
queries that will use the framework also have to be transformed with the Rewriter. In fact,
it only has to replace Scan operators with CScan operator that register in the Active Buffer
Manager. Thus, the shape of the tree remains unchanged.
To introduce a CScan operator in the place of Scan operator two conditions have to be met:

(i) the query plan should return the same result if data is delivered out-of-order

(ii) the size of scanned relation needs to be big enough, so that it can be divided into several
chunks and registered in the Active Buffer Manager

The procedure of replacing Scan operator with CScan equivalents is implemented by
adding an additional procedure to the Rewriter module. The RewriteCScan() function pre-
sented in Figure 4.10 performs both appropriate annotating of the nodes and rewriting the
query plans to use CScans where applicable. The PROP_ORDER property determines
whether a certain Scan can be transformed into a CScan. It is set to FALSE when a certain
node can deliver data out-of-order to its parent operator. We assume that at the moment
the RewriteCScan() function is executed the value of this property equals FALSE for all
nodes. The underlying idea is that we assume the whole query plan to accept data delivered
out-of-order, and then find nodes, for which this assumption can not be held.

The RewriteCScan() function traverses the tree in top-down fashion. At each node
it checks what operator it represents. If a Scan operator has been encountered, it veri-
fies the value of the PROP_ORDER property and checks whether the size of the table
exceeds a predefined threshold. If both conditions are met a Scan can be replaced with
a CScan. In case an operator that requires the arriving stream to be ordered or clustered
(MergeJoin or OrderedAggregation) is encountered, all its child operators are notified that
the stream they deliver needs to be ordered by setting their PROP_ORDER property to
TRUE. Similarly, when an operator that changes the order of the stream is found, the
PROP_ORDER is set to FALSE. The operators that change the order of incoming stream
include Sort, TopN and Aggregation. Those operators accept unordered data streams. The
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PropagateOrderProperty() function is a helper function that performs the propagation to
child operators. It sets the value of PROP_ORDER to the Boolean sum of the current
value and the propagated value. The reason for such implementation is the fact that certain
nodes may have more that one parent nodes (see Section 2.10.9). Thus, it has to detect cases
where one of the parent operators needs ordered stream and the other does not. Another
case that has to be treated separately is the HashJoin operator. Here, we only propagate the
PROP_ORDER property to its left child omitting the right child. The stream arriving on
the right side of a HashJoin does not need to be ordered (see Section 2.10.5), thus we do not
propagate the eventual requirement of ordering. Finally, if none of above-mentioned cases is
identified, we propagate the value of PROP_ORDER to all node’s children.

4.10. Summary

This chapter provided further implementation details of Cooperative Scans in VectorWise
and addressed problems stated in Section 2.12. The work described in this chapter provides
a fully-functional implementation of Cooperative Scans that can be incorporated into Vector-
Wise. In particular to solve the problem of support for order-aware operators, we propose to
introduce an ability to use traditional scan processing in query plans where it is not possi-
ble to use Cooperative Scans. To do that, we integrate Cooperative Scans with traditional
scan processing. The development of integration of these to approaches led to creation of
the Predictive Buffer Manager (PBM) that can be used as a standalone buffer manager in
VectorWise.

We emphasize that the above-mentioned approach may miss sharing opportunities, as
traditional scan processing processes data in-order and is not able to share data loaded by
other scans in different positions of a table. We address this issue in Chapter 5 by developing
an extension of Cooperative Scans that enables out-of-order delivery for all operators found
in the VectorWise algebra (see Section 2.10).
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Chapter 5

Cooperative Merge Join

This chapter introduces a novel algorithm, the Cooperative Merge Join (CMJ) that is aimed at
extending Cooperative Scans with support for order-aware operators. Furthermore, we show
how introduction of the Cooperative Merge Join influences the implementation of Cooperative
Scans and revisit some of aspects already discussed in Chapter 3 and 4.

5.1. Motivation

The Cooperative Scans framework introduces the notion of out-of-order delivery. The Vec-
torWise DBMS system uses a pipelined query execution model, where a query is represented
as a tree of operators (see Section 2.3). Those operators encapsulate algorithms that are
performed on a stream of data in a vector-at-time fashion. Some of those operators require
the incoming data stream to be ordered, thus can not work properly with the Cooperative
Scans, as the CScan operators deliver data out-of-order. A description of the most important
operators in VectorWise can be found in Section 2.10. The two main order-aware operators in
VectorWise are OrderedAggregation and MergeJoin. In this chapter we propose the Cooper-
ative Merge Join, an extension to Cooperative Scans providing support for both order-aware
and unaware operators. By doing so we allow all operators to benefit from exploiting of
sharing opportunities that is provided by the Cooperative Scans framework.

5.2. Partitioning of sorted and indexed tables

[ZHNB07] proposes a modification of the OrderedAggregation operator that accepts data
arriving in chunks that are internally sorted, but not globally. The proposed modification is
aimed at exploiting the fact of internal sorting of chunks. The aggregation is performed in the
same way for the internal key values of every chunk. The first and the last key values in every
chunk are stored till the final result can be calculated after arrival of neighboring chunks.

We chose to follow a simpler approach that does not require a modification of the
OrderedAggregation operator. To avoid saving boundary values, we propose to perform par-
titioning of a table into chunks, such that two consecutive chunks do not contain tuples with
the same key value.

The same approach can be extended to support the MergeJoin operator (see Section 2.10.6).
The partitioning has to be aligned to key boundaries on both sides. Moreover, the boundaries
of chunks with the same number have to be aligned to the same key boundary on both sides.
An example of such partitioning is depicted in Figure 5.1. The Child table is sorted on the
FK column. FK is a foreign key (see Section 2.1.1) that references the ID column of the Parent
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Figure 5.1: Example partitioning of two clustered tables

table. In case two tables are connected with a foreign key, VectorWise can employ join indices
(see Section 2.6). Figure 5.1 presents a scenario, where a join index is created i.e the Child
table is clustered on the ID column of the Parent table. Both tables are divided into two
chunks. On the child side chunk boundaries are aligned to key boundaries of the FK column,
whereas on the parent side it is aligned to the same key boundaries of the ID column.

The ABM needs to create such partitioning once the first query operating on a certain
pair of clustered tables enters the system. The boundaries of chunks are based on entries in
the Join Index Summary structures that defines partitioning of both clustered relations that
is aligned as described above. The ABM chooses which boundaries defined in the JIS to use
as boundaries of chunks based on the size of chunk that is specified in the configuration. It
is not possible to obtain chunks of the same size that matches the target size. The accuracy
of division depends on the number of entries in the JIS. Consequently, the granularity of
partitioning in the JIS needs to be equal or finer than the partitioning into chunks.

5.3. Order-aware operators and CScans in query plans

In the VectorWise DBMS the OrderedAggregation (see Section 2.10.4) operator accepts
a stream that is clustered on the aggregation key. Such stream can be regarded as a se-
quence of distinct key values, where each value may be repeated several times. The exact
order of key values is not important from the perspective of the OrderedAggregation opera-
tor. Thus, the values can be reordered, as long as all repetitions of the same value are never
separated by a different value. As described in Section 5.2, such a stream is divided into
chunks, such that there are no two consecutive chunks containing the same key value. Re-
ordering of chunks preserves the clustering property. Consequently, query plans that use the
OrderedAggregation do not need to be changed when a regular Scan is replaced with CScan,
as long as chunk boundaries are aligned appropriately.

The MergeJoin operator in VectorWise assumes both input streams to be globally sorted
on the key attribute. Thus, data arriving out-of-order in chunk-at-time manner breaks that
property. We achieve proper functioning of the MergeJoin operator with Cooperative Scans
by using sandwich operators described in Section 2.10.11. MergeJoin is sandwiched between
PartitionRestart and two instances of PartitionSplit. Figure 5.2 (a) depict the original QET
with a merge-join of two relations, whereas Figure 5.2 (b) show how the MergeJoin operator
is sandwiched. The scheme using a query plan with a sandwiched MergeJoin fed with data
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MergeJoin{a},{c}

ScanTableA,{a,b} Selectd<45

ScanTableB,{c,d}

(a) Original merge-join query plan

PartitionRestart

MergeJoin{a},{c}

PartitionSplit{GID}

CScanTableA,{a,b,GID}

PartitionSplit{GID}

Selectd<45

CScanTableB,{c,d,GID}

(b) Query plan using Cooperative Merge Join

Figure 5.2: A simple query plan using merge-join and its transformation to a query plan using
the Cooperative Merge Join

by CScan operators will be called the Cooperative Merge Join (CMJ).
PartitionSplit operators are responsible for detecting partition (chunk) boundaries in the

incoming data stream. To do that, an additional virtual GID column is added by the CScan
operators to both data streams. The GID column signifies the chunk number that is currently
being outputted by the CScan operator. In particular, the GID of the first chunk always
equals 0.

Chunks arriving at the MergeJoin operator have to be synchronized i.e. should contain
data with the same range of key values. The synchronization is done in the Active Buffer
Manager, which is aware of pairs of CScan operators that take part in the Cooperative Merge
Join. The ABM keeps track of a pair of chunks that are being processed by both sides. When
a new chunk is requested by one of CScan operators, the ABM first checks, whether the other
CScan participating in the CMJ already received its chunk. If so, the requesting CScan has to
synchronize with the one that already has a chunk assigned. The matching chunk is found by
the ABM and returned (and possibly loaded in case it was not available in the memory). In
the other case, if none of CScans are assigned a chunk to output, the ABM has flexibility to
make a choice which chunk to assign. This is done using a modified UseRelevance() function
described in Section 5.4.

The PartitionRestart operator calls the restart() method of MergeJoin when a new pair
of chunks is to be delivered. Restarting of the MergeJoin operator involves reinitializing its
data structures, so that it can accept data as it is done in the procedure constructing the
operator. It is effectively the same as adding GID as major key to the merge-join, but it is
faster to use sandwich operators, because multi-key merge-join carries an overhead.

5.4. Relevance policy for the Cooperative Merge Join

The implementation of the Cooperative Merge Join requires modification to the Relevance
functions governing scheduling of queries, loading data and evicting data (see Section 3.4).

The Cooperative Merge Join involves two CScan operators reading two tables synchronously.
To implement scheduling for Cooperative Merge Join, the Relevance functions discussed in
Section 3.4 need to be redefined. In the following discussion we treat Cooperative Merge
Join as an object cmj that contains two attributes cmj.child for a CScan scanning the child
table, and cmj.parent for a CScan scanning the parent table. In fact, Cooperative Merge
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1: function CMJRelevance(cmj)
2: if not CMJStarved(cmj) then return −∞

return - ChunksNeeded(cmj) + WaitingTime(cmj) / RunnningCScans()
3:
4: function CMJStarved(cmj)
5: return NumberOfAvailableChunks(cmj) < 2

6:
7: function UseRelevance(chunk, cmj)
8: cols← CScanColumns(cmj.child) ∪ CScanColumns(cmj.parent)
9: U ← ‖InterestedOverlappingCScans(chunk, cols)‖
10: Pu ← NumberCachedPages(chunk, cols)
11: return Pu/U

12:
13: function LoadRelevance(chunk, cmj)
14: cscan_cols← CScanColumns(cmj.child) ∪ CScanColumns(cmj.parent)
15: cscans← OverlappingStarvedCScans(chunk, cscan_cols)
16: cols←ColumnsUsedInCScans(cscans)
17: L← ‖cscans‖
18: Pl ← ‖ColumnPagesToLoad(chunk, cols)‖
19: return L/Pl

Figure 5.3: Pseudo-code of the Relevance functions in the Cooperative Merge Join

Join is registered in the ABM as a pair of CScan operators that have to deliver chunks
synchronously. Thus, many helper functions used for scheduling remain unchanged including
OverlappingStarvedCScans(), InterestedOverlappingCScans(), ColumnsUsedInCScans()
and RunnningCScans(). CScan operators that are part of a CMJ are taken into account by
these functions in the same way single CScans are treated.

The implementation of ABM presented in Figure 3.4 needs to be adapted to sup-
port the Cooperative Merge Join. The main loop works in the same manner. The
ChooseCScanToProcess() needs to iterate over both CScans and CMJs to find the most
relevant one. Once a CScan or a CMJ to service is found the ChooseChunkToLoad() function
is called to find a chunk to load. The chosen chunk and CScan or CMJ is passed to the
LoadChunk() function which perform the actual loading of data into memory. In case a CMJ
was chosen, matching chunks of both scanned tables are loaded. Evicting data and freeing
memory remains unchanged.

Also, the SelectChunk() function requires a small adaptation. Since a CMJ is a pair
of CScans that have to synchronize, the SelectChunk() function has to detect whether the
other CScan participating in a CMJ has already selected a chunk. If one of CScans already
called SelectChunk() and was assigned a new chunk to process, the other CScan synchronizes
by choosing the matching chunk. Otherwise, if it is the first call to SelectChunk() after full
processing of a pair of chunks, a selection based on the UseRelevance() function is performed.

The most basic notion used in scheduling of CScans is the number of available
chunks and the number of needed chunks. They are provided by ChunksNeeded()
and NumberOfAvailableChunks() functions, respectively. The same parameters can be de-
fined for CMJs. We consider a chunk to be available if it is available for both child and parent
side. Similarly, a chunk is considered needed if both sides request it.

Figure 5.3 presents Relevance functions for the Cooperative Merge Join. The
CMJRelevance() follows the same principles as the CscanRelevance() function. The only
difference is a call to CMJStarved() instead of CScanStarved(). The CMJStarved() function
checks how many matching chunks are available on both sides and returns TRUE if and only
if the number is less than two.

The UseRelevance() function gathers the number of CScans that are interested in columns
belonging to chunk on the child or the parent side. The less interested CScans there are, the
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1: function AnnotateCMJ(node)
2: if node.type = MergeJoin then
3: (stream_size,merge_join_found)← FindOrderedStream(node, FALSE)
4: SetProperty(node,ORDERED_STREAM_SIZE, stream_size)
5: if merge_join_found then
6: SetProperty(node,OV ERLAPPING_MJOIN, TRUE)
7: for all child in node.children do
8: AnnotateCMJ(child)
9:
10: function FindOrderedStream(node,merge_join_found)
11: if node.type ∈ OrderDestroyingOperators then
12: return (0,merge_join_found)
13: else if node.type = Scan then
14: return (Scan.num_tuples,merge_join_found)
15: else if node.type = MergeJoin then
16: SetProperty(node,OV ERLAPPING_MJOIN, TRUE)
17: merge_join_found← TRUE

18: return FindOrderedStream(node.left_child,merge_join_found)

Figure 5.4: Rewriter functions used to introduce the Cooperative Merge Join in query plans

higher value of UseRelevance(). Similarly, LoadRelevance() checks the number of interested
CScans on both sides and tries to find a chunk with highest ratio of interested CScans and
cost of loading.

5.5. Introducing Cooperative Merge Join in query plans

Similarly to single-table Cooperative Scans, the Cooperative Merge Join is introduced
in the query plan by means of appropriate functions in the Rewriter module (see Sec-
tion 2.11 and 4.9). In Figure 5.4 we present the AnnotateCMJ() function, that an-
notates nodes in the query plan with two properties: ORDERED_STREAM_SIZE
and OV ERLAPPING_MJOIN . The ORDERED_STREAM_SIZE indicates the
size of the ordered stream arriving at certain node. If the stream is not ordered,
ORDERED_STREAM_SIZE equals 0. The OV ERLAPPING_MJOIN is a boolean
property that is set to TRUE whenever there are two or more overlapping MergeJoin op-
erators i.e. the output of one MergeJoin is passed to another MergeJoin as input without
changing ordering of the stream. Such scenario is not supported by the ABM, as it only han-
dles 2-way Cooperative Merge Join. The default values of ORDERED_STREAM_SIZE
and OV ERLAPPING_MJOIN properties are 0 and FALSE respectively.

The AnnotateCMJ() function traverses the tree in top-down fashion and detects all
MergeJoin nodes. For each of them, a helper function FindOrderedStream() is exe-
cuted. Its purpose is to determine the value of ORDERED_STREAM_SIZE and set
OV ERLAPPING_MJOIN if needed. It returns two results: the size of the stream that has
been found and a flag merge_join_found that indicates if there is a overlapping MergeJoin
below. To determine the size of ordered stream, the FindOrderedStream() goes down the
tree following a path that an ordered stream is generated. First of all, it stops on any of
operators that change ordering of the stream by inspecting whether the type of the node be-
long to the OrderDestroyingOperators set. This set includes: Sort, TopN and Aggregation.
None of join operators are considered to destroy the order of incoming stream. Indeed, both
MergeJoin and HashJoin preserve the order of tuples arriving at the left side. Thus, the
FindOrderedStream() function takes the left-most path possible. When it encounters a Scan
operator the size of the stream can be finally returned.

After annotating the tree with the ORDERED_STREAM_SIZE and
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OrdAggr{a},{sb=sum(b),mind=min(d),maxf=max(f)}

MergeJoin{a},{e}

HashJoin{a},{c}

Selectb<14

ScanTableA,{a,b}

ScanTableB,{c,d}

Selecte>34

ScanTableC,{e,f}

(a) Original merge-join query plan

OrdAggr{a},{sb=sum(b),mind=min(d),maxf=max(f)}

PartitionRestart

MergeJoin{a},{e}

PartitionSplit{GID}

HashJoin{a},{c}

Selectb<14

CScanTableA,{a,b,GID}

ScanTableB,{c,d}

PartitionSplit{GID}

Selecte>34

CScanTableC,{e,f,GID}

(b) Query plan using Cooperative Merge Join as introduced in
Section 5.5

Figure 5.5: An example of introduction of the Cooperative Merge Join in a query plan

OV ERLAPPING_MJOIN it is possible to introduce the Cooperative Merge Join.
Two conditions need to be met to do so: there must be no overlapping MergeJoins, as this
situation is not supported and the size of the stream has be larger than specified threshold.
We omit the procedure that transforms the query plan to use the Cooperative Merge Join for
brevity. Figure 5.5 shows an example query plan transformation. As described in Section 5.3
the MergeJoin operator is „sandwiched” between PartitionSplit and PartitionRestart.
Moreover, both Scan operators that provide ordered data streams for the MergeJoin operator
are turned into CScan operators. Both of them are assigned the same identifier, so that the
Active Buffer Manager will be able to detect that they are part of the same Cooperative
MergeJoin and need to be synchronized. Note, that the third Scan operator that feeds the
right side of HashJoin is not changed into a CScan. In fact, it can also be modified, as the
right side of HashJoin accepts data delivered out-of-order. This case is handled by the rules
for introducing Cooperative Scans described in Section 4.9. Thus, applying both rules for
Cooperative Scans and Cooperative Merge Join results in a query plan fully exploiting the
potential of the Cooperative Scans framework.

5.6. Handling of checkpoints

In Section 4.7 we present how metadata in the ABM is influenced by the process of check-
pointing introduced in Section 2.9. So far, we focused on checkpointing of a single table. In
case two or more tables are clustered by means of join indices (see Section 2.6) the checkpoint-
ing mechanism needs to rebuild all tables that depend on the checkpointed table. Figure 7.2
depicts an example cluster tree (see Section 2.6.1). Let us suppose the nation table is to be
checkpointed. Modifying data in the table that other tables are clustered on implies necessity
of rebuilding the referencing tables, as the order of tuples in the referenced table may change.
Thus, checkpointing of the nation table triggers checkpointing of the customer and supplier
tables. Also, a checkpoint of the parent table is triggered by the checkpoint of child table.
In the discussed scenario, checkpointing of the nation table triggers checkpoint of the region
table. This behaviour is caused by the fact that the Join Index Summary (see Section 2.6.2)
structures need to be rebuild, as they depend on both parent and child table. Consequently,
a checkpoint of a table that belongs to a cluster tree triggers checkpointing of the whole cluster
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tree.
After a checkpoint of the cluster tree is finished, new versions of each table are created

in the master catalog. Since the proper functioning of Cooperative Merge Join depends on
correct partitioning of tables (see Section 5.2), the partitioning has to be rebuild. Chunk
boundaries have to be aligned to the same key boundaries on both the parent and the child
side. When a new (checkpointed) version of the table is detected in the ABM, the partitioning
for all tables in the same cluster tree has to be done again. In principle, the ABM has to
perform an analogous algorithm that is done in the checkpointing process i.e. find all tables
belonging to the same cluster tree and perform a specified operation for them.

5.7. Summary

This chapter presented a solution to the problem of support for operators requiring an or-
dered data stream. We introduced the Cooperative Merge Join, a novel algorithm that extends
Cooperative Scans with an ability to support join processing. Cooperative Scans and Coop-
erative Merge Join constitute a fully-functional buffer management framework that supports
all operators used in VectorWise.

This chapter finishes the discussion about design and implementation of Cooperative
Scans. The following chapters evaluate the performance of both Cooperative Scans with Coop-
erative Merge Join and the Predictive Buffer Manager solutions with benchmarks. Chapter 6
presents results of custom-designed benchmarks, whereas Chapter 7 provides evaluation with
the TPC-H benchmark.
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Chapter 6

Synthetic benchmarks

In this chapter we present performance results obtained in synthetic benchmarks designed to
evaluate the improvements achieved by Cooperative Scans described in Chapters 3, 4 and 5,
as well as the Predictive Buffer Manager (PBM) described in Section 4.3.

6.1. The basic benchmark

To evaluate the performance of Cooperative Scans and the Predictive Buffer Manager we
tested the system in a simple scenario, which is based on the TPC-H benchmark [Tra11].
TPC-H is an industry-standard benchmark for ad-hoc decision support systems. It consists
of a schema containing 8 tables and 22 parametrized queries. A more detailed analysis of the
TPC-H benchmark can be found in Section 7.1. We chose two out of 22 available queries
that do not perform any join operations, thus scan a single table. The first TPC-H query
(Q1) scans the lineitem table performing relatively CPU intensive computations. The TPC-H
query 6 (Q6) scans the same table performing a simple aggregation and consequently is less
CPU-intensive than Q1. We denote TPC-H Q1 by S (slow query) and TPC-H Q6 by F (fast
query). Each query is parametrized by the percentage of the whole table that it scans e.g. we
denote TPC-H Q1 scanning 50% of the table by S-50. The beginning of the range is chosen
randomly. We used ranges of 1%, 10%, 50% and 100% of the table.

To simulate a concurrent workload we run queries in 16 parallel streams, each consisting
of 4 randomly chosen queries ran sequentially. For each query type we gather the average
execution time, as well as its execution time in a system with no other queries running
in parallel and empty buffer pool (basetime). This allows us to calculate the normalized
query latency defined as the average query execution time in the benchmark run divided by
its basetime. Also, we provide system-wide results such as the total execution time, average
stream time, average normalized query latency, the total volume of I/O performed and average
CPU utilization.

We used a TPC-H scale factor 40 dataset, where the lineitem table contains slightly over
240 million tuples. In this experiment the total volume of data accessed by the queries amounts
to 2 GB. We use a buffer pool of 800 MB, hence capable of caching 40% of the data. In all
benchmarks presented in this chapter we use a chunk size of 1 million tuples, so the lineitem
table is divided into 240 chunks.

All benchmarks presented in this chapter were performed on a server equipped with two
quad-core Intel(R) Xeon(R) X5560 CPUs and 48 GB of RAM memory. The used storage
was a 2-way RAID-0 matrix delivering up to 140 MB/s of bandwidth. Hence, we expect the
system to be mostly I/O bound, so improvements with respect to the buffer management
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LRU PBM CScans
System statistics

avg stream time [s] 149.57 98.21 44.71
avg. norm. latency 6.58 5.51 2.40
total time [s] 200.03 126.49 65.64
CPU use [%] 65.80 90.30 159.00
total I/O [MB] 20461.61 11694.86 5660.02

Query statistics
query avg. [s] std dev. norm. lat. avg. [s] std dev. norm. lat. avg. [s] std dev. norm. lat.
F-1 1.92 87.63 18.73 1.52 49.46 14.83 0.77 22.09 7.50
F-10 9.92 74.74 5.48 12.05 35.38 6.65 3.06 18.58 1.69
F-50 39.76 11.59 4.95 28.42 12.19 3.54 11.48 3.59 1.43
F-100 84.55 1.33 5.29 46.53 5.40 2.91 21.17 3.48 1.32
S-1 2.63 66.96 5.76 2.83 40.27 6.21 0.75 27.22 1.65
S-10 11.73 74.02 4.65 10.60 41.30 4.20 5.16 29.18 2.04
S-50 44.66 3.38 4.31 36.21 10.43 3.49 21.99 9.86 2.12
S-100 70.39 21.34 3.50 44.62 6.69 2.22 28.42 8.05 1.41

Table 6.1: The basic experiment with a set of FAST and SLOW queries scanning 1%, 10%,
50% and 100% of the lineitem table

should influence the performance perceived by the user.
The results are presented in Table 6.1. We can observe Cooperative Scans considerably

outperforming the LRU and the Predictive Buffer Manager in all system-wide results. There
is a fourfold improvement in the amount of performed I/O in comparison to the LRU buffer
manager. It translates into a roughly threefold advantage in other system-wide results. At the
same time, thanks to increased buffer reuse Cooperative Scans achieve higher CPU utilization.
However, the system still remains I/O bound, as with CPU utilization of 159% it uses on
average merely 2 out of 8 CPU cores it is equipped with.

Also, the Predictive Buffer Manager provides an improvement over the LRU buffer man-
ager in all results. It decreases the amount of performed I/O by 43%, which translates into
a 34% decrease of the average stream time and 37% of the total time. The average normalized
latency is improved by 16%.

By taking a closer look at individual query results we can explain the lower improvement
in average normalized query latency. The PBM mostly improves the normalized latency of
long queries (F-100, S-100, F-50 and S-50). The normalized latency of short queries (F-10,
S-10, F-1 and S-1) is decreased slightly or increased in some cases.

On contrary, Cooperative Scans improve the normalized query latency of all used query
types. As a result, the average normalized latency is much lower for Cooperative Scans. This
phenomenon is explained by the fact that Cooperative Scans use a better scheduling of queries
using the CscanRelevance() function (see Figure 3.3) that prioritizes shorter queries. Besides
lower I/O consumption it provides an additional advantage of Cooperative Scans in a highly
concurrent workload with queries of varied length.

6.2. Sharing potential analysis

To understand the performance results better, we provide an analysis of the sharing potential.
In a system loaded with multiple concurrently working queries we can calculate the volume
of data that is needed at some moment by only 1 scan, exactly 2 scans etc. The result of
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Figure 6.1: Sharing potential in the synthetic benchmark

such an analysis is depicted in Figure 6.1. The green area indicates the amount of data that
is requested by a single scan, thus is not subject to be reused by any other query. The area
marked with red represents the data that is needed by 5 or more scans working in the system
at certain moment. In Figure 6.1 the red component dominates, showing that a high volume
of data can be reused by a large number of queries. Consequently, it explains the strong
advantage of Cooperative Scans in the presented benchmark. The sharing potential is also
exploited by the Predictive Buffer Manager to some extent. However, since the data has to
be delivered in-order it is impossible to attain a level of buffer reuse on par with Cooperative
Scans. The data that has to be loaded in specified order results in eviction of already cached
pages, regardless of the fact that they may be accessed in the near future.

6.3. Scaling data volume

The size of dataset that is scanned is an important factor influencing performance in I/O
bound systems. To simulate a growing dataset we perform experiments with varying size of
the buffer pool size ranging from 20% to 100% of the total amount of scanned data. We use
the same parameters as in the benchmark found in Section 6.1. In Figure 6.2 we present three
main system-wide results: total volume of performed I/O (a), average stream time (b) and
average normalized latency (c) in relation to the buffer pool capacity.

First off all, we observe superior performance of Cooperative Scans in all the presented
results for all sizes of the buffer pool. The performance of Cooperative Scans appears to be
insensitive to the capacity of the buffer. The flexibility of out-of-order delivery allows to save
a considerable amount of I/O even in the case of a small buffer pool. Only a slight difference
in the volume of I/O performed on the buffer pool caching 20% of the table and the buffer
pool caching all data suggests, that the streams are short enough to be serviced by a loading
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Figure 6.2: Performance of buffer management solutions under varying size of the buffer pool

58



 1

 2

 3

 4

 5

 6

 7

 1  2  3  4  5  6

A
ve

ra
ge

 s
tr

ea
m

 ti
m

e 
/ C

S
ca

ns

Average normalized query latency / CScans

CScans LRU

SF-LS-L

FFS-S

S-M

F-S

SSF-L

S-S

SF-S

SF-M

F-M

FFS-M

SSF-S

F-L

SSF-M

PBM

SF-L

S-L

FFS-S

S-M

F-S

SSF-L S-S

FFS-L

SF-S

SF-M

F-M
FFS-M

SSF-S

F-L

SSF-M

Figure 6.3: Performance of various buffer management solutions under varying query sets and
scanned ranges

most of the data only once.
The Predictive Buffer Manager exhibits a considerable improvement over the LRU buffer

manager, but is subject to performance degradation under small buffer pool as well. The
results of average normalized latency differ from two other plots. In comparison to the LRU
buffer manager, the PBM improves average normalized latency only for the buffer pool holding
less than 40% of the relation. As mentioned before, the PBM uses the same way of scheduling
I/O requests as the LRU buffer manager, which does not prioritize shorter queries. In some
cases, the decreased need for I/O achieved by the PBM results in lowered average normalized
latency, but there is no general rule.

6.4. Exploring query mixes

In Section 6.1 we prove the superior performance of Cooperative Scans for a predefined set
of queries and possible ranges they access. To verify and analyze the performance benefits,
we perform experiments with varying query sets and ranges. We provide results of two
parameters: average stream and average normalized latency as depicted in a two-dimensional
plot in Figure 6.3. The point (1,1) represents the result of an experiment with Cooperative
Scans enabled. Other points are plotted according to the relative performance of both LRU
and Predictive Buffer Manager in comparison with the run with Cooperative Scans. The labels
indicate query mix and used ranges in format „<SPEED>-<SIZE>”. <SPEED> indicates
the number and type of queries included e.g. FS - mix of F and S queries, F - only F ones,
FFS - 2 times more F queries than S ones etc. <SIZE> represent a set of fractions that are
used to generate ranges: S – short (mix of queries reading 1, 2, 5, 10 and 20% of a table), M
- mixed (1,2,10,50,100) and L - long (10,30,50,100).

The plot depicted in Figure 6.3 proves the advantage of Cooperative Scans in all cases.
However, the relative improvement depends on query set. In comparison to the LRU buffer
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manager, Cooperative Scans have much stronger advantage in the case of long queries. Indeed,
the LRU buffer manager is subject to low buffer reuse under workload with long scans. In
particular, LRU is the worst possible policy for a sequence of full-table scans. In such scenario
the buffer always keeps a „tail” of a table, whose length depends on the size of the buffer pool.
When a next scan is started, the data can be reused only if the whole table fits the memory.
Otherwise, the whole stored tail is evicted resulting in no data reuse. For short queries chances
that recently used data will be reused increase, thus the LRU policy performs better getting
close to the Predictive Buffer Manager in some cases.

The PBM performs relatively well for all types of queries. It also exhibits performance
comparable to Cooperative Scans for short queries, but there is stronger degradation when
longer queries are involved.

6.5. Scaling the number of concurrent queries

As Cooperative Scans are designed to improve performance in concurrent workload, their
advantage should be higher with increasing number of concurrent streams. In the following
experiment we use the F query introduced in Section 6.1 . We ran two variants, one with short
queries scanning 10% of the relation and second with queries scanning half of the relation.
Each stream consists of 4 queries, the starting position of scan is chosen randomly for each
of them. The experiment is performed for the number of streams ranging from 1 to 32. The
results can be found in Figure 6.4.

As the number of concurrent streams increases, the advantage of Cooperative Scans be-
comes more visible. In particular, in the case of queries scanning 50% of the relation the
performance remains virtually constant. With many concurrently working long queries scan-
ning exactly the same set of columns, we expect a large fraction of queries to be satisfied with
each of loaded chunks. Thus, as long as the system is not CPU-bound the performance is
insensitive to the number of parallel streams.

The Predictive Buffer Manager is capable of saving a large amount of I/O in comparison
with the LRU buffer manager, but it does not exhibit the same flat characteristic of Coopera-
tive Scans. As the data has to be delivered in-order queries can not „attach” to the data that
is being loaded. On contrary, many queries scanning at different positions in the table start
fighting for I/O. The PBM performs better with shorter queries than with longer queries. In
the case of queries scanning 10% of the relation its performance is close to the performance
of Cooperative Scans for up to 16 streams, whereas for long queries it performs similarly for
up to 8 streams.

6.6. Investigating the performance of scans over multiple columns

The sharing potential in DSM storage depends on columns that are scanned by the queries
(see Section 2.4). The more scanned columns are shared, the more advantage we can expect
from using Cooperative Scans. To evaluate the performance of queries scanning different sets
of columns we run a synthetic benchmarks on a database containing a single table with 6
attributes (from A to F). The table contains 200 million tuples, each attribute is 8 bytes
wide, resulting in the total data volume of 9 GB. We use a buffer pool that is capable of
caching 40% of the relation. The queries scan a random 40% of the relation and columns as
specified in Table 6.2. They are issued in 16 parallel streams of 4 queries.

The first experiment with a single query scanning columns ABC confirms the advantage
of Cooperative Scans over the two variants of the buffer manager. However, the relative
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(f) Average normalized latency, 50% queries

Figure 6.4: Performance results with varying number of concurrent streams
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Queries LRU PBM CScans
(used columns) total stream norm. avg. total stream norm. avg. total stream norm. avg.

I/O [MB] avg. [s] latency I/O [MB] avg. [s] latency I/O [MB] avg. [s] latency

ABC 9255 62.92 0.72 6478 59.74 0.64 5679 46.91 0.53
ABC,DEF 45850 472.54 5.23 27846 264.54 2.95 19134 148.78 1.75
ABC,BCD 25264 255.84 3.06 13620 135.58 1.47 11013 103.21 1.26
ABC,BCD,CDE 27300 285.20 3.32 18293 184.02 2.19 14909 133.23 1.56
ABC,BCD,CDE,DEF 42462 475.44 5.55 27409 300.49 3.37 22718 167.64 1.99

Table 6.2: Performance of DSM queries when scanning different sets of columns of a synthetic
table
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Figure 6.5: Performance of various buffer management solutions with queries scanning varying
sets of columns. Results from Table 6.2, in comparison to Cooperative Scans.

advantage is lower than in the previous experiments, as with only three columns scanneda the
data volume is lower, thus buffer reuse is higher for all solutions. In particular, the average
normalized latency drops below 1 due to very high buffer reuse (queries run faster than in
a system with empty buffer pool). After adding an additional query type scanning next three
columns (D, E and F) the performance drops for all policies, but the relative improvement of
Cooperative Scans increases considerably.

Additional experiments with increasing number of overlapping sets of columns show con-
sistent advantage of Cooperative Scans. The relative improvement is highest for the last
presented query set accessing all columns from A to F with queries scanning different over-
lapping sets of columns.

Figure 6.5 depicts the scatter plot showing the average stream time and average normalized
latency of the LRU and the Predictive Buffer Manager in relation to Cooperative Scans. The
plot confirms the advantage of Cooperative Scans and the PBM. The only case where LRU
buffer manager is close to them is the simplest set with queries scanning columns A, B and
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SELECT
l_shipmode ,
SUM( o_tota lp r i c e ) ,
SUM(CASE

WHEN o_orde rpr i o r i ty = ’1−URGENT’
OR o_orde rpr i o r i ty = ’2−HIGH ’

THEN 1
ELSE 0

END) AS high_line_count ,
SUM( case

WHEN o_orde rpr i o r i ty <> ’1−URGENT’
AND o_orde rpr i o r i ty <> ’2−HIGH ’

THEN 1
ELSE 0

END) AS low_line_count
FROM

orders ,
l i n e i t em

WHERE
o_orderkey = l_orderkey
AND l_shipmode in ( ’MAIL ’ , ’SHIP ’ )
ANDMONTH( l_commitdate ) = MONTH( l_rece ip tda t e )
ANDMONTH( l_shipdate ) = MONTH( l_commitdate )

GROUP BY
l_shipmode

ORDER BY
l_shipmode ;

(a) Query CMJ1

SELECT
o_orderpr io r i ty ,
SUM( o_tota lp r i c e ) ,
COUNT(∗ ) AS order_count

FROM
order s

WHERE
MONTH( o_orderdate ) >= 2
AND EXISTS (

SELECT
∗

FROM
l i n e i t em

WHERE
l_orderkey = o_orderkey
AND l_commitdate < l_rece ip tda t e

)
GROUP BY

o_orde rpr i o r i ty
ORDER BY

o_orde rpr i o r i ty ;

(b) Query CMJ2

SELECT
SUM( l_extendedpr ice ) AS revenue

FROM
l i n e i t em

WHERE
l_shipdate >= DATE ’ 1994−01−01 ’
and l_commitdate < DATE ’ 1994−01−01 ’
and l_rec e ip tda t e > DATE ’ 1987−07−03 ’ ;

(c) Query L1

SELECT
SUM( o_tota lp r i c e ) ,
SUM(CASE

WHEN o_orde rpr i o r i ty = ’1−URGENT’
OR o_orde rpr i o r i ty = ’2−HIGH ’
THEN 1

ELSE 0
END) AS high_line_count

FROM
order s

WHERE
o_orderdate > DATE ’ 1997−09−23 ’

(d) Query O1

Figure 6.6: Queries used in the benchmark evaluating the performance of the Cooperative
Merge Joins

C, which as discussed before, exhibits highest buffer reuse.

6.7. Cooperative Merge Join experiments

To evaluate the performance of Cooperative Merge Join we propose a set of synthetic bench-
marks resembling the experiments discussed in Section 6.1. We use two largest tables of
the TPC-H benchmark [Tra11]: lineitem and orders. The lineitem table references orders
by means of a foreign key. The VectorWise DBMS can exploit clustering (see Section 2.6)
and store lineitem sorted according to the order of the orderkey column of the orders ta-
ble. Consequently, the two tables can be joined using the MergeJoin operator, as well as use
Cooperative Merge Join (CMJ).

The TPC-H benchmarks contains two queries that perform a join of lineitem and orders
without accessing other tables. We use them to as a base to create queries for the synthetic
benchmark. Used queries are presented in Figure 6.6. The standard TPC-H Q4 and Q12
queries were modified to scan more columns, thus increasing the need for I/O. To check the
performance of a system running both queries using the CScan operator and Cooperative
Merge Join, we provide two simple queries scanning lineitem and orders respectively.

We ran two variants of the experiment: one comprised of CMJ1 and CMJ2 queries and
a second one additionally using L1 and O1 queries accessing single table (CScan queries).
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(a) Total volume of I/O, CMJ queries
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(b) Total volume of I/O, CMJ and CScan queries
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(c) Average stream time, CMJ queries
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(d) Average stream time, CMJ and CScan queries
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(e) Average normalized latency, CMJ queries
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(f) Average normalized latency, CMJ and CScan queries

Figure 6.7: Performance of various buffer management solutions under varying size of the
buffer pool in a test using merge-join queries
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The first query mix is intended to check performance of Cooperative Merge Join in isolation,
whereas the second variant verifies how CMJ queries work mixed with single-table CScans.
As in the previous synthetic benchmarks each query scans a random fraction of a table (1%,
10%, 50% or 100%) starting at a random position. For CMJ1 and CMJ2 queries the range
is applied to the child table (lineitem) and propagated to the parent table using the Join
Index Summary (JIS) structure (see Section 2.6.2). The JIS structure contains 917 evenly
distributed entries, thus the range propagation mechanism provides accurate estimate of the
matching range on the parent side. We focus on experiments with varying size of the buffer
pool. We check buffer pools storing from 20% up too 100% of the whole needed data volume.
Note that the amount of accessed data depends on used queries and scanned columns. In the
experiment with CMJ queries the volume amounts to 1.5 GB, whereas for in the run with
a mix of CMJ and CScan queries it increases to 2.5 GB, as CScan queries scan columns that
are not used by CMJ queries.

The results are depicted in Figure 6.7. In general, the same pattern as in Figure 6.2 can
be observed. The system using Cooperative Scans and Cooperative Merge Join shows a clear
advantage. However, we no longer observe a nearly flat curve of Cooperative Scans. The
lower relative improvement provided by Cooperative Scans working on a small buffer pool is
a result of increased number of accessed columns and variety of queries, thus lower sharing
opportunities.

Figure 6.7 (f) shows the only graph where the advantage of Cooperative Scans cannot be
observed for all tested sizes of the buffer pool. To explain that we need to take a closer look
at individual normalized query latencies. It turns out that with Cooperative Scans the O1-1
query, which is the shortest query in the experiment is delayed much more. Its normalized
latency ranges from 60 to 100 with Cooperative Scans, whereas it equals to about 3 for both
the LRU buffer manager and the Predictive Buffer Manager. The large difference contributes
strongly to the average normalized latency of the whole experiment. This phenomenon seems
to be effect of loading data in chunk-at-time manner. With this approach very short queries
have to wait until large chunks that were scheduled earlier are loaded. It happens regardless
of the early scheduling of short queries with the CScanRelevance() function. A query that
enters the system, even when scheduled early, has to wait until already scheduled chunks are
loaded. Contrary to the LRU and PBM solutions, there is no mechanism to „cut the line” by
issuing a blocking I/O requests that is carried out by the buffer manager as soon as possible.
This suggests that for very short queries dropping Cooperative Scans may be needed.

In the case of small buffer pool size Cooperative Scans maintain the advantage in average
normalized latency. Similarly to other experiments, the PBM exhibits results similar to the
old buffer manager due to lack of dedicated query scheduling mechanism in both of them.

6.8. Summary

This chapter presented a variety of synthetic benchmarks designed to evaluate the performance
of Cooperative Scans along with Cooperative Merge Join, the Predictive Buffer Manager and
the LRU buffer manager. The results confirm that the solutions proposed in this thesis have
a potential to provide high performance improvements. However, we state that the perceived
performance improvement strongly depends on used environment and benchmark. The next
chapter provides evaluation of performance in the TPC-H throughput benchmark.
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Chapter 7

Performance evaluation with TPC-H

This chapter presents performance results obtained in the TPC-H throughput benchmark.
We evaluate the LRU buffer manager (see Section 4.2), Cooperative Scans along with the
Cooperative Merge Join (see Chapters 3, 4 and 5), as well as the Predictive Buffer Manager
(PBM) (see Section 4.3).

7.1. The TPC-H benchmark

TPC-H [Tra11] is an industry standard benchmark for evaluating large scale decision support
applications. TPC-H schema consists of eight tables with 61 columns in total. The size of
the database can be changed using the scale factor parameter (SF). The default value is 1
which corresponds to 1 GB of uncompressed data. TPC-H contains 22 queries which are
characterized by high degree of complexity.

The TPC-H benchmark is divided into two main parts. The TPC-H „power” run is aimed
at evaluating performance of queries executed in isolation i.e. with no other operations in
parallel. On the other hand, the purpose of the TPC-H „throughput” run is to test the
performance of concurrent workload. The TPC-H throughput benchmark involves running
several parallel streams of queries. The TPC-H benchmark specifies minimum number of
parallel streams depending on scale factor. In experiments presented in this chapter we use
10 parallel streams. Each of them executes all of 22 TPC-H queries in random order and
with random parameters. To assure reproducibility of results the whole benchmark run is
parametrized with a seed value seedbenchmark. Query parameters and their order in each
stream are created with a pseudo-random number generator that is passed the initial seed
value seedstream. The value of seedstream of the i-th stream equals seedbenchmark + i. Thus,
running the benchmark with the same seed value assures the same queries to be executed.

Keep in mind these are in no way official TPC-H results, we are only using queries and
the schema as an example. The full benchmark also has update queries, extra functionality
tests etc. Here we only present the TPC-H throughput run without updates i.e. the contents
of the database do not change during the experiment.

7.1.1. TPC-H schema and cluster trees

Figure 7.1 presents the TPC-H schema. The database consists of 8 tables, which have 61
attributes in total. The number of tuples in most tables depends on the Scale Factor (SF)
and is determined as presented in Figure 7.1. The two largest tables in terms of both the
number of tuples and the number of columns are „lineitem” and „orders”. The arrows in
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Figure 7.1: The TPC-H schema (from [Tra11])

lineitem

orders

nation

region

part

partsupp

customer supplier

orders

nationkeynationkey

regionkey

partkeyorderkey

Figure 7.2: Cluster trees we propose in the TPC-H benchmark

Figure 7.1 show foreign key relationships. As described in Section 2.6 and 2.6.1 VectorWise
can cluster tables that are related by means of a foreign key. Figure 7.2 depicts a cluster tree
that we propose for the TPC-H schema. As we can see, the largest table lineitem is clustered
on orders. Besides, two other large tables part and partsupp are clustered. The last cluster
forms a tree with region defining the order of tuples in nation, which influences ordering of
supplier and customer.

7.1.2. Static sharing potential analysis

Before presenting benchmark results we first analyze the theoretical improvement that can be
attained with Cooperative Scans and the Cooperative Merge Join. From our perspective the
most important aspect is I/O volume read by each query.

Table 7.1 presents how much data is shared by each pair of queries in a single stream with
the seed value of 411193435. The dataset used was TPC-H scale factor 40, which requires
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Q1 1852
Q2 0 272
Q3 64 0 133
Q4 0 0 16 39
Q5 158 2 41 1 498
Q6 299 0 27 0 158 299
Q7 443 1 102 18 169 65 1214
Q8 317 15 57 19 9 2 977 1002
Q9 1267 224 79 19 459 257 1055 921 3740
Q10 47 0 5 0 73 41 2 2 61 959
Q11 0 158 0 0 1 0 1 1 158 0 213
Q12 45 0 15 3 70 42 36 1 99 18 0 271
Q13 0 0 18 0 36 0 83 72 0 15 0 0 3407
Q14 81 12 0 0 162 81 73 12 167 1 0 14 0 189
Q15 111 15 0 0 0 0 0 0 223 0 0 0 0 0 270
Q16 0 180 0 0 0 0 0 8 153 0 91 0 0 8 0 198
Q17 1145 4 46 0 363 232 847 732 2617 36 0 0 0 159 211 5 2628
Q18 229 0 63 19 112 46 247 222 719 166 0 99 352 0 0 0 229 2475
Q19 1267 10 53 0 382 257 890 769 2739 41 0 26 0 167 223 11 2628 229 3000
Q20 90 99 0 0 1 0 343 304 733 0 147 0 0 4 2 91 350 47 350 833
Q21 0 1 24 35 295 0 238 141 1015 18 1 193 0 95 131 0 772 483 772 1 3510
Q22 0 0 18 0 36 0 83 72 0 145 0 0 234 0 0 0 0 234 0 0 0 364

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

Table 7.1: The volume of data in MB shared by each pair of TPC-H queries on scale factor
40 database. The top line represents the volume of data accessed by query stand-alone.

10 GB to be stored in compressed column-oriented storage of VectorWise. The last column
of each row indicates how much data is needed by each of queries by itself. We can see that
the most demanding queries in terms of I/O are Q09, Q20, Q19, Q17 and Q18 that need over
2 GB of data. First of all, we observe many query pairs that share no or very little data.
Such queries must scan either different tables, columns or ranges, so that there is no overlap.
Interestingly, query Q21 that scans 3.5 GB of data, yet does not share more than 1 GB with
any of other queries. The pairs that share most are (Q9, Q19), (Q17, Q19) and (Q9, Q17)
that share 2739 MB, 2626 MB and 2617 MB respectively. So, in fact Q09, Q17 and Q19 form
a cluster that accesses nearly the same data. These are the only query pairs that share more
than 2.5 GB of data. The other query pair share less than 1.5 GB.

In general, we conclude that the amount of data needed by each of the queries is relatively
low in comparison to the size of the whole dataset. Indeed, 14 out of 22 queries access less
that 1 GB, which is 10% of the database size. Moreover, most of query pairs share little or
no data. Note that with multiple streams the sharing potential between queries belonging to
different streams with different seed value may differ.

7.2. Performance results

7.2.1. Test environment

We ran the TPC-H throughput benchmark with the value of seedbenchmark equal to 411193435
on scale factor 40 dataset. Thanks to compression in the DSM storage (see Section 2.4) the
total amount of data accessed in the benchmark equals 10 GB. The intra-query parallelization
was enabled with the maximum number of threads that can be spawned set to 8. In exper-
iments with Cooperative Scans we used both CScan operators and the Cooperative Merge
Join, so that the clustering of tables could be exploited.

We ran the TPC-H throughput benchmark on a server equipped with two quad-core
Intel(R) Xeon(R) X5560 CPU and 48 GB of RAM memory. It is enough memory to be
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able to cache the whole TPC-H scale factor 40 dataset in the buffer pool. Also, the remaining
memory suffices for the query memory used for data structures needed for processing of queries
such as hash tables. The I/O subsystem is comprised of 16 SSD drives connected by means
of a RAID-O array. The setup is capable of providing up to 2 GB/s of bandwidth.

7.2.2. Performance evaluation

In Figure 7.3 we can see three system-wide result metrics of the TPC-H throughput bench-
mark, that was run with varying size of the buffer pool ranging from 10% to 100%. We
provide the total volume of performed I/O, as well as the average stream time and the TPC-
H QphH@40GB metric. The Query-per-Hour Performance Metric (QphH@Size) is calculated
as the number of queries that can be processed by the system in an hour, multiplied by the
scale factor parameter [Tra11].

Figure 7.3 (a) shows the volume of I/O performed. We can observe that lowering the size
of available memory in the buffer pool results in increase of performed I/O for all evaluated
solutions. The buffer using LRU policy performs most I/O in all cases, the difference with
two other policies is significant for buffer pools of 40% and smaller. On contrary to what
we observed in Chapter 6, the advantage of Cooperative Scans over the Predictive Buffer
Manager is low. Interestingly, the difference in the volume of I/O performed does not directly
translate into lower performance as perceived by the user. Both the average stream time
(Figure 7.3 (b)) and the QphH@40GB metric (Figure 7.3 (c)) remain roughly constant for
buffer pools capacities from 40% to 100% of the total data volume. Despite 15 times higher
amount of I/O operations for the LRU policy and 10 times increase for Cooperative Scans
and the PBM, the performance remains virtually unchanged. It is caused by the fact that the
system is mostly CPU-bound in those experiments. A very fast I/O subsystem is capable of
feeding the query execution layer at pace enough to use its maximal processing speed. This
situation changes for smaller buffer pools. In the case of buffer pool capacity of 10% and 20%
the need for I/O increases even further and the performance starts to drop. It appears that
at this point the vastly increased number of I/O operations causes the query execution layer
to wait for data making the system I/O bound. In this case we observe the advantage of
Cooperative Scans and the PBM in terms of the average stream time and the QphH@40GB
metric. It confirms that it is worth to optimize the I/O performance despite a very fast I/O
subsystem. However, the difference in performance is significantly lower that in experiments
in Chapter 6.

7.2.3. Sharing potential in TPC-H experiments

Figure 7.3 (d) depicts sharing potential analysis analogous to the one found in Figure 6.1.
Please refer to Section 6.2 for a description of how the sharing potential plot is generated.
The data presented in the plot was gathered in an experiment which used Cooperative Scans.

We observe that Figure 7.3 (d) is dominated by green and yellow areas that correspond
to the data requested by only one Scan or requested by exactly 2 Scans respectively. Thus,
despite the fact that there are 10 streams running in parallel, issued queries access mostly
non-overlapping sets of pages. It shows that sharing opportunities in the TPC-H benchmark
are low. First, the schema consists of 8 tables instead of 1 or 2 as in the case of synthetic
benchmarks presented in Chapter 6. Moreover, as discussed in Section 2.4, queries can share
data only if they scan overlapping sets of columns. The sharing opportunities would be
potentially much higher in a row-oriented database. Nevertheless, we stress that the benefits of
a column-oriented DBMS over row-oriented systems in analytical workloads [AMH08] suggest
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Figure 7.3: Performance achieved by different buffer management solution in the TPC-H
throughput benchmark

that it is advantageous to use a column-store regardless of lower performance advantage of
Cooperative Scans in DSM.

The direct consequence of low sharing potential in the TPC-H throughput is lower perfor-
mance advantage of Cooperative Scans. As it turned out, the results show the advantage of
Cooperative Scans over the LRU policy, but the Predictive Buffer Manager performs equally
well. It suggests that the LRU buffer manager misses sharing opportunities that are exploited
by both the Cooperative Scans and the PBM. However, there is not enough sharing potential
for the Cooperative Scans to prove its advantage over the PBM. As a consequence, it suffices
to implement a much simpler solution like the Predictive Buffer Manager in the VectorWise
DBMS to improve its performance in the TPC-H benchmark in scenarios with the dataset
much larger than the memory reserved for the buffer pool.
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7.3. Summary

In this chapter we evaluated the performance of all buffer management solutions discussed in
this thesis with the TPC-H benchmark. Together with experiments described in Chapter 6
it constitutes the complete evaluation of solutions proposed in this thesis. We conclude the
results in the next chapter.
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Chapter 8

Conclusions and future work

8.1. Conclusions

In this master thesis we presented the implementation of Cooperative Scans in VectorWise.
We also extended the framework to support order-aware operators. In particular, a novel al-
gorithm Cooperative Merge Join was implemented. The presented implementation addressed
all challenges related to introduction of Cooperative Scans in VectorWise that were intro-
duced in Chapter 2 and listed in Section 2.12. Moreover, we proposed and implemented the
Predictive Buffer Manager (PBM). It is an alternative solution to Cooperative Scans, that
provides some of its benefits and is significantly less complicated.

We also measured the performance of the presented solution using a set of custom syn-
thetic benchmarks and the TPC-H throughput benchmark. Both Cooperative Scans and the
Predictive Buffer Manager proved to provide a significant improvement over the standard
buffer manager in VectorWise.

The relative performance gain depends strongly on the level of buffer reuse. The possible
improvement of buffer reuse is determined by the sharing potential i.e. the volume of data
that queries access in common.

Benchmark results show that the potential of Cooperative Scans can be exploited in work-
loads with high sharing potential. Only then, the Predictive Buffer Manager is outperformed
by Cooperative Scans. As a result, from the product development perspective the Predictive
Buffer Manager might be preferred.

8.2. Future work

8.2.1. Multiple replicas

VectorWise as a column-oriented DBMS does not provide a fast way to perform small look
up queries. To retrieve a single tuple, or a small number of tuples several disk pages have to
accessed. To avoid that, a copy of certain tables can be stored in a format allowing fast look
ups. Two main possibilities are traditional row storage and hybrid PAX storage [ADHS01].
The idea of combining both column storage and row storage has been researched in [RDS03].
Also, the same table can be stored in column storage in multiple copies with different ordering
to be exploited by the query execution layer [SAB+05]. Systems using such hybrid solutions
can be equipped with Cooperative Scans as well. The crucial problem to solve is the decision
which copies of a certain table should be handled by Cooperative Scans. Depending on the
workload, several solutions may be applied. Firstly, Cooperative Scans could be used on copies
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that store multiple columns in single disk page, and consequently exhibit increased sharing
opportunities. Alternatively, a more sophisticated solution is using Cooperative Scans on all
copies. In this case a more dynamic scheme can be created, where the same query would
access data from different copies of the same table. For example, a query accessing a small
subset of columns, thus using DSM storage by default could also benefit from already-loaded
data belonging to a copy stored in PAX format.

8.2.2. Cooperative XchangeScan

Section 4.8 discussed issues related to Cooperative Scans and intra-query parallelism. To
solve both the problem of data skew caused by static ranges and different processing speed
of threads, we propose a new scheme called Cooperative Xchange Scan. In this approach
all CScan operators that belong to the same parallel query plan would be registered in the
Active Buffer Manager as a single group scanning specified range. The ABM can exploit
the information about CScans belonging to the same query plan. First of all, the ABM
could provide better scheduling of loading data. In particular, the ABM would be capable of
detecting how many chunks are available for the whole parallelized subtree. Only then chunks
can be distributed accordingly minimizing data skew. In simplest case, the distribution can
be performed on chunk-at-time level. However, for shorter queries another approach may be
needed. In another solution, the input is dynamically split and distributed on demand, which
introduces additional overhead, but tackles the problem of load imbalances.

8.2.3. Query scheduling in the Predictive Buffer Manager

As discussed in Section 6.1 the Predictive Buffer Manager in VectorWise suffers from the
same problem with query scheduling as the LRU-based buffer manager. This problem has
been solved in Cooperative Scans by using the CScanRelevance() function (see Figure 3.3).
Similar ideas can be incorporated into the PBM. One possible solution would be to follow
the approach used in the Active Buffer Manager. The process of issuing requests for I/O
operations can be moved from individual queries to the buffer manager, since it is aware of
all data that is needed. Then, the PBM could prioritize shorter queries and schedule I/O
operations for them earlier. Another, simpler idea is to introduce a system-wide limit for
asynchronous I/O requests that can be issued in the system. In this solution, short or fast
queries would be allowed to issue more requests than the long and slow queries. By doing so,
the data for prioritized queries would be loaded earlier. As a result, short queries may find
the data already loaded at the time they issue a blocking request for locking pages that are
about to be consumed, whereas long queries may still wait for the loading to be finished.

8.2.4. Throttling of queries in the Predictive Buffer Manager

IBM research proposes another solution for query scheduling based on throttling [LBM+07,
LBMW07] of queries that is aimed at increasing buffer locality. This idea can be combined
with the Predictive Buffer Manager. The benchmark results presented in Chapter 6 sug-
gest that the performance of the PBM drops when the systems is loaded with many queries
scanning at different positions of the table. In such a scenario the PBM is not able to ex-
ploit sharing opportunities due to lack of a mechanism „attaching” scans to make them share
loaded data. This problem is solved in [LBM+07, LBMW07] by throttling some queries,
so that groups of queries scanning at close positions are formed. It may slow down the
throttled queries, but at the same time improve the overall system throughput by increasing
locality of page requests. The algorithm that forms groups of queries can be extended to
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take information used by the PBM into account. Suppose the PBM keeps track of the next
consumption time of pages that were lastly evicted from the buffer pool. Let us denote it
by next_consumption_evict. A page whose next consumption time is higher or close to
next_consumption_evict is likely to be evicted without being reused. In the PBM every
page that has just been consumed is assigned a new next consumption time. By comparing
it to next_consumption_evict it is possible to detect whether the consumed page is likely
to be evicted or reused again. A scan can be throttled when doing so would lower the next
consumption time of pages it recently consumed to a value below next_consumption_evict.
This would allow scans working behind this particular scan to catch up and benefit from pages
loaded for the throttled scan.

8.2.5. Opportunistic Cooperative Scans

The Cooperative Scans framework assumes that all loading and evicting decisions are strictly
managed by the Active Buffer Manager on chunk at a time basis. This assumption makes
the implementation more difficult as the ABM needs to manage much information about the
state of the system and keep it consistent. A simpler approach that could benefit from the
out-of-order delivery would be to dynamically change the area of table that is processed by
a certain query depending on the state of the buffer pool. The Scan operator could constantly
monitor which parts of the scanned table contain most cached pages. When a certain region
of a table, that is cached to a large extend, is detected the Scan could dynamically change the
range to scan that region and possibly increase the number of times those pages are reused
before being evicted. In that way scans may automatically „attach” to itself and cooperate.
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