EBERHARD KARLS UNIVERSITAT TUBINGEN

Wilhelm-Schickard-Institut
Lehrstuhl fiir Datenbanksysteme
Prof. Dr. Torsten Grust

DIPLOMARBEIT

Recycling Intermediate Results in
Pipelined Query Evaluation

Fabian Nagel
2675608

Betreuer: Dr. Peter Boncz
Gutachter I: Prof. Dr. Torsten Grust

Tiibingen, den 28. November 2010

Erklarung

Hiermit erklére ich, dass ich die vorliegende Arbeit selbststindig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Ort, Datum Unterschrift

Contents

5.3
5.4

5.9
5.6

1 Introduction
1.1 Motivation
1.2 Challenges
1.3 Related Work
1.3.1 Associated Areas e
1.3.2 A Recycler for MonetDB L.
1.4 Contribution L
1.5 Recycling Architecture
2 VectorWise Query Processing
2.1 The Execution Stage Lo
2.1.1 Some specialized Execution Operators
3 Materializing Results
4 Matching and the Recycler Tree
4.1 Introduction
4.2 The Recycler Tree
4.2.1 Linking common Sub-Trees
4.2.2 DAG Queries
4.2.3 Using the Recycler Tree
4.3 Matching
4.3.1 Matching Leaf Nodes and Creating an Initial Mapping
4.3.2 Basic Matching oo
4.3.3 Some Special Matching Cases
4.3.4 Subsumption in the Recycler
5 Designing the Store Operator
5.1 Creating the basic Operator
5.2 The three Stages of the Store Operator

Introducing Progress Indicators into the Pipeline.
Defining the Worth of an Intermediate Result
5.4.1 Materialization and Reading Cost
5.4.2 Size of an Intermediate L.
5.4.3 Cost to Compute an Intermediate
5.4.4 Number of Future Uses of an Intermediate
Adding Intermediates to the Recycler
Evicting Intermediates from the Recycler

-1 o ot

12
13

15
15
16

19

23
23
23
24
26
26
26
26
28
31
32

Using Materialized Results

Evaluation

7.1 The Workload e
7.2 Modes used for Evaluation
7.3 Results e

Conclusion and Future Work

Subsumption

55

57
57
o8
61

67

71

1 Introduction

1.1 Motivation

Commercial query optimizers today usually optimize each query invocation in isolation.
Sharing recurring intermediate and final results between successive query invocations
is ignored. It is left to the user to exploit sharing possibilities between overlapping
queries in a workload. Only considering single query invocations for optimization does
not realize the full optimization potential of a workload. The following queries illustrate
scenarios where sharing intermediate or final results could be beneficial:

o Q1: Which items have been ordered since January 1st, 2010 and cost more than

$10k?

o Q2: Which items have been ordered since January 1st, 2010 and were delivered by
"UPS’?

e Q3: Which items have been ordered since June 1st, 20107

o Q4: What is the revenue of each shop in Europe?

o Q5: What is the revenue of all shops in each country in Europe?

Query Q1 and @2 have a common sub-expression. Both queries select the same range of
dates from a base table. Query Q1 could materialize the intermediate result R of that
selection in main memory and the materialized result could then be used to answer the
second query. If the cost of materializing the intermediate and later reading it is less
than the cost of computing it twice, the workload will benefit from sharing the result
between both queries.)3 does not share an intermediate result with either of them.
However, each tuple in the result of ()3 is contained in R. Instead of computing the
result from scratch, a selection on R could be used to answer (3. The final result of Q)3
subsumes the intermediate result R. Q4 and Q)5 are another example of queries where
one subsumes the other. @5 could be computed by performing an additional aggregation
on Q4.

Sharing common results between successive query invocations can reduce the execution
time of these queries and improve the overall response time and throughput of the entire
workload. Workloads that exhibit common sub-expressions may benefit from sharing
results between queries. This is often the case for typical data warehouse workloads.
Although such workloads consist of hundreds of queries, these queries are often gener-
ated from a few patterns and thus have many sharing possibilities. Especially with user
interaction, subsequent queries tend to only differ in a few parameters. If the user for
example zooms in onto the relevant data or uses the OLAP! operation roll-up to further

LOnline Analytical Processing

summarize a result by the hierarchies within dimensions, the result of the previous query
could be utilized. Query @3 from the previous example zooms in onto the result of Q1
and Query Q5 summarizes the result of Q4 by the country each shop belongs to.
Besides the presence of common sub-expressions in a workload, sharing intermediate and
final results is more likely to pay off if the shared results are computationally expensive
and have small result sizes. Both of these factors influence how often a result has to
be reused before the cost of materializing it paid off. Typically, data warehouses store
large volumes of data that are accessed by complex queries from data analysis or deci-
sion support applications. These queries usually access a substantial part of the data,
making heavy use of aggregations and their results are typically small. Because of that
complexity, their execution time is usually greater than the one of OLTP? queries. They
are often submitted interactively and therefore require low response times.
Furthermore, updates on base tables that were used to compute intermediate results
restrain the usefulness of the intermediate result. Data warehouses are relatively static
with only infrequent updates.

So far it has been assumed that the characteristics of successive query invocations are al-
ready known when optimizing a query. However, a future workload is usually not known
and it is not possible to already identify future sharing possibilities of an intermediate
result. Therefore, intermediate and final results have to be materialized speculatively.
Recycling [IKNGO9| refers to materializing intermediate and final results and then trying
to use these results to answer incoming queries instead of recomputing the intermedi-
ates from scratch. The term recycling was first used by Ivanova et al. [IKNGO09|. The
authors extended the database system MonetDB? [Bon02| with recycling capabilities.
The recycler for MonetDB served as a trigger for this work which will transfer their
original idea into the context of pipelined query evaluation. This work will describe the
implementation of a recycling architecture for VectorWise* [ZBNH05, BZN05], a modern
pipelined database system. The system is evaluated using the TPC-H® benchmark suite.
TPC-H is a decision support benchmark.

1.2 Challenges

When implementing a recycler architecture, some of the following challenges have to be
addressed:

1. Which intermediate and final results should be materialized?

2. Should the recycler cache relations only or other query-execution generated data
structures as well (e.g. hash tables)?

3. Where to materialize these results?

4. How to materialize these results?

20nline Transaction Processing
3monetdb.cwi.nl/
4www.vectorwise.com
Swww.tpc-h.org

5. Would the recycler also work when storing the results in other storage layers than
main memory?

6. How to deal with a restricted result cache size?

7. How to verify that a materialized result from the cache can be used to answer an
incoming query?

8. Can the recycler identify additional materialized results that could be used to answer
a query (subsumption)?

9. How to use the identified result to answer the query?

10. How to deal with updates on base tables that were used to compute some of the
results in the recycler cache?

The approach described in this work will present solutions to some of these issues. It
will focus on exploring recycling in pipelined query evaluation. Since pipelined DBMS
do not implicitly materialize all intermediate and final results, special attention has to
be payed to the following issues:

1. Which intermediate and final results should be materialized?

3. How to materialize these results?

1.3 Related Work

Early work on caching intermediate and final results was already done in the 1980s.
Finkelstein and Sellis [Fin82, Sel88| conducted initial analyses on how to take advantage
of common sub-expressions within subsequent queries. Finkelstein [Fin82| identified the
requirements of a system that uses cached intermediate results to compute future queries
and gave a formal description of common sub-expressions. He also presented a matching
algorithm for select-project-join (SPJ) queries. Sellis [Sel88| identified a comprehensive
list of parameters that influence the worth of an intermediate result. The worth states
how useful materializing a particular result is. He defined several replacement algorithms
based on some of these parameters and LRUS.

Since those early studies, there have only been a few contributors to the topic:

Chen and Roussopoulos [CR93| presented the ADMS Query Optimizer, which caches
intermediate and final results, matches incoming queries with the cached results and
integrates these results in the optimization of the query plan. The authors assumed
that intermediate results are already generated during query computation. All of these
results are then submitted to the result cache. If the cache is full, a replacement policy
chooses materialized results to evinct in favour of new intermediate results. The replace-
ment policy is derived from those suggested by [Sel88|. The matching algorithm used by
the ADMS Query Optimizer is similar to the one proposed by [Fin82|. Its capabilities
are also limited to SPJ queries.

6least recently used

Shim et al. [SSV96, SSV99| introduced the WATCHMAN Cache Manager. Its original
form ([SSV96]) was limited to caching final results only. It introduced novel admission
and replacement policies. The replacement policy considers for each final result the av-
erage rate of (the last K) references, the size and the computation cost. Since reference
information is only collected for materialized results, the average rate of reference is not
available when admitting a result. Therefore, the authors only consider the cost and
size of a result in their admission policy. The computation cost of a result is obtained
from the estimates of the optimizer. When the cache is full, all materialized results are
sorted in ascending order of worth and the candidates for eviction are selected in sort
order. The new result is admitted if it has a higher worth than the replacement candi-
dates. If only reference statistics for materialized results are collected, it may lead to a
form of starvation. This is because a freshly submitted result has incomplete reference
information and is therefore among the first candidates to be evicted. When the result
is submitted again, its reference information has to be collected from scratch and hence
it is likely to be evicted another time. The authors addressed the problem of starvation
by retaining reference information of materialized results for a while after the results
have been evicted from the cache.

In [SSV99], the authors extended WATCHMAN to incorporate data cubes. If the result
of a query is not materialized and the query is in a canonical form, the algorithm splits
the query into two, one query for generating the data cube associated with the query
and one for using it. The cache is then checked to see if the data cube or one that
is subsumed by it is already materialized. The one with the least estimated cost to
evaluate the query is used. If there is no usable data cube materialized or the cost of
using the selected data cube is higher than executing the query from scratch, the cache
policies decide on materializing the final result or the data cube of the query and then
either execute the original query, or the split queries.

Rao and Ross [RR98| focused on reusing intermediate results within a single query in-
vocation. They analyzed correlated queries and described how to identify the sub-tree
of a correlated query that is not dependent on outer references, rewrite it to reveal a
maximal uncorrelated sub-tree and then materialize that sub-tree for further uses.
Kotidis and Roussopoulos |[KR99| presented DynaMat. It dynamically materializes fi-
nal results of data cube queries as materialized views and uses these results later on
to answer incoming queries. It uses very similar admission and replacement policies to
those described for WATCHMAN. The authors furthermore described their approach on
updating materialized views.

Roy et al. [RRST00] introduced FEzchequer as an entirely different approach to the
previously described work. Fzchequer merges the selection of materialized results for
answering the current query with the optimizer and uses the past k” distinct query trees
as a representative workload to evaluate the usefulness of materialized results and inter-
mediates from the current query. The optimizer compares various permutations of the
query tree in terms of execution cost and selects the cheapest. If one of the permutations
is already materialized, the minimum of the estimated execution cost using the mate-
rialized result and using base tables instead is assumed. Including permutations when
deciding which query plan to execute unveils additional sharing possibilities compared
to only using the optimal plan.

Tdefault: k=10

The content of the cache is reevaluated with each query invocation. Candidates are re-
sults which are already materialized and intermediates from the optimized query tree of
the current query. These candidates are benchmarked against the representative set of
the past k distinct queries. The representative set is a single consolidated directed acyclic
graph (DAG) that contains the query trees of the last k queries and all permutations
of each tree created in the optimizer. Consolidated means that equivalent sub-trees of
different queries are unified. The goal is to materialize the subset of the candidates that
fits the space restriction of the cache and minimizes the execution time of all queries in
the representative set. Their algorithm starts with an empty set of results to be cached.
In each iteration, it adds the result from the candidate set which reduces the compu-
tation cost of the representative set the most to the cache. Materialized results chosen
in previous iteration are assumed to already be materialized. When the size restriction
of the cache is met or none of the remaining candidates decreases the execution time
anymore, the new cache content is determined and the not selected materialized results
are evicted and selected results from the current query are materialized. Exchequer
uses multi-query optimization techniques which the authors developed in [RSSBO00].
Tan et al. [TGOO1] introduced the Cache-on-Demand framework. Instead of material-
izing intermediates from the current query in order to reuse them in an uncertain future,
it focuses on the present where "perfect’ knowledge on what is happening in the system
can be assumed. To do so, it examines the queries that are currently running in the
system, determines the common sub-expressions between the current and the running
queries and identifies the intermediates of running queries that can be reused for the
current query. It then materializes the ones that will decrease the total execution time
of the current query and the currently running queries and use the materialized results
to answer that query.

Ivanova et al. [IKNGO09| introduced the Recycler, a recycling architecture for MonetDB
which uses materialized intermediate and final results to answer incoming queries. This
approach is described in more detail in Section 1.3.2

1.3.1 Associated Areas
Multi-Query Optimization

Like recyling, multi-query optimization (MQO) also exploits common sub-expressions
in query evaluation. However, it requires queries to be submitted in batches of several
queries. In contrast to recycling, a multi-query optimizer therefore knows all queries
in a batch before any of them is executed. Furthermore, for each intermediate result
it considers for materialization, it knows the number of queries in the batch that will
profit from that result. All queries in a batch are optimized together in order to find
a globally optimal plan for the entire batch. Identifying potential sharing possibilities
within a batch and exploiting them by reusing their results is part of that optimization
process. The selection of intermediate results to share between queries is integrated
into traditional query optimization. The intermediates in the batch that contribute the
highest reduction in execution time for the entire batch while fitting the space restriction
are selected for materialization. Multi-query optimizers usually do not keep material-
ized results between different query batches. A good algorithm and implementation for

multi-query optimization is presented in [RSSBO0O].

Existing recycling implementations optimize each query in isolation and then only con-
sider the intermediate results of the generated query plan for materialization. MQO,
however, generates a joint plan for the entire batch and globally optimizes it to find
further possibilities of sharing intermediate results that would not have been identified
otherwise. These possibilities are permutations of the query plan that were not optimal
when optimizing them in isolation but are optimal when sharing one of its results with
other queries in the batch. For example the join A x B x C and the join A x B x D
could reuse the join of A x B, but if (B x C') X A turns out to be the locally optimal
plan for the first query (e. g. due to the cardinality of the result or indexes), there is no
possibility for reusing intermediates anymore if only local plans are considered.

Materialized Views

Intermediates cached in recycling can be seen as dynamic materialized views. Tradi-
tionally, materialized views are specified by the database administrator using a typical
workload (e.g. from the past), a space restriction and specialized tools to assist the se-
lection process. As a result, they are static and do not adapt to changes in the workload
unless the database administrator intervenes again. Cached intermediates in contrast
are materialized and evicted dynamically and therefore adapt to changing workloads.
Despite this difference, materialized views face a similar set of challenges. They have to
find the best set of views to materialize given a space restriction (view selection prob-
lem), automatically find the best materialized views to use for an incoming query (view
matching problem) and finally deal with updates on the base relations that have to be
propagated to the materialized views (view maintenance).

Since materialized view selection is usually performed offline, it has more time to find the
best views to materialize than recycling which is bound to selecting intermediates from
the current query while evaluating it. Materialized view selection uses the additional
time for considering global optimal plans as well. This includes materializing views that
are not part of any permutation of a query considered by the optimizer, but still con-
tribute to a lower execution time of a given workload. Materializing a data cube could
be an example for such a view. Previous recycling implementations did not exhaust
these possibilities or were limited to data cubes.

1.3.2 A Recycler for MonetDB

The major influence of this work is a paper by Ivanova et al. ([IKNGO09|). It describes
the realization of a recycler architecture for MonetDB called the Recycler.

In MonetDB, intermediate results are materialized as a by-product of query execution.
The Recycler submits all of these intermediates to the recycler cache. Even when the
cache is full, they are still submitted. However, the Recycler then removes intermediates
already in the cache to create the required space. It uses a worth metric to compare
between materialized result as described for WATCHMAN. The results with the least
worth are removed from the cache until enough space is created to store the new inter-
mediates in.

In MonetDB, a query is evaluated by several instructions. The input and output of most

10

of these instructions are intermediate results. The Recycler matches these instructions
in run-time in order to find out if there is an intermediate in the cache that could be used
instead of reevaluating that instruction. The matching process requires the Recycler to
keep the results of all instructions that the intermediate is dependent on in the cache.
This means that all intermediates used to create that intermediate have to be stored
as well in order to keep its lineage. When evicting intermediates from the cache, only
intermediates that no other intermediate is dependent on are possible candidates.

The Recycler supports an advanced form of subsumption for selections. If there is no
exactly matching selection in the recycler, it tries to find materialized results that are
subsumed by the intermediate or several materialized results that can be combined to
obtain the intermediate result from.

There are many differences between the Recycler for MonetDB and one for a pipelined
DBMS. Most of them can be explained by architectural differences. The column-at-a-
time paradigm forces MonetDB to materialize all intermediate results and to process
each column separately. Because intermediate results are already materialized by the
system, materialization cost is irrelevant for the Recycler and there is no need to decide
which ones to materialize. This means that all materialized results can be submitted to
the Recycler. As soon as the cache is full, the recycler decides which ones to keep in the
cache and which ones to evict in order to create space for new intermediates.

In a pipelined DBMS, an operation usually processes all relevant columns of an inter-
mediate result at the same time. Materializing the result of such an operation limits
recycling to only being able to use a materialized result, if it contains all tuples of one
of the intermediates produced by the query or if it can be combined with other materi-
alized results to form a result that contains these tuples. The materialized result then
is a superset of the intermediate. If the intermediate result contains either a tuple or a
column that is not part of the materialized result, the result cannot be used.

MonetDB on the other hand processes each column separately. Therefore each interme-
diate result is a single column. In order to be able to reuse such a result, the materialized
column has to contain all values of the intermediate column from the query. However,
not all columns of the result of a relational operation from the query need to be con-
tained in the recycler anymore. In order to reuse the result of a relational operation
from the recycler, it is sufficient if the columns of that result partially overlap with the
columns of the result from the query. As soon as at least one of the columns of a result
in the query matched with the recycler, that result can be used to answer the query.
Even if the matched columns in the Recycler originated from results of different query
invocations, they can still be used together to answer the query. All columns which
are not materialized in the recycler will be evaluated separately. Because all dependent
results have to be kept in the cache as well, the columns do not need to be recomputed
from scratch. A selection can for example just be applied to the additional column using
intermediates from dependent instructions instead of recomputing the entire selection.
The recycler for MonetDB therefore can reuse materialized results at a finer granularity
and is able to exploit more common sub-expressions.

11

1.4 Contribution

Ivanova et al. [IKNGO09| showed, that recycling intermediate results can be very useful
when processing workloads which contain common sub-expressions. However, the used
DBMS (MonetDB) has some unique characteristics that favour recycling. The most
important difference to most commercial DBMS is, that it materializes intermediate re-
sults while executing a query. This means, that all intermediates are already available
in main memory. Therefore materialization is free and the recycler only has to decide
which intermediate results to keep. DBMS that rely on pipelining do not materialize
intermediate results and therefore materialization has its cost. Dependent on the cost
of the operation and the size of its result, materializing the result of an operation can
cost several times as much as the operation itself. The cost of materializing every inter-
mediate result would most likely be too high in a pipelined environment. Not having to
materialize every intermediate result is one of the advantages of such a DBMS.

In order to use recycling in a DBMS that does not materialize every intermediate results,
only some intermediates should be materialized while executing incoming queries. The
ones being materialized have to be chosen carefully as the selection of these intermediate
is the most critical decision in such an architecture. Intermediates that lead to the lowest
computation cost for the entire workload have to be selected. The recycler will define an
advanced worth function to compare intermediate results and to decide which of them
to materialize. The worth will be dependent on the cost of an intermediate result, its
predicted probability to reoccur in a future query and its size. The prediction of the
probability of a result will be more comprehensive than in previous recycler architec-
tures.

The authors of [IKNGO09| also use some kind of worth to compare intermediate results.
However, they only use it to evict materialized results from the cache. New intermedi-
ates are always added. As a consequence, the computation cost as well as the size of each
intermediate result is already known when computing its worth. In contrast, a recycler
for a pipelined DBMS has to select intermediates for materialization. This decision has
to be done before the result is produced. Therefore, the recycler needs to compute the
worth of an intermediate result before its cost and size is known. The recycler uses two
sources to approximate unknown factors: History and Sampling.

The recycler collects information from previous query invocations in a structure called
the recycler tree. This information includes for example the computation cost of inter-
mediates that have already been executed. When having to compute the worth of an
intermediate result which is already in the recycler tree, that information is available in
the tree and can be utilized.

In case the intermediate result has not already occurred in a previous query, there is
no historic information on it. However, the recycler still needs to be able to compute
its worth to decide whether to materialize the result. In that case, sampling is used to
estimate the cost and size of an intermediate. Before deciding to materialize a result,
it is buffered for a while and from the information obtained while buffering it, the total
cost and size of the intermediate is estimated. These estimates are then used to compute
the worth of the intermediate result.

Furthermore, the recycler will explore the possibility of using light-weight compression
schemes [ZHNBO6| provided by VectorWise. Compressing materialized results shrinks

12

their size, but also increases the cost of materializing them. It allows to fit more mate-
rialized results in the limited main memory space. Compressing materialized results is
novel to recycling architectures.

1.5 Recycling Architecture

The recycler interacts with traditional query processing. When a query is submitted
and transformed into a query tree, the recycler tries to match each node of that tree
with trees from previous queries already in the recycler. After matching is finished,
it submits the tree of the current query to the recycler. Then it checks if there are
nodes in the query tree that were matched with a node in the recycler that is already
materialized. If such a node is found, it uses the materialized result to compute the
query instead of recomputing the entire sub-tree rooted by the node from the query.
The recycler then inserts Store operators into the resulting query tree. A Store operator
is a pipelined execution operator defined for the recycler. When executing the query,
each Store operator passes the result produced in its sub-tree to its parent operator. It
can also materialize that result if needed. The aforementioned worth metric is used to
decide if that particular result should be materialized. It utilizes historic information
stored in the recycler as well as information gathered through sampling in order to make
an informed decision. After the query is executed, the recycler adds each result of the
query that was materialized to the recycler cache.

The following chapters will describe the architecture of a recycler for pipelined query
evaluation in more detail. Chapter 3 will investigate the storage of intermediate and
final results. Chapter 4 will give additional details on matching and the recycler tree.
Chapter 5 will define the Store operator and the worth metric. Chapter 6 will then
describe the process of using a materialized result to answer the current query. The pre-
sented recycler implementation will then be evaluated in Chapter 7. Finally, Chapter
8 will conclude the work and briefly discuss possible future enhancements of the recycler.

13

14

2 VectorWise Query Processing

In order to understand how the recycler works, it is essential to understand how Vector-
Wise processes an incoming query. The VectorWise server receives a query which has
already been optimized in algebraic form from a client like the INGRES front-end. The
VectorWise server processes that query in several stages. Figure 2.1 shows the main
stages in the life-cycle of a query. VectorWise parses the received algebraic represen-
tation of the query into a tree structure. This tree structure is then manipulated and
annotated by the rewriter. The rewriter contains several rewrite rules. It processes one
rule after the other by calling the rule on each node of the query tree. Each rule can be
either executed top-down or bottom-up. Top-down means that processing starts with
the root node and then proceeds towards the leaves whereas bottom-up describes the
opposite direction. After all rules have been applied to the query tree, the builder trans-
forms it into an operator tree. The result of the query is then produced by executing
that operator tree. The execution stage is described in more detail in the next Section.
After the result has been produced, it is sent to the client and the server waits for the
next query.

2.1 The Execution Stage

The VectorWise execution engine [ZBNH05, BZNO05| uses a variation of the widely
used tuple-at-a-time volcano iterator model [Gra94|. It combines the advantages of the
column-at-a-time paradigm used in MonetDB [Bon02| like fast tuple processing with
little overhead per tuple with the advantage of the tuple-at-a-time paradigm that in-
termediate results do not need to be materialized and a lower response time for the
first result tuples. Like in the volcano iterator model, each operator implements the
open-next-close interface, but instead of single tuples, entire vectors of values are passed
through the pipeline. This leads to tight loops that expose more instruction level par-

’ rewrite
’ execute

Figure 2.1: Lifecycle of a Query in VectorWise

x100 Algebra

xnode tree

build

I
operator tree
|

free

15

Project

— name, salary*1.1 —

vector
n

Select
age > 50

vector
1

Scan

employee =,

Figure 2.2: Pipelined Query Evaluation in VectorWise

allelism to the compiler and reduces the function call cost payed per tuple resulting in
very high instructions per clock cycle (IPC). The vector size is typically 1024 tuples to
ensure that all vectors currently in the processing pipeline fit into the CPU cache to
provide faster access and fewer main memory reads.

To produce the result of a query, the server successively requests additional result tuples
from the root operator of the operator tree. The root in turn requests tuples from its
children and they from their children etc. As a consequence, the tuples flow from the
leaf nodes towards the root. Each operator processes the tuples produced by its children
and passes them on to its parent operator. The granularity tuples are returned in is a
vector. Figure 2.2 illustrates the execution of a simple query in a pipelined DBMS. A
segment of the operator tree is referred to as pipelined if all operators in that segment
process tuples without having to see all data delivered by child operators in advance. An
operator is called blocking if it requires the entire result of a child before it can produce
any result tuples.

2.1.1 Some specialized Execution Operators
The Append Operator

The Append operator materializes the intermediate result produced by its child operator
to an existing table stored in ColumnBM (CBM) [BZN05, ZBNHO05, ZHNBO06]. CBM is
the storage manager of VectorWise and supports both, columnar storage (DSM* [CK85])
as well as PAX? [ADHSO01]. Tt furthermore supports compression in either storage model.
The definition of the table the result is stored in specifies the storage model used and
whether the result should be compressed. The Append Operator furthermore passes the
result to its parent to not interrupt the tuple flow in the operator tree.

The Reuse Operator

The Reuse operator is used to allow several operators in the same operator tree to share
a result instead of having to recompute it for each operator. To do so, each produced
tuple of that result is buffered until it has been consumed by each of them. When an

!'Decomposition Storage Model - column-wise storage
2Partition Attributes Across - row-wise storage, but column-wise arrangement within each disk block

16

operator requests tuples from a Reuse operator, the request is satisfied using the shared
buffers. Only if there are no new tuples in the buffers, the child is called to produce
additional tuples. These tuples are then inserted into the buffers for all other consumers
of the result.

17

18

3 Materializing Results

Since pipelined DBMS do not materialize all intermediate results, the recycler has to
take care of the materialization process itself. This gives the recycler several options on
how to materialize results. Materialized results could be stored in a simple in-memory
structure organised by the recycler or in in-memory tables. The recycler will use the
latter alternative. Although this alternative might expose additional overhead when
materializing an intermediate result, it enables the recycler to use some of the already
available features of tables like light-weight compression schemes. These can be used to
shrink the size of intermediate results and therefore fit more of them in the limited main
memory space.

To implement in-memory tables, a temporary columnspace' is defined. A temporary
columnspace keeps all its blocks in main memory. It never writes blocks back to disk
and never logs changes to the schema. Therefore the columnspace is not persistent.
When the DBMS crashes or is shut down, the content of a temporary columnspace is
lost. The recycler maintains a seperate catalog for all tables in that columnspace. That
catalog is also not persistent and its content is reset with each server restart. All mate-
rialized intermediate results are added to that catalog instead of the system catalog.
The storage system of VectorWise offers several choices on how to set up a temporary
columnspace and in-memory tables. These can be adapted to the needs of the recycler
to improve its performance. The cost of materializing an intermediate result and the
space the result occupies in main memory can be identified as the main factors. Both of
them have to be kept as small as possible. However, they often behave in an opposing
manner. The key is to find a good balance between both of them.

When creating the temporary columnspace, the block size of that columnspace has to
be chosen. VectorWise usually uses huge blocks. The default block size is 512KB. Using
larger blocks reduces the materialization cost. Figure 3.1 (1) illustrates the decline in
materialization cost when using larger blocks. The results were obtained by measuring
the materialization cost of the aggregation (114003 tuples) in query Q3 of the TPC-H
benchmark. However, many of the intermediates stored in the recycler tend to be rather
small. Using huge block sizes would end up in unused space in blocks that contain results
that are smaller than the chosen block size. The result of the first TPC-H query for
example only contains 4 tuples. For all of the considered block sizes, this result will fit
into a single block. The space it uses in the cache will be equal to the chosen block size.
Therefore the recycler will favour smaller blocks.

When creating the table to store an intermediate result in, the recycler has several op-
tions. It can store each result either in DSM or PAX. DSM stores the result column-wise
whereas PAX stores it row-wise regarding disk blocks. However, PAX internally arranges
each block in a column-wise fashion. Figure 3.1 (r.) illustrates the cost of materializing
the same result as before using either DSM or PAX. For all considered block sizes, DSM

La tablespace for column data

19

Cost of Materializing a Result (114k Tuples) Cost of Materializing a Result (114k Tuples)

6000 . cost 7000 DSV
m— PA
6000

5000

5000 -

4000
4000

3000
3000

2000 2000 -

materialization cost in 1k clock cycles

1000 1000

materialization cost in 1k clock cycles

32KB 64KB 128KB 256KB 512KB
block size block size

Figure 3.1: Benchmark of the materialization cost using various block sizes (l.) and
storage types (r.) when compressing the result of the aggregation (114k
tuples) from TPC-H Q3 with SF-10 and unclustered data

exhibits the smaller materialization cost. This suggests using DSM only. However, when
considering small results again, DSM and PAX differ in the minimum space that a result
requires. DSM requires at least one block for each column of the intermediate result.
Using DSM for results that are too small to fill an entire block for each column, leads to
unused space in these blocks and therefore to wasted storage space. PAX on the other
hand only requires a single block as long as the result is no larger than that block. Since
the decision whether to use DSM or PAX can be done for each table separately, the
recycler will use PAX for small results. As soon as the estimated size of the result is big
enough to fit a block for each column, DSM will be used instead.

Furthermore, the recycler can choose whether the result should be compressed. Com-
pression increases the materialization cost but decreases the size of the result. Most of
the additional cost of compression is accounted for by calibration. Before compressing
a block, compression parameters are calibrated for that block using a fixed number of
values that will be stored in that block. Examining these values includes sorting them
and hence is very expensive. In VectorWise it is possible to adjust the number of values
which are examined for each block. The default is 8192 values. This value is tuned for
the default block size of 512KB. When using smaller blocks, the fraction of tupels from
the result which are used for calibration increases as well as the materialization cost.
Reducing the sampling size decreases the materialization cost, but also the quality of
the chosen compression parameters. The final size of the materialized result can be used
as an indicator of the quality of the compression. The smaller the result, the better
the used compression parameters and the better the quality of the compression. Figure
3.2 shows the materialization cost and the size of two intermediate results for different
sampling sizes. The results confirm that compression does not come for free. However,
reducing the sample size leads to less of a difference while the quality of the compression
stays quite stable. In the left graph of Figure 3.2, compression with the smallest sample
size reduces the size of the result to 28% of the uncompressed size while costing 76%
more. In the right graph, the result size was reduced to 54% and the materialization
cost increased by 118%. The results do not provide a clear outlook on the usefulness
of compression. It depends on the relative importance between size and materialization
cost and the characteristic of each result like the achieved compression rate.

20

Cost and Size of Materializing a Result (1.5mio Tuples) Cost and Size of Materializing a Result (32mio Tuples)

1000 18000 o 90000 450000 o

. size . size
900 16000 = 80000 400000 =

800

14000
700

12000 60000 300000

600

B
70000 I 350000

10000 50000 250000

size in KB

8000 40000 200000

6000 30000

i i
20000 I I
10000 J J
% &
K

150000

4000

100000

materialization cost in 1mio clock cycles
size in KB
materialization cost in 1mio clock cycles

2000 50000

0 0 0
% %d T %

sample size sample size

Figure 3.2: Benchmark of the materialization cost (l.) and size (r.) using various sam-
pling sizes when compressing the result of the selection (32 mio tuples) on
lineitem from TPC-H Q3 with SF-10 and unclustered data

Compression can be individually chosen for each column of each table.

To improve the situation for compression, the compression system could be changed. It
could calibrate once for the entire result instead of calibrating for each block individu-
ally and only recalibrate when the exception rate surpasses a threshold. Furthermore,
columns that do not have a high enough compression rate could be rejected for com-
pression early and only blocks from columns with high compression rates are considered
further.

21

22

4 Matching and the Recycler Tree

4.1 Introduction

For each materialized result stored in the recycler cache, the recycler has to be able
to identify upcoming queries that can be answered using that particular result. A ma-
terialized result can be used to answer a query if the query tree contains a sub-tree
that produces the same result. The materialized result can then be used instead of
executing that sub-tree again. In order to check if the intermediate result which will be
produced by the query and the materialized result from the recycler cache are the same,
the (sub-)trees producing both results have to be matched. Two trees can be considered
matching, if they produce the same result. Matching both trees requires the recycler to
not only store the intermediate result, but also the tree which produced it. In order to
find out if a materialized result can be used to answer a query, the query tree is matched
bottom-up with the tree which produced the materialized result. The matching process
starts with each leaf node until either the node is reached which produced the interme-
diate result or the matching is canceled because two corresponding nodes would have
produced incompatible results.

Matching the intermediate results of a query with various materialized results in the
recycler cache is performed by a bottom-up rewriter rule. The rule matches each node
of the query tree separately with all candidate nodes in the recycler that still could
produce the same result.

There are two sorts of matching nodes, exact match and subsumption. Exact match
has been described earlier in this section. Two nodes match exactly if the trees rooted
by them produce the same result. In this case, the materialized result can be uncon-
ditionally used to answer the query. An intermediate result of the query subsumes a
materialized result, if the materialized result contains not only all the tuples of the in-
termediate, but also additional ones. In this case, the materialized intermediate can still
be used to answer the query because it contains all needed tuples, but the result might
have to be pre-processed before the query can use it instead of the original sub-tree. See
Appendix A for a more detailed description of subsumption.

4.2 The Recycler Tree

As mentioned before, the query-tree which generated the materialized result has to be
stored together with the result in the recycler. There are several options for how to
store these trees in the recycler. Figure 4.1 illustrates three of them. Dark shaded nodes
represent intermediate results which are materialized in the recycler. The first option
has been assumed so far. Whenever a new result is submitted to the recycler, the part

23

Figure 4.1: Possibilities for Storing Query Trees in the Recycler

of the query tree which produced that result is also submitted. A disadvantage of this
approach is that statistics, such as the number of times a node was referenced by a query
can only be collected for nodes stored in the recycler. As only materialized nodes and
their sub-trees are stored in the recycler, only these have statistical information avail-
able. When deciding whether to materialize an intermediate result, the recycler cannot
use any history based information to improve the decision because it only has incomplete
statistics on past behaviours. Using only the information available would cause a freshly
materialized node to be more likely to be evicted shortly after its submission than at a
later time when sufficient information is collected. Another possible approach would be
to store all query trees no matter if they contain materialized results. This option would
allow collecting statistics on all nodes, but also expose additional overhead.

The recycler uses the third option in Figure 4.1. It stores all query trees, but links match-
ing nodes together and adds a virtual root node to obtain a unified tree. Although the
resulting tree is a directed acyclic graph (DAG), it is referred to as recycler tree. Node
C in Figure 4.1 illustrates, how the copies of query trees from different queries share
common nodes in the recycler tree.

Each incoming query tree is added to the recycler tree after matching is completed.
Each node is added separately starting with the root node of the query tree. Nodes
that do not match with a node in the recycler tree are copied to the recycler. For each
new node, a structure to keep the statistics in is created and initialized. Furthermore, a
pointer to the node’s parent is added. This pointer will be needed to match the copied
tree with upcoming query trees. Nodes that matched with a node in the recycler tree
are not copied. Instead, they are linked to the node in the recycler tree that they were
matched with. Once a matching sub-tree is identified, it is traversed in the recycler tree
to update each node’s statistics. The updating stops once a leaf node or a node which
is already materialized is reached.

4.2.1 Linking common Sub-Trees

Whenever a node in the query tree does not match with any node in the recycler, but
has a child that was successfully matched, that child is the root of a sub-tree that al-
ready exists in the recycler tree. Instead of also copying that sub-tree, the two sub-trees
are linked together. This means that the node’s child is replaced by the root of the
corresponding sub-tree in the recycler. Linking common sub-trees ensures that such a

24

Recycler

Query Recycler l

[rapag

<-
parents @ parents|<-
Other children of C Other children of B Other children of B

Figure 4.2: Linking an Incoming Query with a Matched Query from the Recycler

sub-tree is only present once in the recycler, no matter how many different queries it has
been part of. This also means that each node of the sub-tree only has to be matched
once for all of these queries. After linking, the root node of the shared sub-tree has more
than one parent and each of its parents share a common child.

There are, however, problems associated with this approach, as shown in Figure 4.2
(1.). In VectorWise, each node only has one child pointer which points to a linked list
that represents the node’s children. Replacing one of these with the root of the shared
sub-tree cuts off the node’s remaining children and replaces them with the children of
their original parent in the recycler tree. Replacing C’s child A with the matched child
Ax from the recycler tree also replaces C’s other children with the children of B. Figure
4.2 (r.) shows a solution to that problem. When linking node C' to the shared sub-tree,
a virtual node (Rel) is added between C' and the root node Ax of that sub-tree C. The
virtual node Rel holds all remaining children of C. Ax is then added as the virtual
node’s only child. When adding the additional parent pointer to the root Ax of the
shared sub-tree, it will point to C instead of the virtual node inbetween them. This
ensures that the virtual node is not considered when matching, because the matching
process navigates the recycler tree bottom-up through parent pointer and therefore just
jumps over the virtual node.

However, the fact that two queries share a common sub-tree in the recycler tree does not
mean that each of them uses the same names to identify columns. One query could for
example have called the result of the same aggregation inside that sub-tree ’sum’ and
the other 'sum_qntty’. When passing a virtual node while matching, the names that
were used in the shared sub-tree to identify results have to be replaced by the names the
query that was linked to the sub-tree used to identify these results. If the query and the
linked sub-tree use different identifiers for at least one of their columns, the virtual node
has to provide a mapping that can be utilized to translate the names used in the common
sub-tree to the ones used by the query. Since a mapping like this has already been cre-
ated when the query was matched with the shared sub-tree, that mapping can be kept in
the virtual node and used whenever a new query is successfully matched up to that node.

25

4.2.2 DAG Queries

Not only different queries can share common sub-trees. A single query can also use the
same sub-tree more than once. The query tree of such a query forms a directed acyclic
graph. Examples for such queries are queries 11, 13 or 15 of the TPC-H Benchmark.
Shared sub-trees within a single query are already identified and exploited by Vector-
Wise. VectorWise utilizes Reuse operators to only compute the resulting tuples of such
a sub-tree once and then use these tuples for all further occurrences of the same sub-tree.
In the query tree, a unique name is assigned to the first occurrence of a shared sub-tree.
All other occurrences of that sub-tree are identified by that name instead of the sub-tree
itself. Inserting such a query tree into the recycler tree requires the recycler to insert the
common sub-tree only once and then link all other occurrences of the same sub-tree to
that one. In contrast to linking sub-trees shared by different queries, no name mapping
is required because the same sub-tree will always use the same names.

Furthermore, all Reuse operators have to be ignored when inserting the query tree to
avoid having to match them later on.

4.2.3 Using the Recycler Tree

As mentioned before, the recycler tree is used to match incoming queries and to collect
and utilize statistics on each of its nodes. The collected statistics include the measured
cost for computing the result of each node, the number of times a result has been part
of a query so far and, if known, the size of the result.

Some of the operations on the recycler tree require navigating the descendants of a
node and some require navigating the ancestors. With each new query, the recycler tree
grows in size. If the query matched with a sub-tree in the recycler, the root node of
that sub-tree gets an additional parent and each node in its sub-tree gets additional
ancestors. When navigating the ancestors of a node, the search space grows with each
different query that uses that node. The number of descendants, however, is bounded
by the individual size of a query and does not grow over time. Therefore, navigating
descendants is preferable to navigating ancestors wherever possible.

Furthermore, the recycler tree has to be truncated from time to time to prevent it from
becoming too large. Chapter 8 will outline how the tree could be kept to a manageable
size.

4.3 Matching

4.3.1 Matching Leaf Nodes and Creating an Initial Mapping

Matching a query with the recycler tree always starts with matching leaf nodes, which
are usually scans on base tables. At that point, all leaf nodes in the recycler tree are
possible candidates. The number of these candidates depends on the size of the recy-
cler tree. If the recycler tree is not truncated periodically, their number continuously
increases over time. With each further matching step, the search space is drastically

26

{I_shipdate, I_returnflag, I_linestatus, |_quantity}

h(x)

[0 010001000100 0]

h(x)
{I_shipdate}

Figure 4.3: Using a Bloom Filter to test if a column is a member of a set of columns

reduced. The reason for this is that with each node in the recycler tree that did not
match with the query, all of its ancestors are pruned. Since the recycler links matching
nodes together, each node of the query tree usually has at most one matching node in
the recycler tree. After successfully matching a node, the ancestors of the matched node
in the recycler tree are the only candidate nodes for subsequent matching steps. When
matching the node’s parent in the next step, only the parents of the matched node have
to be considered.

However, when matching table scans, all leaf nodes in the recycler tree are still possible
candidates and have to be matched with each leaf node in the query tree. The effort
spent on matching these nodes grows with the size of the recycler tree. In order to
handle that effort, the number of leaf nodes in the recycler tree which are considered for
matching has to be reduced as soon as possible.

A first step is to prune leaf nodes that do not use the same base tables. This is achieved
by hashing each leaf node of the query on the name of the base table it scans from.
The hash function indexes an array in the recycler that contains a pointer to a linked
list of all leaf nodes in the recycler tree that hashed to the same value. Only leaf nodes
contained in that list need to be considered further. Afterwards, the table name of the
leaf node from the query is compared to each leaf node in that list.

Bloom filters can be utilized to further reduce the number of leaf nodes that need to
be matched. If the table scan represented by a leaf node from the recycler does not
contain all of the columns that are required by the query, that leaf node can be rejected
early. Figure 4.3 illustrates how a bloom filter works. Each leaf node in the recycler tree
contains a bit array. The name of each column which is scanned by a leaf node is hashed
to one or more bits of that leaf node’s bit array. These bits are then set. To check if
all columns of a leaf node from the query are contained in a leaf node from the recycler,
each of the column names from the query are tested if they hash to bits in the bit array
of the node from the recycler that are already set. If one of the column names hashes
to a bit that is not set, that column has not been scanned by the leaf node from the
recycler and therefore does not need to be considered any further. If each column name
hashes to bits in the bit array that were already set, it does not necessarily mean that
both leaf nodes match as the bits could have been set by other columns as well. Using
bloom filters only prunes additional leaf nodes from the list returned by the recycler, it
does not avoid the more expensive matching process.

After pruning as many leaf nodes from the recycler as possible, the leaf node from the
query tree is matched with all remaining nodes. Since table names have already been
compared before, it is not necessary to match them again. The matching process checks

27

for each column which is scanned by the leaf node from the query tree, if that column
was also scanned by the one from the recycler tree. If all columns of the leaf from the
query tree are contained in the leaf of the recycler, the two nodes are considered match-
ing.

However, each leaf node can assign a new name to the base table it scans from. The
parent of that node then uses the new name to identify the table instead of the original
one. When matching the parents of two scans which matched, but assigned different
names to the same base table, the two nodes will identify the columns from these tables
with different names although they refer to the same column. By the time the parents
are matched, the information showing whether these columns had different names be-
cause they were from different tables or if they just were renamed is no longer available.
In order to be able to match nodes that use different names for the same column, the
recycler has to create mappings between these nodes. These mappings map each com-
bination of column and table name used by a node from the query tree to the names
which were used by the matched node in the recycler tree. If a node from the query is
matched with a node in the recycler tree, the node from the query is annotated with
the matched node as well as the mapping between both nodes. When matching that
node’s parent later on, the stored mapping can be used to try to match it with one of
the matched node’s parents. The mapping is updated with each matching step further
up the tree.

4.3.2 Basic Matching

Matching an intermediate result with various materialized results in the recycler is per-
formed by a rewriter rule. The rule matches each node in the query tree separately. It
only considers some nodes of the query tree for matching. These nodes are referred to as
relation nodes. Relation nodes represent a relational operation that will be performed
on the results of its child relation nodes, like a selection or an aggregation. Relation
nodes are characterized by another group of nodes in the query tree called expression
nodes. Each node has a type and the rewriter rule applies different matching procedures
dependent on the type of the relation node it is called for.

The matching procedure for most of these types has a similar structure. Algorithm 1
illustrates the matching process for an unary relation node. Matching always starts with
checking if the node’s children were successfully matched. If one of the node’s children
did not match with any node in the recycler, the node itself cannot match with any node
and the matching process can be aborted. If the child of the current node matched, the
node in the recycler which matched with the child as well as the name mapping between
the child and the matched node can be obtained from the child. In a few cases, for ex-
ample when matching the parent of a scan, it is possible to have more than one matching
node and hence more than one mapping. If this is the case, the following procedure has
to be repeated for each matching node. Candidates for matching are all parents of the
node in the recycler which was matched with the child. Since the recycler linked match-
ing nodes together, the number of parents can exceed one. Each parent of the matched
node is then checked to see if it has the same type as the current node in the query.
If the node which was matched with the current node’s child and its parent originated

28

Algorithm 1 Match a node V;
Input: V; /* node from the query tree */
if child C of V; matched then
for all nodes M that matched with C' do
for all parents P of M do
if V; and P have same type then
if child of P is a virtual node then
copy mapping
update mapping
end if
match relevant expression nodes and update mappings
if relevant expression nodes matched then
annotate V; with the matched node and mapping
end if
end if
end for
end for
end if

from different queries and therefore have a virtual node inbetween them as described in
Section 4.2.1, the mapping is updated with the new names before continuing. Since the
mapping which was obtained from the current node’s child will also be used to match
all not yet matched parents and is further needed when using a materialized result to
answer the query, it has to stay intact and therefore all changes have to be performed
on a copy.

The recycler then matches the relevant expression nodes that specify the parameters of
the relation. Figure 4.4 illustrates matching the selection from query Q1 from the TPC-
H benchmark with a selection in the recycler tree that originated from the same query
but uses another table name. The mapping from the child node provides the mapping
between the names used in both relations. The selection selects all tuples from lineitem
with 1 _shipdate being greater or equal to a specific date. The column the selection
is applied on and the value of the date are described by the expression nodes of the
selection. Expression nodes are matched using a generic matching function regardless of
the type of relation node that they describe. In each recursion, the matching function
matches an expression node from the query with one from the recycler. When matching
two expression nodes, the sub-trees of these nodes are evaluated first. If these sub-trees
were successfully matched, the nodes themselves are matched. Expression nodes are
matched differently depending on their type.

Figure 4.4 shows the expression nodes that describe the aforementioned selection and
Algorithm 2 outlines the matching algorithm for the expression nodes which are relevant
for that selection. The types of these nodes are Operator, Ident, Qual, C'all and String.
Matching expression nodes starts with matching the root node of the expression sub-tree
from the query with the corresponding root node from the recycler tree. In the selection
example, these are Operator nodes. An Operator node specifies the selection condition.
When matching both nodes, it is checked if they have the same type and the same value.
If that is the case, the children of both Operator nodes are matched. The children of

29

Query , Recycler

: i column name: column name: | .
Relation il shipdate' I shipdate' | Relation
Node \ ! table name: table name:
'lineitem" ‘line*

Operator
(gt

p
N

String
'729999'

Figure 4.4: Matching the Selection from TPC-H Query 1

Algorithm 2 Match expression nodes of a node V;

Input: exprl /* expression node from the query */
Input: expr2 /* expression node from the recycler */
if exprl and expr2 have 'Operator’ or 'Call’ as type then
if exprl and expr2 have the same value then
if children of exprl and expr2 match then
return true
end if
end if
end if
if exprl and expr2 have ’Ident’ as type then
if exprl and expr2 have the same value then
if children of exprl and expr2 have the same value then
return true
end if
end if
end if
if exprl and expr2 have 'String’ as type then
if exprl and expr2 have the same value then
return true
end if
end if

return false

30

the Operator nodes are Ident and Call. The Ident node specifies the column name of
the selection and the Qual node beneath it the corresponding table name. Both of them
are matched in a single step. It is checked if both expression nodes have the same type
and if a mapping exists that maps the column and table name used by the expression
nodes from the query to the names used by the ones from the recycler. The Call node
is matched the same way as the Operator node. The String node specifies the constant
value of the selection predicate. Both String nodes are successfully matched if they
have the same type and value. If all of these steps are successfull, the expression nodes
of the selection can be considered matching.

If the expression nodes contain name assignments, the new names have to be added to
the mapping which was obtained from the child. Since the mappings are added to the
front of the list, the child’s mapping is not changed and therefore it is not necessary to
copy the mapping first.

If all of the previous steps have been successful, a matching node is found. That node
and the corresponding mapping is then added to the node from the query.

4.3.3 Some Special Matching Cases

There are some relation nodes that have to be treated differently to what has been de-
scribed in the previous section. These exceptions are described below:

Relation nodes that represent binary relations like joins have two children. Both of them
need to match before the binary node can be matched. While matching the node, the
mappings of both children have to be united.

Another special case are As nodes. They are used to assign a unified table name to the
result of their sub-tree. Since these nodes only change the mapping, but not the result
itself, they must always be successfully matched. When matching two nodes, both of
them can be As nodes or either of them. If both of them are As nodes, the mapping of
their child will be copied and then updated with the new table names. After that, both
nodes will be considered successfully matched. If the node from the query is an As node,
but the node it is matched with in the recycler has any other type than As, the mapping
will again be copied and updated with the new table name. However, the As node from
the query will not be considered matched with the node from the recycler. Instead it
will be considered matched with that node’s child. The child was already successfully
matched with the child of the As node in a previous step. When the parent of the As is
matched later on, it will again be matched with the same node in the recycler. However,
it will use the mapping produced by the As node. If the node from the query has any
other type than As, but the one from the recycler is an As node, the type of the parent
of the As is checked. If the node from the query and the parent of the As node have the
same type, the mapping is copied and updated with the new table name assigned by the
As node and then the node from the query is matched with the parent of the As node.
The last special type of relation node are Reuse nodes as described in Section 4.2.2.
When a query contains the same sub-tree more than once, a Reuse Assign node is used
on top of the first occurrence of that sub-tree to assign a name to the sub-tree and when
that sub-tree occurs again in the same query, the Reuse Ident node is used to identify the
sub-tree with that name instead of the sub-tree itself. When matching an Assign node,

31

the name that is assigned to the sub-tree as well as a pointer to the Reuse Assign node
has to be made globally available. The virtual root node of the query tree is accessible
in each matching step and therefore used for this purpose. When a Reuse Ident node is
matched, the name its sub-tree is identified with is looked up and then the corresponding
Assign node is checked for a matched node in the recycler and a mapping. If the Assign
node’s child was successfully matched, the Reuse Assign as well as all Reuse Idents that
use the same sub-tree are considered matched with the same node in the recycler.

4.3.4 Subsumption in the Recycler

The recycler as described above only supports a limited amount of subsumption. The
only form it supports is column subsumption. This means that the result in the recycler
includes not only the required result, but also other columns that the query did not
request. However, the recycler is not limited to that form of subsumption. It is possible
to implement individual matching functions for each operator that check for possible
subsumption scenarios once exact matching has failed. For example, if exact matching
a selection failed but the result of the selection in the recycler tree is materialized, the
rewriter rule could check if the node from the query and the one from the recycler use
the same column in their selection condition. If that is the case, it has to check whether
the selection condition described by the Operator node could subsume the one from the
recycler and if the specified value is within the required range. If these conditions are
met, the materialized result can be used to answer the query. However the selection still
has to be performed on the materialized result in order to select the required tuples. Af-
ter subsuming a materialized result from the recycler, matching of the node’s ancestors
must be stopped. This is because there are some operations, like aggregation, where it
is no longer possible to get the results for the subsumption from.

Appendix A will describe subsumption in more detail.

32

5 Designing the Store Operator

5.1 Creating the basic Operator

The Store operator is a query execution operator that implements the iterator interface.
Its purpose is to decide if the intermediate result produced by its sub-tree should be
materialized to a new in-memory table and if so, to create that table and append the
result to it. For results that are not being materialized, the Store operator needs to
be as light-weight as possible. In both cases, the Store operator should not interrupt
the tuple flow in the operator tree. The Store operator uses a worth function to decide
which intermediate results to materialize. To obtain the worth of an intermediate result,
information gathered from previous query evaluations as well as run-time measurements
to estimate unknown parameters are used. A rewriter rule adds Store operators on top of
any operator that produces a new intermediate result. While executing the query, Store
operators dynamically decide at run-time which of these results are worth materializing.
An intuitive approach on how to implement the Store operator would be to just in-
sert an Append operator between the Store and its child. This approach would allow
materializing the result and removing the Append operator when deciding to bail out
materialization. This would, however, require each Store operator to create a table and
allocate memory for the Append operator before the query is executed. The Append
would then start appending tuples as soon as the first ones are returned from the child.
If, while producing the intermediate result, it turned out not to be worth materializing,
the materialization process has to be aborted and the table dropped. The overhead of
creating a table and starting to append to it has to be paid for each Store operator,
even if the result is not being materialized. Especially for short-running queries, that
overhead can become a significant factor. Furthermore, removing the Append operator
after deciding not to materialize an intermediate result would corrupt the tuple flow in
the operator tree. So far, the input of the Store’s parent were the tuples produced by
the Append operator. After the Append is removed from the operator tree, the parent
still tries to get the next tuples from the Append instead of obtaining them through the
child. Solving this problem would require additional memory allocations and logic in
the Store operator.

A much cleaner approach would be to first buffer all incoming tuples for a while and
then decide on materializing the result and only create the table and append to it if the
result was deemed worthy enough to be materialized. The existing Reuse operator can
be used in order to buffer these result tuples. Once a decision is made, the Append op-
erator is used to store the result to a table. To provide a consistent view on the location
of the produced tuples to the Store’s parent, the Reuse operator is not added between
the Store and its child. Instead the Store operator contains a separate pointer to the
Reuse. As a consequence, from the perspective of the parent of the Store operator, the
structure of the operator tree does not change and it can always obtain its input tuples

33

D
DN %
N5)
>e

o
—
i

\ N ! 1 Y
next()y N b next(
\ S \

~ ' '
\ N \
N ' '

\
\

Reuse Group,,
Reuse Reuse'
Assig il——ll Ident

<

\
\

\
\ N
Reuse Group,,
Reuse Reuse'
Assig| il——ll Ident

I 1
\: ! Buffers

N
Reuse Group,,

\
\
Reuse
Assign, il——ll

Buffers

I
Buffers) \:

I
I
U
T
xt() ext()

] 0 7 0 10
;0 70 1t
' '
i i
‘ ‘
: ;))
' . o) i . et i |
1 1 1 1 1 1
[l IIIII Child j [l |I|]I Child j [l |I|]] Child j
sel expr sel expr sel expr
Tuples Tuples Tuples

 next0) nexto) nexto

Figure 5.1: The Three Stages of the Store Operator: Buffer (1.), Append (m.) & Can-
celed (r.)

directly through the child.

5.2 The three Stages of the Store Operator

The Store operator has three possible stages: Buffer, Append, Canceled. The transition
between these stages depends on the decision on materializing that specific intermediate
result. Figure 5.1 shows the structure of the Store operator in all three stages. Algo-
rithm 3 illustrates the next() calls within the Store operator’s next() function.

The Buffer stage is the initial stage of all Store operators. In the Buffer stage, the
Store operator buffers all tuples produced by its child operator until there is enough
information available to make an informed decision on materializing the child’s result.
It utilizes the Reuse operator to buffer these tuples. Instead of directly requesting the
next tuples from its child, the Store requests them through the Reuse operator. To keep
the pipeline in order, it has to make sure that the Reuse in turn requests tuples from the
child, instead of just using its buffers. Requesting tuples through the Reuse operator
results in copying all tuples produced by the child to the buffers of the Reuse operator.
The Append stage follows the Buffer stage in case the intermediate result was decided
to be materialized. In the Append stage, the Store operator creates a table to store the
result of its child in and then allocates the Append operator. The Append uses another
Reuse operator to obtain the already produced results from the buffers and store them
into the table. In case the result is to be compressed, it also handles the compression. In
the Append stage, next result tuples are requested from the child operator as described
for the Buffer stage. However, as soon as there are enough buffered tuples available for
appending, the Append is called by the Store operator to append these tuples to the
table. Once a tuple has been consumed by the Store and the Append operator, that
tuple does not need to be buffered anymore and can be overwritten by subsequent tuples.
When the child has finished producing its result, all tuples in the buffers which have not
been appended yet, are appended. Since the Append only consumes already produced

34

Algorithm 3 Next() Function of the Store Operator
if STAGE CANCELED then
request next tuples from child operator
else if STAGE BUFFER || STAGE APPEND then
repeat
request next tuples from Reuse operator
until Reuse operator requested next tuples from child
end if
if STAGE APPEND then
if Append operator not allocated yet then
create table and allocate Append operator
end if
if a full vector of new tuples is available in the buffers then
append the next vector
end if
if child finished producing tuples but Append has not yet then
while still tuples not materialized do
append the next vector
end while
end if
end if
return number of tuples produced by child operator

tuples stored in the buffers and never requests tuples from the child itself, there is no
further synchronisation needed between the Store and the Append operator.

The last stage is the Canceled stage. This stage either follows the Buffer stage after the
result was considered not being worthy enough for materialization or after the Append
stage, when the Store operator decides that the first estimates for the result were not
accurate enough and chooses to bail out materialization. After the Canceled stage has
been reached, the Store operator can not change back to another stage anymore. The
Store operator does not do any more processing once it reached the Canceled stage. It
requests the next tuples directly from its child and passes the amount of tuples produced
to its parent. It no longer uses the Reuse or Append operators. This stage is a lot faster
than both of the other stages and is intended to be the usual case for most Store oper-
ators and should be reached as fast as possible.

Figure 5.2 compares execution times of the several stages and gives more of an insight
on which parts of the Store operator the time was spent on. The data for the graphs
was obtained from benchmarking a Store operator on top of the aggregation of query
Q1 (4 tuples, 1.) and a Store operator on top of the aggregation of query Q3 (114k
tuples, r.) of the TPC-H benchmark. The scale factor used was 10. The big difference
between the buffer and append stage is particularly striking. It shows the overhead of
copying the entire result to tables instead of just buffering it. Most of that overhead
can be explained by additional memory allocation and copying. Using in-memory tables
instead of a simpler in-memory structure like these buffers was an early design choice
for the recycler in order to get access to some of their features like compression.

35

Stages of the Store Operator - small result size (4 tuples) Stages of the Store Operator - medium result size (114k tuples)
1200 16000

= build_append = build_append

C— build_table C—1 build_table
= reuse 14000 =3 reuse
1000 mmm chunk e chunk
mmmm append = append
[reuse_assign 12000 [reuse_assign
2 . store 4 . store
° 800 2
3 3 10000
~ ~
8 8
° 600 ° 8000
X X
— —
b < 6000
g 0 £
4000
200
2000
0 . 0 .
Buffer Append Canceled Buffer Append Canceled
Stages Stages

Figure 5.2: Stages Benchmark: The cost of various parts of the Store operator in each
stage for a result with 4 tuples (1.) and one with 114k tuples (r.)

5.3 Introducing Progress Indicators into the Pipeline

To determine if an intermediate result should be materialized, the Store operator needs
information on that result, like its computational cost and size. However, this infor-
mation is not available until the computation of the result is finished. Since the Store
operator cannot wait for that to happen, it needs to use estimates. To obtain these
estimates, the Store operator must be aware of its current progress.

Previous work: Progress indicators have been introduced by [LNEW04, CNR04|. The
proposed purpose was to inform the user about the progress of a long running query.
The recycler uses a similar technique to calculate the progress of each operator while
executing a query. The progress is used to estimate the final value of measured run-time
parameters like cardinality or computational cost.

Segments of an operator tree that are pipelined have the same progress. These segments
either start with a table scan or a blocking operator and end with the root or the child
of a blocking operator. Partially blocking operators like hash join end the segment of
the child used for building the hash table, but continue the segment of the child used
for probing. Figure 5.3 shows an operator tree divided into such segments.

The described approach differs from the one presented by [LNEWO04, CNRO4| in the
granularity the progress is determined for. The Store operator only needs the progress
of each operator in the currently executing segment, whereas the approach by [LNEW04,
CNRO4] requires the progress of the entire query. Calculating the progress of a currently
active segment can be done by only using information that can be collected while ex-
ecuting that segment. There is no information available for segments that have not
produced any results yet. Since the progress of the entire query also contains these seg-
ments, their progress has to be estimated. The authors of [LNEW04, CNR04| combine
measurements from already executing segments with estimates from the optimizer for
not yet executed segments to obtain the progress of the entire query. This applies to the
progress in terms of tuples processed as well as to the progress in terms of computation
time. When referring to progress in the following, it always refers to the percentage of

36

Figure 5.3: Segmentation of an Operator Tree through Blocking Operators B, C, D

tuples processed in a segment.

Trading progress: The leaf node of each of these segments is usually aware of its
progress before it starts returning tuples to the other operators in its section. A table
scan knows the total amount of tuples it has to scan as well as the amount it already
has processed. A blocking operator like aggregation or sort requests all tuples from its
child before it starts returning the first ones. Therefore, it also knows how many tuples
it has received from the child and now has to process, as well as how many of them
it already has processed. Since all other operators in the same section have the same
progress, they can obtain their progress from the leaf node.

In order to implement progress indicators for an operator, two new fields have to be
introduced to the operator structure: progressed and total. Progressed is the number
of tuples that have so far been processed by the leaf node of the section and total is the
amount of tuples that leaf node has to process in total. The progress of a node is then:

progress = progressed/total (5.1)

The parameters that will be needed for the worth calculation of an intermediate result
as described in the next chapter are the size of the result and the computational cost of
that result. In order to obtain the size of a result, its cardinality needs to be estimated.
Cardinality and width: Estimating the cardinality of an operator requires the op-
erator to keep track of the number of tuples it has produced so far. The progress of
an operator can then be used to extrapolate the total cardinality of a result from the
amount of tuples that operator has produced so far. The final size of an intermediate
result can be derived from its total cardinality by multiplying it with its width. The
width is the average space needed to store a tuple of that result. Section 5.4.2 discusses

37

Cost Estimate for a Selection Cost Estimate for an Aggregation

1.001

1.14 + ‘ ‘ ‘ ‘ Select cost estimate - Aggregate Cost estimate
Select cardinality estimate 1.0008 F Aggregate cardinality estimate
" 112 "
2 o 1.0006
g M ERE
B 108} T 7 |
@ 2 1.0002
2 106 i & \
g I
5 104} S 0.908 |
(<) () -
g 102 L 2
£ | € 0.999 [
R R 3
g - L L T 09994 -
) 0.9992 |
0.96 -
. 0.999
0 200 400 600 800 1000 1200 1400 1600 0 20 40 60 80 100 120

next() call next() call

Figure 5.4: Cardinality and Computation Cost Estimates for each next() call of the
selection on customer (l.) and the aggregation (r.) from TPC-H Q3

the size of an intermediate result in more detail.

Cost: Estimating the total computational cost of an operator requires the time the
operator has so far spent on producing its result to be measured. This cost also in-
cludes the time the operator spent waiting for the child to produce tuples. Therefore
the current cost of an operator is the cost the operator spent on producing its result
so far subtracted by the fraction of that time the operator spent waiting for its child
operators. The total computational cost can again be extrapolated from the current cost
using the operator’s progress.

Worth: The run-time estimates needed for the worth computation can be defined as
follows:

estimated cardinality = produced tuples x (total /progressed) (5.2)
estimated size = estimated cardinality x width (5.3)
estimated cost = current cost x (total /progressed) (5.4)

Amortization: Some operators spend a significantly larger amount of time on the first
or an early next() call than on the remaining ones. This is especially the case for the
building phase of a blocking operator. A hash join, for example, builds the entire hash
table in the first next() call and sometimes creates bit filters to faster reject not included
tuples in another next() call. Estimating the cost of such an operator results in an
estimate that is significantly too high. To correct the estimate, all cost that is just spent
once instead of with each next() call has to be measured and only included once in the
estimate. To keep track of that additional cost, another new field has to be introduced
to the operator structure: amortize. Each time an operator does work in a next() call
that is only done once and therefore needs to be amortized, it measures that cost and
adds it to amortize.

Equation 5.4 can be adapted to exclude only once paid cost from the extrapolation:

estimated cost = ((current cost — amortize) x (total /progressed)) + amortize (5.5)

Microbenchmarks: Figure 5.4 shows the variation of the estimated cardinality and
the estimated cost of a selection and an aggregation from their respective final values per
next() call. The results were obtained by running query Q3 from the TPC-H benchmark

38

suite on a dataset with a scale factor of 10. The selection on customer was used for the
first graph and the aggregation in the same query for the second. Both estimates were
tracked after each next() call. Both graphs show that the cardinality and cost estimates
are already after a few next() calls within a 2% range of the final result. In both graphs
the first next call shows the highest cost estimate. The estimate then decreases with
each next call until it stabilizes. For the selection, that bump can be explained by the
fact that the sample size was too small to reflect the final selectivity of the result. The
bump in the aggregation suggests that there might be instruction and data cache effects
in the first next() call that then need some time to be amortized.

Total Cost: The total cost of the sub-tree of an operator can also be estimated us-
ing run-time estimates. However, some of the descendants of that operator are already
finished and do not need their cost estimated. The estimated cost of a node and all
its descendants is the sum of the estimated cost of that node and all descendants in
the same segment and the measured cost of all other descendants. In order to estimate
the cost of the node and all descendants in the same segment, the cost of all Store op-
erators in that segment must be subtracted before extrapolating. Furthermore instead
of the operator’s amortized cost, the amortized cost of the entire segment has to be used.

5.4 Defining the Worth of an Intermediate Result

When deciding which intermediate results of the current query to materialize and if nec-
essary which intermediate from the recycler cache to evict in favor of the new one, the
worth can be used to differentiate between these results. The worth of an intermediate
result w(IR) can be defined as the gain in overall computation time when materializing
that result while it is being produced by the current query and later reusing it for the
computation of future queries. As a consequence, a positive worth suggests material-
izing a result and reusing it to compute subsequent queries, whereas a negative worth
favors recomputing the entire query each time it occurs. When an intermediate result
is submitted into the recycler cache, it initially has to pay the cost of materializing it.
Each time it is used to answer a query, it gains from just having to read the result
from the recycler cache instead of recomputing it. If the worth is positive, there will
be a point in time where the cost saved by using the materialized result will exceed the
materialization cost. The worth of an intermediate can be defined as follows:

W(IR) = ((costeomp(IR) — costreqa(IR)) * num_uses) — costya(IR) (5.6)

This initial definition assumes that all intermediates with a positive worth can be stored
in the recycler cache and stay there until they are not needed anymore. In the more
realistic case of restricted main memory space, not all intermediate results with a posi-
tive worth can be stored in the recycler and materialized results only reside there for a
limited amount of time until they are evicted to adapt the recycler content to changing
workloads. Since an intermediate result can only be used to answer a query while it
resides in the recycler cache, the number of future uses of the result is not the total
amount anymore, but just the uses while it is materialized in the recycler pool. Further-

39

more, when deciding which of these intermediates to keep in the recycler, the total worth
of all intermediates in the cache has to be maximized. In order to be able to compare
the worth of intermediates of different sizes, the worth of each intermediate has to be
normalized by its size. Choosing intermediates with the highest worth per space unit
improves the usage of the restricted memory space. The definition of the normalized
worth is shown below:

((costcomp(IR) — costreqa(IR)) * num_uses) — coStpa(IR)
size(IR)

w(IR) = (5.7)

The worth of an intermediate result changes over time. Once the result has been mate-
rialized, the result does not have to pay the materialization cost anymore and can only
gain from further uses.

So far, the formula has assumed perfect knowledge of the costs as well as of future oc-
currences of queries using the materialized result. However, when the recycler needs to
make a decision on materializing a result, this knowledge is not available. Especially the
number of future uses will not be known until it is already too late to use them. The
next sections will adjust the worth definition to the information that is available or can
already be estimated when the recycler needs to make a decision on materializing the
intermediate result.

5.4.1 Materialization and Reading Cost

The cost of writing an intermediate result to the recycler as well as the cost of reading
it from the recycler is dependent on the size of the result. All other fractions of these
costs can be assumed to be constant. This assumption leads to the following variation
of the normalized worth defined in Equation 5.7:

((costeomp(IR) * num_uses
size(IR)
SizeffR) * constyeqq * numM_uses
- size(FR) 9
CONStpar * sizeftR)
sizettR]

The formula now consists of three parts: the total computational cost per space unit,
the total reading cost per space unit and the materialization cost per space unit. Using
the assumption from above, the materialization cost per space unit is a constant factor
for each intermediate. When comparing two intermediates, this factor has no influence
on the decision and does not need to be considered any further. However, results which
have already been materialized have no materialization costs. When comparing a result
that has not yet been materialized with one that has, the materialization cost still mat-
ters and should be used for a correct comparison of these results. The materialization
cost equals the cost of the Store operator in its Append stage. Since each Store operator
has to decide on materializing a result before it reaches the Append stage, the materi-
alization cost cannot be estimated using dynamic cost estimates. It could be estimated

w(IR) =

40

using the afore mentioned constant, but that constant would be system dependent. In
its current state, the recycler does not use the materialization cost for computing the
worth of a result. Ignoring the materialization cost leads to a more aggressive admission
policy where an intermediate that saves more computational cost than another is always
favored, even if that means replacing an already materialized result with one which is
only marginally better.

The reading cost per space unit still contains a non-constant factor. However, that cost
is typically only marginal compared to the cost of recomputing the entire result from
scratch and therefore will also not be considered any further.

This results in a simplified worth definition:

oSt comp(I R) * num_uses

size(IR)

w(IR) = (5.9)

5.4.2 Size of an Intermediate

As mentioned before, the size is used to normalize the worth to a unit of space in the
recycler. The size of an intermediate result can be estimated using the estimated cardi-
nality as described in Section 5.3 and multiplying it with the width of the result.

size(IR) = card(IR) * width(IR) (5.10)

The width of a result is the sum of the widths of all columns in that result. The width
of a column can be obtained from the vector representing that column in the Store op-
erator.

For string columns, it is more complicated because the vector representing it does not
contain the strings themselves, but only pointers to their location. To estimate the width
of a string column, the SQL type of the column could be used to obtain the maximum
number of characters allowed in it. That number could then be used to compute an
upper bound of the column’s width. Another approach would be to use the average
width of a small sample of these string values as an estimate of the width of a column.
For example the Store operator could compute the average width of all string values in
the column’s first result vector and then use that width for all size estimations of the
operator. The recycler uses the latter approach.

All size estimates refer to storing the intermediate result in an uncompressed table.
When using compression, the recycler furthermore has to estimate the compression ra-
tio of each column. Alternatively, it could use constants for each column type and use
them to estimate the final size of a result.

After an intermediate result has been materialized, its actual size is known and can
be used instead of estimating. The recycler stores the size of an intermediate in the
statistics of the corresponding node in the recycler tree. When the materialized result
is evicted from the cache, the recycler still has its result size and can use that size to
calculate the intermediate’s worth the next time the same node is referenced by a query.
Furthermore, the recycler stores the final cardinality and the estimated width of each

41

intermediate result in the recycler tree. When the same result is executed again, the
size of the result can already be computed before the query started executing.

5.4.3 Cost to Compute an Intermediate

The total cost C(V;) of an intermediate result is the cost spent in computing that result
from base tables only. It grows with the height of the intermediate in the query tree
and the final result of a query always has the highest total cost. It can be estimated
in the Store operator while computing the result as described in Section 5.3. As soon
as the computation of the result finished, its exact value is known. This value is then
stored in the statistics structure of the corresponding node in the recycler tree. The
total cost of each intermediate result of a query is stored in the recycler tree, even if
that intermediate was not materialized. When the same result is recomputed by a later
query, the actual cost can be read from the recycler tree and then used instead of the
estimate. The stored total cost of a result is always replaced by a newer measurement
of it to reflect the most current cost of that result. When the system load or memory
usage change, the total cost of an intermediate result adapts to the changed conditions
after the next execution of that intermediate is finished.

Interaction between Materialized Results

When materializing an intermediate result, the next time that result is part of a query,
its result is used instead of recomputing it from base tables. Therefore the computation
cost of an intermediate result is influenced by already materialized results in its descen-
dant tree. Materialized descendants decrease the computation cost of an intermediate
result. As a consequence, the cost measured in the Store operator is no longer the total
cost. However, the total cost can still be obtained from the measured cost C’ as shown
below:

V) =C'+ Y (CV) ~ costrea(V))) (5.11)
j € used
e its

When computing an intermediate result, not all materialized results of its descendants
are used. Only materialized results are used which are not descendant of another ma-
terialized result. All usable materialized results can be found using a depth first search
from the intermediate that needs to be computed. The search does not continue with
the sub-tree of a node whose result is already materialized. These descendants of an
intermediate result will now be refered to as ’direct materialized descendants’ (DMD).
Likewise will materialized ancestors of an intermediate that do not have any descendants
materialized between them and the intermediate be called ’direct materialized ancestors’
(DMA). If, for example, the nodes F, G and J in figure 5.5 were materialized, F would
be the only direct materialized descendant of E and hence Q2 would be answered using

the materialized result of F only. F would be the direct materialized ancestor of G and
J.

42

When comparing the computation cost of intermediate results, the cost reduction due
to direct materialized descendants has to be considered as well. Reducing the total cost
by the fraction of the cost which is contributed by the sub-tree of all direct materialized
descendants leads to the definition of relative cost R(V;). The relative cost is the cost
to compute an intermediate result using its direct materialized ancestors and assuming
that they can be directly used without having to scan them first. The relative cost is
used to compute the worth of an intermediate result. It can be computed from the total
cost C'(V;) as shown below:

R(V)=C(V)- >, CV) (5.12)
j € direct
Teeamdants
Adding or removing a materialized result from the recycler changes the relative cost of
all of its direct materialized ancestors in the recycler tree. The cost of finding these
ancestors increases with a growing recycler tree because the search space increases with
each parent added to the node or one of its ancestors. The cost for navigating all decen-
dants of a node in the recycler tree is bounded by the individual size of the query and
therefore does not grow over time. As a consequence, the relative cost of an intermediate
result is not stored in the statistics of the corresponding node in the recycler tree, but
instead recomputed from the node’s total costs whenever it is needed. Recomputing the
relative cost only requires navigating its descendants as shown in Equation 5.12.

Algorithm 4 Computing R(V;) for a (known) Intermediate Result
Input: V; /* corresponding node in the recycler tree */
rcost < total cost of V;
for all children V; of V; do
rcost «— rcost — DMA_TCOST(V;)
end for
return rcost

function DMA_TCOST(V;) do
if V; is materialized then
return total cost of V;
else
sum «— 0
for all children V; of V; do
sum < sum + DMA_TCOST(Vj)
end for
return sum
end if
end function

Algorithm 4 illustrates how the relative cost is computed from the total costs annotated
in the recycler tree.

If the worth has to be computed for an intermediate result that has not yet been exe-
cuted and hence does not have its total cost stored in the recycler tree, the relative cost

43

can be estimated using dynamic cost estimates:

R(V)=C"= > costreaa(V}) (5.13)
j € used
materialized
results
Descendants which are currently being materialized have to be treated like already ma-
terialized nodes. In Equations 5.12 and 5.13, their cost has to be subtracted just like

the cost of already materialized descendants.

5.4.4 Number of Future Uses of an Intermediate

It is not possible to know the number of future uses of an intermediate result without
knowing the exact future workload. Since future workloads are usually not known, we
must try to compute the probability that an intermediate result will be used by a future
query. Two indicators can be identified that can be used to predict that probability.
The behaviour of previous queries is often a good approximation of what will happen
in the future [IKNG09, RRST00, SSV96|. If an intermediate result was often computed
to answer queries in the past, it is likely that it will be used to answer future queries as
well. The other indicator is the specificity of an intermediate result. The more specific
the result, the less likely it is, that the result will be used by a future query. If there is
historic information available, the probability obtained from that information should be
favoured to that from specificity.

Recycler Tree Analysis

Since the recycler stores query trees from all incoming queries, links matching parts to-
gether and stores statistics for each node, there is a lot of historic information available
to extract the probability of a future use of an intermediate result from. Figure 5.5
shows a fictitious recycler tree to illustrate how to obtain probabilities from it. The
information collected within the recycler tree can be interpreted in various ways. A first
approach would be to assume that the recycler contains the entire workload and that
that workload will not change in the future. Therefore all upcoming queries will be
already known to the recycler and each node in the recycler tree will only be used by
queries it is already part of. The more often a node was part of a query in the past,
the more likely it is to also be part of an upcoming query. This concludes that the
probability P(V;) of such a node is the number of times it has been part of a query (R;)
divided by the total number of queries (N): P(V;) = % The number N of total queries
is stored in the recycler structure and the number of past references R; is stored in the
node’s statistics. Each time a query tree is integrated into the recycler tree, the total
number of queries is increased as well as the number of references to each node in the
query. The example recycler tree in Figure 5.5 has witnessed a total of 15 queries. Node
A and node F have each been part of seven of these. Therefore the probability of both
nodes is P(A) = P(F) = 1.
This approach can be enhanced by the assumption that workloads change over time

44

unknown queries: 5
// Re| known queries: 10
_)\ total: 15
N\

7 ~N

- / AN ~
- s | N ~
Ql_~ Q2/ Q3 Q4 Q5
refs: 7 refs: 1 refs: 5 refs: 1 refs: 1
M
Q)
0]

Figure 5.5: Fictive Recycler Tree

and that the recycler tree contains an excerpt of such a workload. As a consequence,
future query invocations will not only include queries that are already present in the
recycler tree, but also yet unknown ones. An incoming query is considered known, if
it was successfully matched to the root with a query already in the recycler tree. An
unknown query might still have common sub-trees with queries in the recycler, but will
only partly match with any existing query. The probability presented in the previous
approach is therefore the conditional probability P(V;|Old), given that an upcoming
query is already known. The next step is to define the probability P(V;|New) of a
known node being part of an as yet unknown query. The historic information collected
within the recycler tree can again be used to predict that probability. If a known node
is part of a new query, either it or one of its ancestors is the last known node of that
query. The more direct parents a node has in the recycler tree, the more often it was
the last known node of a new query in the past and hence the more likely it is to be the
last known node of a new query in the future as well. The same applies to each of the
node’s ancestors in the recycler tree. However then, that ancestor was the last known
node in the unknown query. The total amount of such splits of a node and all of its
ancestors into their parents is the number of different queries that node has been part of
in the past. Since all of these different queries have been unknown when they were first
submitted to the recycler, it can be assumed that the more different queries a node has
been part of in the past, the more likely it is to be part of a yet unknown query again in
the future. Given that an upcoming query is not yet known, the probability of a node
V; is the number of different queries C; that the node was part of in the past divided by
the total number of different queries N,, in the recycler tree: P(V;|New) = g—; To keep
track of the amount of different queries a node has been part of, C; has to be introduced

45

to each node’s statistics. Whenever a query tree of an unknown query is integrated into
the recycler tree, IV,, and C; for each node of that query are increased by one. Node F of
the recycler tree in Figure 5.5 is a good example to illustrate the probability of a node
being part of an unknown query. Node F has been part of three of the five different
queries in the recycler tree. The probability that F will be part of an yet unknown query
is hence P(F|New) = 2.

To compute the total probability P(V;) of a node V; to be part of the next query, the
probability that a future query is already known P(Old) and the probability that a fu-
ture query is unknown P(New) have to be predicted as well. Assuming that the ratio
between new and already known queries will stay the same in the future as it was in
the past, the probability of a new query is the fraction of new queries N, to the total
number of queries N. This results in P(New) = 82 and P(Old) =1 — P(New). These

probabilities can be combined to formulate a final probability P(V;) for a node V;:

P(V;) = P(V;|New) * P(New) + P(V;|Old) * P(Old)
C; Ny N — N, (5.14)
* W + R

N N

R;
— %
N

Interaction between Materialized Results

As was the case for computational cost, P(V}) is also dependent on other materialized
results in the same query tree. There is a difference between 'being part of a query’
and ’being used to answer a query’. If a node is part of a query, it does not necessarily
mean that its result will be used to answer that query. If, for example, node B and C of
Figure 5.5 were materialized and the current query was Q1, the query would be answered
using B only. Having more than one intermediate in the same query tree materialized,
influences the probability that some of these results will be used by future queries. This
applies to P(V;|Old) as well as P(V;|New).

To incorporate the interaction between several materialized results in the same query
tree into P(V;|Old), the number of times the result of V; would have been used to answer
a query in the past given the current recycler state has to be used instead of the number
of times V; has been part of a query. A materialized result can only be used by queries
that have no ancestors of it materialized as well. This indicates that the number of times
the result would have been used to answer a query is the number of times it has been
referenced by a query that has no ancestor of it materialized at the moment. Instead of
using the total number of references R; for computing the probability of an intermediate
result, that number has to be reduced by the sum of references that were contributed
by queries that would not use that particular result anymore:

Ri=R;— Y R, (5.15)
j € direct

materialized
ancestors

When materializing node K and L in the recycler tree of Figure 5.5, the probability that

the result of F will be used by an already known query decreases from 1—75 to 7_155_1 = 1—15

46

because F will no longer be used by the queries Q3 and Q4.

Such an interaction also exists when considering the probability P(V;|New). However,
an unknown query will only use a materialized ancestor instead of V;, if that ancestor or
one of its ancestors is the last known node. If the last known node is V; or a descendant
of all of its materialized ancestors, V; will be used instead. To obtain the probability
P(V;|New) of a node that has one or more of its ancestors materialized, the number of
different queries C! in the recycler tree that would have used the result of V; when they
were submitted have to be considered instead of the total number of different queries
that contain V;. C] can be defined as the total number of different queries the node has
been part of in the past subtracted by the number of different queries each of its direct
materialized ancestors were part of, but the first one:

Ci=Ci— > (C;-1) (5.16)
j € direct
materialized
ancestors
The first query each materialized ancestor was part of is subtracted because when that
query was submitted, the node was not known yet and hence could not have been used.
Materializing nodes E, K or L of Figure 5.5 does not influence the probability of a new
query using F because for F to be used by a new query, it has to be rooted by a different
node than E, K or L and the fact that F previously was able to answer three of five new
queries can be assumed to still be true in the future.

Managing Reference Statistics

Computing R, and C] from R; and C;, respectively, requires to find all direct material-
ized ancestors of V;. As mentioned before, the effort to navigate ancestors in the recycler
tree grows with the size of the tree whereas navigating descendants is bounded by the
individual query size and does not grow over time. Therefore, instead of computing R
and C! each time a worth needs to be computed, R; and C! are stored in the statistics
of the corresponding node in the recycler tree instead of R; and C;. Their value changes
whenever a direct materialized ancestor of the result is added or removed and whenever
a query uses that node.

Algorithm 5 describes the update process of all affected nodes after a new materialized
result has been added to the recycler. Whenever an intermediate result finished ma-
terializing or an already materialized result is removed from the cache, R, and C;] of
all direct materialized descendants and all nodes touched before a direct materialized
descendant is reached are updated.

Figure 5.6 illustrates the management of reference statistics in the recycler tree. Darker
shaded nodes indicate that the result of the node is materialized in the recycler cache.
When a node has finished materializing, it decreases the reference statistics of its descen-
dants by the number of its references. However, the reference statistics of all descendants
of an already materialized descendant are not changed. After node B finishes material-
izing in t = 1, it decreases the reference statistics of C' and D by 7. It does not proceed
past D because D is already materialized and already decreased the number of references
for E before.

47

Algorithm 5 Updating R; and C! in the recycler tree after materializing an intermediate

Input: V; /* corresponding node in the recycler tree */
UPDATE_REFS(child of V;, R/, C")

function UPDATE REFS(V;, R, C!) do
R;- — R;- — R;
C’]’. — C]‘ —Cl
if V; is materialized then
return
else
for all children V}, of V; do
UPDATE REFS(Vj, R., CI)
end for
end if
end function

refs: 7 o refs: 7 o refs: 12

refs: 7 refs: 7 refs: 12
Additional
Materialize B References Evict |
refs: 7 ﬁ e refs: 0 ﬁ e refs: 0 —
t=0 t=1 t=:
refs: 7 refs: 0 refs: 0

refs: 0 e refs: 0 e refs: 0

Figure 5.6: Updating the Reference Statistics for each Node

48

Whenever an incoming query references a node in the recycler tree, the reference statistic
of that node is increased. Nodes which are descendants of already materialized nodes
are not considered because the query uses the materialized node instead of recomputing
its descendants. The additional references due to incoming query invocations in ¢t = 2
do not increase the reference statistics of descandants of B because B is already mate-
rialized and each of the queries use B instead of recomputing B’s descendants.

When a materialized node is evicted, the reference statistics of all descendants of that
node whose number of references has been descreased when the node was materialized,
are increased by its current number of references. When B is evicted in ¢ = 3, the
number of references of its descendants are increased by 12. The number of references
still does not change for E, because an additional invocation of the same query will use
the result of D instead. C' and D now have the same number of references, as if B was
never materialized.

Lazy Aging

So far, it has been assumed that all references to a node contribute equally to its proba-
bility. But workloads may change over time and the more recent the reference to a node
is, the more likely it is to still be part of the current workload. If a node was for example
heavily referenced in the far past, but since then never touched again, it is likely that the
queries using it are no longer part of the current workload and that the node is therefore
not likely to be referenced again even though it has lots of references. To reflect the over
time decreasing contribution of a reference to an intermediate’s probability, all statistics
that are based on references have to be multiplied by a constant « slightly smaller than
one each time a new query is added to the recycler ("aging"). Aging not only reduces
the contribution of a reference to a node’s probability with each incoming query, but
also decreases the amount of the reduction. However it would not be feasible to navigate
the entire recycler tree and adapt each node’s references with every query invocation.
Instead, the number of the query (QID) that adapted the node’s references for the last
time is recorded in the node’s statistics and whenever that node is referenced again,
all multiplications since the last reference are done at once ("lazy aging"). With each
reference to a node, 5.17 has to be applied to all references in that node’s statistics:

refs new = refs x q@Peurr=QIDiast (5.17)

Specificity of an Intermediate

When historic information does not provide any indication on the likeliness of an inter-
mediate result to be part of an upcoming query again, the specificity of that result can be
considered to estimate its probability. This is the case if a part of a query has occurred
for the first time and therefore has no past information stored to differentiate between
its nodes. With just using historic information, the root node of such a query will most
likely have the greatest worth and hence be the only node considered for materialization.

49

This would be a good decision assuming that all intermediates of that query part will
only be used by the same query in the future. If there are different queries, that have
some intermediates in common, the materialized root node could not be used to answer
them unless the common sub-tree is the entire query. The more specific a result is, the
less likely it is to be used by another, yet unknown query. Including the specificity of
an intermediate result will increase the chance that useful intermediates will be ma-
terialized already before enough information is available to make an informed decision
based on previous behavior. Without using specificity, these intermediates would still be
materialized if they are worthy enough, but only at a later time, when enough historic
evidence is collected.

The specificity of an intermediate result increases with each operator in its sub-tree and
is dependent on that operator’s type and specificity. For example a select with a high
selectivity produces a more specific result than one with a low selectivity. Estimating the
specificity of each intermediate result is too complex for use in the recycler. Instead the
specificity can be approximated by assuming that each operator increases the specificity
of an intermediate result by the same amount. This suggests using the tree height as a
measurement for specificity.

The height could be included as a minimum value for C;:

(Oi)min — ﬁinverse height’ ﬁ <1 (518)

When copying a node from a query tree to the recycler and creating its statistics struc-
ture, C; could be initialized by (C;)mn instead of 1. This would mean that the first
query a node was part of contributes less to the total number of different queries the
node is part of.

5.5 Adding Intermediates to the Recycler

After finding a formula to calculate the worth of each intermediate result in the current
query and the recycler cache, that formula has to be used to decide which node(s) of the
current query to materialize. The goal is to maximize the total worth of all materialized
results in the recycler. Candidates for materialization are all nodes in the operator tree
which have a Store operator added on top. Ideally, the worth of all these nodes as well
as all possible combinations of them would be computed and then the set of interme-
diates that contribute the highest total worth would be materialized. For n nodes this
would result in (7) + (5) +---+ (7) = >p_; (1) = 2" — 1 worth computations. A full
recycler cache requires even more worth computations and comparisons in order to find
materialized results that can be evicted in favour of new intermediates. The amount of
worth computations and comparisons has to be reduced significantly in order to make it
applicable to the recycler. In the following it is assumed that the recycler will only select
the result with the highest worth whenever it has to pick a result for materialization. In
case more than one result would have contributed a higher worth to the recycler cache,
the results that were not selected will be considered again the next time they occur in a

query.

20

The recycler treats Store operators that have historical information available in the cor-
responding node in the recycler tree differently to Store operators that are executed for
the first time. If the query tree has common sub-trees with the recycler tree, the Store
Operator that corresponds to the root node of each of these sub-trees is defined as Mas-
ter Store. A Master Store and all of its descendants have historical information. Their
worth can be computed before executing the query. When allocating a Master Store,
it identifies all descendant Store operators and invokes worth computations on each of
them. Then it selects the result in its sub-tree with the highest worth and changes its
stage to Append. The stage of all other Store operators in the sub-tree is set to Can-
celed. Store operators that have historical information available do not require buffering
or allocating Reuse operators when in Canceled Stage. For sub-trees that have historical
information available, the decision on which result in the sub-tree to materialize could
alternatively already be done in the rewriter. When deciding in the rewriter, Store op-
erators are no longer needed for that sub-tree. Instead, the rewriter rule could insert
Append operators on top of operators that produce the result that was decided to be
materialized.

When there is no historical information available for a result, the decision on materi-
alizing that result has to be done using dynamic estimates while executing the query.
This requires the result to be buffered for a while until the estimates can be assumed
to be close enough to the correct value. An estimate is assumed to be close enough if
its value does not differ more than a certain percentage between two successive next()
calls. As described in Chapter 5.3, not all parts of an operator tree are executed at
the same time. Each blocking operator divides the tree in two parts being executed
separately. Deciding which result to materialize at once for all results in the query tree
that require estimates would result in buffering entire results for segments that are al-
ready finished. Therefore, the decision can only be done in isolation for each of these
segments. Figure 5.3 illustrates the division of an operator tree into several segments
that have to be considered separately. When adding Store operators on top of results
that require estimates, the Store operator beneath each blocking operator and the Store
operator on top of the root node of the operator tree are defined as Master Stores. These
operators identify all buffering Store operators in their segment and invoke the worth
computation on all of them as soon as the estimates are considered close enough to the
actual value. The result with the highest worth in each segment is then materialized, all
other Store operators in the segment are set to Canceled. Materializing one result for
each segment can result in a too high materialization cost. Heuristics based on the cost
and size estimates can reduce the number of materialized results in each operator tree.
Examples for such heuristics are presented in Chapter 7.

5.6 Evicting Intermediates from the Recycler

Since there is only a limited amount of main memory space available, the size of the
recycler cache has to be restricted. Once the recycler cache is full, a new intermediate
result can only be added if there is a set of materialized results that has a lower worth
than the intermediate and occupies at least as much space. Before materializing the
new intermediate, all materialized results in that set have to be evicted to create the

o1

necessary space for the new result. To optimize the usage of the limited memory space,
the total worth in the recycler cache has to be maximized. When adding a new interme-
diate to a full cache, the set of materialized results has to be found that, after evicting
it and adding the new intermediate, results in the highest total worth. Finding that set
requires the recycler to compute the worth of all materialized results in the cache. It
is not possible to reuse worth computations for future comparisons, because the worth
of a result may change with every new query invocation and every added or removed
materialized result.

As mentioned in Section 5.4.3 and 5.4.4, removing a materialized result increases the
probability P(V;) of its direct materialized descendants and the real cost R(V;) of its
direct materialized ancestors. Removing materialized results from the recycler might
therefore increase the worth of other materialized results as well as the worth of the
intermediate result which was selected for materialization. Adding an intermediate re-
sult might decrease the worth of some materialized results in the recycler cache. Also
computing the effect of adding and evicting materialized results on all other results in
the recycler cache would result in lots of additional worth computations. To reduce the
number of necessary worth computations, the recycler assumes that these interactions
balance each other out.

To further reduce the amount of necessary worth computations, the recycler limits the
number of materialized results the intermediate is compared to. Instead of comparing
the intermediate to every materialized result in the recycler cache, it is only compared
to a subset of its content. The intermediate is added to the recycler, if there is a set
of materialized results in that subset that has less worth than the intermediate and will
free up enough space after eviction. Because not all materialized results are considered
for eviction, the chosen set of materialized results might not be the ones with the lowest
worth in the recycler. Furthermore, an intermediate that should have been added to the
recycler might be denied because it was unlucky and all materialized results considered
had a higher worth. These problems are compensated by the fact, that the worthy result
can be assumed to occur again in upcoming query invocations. The result will then have
another chance to be added to the recycler and might then be more lucky.

Within the recycler, all materialized results are organized in a list structure. The subset
of materialized results the intermediate is compared to are NU M successive elements of
that list. Each time a new intermediate is tested, the comparison starts with the first
element that was not considered the last time. When the end of the list is reached, the
comparison continues with the first element. Algorithm 6 illustrates how it is decided
whether an intermediate should be added to a full recycler cache and which materialized
results to replace in favour of the new one. The worth of every considered materialized
results is computed and the ones that have less worth than the intermediate are added
to the candidate list in the order of their worth. If the combined size of all elements in
the candidate list is smaller than the size of the intermediate, the intermediate will not
be materialized. If the size is greater or equal, the materialized results are evicted in
order of increasing worth until enough space is freed to add the new intermediate.

52

Algorithm 6 Adding an Intermediate Result I to a full Recycler Cache R

Input:
I, /* intermediate */
R ={My,..., My}, /*recycler cache containing materialized intermediates */
s /* pointer to next element in recycler cache */
NUM /* length of search */
C—10 /* candidate list, sorted by increasing worth gain */
sz« 0

for : = s to NUM do
if worth(M;) < worth(I) then
C—CUM,
sz «— sz + size(M;)
end if
end for
if sz < size(I) then
set stage of I's Store operator to Canceled
else
sz« 0
for i =0 to |C| —1do
if sz < size(I) then
remove M; from R
end if
sz« sz + size(C;)
end for
set stage of I’s Store operator to Append
end if

23

o4

6 Using Materialized Results

After choosing which intermediate results should be materialized and materializing them
to the recycler cache, the results need to be used to answer incoming queries. A materi-
alized result can be used to answer a query, if the result was produced by a node of one
of the sub-trees in the recycler tree that got matched with the query. In order to use that
result, the recycler has to replace the query’s sub-tree rooted by the node producing the
result with a sub-tree that reads the result from the recycler cache and pre-processes it
to make it compatible with the rest of the query tree. This can include simply renaming
the table and column names to the ones used by the query or extracting a subsuming
result from the materialized result before using it to answer the query.

A rewriter rule is used in order to identify materialized results that can be used to an-
swer the query and to adapt the query tree to use these results instead of recomputing
their sub-tree. The rule is applied after the rewriter rule that matches each node of the
query tree with the recycler tree and before the rule that adds store operators to the
query tree. In contrast to the two other rules, this one is top-down. Top down ensures
that only the highest materialized node of a matching sub-tree is replaced. As prepa-
ration for this rule, the matching rules annotates the query tree with table names and
the name mappings of all matched nodes in the query tree that are already materialized
in the recycler cache. That information is needed to build the sub-tree that uses the
materialized result.

The rule then checks if the current node is annotated with a table name. If so, it gen-
erates the sub-tree needed for using that result and replaces the node and its sub-tree
with the new one. The replaced sub-tree will no longer be considered by the rule and
therefore no other materialized node in that sub-tree will be used anymore.

The new sub-tree is constructed by a table scan that scans the materialized result from
the recycler cache and a projection on top of it. The projection is used to rename the
table and column names to the ones expected by the query. The name mapping and the
table in the recycler cache are utilized for that purpose.

95

26

7 Evaluation

This chapter will evaluate the implementation of the recycler as described in the previous
chapters.

There are a few differences between the version of the recycler used for evaluation and
the one described previously. The main difference is that the recycler implementation
restricts the size of the recycler cache by the number of materialized results in the cache!
instead of the space that the tables occupy in it. This faciliates the cache management
because when the recycler cache is full, each new result has to replace exactly one
materialized result in order to be submitted to the cache.

To assist the evaluation process, the recycler implements two routines which are invoked
using VectorWise algebra:

print: When calling print, the server prints the current recycler tree. Each
node of the printed tree structure is annotated by information collected on
the node such as its number of references, its computational cost or if the
result of the node is currently materialized in the recycler cache. The print
function is used to visualize which nodes of the recycler tree are materialized.
flush: Flush resets the content of the recycler. After calling it, the recycler
tree and the recycler cache are reset to their initial state. Before benchmark-
ing the recycler, the server is usually 'warmed up’ by running several queries.
Afterwards, flush is used to reinitialize the recycler. Benchmarks are then
executed on a warm server.

The functionality of the recycler was tested using all 22 queries of the TPC-H benchmark.
All tests were performed on a dataset with scale factor 10. The tests were performed on
a four core Intel machine with 8GB main memory using Fedora 12.

7.1 The Workload

In this section, the recycler is evaluated using the same TPC-H workload that was al-
ready utilized in [IKNGO09|. The authors used this workload to evaluate their caching
policies. The workload consists of 200 queries, 164 of which are unique. The authors
examined the potential overlap in MonetDB instructions among derivates of the same
TPC-H query pattern and, out of the 22 TPC-H queries, selected the 10 queries with
the greatest potential overlap for the workload. These queries are: 4, 7, 8, 11, 12, 16,
18, 19, 21 and 22. The workload is constructed using 20 instances of each query pattern.
Some of these 20 instances are different derivates and some are repetitions of the same
derivate. Derivates of the same TPC-H query have the same structure, however some of

Lthis choice is rather simplictic and was chosen due to time contraints

57

Composition of all utilized Results in the Workload Composition of the all Results in the Workload

900000 900000

References 2 References 1 +
References 3 * References 2
800000 |- References4 o] 800000 |- References 3 *
References 5 References4 O
700000 [References6 o 4 700000 ~ References 5
References 20 References6 ©
600000 1 600000 - References 20
) o
X 500000 | X 500000
£ £
& 400000 - & 400000 F *
%) %)
300000 4 300000
++
200000 - 1 200000 - "
¥
100000 [1 100000 E?;J' N +
W - et *
0k o ot
0 20000 40000 60000 80000 100000 120000 0 20000 40000 60000 80000 100000 120000
Cost (in mio clock cycles) Cost (in mio clock cycles)

Figure 7.1: Composition of the Workload

their parameters differ.

The workload contains two kinds of sharing possibilities. 36 of the 200 query invocations
are repetitions of queries that have already been executed before. These queries could be
answered using the materialized final result of a previous invocation of the same query.
The second sharing possibility is to reuse common sub-trees from different derivates of
the same query pattern. Although these queries use different parameters, they often
share common sub-trees. These sub-trees typically make up only a small fraction of the
query tree and close to the leaf nodes.

The workload contains a total of 44 common sub-trees. Sub-trees that are contained
within another common sub-tree but have references from additional queries are counted
separately. Therefore a recycler architecture cannot exploit all of these sub-trees to their
full extend. Figure 7.1 (1.) shows the cost, size and number of references of the result
with the highest worth for each of these sub-trees. Figure 7.1 (r.) shows the cost, size
and number of references for each result in the workload.

7.2 Modes used for Evaluation

Naive: The Naive mode is VectorWise with recycling turned off.

History: The History mode only uses historic information to decide which results to
materialize. As a consequence, it only materializes results that have already been exe-
cuted and therefore have historic evidence that they might occur again in a future query.
Since all information that is required for the worth computation is available for all results
which are considered for materialization, the decision on which result to materialize can
already be carried out when allocating the Store operators as described in Chapter 5.5.
As a result, the History mode no longer requires buffering of results.

Since results are only considered for materialization the second time they occur in a
workload, a result has to occur at least three times before the recycler can benefit from
reusing it. Therefore, the History mode performs badly for results that only occur twice
in the workload.

28

Mixed (History and Speculation): The Mixed mode is designed to overcome this obsta-
cle. For results that have already been executed and hence have historical information,
the recycler proceeds as described above. For all other results, it uses speculation. Spec-
ulation materializes results speculatively in the hope that they will occur again in the
future. If a frequent result is materialized the first time it is executed, the recycler can
already benefit from reusing it the second time it occurs in the workload. Speculation
relies on dynamic estimates and therefore requires buffering the result until a decision
is made.

The first benchmarks of the Mixed mode unveiled several problems when:

1. Too much buffering: There are several reasons for Store operators buffering too
many tuples: If the number of tuples that are produced by each operator in a
pipelined segment decreases too much from the beginning of the pipelined segment
to the Master Store, the early operators have to buffer too many tuples before the
Master Store has enough tuples to base its decision on. Furthermore, if the cost
estimate changes too much between successive next() calls, the entire segment has

to buffer too many tuples until the estimates stabilize and the Master Store can
decide.

2. Too many results are materialized: Since the decision on which results to mate-
rialize is done for each blocking segment separately, the recycler materializes one
result for each segment until the recycler cache is full. Each TPC-H query used in
the workload contains between three and seven segments and some of the results
are as big as one gigabyte. This leads to too high materialization cost for each

query.

3. Speculation is often favoured: There is a huge cost and size difference between
nodes close to leaves and nodes close to the root. Nodes close to leaves tend to
have a low computation cost and big result sizes whereas nodes close to the root
have a high computation cost and small result sizes. Both factors favour nodes
close to the root when comparing their worth. The difference between nodes close
to leaves and nodes close to the root often dominates the reference factor. This
results in a higher worth of speculative results that are close to the root compared
to results that have several references but are close to leaf nodes.

The first two problems lead to too high overhead for speculation and the last problem
causes the recycler to not realize all sharing possibilities unveiled by the history approach.

MixedH (Mixed with Heuristics): To deal with the problems of the Mixed mode, several
heuristics are introduced:

1. Limit buffering and result size: Each Store operator cancels buffering and continues
in the Canceled stage once the size estimate suggests that the result will not fit
into a single block. This heuristic ensures that the recycler only considers very
small results which are cheap to materialize and that it cancels buffering results
that will exceed the size of a block as soon as possible. In most cases, this decision
can already be performed in the first next() call after the Store operator’s child
has produced the first result vector. Early canceling Store operators that have to
materialize results which are too big reduce the cost of buffering significantly.

29

Effect of heuristics in the Mixed mode
0.9

0.8

0.7

0.6

0.5

0.4

0.3

Percentage from Naive

0.2

0.1

Mixed Mixed (1) Mixed (2) Mixed (3) MixedH
Modes

Figure 7.2: Evaluation of the Heuristics in the MixedH mode

2. Define a minimum cost/size ratio for buffering: When the Master Store of a
segment chooses a result to materialize, only results that have a cost/size ratio
which is higher than a threshold are considered. A high enough threshold ensures
that not every segment materializes a result.

3. Always favour results with historical information: This heuristic ensures that a
speculative result never replaces a result which has historical evidence that it
occurs more than once in the workload. Furthermore, a result with historical
evidence always replaces a speculative result, even if the speculative result has a
higher worth.

The main goal of these heuristics is to reduce the overhead of speculation and to only
use speculation for results that are very cheap to materialize but result in a high gain
when reusing.

Figure 7.2 shows the relative execution time of the workload with the standard Mixed
mode and with each of the aforementioned heuristics enable separately. Each of the
heuristics improve the execution time of the workload significantly, however, their com-
bination is only marginally better than the third heuristic alone.

Perfect Oracle: The last mode is the Perfect Oracle mode. This mode was intro-
duced to simulate a recycler with 'perfect knowledge’. In the Perfect Oracle mode, the
entire workload is first run against the recycler with materialization turned off. This
run builds the recycler tree for the workload. Each node now has historical information
and, in particular, knows its total number of references. After the first run has finished,
materialization is turned back on and the number of references to each node is reduced
by one to make sure that nodes that only occurred once in the workload no longer have
any references. Then the entire workload is run again using the History mode. The
execution time of the second execution of the workload is measured.

In contrast to the History mode, the recycler already knows which nodes are going to
be frequent in the workload when the nodes are executed for the first time. If a node
occurs more than once in the workload, the recycler materializes the result the first time
it is computed and reuses it for all other occurrences.

60

Results for each Evaluation Mode (max. 45 results) Overhead of History and Speculation in MixedH
1 80000

—— other rules
=3 matching rule
mm build Store
mmmmm append stage
=== canceled stage
mmmm buffer stage

70000
0.8

60000

0.6 50000

40000

0.4
30000

Percentage from Naive
Cost (in 1k clock cycles)

0.2 20000

10000

Naive History MixedH MonetDB Perf. Oracle

0
Modes s%%cula%n Qllﬁstor? 3

Figure 7.3: Results of the various modes of the Recycler (1.) and the Overhead of Recy-
cling (r.)

7.3 Results

Figure 7.3 (L) shows the improvements that can be achieved using the presented modes
of recycling. All modes reduce the execution time of the workload significantly compared
to the naive approach. However, the improvement of the MixedH mode by adding specu-
lation to the History mode is only marginal. It is far away from the possible improvement
that is suggested by the Perfect Oracle mode. The figure furthermore shows the best
improvement that was achieved by [IKNGO09| on the same workload using MonetDB.
Recycling in MonetDB performs better than the presented Recycler for VectorWise,
however, the difference is only marginal.

Figure 7.4 shows the cost, size and number of reuses of all results that are in the recy-
cler cache after the execution of the workload has finished for each of the three modes.
The maximum number of materialized results in the recycler cache has been set to 44.
Since the workload only contains 44 beneficial results, this only poses a limitation for
the MixedH mode. Figure 7.4 confirms the expected behaviour of the three modes. The
History mode materializes each result the second time it occurs in the workload and
reuses it from the third occurence. The MixedH mode behaves like the History mode,
but in addition, speculatively materializes some of the results with a size of 32KB and a
cost/size ratio beyond the threshold of the second heuristic. While executing the work-
load, the recycler speculatively materializes more results than the ones shown, however,
these results are not reused and are evicted before the workload finishes executing be-
cause of the recycler cache restriction of MixedH. The Perfect Oracle mode materializes
each result the first time it occurs in the workload and reuses it from the second occur-
rence. Some of the most frequent results in the workload are used by different derivates
of the same query as well as by repetitions of the same derivate. Usually, the recycler
materializes the root node of a repeating query and therefore the frequent result will
no longer be reused by that query. The three modes differ in the number of reuses of
these results. History uses the more frequent results more often because each repeat-
ing query has to occur more often in the workload before its result is materialized and
can be reused. The Perfect Oracle mode, on the other hand, can reuse the repeating
queries earlier and therefore causes fewer reuses of materialized results which are their
descendents. Speculation behaves like Perfect Oracle for results that were speculatively

61

Number of Reuses in the History mode Number of Reuses in the MixedH mode
900000 T 900000 [

Reuses 0 -+ Reuses 0 -+
Reuses 1 Reuses 1
800000 |- Reuses 2 *] 800000 |- Reuses 2 *]
Reuses3 O Reuses3 O
700000 Reuses 4 9 700000 - Reuses 4 9
Reuses6 e Reuses 17+
600000 } Reuses 18 v 4 600000 k Reuses 18 v 4
) o
X 500000 | 1 X 500000 1
£ v £ .
& 400000 - 1 & 400000 ~ 1
) oh) %
300000 ¥ 1 300000 - ¥ 1
200000 - . 1 200000 - 1
100000 ¥ 1 100000 - 1
il v il v
0 F d L L L L 0 E L L L L L
0 20000 40000 60000 80000 100000 120000 0 20000 40000 60000 80000 100000 120000
Cost (in mio clock cycles) Cost (in mio clock cycles)
Number of Reuses in the Perfect Oracle mode
900000 —= T
Reuses0 +
Reuses 1
800000 - Reuses2 x|
Reuses3 0O
700000 Reuses 4 9
Reuses5 ©
Reuses16 = |
= 600000 Reuses 17+
) Reuses 18 v
< 500000 - Reuses 19 1
& 400000 [1
S
300000 v 1
200000 - 1
100000 F 1
ok
0 20000 40000 60000 80000 100000 120000

Cost (in mio clock cycles)

Figure 7.4: Results Reused by the History, MixedH and Perfect Oracle mode

materialized the first time they occured and like History for all other results.

The fact that the cost of the Perfect Oracle mode differs from the cost of the other modes
can be explained by cache effects. Although the database server has been warmed up
for each mode in a similar fashion, the results were often materialized by different query
invocations. Since the same result executed by a different query invocation can have dif-
ferent computational cost because of different buffer pool contents, the times measured
and stored for these results may differ.

History: Figure 7.3 (L) shows a significant improvement in the execution time of
the workload when using recycling in the History mode. However, the execution time
of the History mode as well as the execution time of the MixedH mode when using
historical information from previous query evaluations could be further improved.
Figure 7.3 (r.) shows the overhead of the recycler when evaluating queries 1 and 3 of
the TPC-H benchmark using the MixedH mode, both with all historical information
available and without any information. If there is no historical information available,
speculation is the only option for the recycler. Both queries were run on a warm server
with an empty recycler cache. When using historical information, the recycler tree con-
tained only the query tree from a previous execution of the same query. For speculation,
the recycler tree was empty. Both modes only materialized one result. The materialized
results were close to the root and had a similar size.

The cost of the overhead shown in Figure 7.3 (r.) is under 1% of the entire evaluation
cost of the query. The possible gain by the suggested improvements is therefore rather

62

small.

When using historical information, the biggest contribution to the overhead is from exe-
cuting Store operators in their Canceled stage, followed by the cost of the Store operator
in the Append stage. Most of the cost of Store operators in their Canceled stage is con-
tributed by Store operators that have to pass huge results to their parent operator. The
cost of the Canceled stage can be entirely removed by using a rewriter rule to decide
which result with historical information to materialize, as suggested in Chapter 5.5. The
rewriter rule then only adds Append operators on top of operators that produce results
which were decided to be materialized. Store operators which would start in their Can-
celed stage are never added.

The cost of appending a (small) result when using historical information is significantly
higher than the cost of appending a comparable result when using speculation. Most
of the difference is caused by allocating the Reuse Group and both Reuse operators.
When materializing a speculative result, these operators are already allocated because
of buffering whereas when materializing a result with historical information, the oper-
ators are allocated when creating the table and allocating the Append operator. The
Store operator has to use the Reuse operators instead of only using the Append to make
sure that the parent receives the correct result at all times. However, when deciding
on which result to materialize in a rewriter rule as described above, the rewriter rule
can insert an Append operator instead of the Store operator. This reduces the cost of
materializing the result and saves the cost of allocating Store and Reuse operators.

Speculation: Figure 7.3 (1.) only showed a small improvement when extending the
History mode with the addition of speculation. The improvement could be a lot bigger
as indicated by the result of the Perfect Oracle run. When comparing the overheads
shown in Figure 7.3 (r.), the main difference between using historical information and
using speculation is the building cost of the Store operator. The additional cost when us-
ing speculation is caused by allocating the Reuse Group and both Reuse operators which
are used for buffering and later materializing the result. Since buffering is required to
enable the use of dynamic cost estimates, this cost cannot be reduced without changing
initial design decisions. The cost of the Store operator in its Buffer stage and the cost
of materializing a result have already been significantly reduced by the use of heuristics
and both no longer have a significant effect on the execution time of the workload.

A possible improvement would be to only insert one buffering Store operator on top of
the root node of each query tree. This would result in only using speculation for the
final result of a query. Although this would be a restriction to the recycler architecture,
the speculative results which are materialized by the MixedH policy are predominantly
close to the root node and do not exceed one result per query.

Figure 7.1 shows the cost and size of all potential reuse possibilities in the workload.
Extending the History mode with speculation creates one further reuse possibility for
each of these results. Since the first heuristic of the MixedH mode only allows material-
izing results that fit a single block, only about 37% of the cost improvement that could
be achieved by also using speculation in the workload can be realized. The difference
between the cost of executing the workload using the History mode and the cost of
executing it using the Perfect Oracle mode represents the maximum improvement that
could be achieved by enabling speculation. 37% of that improvement is 1min 4sec. The

63

History Run and Cache Restriction
1 4500

I percen[age
| —
4000 size

0.8

3500

3000

0.6
2500

2000

size in MB

0.4
1500

0.2 1000

percentage in execution time to naive

500

0 — 0
o v v o 7%
(€l
4

maximal number of results in the recycler cache

Figure 7.5: Evaluation of the Recycler with different Result limits

recycler, however, only manages an improvement of 30sec over the History mode when
using MixedH. This difference can be explained by the additional overhead shown in 7.3
(r.) as well as the cost of materializing results that are not referenced in the workload
anymore and missing possible chances because of a restricted recycler cache. For the
given workload, the MixedH mode speculatively materialized 72 results. Only 6.9% of
them were reused by successive queries and another 6.9% of them were evicted before
they could have been reused. The latter case could be prevented by an unlimited recycler
cache size. However, further benchmarks did not show a speed improvement by doing so.

Cache Restriction: The cache restriction has been introduced to limit the amount
of main memory that is used by the recycler. The experiments from the previous para-
graphs were all obtained using an unlimited cache for the History mode and a limit of 44
results for MixedH. The cache was limited by the number of results in the recycler cache.
Figure 7.5 shows the improvement of recycling using the History mode with various cache
limits and the size of the recycler cache after the workload has finished executing. For
the given workload, an unlimited cache gives the best results. However, it also results in
the biggest recycler cache size. Reducing the maximal number of materialized results in
the cache reduces the improvement realized as well as the resulting recycler cache size.
The biggest increase in cache size is between a maximum of 20 and 30 results. Although
an unlimited recycler cache results in the best execution time for the given workload,
limiting the maximum number of results to about 20 results in the better usage of main
memory space. It consumes significantly less space for an only marginally worse result.
If there is not enough main memory space for an unlimited recycler cache, using a limit
of 20 results already achieves a good improvement in execution time by using a lot less
memory space.

Limiting the size of the recycler cache by the number of materialized results has several
disadvantages. While executing the workload, the size of the recycler cache varies heav-
ily. Especially before the maximal number of materialized results is reached, the recycler
materializes all results and reaches a much larger size than after executing the workload.
Furthermore, the recycler does not differentiate between small and large results in the
recycler cache limit. Although the recycler cache could contain many very small results,
their amount is also limited by the cache restriction. These problems could be addressed
by restricting the recycler cache by its size.

64

Matching Cost Matching Cost (5k Queries)

35000 : : : : : : ey : : 4500 ey :
matching cost matching cost
30000 4000
\ & 3500
@ 25000 2
s S 3000
g Ll AL \ %
% 20000 ‘ | S 2500
% O
> J l'\ ‘ 1. H \ H\ l L £ 2000
\ | I
g 1so00 I M I ‘\ \ S
g 10000 L M H‘M | L 7 0 H il
o \ \ \ T o
M I \\ W‘ ‘d\ WM MW\“M\W “u 1 'M\ M\h‘ HW “ ' ‘W © 1000 I I
5000 {1 e M M,‘W\‘)w H|W| T | ‘ H‘ | ‘
ww‘w Ui At 500 LUl \
0 s s s ‘ ‘ ‘ A, ____.A_..M.WMMMWMMMM
0 20 40 60 80 100 120 140 160 180 200 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Query Query

Figure 7.6: Cost of Matching for the Evaluation Workload (l.) and a Workload contaon-
ing 5k Queries

Furthermore, the cache restriction serves as an additional heuristic. It reduces the num-
ber of results that are materialized by providing a dynamic minimum worth. However,
the heuristic is only active once the recycler cache is full. Until the cache is full, it
does not restrict the number of materializations. Therefore, the recycler uses additional
heuristics like the second heuristic of the MixedH mode. A similar heuristic would also
be conceivable for results with historical information, however, it did not show any ben-
efit for the given workload. Once the cache is full, the minimum worth provided by the
recycler cache replaces the static threshold. This applies to speculative results as well
as to results with historical information.

Cost of Matching: One concern for the presented recycling architecture is the cost
of operating a growing recycler tree, in particular the cost of matching. Chapter 4 sug-
gested to regularly trim the size of the recycler tree in order to keep the cost of operations
like matching in a manageable dimension. However, in the current state of the recycler,
the recycler tree grows infinitely. Figure 7.6 (1.) shows the matching cost for each query
in the workload. It is clear that the cost paid for matching increases with the size of the
recycler tree. Furthermore, there appear to be several groups of queries with different
gradients. These groups could be composed of queries that use the same number of base
tables and therefore have to initially check a similar number of candidate table scans in
the recycler tree. The bloom filter approach which was proposed in Chapter 4 to speed
up the matching of table scans is not yet integrated into the recycler.

Although the cost of matching was still in a manageable magnitude (< 0.5% of the execu-
tion time of each query) for the 200 query workload, the experiment was repeated with a
bigger workload to get a better insight on the scale of the problem. The workload which
has been created for that purpose consists of 5000 invocations of the 22 TPC-H queries
with randomly assigned parameters. This results in an overlapping workload with 4600
unique queries. The results are shown in Figure 7.6 (r.). The cost of matching increases
heavily until at the end it reached the dimension of some of the cheaper queries in the
workload. The graph again indicates that there are several groups of queries which are
differently affected by a growing recycler tree.

The results of both experiments show that the number of queries in the recycler tree
has to be limited and that matching has to be further optimized to keep the cost of

65

Results for different buffer pool sizes
0.6

0.5

0.4

0.3

percentage from naive

0.2

0.1

0.5GB 1GB 1.5GB 2GB 2.5GB
bufferpool size

Figure 7.7: Influence of Disk I/O on the Recycler

Buffer Pool Size | 0.5GB 1.0GB 1.5GB 2.0GB 2.5GB
Recycler ON 256m30.929s | 22m38.417s | 17m37.011s | 15m54.594s | 9m2.084s
Recycler OFF 09m36.131s | 59m28.561s | 40m46.656s | 35m48.694s | 16m4.660s

Table 7.1: Absolute number of the results shown in Figure 7.7

matching under control.

Influence of Disk I/O: An important influence on the performance of the recycler
is disk I/O. When using a materialized result to answer a query, the recycler benefits
from the time saved by executing that result. The more computationally expensive a
result is, the more can be gained from reusing it. An important factor of the cost of
executing a query is the number of blocks that have to be fetched from disk. Disks are
typically several orders of magnitude slower than main memory and reading blocks from
disk therefore slows down query execution. As a consequence, a recycling architecture
performs better if there is a lot of disk I/O involved. This is the case for large datasets
or small buffer pool sizes. If the buffer pool size is too small to hold beneficial blocks
until they are required again by a successive query, thrashing occurs. As a result, each
block required by the query has to be read from disk.

In the previous experiments, the recycler has always used the default buffer pool size
of 2GB. Figure 7.7 and Table 7.1 show the influence of various buffer pool sizes on the
performance of the recycler. The results were obtained by using the History mode with
an unlimited recycler cache size. The benchmarks confirm the general tendency that the
effect of recycling increases with smaller buffer pool sizes. However, the effect of recy-
cling is less at 0.5GB than at 1.0GB. The following theory could explain this behaviour.
Without recycling, thrashing occurs at both buffer pool sizes. This results in comparable
execution times. The execution times of both buffer pool sizes with recycling turned on
should also stay at about the same level. However, thrashing is reduced by the recycler
using materialized results and therefore eliminating disk I/O. As a result, blocks stay
for longer in the buffer pool. At 1.0GB they stay long enough to become useful for
subsequent queries, hence the 1.0GB performs better than 0.5GB.

66

8 Conclusion and Future Work

This thesis has presented a recycling architecture for pipelined query evaluation.

The Recycler materializes intermediate and final results as temporary tables in main
memory. Additionally, it stores the query trees of all incoming queries in a structure
called the recycler tree. It then compares the query tree of each incoming query with
the recycler tree to identify materialized results that could be used to answer the query.
If such a result is found, the query is answered using the materialized result instead of
recomputing it from scratch.

The selection of results to materialize has been identified as the most crucial part for a
recycler architecture in a pipelined database system. Therefore, the recycler has intro-
duced novel methods for selecting results. It uses historic information as well as dynamic
estimates to decide which results to materialize. Historic information is collected while
evaluating a query and then stored in the recycler tree. Dynamic estimates are used
whenever there is no historic information available. It is obtained by buffering the re-
sults for a while and then using the measured run-time parameters to estimate their
final values.

The recycler has introduced two policies to decide which result to materialize: History
and MixedH. History is solely based on historical information. MixedH is based on a
combination of historical information and dynamic estimates. Whenever there is no his-
torical information for a result available, MixedH use dynamic estimates to speculatively
materialize results.

The usefulness of recycling depends on the characteristics of the workload. The possible
improvement achieved by recycling is dependent on the fraction of the execution time
of the entire workload that is caused by recomputing results that have already been
computed by previous query invocations. The number of reuse possibilities that the re-
cycler is able to exploit is dependent on the recycling policy and the size of the recycler
cache. History has to compute each result at least twice before it can start reusing it
whereas speculation can potentially already reuse the result the second time it occurs in
the workload.

Although the workload used for evaluating the recycler has especially been tailored for
recycling, there are also real-world workloads that can benefit from recycling. M. Ivanova
et al. [[IKNGO9| has, for example, shown that SkyServer' workloads contain many over-
lapping queries and can benefit significantly from recycling.

The evaluation of the recycler showed a significant improvement of the execution time of
the workload with recycling. The results obtained with recycling in a pipelined DBMS
have been shown to be competitive with the results obtained in MonetDB. However,
the improvement of adding speculation to the history mode has been rather marginal.
The effectiveness of speculation could improve with other workloads that contain more
identic queries with small result sizes.

Lhttp://cas.sdss.org/

67

The results suggest that recycling could also be a viable feature for commercial DBMS.
Recycling could, for example, be manually turned on for workloads that contain many
overlapping queries. However, before recycling could be used in a production environ-
ment, the impact of a growing recycler tree on the cost of matching queries has to be
controlled.

The following will present further research topics:

Trimming the Recycler Tree

As mentioned in Chapter 4, the recycler tree grows infinitely in its current implementa-
tion. With each new query, the memory space that the tree requires increases. Further-
more, the cost of matching an incoming query with the recycler as well as the cost of
navigating the recycler tree towards its root increases. Therefore, the tree needs to be
regularly truncated. To do so, the recycler could periodically iterate over the root nodes
of each unique query in the recycler tree. If the aged references value of one of these
nodes is smaller than a threshold (e.g. 0.6), the query rooted by that node is removed
from the recycler. If the query has common sub-trees with other queries in the recycler
tree, these queries have to remain in the recycler if the root nodes of these sub-trees have
an aged reference value above the threshold. All nodes that are not shared with other
queries in the recycler are removed from the recycler tree. Nodes that are shared remain
in the tree and are further accessible by their other parents. However, their references
have to be reduced by the amount contributed by the removed query. If another query in
the recycler tree is entirely contained in the tree of the query which will be removed, the
recycler has to make sure that the root node of that query is added as child of the virtual
root node in the recycler tree. After removing a query, the total number of queries in
the recycler tree has to be reduced.

Integration into the Optimizer

So far, the decision which materialized results to use for answering an incoming query
has been rather trivial. There has been at most one option for each node and the result
from the recycler has always been assumed to be faster than recomputing the result.
However, when integrating subsumption (see Appendix A), these assumptions may not
be valid anymore. Each node can have several results that can be subsumed to obtain
the needed result. The recycler then has to select the cheapest one. Furthermore, using
some of these materialized results might even be more expensive than recomputing the
entire result. In order to choose the best plan for the query, the selection of materialized
results to answer the query with has to be integrated into the optimizer. The optimizer
can then select the best query plan from the ones generated by the optimizer and the
ones that use materialized results.

Furthermore, only using the already optimized query plan to find materialized results
that could be used to answer a query might miss potential reuse possibilities. For exam-
ple different join orderings that were not chosen by the optimizer could unveil further
sharing possibilities. Using these possibilities might result in a cheaper execution plan
than the one originally chosen by the optimizer. When the selection of materialized

68

results to answer the query with is integrated into the optimizer, the recycler can find
additional sharing possibilities in all permutations of the query tree that the optimizer
considers and then the optimizer selects the cheapest query plan including all discovered
sharing possibilities for execution.

Finally, when integrating the selection of materialized results with the optimizer, the
optimizer could incorporate available indexes on base tables (or materialized results)
into the decision whether to use a result for answering an incoming query.

Updates on Base Tables

So far, it has been assumed that there are no updates in the workload. Updates have
been assumed to be done offline and the state of the recycler is reset after updating
the tables. The additional consideration of updates is a huge challenge for a recycler
architecture. Most previous recycler architectures have ignored updates or chosen very
simple update schemes.

There are several possibilities on how to handle updates. The easiest is to flush the en-
tire recycler cache whenever an update, insertion or deletion occurs. The recycler could
use the flush function to simulate such a behaviour. A slightly more advanced strategy
would be to only remove materialized results that are affected by the update. A more
complex strategy would be to update the materialized results themselves. There are two
ways of updating materialized results: by recomputing the entire intermediate result or
through incremental updates. Incremental updates only update the part of the result
that changed due to the update. Recomputation is not feasible in a recycler context
because, if it is worthy enough, the result would be materialized again the next time it
occurs in a query. Incremental update on the other hand is not possible for all results.
If the materialized result, for example, is an aggregation that computes the minimum of
all values, deletion of the tuple that contributed the minimum, would make it impossible
to obtain a new minimum without reevaluating the aggregation. Incremental updates
can be performed eagerly when the update happens or lazily when the materialized re-
sult is used the next time. The latter one seems to be more appropriate for a recycler
architecture.

Materialized view maintenance [GM95] is a related research area that deals with the
problem of updating materialized views.

Increasing Subsumption Possibilities

The recycler only considers intermediate and final results for materialization that are
produced while executing the current query. For each of these results, the query pro-
duces only the minimum amount of tuples required to answer the query. However, the
recycler could also consider making queries larger and more expensive in order to in-
crease the amount of subsumed future queries that benefit. It could for example create
bigger range selections than required by the query or materialize entire data cubes and
then use these to answer the current and future queries.

69

Caching Structures other than Tables

The recycler could not only be capable of sharing intermediate and final results between
different queries, but also side products of the execution process. It could be extended
to also share structures used within an operator. To reuse such a structure, the opera-
tion creating it and the one using it only have to partially match. The parameters for
creating the structure must match between both operations. The structure can then be
used different by both operations. An example of such a structure are hash tables. If
two aggregations, for example, have to create the same hash table, that hash table can
be shared between both of them even if both aggregations produce incompatible results.
A more VectorWise specific example are selection vectors. Instead of applying the selec-
tion on each column, VectorWise generates a selection vector that indicates the positions
in each column that contain qualifying tuples. Materializing selection vectors would allow
to add additional columns to the materialized result of a selection without recomputing
the selection.

Dynamically adapting the Recycler to the Workload

Different workloads exhibit a different degree of shared sub-expressions. Workloads that
exhibit only a few overlapping queries need fewer results materialized than workloads
with lots of sharing possibilities. If the workload does not contain a lot of overlap,
the unused space in the recycler cache could better be returned to the buffer manager
to buffer disk pages than reserving it for the recycler. The recycler could dynamically
adapt the ratio between space reserved for the recycler cache and space used by the
buffer manager depending on the characteristics of the workload.

Furthermore, some workloads benefit more from speculation because most shared sub-
expressions have exactly two references and others benefit more from history. The recy-
cler could dynamically favour the policy that suits best for the current workload.

Multi-layer Recycler

The performance of the recycler on other levels of the storage hierarchy like flash drives or
even magnetic disks could be further investigated. From these observations, a multi-layer
recycler could be constructed which uses multiple storage layers to store materialized
results in. It could, for example, be faster to materialize the huge result of a selection
on disk than recomputing it from the base table. The worth function would have to be
adapted to include the decision on the storage layer an intermediate will be stored in.

70

A Subsumption

Materialized intermediate and final results can not only be used to answer queries that
have to compute exactly the same result, but also for queries that have to compute a
result which is a subset of the materialized result. Such a result subsumes the materi-
alized result. In order to use the materialized result to answer the query, it first has to
be refined. Because materialized result that exactly match do not need any refinement
and therefore are cheaper to use, a recycler always checks for materialized results that
exactly match first and only if no exact match is found, does it then try to identify
results that can be subsumed.

This chapter will describe some additional sharing possibilities through subsumption.
The following will assume that there is a materialized result M in the recycler and an
intermediate result / in the current query. M is a superset of I and therefore can be
used to compute [instead of computing it from scratch using base tables.

Column Subsumption

Column subsumption is the form of subsumption that is closest to exact match. M
consists of all columns required by I as well as some additional columns that are not
needed. If M has been produced from a previous intermediate result R by the ag-
gregation M = 45cRoum(satary)min(salary) (R) and the query has to produce the result
I = 4geRoum(satary) (R), the materialized result M can be used to answer the query. The
intermediate result can be obtained by only scanning the required columns from the
materialized result. Column subsumption does not need any further refinement. The
recycler is able to handle this form of subsumption.

Tuple Subsumption

Tuple subsumption is the most typical form of subsumption. It was also described in
[RSSB00, RRST00, IKNG09|. M includes all tuples required by I. However, the op-
eration that produced M was coarser than the one producing [and therefore M has
additional tuples. To obtain I from M, the more fine-grained operation which produces
I has to be applied on M to extract the required tuples.

Examples:

Selection: If the selection which produced M from the previous result R was M =
Oage<1s(R) and the query has to produce the result I = 0,5.-16(R), the result of I can
be obtained using the materialized result: I = 04ge—16(M). The result of a range selec-
tion can be reused to answer other range or equality selections if all selected tuples have
also been selected by the materialized result.

Aggregation: If the aggregation which produced M from the previous result R was

71

M = 44e.dn0Gsum(satary) () and the query has to produce the result I = 43cGum(satary)(R),
the result of I can be obtained using the materialized result: I = ,3cGgum(satary)(M). A
materialized result of an aggregation can be used to answer other aggregations if their
Group By-list subsumes the one of the materialized result and the operation allows sub-
sumption. Furthermore, if R contains a hierarchy along a dimension, as is often the
case in dimension tables from star schemes, the aggregation on the more fine-grained
hierarchy level can also be used to answer the more coarse-grained one. If, for example,
M was produced by M = ity Gumrevenue)(R) and I'is I = countryGsum(revenue) (R), then
I can be obtained by I = countryGsum(revenue) (M).

After finding a materialized result that can be refined to answer a query, matching is
usually stopped. If matching was to continue, the refinement would have to be applied
on all other materialized results that are found further up the query tree. For some
results, this is not possible. If, for example, the first subsumption found between two
query trees is a range selection and the second one found is an aggregation that returned
the average of all values, it is no longer possible to obtain the result of one of the averages
from the other one.

Union

Union is not a form of subsumption, but it is related to it. If there is no result in the
recycler that exactly matches with the query and none that can be subsumed, the re-
cycler could combine several materialized results to obtain a result that can be used to
answer the query. The recycler architecture presented in [IKNGO09| is able to combine
several results to answer a query.

If the recycler, for example, has the two selections A = 044e<15(Relation) and B =
O15<age<25(Relation) materialized and the query has to compute 019<qge<20, the two ma-
terialized results can be combined and afterwards refined to answer the query: C' =
010<age<20(A U B)

In VectorWise, it would even be possible to efficiently obtain the result of an intermedi-
ate using one or more materialized results that only cover a large fraction of the selection
range. VectorWise tracks the minimum and maximum value of each block. If there is
a small range in the selection that is not covered by the results from the recycler, these
values can be used to find all blocks that contain the required tuples. These tuples can
then be combined with the materialized result.

Permutation

Permutation is another topic loosely related to subsumption. If optimized query trees
are exactly matched node after node, permutations of the query tree are not considered.
An example for permutations are different join orderings (join associativity). Using an-
other permutation of the query tree might unveil additional materialized results that
could be used and therefore might improve the execution time of the query. Multi-query
optimizers like the one presented in [RSSBO00| usually exploit different permutations of
the same query.

72

Bibliography

[ADHSO01] Anastassia Ailamaki, David J. DeWitt, Mark D. Hill, and Marios Skounakis.

[Bon02]

IBZNO5|

[CKS5]

[CNRO4]

[CR93]

[Fin82]

|GMO5|

|Gra94|

[IKNG09)

Weaving relations for cache performance. In Proceedings of the 27th Inter-
national Conference on Very Large Data Bases, VLDB ’01, pages 169180,
San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc.

Peter A. Boncz. Monet: A Next-Generation DBMS Kernel For Query-
Intensive Applications. PhD thesis, Universiteit van Amsterdam, NL, May
2002.

PA Boncz, M. Zukowski, and NJ Nes. MonetDB/X100: Hyper-Pipelining
Query Execution. In Proceedings of International conference on verly large
data bases (VLDB) 2005, VLDB ’05. Very Large Data Base Endowment,
2005.

George P. Copeland and Setrag N. Khoshafian. A decomposition storage
model. SIGMOD Rec., 14:268-279, May 1985.

Surajit Chaudhuri, Vivek Narasayya, and Ravishankar Ramamurthy. Esti-
mating progress of execution for sql queries. In Proceedings of the 2004 ACM
SIGMOD international conference on Management of data, SIGMOD ’04,
pages 803-814, New York, NY, USA, 2004. ACM.

ChungMin Melvin Chen and Nicholas Roussopoulos. The implementation
and performance evaluation of the adms query optimizer: integrating query
result caching and matching. Technical report, College Park, MD, USA,
1993.

Sheldon Finkelstein. Common expression analysis in database applications.
In Proceedings of the 1982 ACM SIGMOD international conference on Man-
agement of data, SIGMOD ’82, pages 235-245, New York, NY, USA, 1982.
ACM.

A. Gupta and [.S. Mumick. Maintenance of materialized views: Problems,
techniques, and applications. Bulletin of the Technical Committee on, 51:3,
1995.

G. Graefe. Volcano - an extensible and parallel query evaluation system.
IEEFE Trans. on Knowl. and Data Fng., 6:120-135, February 1994.

Milena G. Ivanova, Martin L. Kersten, Niels J. Nes, and Romulo A.P.
Gongcalves. An architecture for recycling intermediates in a column-store.

73

[KR99)

[LNEWO04]

IRR9S]|

[RRS*00]

IRSSBOO|

[Sel88]

[SSV96]

1SSV99)

[TGOO1]

[ZBNHO5|

[ZHNBO6|

In Proceedings of the 35th SIGMOD international conference on Manage-
ment of data, SIGMOD ’09, pages 309-320, New York, NY, USA, 2009.
ACM.

Yannis Kotidis and Nick Roussopoulos. Dynamat: a dynamic view manage-
ment system for data warehouses. In Proceedings of the 1999 ACM SIGMOD
international conference on Management of data, SIGMOD ’99, pages 371
382, New York, NY, USA, 1999. ACM.

Gang Luo, Jeffrey F. Naughton, Curt J. Ellmann, and Michael W. Watzke.
Toward a progress indicator for database queries. In Proceedings of the 200/
ACM SIGMOD wnternational conference on Management of data, SIGMOD
'04, pages 791-802, New York, NY, USA, 2004. ACM.

Jun Rao and Kenneth A. Ross. Reusing invariants: a new strategy for
correlated queries. In Proceedings of the 1998 ACM SIGMOD international
conference on Management of data, SIGMOD ’98, pages 37-48, New York,
NY, USA, 1998. ACM.

Prasan Roy, Krithi Ramamritham, S. Seshadri, Pradeep Shenoy, and
S. Sudarshan. Don’t trash your intermediate results, cache ’em. CoRR,
¢s.DB /0003005, 2000.

Prasan Roy, S. Seshadri, S. Sudarshan, and Siddhesh Bhobe. Efficient and
extensible algorithms for multi query optimization. In Proceedings of the
2000 ACM SIGMOD international conference on Management of data, SIG-
MOD ’00, pages 249-260, New York, NY, USA, 2000. ACM.

Timos K. Sellis. Intelligent caching and indexing techniques for relational
database systems. Inf. Syst., 13:175-185, April 1988.

Junho Shim, Peter Scheuermann, and Radek Vingralek. Watchman: A data
warehouse intelligent cache manager. 1996.

Junho Shim, Peter Scheuermann, and Radek Vingralek. Dynamic caching
of query results for decision support systems. International Conference on
Scientific and Statistical Database Management, 0:254, 1999.

Kian-Lee Tan, Shen-Tat Goh, and Beng Chin Ooi. Cache-on-demand: Re-
cycling with certainty. In Proceedings of the 17th International Conference
on Data Engineering, pages 633—640, Washington, DC, USA, 2001. IEEE
Computer Society.

M. Zukowski, PA Boncz, NJ Nes, and S. Héman. MonetDB/X100-A DBMS
In The CPU Cache. IEEE Data Engineering Bulletin, 28:17-22, June 2005.

Marcin Zukowski, Sandor Heman, Niels Nes, and Peter Boncz. Super-scalar
ram-cpu cache compression. In Proceedings of the 22nd International Con-
ference on Data Engineering, ICDE 06, pages 59—, Washington, DC, USA,
2006. IEEE Computer Society.

74

