
University of Warsaw

Faculty of Mathematics, Computer Science and Mechanics

Vrije Universiteit Amsterdam

Faculty of Sciences

Alicja  Luszczak

Student no. 248265(UW), 2128020(VU)

Simple Solutions
for Compressed Execution

in Vectorized Database System

Master thesis

in COMPUTER SCIENCE

Supervisor:

Marcin Żukowski
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Abstract

Compressed execution is a method of operating directly on compressed data to improve
database management system performance. Unfortunately, previously proposed techniques
for compressed execution required major modifications of database engine and were diffi-
cult to introduce into a DBMS. In this master thesis we look for solutions that are easier
to implement, unintrusive and well suited to the architecture of VectorWise. We intro-
duce an optimization based on RLE-compressed execution that consists of constant vectors
and primitive swapping mechanism. We also investigate possible benefits of operating on
dictionary-encoded data and propose on-the-fly dictionaries — a solution for providing uni-
form domain-wide encoding while avoiding concurrency issues. The conducted experiments
show a considerable potential of proposed techniques.
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Chapter 1

Introduction

Database management systems provide functionality to safely store and efficiently operate on
data to application developers. They are in use since 1960s and over time have become highly
advanced and specialized software. Many data models, query languages and architectures
were designed and implemented to achieve best possible performance in different workloads.

Compression has been employed in database systems for years, both in order to save
storage space, and to improve performance. The typical approach is to decompress all the
data before it is passed to the query execution layer. This way, all the knowledge about
data compression can be encapsulated within the storage layer making the implementation
of the database system easier. This way however any opportunity for compressed execution
is wasted.

Although the idea of compressed execution was first introduced in 1991 [GS91] and was
shown to create a considerable potential of performance gains, there has been relatively little
research in this area. The few proposed solutions required redesign and major adaptation
of the database engine [AMF06], which made them poorly suited for integrating in existing
database systems. None of them fitted the architecture of VectorWise [Zuk09], a DBMS that
we focus on in this project.

We decided to try to answer the following question: Is it possible to introduce compressed
execution in VectorWise, and achieve significant performance improvements, while avoiding
any intrusive changes in the database engine?

Our goal was to propose new solutions, that would avoid or overcome difficulties of pre-
vious ones, but not necessarily to implement all of them. We did not intend to make these
solutions suitable for generic database systems, but instead we tried to tailor them to match
the specific architecture of VectorWise. They are supposed to be non-invasive and straight-
forward, and we consider simplicity an advantage. We aimed to achieve a notable part of
possible performance benefits, but not to exploit every drop of opportunity at the price of
introducing significant extra complexity.

The main contributions of this thesis are:

• proposing a simplification of RLE-compressed execution that consist of constant vectors
and primitive swapping mechanism, and evaluating its performance,

• estimating the benefits of using global dictionaries, and introducing the idea of on-the-
fly dictionaries, that can provide similar gains, but are easier to maintain.

Not every compression technique exposes properties of data that can be used to execute
queries more efficiently, but some of them do. Our work proves that these opportunities are
well worth chasing. We show that it is often possible to get significant benefits by using
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simple optimizations, which require just a fraction of effort that would have to be invested
in order to implement full-blown compressed execution.

The reminder of this thesis is organized as follows. Chapter 2 provides basic introduction
to database systems and explains how they employ compression to improve performance. It
also presents the notion of compressed execution and reviews related work. Next, in Chapter 3
we discuss RLE-compressed execution, show the challenges it poses, and explain how they
can be avoided with constant vectors. We provide benchmarking results for this solution.
Chapter 4 explores the topic of operating on dictionary-compressed values, evaluates the
benefits and discusses the problems of maintaining uniform encoding for entire columns or
domains. Then we propose a possible solution of those problems called on-the-fly dictionaries.
Finally, we present conclusions of this thesis and discuss future work in Chapter 5.
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Chapter 2

Preliminaries

This chapter is intended to familiarize the reader with basic concepts that will be referred
throughout this thesis. These include database management systems, compression and com-
pressed execution, as well as the architecture of VectorWise.

First, we provide an overview of the basic aspects of database systems in Section 2.1.
Section 2.2 discusses the role of compression in databases and introduces a number of com-
pression schemes. The description of VectorWise database system is provided in Section 2.3.
Section 2.4 presents the idea of compressed execution. Finally, in Section 2.5 we examine the
usability of different approaches to compressed execution in context of VectorWise.

2.1. Database introduction

A database management system (DBMS) is a software package that allows applications to
store and access data in a reliable and convenient way. The application developers do not have
to implement specialized data manipulation procedures, but instead depend on functionality
provided by DBMS. A database system accepts the description of the task expressed in
a high-level language, decides how it should be performed and returns the results to the
application.

The modern DBMSes are very specialized software and provide a number of advanced
features, for example, they analyse many possible ways of completing a given task to choose
the most effective one (query optimization), create backup copies, enforce data integrity, allow
many users to modify the data in parallel while avoiding concurrency issues, and prevent
unauthorized access.

2.1.1. Relational model

The data model determines the way that database is organised and operations that can be
performed on data. Many different approaches were proposed over the years (e.g. hierarchical,
object-oriented, XML, RDF), but the relational model remains the most widespread.

In the relational model the data is divided into relations. A relation has a number of
attributes. Each attribute has a corresponding domain, i.e. a set of valid values. A relation
is an unordered set of tuples. A tuple contains exactly one value for each of the attributes
of appropriate relation. A relation is traditionally depicted as a table, where columns rep-
resent different attributes and rows correspond to tuples (see an example on the left side of
Figure 2.3).

The relational algebra defines operations on data stored in the relational model. We call
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Figure 2.1: Architecture of a database management system (from [Zuk09]).

them operators. Some examples are: selection, projection, join, union, Cartesian product.
We will not discuss them here. However, we will describe their physical counterparts in
VectorWise in Section 2.3.1 and in Section 2.1.3 we will explain how operators interact with
each other in the iterator model.

2.1.2. DBMS architecture

Although different database systems have different components, in general they follow a multi-
layer architecture presented in Figure 2.1. We will now explain the role of each of these layers.

First, the client application has to describe the task that it wants to be performed. Such
a task is called a query and it is expressed in a special language, e.g., SQL. The query is then
passed to the database system.

The query parser analyses the query. If the syntax is correct, the parser will produce
an internal representation of the query, called parse tree.

Next, the query rewriter ensures that the parse tree has correct semantics. It checks
whenever the accessed attributes actually exist in proper relations, operations are performed
on correct data types, and so on. The result is a tree in normalized form, specific for a given
database system, and usually similar to relational algebra.

Then, the query optimizer tries to find the most efficient way of executing the query.
It analyses many possibilities and modifies the tree according to its decisions. If an operator
has many physical equivalents, the query optimizer has to pick the most suitable implemen-
tation.

The query executor is the part of database system which performs the actual query pro-
cessing. It requests the data from the storage layer and operates on it according to the query
plan provided by the query optimizer.

Finally, the buffer manager or the storage layer is responsible for managing in-memory
buffers as well as accessing and storing the data on disks or other media.
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Project
Bonus = (Age − 30) * 50

Select
Age > 30

Scan
People

Id, Name, Age,

User
tuple

tuple

tuplenext()

next()

next()

Figure 2.2: Example of an operator tree (from [Zuk09]).

2.1.3. Operator trees

We will now discuss tuple-at-a-time iterator model, which is the most popular way of imple-
menting a database engine. The VectorWise engine also evolved from this model.

In the iterator model, the physical plan produced by a query optimizer consists of a num-
ber of operators. These operators are objects corresponding to relational algebra operators.
Each of these objects implements the methods open(), next() and close(). They are
organized in the operator tree, so that the result of the root operator is the result of the
entire query.

The open() method initializes the operator. When next() is called, the operator
produces and returns the next tuple. The close() method is used when the query execution
is terminated to free the resources. All of those methods are called recursively on children
operators.

An example operator tree for a query

SELECT Id,
Name,
Age,
(Age - 30) * 50 AS Bonus

FROM People
WHERE Age > 30

is presented in Figure 2.2. We will now describe how this query is executed.

First, the Project operator is asked for the next tuple. Project requests a tuple from the
Select operator, and Select operator request a tuple from Scan. The Scan operator reads the
next tuple from the table and passes it back to Select. Select uses this tuple to evaluate its
condition. If the tuple fails to meet the condition, then Select asks Scan for the next one.
Otherwise, the tuple is returned to Project. Project creates a new tuple with copies of Id,
Name and Age attribute values, and the computed Bonus. The new tuple is then passed
to the user and the process is repeated. When the Scan operator detects that there are no
tuples left to read, it returns a special value that marks the end of tuple stream.

2.1.4. Storage organisation

Choosing the database model and the execution model does not determine the organisation
of physical database representation, that is, the way the data is stored on persistent media.
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Figure 2.3: Example of a relation and its NSM and DSM representations (from [Zuk09]).

The most popular method is to store the tuples of a given relation one after another
in continuous manner. This approach is called N-ary storage model (NSM) and database
systems employing it are called row stores. It is depicted in the middle part of Figure 2.3.

An alternative method is to store values of each attribute separately. It is called decom-
posed storage model (DSM) and DBMSes using it are column stores. The same relation stored
in DSM is shown in the right part of Figure 2.3.

Both of these solutions have their advantages and shortcomings. Their performance differs
greatly depending on the workload and characteristics of the used database engine [ZNB08,
AMH08]. There are also mixed approaches that try to get the best of both worlds. For
example, PAX [ADHS01] stores values of different attributes separately, but it never splits
a single tuple between two or more blocks. VectorWise allows both column-wise and PAX
storage.

2.1.5. Database workload

Database systems were initially intended mostly for on-line transactional processing (OLTP)
applications. They were designed to cope with many concurrent reads and updates, with
each query accessing a relatively small number of tuples. The main goal was to minimize
the portion of the data that has to be locked in order to modify a tuple [MF04]. Example
queries from an OLTP workload include recording a bank transaction or checking price of
a product. TPC-C benchmark [TPC10] is a standard tool for comparing performance of
different database systems in OLTP applications.

On-line analytical processing (OLAP), data-mining and decision support system provide
an entirely different workload. The queries usually only use a few attributes, but may access
a large portion of tuples. The example is computing the fraction of computer games sold to
persons that are 50 or older. The most widespread OLAP benchmark is TPC-H [TPC11].

The database systems optimized for different workloads have to be designed differently to
achieve best performance. The DBMSes intended for OLTP queries are typically row stores
following the tuple-at-a-time iterative model. The ones intended for analytical workloads are
more often column stores. They sometimes employ an alternative query execution model, for
example, vectorized execution as described in Section 2.3.1.
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2.2. Compression in databases

Database systems often store data in compressed form. Compression can be applied to
persistent data — that is, to the actual content of a database — as well as to intermediate
results of query processing.

It is widely known that compression can improve the performance of a database systems
[AMF06, Aba08, GS91, RHS95, Che02]. First, the time required to transfer the data from
disk to main memory is shorter because the amount of data that has to be transferred is
reduced. The same applies to moving data from main memory to CPU cache (the topic of
in-cache decompression was explored in [ZHNB06]). Second, a bigger fraction of database
can fit in the buffer pool, so the buffer hit rate is higher. Third, data can be stored closer
together, which can be beneficial when using magnetic disks because it helps to reduce seek
times.

However, these advantages come at the price of decompression overhead. We will explore
this topic in Section 2.2.2.

2.2.1. Compression schemes

Database systems have special requirements for the compression methods rarely met by
general purpose compression schemes. For that reason many compression algorithms were
designed specially for database use [ZHNB06, GRS98, RHS95, HRSD07, RH93].1

One of the requirements is allowing fine-grained access to the data, which means that in
order to read just few values we don’t have to decompress the entire page, but only a small
fragment of it. The smaller that fragment is, the better. For example, when using dictionary
or frame of reference encoding (described below), we don’t have to decompress any excessive
data. Contrary, when using an adaptive scheme — one where the encoding is constructed
basing on previously compressed or decompressed data, e.g., LZW – the decompression of the
entire page is unavoidable. Providing fine-grained access to data is an important property
that plays a major role in designing a compression scheme for database use [ZHNB06, GRS98,
RHS95].

We will now present short descriptions of a number of compression schemes used in
database systems. For more details we refer to [RH93, Aba08].

Fixed-width dictionary encoding In dictionary encoding we map values to fixed-width
codes. A data structure for translating codes into values and values into codes is called a dic-
tionary. An example of compressing data using dictionary encoding is shown on Figure 2.4.

This compression scheme requires knowing the number of distinct values upfront, before
the compression process can begin. In practice, we have to use two-pass method: in the first
pass we count distinct values and build a dictionary, and in the second pass we compress the
data.

Dictionary encoding achieves a very high decompression speed, but it’s compression ratio
can be ruined by outliers — values that occur extremely rarely in the input, but still have to
included in the dictionary. A solution for this issue can be found for example in [ZHNB06].

1Compression algorithms designed for DBMS use — unlike general purpose compression methods — can
exploit the fact that data in a database has specific types (e.g. decimals, strings, dates). This allows better
compression ratios (defined as the ratio between the compressed data size and the original data size) and lower
CPU usage during decompression.
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input dictionary (2 bits) encoded output

ABACDAB −→

A 00

B 01

C 10

D 11

−→ 00 01 00 10 11 00 01

Figure 2.4: Example of dictionary encoding.

Huffman encoding Huffman encoding replaces occurrences of values with codes, just like
the dictionary encoding. However, the lengths of codes are variable. The values that occur
often get shorter codes, and the values that occur rarely get longer ones. To ensure no
ambiguity during decompression, no code is a prefix of another one.

Just like with dictionary encoding, we first have to determine the encoding before we
can start compressing data. If statistics are not available upfront, we have to examine the
data and determine probabilities of occurrence of different values. The actual algorithm for
deriving codes from probabilities can be found in [Huf52]. An example of Huffman-encoded
data is presented on Figure 2.5.

input probabilities encoding encoded output

ABCDBCDCDD −→

A 0.1

B 0.2

C 0.3

D 0.4

−→

A 000

B 001

C 01

D 1

−→ 000 001 01 1 001
01 1 01 1 1

Figure 2.5: Example of Huffman encoding.

Huffman encoding results in better compression ratios than dictionary encoding, but it is
also slower to decompress, because we first have to determine the length of the code. This
problem was addressed for example in [HRSD07].

Run-length encoding The run-length encoding replaces sequences of identical values by
a pair: a value and the number of its repetitions. Such a group of equal consecutive vales
is called a run. The groups of values that cannot be effectively compressed using RLE are
marked with negative run length. An example of RLE compression is shown on Figure 2.6.

input encoded output

AAAAAABBBCCCCCCC
EEEABCDEDDDDDDDD

−→ 6:A 3:B 7:C 3:E
−5:ABCDE 8:D

Figure 2.6: Example of run-length encoding.

RLE is useful for columns that contain long runs. This is typical for ones that data is
sorted on or ones that contain repeated zeroes or nulls.
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Frame of reference (prefix compression) FOR is a method for compressing numeric
data. To encode values v1, v2, . . . , vn, it first finds the minimum and maximum value. It
records mini(vi) followed by vk − mini(vi) for k = 1, 2, . . . , n. Each of those differences is
encoded using dlog2(maxi(vi) − mini(vi) + 1)e bits [ZHNB06]. An example in presented in
Figure 2.7.

input determining computing encoded
8-bit integers encoding offsets from output

base

112
108
113
110
112
109

−→
mini(vi) = 108
maxi(vi) = 113
dlog2(6)e = 3

−→

4
0
5
2
4
1

−→

01101100 = base
100
000
101
010
100
001


offsets

Figure 2.7: Example of frame of reference compression.

2.2.2. CPU cost of decompression

In the recent years we observed a growing disparity between the performance of disks and
CPUs [BMK99, Che02, ZHNB06]: the available processing power grows at much faster rate
than the disk bandwidth. The advent of multicore processors makes this disproportion even
stronger. As a consequence, database systems often have to be deployed on machines with
RAID storage constructed of tens or hundreds of disks in order to provide the required I/O
bandwidth [ZHNB06].

However, the issue of insufficient I/O bandwidth can be to some extent mitigated by
applying proper compression schemes. We will explain this idea using a model proposed
in [ZHNB06].

Let B denote I/O bandwidth, Q — query bandwidth (that is, the maximal rate at which
data could be processed, assuming that I/O is not a bottleneck), and R — resulting actual
bandwidth. We have:

R = min(B,Q)

Now, assume that the data is compressed so that the proportion between size of raw data
and size of compressed data is r > 1, and let the decompression bandwidth be C. The data
required for query execution can now be provided faster (the physical bandwidth is obviously
unchanged, but the information density is greater):

Bc = Br

On the other hand, the additional CPU time is used for decompression. One can check that:

Qc =
QC

Q+ C

Finally, we can determine the resulting bandwidth.

Rc = min(Bc, Qc) = min

(
Br,

QC

Q+ C

)
Using these equations, we will analyse the impact of compression on different queries.
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I/O bound queries If the query was I/O bound, then we have R = B < Q. Now, if the
query is still I/O bound after applying compression, then we have

Rc = Br = Rr

In other words, the performance was improved by a factor of r (usually more than threefold).

On the other hand, if the query is now CPU bound, then we have:

Rc =
QC

Q+ C

We can’t clearly say if that’s better or worse performance than before. If the difference
between Q and B was big and a light-weight compression scheme was used (that is, C is
significantly larger than B), then the query will be executed faster. However, too expensive
decompression will surely ruin the performance.

The bottom line is that if the decompression bandwidth C is much greater than the I/O
bandwidth B, then we can expect shorter execution times of I/O bound queries. Researchers
tried to exploit this effect in a number of studies, e.g., [HRSD07, GRS98, ZHNB06].

CPU bound queries We have

QC

Q+ C
< Q < B < Br

So we can conclude that

Rc =
QC

Q+ C
< Q = R

Therefore, using compression will hurt the performance of I/O bound queries. However, with
light-weight schemes this effect is much less severe that with heavy-weight ones.

2.2.3. Compression in column stores

Column stores are considered to create better opportunities for reaching high compression
ratios [Che02], because they keep values of a single attribute close together. Such values
are much more likely to expose regularities useful for compression than values of different
attributes.

Unlike in row stores, the column stores omit reading from disk attributes that are not
needed to execute a given query. This way the I/O traffic is limited to necessary data.
Therefore it often happens that either queries are not I/O but CPU bound [MF04] or at
least the difference between I/O and query bandwidth is not very high. For that reason, only
light-weight decompression methods can be used in a column stores without hindering query
execution performance.

2.3. VectorWise architecture

VectorWise [Ing] is a state-of-the-art database system [Zuk09] for analytical applications that
employs a wide range of optimizations designed specifically to exploit capabilities of modern
hardware. In this section we discuss its architecture, focusing on aspects most relevant for
this thesis.
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Figure 2.8: Example of selection vector produced by selection primitive. Elements of input
vector are compared one by one with input constant. Resulting selection vector contains
indices of elements smaller than 10.

2.3.1. Execution model

Vectors

VectorWise employs the vectorized execution model. Here, data is not passed in tuples like
in query execution engines of most other database systems, but instead it is partitioned
vertically into vectors. Each vector holds values of a single attribute from many consecutive
tuples. The number of elements in each vector is fixed and is usually in range 100 . . . 10000.

In the traditional tuple-at-a-time model, operators have to acquire tuples to process one
by one. To get next input tuple, they have to call method next() of their children operators.
Those function calls cannot be inlined, and may require preforming complex logic. As a result,
tuple-at-a-time model suffers from high interpretation overhead, that can easily dominate
query execution. In vectorized execution model, operations are always performed on all
values in a vector at once. A single call of next() method produces not a single tuple,
but a collection of vectors representing multiple tuples. Hence, the interpretation overhead is
amortized over hundreds or thousands of values, and the queries are executed more efficiently
[Zuk09].

Apart from the ordinary vectors, there is a special kind of vectors used to denote that part
of tuples must not be used during operator evaluation (e.g. because they were eliminated
by an underlying selection). These vectors are called selection vectors and hold offsets of
elements that should be used. An example of how a selection vector is created is shown
in Figure 2.8.

Primitives

The operations working directly on data stored in vectors are usually executed using primi-
tives. Primitives are simple functions, that are easy to optimize for a compiler and achieve
high performance on modern CPUs. They are designed to allow SIMDization (using special
instructions simultaneously performing the same operation on multiple input values) and
out-of-order execution (reordering instructions by the CPU to avoid being idle while the data
is retrieved), and to efficiently use CPU cache.

Primitives are identified by signatures, which describe the performed operation and types
of input and output. For example, the signature map add sint col sint val represents
signed integer (sint) addition (map add) of a vector (col — column) and a constant (val
– value). Such a primitive is implemented with code similar to this [Zuk09]:

int
map_add_sint_col_sint_val(int n, sint *result, sint *param1, sint *param2)

13



{
for (int i = 0; i < n; i++)

result[i] = param1[i] + *param2;
return n;

}

Expressions

Expressions are objects that are responsible for executing primitives. They bind a primitive
to its arguments and provide a vector to store the results. Expressions are organized in a tree
structure and they are evaluated recursively. Hence, the evaluation of an expression results
in evaluation of its children expressions.

For example, in order to compute
x+ y

1 +
√
z

where x, y and z are attributes of type dbl, we would have to construct following tree of
expressions:

Expression with
map / dbl col dbl col

Expression with
map add dbl col dbl col

Column
x

Column
y

Expression with
map add dbl val dbl col

Constant
1

Expression with
map sqrt dbl col

Column
z

Operators

As we explained earlier, query plans are composed of operators that loosely match the rela-
tional algebra operators. They contain generic logic for performing different operations like
joins or selections. Operators do not manipulate data directly, but instead use appropri-
ate primitives, often wrapped in expressions. More information about this topic is available
in [Zuk09].

The following list contains descriptions of VectorWise operators. It does not feature all
of the operators, but only ones that are used later in this thesis.

• Scan is responsible for communicating with the storage layer to obtain table data
required for query processing.

• Project can introduce new columns with values computed from input columns. It can
also rename or remove columns.

• Select returns the tuples that match a given predicate, and discard the others.
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• Aggr divides tuples into groups and compute statistical functions (max, min, sum,
count) for each of the groups. We call it aggregation, the columns used for dividing
tuples are grouping columns or group-by columns, and the results of statistical functions
are aggregates. Aggr can also be used for duplicate elimination.

• Sort returns exactly the same tuples as it consumes, but in different ordering, deter-
mined by the values in sort columns.

• TopN also returns sorted tuples, but only first N of them, while the rest is discarded.

• HashJoin processes two streams of tuples. It matches and returns pairs of tuples from
different streams that have equal values in key columns. For that purpose, it uses a hash
table.

• CartProd also processes two streams of tuples, but returns all the possible combina-
tions of pairs of tuples from different streams.

2.3.2. Compression in VectorWise

VectorWise is intended for analytical workloads, so it uses column-wise storage [Zuk09] (see
Section 2.1.4). That is, it partitions data vertically and stores values of each attribute sepa-
rately. As we explained, this creates much better opportunities for using compression effec-
tively than the row-wise storage, because the data from the same domain and with similar
distribution is stored near each other.

In VectorWise, compression is used to obtain better query execution performance, rather
than to save storage space, but there is no notion of compressed execution. All the data is
decompressed before passing it to the scan operator [ZHNB07].

Different parts of a single column may be compressed using different compression schemes.
In VectorWise, the most appropriate scheme is chosen for each part automatically by analysing
samples of data, and picking the scheme that offers best compression ratio. It is also possible
to assign a fixed compression scheme to a column.

To match the vectorized execution model, the decompression process is performed with
a granularity of a vector. Scan does not request the next tuple or value from the storage
layer, but instead it asks for an entire vector. This way the decompression can be performed
more effectively, because the overheads are amortized across a large number of values.

VectorWise employs a number of light-weight compression methods. Some of them were
designed specifically to exploit the capabilities of super-scalar CPUs [ZHNB06].

2.4. Compressed Execution

The traditional approach to compression in database systems is to eagerly decompress all the
data. The decompression may take place before the data is placed in I/O buffer (see Figure
2.9a), or before it is passed to processing layer (see Figure 2.9b). This way the execution
engine can be kept completely oblivious of data compression, but also many optimization
opportunities are wasted.

An alternative approach is to employ compressed execution, that is to allow passing the
data from storage layer and between operators in compressed form. The decompression is
then performed only when it’s needed to operate on data (see Figure 2.9c). This way the
amount of memory required for query execution can be reduced, unnecessary decompression
can be avoided and even some of the operations can be performed directly on compressed
data. However, this method also creates its own new challenges.
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Figure 2.9: Different stages at which decompression can be performed.

2.4.1. Early research

The idea of compressed execution was first proposed by Goetz Graefe and Leonard D. Shapiro
in their work from 1991 [GS91]. They focused mainly on reducing the usage of memory space,
because spilling data to disks during joins, aggregations and sorting was a major issue at the
time. Hence, they proposed to delay the decompression as long as possible. We call this
approach lazy decompression, as opposed to traditional eager decompression.

Graefe and Shapiro assumed that each value is encoded separately, and that a fixed
encoding scheme is used for each domain. They pointed out that a number of operations
can be performed directly on the values compressed this way. The codes can be used for
equality checks, as join attributes, for duplicate elimination and as grouping attributes in
aggregations. Moreover, when values have to be copied, for example during projections or
materialization of join results, the decompression of values would even be harming, since it
would increase the amount of data to copy.

We should notice that this work had a purely theoretical character. The authors did not
implement the proposed solutions, but just made estimations based on a simple model taking
into account the number of I/O operations.

2.4.2. Avoiding decompression

There were many studies that focused on delaying or avoiding decompression. Their authors
did not aim to actually perform operations on compressed data, but rather to analyse when
and how the data should be decompressed.

Westmann et al. proposed in [WKHM00] to modify the standard next() method, so
that it returns not only a pointer to the tuple, but also a set of values from this tuple. This
set would initially be empty, but whenever a value from a given tuple would be decompressed,
it would be added to the set. This way no value would have to be decompressed twice.

Chen et al. in [CGK01] suggested to use transient operators, that is, ones that internally
work on decompressed values, but return compressed results. They argued that lazy decom-
pression can lead to suboptimal execution times, since once the data gets decompressed, it
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Predicate to evaluate A = 0 AND C=2

Placement of codes in a bank
empty A B C

1 bit 2 bits 2 bits 3 bits

Translating constants into codes
A dictionary[0] = 11
C dictionary[2] = 101

Resulting expression to evaluate (x BIT-AND 01100111) == 01100101

Figure 2.10: Example of converting conjuction of predicates into bit-wise operations on banks.

stays decompressed, which can increase the size of intermediate results and the number or
required disk accesses for following operations like joins and sorting.

They also stressed the importance of taking compression into account while searching for
the best query plan. The query optimizer should decide when to use eager, lazy or transient
decompression, and adjust its estimates accordingly.

2.4.3. Simultaneous predicate evaluation

Johnson et al. argued in [JRSS08] that queries in decision support systems usually consist of
an aggregation over a subset of tuples which have to meet tens of predicates. They give an
example of a WHERE clause of a query from customer workload which illustrates this property:

WHERE A = a AND B = b AND C IN (c, d) AND D = 0
AND E = 0 AND F <= 11 AND G >= 2
AND H IN (e,f) AND (I IN (g,h) OR I > j)
AND { nine other clauses }

They pointed that efficient evaluation of those predicates is critical for query performance
and proposed a method of compressed execution designed for that purpose.

Johnson et al. proposed to use an order-preserving dictionary encoding for all of the at-
tributes. To make the compression more efficient, they partitioned the relations horizontally,
and used a separate set of dictionaries for each of the partitions.

The codes were packed into 128-bit wide banks, each containing values from many columns.
The banks for a given set of columns were stored one after another. In other words, this so-
lution does not use row-wise or column-wise, but a special bank-wise storage.

Johnson et al. decided to translate the predicates on attributes to bit-wise operations on
banks. A single CPU instruction operates on the entire bank, with many encoded attributes.
This way a number of predicates can be evaluated in parallel. The translation rules are in
general much too complicated to describe here, but we provide an example of one of the rules
in Figure 2.10 to give the reader an idea of how such parallel evaluation can be executed.

Unfortunately, this approach is designed for a relatively small class of queries, and it is
not clear whether it can perform well in more general workloads. Moreover, it implies very
serious modifications in the execution and storage layer. It allows only a single compression
scheme and needs a specialized bank-wise storage. Also, the series of operations on banks
have to be compiled for each of the partitions separately.

17



2.4.4. Code explosion problem

Abadi et al. focused on integrating a number of compression schemes into a column store [AMF06].
They wanted to actually operate on the compressed data whenever possible, not just avoid
the decompression. However, they observed that if no preventive steps are taken, then with
each new compression technique the operators code will become more and more complex,
since new special cases will have to be implemented for different combinations of compres-
sion schemes in the input attributes. Also, they wanted to avoid exposing the details of
compression to operators as much as possible.

To solve those problems, Abadi et al. decided to wrap the compressed data in special
objects — compressed blocks — that would provide a uniform interface for accessing the data
and its properties. This way the code of operators was not depending on implementation of
individual compression schemes, but only on compressed blocks interface.

Abadi et al. proposed three Boolean properties of compressed blocks. The isOneValue
property was set, if all values in a given block were identical. The isValueSorted denoted
that values in a given block were stored in a sorted order. The isPosContig was true,
if the values formed a consecutive subset of a column. These three properties were used to
decide on the optimal handling of data by an operator.

As an example, consider properties of RLE-compressed blocks, each containing a single
run. All values in a run are identical, and equal values are naturally sorted, so isOneValue
= TRUE and isValueSorted = TRUE. Moreover, each run is a continuous fragment of
a column, hence isPosContig = TRUE.

Access to the data was possible through one of two functions: getValue() and asArray().
The first one transiently decompressed a value, and returned it together with its position in
the table. The latter one decompressed all the values in a compressed block and returned
them as an array.

2.4.5. Compression techniques

We will now discuss the compression methods chose for compressed execution.

• Definitely the most popular encoding scheme was dictionary encoding. It was used in
all the above approaches because of ease of decompression and possibility of checking
equality of values without decompression. If the encoding was order-preserving, the
range comparisons were possible as well. The study of Abadi et al. recommends this
scheme for all the attributes with anywhere between 50 and 50.000 values, that do not
have runs that could be exploited by RLE.

• The RLE was considered by Abadi et al. the best choice for all the attributes that
have runs of average length at least 4. A number of operations — comparisons, hash-
ing, computing aggregates, duplicate elimination — could be performed once per run,
instead of once per value. However, this scheme was useful only for column stores,
because of difficult decompression in row stores.

• Abadi et al. pointed that bit-vector encoding is well suited for attributes with small
number of distinct values that does not compress well with RLE. Similar to RLE, the
bit-vector encoding provides groups of identical values. However, it is only useful if we
accept processing values out of order.

• The Lempel-Ziv compression techniques were used as well, but the only benefit that
can be achieved with them is by delayed decompression, because they do not expose
any useful properties of data.
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In addition, for some of the compression schemes special variants were designed, to
make them more useful in compressed execution. For example, Holloway et al.proposed
in [HRSD07] a method of reordering the nodes of Huffman tree, which allows range compar-
isons without decompression.

2.5. Compressed execution in context of VectorWise

Our objective was to integrate compressed execution into the VectorWise DBMS. We wanted
to achieve significant performance improvements, but also to avoid any major and invasive
modifications of the database engine. We wished the changes to be as transparent and non-
intrusive as possible, and likely to be implemented in a limited time. We focused on benefiting
in the most common cases, rather than on chasing every bit of optimization opportunity. We
reviewed the solutions for compressed execution described in previous section to determine
if they can be successfully adapted to our needs. We summarize our observations below.

Chen et al. and Westmann et al. focused on lazy and transient decompression. However,
the savings in decompression time are becoming less important with the advent of multi-core
processors and growing available CPU power. The disk spills during joins or aggregations are
problems of small concern in VectorWise, since these operations are usually executed within
main memory. Moreover, the decompression in VectorWise is performed at the granularity
of a vector, because decoding each value separately would introduce a significant overhead.
Since it is relatively unlikely that no value in a vector will be used, a vectorized database
system creates much fewer opportunities to avoid decompression. Hence, we do not anticipate
any notable performance improvements to be achieved using these methods.

The solution proposed by Johnson et al., that is, simultaneous evaluation of predicates
using banks, is not well suited for VectorWise. First of all, to employ it, the storage layer
would have to be converted to store the data not column-wise, but bank-wise, which is a major
modification to the DBMS. Second, it allows only dictionary compression and demands that
encoding is fixed for horizontal partitions. This in not in line with the design of VectorWise
storage layer, where each column is independent from the others. Most importantly, this
approach only covers a very limited set of queries. VectorWise is intended for more general
workloads, and turning to the bank-wise storage would most probably hurt the performance
of other queries.

The approach presented by Abadi et al. poorly fits the architecture of VectorWise en-
gine. Implementing it would require a major reengineering effort. It is also not clear how to
make this solution compatible with vectorized execution model without hindering the perfor-
mance. The compressed blocks may contain arbitrary number of values, while the operators
in VectorWise expect identical number of values in each of the input vectors. Hence, the
vectors would have to be represented by a collection of compressed blocks and some of the
compressed blocks would have to be split between the vectors. Operating on such collections
would introduce prohibitive overheads.

Moreover, Abadi et al. assumed that a large number of compression schemes would be
used and focused on preventing code explosion. However, for most data distribution only
a very small subset of compression algorithms provides optimal or close to optimal benefits.
Our aim is not to employ as many compression techniques as possible, but to find and employ
the ones that are really useful.

Our investigation suggests that compressed execution provides significant performance
optimization potential, but the techniques proposed so far does not seem to fit the VectorWise
system. For that reason, we decided to search for alternative methods. In the reminder of
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this thesis we will describe techniques that achieve most of possible benefits, and at the same
time are non-intrusive and easy to implement.

2.6. Summary

This chapter explained the concept and architecture of database management systems. We
discussed the role of data compression in DBMSes and presented the idea of compressed
execution. We also described the basic aspects of VectorWise — an analytical database
system on which we decided to focus in this project. Then, previous research on compressed
execution was reviewed in context of VectorWise. We concluded that none of solutions
proposed so far fits well the architecture of this DBMS. Therefore, in order to integrate
compressed execution in VectorWise and avoid major reengineering, we have to seek for new
methods.
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Chapter 3

Run-Length Encoding

Run-Length Encoding, described in Section 2.2.1, allows compressing sequences of repeating
values. This encoding method was shown to be particularly useful for compressed execution
purposes in previous research [AMF06].

In this section, we will discuss the difficulties of making a vectorized database engine
capable of operating on RLE-compressed data. We will then propose a solution inspired by
RLE, that allows achieving significant performance improvements while having a minimal
impact on the database engine.

3.1. Challenges of RLE-compressed execution

Introducing execution on RLE-compressed vectors into a database engine is a task with many
pitfalls. We will now describe some of the basic challenges that must be faced during this
process.

3.1.1. Achieving compatibility with original code

The use of RLE-compressed data during query execution requires making the whole engine
able to deal with a new data representation. Instead, one could try reusing existing code.
This can be achieved by providing a function that converts an RLE-compressed vector into an
ordinary one and then making sure that each operator or expression that cannot work directly
on RLE-compressed data will use this function before accessing the content of a vector.
Depending on how the database engine is actually implemented, the second part may or may
not be a trivial task.

3.1.2. Increase in amount of code

In order to benefit from RLE-compressed execution, we have to extend the engine with new,
RLE-aware code. The volume of code that has to be introduced can prove surprisingly large.

For example, let us consider a simple function that subtracts two vectors (a primitive
map - sint col sint col()). To make it RLE-aware, we have to provide four versions of
this function: one operating on two ordinary vectors, one operating on two RLE-compressed
vector, and two operating on one ordinary and one RLE-compressed vector. If we want to
have a choice between producing a result that is either ordinary or RLE-compressed vector,
the number of versions doubles.

The different variants can often be automatically generated, but nonetheless such an
increase in the amount of code is undesired and should be avoided if possible.
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3.1.3. Selection vectors

Selection vectors, described in Section 2.3.1, create a challenge for RLE-compressed execu-
tion. Due to how the selection vectors are represented in VectorWise it cannot be determined
in a constant time if at least one value in a given run is selected. Hence, without search-
ing through the selection vector we cannot tell if computations for a given run should be
performed at all.

For some operations this problem can be evaded by ignoring the selection vector. The
computations are then performed for all runs, as if all values were selected. We call this
method full computation.

Unfortunately, full computation is only suitable for a limited set of operations which
cannot result in failures. For example, execution of primitive map == sint col sint col
will always succeed, because comparing any two numbers will produce a valid result. On the
other hand, many operations does not have this property. For example, full computation for
primitive map / sint col sint col may result in a ‘division by zero’ error.

3.1.4. Variation in data clustering

It may happen that some parts of a column are well suited for RLE-compression (identical
values are clustered together), while others are not. Using RLE-compressed vectors to repre-
sent data from the first ones can bring performance improvements, while using them for the
latter ones will only create an additional overhead.

Therefore, we should allow a scan operator to produce a mix of ordinary and RLE-
compressed vectors, depending on their content. As a result, each and every expression and
operator must be capable of handling any sequence of different kinds of vectors. A proper
implementation cannot be chosen upfront while building an operator tree — it has to be
selected dynamically during query execution.

3.2. Proposed solution

Our objective was to keep part of the benefits of RLE-compressed execution while limiting
the impact on a database engine, simplifying implementation and avoiding the challenges
described above. The RLE-compressed execution achieves reduced CPU-cost by performing
operations once per run — a group of consecutive equal values — instead of once per value,
and we aimed to exploit the same mechanism.

We propose not to introduce a new data representation for fully RLE-compressed data.
Instead we shall focus entirely on vectors that hold values that are all equal, i.e. vectors that
consist of a single run. We will call them constant vectors. In order to denote this property,
we only have to add a single Boolean flag to a vector data structure. However, unlike with
RLE, even a constant vector will still have to contain all values in order to ensure that it can
be safely used in the same way as all the other vectors.1

This approach makes it easier to overcome the challenges described before. The problem
of code compatibility is evaded by using a single data representation. The original code
will be oblivious to whether vectors are constant or not. These parts will not achieve any
performance improvements, but at least will not lose correctness. The increase of amount
of code can be limited by reusing code that is already a part of the system. This process
is described in Section 3.2.2. The presence of selection vector is no longer a problem: in

1This assumption is made to avoid engineering difficulties emerging due to how VectorWise was imple-
mented. We will later show that it actually causes a significant overhead and discuss abandoning it.
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a constant vector all values are equal, so it only matters how many values are selected, but
not which ones exactly. Finally, since there is no structural difference between constant and
non-constant vectors, this method is not spoiled by variations in data clustering.

3.2.1. Detecting constant vectors

The scan operator should mark some of produced vectors as constant. It is not necessary
to detect all of the constant vectors, as false negative may only harm performance, but not
correctness. We should aim at marking as many as possible while keeping the CPU-cost low.

Non-string attributes We first decided to only try to find constant vectors for data stored
in RLE-compressed disk blocks. There are two reasons for this:

1. Checking if a vector is constant during RLE decompression is very cheap in terms of
CPU-time, while the same is not true for other compression schemes in VectorWise.

2. For a column that can produce a significant fraction of constant vectors (i.e. has plenty
of very long runs) RLE is most probably the best suited compression scheme. Then
columns for which a different compression scheme is better suited are less likely to give
us a lot of constant vectors.

String attributes A workaround was required for string attributes, because there is cur-
rently no implementation of RLE-compression for strings in VectorWise.

We decided to manually check each vector produced by scan operator, i.e. compare its
values one-by-one. This introduces a significant overhead, that is unacceptable in production
code. However, this overhead is easy to accurately measure. It is also easy to avoid by
implementing an appropriate compression scheme. Hence, we decided that this method can
be used for the purpose of this thesis.

3.2.2. Changes in expressions

We will now discuss how to modify the expression object, so that it can seize the opportunities
provided by constant vectors.

Primitives

As we explained in Section 2.3.1, expressions have an assigned primitive that they are re-
sponsible for calling. Each kind of primitive comes in many variations, depending on what
kind of arguments it is intended for. The arguments may be vectors (represented by col in
primitive’s signature) or constants (represented by val).

Primitive swapping

Let us notice that constant vectors can often be treated as if they were just a single value.
For example, consider primitive map + dbl col dbl col. It can be intuitively written

as:

for(i = 0; i < n; i++)
result[i] = param1[i] + param2[i];

Assume that the second argument is a constant vector. There is no need to actually read the
content of this vector. Instead we can do:
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for(i = 0; i < n; i++)
result[i] = param1[i] + *param2;

This approach should be beneficial, as it requires moving less data from memory to CPU
registers and can improve cache utilisation.

The second listing is simply the map + dbl col dbl val primitive. Hence, a similar
primitive — one that has a val instead of col in its name — can be called instead of the
default one. The same idea can be applied to many different primitives.

We propose to choose the most appropriate primitives dynamically during query execu-
tion. This decision should depend entirely on whenever argument vectors are constant or
not. We call this process primitive swapping.

Implementation

In order to make primitive swapping possible, we have to modify the expression object. Those
changes can be divided in two categories: those that come into effect when the operator tree
is constructed, and those that come into effect whenever a primitive has to be executed.

• Build phase

During the construction of the operator tree, the expressions determine which primitives
they should use. Normally they only choose one primitive, and use it during the whole
query execution.

However, in our proposal they have to retrieve not only a single primitive, but also
all the primitives that it can be swapped for. Determining which primitives should
be selected is not difficult. After finding the default primitive, we can easily construct
their names through simple string operations (substituting col for val in the primitive
name).

This process might be laborious, but it only takes place once per expression.

• Execute phase

Every time an expression is evaluated and a primitive has to be called, the argument
vectors should be examined. Depending on whether any or all of those vectors are
constant, an appropriate primitive has to be chosen: the more vals in the name (instead
of cols) the better, but each new val must match an argument that is a constant
vector.

Making this decision has to introduce some additional interpretation overhead. How-
ever, it can be effectively implemented. We propose to prepare a table with choices
for all possible combinations of constant and non-constant argument vectors at build
time. Each argument vector would correspond to one bit in table index. In order to
choose the right primitive, we’d only have to iterate over all argument vectors and set
a proper bit for every non-constant one. An example of this procedure is presented on
Figure 3.1.

Caveats

The described approach allows us to ‘recycle’ code that is already a part of the system for
compressed execution. However, it also has a certain disadvantage: the result type (a vector
or a value) of a primitive is determined implicitly from the types of its arguments. This
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(a) Table of primitive choices (created at build time):

Index Primitive

002 = 0 map add sint val sint val
012 = 1 map add sint val sint col
102 = 2 map add sint col sint val
112 = 3 map add sint col sint col

(b) Computing index (performed for each expression evaluation):

1 0 2 = 2

↗ ↖
is constant(param1) == FALSE is constant(param2) == TRUE

(c) Selected primitive:

102 = 2 map add sint col sint val

Figure 3.1: Choosing best primitve in expression with map add sint col sint col func-
tion.

means that, for example, the result of the primitive map + dbl val dbl col is a vector,
while the result of map + dbl val dbl val is just a single value.

We decided to keep an original data representation, and therefore each constant vector
actually has to contain all those equal values. Hence, whenever swapping of primitives affects
the result type (changing it from a vector to a value), we have to manually ‘fill’ the result
vector with copies of value returned by a primitive. Luckily, those situations are easy to
identify.

The necessity of ‘filling’ constant vectors introduces a significant overhead, but it does
not make using constant vectors pointless. We will examine this overhead and explain how
to remove it in Section 3.3.4.

The performance of constant vectors optimization strongly depends on choosing correct
vector size for a given data. We will explain this problem in Section 3.4.

3.2.3. Impact on operators

We discussed the modifications of expressions needed to make them aware of constant vectors.
Those changes alone can bring notable performance benefits. However, not all optimization
opportunities of constant vectors can be exploited by altering only the way expressions are
evaluated. While some operators — e.g. Project — can benefit fully from constant vectors
without any changes to their code, others require some modifications.

As an example we will now examine the aggregation operator.

The work of Aggr operator proceeds in two phases:

• a build phase when it consumes the input data and computes all aggregates,
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• and a produce phase when it outputs the results of the previous phase.

There are no opportunities to use constant vectors in the latter, so we will focus on the build
phase.

The first step in the build phase is to divide the input into groups that refer to certain
values of attributes from GROUP BY clause. Depending on the type of those attributes, this
operation can be performed in one of two ways:

• Direct aggregation — the group number is computed arithmetically from the values of
group-by attributes. This computation is performed using expressions, so it benefits
from constant vectors without any modifications.

• Hash aggregation — the group number is determined using a hash table. First, the hash
values for all group-by attributes are computed through a proper expression. Then
a lookup-or-insert function working on a hash table is called. For constant vectors it
is enough to perform this operation once for entire vector, instead of repeating it for
each value in a vector. Therefore an additional if statement should be added to hash
aggregation code.

The second and final step is updating the aggregates. Here primitives computing sum, mini-
mum, maximum, count, etc. are called. For this purpose expressions are used and constant
vectors optimizations are applied automatically.

3.3. Experiments

3.3.1. About the benchmark

We decided to test the constant vector implementation against real-life data. We used records
of USA domestic flights from October 1988 to August 2009 [Res11]. The data consisted of
a single table Ontime with ca. 125 millions of rows.

We run a set of 10 queries, that we will refer to as On-Time benchmark. They were
previously used to compare performance of different analytical DBMSs [Tka09, Ker10].

Ontime table

The Ontime table had 93 columns of various types, but only a small subset of them was
used during the benchmark. Below we present the schema definition of Ontime table with
unused columns omitted.

CREATE TABLE "Ontime" (
"Year" SMALLINT DEFAULT NULL,
...
"Month" TINYINT DEFAULT NULL,
...
"DayOfWeek" TINYINT DEFAULT NULL,
...
"Carrier" CHAR(2) DEFAULT NULL,
...
"Origin" CHAR(5) DEFAULT NULL,
"OriginCityName" VARCHAR(100) DEFAULT NULL,
...
"DestCityName" VARCHAR(100) DEFAULT NULL,
...
"DepDelay" DECIMAL(8,2) DEFAULT NULL,
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Figure 3.2: The value runs in On-Time dataset.

...
);

Value runs

We decided to investigate to what extent different columns of the Ontime table are suitable
for RLE-compression. We examined lengths of value runs in each of them. The data was
not sorted, but instead kept in the same order in which it was provided. The results are
presented in Figure 3.2.

Since the data is naturally sorted on Year and Month, these two columns provide the
longest runs of equal values. The scan operation on those columns should produce almost
exclusively constant vectors. Therefore, we decided to use RLE-compression for Year and
Month.

Carrier is a string column that consists of relatively long runs — 67% of all values
are in runs of length at least 213. We can anticipate that a scan of Carrier will return
a significant fraction of constant vectors if only the vector size is not greater than 212.

Finally, DestCityName could provide a bit more than 20% of constant vectors for vector
size 210. The other columns do not create an opportunity to use our optimization.

Note that the plot lines for Carrier and DestCityName have middle sections that are
notably less steep. It is a consequence of non-homogeneous data clustering in the dataset.
All data is sorted on Year and Month, but then within a single month it may be clustered in
many ways. This results in dramatically different run lengths in parts of columns belonging
to different months.
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Column name Constant vectors

Carrier 87.3–96.2%

DayOfWeek 0.0%

DepDelay 0.0%

DestCityName 41.7%

Month 99.8%

Origin 1.0%

OriginCityName 0.3%

Year 99.9%

Table 3.1: Fraction of constant vectors produced during execution of On-Time queries. Note
that these values differ from ones presented in Figure 3.2 due to non-homogenous data clus-
tering.

Figure 3.3: Execution times of queries from On-Time benchmark with and without constant
vectors optimization.

3.3.2. Results

All test were executed on Intel(R) Quad Core CPU Q6600 @ 2.40GHz platform with 8 GB
RAM. The reported results are mean times of query execution with hot disk buffers, i.e. no
data had to be read from disk. We used the default vector size of 1024.

The results for entire benchmark are presented in Figures 3.3 and 3.4, as well as listed in
Table 3.2. The queries and their operator trees are shown in Figures from 3.5 to 3.14. The
fractions of constant vectors produced from each column while executing those queries are
listed in Table 3.1. We will now discuss benchmark results in detail.
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Figure 3.4: Execution times of queries from On-Time benchmark while using constant vectors
compared to original VectorWise results.

Query Q0 Q1 Q2 Q3 Q4

Execution time:
– original 4869.6 1489.8 2106.2 3662.0 496.6
– with constant vectors 2884.5 1332.0 2051.5 3685.7 474.2
– change −40.7% −10.6% −2.6% +0.6% −4.5%

Query Q5 Q6 Q7 Q8 Q9

Execution time:
– original 1053.0 7838.3 5020.2 19049.9 1570.6
– with constant vectors 778.8 6213.2 4111.7 19813.0 723.9
– change −26.0% −20.7% −18.1% +4.0% −53.9%

Table 3.2: Execution times of queries from On-Time benchmark.

Query 0

The majority of query execution time is spent in direct aggregation Aggr1 that uses Year and
Month as group-by columns, and consumes ca. 125 millions of tuples. The use of constant
vectors reduces the aggregation time by 65%.

As we described in Section 3.2.3, the direct aggregation consists of two steps: (a) comput-
ing identifiers of groups to which each tuple belongs (through map directgrp* primitives),
and (b) updating appropriate aggregates (through aggr* primitives). The first part can be
only slightly improved by use of constant vectors, because vector filling is necessary. However,
the second part benefits greatly, because for aggr* primitives there is no such need.
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WITH T AS (
SELECT Year,

Month,
COUNT(*) AS C

FROM Ontime
GROUP BY Year,

Month
)

SELECT AVG(C)
FROM T;

Project

Aggr2

Aggr1

Scan

Figure 3.5: Query 0 from On-Time benchmark and its operator tree.

SELECT DayOfWeek,
COUNT(*) AS C

FROM Ontime
WHERE Year BETWEEN 2000 AND 2008
GROUP BY DayOfWeek
ORDER BY C DESC;

Sort

Project

Aggr

Select2

Select1

Scan

Figure 3.6: Query 1 from On-Time benchmark and its operator tree.

SELECT DayOfWeek,
COUNT(*) AS C

FROM Ontime
WHERE DepDelay > 10

AND Year BETWEEN 2000 AND 2008
GROUP BY DayOfWeek
ORDER BY C DESC;

Sort

Project

Aggr

Select3

Select2

Select1

Scan

Figure 3.7: Query 2 from On-Time benchmark and its operator tree.
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SELECT FIRST 10
Origin,
COUNT(*) AS C

FROM Ontime
WHERE DepDelay > 10

AND Year BETWEEN 2000 AND 2008
GROUP BY Origin
ORDER BY C DESC;

TopN

Project

Aggr

Select3

Select2

Select1

Scan

Figure 3.8: Query 3 from On-Time benchmark and its operator tree.

SELECT Carrier,
COUNT(*)

FROM Ontime
WHERE DepDelay > 10

AND Year = 2007
GROUP BY Carrier
ORDER BY 2 DESC;

Sort

Project

Aggr

Select2

Select1

Scan

Figure 3.9: Query 4 from On-Time benchmark and its operator tree.

WITH T AS (
SELECT Carrier,

COUNT(*) AS C
FROM Ontime
WHERE DepDelay > 10

AND Year = 2007
GROUP BY Carrier
),

T2 AS (
SELECT Carrier,

COUNT(*) AS C2
FROM Ontime
WHERE Year = 2007
GROUP BY Carrier
)

SELECT T.Carrier,
C,
C2,
C*1000/C2 AS C3

FROM T JOIN T2 ON
T.Carrier = T2.Carrier

ORDER BY C3 DESC;

Sort

Project

HashJoin

Aggr1

Select2

Select1

Scan1

Aggr2

Select3

Scan2

Figure 3.10: Query 5 from On-Time benchmark and its operator tree.
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WITH T AS (
SELECT Carrier,

COUNT(*) AS C
FROM Ontime
WHERE DepDelay > 10

AND Year BETWEEN 2000 AND 2008
GROUP BY Carrier
),

T2 AS (
SELECT Carrier,

COUNT(*) AS C2
FROM Ontime
WHERE Year BETWEEN 2000 AND 2008
GROUP BY Carrier

)
SELECT T.Carrier,

C,
C2,
C*1000/C2 AS C3

FROM T JOIN T2 ON
T.Carrier = T2.Carrier

ORDER BY C3 DESC;

Sort

Project

HashJoin

Aggr1

Select3

Select2

Select1

Scan1

Aggr2

Select5

Select4

Scan2

Figure 3.11: Query 6 from On-Time benchmark and its operator tree.

WITH T AS (
SELECT Year,

COUNT(*) * 1000 AS C1
FROM Ontime
WHERE DepDelay > 10
GROUP BY Year
),

T2 AS (
SELECT Year,

COUNT(*) AS C2
FROM Ontime
GROUP BY Year
)

SELECT T.Year,
C1/C2

FROM T JOIN T2 ON
T.Year = T2.Year;

Project

HashJoin

Aggr1

Select

Scan1

Aggr2

Scan2

Figure 3.12: Query 7 from On-Time benchmark and its operator tree.

SELECT FIRST 10
DestCityName,
COUNT(DISTINCT OriginCityName)

FROM Ontime
WHERE Year BETWEEN 1990 AND 2000
GROUP BY DestCityName
ORDER BY 2 DESC;

TopN

Project

Aggr

Select2

Select1

Scan

Figure 3.13: Query 8 from On-Time benchmark and its operator tree.
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SELECT Year,
COUNT(*) AS C1

FROM Ontime
GROUP BY Year;

Project

Aggr

Scan

Figure 3.14: Query 9 from On-Time benchmark and its operator tree.

Query 1

The aggregation in query 1 takes over 30% of execution time. Unfortunately, it uses the
DayOfWeek column which does not produce constant vectors. Thus our optimization does
not give any benefits for this operator. However, the two selections on Year that constitute
together 41% of execution time are improved by 18%. This results in a 10.6% shorter total
time.

Query 2

The only operators that can benefit from constant vectors in this query are selections on
Year, that is Select2 and Select3. They take 11% less time. However, Scan and Select1 are
much more expensive operators, so the impact on total time is only 2.6%.

Query 3

Both the aggregation operator and Select1 are using columns that do not provide constant
vectors, i.e. Origin and DepDelay. They cannot benefit from our optimization. The
Select2 and Select3 work on the Year column. When using constant vectors they become
16% and 14% faster. However, only a very small part of execution time is spent on those
operators, so it has negligible impact on total time. The query is now 0.6% slower.

Query 4

The Select2 operator (originally 11% of total time) works on Year column. Our optimization
reduces its time by 27%. The aggregation (originally 26% of total time) uses Carrier as
a group-by column. The data for year 2007 in this column forms long runs (as we mentioned
before, data clustering is different in different parts of data set), so it provides 96.2% of
constant vectors. The aggregation time is now reduced by over 70%. The other operators do
not benefit from constant vectors. Due to a slowdown of scan operator (we will discuss it in
Section 3.3.3) we only achieve a 4.5% improvement in query execution time.

Query 5

There are two selections on Year column: Select1 and Select3, that constitute 10% of original
query time. They were improved by 43%. The Select2 operator works on DepDelay and it
did not benefit from our optimization. The two aggregations originally took almost half of
execution time. They use Carrier as a group-by column which provides 96.2% of constant
vectors. Now Aggr1 is 71.5% faster and Aggr2 is 85.4% faster. However, the query perfor-
mance suffers from spending more time in the scan operator. The total time was reduced by
26.0%.
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Query 6

There are four selections working on Year column in this query: Select2, Select3, Select4

and Select5. They were taking 11% of query time. They were improved by 16.3%. The
Select1 operator uses DepDelay column and cannot benefit from constant vectors. Both
aggregation operators use Carrier as group-by column. It provides 87.3% of constant
vectors. The aggregations are now 60.4% and 77.5% faster than before. Query execution
time is now 20.7% shorter, even though query performance suffers due to slower scan.

Query 7

There are two aggregations using Year as a group-by column. They were previously taking
29% of query execution time. With our optimizations they are now 49.2% and 80.6% faster.
The selection cannot be improved, because it works on column DepDelay, that does not
include long value runs. This query is now running 18.1% faster.

Query 8

The query execution time is completely dominated by scan and aggregation operators. The
aggregation cannot benefit from our optimization, because it first computes hashes for column
OriginCityName that does not provide constant vectors. The query optimizer could choose
different order of computing hashes: first for DestCityName (which gives over 40% of
constant vectors), and then for OriginCityName. This way benefiting from constant vectors
would be possible. The scan operation is now slower, which results in 4% longer total time.

Query 9

The aggregation using Year column constituted 70% of original query time. While using
constant vectors this operator is over 80% faster. The total time was reduced by 53.9%.

Conclusions

We showed that 8 out of 10 queries of On-Time benchmark benefit from using constant
vectors, and 6 of them are more than 10% faster than before. The optimization proved espe-
cially useful in a situation where constant vectors appear in group-by column of aggregation
operator.

However, we also witnessed slowdown of scan operator in 4 queries. For this reason, query
8 takes 4.0% longer than before.

We now know that constant vectors can bring significant benefits, but this approach also
has shortcomings that have to be eliminated. We will examine those flaws and methods of
removing them in the following sections.

3.3.3. Detecting constant string vectors

We observed that the scan operators in queries 4, 5, 6 and 8 took much more time when
using constant vectors than before.

As we stated in Section 3.2.1, each string vector produced by scan operator had to be
examined, in order to determine whenever it is constant or not. The values had to be
compared one-by-one, until either unequal values were found, or all values were checked.

This approach resulted in notable slowdown of scan operator in queries that use string
columns, and especially those which provide a significant amount of constant vectors.

34



Figure 3.15: The overhead introduced by detection of constant string vectors and the esti-
mated relative execution times after eliminating this overhead.

Impact on the benchmark results

We measured the amount of time the queries spend on examining string vectors in order to
detect constant ones. The results are presented in Figure 3.15

Queries 4, 5 and 6 operate on Carrier column, that has a lot of very long runs. Detecting
constant vectors contributed from 15.5% to 18.9% of execution time and had a big impact
on query performance.

Query 8 uses columns DestCityName and OriginCityName, which do not provide so
many constant vectors, and suffered less slowdown than other queries. It spend 4.1% of time
on examining string vectors.

Solution

We propose to implement an additional compression scheme for VectorWise: string RLE with
in-block duplicate elimination. It would provide a good compression ratios for columns like
Carrier, as well as effective way to detect constant string vectors. We will describe how
such compression scheme can be implemented.

Block organisation The data block should be divided in two parts: a string segment and
a RLE segment.

The unique string values would be stored one-after-another in the string segment. Each
string would have assigned a certain offset, i.e. number of bytes between the beginning of
the block and the place where a copy of a given string is stored in the string segment. The
offsets would be RLE-compressed and placed in the RLE segment.
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We propose to place the string segment at the beginning of a block, and RLE segment at
its end. The data in RLE segment should be stored starting from the end of the block, and
moving backwards towards its beginning. This way, we do not have to know the final sizes
of segments upfront in order to use all the available space effectively.

Compression During the compression phase we should only store unique string values in
the string segment. Therefore we should keep a hash table that maps the strings to the offsets.
A value would be placed in the string segment only if there is no entry for this value in a hash
table. Then it would be inserted into the hash table with a proper offset. The offsets would
be RLE-compressed just like ordinary numbers, and placed in the RLE segment.

Decompression During the decompression of a block, we would add the memory address
of the first byte in this block to each offset. This way, we convert offsets to valid string
pointers.

Detecting constant vectors This procedure can be performed effectively during vector
decompression. This way it is much less time-consuming than examining all the values in
a vector, because the number of equalities to check is smaller.

3.3.4. Filling vectors with constant value

As we described in Section 3.2.2, we decided that constant vectors must be completely com-
patible with original VectorWise code. For that reason, we had to ensure that constant
vectors contain identical values in all their fields by duplicating the value in all positions.
This method created an overhead that could be largely avoided.

Impact on benchmark results

There are two major moments when we are forced to do extra work in order to set all fields
of constant vector to correct values:

• during decompression of a constant vector from an RLE-compressed block,

• when an expression swaps primitive so that only a single value is returned instead of
a whole vector, e.g. when map + dbl col dbl val is swapped to map + dbl val dbl val.

We measured time spent on filling vectors in both cases. The results are presented at
Figure 3.16. We see that the queries that benefit most from constant vectors — query 0 and
query 9 — also suffer most from vector filling overhead. It takes them about 65% of time.
The impact on query 8 is smallest (2.6%), because most of time it operates on data that does
not form a lot of constant vectors. The other seven queries spend between 7.2% and 25.8%
of time on vector filling.

Solution

In order to avoid vector filling it is necessary to make all the operators aware of constant
vectors. Ideally, operators should use constant vectors to perform their tasks in the most effi-
cient way. Implementing this is much easier than if we used RLE-compressed vectors, because
constant vectors are a much simpler concept and do not introduce a new data representation.
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Figure 3.16: The overhead introduced by filling constant vectors with values and the estimated
relative execution times after eliminating this overhead.

A simpler approach, that should still provide part of the benefits, is filling vectors lazily.
In the current implementation an expression or operator that produces a constant vector is
also responsible for filling it immediately. This way many vectors are filled unnecessarily.

An alternative is to identify all parts of code where appearance of not filled constant
vectors could lead to failure. At the beginning of each of those parts, we have to place code
that will fill vectors if necessary, e.g.

if (is_constant(vec) && !is_filled(vec))
fill_vector(vec);

To demonstrate usefulness of this approach, consider following example:

SELECT COUNT(*)
FROM Ontime
GROUP BY Year, Month, Carrier;

In this query we have to perform a hash aggregation. This requires using a number of
expressions to compute proper hashes.

First, an expression with primitive map hash sint col is evaluated with vector from
column Year as an argument. If a primitive was swapped to map hash sint val, the result
vector has to be filled. Then, an expression with primitive map rehash uidx col schr col
is evaluated with the previously computed hashes and a vector from the Month column as
arguments. Again, if the primitive was swapped to map rehash uidx val schr val, the
resulting vector has to be filled. Finally, the same procedure applies third time.

Since all of the group-by columns provide the majority of constant vectors, very often
vector filling with happen three times in above example. However, both expressions and
aggregation operator are aware of constant vectors, so all the filling was unnecessary and in
lazy approach, it would not be performed.
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Figure 3.17: The performance improvements achieved with constant vectors optimization
compared to estimated possible improvements after removing overheads described in Sections
3.3.3 and 3.3.4.

3.3.5. Conclusions from the experiments

The results of experiments with both described overheads included are listed in Table 3.3.
They are also presented on Figure 3.17.

The benchmarks show big potential of constant vectors. Despite the simplicity of this
solution, it manages to lower execution times of queries 0 and 9 by over 40%, and noticeably
reduce execution times of queries 1, 5, 6 and 7.

The performance of constant vectors is hindered by overheads introduced by detecting
constant string vectors and filling vectors with values. However, they can be removed as
we described in previous sections. Those overheads can be precisely measured, so we can
estimate the potential gains after eliminating them. The results demonstrate that removing
the overheads would greatly improve the benefits of constant vectors optimization.

We expect to see execution times of queries 0 and 9 to be reduced fivefold. Queries 1,
4, 5, 6 and 7 should be improved by 25% to 50%. Some benefits should also be present for
other queries.

After reviewing the benchmark results, we believe that constant vectors can be a valu-
able addition to VectorWise. They provide significant performance benefits while causing
relatively small changes to the system.
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Query Q0 Q1 Q2 Q3 Q4

Exec. time with constant vectors a −40.7% −10.6% −2.6% +0.6% −4.5%

Overheads: b 65.3% 26.0% 12.4% 7.4% 23.9%
– filling during decompression c 44.5% 12.1% 7.9% 4.5% 4.6%
– filling in expressions c 20.8% 14.0% 4.4% 2.6% 4.0%
– detecting const. string vectors c 0.0% 0.0% 0.0% 0.3% 15.2%

Est. exec. time w/o overheads d −79.5% −33.9% −14.6% −6.8% −27.3%

Query Q5 Q6 Q7 Q8 Q9

Exec. time with constant vectors −26.0% −20.7% −18.1% +4.0% −53.9%

Overheads: 29.4% 28.2% 23.4% 6.7% 66.4%
– filling during decompression 5.5% 5.3% 17.3% 0.9% 47.2%
– filling in expressions 5.4% 6.8% 6.1% 1.7% 19.3%
– detecting const. string vectors 18.5% 16.2% 0.0% 4.1% 0.0%

Est. exec. time w/o overheads −48.0% −43.5% −38.5% −3.3% −85.5%

a change between execution time of original VectorWise and VectorWise with constant
vectors

b fraction of execution time with constant vectors spent on any of the overheads
c fraction of execution time with constant vectors spent on given overhead
d change between execution time of original VectorWise and estimated time for Vector-

Wise with constant vectors after removing all overheads

Table 3.3: Performance of VectorWise with constant vectors optimization including over-
heads described in Sections 3.3.3 and 3.3.4.

3.4. Impact of the vector size

3.4.1. Effect on query execution performance

The performance of VectorWise depends strongly on the vector size [Zuk09]. We will explain
this relationship by analysing the execution times (see Figure 3.18) of the following query:

SELECT DestCityName,
COUNT(*) AS C

FROM Ontime
WHERE Year BETWEEN 1996 AND 2000
GROUP BY DestCityName

Original VectorWise results First we will discuss the execution times of VectorWise
without constant vectors optimization.

When the vector size becomes too small, VectorWise behaviour is similar to processing
data tuple-at-a-time. Most of the CPU time is spent on traversing the operator tree, and
not on actually operating the data. This results in performance degradation for vector sizes
28 and smaller (A).

When the vector size becomes too large, the vectors used during query execution do not
fit in the CPU cache any more. The amount of data that has to be transferred between the
RAM memory and the CPU cache grows significantly and damages query performance. This
is reflected by growing execution times starting from vector size 215 (B).

The optimal vector size depends not only on the size of CPU cache, but also on the
number of vector objects that have to be allocated in order to execute a given query. In this
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Figure 3.18: Execution times of query from page 39 with different vector sizes.

experiment the best results were achieved with vector size 214 (C).

VectorWise with constant vectors results When using constant vectors optimization,
we observe that too small or too large vector size hinders performance just as before.

However, now the vector size determines not only the amount of space required to store
vector objects, but also the amount of constant vectors produced by scan operators. There is
a clear trade-off between avoiding high interpretation overhead and creating the opportunities
for applying constant vectors optimization.

The optimal vector size is now 29 (D). The hardware used and the number of required
vectors was exactly the same as before, so growing execution times for vector sizes 210—214

cannot be attributed to poor cache utilization. They are a consequence of missing a chance
to benefit from constant vectors optimization.

3.4.2. Choosing the right vector size

It is relatively easy to choose a good vector size in VectorWise without constant vectors
optimization. The decision depends entirely on available hardware and the complexity of
executed queries. Since a wide range of vector sizes gives similar execution times — in
Figure 3.18 this applies to range from 210 to 214, and other queries show similar behaviour
— setting a fixed system-wide vector size has proved to be a good enough solution.

The problem becomes much more complicated when we are dealing with constant vectors.
Now the vector size determines not only the number of vectors that can fit in the CPU cache
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and how well the interpretation overhead is amortized. It also influences the fraction of
constant vectors produced by the scan operators. However, we should only be concerned
to achieve a high portion of vectors marked as constant, if we can use this information to
improve query execution performance, because otherwise it is completely worthless. While
using constant vectors can speed up some operations substantially, others show little or no
benefit.

There is a clear trade-off between reducing interpretation overhead and having more
constant vectors. The optimal solution depends both on the characteristics of data, and on
the operations that have to performed. To help us make the right decision, we may either
store some statistics about the data or gather them incrementally during query execution
and adjust our choices accordingly. To estimate benefits that can be achieved with different
operations we can perform micro-benchmarks.

3.4.3. Variable vector size

In VectorWise different vectors produced by a scan operator in a single call of the next()
method have to contain exactly the same number of values. This restriction comes from the
fact that although such vectors hold values from different columns, those values belong to
the same tuples. However, subsequent call of next() may result in producing vectors with
different number of values, and also different scan operators are independent in this matter.

This observation leads to an agile solution of the problem of choosing best vector size:
instead of reducing system-wide vector size, we can allow scan operators to produce smaller
vectors, but only if it results in larger fraction of constant ones. This way we can seize the
optimization opportunities, while avoiding heavy interpretation overhead.

3.4.4. Vector borders problem

Definitions and notation We will say that

v = (v0, v1, . . . , vNv)

is a valid partitioning for N tuples and vector lengths m,m+ 1, . . . ,M if

(i) v0 = 0
(ii) vNv = N
(iii) ∀1≤i≤Nvm ≤ vi − vi−1 ≤M

In other words, v represents borders of Nv adjoining vectors. Each of those vectors contains
between m and M values and together they contain all N values.

We will denote the number of values in constant vectors (assume that all such vectors
are being detected and correctly marked) for column2 c = c0, c1, . . . and valid partitioning vi
by φ(c, v). More exactly,

φ(c, v) =
∑

1≤i≤Nv

(vi − vi−1)[cvi−1 = cvi−1+1 = . . . = cvi−1]

where [. . .] is the Iverson bracket.3

2We only consider here scanning first N values of a given column. This simplifies the description, but the
same reasoning is valid for any other subset of a column.

3Iverson bracket is defined as

[P ] =

{
1 if P is true
0 otherwise
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Problem statement Assume there are K columns c1, c2, . . . , cK scanned together and K
weights w1, w2, . . . , wK associated with respective columns. Find a valid partitioning v for N
tuples and vector lengths m,m+ 1, . . . ,M that maximizes

Φ(v) =

K∑
i=1

wiφ(ci, v)

3.4.5. Optimization algorithm

Vector border problem can be broken down into smaller subproblems, that is, we can construct
solution for problem size N using solutions for N −M,N − (M − 1), . . . , N −m. We have
to append vector of size M to solution for N − M , vector of size M − 1 to solution for
N − (M − 1), and so on. This way we get M −m + 1 candidate solutions for N . We just
have to compute value of Φ function for each of them and pick the one that maximizes it. It
can be easily proved that solution found this way is optimal.

The above reasoning can be applied recursively to further reduce the problem size. How-
ever, purely recursive solution would result in exponential complexity, which is clearly unac-
ceptable. The complexity can be reduced to O(N(M −m + 1)K) by using the methods of
dynamic programming.

Algorithm Below we present pseudocode for algorithm solving vector borders problem.

1: v[0]← (0)
2: Φ[0]← 0
3: for n = 1 to N do
4: Φ[n]← −∞
5: for s = m to M do
6: if n− s ≥ 0 then
7: P = Φ[n− s]
8: for k = 1 to K do
9: if ckn−s = ckn−s+1 = ckn−1 then

10: P ← P + wk ∗ len
11: end if
12: end for
13: if P > Φ[n] then
14: Φ[n]← P
15: v[n]← v[n− s]
16: append n to v[n]
17: end if
18: end if
19: end for
20: end for
21: return v[N ]

The algorithm uses arrays Φ[0 . . . N ] and v[0 . . . N ] to memorize previously computed
solutions. We start by filling in values for problem of size 0 (lines 1—2). Then we successively
solve problems of sizes 1 to N . Fist, we set value of Φ[n] to −∞ (line 4), which corresponds
to lack of valid partitioning. Then, for each vector size between m and M , we try to extend
a previously found solution for smaller problem size with a single vector. We compute value
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of Φ function for such candidate solution in variable P (lines 7—12). Since Φ is defined as a
sum over all vectors, we only have to examine the newly added vector in each column. This
can be done in constant time. Next, if the candidate solution is better than any tested before,
we save it as current best (lines 13—17). Finally, after all the loops are completed, we return
the partitioning for problem size N .

Drawbacks Even though the dynamic programming approach reduces the complexity of
this algorithm, it still has many important shortcomings which make it unusable in practice.
Below we discuss some of them.

1. Size of the first vector is not known until the last iteration of the outer loop is completed.
As a consequence, scan operator cannot interleave reading data from disk, determining
vector sizes and producing vectors. It has to read all the data in advance and compute
vector sizes upfront, before any actual query execution can happen.

This requirement is clearly unacceptable. Isolating data transfer from query processing
would have a significant negative impact on database performance. Even more impor-
tantly, in many cases memory buffers would be not sufficient to store all the data, so it
would have to be evicted and read again.

2. Assume that N is much bigger than M , that is, number of values to read is much
bigger than maximum vector size. We will try to answer following question: how many
iterations of inner loop (lines 8—12) are required for each value in vectors produced by
scan operator, that is, what is the cost of algorithm amortized over all the values?

First, we start by computing the total number of iterations of inner loop.

I =
N∑

n=1

M∑
s=m

[n− s ≥ 0]K

=
N∑

n=1

M∑
s=m

(1− [n− s < 0])K

=

N∑
n=1

M∑
s=m

K −
N∑

n=1

M∑
s=m

[n− s < 0]K

=N(M −m+ 1)K −K
M∑

s=m

N∑
n=1

[n < s]

=N(M −m+ 1)K −K
M∑

s=m

s− 1

=N(M −m+ 1)K −K (M − 1)M − (m− 2)(m− 1)

2

Now, we divide it by the total number of produced values.

I

KN
=
N(M −m+ 1)K −K (M−1)M−(m−2)(m−1)

2

NK

=M −m+ 1− (M − 1)M − (m− 2)(m− 1)

2N
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With N �M the last part of this formula is negligible. Hence, our result is:

I

KN
≈M −m+ 1

Again, this result unacceptable. We can expect M − m + 1 to be in the ballpark of
thousands and we cannot spare so many iterations on each produced value.

Although the algorithm described above cannot be applied in practice, we can find meth-
ods that provide good enough results, have reasonable cost and can be interleaved with
reading the data and processing the query. They will not provide optimal solutions, but still
can significantly improve the performance of current constant vectors optimization. There
are many possible heuristics that could be used for that purpose, but finding effective ones
requires real-life data testing.

3.5. Summary

This chapter discussed a simplification of RLE-compressed execution. It introduced constant
vectors and the mechanism of primitive swapping. It also presented the results of conducted
experiments. Finally, we explained two kinds of encountered overheads and the impact of
vector size on query execution times.

The idea we proposed meets our design goals: it is simple, unintrusive and does not require
major implementation effort, but at the same time it provides significant performance gains.
Furthermore, additional improvements can be achieved by removing described overheads and
creating mechanism for choosing optimal vector size.
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Chapter 4

Dictionary Encoding

Dictionary encoding, described in Section 2.2.1, allows representing values by fixed-width in-
teger codes. As we explained in Section 2.4, it is considered particularly useful for compressed
execution. In this chapter we will discuss different properties of dictionaries and explain how
they determine the opportunities of operating directly on codes. We will show challenges of
maintaining global dictionaries and propose a method to avoid them. We will also perform
a number of experiments to estimate the possible benefits of dictionary-compressed execution.

4.1. Operations on dictionary-encoded data

A dictionary can be characterized by a number of properties that determine its usefulness for
compressed execution. These properties include:

Scope a scope defines part of data for which a given encoding is used. We will consider three
possible scopes: domain-wide, column-wide and partition-wide (we define a partition
as a subset of consecutive values of a given column).

Unique entries a dictionary has unique entries if any two distinct codes represent two
distinct values.

Order preservation We say that a dictionary is order-preserving when for every pair of
entries (code1, value1), (code2, value2) we have

code1 < code2 ⇒ value1 < value2

We will now discuss what operations can be performed directly on codes, and which of
above properties are required to make it possible. Note that some of those requirements could
be made less restrictive at the cost of extra effort.

1. Equality checks In order to check equality of encoded values and a given constant,
we start by looking up corresponding entry for that constant in the dictionary. If there
is a match, we use the code we found for comparisons. Otherwise, we may either use
a special code or simply always return false. In case of checking equality of values from
two sequences, both of them should be compressed using the same encoding scheme.

Properties. Scope: column-wide for equality check with a constant, domain-wide for
two sequences. Unique entries: yes, or else multiple comparisons would be required.
Order preservation: no.
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It is also possible to perform equality check of two sequences, each encoded using its own
column-wide dictionary. Codes matching identical keys in different dictionaries have to
be found upfront. These precomputed results can be used to determine if a given pair
of codes corresponds to a pair of equal values or not.

2. Range comparisons The range comparisons — between an encoded sequence and
a given value, as well as between two encoded sequences — are performed in exactly
the same manner as equality checks.

Properties. Scope: column-wide for comparisons with a constant, domain-wide for
comparisons of two sequences. Unique entries: it is not required for comparisons with
a constant value, but otherwise — yes. Order preservation: yes.

Comparison between two sequences encoded using different column-wide schemes can
be executed using precomputed code mapping (as in case of equality checks).

3. Aggregations We can use encoded grouping attributes, by treating them in exactly
the same way as integer grouping attributes.

Properties. Scope: at least column-wide. Unique entries: yes. Order preservation: no.

The values for computing aggregates other than COUNT usually have to be decoded.
The exception is finding MIN or MAX while using order-preserving dictionary.

4. Duplicate elimination The duplicate elimination can be performed directly on codes,
in the same way it would be performed on integers.

Properties. Scope: at least column-wide. Unique entries: yes. Order preservation: no.

5. Joins If we use an encoded join attribute, we treat it in the same way, as if it was an
ordinary integer join attribute.

Properties. Scope: domain-wide, since the encoding on both sides of the join has to be
identical. Unique entries: yes. Order preservation: no.

Assume that we use different column-wide encodings for corresponding join attributes.
We can first perform a mini-join on their dictionaries, so that we can map codes from
one encoding to codes from the other one. The fact that some of the entries may have
no counterpart in the other dictionary is not a problem here.

The attributes that only have to be copied during join operation can remain encoded,
unless they are using partition-wide dictionaries and it is possible that the codes from
different partitions will get mixed in join result.

6. Results caching When using dictionary encoding we can save the results of evaluating
certain functions, for example, extracting substring or computing the LIKE predicate.
They can be stored in an array indexed by dictionary codes, and later easily fetched.
This way we avoid evaluating these functions multiple times for a single dictionary
entry.

Properties. Scope: at least partition-wide. Unique entries: not required. Order preser-
vation: not required.

In results caching we do not perform any operations on codes, but instead use dictionary
encoding to save CPU time by avoiding repeated execution of expensive predicates with
identical arguments.
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This list suggest that in order to perform dictionary-compressed execution, it is crucial to
provide at least column-wide encoding with unique entries. Having a domain-wide or order-
preserving dictionary is useful as well, and allows us to perform some extra operations, but
it is not as essential.

4.2. Global dictionaries

Normally in order to provide a uniform column-wide or domain-wide encoding we have to
use a global dictionary. Such a dictionary is a persistent data structure, but we can assume
that it is available in the main memory at all times. At every moment, it keeps a uniform
encoding for all the values in a given column or group of columns, and allows different queries
to lookup and insert entries.

Maintaining a global dictionary makes it possible to perform operations on codes, as we
described in the previous section. However, it also poses a number of challenges, that we will
now discuss.

Concurrency problems A global dictionary can be used by many transactions in parallel.
This creates concurrency problems, as the actions of different transactions cannot be managed
separately. Overcoming those problems may require meticulous tracking of which entries are
used by which transactions.

As an example, assume that two concurrent transactions try to insert identical values
into a dictionary. We must ensure that both of them receive identical codes, or otherwise
the dictionary would no longer have unique entries. Moreover, if one of the transactions is
aborted, the new entry cannot automatically be removed from a dictionary, because it is still
being used by the other transaction. However, if the other transaction is aborted as well, we
do not want to leave unused dictionary entries behind, so we should know that they are now
available for deletion.

Expensive modifications Some of the operations on a global dictionary require adjusting
codes across the entire column or domain. For example, when the dictionary grows too large
more bits are required to represent an encoded value.

Moreover, a global dictionary may need a reorganisation every once in a while, when the
obsolete entries — ones that no longer match any value — are removed, and later the entries
are condensed. Such process would also require updating the whole encoded domain, and
could create an interruption in database system work.

Compression efficiency Using column-wide or domain-wide encoding for compression
purposes may result in worse compression ratios than ones that can be achieved by com-
pressing partitions of a column separately. If values of a given column have a good locality,
that is, number of distinct values in a partition is much smaller than in entire column, they
could be encoded using fewer bits, which would result in better compression ratio. The
problem is even more visible if a global dictionary contains ‘holes’ or has obsolete entries.

4.3. The potential of dictionary compression

We decided to estimate the possible performance benefits of using global dictionaries, to
check whether they justify the effort of implementation. We used a method that does not
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Stores

StoreId City . . .

1001 ’Atlanta’ . . .

1002 ’Boston’ . . .

1003 ’Atlanta’ . . .

1004 ’Chicago’ . . .

1005 ’Denver’ . . .

1006 ’Boston’ . . .

1007 ’Denver’ . . .

1008 ’Atlanta’ . . .

(a) Original table with string col-
umn City.

Stores

StoreId City . . .

1001 1 . . .

1002 2 . . .

1003 1 . . .

1004 3 . . .

1005 4 . . .

1006 2 . . .

1007 4 . . .

1008 1 . . .

CityDict

Id City

1 ’Atlanta’

2 ’Boston’

3 ’Chicago’

4 ’Denver’

(b) Modified table with column City replaced by in-
teger column and dictionary table mapping codes to
original strings.

Figure 4.1: Example of schema modification for simulating dictionaries with tables.

require any code modifications, and can be carried out by using only the SQL interface of
the database system. We simulated global dictionaries with ordinary tables.

First, a dictionary table has to be created for a given column, by executing a query like

CREATE TABLE CityDict AS
SELECT __ids__ AS Id,

DISTINCT(City) AS City
FROM Stores

where ids provides sequence 1, 2, 3, . . ., and can be obtained in different ways depending
on the database system used. Next, the original column is replaced by integer column that
references the dictionary table (see Figure 4.1). The original values can be retrieved by
performing join with dictionary table. Finally, the queries have to be altered to match the
new data organisation. When possible, the operations should be performed directly on codes.

This approach gives us an approximation of performance improvements that could be
obtained by implementing global dictionaries. Note that it provides a pessimistic estimate:
adding extra tables significantly complicates query plans and increases the probability of
choosing suboptimal ones. Moreover, retrieving original values by performing join operation
is usually less efficient than fetching them from a dictionary.

We tested dictionary tables with the On-Time benchmark and chosen queries from TPC-H
benchmark. We examined query execution times and observed the amount of time spent on
scan operators (On-Time) and changes in memory usage (TPC-H). The results are presented
in the following sections. Note that in each case the plans for modified queries were similar
to the plans for original queries.

4.3.1. On-Time benchmark

We created dictionary tables for all string attributes accessed by On-Time queries (see Sec-
tions 3.3.1 and 3.3.2), that is, Carrier, Origin, OriginCityName and DestCityName.
The new database organisation in shown on Figure 4.2. There are five queries in On-Time
benchmark that use string attributes, that is, queries 3, 4, 5, 6, and 8. We did not modify
the remaining queries in any way.

In a row store changing data types of some attributes can influence the performance of
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Ontime

Year int
Month int
DayOfWeek int
Carrier char(2)
Origin char(5)
OriginCityName varchar(100)
DestCityName varchar(100)
... ...

(a) Original organisation of data
with a single table.

Ontime

Year int
Month int
DayOfWeek int
Carrier int
Origin int
OriginCityName int
DestCityName int
... ...

CarrierDict

Id int
Carrier char(2)

n

1

OriginDict

Id int
Origin char(5)

n

1

OriginCityNameDict

Id int
OriginCityName varchar(100)

DestCityNameDict

Id int
DestCityName varchar(100)

n

1

n

1

(b) New organisation with dictionary tables.

Figure 4.2: The original and modified schema for On-Time data.
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Query Q3 Q4 Q5 Q6 Q8

Execution time change −40.3% −37.1% −54.5% −53.9% −87.1%

Scan time change −22.3% −31.7% −40.5% −39.5% −76.9%

Figure 4.3: Execution times of chosen On-Time queries with and without dictionary tables.

any query, because it alters the size and organisation of tuples. However, in a column store
modifying attributes that are not used by a given query should not change its performance at
all. The execution times of queries 0, 1, 2, 7 and 9 are identical with and without dictionary
tables, which confirms this statement.

49



The results of conducted experiments are shown in Figure 4.3. We will now present the
queries of the On-Time benchmark that were modified to use dictionary tables and discuss
the impact of those changes on query performance. For convenience, we indicated columns
containing codes with italics.

Query 3

We altered query 3 to use codes for Origin as a grouping attribute, and later retrieve the
original values through join with OriginDict.

WITH t AS (
SELECT Origin,

COUNT(*) AS c
FROM Ontime
WHERE DepDelay > 10

AND Year BETWEEN 2000 AND 2008
GROUP BY Origin

)
SELECT FIRST 10

OriginDict.Origin,
t.c

FROM t LEFT OUTER JOIN OriginDict ON
t . Origin = OriginDict . Id

ORDER BY c DESC

The total time was reduced by slightly over 40%. The majority of this improvement comes
from a much more efficient aggregation. The direct aggregation on codes is now used instead
of hash aggregation on strings.1 This operator is now 7.5 times faster, while originally it
contributed almost 35% of execution time. Also, the scan operator was improved by one fifth
because reading an integer column with codes is faster than reading a corresponding string
column.

Query 4

Query 4 was changed to use codes for Carrier as a grouping attribute and afterwards
perform join with dictionary table.

WITH t AS (
SELECT Carrier,

COUNT(*) AS col2
FROM Ontime
WHERE DepDelay > 10 AND Year = 2007
GROUP BY Carrier

)
SELECT CarrierDict.Carrier,

t.col2
FROM t LEFT OUTER JOIN CarrierDict ON

t . Carrier = CarrierDict . Id
ORDER BY col2 DESC

The execution time while using dictionary tables is 37% shorter than original. Again, this
can be attributed mostly to faster aggregation. The time previously spent on this operator
was 26% of total time, and now it is reduced five-fold. The scan is 31% faster.

1We explained the difference between direct and hash aggregation in Section 3.2.3.
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Query 5

In query 5 we have two aggregations grouped by the Carrier attribute, which are now
performed using codes. Moreover, the join of two subqueries also uses codes. Finally, the
original values of the Carrier attribute are retrieved.

WITH t1 AS (
SELECT Carrier,

COUNT(*) AS c
FROM Ontime
WHERE DepDelay > 10 AND Year = 2007
GROUP BY Carrier

), t2 AS (
SELECT Carrier,

COUNT(*) AS c2
FROM Ontime
WHERE Year = 2007
GROUP BY Carrier

), t3 AS (
SELECT t1 . Carrier,

c,
c2,
c*1000/c2 AS c3

FROM t1 JOIN t2 ON t1 . Carrier = t2 . Carrier
)
SELECT CarrierDict.Carrier,

t3.c,
t3.c2,
t3.c3

FROM CarrierDict RIGHT OUTER JOIN t3 ON
CarrierDict . Id = t3 . Carrier

ORDER BY c3 DESC

Query 5 with dictionary tables takes 55% less time than before. The two aggregations
together contributed almost half of original execution time. When replaced by direct aggre-
gations on codes, they are 5 − 6 times faster than before. The join operation performed on
codes could not bring notable improvement, because the sizes of input relations are too small.
The scan time was reduced by 40%.

Query 6

Query 6 is very similar to query 5. Again two aggregation grouped by Carrier attribute
and join of subqueries’ results were altered to work directly on codes.

WITH t1 AS (
SELECT Carrier,

COUNT(*) AS c
FROM Ontime
WHERE DepDelay > 10

AND Year BETWEEN 2000 AND 2008
GROUP BY Carrier

), t2 AS (
SELECT Carrier,

COUNT(*) AS c2
FROM Ontime
WHERE Year BETWEEN 2000 AND 2008
GROUP BY Carrier

), t3 AS (
SELECT t1 . Carrier,
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c,
c2,
c*1000/c2 AS c3

FROM t1 JOIN t2 ON t1 . Carrier = t2 . Carrier
)
SELECT CarrierDict.Carrier,

t3.c,
t3.c2,
t3.c3

FROM CarrierDict RIGHT OUTER JOIN t3 ON
CarrierDict . Id = t3 . Carrier

ORDER BY c3 DESC

The execution time of query 6 is now 54% shorter than before. The two aggregations used
to take almost half of total time, but after turning them into direct aggregations on codes
they can be executed 5.5 times faster. The results of subqueries are too small to allow any
substantial gains in join operator. The scan is almost 40% faster.

Query 8

Query 8 was altered to perform duplicate elimination for OriginCityName attribute di-
rectly on codes. The aggregation grouped by DestCityName also used integers instead of
strings. Note that an additional join operation was inserted to retrieve original values of
DestCityName attribute, but we never decode values of OriginCityName, because they
aren’t really needed to execute this query.

WITH t AS (
SELECT DestCityName,

COUNT(DISTINCT OriginCityName) AS col2
FROM Ontime
WHERE Year BETWEEN 1990 AND 2000
GROUP BY DestCityName

)
SELECT DestCityNameDict.DestCityName,

t.col2
FROM t LEFT OUTER JOIN DestCityNameDict ON

DestCityNameDict . Id = t . DestCityName
ORDER BY col2 DESC

The time required to execute query 8 was reduced almost eight-fold using dictionary
tables. The aggregation in this query is performed by VectorWise using both DestCityName
and OriginCityName as grouping attributes. Originally over 80% of time was spend on
this operator. Again, after converting it into direct aggregation on integer values, we observe
that it is 14 times faster than before. Also, the scan time was reduced by over 76%.

Conclusion

These results show that using dictionary tables significantly improves performance in On-Time
benchmark (see Figure 4.3). All the queries that use string columns are now over one third
faster than before. The most spectacular gains can be observed for query 8, which can be
executed almost eight times faster, and it is the slowest query in the whole On-Time bench-
mark. We can also notice a great improvement for aggregations that use strings as grouping
attributes.
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4.3.2. TPC-H benchmark

TPC-H is an industry standard benchmark for decision support systems. Its specification
can be found in [TPC11] and we will not describe it here. We chose scale factor 10, which
means that table lineitem contained ca. 60.000.000 rows.

Some of the string attributes accessed by TPC-H queries are unsuitable for using with
dictionaries, because they have way too many distinct values. This applies, for example,
to column s comment appearing in query 16. We decided to create dictionary tables for
attributes o orderpriority, n name, l shipmode, p type and p brand. The schema
modifications were analogical to those presented in the previous sections.

We omitted queries that use only not dictionary-compressible string attributes, or no
string attributes at all, and ones that spend only a marginal fraction of execution time on
operations using strings. In the end, we conducted experiments with queries 4, 9, 12, 14, 16
and 19.

Query 4

Query 4 was modified to use codes for o orderpriority as a group-by column and prevent
values of this attribute from taking part in join with lineitem table.

SELECT o_orderpriority_dict.o_orderpriority,
order_count

FROM (
SELECT o o rde rp r i o r i t y,

COUNT(*) AS order_count
FROM orders
WHERE o_orderdate >= date ’1993-07-01’

AND o_orderdate <
date ’1993-07-01’ + interval ’3’ month

AND EXISTS (
SELECT *
FROM lineitem
WHERE l_orderkey = o_orderkey
AND l_commitdate < l_receiptdate
)

GROUP BY o o rde rp r i o r i t y
) AS q,
o_orderpriority_dict

WHERE q . o o rd e rp r i o r i t y = o o r d e r p r i o r i t y d i c t . id
ORDER BY o_orderpriority_dict.o_orderpriority;

The execution time of query 4 was reduced by almost one third. A hash aggregation that
contributed 20% of total time was removed, and a direct aggregation that is 20 times faster
and takes 6 times less memory is now used instead. A merge join of orders and lineitem
was also improved. It is now 58% faster and uses only one tenth of memory that it required
before. The total memory usage of query 4 was reduced by 72%.

Query 9

In query 9 we use codes for n name as a grouping attribute.

SELECT n_name_dict.n_name AS nation,
o_year,
sum_profit

FROM (
SELECT n name,

o_year,
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SUM(amount) AS sum_profit
FROM (

SELECT n name,
extract(year FROM o_orderdate) AS o_year,
l_extendedprice * (1 - l_discount) -

ps_supplycost * l_quantity AS amount
FROM part,

supplier,
lineitem,
partsupp,
orders,
nation

WHERE s_suppkey = l_suppkey
AND ps_suppkey = l_suppkey
AND ps_partkey = l_partkey
AND p_partkey = l_partkey
AND o_orderkey = l_orderkey
AND s_nationkey = n_nationkey
AND p_name LIKE ’%green%’

) AS profit
GROUP BY n name,

o_year
) AS q,
n_name_dict

WHERE q . n name = n name dict . id
ORDER BY nation,

o_year DESC;

Query 9 is now 7% faster. Originally a hash aggregation took 8% of total time. It was
replaced by a much more efficient direct aggregation. Also, removing string attribute from
join with lineitem table reduced the memory usage by 9%.

Query 12

The expressions using o orderpriority and l shipmode are evaluated on dictionary
tables (subqueries high, low and shipmodes). The codes for l shipmode are also used
as a grouping attribute.

SELECT l_shipmode_dict.l_shipmode AS l_shipmode,
high_line_count,
low_line_count

FROM (
SELECT shipmodes . id,

SUM(line_count.high) AS high_line_count,
SUM(line_count.low) AS low_line_count

FROM (
SELECT id,

(
CASE
WHEN o_orderpriority = ’1-URGENT’

OR o_orderpriority = ’2-HIGH’
THEN 1
ELSE 0
END
) AS high,
(
CASE
WHEN o_orderpriority <> ’1-URGENT’

AND o_orderpriority <> ’2-HIGH’
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THEN 1
ELSE 0
END
) AS low

FROM o_orderpriority_dict
) AS line_count,
orders,
lineitem,
(
SELECT id
FROM l_shipmode_dict
WHERE l_shipmode = ’SHIP’ OR l_shipmode = ’MAIL’
) AS shipmodes

WHERE o_orderkey = l_orderkey
AND l shipmode = shipmodes . id
AND l_commitdate < l_receiptdate
AND l_shipdate < l_commitdate
AND l_receiptdate >= date ’1994-01-01’
AND l_receiptdate <

date ’1994-01-01’ + interval ’1’ year
AND o o rde rp r i o r i t y = l i n e coun t . id

GROUP BY shipmodes . id
) AS q,
l_shipmode_dict

WHERE q . id = l s h i pmode d i c t . id
ORDER BY l_shipmode_dict.l_shipmode;

Query 12 now takes 26% less time to execute. The majority of this change can be attributed
to more efficient evaluation of condition l shipmode IN (’MAIL’, ’SHIP’) that previ-
ously took 37% of total time. The performance of aggregation is also improved, but the size
of its input relation is too small to allow a significant impact on execution time.

Query 14

In query 14 we evaluate the relatively expensive expression p type LIKE ’PROMO%’ di-
rectly on the dictionary table. This way it is computed exactly once for each unique value
of p type and also this string column is prevented from participating in the join with the
lineitem table.

WITH promo_types AS (
SELECT id,

(
CASE
WHEN p_type LIKE ’PROMO%’
THEN 1
ELSE 0
END
) AS ispromo

FROM p_type_dict
), promo_parts AS (

SELECT p_partkey,
ispromo

FROM part_d,
promo_types

WHERE p type = id
)
SELECT 100.00 * SUM (

CASE
WHEN ispromo = 1
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THEN l_extendedprice * (1 - l_discount)
ELSE 0
END
) / SUM(l_extendedprice * (1 - l_discount))

AS promo_revenue
FROM lineitem,

promo_parts
WHERE l_partkey = p_partkey

AND l_shipdate >= date ’1995-09-01’
AND l_shipdate < date ’1995-09-01’ + interval ’1’ month

The execution time of query 14 is now 14% shorter. The cost of joins that dominates query
performance (previously 75% of total time) is reduced by 24%. Also, the evaluation of p type
LIKE ’PROMO%’ was almost 40% faster. Query used only half of the memory it required
before.

Query 16

The dictionary tables for p brand and p type attributes were used. Selections on these
columns were replaced by selections on corresponding dictionary tables (subqueries types
and brands) followed by join. We also used codes as grouping attributes in aggregation.

SELECT p_brand_dict.p_brand,
p_type_dict.p_type,
p_size,
supplier_cnt

FROM (
SELECT p brand,

p type,
p_size,
COUNT(DISTINCT ps_suppkey) AS supplier_cnt

FROM partsupp,
part,
(
SELECT id
FROM p_type_dict
WHERE p_type NOT LIKE ’MEDIUM POLISHED%’
) AS types,
(
SELECT id
FROM p_brand_dict
WHERE p_brand <> ’Brand#45’
) AS brands

WHERE p_partkey = ps_partkey
AND p brand = brands . id
AND p type = types . id
AND p_size IN (49, 14, 23, 45, 19, 3, 36, 9)
AND ps_suppkey NOT IN (

SELECT s_suppkey
FROM supplier
WHERE s_comment LIKE ’%Customer%Complaints%’
)

GROUP BY p brand,
p type,
p_size

) AS q,
p_brand_dict,
p_type_dict

WHERE p brand d ic t . id = q . p brand
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Query Q4 Q9 Q12 Q14 Q16 Q19

Execution time change −31.8% −7.8% −26.7% −14.3% −48.2% −30.5%

Query memory:
– original 8.5MB 38.1MB 6.5MB 108MB 111MB 24.2MB
– with dictionary tables 2.4MB 34.6MB 7.5MB 54MB 70MB 26.5MB
– change −71.8% −9.2% +15.4% −50.0% −36.9% +9.5%

Table 4.1: Execution times and memory usage of chosen queries form TPC-H benchmark
while using dictionary tables.

AND p t y p e d i c t . id = q . p type
ORDER BY supplier_cnt DESC,

p_brand_dict.p_brand,
p_type_dict.p_type,
p_size;

Query 16 is almost two times faster with dictionary tables. An aggregation originally con-
tributed 73% of total time. Now, a hash aggregation is still used to execute this query, but it
is 68% faster than before. Joining the results of selections performed on dictionaries creates
an overhead of ca. 3% of total time. The memory usage of query 16 was reduced by one
third.

Query 19

We used dictionary tables for attributes l shipinstruct, l shipmode, p brand and
p container. Instead of selections on these columns, we used selections on dictionary
tables followed by join operation.

Unfortunately, query optimizer was fooled by a large number of additional tables and
created suboptimal query plan. For that reason, we had to provide hand-written query plan
using internal representation called VectorWise algebra (see X100 algebra in [Zuk09]).

Modified query 19 takes over 30% less execution time than original one. This bene-
fit comes from reducing the number of string comparisons. For example, the selection on
l shipinstruct originally contributed almost 40% of total time. In the new query corre-
sponding selection on dictionary and following join are one third faster. Similar improvements
can be observed for selections on l shipmode, p brand and p container.

Due to large number of join operations, the modified query uses about 10% more memory.

Conclusion

The summary of experiments with TPC-H queries can be found in table 4.1. As in On-
Time benchmark, we see that using dictionary tables allows us to reduce execution times of
many queries, and often it is a significant change. It also turns out, that frequently modified
queries require much less memory than the original ones, and join operations become cheaper,
because there is less data to copy.

4.4. On-the-fly dictionaries

As discussed in Section 4.2, global dictionaries, while providing good properties, cause prob-
lems and require significant changes to the system. This goes against our desire to make
changes as unintrusive as possible. As a result, in this section we propose a solution that
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avoids the difficulties associated with global dictionaries, but still allows us to benefit from
using a uniform column-wide or dictionary-wide encoding. The idea is to maintain separate
dictionaries for partitions of a column, and combine them during the scan operation. We
call the result of this procedure on-the-fly dictionary, because it is built incrementally, with
new entries added each time a data from previously unvisited partition is requested. Such
a dictionary would serve a single query, and would be dropped as soon as the query execution
is completed.

Partial dictionaries

A partial dictionary is a list of unique values, that represents some dictionary encoding and
is stored on disk along with a set of encoded values. It is fetched with compressed data when
requested by the scan operator, stays for some time in disk buffer, and later it is evicted.
The content of partial dictionary can be altered only when some updates are flushed to disk.
Thus, a partial dictionary is very different from a global dictionary, that is a memory-resident
data structure, that can be accessed and modified by many transaction in parallel. For this
reason, it is much simpler to create and to manage.

In VectorWise each block is compressed separately from the others, which creates a natural
partitioning of a column. Hence, every block of a dictionary-compressed column can be
supplied with its own in-block dictionary.

Combining dictionaries

Partial dictionaries would be incorporated into on-the-fly dictionary one-by-one. First, each
entry from a partial dictionary would have to be looked up in on-the-fly dictionary, and if no
match was found, it would have to be inserted. a map of old and new codes would be created
in the process. Second, each compressed value would be translated using this code map, so
that the encoding scheme fits the on-the-fly dictionary.

This process will create an overhead related to performing dictionary lookups and inserts.
The scale of this overhead depends on the size of partial dictionaries, and not on the number
of encoded values. In other words, the less unique values are in each partition, the smaller
the overhead will be. Typically, a dictionary-compressible column has much more values than
unique values, so the overhead would be amortized.

We will now discuss an example of how the on-the-fly dictionary is created from a number of
in-block dictionaries. This example is illustrated on Figure 4.4. On the left side we can see
the content of compressed block that is currently being read. Each of those blocks has its
own independent dictionary and stores a number of encoded values. The entries in on-the-fly
dictionary are listed in the center. The mapping from in-block codes to column-wide codes
is shown on the right.

(a) At the beginning of query execution on-the-fly dictionary is empty.

(b) The first block contains two unique values: ’Atlanta’ and ’Boston’. Obviously, neither of
them is present in the on-the-fly dictionary, so both have to be inserted. Since the codes
remained unchanged, there is no extra translation required. The encoded values can be
now passed to the scan operator.

(c) In the second block we have three unique values, and two of them can already be found in
on-the-fly dictionary. We only have to insert one additional value — ’Chicago’. Now the
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(a) (none)

On-the-fly dict.

Code Value

(empty)

Codes
translation

(none)

(b)

Compressed block 1

Dictionary

1 ’Atlanta’

2 ’Boston’

Encoded values

1, 1, 2, 1, 2, 1, 1, 1,
2, 1, 2, 1, 1, 1, . . .

On-the-fly dict.

Code Value

1 ’Atlanta’

2 ’Boston’

Codes
translation

1 → 1
2 → 2

(c)

Compressed block 2

Dictionary

1 ’Boston’

2 ’Chicago’

3 ’Atlanta’

Encoded values

3, 2, 1, 1, 2, 3, 3, 1,
3, 1, 2, 3, 2, . . .

On-the-fly dict.

Code Value

1 ’Atlanta’

2 ’Boston’

3 ’Chicago’

Codes
translation

1 → 2
2 → 3
3 → 1

(d)

Compressed block 3

Dictionary

1 ’Denver’

2 ’Atlanta’

3 ’Chicago’

4 ’El Paso’

Encoded values

4, 1, 1, 2, 3, 1, 2, 1,
4, 3, 1, 3, 3, 3, . . .

On-the-fly dict.

Code Value

1 ’Atlanta’

2 ’Boston’

3 ’Chicago’

4 ’Denver’

5 ’El Paso’

Codes
translation

1 → 4
2 → 1
3 → 3
4 → 5

(e)

Compressed block 4

Dictionary

1 ’El Paso’

2 ’Denver’

3 ’Atlanta’

Encoded values

3, 1, 1, 2, 2, 1, 2, 3,
1, 2, 3, 3, 3, 3, . . .

On-the-fly dict.

Code Value

1 ’Atlanta’

2 ’Boston’

3 ’Chicago’

4 ’Denver’

5 ’El Paso’

Codes
translation

1 → 5
2 → 4
3 → 1

Figure 4.4: Example of combining partial in-block dictionaries in order to create on-the-fly
dictionary.
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1 Atlanta 2 Boston 3 Chicago 4 Denver 5 space for more entriesEl Paso

Dictionary entries

String pointers

Figure 4.5: Example of on-the-fly dictionary content.

entries in in-block and on-the-fly dictionaries are identical, but the encoding is different.
For example, ’Boston’ has code 1 in in-block dictionary, but it corresponds to 2 in on-
the-fly dictionary. Hence, all the 1s have to be replaced by 2s. The same process has to
be applied to other codes.

(d) The third block contains four unique values. Half of them is already present in on-the-fly
dictionary, but we still have to insert entries ’Denver’ and ’El Paso’. As before, the codes
have to be translated to match the new encoding.

(e) All the values from fourth block are already present in on-the-fly dictionary, so we do not
insert any new entries at this time, only provide an appropriate code mapping.

Implementation

We propose to create empty on-the-fly dictionaries during the construction of the operator
tree. The dictionary handles would be attached to vectors to denote that their values are
contained in a respective dictionary. Then they would be propagated through expression
and operator trees so that, for example, if the vectors serving as input of join operator
have attached dictionary handles, then the respective vectors holding join results will have
attached the same handles. Other preparations would include, for example, making sure
that matching join attributes use the same dictionaries (that is, ensuring that domain-wide
encoding is being used), or inserting constant values into respective dictionaries (for example,
to make equality checks with constant possible). Finally, aggregation and join operators may
choose to use codes as grouping or join attributes, which can alter their behaviour and used
data structures. The dictionary should allow efficient lookups of string values, so we propose
to implement it using a hash table.

Data representation

We propose that vectors contain pointers to strings stored in a dictionary rather than actual
codes. The reasons are as follows. First, if a dictionary has unique entries, then the string
pointers hold the same property as codes: two strings from a dictionary are equal if and only
if their pointers are equal. The scope also remains the same. Second, this way decoding
is never required, because such vectors can always be used just like ordinary string vectors.
Finally, we can store the codes together with string values in the dictionary, and fetch them
easily whenever they are needed, for example, in order to use them for direct aggregation.
An example of such organisation is presented on Figure 4.5. In the upper part we can see
the content of a dictionary: codes and values stored one-by-one. The arrows represent string
pointers which would be placed in vectors. We can find a matching code for pointer x by
computing *((int*)x - 1).
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Dictionary overflows

If the on-the-fly dictionary grows too large, such that it is impossible to add new entries,
we should nevertheless continue query execution. The appropriate dictionary handle must
be marked as invalid. The equality checks and range comparisons have to be performed in
traditional way, and the result caching has to be abandoned. The joins and aggregations are
more difficult to handle if they use codes as grouping or join attributes. Then it may be
necessary to rebuild a hash table in order to make them usable with non-dictionary values.

Updates

In VectorWise, when an attribute value has to be updated, inserted or deleted, the changes
are not applied immediately to data stored on disks. Instead, a representation of such
modification is recorded in a dedicated main memory data structure called positional delta
tree [HNZB08]. The scan operator is responsible for applying those memory-resident changes
to data it receives from buffer manager. When the number of modifications grows too large,
they have to be flushed to disks for performance reasons.

The process of applying memory-resident changes has to be adjusted in order to use
on-the-fly dictionaries. We have to ensure that a new value — that appears as a result of
insertion or update — is represented by an appropriate dictionary entry. For that purpose we
have to perform lookup-or-insert operation on on-the-fly dictionary for each such value. This
process introduces some additional overhead, but as we stated before, the number of memory-
resident modifications has to be kept low, so this overhead will also be limited. However, if
the overhead grows too large and applying updates becomes a bottleneck, we may decide to
stop using on-the-fly dictionary (as in the case of dictionary overflow).

Domain-wide encoding

As we explained at the beginning of this chapter, for some operations — for example, joins
or equality checks — domain-wide encoding is much more useful than column-wide encoding.
While using global dictionaries we have to know upfront which attributes have a common
domain, so that we can use a single dictionary for all of them and provide uniform encoding.
However, with on-the-fly dictionaries such prior knowledge in not necessary, but instead we
can adapt to the needs of query that is currently processed. We can easily detect situations
when two or more columns should follow the same encoding scheme and use a common
dictionary handler for all of them.

Note that using on-the-fly dictionary by many operators concurrently is — unlike with
global dictionaries — not a difficult task. The only available operation is lookup-and-insert,
and there is no way to alter or delete an entry. Thus, all we need to ensure correctness is
a single mutex.

4.5. Summary

This chapter presented dictionary-compressed execution. The possible operations on dictio-
nary-encoded data were described and their impact on database performance was estimated
using dictionary tables. We concluded that dictionary-compressed execution can allow pro-
cessing the queries much faster while using less memory and disk bandwidth. Unfortunately,
providing uniform column-wide or domain-wide encoding by maintaining a global dictionary
is a challenging task. We described on-the-fly dictionaries that could provide similar gains
while avoiding the difficulties of global dictionaries.
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Chapter 5

Conclusions and future work

In our work we tried to improve the performance of VectorWise with compressed execution.
We examined previously proposed solutions and found out that they require massive adap-
tation of database engine and poorly match the VectorWise architecture. It inspired us to
search for simpler methods, that are less complicated and invasive in implementation, but
still manage to seize significant performance benefits.

Contributions

We introduced constant vectors optimization which is a variant of RLE-compressed execution.
We implemented it in VectorWise and tested its performance. We also investigated how it
influences the impact of vector size on query execution times.

We examined the possible benefits of dictionary-compressed execution, and proposed on-
the-fly dictionaries, that offer similar gains as global dictionaries, but are much easier to
maintain.

Conclusions

Our work shows that compressed execution can greatly reduce query execution times. The
full-blown solutions are cumbersome and invasive, but we managed to find alternatives less
painful to integrate in a database system. These optimizations can provide visible perfor-
mance improvements. The usefulness of the proposed methods was confirmed by benchmark-
ing results.

Future work

Our work may be complemented and extended in future in the following ways:

(a) An attempt can be made to reduce or remove the overheads of current implementation
of constant vectors. We presented a rough estimate of what impact it could have on
VectorWise performance, but it requires verification with actual measurements.

(b) The mechanism for producing vectors with variable size can be implemented. We would
like to find out whether it gives visibly better results than adjusting vector size query-
wide.

(c) We can implement on-the-fly dictionaries along with operations on data stored in them.
The experiments with dictionary tables showed significant improvements of query exe-

63



cution speed, but on-the-fly dictionaries would introduce their own overheads. We shall
find out to what extent those overheads hinder the performance gains.

(d) Alternatively, we could implement global dictionaries. This would require more work,
but would allow better analysis of on-the-fly dictionaries.

(e) Frame of reference (described in Section 2.2.1) is another compression method that could
be used for non-intrusive compressed execution. It allows remapping large integers into
smaller ones, so that they can be stored using less bytes. This can have beneficial in-
fluence on performance. Note that there are many opportunities for frame of reference
compression, because it often happens that only a small range of values from large integer
domain is used (e.g. dates). Implementing and testing compressed execution based on
frame of reference encoding is a possible future extension of this work.
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