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Preface

This thesis starts with a collaboration with the CWI, Center forMathematics and
Informatics (in Dutch: Centrum voor Wiskunde en Informatica), a prestigious
Dutch research center located in Amsterdam, one of the most important in Europe
in these fields and a member of the ERCIM, the European Research Consortium
for Informatics and Mathematics.

One of the research themes at the CWI concerns the problems relative to the
“data explosion”: how to find relevant information in the increasing amount of the
available data?

On this theme one of the research groups of the CWI has been developing
since 1994 MonetDB, an open-source database management system specialized in
obtaining high performances in query-intensive applications like decision support
(OLAP), data mining, geographical information systems (GIS) and XQuery; this
DBMS is and has been since its early stages a scientific research platform in the
database field.

A new application of relational systems is RDF data storage and query; the
goal of this language is to formally express metadata in asubject-predicate-object
form, making the information that this language describes intelligible to a com-
puter. A web page is now comprehensible only to humans; but ifthe meaning of
that page is expressed in a formal language then it can be automatically processed
making content search, for instance, much more effective. RDF constitute thus
the foundations of the web of the future, the “Semantic Web”.

How relational engines can manage and query effectively considerable amoun-
ts of RDF triples, in the order of hundreds of millions, is still the object of a
remarkable scientific research effort.

My job at CWI was to kick-start the MonetDB front/end for SPARQL, the
RDF query language.

The developed code, in C language, brought on one side to the creation of
a new module of MonetDB, described in chapter 5, that defines the relational
structures that contain the RDF data and the import and exportfunctions from and
to plain textual documents; on the other to a SPARQL parser which, given a query,
it translates it to its algebraic form.

i



PREFACE ii

The theoretical work concerned the translation of the SPARQLalgebra in
relational algebra, proposed in the last section of chapter4.

The first chapter describes RDF, both in its syntax and its semantics; chapter
2 introduces MonetDB, its fundamental principles, its architecture and the data
structure on which this DBMS is centered on, the binary table.

Chapter 3 illustrates the general RDF storage techniques and gives an over-
view of the main projects related to this subject.

Chapter 4 exposes, in examples and formally, the SPARQL query language
and its algebra; the last section, referref to above, proposes for each operator of
this algebra an equivalent relational expression.

The last chapter describes the data structures used in MonetDB to contain
the RDF triples, how these are imported from a textual document, and which are
advantages and drawbacks of the suggested solution.

Appendix A, finally, examines a set of choices that MonetDB/SPARQL may
perform to get the maximum benefit from the adopted data structures.



Prefazione

Questa tesi nasce da un esperienza di lavoro presso il CWI, Centro per la Mate-
matica e l’Informatica (in olandese: Centrum voor Wiskunde en Informatica), un
prestigioso centro di ricerca olandese situato ad Amsterdam, uno dei pìu impor-
tanti in Europa in questi campi e membro dell’ERCIM, il consorzio europeo per
l’Informatica e la Matematica, di cui fa parte anche il CNR italiano.

Una delle tematiche di ricerca scientifica presso il CWI riguarda le problema-
tiche relative alla “esplosione dei dati”: come trovare informazioni rilevanti nella
sempre crescente quantità di informazioni disponibili?

In quest’ambito uno dei gruppo di ricerca del CWI sviluppa sin dal 1994 Mo-
netDB, un DBMS open-source specializzato per ottenere alte prestazioni in appli-
cazioni “query-intensive” come il supporto decisionale (OLAP), il data mining, i
sistemi informativi geografici (GIS) e XQuery; questo DBMSè edè stato per tutti
questi anni una piattaforma per la ricerca scientifica nel campo delle basi di dati.

Una nuova applicazione dei sistemi relazionali consiste nell’immagazzina-
mento e la ricerca di dati espressi in RDF; lo scopo di questo linguaggiòe di espri-
mere in maniera formale dei metadati sotto forma di triplesoggetto-predicato-
oggetto, rendendo in tal modo intellegibile per un calcolatore le informazioni che
questo linguaggio descrive. Una pagina web, oggi,è comprensibile solo ad un
essere umano; ma se le informazioni contenute sono espressein un linguaggio
formale allora queste possono essere processate automaticamente rendendo le ri-
cerche di contenuti, ad esempio, molto più efficaci. RDF costituisce dunque le
fondamenta del web del futuro, il “Web Semantico”.

Come possano però riuscire i sistemi relazionali a contenere ed interroga-
re efficacemente quantità considerevoli di triple RDF, dell’ordine di centinaia di
milioni, è ancora oggetto di un notevole sforzo di ricerca.

Il mio compito presso il CWÌe stato quello di iniziare il front/end di MonetDB
per SPARQL, il linguaggio di interrogazione per RDF.

Lo sviluppo di codice, in linguaggio C, ha portato da una partealla creazione
di un nuovo modulo di MonetDB, descritto nel capitolo 5, che definisce le strutture
relazionali per la rappresentazione dei dati RDF e le funzioni di importazione ed
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PREFAZIONE iv

esportazione di documenti in forma testuale; dall’altra adun parser per SPARQL,
che data una query la traduce nella sua forma algebrica.

Il lavoro teorico ha riguardato la traduzione dell’algebraSPARQL in algebra
relazionale, proposta nell’ultima sezione del 4° capitolo.

Il 1° capitolo della tesi descrive RDF, sia nella sintassi chenella semantica; il
secondo mentre il 2° introduce MonetDB, i sui principi basilari, la sua architettura
e la struttura dati sulla quale questo DBMSè incentrato, la tabella binaria.

Il capitolo 3 illustra le tecniche generali di immagazzinamento di RDF ed
effettua una panoramica dei principali progetti correlati a questo argomento.

Il quarto capitolo espone sia per esempi sia formalmente il linguaggio di inter-
rogazione SPARQL e la sua algebra; l’ultima sezione, come detto sopra, propone
per ogni operatore di quest’algebra una espressione relazionale equivalente.

L’ultimo capitolo descrive le strutture dati utilizzate inMonetDB progettate
per contenere le triple RDF, come queste vengano importante da un documento
testuale, e quali siano i vantaggi e gli svantaggi della soluzione proposta.

L’Appendice A, infine, esamina un insieme di scelte che MonetDB/SPARQL
può intraprendere per trarre il massimo vantaggio dalle strutture dati utlizzate.
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Chapter 1

The Resource Description
Framework

1.1 Introduction

The Resource Description Framework [5] is “a language for representing infor-
mation about resources in the World Wide Web” [38].

RDF is based on the idea that each piece of information is a resource that
has properties that have values. The resources can be described, therefore, by a
set ofstatementsin the subject-predicate-object format: thesubjectis that part
of the statement that identifies the Web resource under description, thepredicate
identifies a property of the subject, and theobject is the value of that property.
Because all statements have this structure, they are also called triples.

A statement with this simple subject-predicate-object structure may be

The page http://example.org/index.html has a creator whose value is John Smith

wherehttp://example.org/index.html is the subject,creator is the predicate
andJohn Smith is the object.

1.2 Uniform Resource Identifiers

The above example, however, does not unequivocally identify what the concept
of creator or who John Smith is. Any resource, that might be a web page, a
book, a person, or any abstract concept has to be described byan Uniform Re-
source Identifieror URI. URIs are a generalization of URLs (Uniform Resource
Locators), that identify a resource by its access mechanism. URL are well suited
for web pages or mail boxes, but not for any other resource that is not physically
accessible on the Web.

1



CHAPTER 1. THE RESOURCE DESCRIPTION FRAMEWORK 2

The above statement may be represented by an RDF triple having:

• a subjecthttp://example.org/index.html

• a predicatehttp://purl.org/dc/elements/1.1/creator

• an objecthttp://example.org/staffid/85740

wherehttp://purl.org/dc/elements/1.1/creator is a URI that identifies the
“creator” concept, andhttp://example.org/staffid/85740 unequivocally identi-
fies a specific John Smith.

A further generalization of URIs areIRIs, i.e. Internationalized Resource
Identifiers, that are not restricted to the ASCII character set but allow also Uni-
code characters. Every URI is also an IRI, and every IRI can be translated to an
URI, substituting every non-ASCII character with the equivalent “percent encod-
ing”, that consists of a ‘%’ followed by the Unicode codepoint that identifies the
character.

1.3 Graph Data Model

Since the object of an RDF statement may be a subject of anothertriple, a set
of statement forms a labeled and directed graph, where subjects and objects are
nodes and each predicate is an edge directed from a subject toan object.

Figure 1.1 is a simple RDF graph that extends the above example.

http://example.org/staffid/85740

John Smith mailto://johnsmith@example.org

http://example.org/index.html

http://purl.org/dc/elements/1.1/creator

http://example.org/terms/name

http://example.org/mailbox

Figure 1.1: Simple RDF graph
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The URI http://example.org/staffid/85740 has two additional properties:
the name of the person represented by the URI and his mailbox. As figure 1.1
may suggest, object can be either URIs or constant values, called literals. In the
figure, literals are shown as boxes, and URIs as ellipses.

1.4 RDF serialization languages

This section introduces the languages to express RDF data in plain text files. It is
not intended to be a complete reference, but just an introduction needed to show
example data in a rigorous manner; many details will be skipped for the moment
and introduced later in this chapter, when necessary.

The recommended standard language is RDF/XML [13], that encodes the
triples in the tree structure of XML. Since it is not easily readable for humans,
the Notation3 (or N3) [15] language has been developed: the approach of N3 and
its dialects, Turtle [14] and N-Triples [29], is to explicitly list the RDF statements
one after the other.

1.4.1 Notation3, Turtle and N-Triples

These languages are each a subset of the other, with Notation3 being the largest
and N-Triples the smallest; for this reason, and because of the total compatibil-
ity of the smaller languages with the larger ones, N3, Turtleand N-Triples are
described together.

Each statement of an RDF graph is listed on a different line, terminated by a
dot. The subject, the predicate and the object are separatedby white spaces, the
URIs are written between ‘<’ and ‘>’ characters and the literals are quoted.

The RDF graph in figure 1.1 can expressed with

<http://example.org/index.html> <http://purl.org/dc/elements/1.1/creator> <http://example.org/staffid/85740> .

<http://example.org/staffid/85740> <http://example.org/terms/name> "John Smith" .

<http://example.org/staffid/85740> <http://example.org/terms/mailbox> <mailto://johnsmith@example.org> .

or more compactly, in Turtle and N3, with

@prefix ex: <http://example.org/> .

@prefix exterms: <http://example.org/terms/> .

@prefix exstaff: <http://example.org/staffid/> .

@prefix dc: <http://purl.org/dc/elements/1.1/> .

ex:index.html dc:creator exstaff:85740 .

exstaff:85740 exterms:name "John Smith" .

exstaff:85740 exterms:mailbox <mailto://johnsmith@example.org> .

N3 and Turtle permit one to declare URI prefixes, while N-Triples does not
allow it. This language, in fact, was intended as a test-caselanguage, and thus
N-Triples documents were not supposed to be written or read by humans.
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A URI reference can thus be expressed in N3 and Turtle with aqualified name,
that consists of a prefix that has been assigned to a namespaceURI, a colon and
a local name, without angle brackets. The full URI reference is the concatenation
of the namespace associated with the prefix and the local name.

1.4.2 URI namespaces used in this thesis

From now on, this thesis will make use of the following “well-known” prefixes to
keep URI references short and to avoid repetition:

@prefix rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#

@prefix rdfs: http://www.w3.org/2000/01/rdf-schema#

@prefix dc: http://purl.org/dc/elements/1.1/

@prefix xsd: http://www.w3.org/2001/XMLSchema#

1.4.3 RDF/XML

RDF/XML [13] is the recommended serialization language for RDF, but since N3
and its subsets are easier to read, their use will be preferred for the examples of
this thesis.

The graph in figure 1.1 in RDF/XML can be expressed as:

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<!ENTITY ex "http://example.org/">

<!ENTITY exstaff "http://example.org/staffid/">

<!ENTITY exterms "http://example.org/terms/">

<!ENTITY dc "http://purl.org/dc/elements/1.1/">

]>

<rdf:RDF xmlns:rdf = "&rdf;"

xmlns:exterms = "&exterms;"

xmlns:dc = "&dc;">

<rdf:Description rdf:about="&ex;index.html">

<dc:creator rdf:resource="&exstaff;85740"/>

</rdf:Description>

<rdf:Description rdf:about="&exstaff;85740">

<exterms:name>John Smith</exterms:name>

<exterms:mailbox rdf:resource="mailto://johnsmith@example.org"/>

</rdf:Description>

</rdf:RDF>

The ENTITY declarations are shorthand: the string associated with theentity
rdf can be referenced further in the document by&rdf; . The names of the tags
are qualified names, and are expanded as in N3; the prefix in this case is declared
as an XML namespace (i.e.xmlns ).
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The URI references of a subject of a statement are generally declared in the
rdf:about attribute of anrdf:Description tag, whose internal nodes represent the
properties of that subject and their values.

1.5 Blank nodes

Other kinds of nodes that can be found in RDF graphs, together with URI ref-
erences and literals, are blank nodes. These, unlike literals and like the URIrefs
can be both subject and objects, but with the difference that they do not have a
universal name; blank nodes are therefore local to an RDF graph.

Blank nodes are frequently used to encapsulate structured data, as shown in
figure 1.2 for an address.

England34

Royal College St. London

http://example.org/staffid/85740

http://example.org/terms/housenumber http://example.org/terms/state

http://example.org/terms/street

http://example.org/terms/city

http://example.org/terms/address

Figure 1.2: A blank node representing an address

In N3 a blank node is represented by a blank node identifier. Two identical ids
in a graph refer to the same blank node, but equal identifiers in different graphs
refer to different nodes, since separate graphs do not share any of them.

The graph in figure 1.2 can be expressed in N3 as

@prefix exstaff: http://example.org/staffid/

@prefix exterms: http://example.org/terms/

exstaff:85740 exterms:address _:address .

_:address exterms:housenumber "34" .

_:address exterms:street "Royal College St." .

_:address exterms:city "London" .

_:address exterms:state "England" .

Blank node identifiers start with an underscore and a colon, followed by a
label: in the example:address is the identifier of the blank node that represents
the address.
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1.6 Literals

The literals presented heretofore this section were untyped, just sequences of char-
acters. Using the RDF terminology they areplain literals. RDF permits alsotyped
literals, were the type is identified by a URI reference.

Since XML Schema already defines a complete type system [16],RDF does
not define any new type except one,rdf:XMLLiteral , used for embedding XML
in RDF.

1.6.1 Datatypes

Formally, a datatype consists of a lexical space, a value space and a lexical-to-
value mapping.

The XML boolean datatypexsd:boolean , for example, has a value space of
two elements:

V =
{

T, F
}

.

a lexical space of four elements:

L =
{

“true”, “false”, “1”, “0”
}

.

and the following lexical-to-value mapping:

M =
{

<“true”, T>, <“1”, T>, <“0”, F>, <“false”, F>
}

.

1.6.2 Typed literals

The general way to express a typed literal in the Notation3 dialects is:

"[Lexical Form]"ˆˆ<[URI reference]>

and only in N3 and Turtle:

"[Lexical Form]"ˆˆ[Qualified name]

The integer 24 is thus"24"ˆˆ<http://www.w3.org/2001/XMLSchema#integer> or
"24"ˆˆxsd:integer . N3 and Turtle can also parse numeric and boolean literals
with no datatype URI and cast them automatically. The constant value true ,
with no quotes, is equivalent to"true"ˆˆxsd:boolean , and123 is equivalent to
123ˆˆxsd:integer .
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XML literals

XML literals are literals whose value space is an XML tree. InRDF/XML docu-
ments, custom XML markups can be embedded with therdf:parseType="Literal"

attribute:

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<!ENTITY ex "http://example.org/">

]>

<rdf:RDF xmlns:rdf = "&rdf;">

<rdf:Description rdf:about="&ex;someXML">

<rdf:value rdf:parseType="Literal">

<root/>

<node prop="value"/>

</root>

</rdf:Description>

</rdf:RDF>

XML literals can be expressed in the N3 dialects as well, but it requires a lot
of escaping:

@prefix ex: <http://example.org/> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

ex:someXML rdf:value "<root/>\n\t<node prop=\"value\"/>\n</root>"ˆˆrdf:XMLLiteral .

1.6.3 Plain literals

A literal that has only the lexical form is called in RDF aplain literal. Plain
literals may specify alanguage tagas defined by RFC 3066 [11], normalized to
lowercase.

In N3, Turtle and N-Triples, the optional language tag follows the lexical form
and the ‘@’ separator character. For example, the literal"Firenze" with Italian
language tag is"Firenze"@it .

1.7 RDF Schema

When RDF users want to describe their resources, they are also creating avocabu-
lary: a well defined set of terms of different classes, each with specific properties.

For example, people interested in describing bibliographic resources would
describe classes such asex:book , and use properties such asex:author and
ex:title .
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RDF Schema (or RDFS) [19] is a standard vocabulary that provides the terms
to describe such classes and properties: for example it permits one to say that
ex:author is an expected property of anex:book . In this sense RDFS provides
a type system for RDF, since it allows one to define classes, subclasses and their
properties. But this information is not a constraint like in object-oriented lan-
guages, but just provide an additional description about the RDF resources.

1.7.1 Classes

In RDF Schema, a class is an instance of therdfs:Class resource, thus a class is
any resource having anrdf:type property whose value isrdfs:Class .

This example defines a class of motor vehicles:

@prefix ex: http://example.org/schemas/vehicles .

ex:MotorVehicle rdf:type rdfs:Class .

A particular vehicle is then an instance ofex:MotorVehicle :

@prefix ex: http://example.org/schemas/vehicles/ .

@prefix exterms: http://example.org/terms/ .

ex:MotorVehicle rdf:type rdfs:Class .

exterms:johnSmithsCar rdf:type ex:MotorVehicle .

Differently from some object-oriented languages, a resource can be an instance
of more than a single class.

Subclass relationships are defined with the standardrdfs:subClassOf predi-
cate. Trucks and vans, for example, are subclasses of the motor vehicle class, and
the minivan category is a subclass of van:

ex:Truck rdfs:subClassOf ex:MotorVehicle .

ex:Van rdfs:subClassOf ex:MotorVehicle .

ex:MiniVan rdfs:subClassOf ex:Van .

RDF software that understands the meaning of RDFS can infer, atthis point,
thatex:MiniVan is also a subclass ofex:MotorVehicle , sincerdfs:subClassOf is
a transitive property (see [19], section 3.4), and thatex:Van , ex:MiniVan and
ex:Truck are classes as well.

1.7.2 Properties

In RDF Schema, the properties of the classes are described using the RDF class
rdf:Property , and the RDF Schema propertiesrdfs:domain , rdfs:range , and
rdfs:subPropertyOf .
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A resource can be defined as a property by declaring it to be an instance of
rdf:Property . The RDFS termrdfs:domain can be used to indicate that a par-
ticular property applies to a designated class. For example, books should have an
author property:

ex:Book rdf:type rdfs:Class .

ex:author rdf:type rdf:Property .

ex:author rdfs:domain ex:Book .

The tripleex:author rdfs:domain ex:Book does not specify only that books
have an “author” property, but also that every resource thathas an “author” prop-
erty is an instance ofex:Book .

In programming languages, many classes (and thus their instances) may have
properties with the same name; in RDFS if the same property applies to two differ-
ent classes, then every resource that has that property definedmustbe an instance
of both classes. For example:

ex:weight rdf:type rdf:Property .

ex:weight rdfs:domain ex:Book .

ex:weight rdfs:domain ex:MotorVehicle .

exterms:someResource ex:weight "10"ˆˆxsd:integer .

means also thatexterms:someResource is both an instance ofex:Book and of
ex:MotorVehicle .

In the same way asrdfs:domain tells one which is the class of thesubjectof
a triple using a certain property,rdfs:range allows one to specify the class of the
object; the author of book, for example, should be an instance of theex:Person

class:

ex:Person rdf:type rdfs:Class .

ex:Book rdf:type rdfs:Class .

ex:author rdf:type rdf:Property .

ex:author rdfs:domain ex:Book .

ex:author rdfs:range ex:Person .

RDF Schema provides a way to specialize properties as well as classes, us-
ing the standardrdfs:subPropertyOf property. All rdfs:range andrdfs:domain
predicates that apply to an RDF property also apply to each of its sub-properties:

ex:driver rdf:type rdf:Property .

ex:driver rdfs:domain ex:MotoVehicle .

ex:driver rdfs:range ex:Person

ex:primaryDriver rdfs:subPropertyOf ex:driver .

The primary driver of a vehicle, therefore, is, of course, also aex:driver of it.
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1.7.3 Richer schema languages

RDF Schema provides basic capabilities for describing RDF vocabularies, but
additional capabilities are also possible and useful, likeadding cardinality con-
straints on properties, e.g. that aex:Person has exactly one biological father, or
that a basketball team has five players; or specifying that two different resources,
with different URI references, actually represent the same concept.

These capabilities, and many others, are the targets ofontology languages
such as OWL [40]. OWL is based on RDF and RDF Schema, and its intent is to
provide additional machine-processable semantics for resources, that is, to make
the machine representations of resources more closely resemble their intended
real world counterparts. Both RDF and OWL are part of the development of the
Semantic Web.
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MonetDB

MonetDB [2] is an open source database management system developed at CWI
[1], the Dutch National Research Institute for Mathematics and Computer Science
(in Dutch: Centrum voor Wiskunde en Informatica), one of the leading European
research centers in the field of mathematics and theoreticalcomputer science.
MonetDB is a platform for scientific research in the databasefield; a list of all
the publications related to this system can be found at [7].

2.1 Design principles

MonetDB has been designed to efficiently process query intensive workloads over
large datasets, in application fields like data mining, OLAP(On-Line Analytical
Processing), GIS (Geographic information system), XML Query, text and multi-
media retrieval.

To achieve this goal, MonetDB adopts a decomposed storage model (DSM),
opposed to the conventional N-ary storage model (NSM). The DSM approach
models relations as sets of columns instead of sets of tuples, where each column
is represented by a binary table, orBAT in MonetDB, which consists of aheadand
a tail column, with the first containing a row identifier and the latter containing
the actual data (figure 2.1).

2.1.1 A simple binary algebra

The immediate benefit of the column-wise storage is that it saves I/O when scan-
intensive queries on tables with a large number of columns need just a few of them,
since only the ones needed are accessed: in an OLAP application, for instance,
where the fact tables are normally huge and with many columns, DSM would
perform significantly faster than NSM if only a few columns are needed.

11
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Figure 2.1: Decomposed storage model

The most important reason for which vertical fragmentationhas been cho-
sen, however, is that it improves computational efficiency since it does not suffer
from problems generated by tuple-at-a-time interpretation. MonetDB, instead,
processes data a column at a time, essentially looping over an array; this improves
the performances dramatically, since it leads to predictable instructions that can
be pipelined by modern CPUs, thus avoiding branch mispredictions and achieving
a good instruction-per-cycle ratio.

The disadvantage of this simple approach is that query execution cannot be
pipelined, in the sense that the result of an operator cannotflow directly into the
next one; in a row-store, each operator eats tuples and produces tuples that can
flow to the next operator, in a pipeline. MonetDB, on the contraty, has to mate-
rialize every intermediate result, and therefore does not scale well on problems
significantly larger that main memory.

2.1.2 Main memory DBMS

MonetDB makes aggressive use of main memory by assuming thatthe database
hot-set fits into it. It does not mean that all the data has to beloaded into memory:
for large databases, MonetDB relies on the underlying operating system’s virtual
memory by mapping large BATs into it. This aspect is taken into account in the
BAT design, that must have the same representation on disk and in main memory
in order to take advantage of memory mapping, thus avoiding the use of hard
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pointers [17]. In this way the hot pages are kept in memory, and the less accessed
ones can be automatically swapped out on disk by the OS.

This important assumption makes memory access a severe concern. A general
observation about main memory access is that CPU speed increased much faster
than memory latency has decreased, turning it into an increasing bottleneck.

MonetDB’s execution engine is therefore focused on exploiting CPU caches
through cache-conscious algorithms; the DSM approach was chosen also for this
reason [36].

The system also packages a calibrator tool [37] that calculates the L1 and
L2 cache sizes, their line-size and their access and miss latencies; it extracts the
number of the Translation Lookaside Buffer levels, the capacity of each level, and
measures the main memory and TLB miss latencies.

2.2 Architecture overview

The architecture of MonetDB has a front-end and back-end layout (fig. 2.2); the
back-end is the heart of the system, that provides the binarydata model, the query
execution engine and basic concurrency and transaction mechanisms, while the
front-ends are query-language processors that may supportdifferent data models,
which are all mapped onto the back-end’s binary algebra.

Monet Interpreter

MonetDB/SQL MonetDB/XQuery

Goblin Database Kernel

Decomposed Storage Model

Client

Figure 2.2: MonetDB architecture
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The front-ends currently distributed with MonetDB are MonetDB/SQL and
MonetDB/XQuery; MonetDB/SPARQL was just started as part of the work of
this thesis.

The interface between the back and the front-ends is provided by theMonetDB
Assembly Language(or MAL) for the current version of MonetDB (ver. 5) and
by theMonetDB Interpreter Language, or MIL, for version 4 of MonetDB. The
latter is still used by the XQuery front-end.

The low-level table-handling code supplying the binary tables, the facilities
to map them into virtual memory and the concurrency mechanisms is Goblin
Database Kernel (GDK).

MAL (as well as MIL) is a Turing-complete interpreted and procedural lan-
guage whose operators form a closed algebra on the binary tables, targeted to per-
formance (in terms of parsing, analysis, and ease of target compilation by query
compilers) and extensibility.

The clients can communicate with the MonetDB server throughthe standard
database interfaces JDBC and ODBC, or through the native MonetDB Program-
ming Interface (MAPI). The Perl, PHP, and Python API are build on top of the
MAPI routines.

2.3 Binary tables structure

A BAT (fig. 2.3) is a binary table, hence it has aheadand atail column. It
can be accessed through a pointer to aBAT descriptor, that points to twocol-
umn descriptors, one for the head and one for the tail. A column descriptor holds
column-specific information, such as the type of the stored data and search ac-
celerators such as if the column is sorted or not, or if it contains unique values.
The actual data is stored in theBUN heap, an array of binary tuples, calledBUNs
(Binary Units). The BUN heap can be reached from a BAT descriptor through the
BUN descriptor.

Fixed size data, like integers, floating point numbers or timestamps, are stored
directly in the BUN record; variable size records like strings are kept in a separate
heap, with the BUN storing an offset into it.

In such a way BUNs always hold fixed size data, allowing a simple array
representation.

The columns can be of quite a large number of types; these are:

• oid : integer values used as object identifier. Their length depends on the
system MonetDB is built on: 32-bits on 32-bit systems and 64-bits on 64-
bit systems. If MonetDB knows that aoid column is a dense ascending
sequence, it can be represented by virtualoids .
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Figure 2.3: BAT structure

• void : virtual oids . They are dense ascending sequences ofoids starting
from a baseoid , that is sufficient to represent the whole sequence. Virtual
oids take therefore no storage space, and since they represent the array
index of the other column (plus the base of the sequence), value lookup by
virtual oid can be done with extreme efficiency by position.

• bit : booleans, implemented with one-byte values.

• chr : single 8-bit character.

• bte : tiny 8-bit integers.

• sht : short 16-bit integers.

• int : the C language 32-bit integers.
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• wrd : machine-word sized integers (32-bits on 32-bit systems, 64-bits on
64-bit systems).

• ptr : memory pointer values. Their length is also system-dependent.

• flt : the IEEE 32-bit float type.

• dbl : the IEEE 64-bit double type.

• lng : 64-bit integers.

• str : zero-terminated UTF-8 strings.

• bat : a column of typebat holds BAT descriptor numbers.

New types can be defined for MonetDB, although it is a complex operation that
requires registering the new atom (and the routines relatedto it) into the database
kernel, by writing an extension module.

A number of user-defined types, like date, time, timestamp, URL and blob for
instance, is shipped with the system.

2.4 Binary table optimizations

Reverse view

The complex structure of BATs allows the performance of manyoptimizations.
Every binary table, for instance, has two incarnations (seefigure 2.3): thenormal
view and thereversedview, that coexist. The reverse view has the the pointers to
the head and tail column descriptors swapped. The MALmirror operator, that
returns the reverse view, is therefore free of cost.

Void view

The MAL mark operator, given a BAT, creates a new view introducing a new tail
column of virtualoids . The new view shares the head column descriptor and the
BUN heap of the given BAT, and has a new column descriptor for the tail (see fig.
2.4). To introduce a new head ofvoids , it is sufficient to call themark operator on
the reverse view of the original BAT.

This operation is almost free of cost and independent of the number of binary
tuples in the heap, and since MonetDB very often needs to introduce a sequence
of dense system-generatedoids during query processing, this simple optimization
is very profitable.
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Slice views

Range-selects performed on ordered values of a BAT are implemented as aslice
view. The BUN descriptor of this view points to the part of the BUN heap that
satisfies the selection predicate, as shown in figure 2.5.

Since the data is sorted, the lookup of the values that satisfy the selection
predicate can be performed with a fast binary search, or evenfaster by position if
the column containvoids .

2.5 Current status and future

MonetDB by now has almost fifteen years of maturity, and has therefore all the
features that one would expect from a modern database system.

Since it started as an OLAP and data-mining tool, and thus geared to high-
performance in query-intensive scenarios, it is not suitedfor update-intensive ap-
plications like OLTP.

On the other hand, MonetDB exhibits extremly good performance in the ap-
plication fields it was developed for, as shown by the TPC-H benchmark [8].

The future is the MonetDB/X100 kernel [18, 53], that squeezes the CPU until
the last cycle, better utilizing the caches by processing vectors of values (of appro-
priate size to make them fit into the cache) at once in a Volcano-style execution
pipeline. The current version of MonetDB, instead, processes one column at a
time and therefore is bound by the memory latency and by the fact that it has to
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materialize every intermediate result.
X100 also gets rid of MonetDB’s assumption that the dataset fits into main

memory, in order to deal with problems significantly larger than the available
RAM; this new kernel can process data at an incredible speed, but it would be
useless if the data itself cannot be loaded fast enough from disk. To overcome
this problem, X100 adopts a proprietary lightweight compression, that permits
the increase the disk bandwidth by storing the data compressed, trading this larger
bandwidth with some CPU utilization to decompress the data. Another way in
which X100 speeds up the perceived disk speed is to share the scans between
concurrent queries.
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RDF storage techniques and related
work

Since RDF [5] became a W3C Recommendation in 1999, a considerable number
of storage engines have been developed for this kind of data;the most known tools
are OpenLink Virtuoso [49], Sesame [46, 20] and Jena [33, 51], while an updated
survey on RDF storage systems is available in [48].

3.1 RDF storage techniques

The most natural way to store an RDF graph in a relational database management
system is in a three column table, with each row containing the subject, property
and object of every triple in the graph. In some cases a forth column is present
to store the graph IRI; the alternative is to store each graph in a different table of
triples.

Normalization Since IRIs are long strings, and since object literals may even
represent an entire book, it is common to normalize the tableso that same IRIs or
literals are mapped to a same 32 or 64-bit integer identifier,in order to save space.
The mapping between ids and IRIs or literals is done by one or more dictionary
tables; since many IRIs have the same prefix, it is possible to save even more
space by assigning them an id as well.

Property tables It is usual to find patterns in the RDF data, that comes both
from the RDF specification itself and from the user data. For example, RDF per-
mits one to define sequences and bags of objects, that all havethe same structure.
It is possible to optimize the relational schema to better fitthese patterns: the use
of property tables is a way to capture them. A property table has one column for

19
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the subject of an RDF statement, and one or more columns, holding the the object
values of one or more properties for that subject. It is useful when there are groups
of properties that are often accessed together; for exampleit may be common to
retrieve all the data of a person, like “name”, “surname” and“city”, at the same
time. If these properties are stored altogether in a property table, as shown in
figure 3.1, the retrieval is faster than in the common three-column layout.
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subject name surname city

Figure 3.1: A property table

Multi-column property tables are not suited for multi-valued properties, i.e.
properties that may have more than one value for a single subject: in this case for
each different object value, a new row would be needed in the property table, that
hasnull values in all the columns except for the subject and the property that
caused the new row to be added. Two-column property tables donot have this
complication, sincenull values are always avoided.

Vertical Partitioning A recent proposal [9] suggests using only two-column
property tables (fig. 3.2, with normalized subject), ordered on the subject. It has
the disadvantage of spreading properties that may be often accessed together and it
requires more joins than with multi-column property tables, but has the advantage
of avoiding the usual giant three-column table andnull values, generating less
I/O, since only the tables with the needed properties are accessed, while equi-joins
on subjects can be executed with the merge algorithm, since the data is ordered.
The advantages may be even more considerable when using a column-oriented
database like C-Store [47] or MonetDB.

Materialized Join Views Since the most relevant cost of queries on RDF data
is represented by the joins needed to traverse the graph, a materialized view of
some of these would speed up processing, as discussed in [21]and [9].

In the latter, this approach is recommended for path expressions, for example
to find all the works of authors who were born in a certain year.This query re-
quires finding a path in the RDF graph from a work to a date, passing through an
author, which can be done with a equi-join on object (an author of some work) and
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Figure 3.2: Vertical partitioning

subject (authors born in a certain year). In a vertically partitioned schema, more-
over, the new path can be stored in a two column property tablelike all the others
in this approach, whose name is the concatenation of the two properties traversed
by the path; in the example, the new table would be calledauthor:wasBorn, as
shown in figures 3.3 and 3.4.

_:a dc:author _:z .

_:a dc:title "The Cherry Orchard" .

_:b dc:author _:y .

_:a dc:title "Moby Dick" .

_:y dc:name "Herman Melville" .

_:y dc:wasBorn 1819ˆˆxsd:gYear .

_:z dc:name "Anton Chekhov" .

_:z dc:wasBorn 1860ˆˆxsd:gYear .

Figure 3.3: Works and authors graph

Searching for a work whose author was in born in 1860, for example, is much
faster with this new table, since no joins are required any longer.

While in [9] only object-subject join materialization is cited, [21] recommends
also materializing subject-subject and object-object joins. After all, materializing
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_:b
_:a
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Figure 3.4: Materialized join view in a vertical partitioning approach

these views in a vertically partitioned store would create new tables that would
not respect the usual two-column schema.

A second approach to materialize joins presented in this paper is the “Subject-
Property Matrix Materialized View”. This matrix is a property table that contains
not only direct properties, but also nested ones. A propertyp1 is direct for a
subjects1 if there exists a triple (s1, p1, x), while pm is nested when there exists
a set of triples such as (s1, p1,o1), (o1, p2,o2), ..., (om−1, pm,om). Nested property
tables, thus, are a way to implement path expressions as proposed in [9], but with
the limitation that only single-valued properties can be used.

3.2 OpenLink Virtuoso

Virtuoso is an open source and commercial product that combines an ORDBMS
engine, a Web Application and File server in a single product. It supports Web Ser-
vices, XQuery and XPath for XML data queries, RDF data storageand SPARQL,
among many other functionalities.

Its relational RDF storage system consists in six tables [3]:

• A Quad table, with columns G, S, P, and O, that store respectively graph,
subject and predicate IRI ids, and the object, of typeany.

• An Obj table, that stores long string objects. It has three columns, an object
ID as primary key, and the VAL and LONGVAL columns.

• Four id-to-string mapping tables, for IRIs, IRI prefixes, datatypes, and lan-
guage tags.

If the object value is a non-string SQL scalar, such as a number or date, an IRI,
or a string of less than 20 characters, it is stored in its native binary representation
in the O column of theQuad table. Long strings and RDF literals with non-
default type or language are stored using anrdf box composite object. Its fields
are datatype, language, content (or beginning characters of a long string content)
of the object, and a possible reference to theObj table, which holds string literals
longer than a certain threshold or that should be free-text indexed. Depending on
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the length of the text, this is stored into the VAL or in the LONG VAL column.
The truncated value present in the O column of theQuad table can be used for
determining equality and range matching, even if closely matching values need
to look at the real string inObj. When LONGVAL is used to store a very long
value, VAL contains a checksum of the value, to accelerate search for identical
values when the table is populated by new values.

3.2.1 Main table indexing

The mainQuad table is represented by two indexes, one on GSPO and another on
PGOS. These indexes have proven to be effective for two common and practical
classes of queries: those that, given a subject and a property, retrieve the associated
objects; and those that find subjects for some defined property set to a value. In
both cases G has to be known, otherwise the queries are next toimpossible to
evaluate, as stated in [27].

The PGOS index represents the subject column as a bitmap, in order to obtain
a compression of the index itself (a detailed description can be found in [26]).
Instead of saving the subject IRI id in its binary representation for each PGO, up
to 8K different subject IRI ids are stored together in a bitmap string, as long as they
have the same PGO and fall in the same segment of the integer domain, which is
divided in blocks of 8K values. This approach saves space twice: it avoids many
repetitions of identical PGO’s, and may store up to 8192 subjects in a bit array,
with just a small overhead for identifying a block in the integer domain.

If in a segment there are less than 512 IRI ids to represent, an 8K bitmap would
waste space; in this case compression is achieved storing a subject as a 16 bit entry
in a list; each of the entries is an offset from the start of the block. If in one of the
blocks there is only one IRI id to save, this is stored “as is”.

With the Wikipedia links set, the PGOS index size is a quarterof the size of
the GSPO index, which cannot represent the objects as a bitmap since these are
not fixed length integers in Virtuoso. It took 60% of the spaceof GSPO with the
WorldNet set. Both datasets can be found at [25].

3.2.2 Query optimization through data sampling

It is common for SQL optimizers to have statistics about tables to be queried,
such as the number of rows, or the number of distinct values ina column and their
distribution. These kinds of metadata become much less useful when all the data
is stored in a single table [27].

A solution for this problem is to have a look at the actual data: when a query is
compiled, Virtuoso’s optimizer takes a sample of the index,counting in each level
of the tree how many ways it branches out and how many of the leaf pointers match
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the search condition. For example, in a query where some G, S,and P values have
to be matched, it is possible to know how many siblings of the index tree have the
same given G, S, and P, allowing it to accurately estimate thecardinality of the
matching set. The same estimate can be made for the whole index if no key part
is known, using a few random samples of the index.

3.3 Sesame

Sesame is a store and a reasoning tool for RDF. It can be backed on many RDBMS,
but it may also use plain files or main memory for storing the RDFtriples; the
abstraction of the storage mechanism is provided by the SAILlayer (Storage And
Inference Layer), which also exploits the features of the particular DBMS.

3.3.1 Architecture of Sesame

Sesame has a layered architecture (fig. 3.5), where each layer has a well-defined
and highly-cohesive set of responsibilities. The uppermost layer is composed
of a set of ProtocolHandlers, namely HTTP, SOAP and RMI, whichreceive the
requests of the clients. The RequestRouter directs these requests to one of the
underlying application modules, which are thequery, admin andexport modules.

Thequery module parses and optimizes a query, that can be performed inthe
last version of Sesame in SeRQL (Sesame RDF Query Language) andSPARQL;
the optimized query is then passed to the SAIL layer. Theadmin module allows
one to incrementally add data to an RDF repository or to deleteit, while the role
of theexport module, as the name may suggest, is to make batch exports of the
RDF data.

3.3.2 SAIL

This layer transparently abstracts the specific storage method to the upper layers
of Sesame, and translates the requests (queries, incremental inserts and batch ex-
ports) to DBMS-specific SQL code, or to Java method calls that manage main
memory and file storage. Thus, its API defines a basic interface for storing, in-
serting and deleting RDF data.

The SAIL is also able to deal with RDFSchema: it offers methods for querying
class and property subsumption, and domain and range restrictions. Since any
SAIL implementation has a complete knowledge of the underlying storage engine,
for example the specific RDBMS schema, it can use this knowledgeto infer class
subsumption more efficiently.
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Figure 3.5: Architecture of Sesame

The SAIL implementations that deal with DBMSs are currently two, one that
integrates MySQL and one PostgreSQL.

SAIL /PostgreSQL

The PostgreSQL specific implementation exploits its object-oriented features, in
particular subtables and table hierarchy.

As in many RDF engines, also in SAIL/PostgreSQL the IRIs and the literals
are normalized by mapping them to numeric ids, but this is done in an object-
oriented fashion: if a resource does not have a definedrdf:type property, then it
will be mapped to an id in theResource table, otherwise in a table named as the
class, that extendsResource (in figure 3.6,Writer andBook extendResource,
andFamousWriter extendsWriter). Thus, if a new class is added to the store, a
new table has to be created.

If one class extends some other one, the two tables that represent them will
constitute a row entry in theSubClassOf table, as subtables;FamousWriter and
Writer tables are an example of this situation in figure 3.6. The sameapproach is
used for properties and subproperties.
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Figure 3.6: SAIL/PostgreSQL database schema

This schema has proven to be satisfactory in querying scenarios, but slow
during inserting, since in PostgreSQL the creation of new relations is an expensive
operation, and also since subtables cannot be inserted as normal values, requiring
the destruction and rebuilding of theSubClassOf table every time a new subclass
relationship has to be added; the only way to have subtables as values is to specify
them at the time of creation of the container.

SAIL /MySQL

MySQL’s specific implementation adopts a complex but strictly relational schema
(see [20] for details), that stores RDFSchema information (like type, class, sub-
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ClassOf, property or subPropertyOf) in separate tables from the triples, and nor-
malizes IRIs and the IRI prefixes. A columnis derived is added in the triples table
and in the RDFS relations to encode the fact that a triple, a property or class sub-
sumption, for instance, has been created by the RDFSchema reasoner in the SAIL.
This schema has the advantages over PostgreSQL that does notchange when new
RDFSchema information is added, and performs significantly better especially in
inserting new data.

3.4 Jena

Jena is an open source project written in Java, which is currently in its second
version. The main storage problems addressed by Jena2 are:

• the excessive number of joins between the triples’ table andthe id-to-string
dictionary

• the hugeness of the main triples’ table, which lead to scalability complica-
tions

• the reified statements storage, that would normally requirefour statements
for each statement to reify

• query optimization, which in Jena1 was performed in the Javalayer and did
not rely on the DBMS.

3.4.1 Storage schema

In its first version, Jena used to store its statements in a four-column table, where
the object was stored in one of two different columns, depending on if it was
an IRI or a literal. The schema was normalized, so two other tables served as
dictionaries, one for IRIs and one for literals.

This schema was adopted with any DBMS, except with BerkleyDB. Inthis
case, the schema was not normalized, and replicated three times, indexed once on
subject, once on property and once on object. In many cases this approach proved
to be faster, in part because of the lack of transactional support in BerkleyDB,
but mostly because of the fewer number of joins required by the denormalized
schema.

Thus, in its second version Jena stores the IRI strings and theliterals directly
in the main table, which consists of the classical three-column layout, except for
those which exceed a configurable threshold, whose default is 256 characters. Dif-
ferent RDF graphs can be stored in different statement tables, in order to keep the
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table size for each graph low. Common IRI prefixes are compressed by assigning
them an id and replacing their occurrences in the main table with a database refer-
ence; since the number of different prefixes is expected to be low, the prefix table
would be held in main memory, so that expanding the ids would not require any
I/O.

Exploiting data patterns

As discussed in section 3.1, RDF data may contain patterns that can better fit in
property tables that in the usual three column approach. Jena allows one to define
property and property-class tables; the latter are a kinds of property tables that
have a double purpose: each of them keeps the instances of anrdfs:class in the
first column and the values of the properties of each instancein the remaining
columns.

Jena also permits one to create two-column property tables,in order to support
multi-valued properties.

By default, a Jena store is created with no property tables andone property-
class table that stores reified statements; these are statements about statements,
each of them made of four triples: one declaring an IRI of typerdf:statement,
and three to associate this IRI to the subject, the property and the object of the
triple to reify. A four-column property-class table can store a reified statement in
a single row. In this manner much space is saved, especially in those applications
that need to reify every statement.

3.4.2 Architecture

The core of Jena consists in a set of interfaces defined in aModel layer that lets one
to manipulate the RDF graph, adding, removing and searching statements. Along
these functionalities, there are importing and exporting operations for all the main
RDF serialization languages, such as RDF/XML, N3 and N-triples. Client appli-
cations interact with theModel, which translates high-level operations in low-level
and storage technique-dependent operations.

Specialized Graph Interface

The layer underlying the model abstracts each RDF graph in a different logical
graph; each of them is implemented as an ordered list of specialized graphs, op-
timized for storing a particular style of statements. Any operation on a logical
graph is performed by invoking it on each specialized graph;this process can be
optimized if an operation can be completely processed by a single specialized
graph.
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Figure 3.7: Specialized Graph Interface in Jena

Figure 3.7 shows two logical graphs. The first contains a non-optimized spe-
cialized graph and two optimized ones; the second contains only a single opti-
mized graph together with the non-optimized one.

Each non-optimized graph is stored in a separate standard triple table; op-
timized graphs are stored in property tables, which can be shared by different
logical graphs.

3.5 Other storage engines

KAON server The KAON server (KArlsruhe ONtology and Semantic Web tool
suite [34, 50]), is an ontology management infrastructure that also contains an
RDF store.

The KAON server lets one create, manage and query the ontologies it stores,
and also provides reasoning mechanisms that can infer new triples from them.
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RDFSuite RDFSuite [10], developed by the ICS-FORTH, is “a suite of toolsfor
RDF validation, storage and querying using an on object-relation DBMS”, namely
PostgreSQL, which can be configured to use property tables; queries against the
store are performed in RQL (RDF Query Language), which was developed by
ICS-FORTH as well.



Chapter 4

SPARQL

4.1 Introduction

When RDF became a W3C Recommendation in 1999 there was no query lan-
guage for it as yet, thus several teams developed different languages: for example
the Institute of Computer Science of the Foundation for Research and Technol-
ogy (ICS-FORTH, Greece) proposed RQL [35], the Sesame [46] group developed
SeRQL, and HP proposed RDQL [45].

SPARQL [43] initiated as a W3C proposal to become a standard query lan-
guage for RDF. The first working draft appeared in October 2004, in June 2007 it
became a Candidate Recommendation and finally a Recommendationin January
2008.

TheWHERE clause provides the central concept in SPARQL, that isgraph pat-
tern matching: given an RDF graph, a query consists of a pattern which is matched
against the given graph. The presentation of the result of a graph pattern can be
manipulated bysolution modifiers, similar to the ones that SQL offers, namely
projection, distinct, order by, limit and offset; finally the output can be of differ-
ent types: yes/no answers, selection of the values of the variables that match the
pattern, construction of new triples from those values, anddescription of specified
resources.

4.2 Graph Patterns

As previously stated, graph patterns matching is the concept on which SPARQL is
built. There are different kinds of graph patterns, which can be combined to build
arbitrary complex queries:

• Basic Graph Patterns, where a set of triple patterns must match.

31
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• Group Graph Patterns, where a set of graph patterns must all match.

• Optional Graph Patterns, where additional patterns may extend the solution.

• Union Graph Patterns, where two or more alternative graph patterns are
tried.

• Patterns on Named Graphs.

The latter type of patterns will be presented in the RDF Dataset section, at
4.3.1.

4.2.1 Basic Graph Patterns

Basic Graph Patterns, orBGPs, are sets of triple patterns, which are like RDF
triples except they may present a variable as subject, predicate or object. A basic
graph pattern matches a subgraph of the RDF data when RDF terms from that
subgraph may be substituted for the variables and the resultis equivalent to the
subgraph. An example query will make it clearer:

Data:

@prefix :<http://library.org/>

@prefix cd:<http://example.org/cd/>

:syntstruct cd:author "Noam Chomsky" .

:syntstruct cd:title "Syntactic structures" .

:refactoring cd:author "Martin Fowler" .

:refactoring cd:title "Refactoring" .

:poetrycoll cd:title "Poetry collection" .

Query:

PREFIX cd:<http://example.org/cd/>

SELECT *

WHERE

{ ?bookid cd:author ?author .

?bookid cd:title ?title }

Result:

bookid author title
<http://library.org/syntstruct> "Noam Chomsky" "Syntactic structures"

<http://library.org/refactoring> "Martin Fowler" "Refactoring"

The first statement of the query,PREFIX cd:<http://example.org/cd/> , de-
clares a IRI prefix similar to Turtle; the second statement resembles SQL, both
in notation and in meaning: all variables declared in theWHERE clause will be
returned in the result since a‘*’ is present instead of a list of projection vari-
ables. TheWHERE clause, finally, declares the graph pattern used to match thedata.
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Each solution is a way in which the variables can be bound so that the basic graph
pattern matches the data. The following two subgraphs are matched by the BGP
when substituting its variables with the two solutions:

<http://library.org/syntstruct> cd:author "Noam Chomsky" .

<http://library.org/syntstruct> cd:title "Syntactic structures" .

<http://library.org/refactoring> cd:author "Martin Fowler" .

<http://library.org/refactoring> cd:title "Refactoring" .

When a variable occurs more than once in the BGP, the same RDF termhas
to be substituted for each occurrence of that variable for every solution; in the
example above,<http://library.org/syntstruct> has to be substituted for?x in
both the triple patterns of the BGP for the first solution, and the same has to be
done with<http://library.org/refactoring> for the second.

Since in basic graph pattern matching every variable has to be bound in each
solution, the triple:poetrycoll cd:title "Poetry collection" cannot be matched
because the subject:poetrycoll has nocd:author property, as requested by the
query.

Blank nodes in Basic Graph Patterns

A blank node in a BGP behaves like a variable, with the difference that they cannot
be part of the result set. For example

PREFIX cd:<http://example.org/cd/>

SELECT *

WHERE

{ _:bookid cd:author ?author .

_:bookid cd:title ?title }

returns

author title
"Noam Chomsky" "Syntactic structures"

"Martin Fowler" "Refactoring"

A formal definition of Basic Graph Patterns can be found in 4.4.5.

4.2.2 Group Graph Patterns

Group graph patterns are sets of graph patterns of any type, delimited by braces,
where all the patterns of the set must match. The example at 4.2.1 shows a group
graph pattern of one BGP. The following query is different in structure, but will
produce the same result, except for the fact that a projection also takes place:
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PREFIX cd:<http://example.org/cd/>

SELECT ?author ?title

WHERE

{ { ?bookid cd:author ?author } .

{ ?bookid cd:title ?title } }

Result:

author title
"Noam Chomsky" "Syntactic structures"

"Martin Fowler" "Refactoring"

The WHERE clause is made of two nested group graph patterns, each of them
of one BGP of a single triple pattern. Other group graph pattern examples will
follow in the next section to introduce the other kinds of patterns.

4.2.3 Optional Graph Patterns

Optional graph pattern matching permits one to extend the result set even in those
situations where the extra information is not available foreach tuple of the result.
Querying the same data in section 4.2.1 with:

PREFIX cd:<http://example.org/cd/>

SELECT ?title ?author

WHERE

{ ?x cd:title ?title .

OPTIONAL { ?x cd:author ?author }

}

will result in:

title author
"Syntactic structures" "Noam Chomsky"

"Refactoring" "Martin Fowler"

"Poetry Collection"

This query looks for all those subjects that have acd:title and optionally a
cd:author property, and returns their values. Since:poetrycoll has nocd:author
property,?author is unbound in its case.

Optional Graph Patterns are left-associative:

pattern OPTIONAL { pattern } OPTIONAL { pattern }

is the same as

{ pattern OPTIONAL { pattern } } OPTIONAL { pattern }



CHAPTER 4. SPARQL 35

4.2.4 Union Graph Patterns

SPARQL provides unions of graph patterns as a mechanism to combine solutions
of several alternatives. In the following RDF data graph the same concept of
“book title” is expressed with two different IRIs. To retrieve all the book titles in
the graph, a union of two graph patterns is needed.

Data:

@prefix voc1: <http://rdfvocabulary1.org/example#> .

@prefix voc2: <http://rdfvocabulary2.org/example#> .

_:a voc1:title "Syntactic structures" .

_:b voc1:title "Refactoring" .

_:c voc2:title "Poetry Collection" .

_:d voc2:title "Ulysses" .

Query:

PREFIX voc1: <http://rdfvocabulary1.org/example#> .

PREFIX voc2: <http://rdfvocabulary2.org/example#> .

SELECT ?title

WHERE{ { ?book voc1:title ?title }

UNION

{ ?book voc2:title ?title } }

Result:

title
"Syntactic structures"

"Refactoring"

"Poetry Collection"

"Ulysses"

To determine which vocabulary stores a title, the query has to define a different
variable for each pattern:

PREFIX voc1: <http://rdfvocabulary1.org/example#> .

PREFIX voc2: <http://rdfvocabulary2.org/example#> .

SELECT ?title

WHERE{ { ?book voc1:title ?title1 }

UNION

{ ?book voc2:title ?title2 } }

Result:

title1 title2
"Syntactic structures"

"Refactoring"

"Poetry Collection"

"Ulysses"
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4.2.5 Filtering results

As one might expect from a query language, SPARQL provides a certain num-
ber of operators to construct arbitrary complex expressions. At this moment the
operator set counts 25 elements, among which there are the basic arithmetic and
boolean operators, regular expression matching, RDF and SPARQL-specific func-
tions likeisIRI , isBlank , DATATYPE andLANG .

An example query that uses aFILTER may ask only for those books that cost
less than a certain price.

Data:

@prefix cd: <http://example.org/cd/>

@prefix xsd: <http://www.w3.org/2001/XMLSchema#>

_:a cd:author "Noam Chomsky" .

_:a cd:title "Syntactic structures" .

_:a cd:price 32.25ˆˆxsd:decimal .

_:b cd:author "Martin Fowler" .

_:b cd:title "Refactoring" .

_:b cd:price 40ˆˆxsd:integer .

_:c cd:title "Poetry collection"

_:c cd:price 9.95ˆˆxsd:decimal .

_:d cd:title "Ulysses" .

_:d cd:price 16.50ˆˆxsd:decimal .

Query:

PREFIX cd:<http://example.org/cd/>

SELECT ?title ?price

WHERE

{ ?x cd:title ?title .

?x cd:price ?price .

FILTER( ?price < 25 ) }

Result:

title price
"Poetry Collection" 9.95

"Ulysses" 16.50

4.3 RDF Datasets

A SPARQL query is executed against anRDF Datasetwhich represents a collec-
tion of graphs. An RDF Dataset comprises an unnameddefault graph, and zero
or morenamed graphs; each graph is identified by an IRI. A query can formulate
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different graph patterns against different graphs; the graph that is used for match-
ing a basic graph pattern is called theactive graph. TheGRAPH keyword is used to
switch the active graph from the default to one of the named graphs.

The dataset can be defined by a query through theFROM andFROM NAMED clauses.
A dataset then consists of:

• A default graph, which is theRDF-mergeof the graphs specified in theFROM
clauses.

• A set of (IRI, graph) couples, one from eachFROM NAMED clause.

The RDF-merge operation, described in [31] at section 0.3, is“the union of
a set of graphs that is obtained by replacing the graphs in theset by equivalent
graphs that share no blank nodes”. The merge of the followingtwo graphs, for
example:

# graph identified by: <http://example.org/alice>

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Alice" .

_:a foaf:mbox <mailto:alice@work.example> .

# graph identified by: <http://example.org/bob>

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Bob" .

_:a foaf:mbox <mailto:bob@oldcorp.example.org> .

is

# RDF-merge of <http://example.org/alice> and <http://example.org/bob>

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:x foaf:name "Alice" .

_:x foaf:mbox <mailto:alice@work.example> .

_:y foaf:name "Bob" .

_:y foaf:mbox <mailto:bob@oldcorp.example.org> .

Blank nodes and their labels are local to an RDF graph, that means that the
label :a represents two distinct resources in the two graphs: a rename must take
place before the merge can be performed, as shown in the example.

A query that is matched against such a merged graph is:

PREFIX foaf: <http://xmlns.com/foaf/0.1/> .

SELECT ?mbox

FROM <http://example.org/alice>

FROM <http://example.org/bob>

WHERE { ?s foaf:mbox ?mbox }

Result:
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mbox
<mailto:alice@work.example>

<mailto:bob@oldcorp.example.org>

If the query does not specify anyFROM nor FROM NAMED clause, like in all the
example queries in the previous sections, it is the query engine implementation
that decides which RDF graph (or graphs) will be used as default graph. If no
FROM clause is present, but there are one or moreFROM NAMED clauses, then the
dataset includes an empty graph as the default graph.

4.3.1 Patterns on Named Graphs

TheGRAPH keyword is used to change the active graph from the default toone of
named graphs; aGraph graph patterncan be matched against a specific named
graph, providing its IRI, or against all named graphs providing a variable instead,
which will be bound to the IRI of the graph being matched.

All the following examples will use these two data graphs:

# graph id: <http://physicswiki.org/meta/articles>

@prefix : <http://physicswiki.org/metadata/> .

@prefix dc: <http://purl.org/dc/elements/1.1/> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

:lhc dc:title "Large Hadron Collider" .

:lhc rdfs:seeAlso :higgsboson .

:lhc rdfs:seeAlso :atlas .

:atlas dc:title "ATLAS" .

:atlas rdfs:seeAlso :lhc .

:atlas rdfs:seeAlso :higgsboson .

:higgsboson dc:title "Higgs Boson" .

:higgsboson rdfs:seeAlso :lhc .

# graph id: <http://itwiki.org/meta/articles>

@prefix : <http://itwiki.org/metadata/> .

@prefix dc: <http://purl.org/dc/elements/1.1/> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

:os dc:title "Operating Systems" .

:os rdfs:seeAlso :kernel .

:kernel dc:title "Kernel" .

:kernel rdfs:seeAlso :microkernel .

:kernel rdfs:seeAlso :monolithickernel .

:microkernel dc:title "Microkernel" .

:microkernel rdfs:seeAlso :kernel .

:microkernel rdfs:seeAlso :monolithickernel .

:monolithickernel dc:title "Monolithic kernel" .

:monolithickernel rdfs:seeAlso :kernel .

:monolithickernel rdfs:seeAlso :microkernel .
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Retrieve or restrict the source of information

This query retrieves all the titles of the articles in the twowikis, and the IRI of the
source graph for each of them:

PREFIX dc: <http://purl.org/dc/elements/1.1/> .

SELECT ?src ?title

FROM NAMED <http://physicswiki.org/meta/articles>

FROM NAMED <http://itwiki.org/meta/articles>

WHERE {

GRAPH ?src

{ ?s dc:title ?title }

}

Result:

src title
<http://physicswiki.org/meta/articles> "Large Hadron Collider"

<http://physicswiki.org/meta/articles> "ATLAS"

<http://physicswiki.org/meta/articles> "Higgs Boson"

<http://itwiki.org/meta/articles> "Kernel"

<http://itwiki.org/meta/articles> "Microkernel"

<http://itwiki.org/meta/articles> "Monolithic kernel"

TheWHERE clause of the query is a group graph pattern of a single graph graph
pattern, that consists of a variable?src and a group graph pattern. The latter is
matched against every named graph, while?src is bound to the source IRI of each
tuple of the result.

The same query may restrict the source of information to a single graph:

PREFIX dc: <http://purl.org/dc/elements/1.1/> .

SELECT ?src ?title

FROM NAMED <http://physicswiki.org/meta/articles>

FROM NAMED <http://itwiki.org/meta/articles>

WHERE {

GRAPH <http://itwiki.org/meta/articles>

{ ?s dc:title ?title }

}

Result:

title
"Kernel"

"Microkernel"

"Monolithic kernel"
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Named and default graphs

A query can involve both the default graph and the named graphs. In the next
query the physics wiki is the only named graph, but it participates also in the
default graph together with the IT wiki:

PREFIX dc: <http://purl.org/dc/elements/1.1/> .

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

SELECT ?title ?seeAlso

FROM <http://physicswiki.org/meta/articles>

FROM <http://itwiki.org/meta/articles>

FROM NAMED <http://physicswiki.org/meta/articles>

WHERE {

?s dc:title ?title .

OPTIONAL {

GRAPH <http://physicswiki.org/meta/articles>

{ ?s rdfs:seeAlso :?reference .

?reference dc:title ?seeAlso }

}

}

Result:

title seeAlso
"Large Hadron Collider" "ATLAS"

"ATLAS" "Large Hadron Collider"

"ATLAS" "Higgs Boson"

"Higgs Boson" "Large Hadron Collider"

"Kernel"

"Microkernel"

"Monolithic kernel"

The query selects the titles of the articles in both wikis andextends this in-
formation with the references to other articles, but only for those of the physics
wiki.

4.4 SPARQL semantics

Chapter 12 of the current SPARQL specification [44] formally defines which is
the correct interpretation of a SPARQL query string, given anRDF Dataset.

The first formal description of SPARQL comes from Peréz et al. in [41] and
subsequently in [42] in 2006. The SPARQL Working Draft of March 2007 in-
cluded this almost unaltered. This section is largely takenfrom their work.

4.4.1 Initial definitions

RDF Terms, Triples and Variables Let I , B, andL be pairwise disjoint sets of
all the IRIs, Blank nodes, and literals. The set ofRDF Terms, T, is I ∪ L ∪ B.
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A tuple (s, p,o) ∈ (I ∪B)× I ×T is called anRDF triple, where s is thesubject,
p thepredicateand o theobject.

Let V be the set of variables, disjoint from all the above sets.

RDF Graph and RDF Dataset An RDF Graphis a set of RDF triples. IfG is
an RDF graph,term(G)is the set of all the RDF Terms appearing in the triples of
G, andblank(G)is the set of blank nodes appearing inG.

An RDF Datasetis a set

D = {G0, (u1,G1), (u2,G2), ...(un,Gn)}

where eachGi is a graph and eachui is an IRI, withn ≥ 0. G0 is called the
default graph, each (ui ,Gi) is anamed graph, with ui the name ofGi. EveryG in
D has a disjoint set of blank nodes, i.e. fori , j, blank(Gi) ∩ blank(G j) = ∅.

Triple Pattern A tuple t ∈ (T ∪V)× (I ∪V)× (T ∪V) is atriple pattern. Given
a triple patternt, var(t) andblank(t) are respectively the set of variables and blank
nodes occurring int. It has to be noted here that RDF literals are permitted as
subjects: the RDF core working group explained the reason [4]:

(The RDF core Working Group) noted that it is aware of no reason
why literals should not be subjects and a future WG with a less restric-
tive charter may extend the syntaxes to allow literals as thesubjects
of statements.

Basic Graph Pattern A Basic Graph Patternis a set of triple patterns. Given
a basic graph patternP, var(P) =

⋃

t∈P var(t) andblank(P) =
⋃

t∈P blank(t) are
respectively the set of variables and blank nodes occurringin P.

Solution mapping A mappingµ from V to T is a partial functionµ : V → T.
The domain ofµ, dom(µ), is the subset ofV whereµ is defined. The empty
mappingµ∅ is a mapping such thatdom(µ∅) = ∅. Given a triple patternt and a
mappingµ such thatvar(t) ⊆ dom(µ), µ(t) is the triple obtained by replacing the
variables in t according toµ.

RDF instance mapping An RDF instance mappingσ is a functionσ : B→ T.
Given a triple or a triple patternt, σ(t) is respectively a triple or a triple pattern
obtained by replacing the blank nodes int with RDF terms according toσ.

Pattern instance mapping A Pattern instance mappingπ is the combination of
an RDF instance mappingσ and solution mappingµ. π(x) = µ(σ(x)).



CHAPTER 4. SPARQL 42

Multiset of solutions When a graph pattern is evaluated against some graph, the
possible solutions form amultiset, also calledbag, that is an unordered collection
of elements in which each element can appear more than once. AmultisetΩ can
be described by a set of the elements in it and acardinality functiongiving the
number of occurrences of each element from the set inΩ. The cardinality of the
mappingµ in the bagΩ will be denoted bycardΩ(µ); if µ < Ω, thencardΩ(µ) = 0.

Solution sequence A solution sequenceΨ is a list of solutionsµ, possibly un-
ordered. The number of elements inΨ is denoted assize(Ψ), and elements ofΨ
are counted starting from zero:

Ψ = [µ0, µ1 . . . µn−1]

wheren = size(Ψ). The solution at positioni in is denoted asΨ[i].

Effective Boolean Value - EBV EBV is functionEBV : T → {true, f alse} that
assigns a boolean value to an RDF termt ∈ T. EBV(t) returns:

• false if t is boolean or numeric and the lexical form is not valid for that
datatype (e.g."abc"ˆˆxsd:integer ).

• the value oft if t is a boolean value.

• falseif t is a zero-length string,T if t is a non zero-length string.

• falseif t is numeric value equals to zero or NaN,trueotherwise.

• finally an error is raised in all other cases.

4.4.2 SPARQL abstract query

A SPARQL abstract query is a tuple (E,D,R), where

• E is aSPARQL algebraexpression

• D is an RDF dataset

• R is aquery form, one amongSELECT , CONSTRUCT , DESCRIBE or ASK .

When a query string is parsed, it is converted into an abstractsyntax tree com-
posed of:
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Graph Patterns Modifiers Query forms
Basic Distinct Select
Group Reduced Construct

Optional Project Describe
Union Order By Ask
Graph Limit
Filter Offset

Such an abstract tree is converted in SPARQL algebra expression that com-
prises the following operators:

Graph Pattern operators Solution modifiers
BGP ToList
Join OrderBy

LeftJoin Project
Union Distinct
Graph Reduced
Filter Slice

4.4.3 Graph Pattern translation to SPARQL algebra

The SPARQL specification [44], section 12.2, describes the algorithm to trans-
late a graph pattern in a SPARQL algebra expression. The root graph pattern is
the group graph pattern that forms theWHERE clause; its translation proceeds as
follows:
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procedure TransformGroupGraphPattern(GroupGraphPattern)

Let FS := ∅

Let G := ∅

For each element E in the GroupGraphPattern

If E is of the form FILTER(expr)

FS := FS ∪ expr

If E is of the form OPTIONAL { P }

Let A := TransformGroupGraphPattern(P)

If A is of the form Filter(F, A2)

G := LeftJoin(G, A2, F)

else

G := LeftJoin(G, A, true)

Else

Let A := undefined

If E is of the form TriplesBlock

Let A := BGP(E)

If E is of form UnionGraphPattern

Let A := TransformUnionGraphPattern(E)

If E is of form GraphGraphPattern

Let A := TransformGraphGraphPattern(E)

G := Join(G, A)

If FS is not empty:

Let X := Conjunction of expressions in FS

G := Filter(X, G)

The result is G.

end

procedure TransformUnionGraphPattern(UnionGraphPattern)

Let A := undefined

For each element G in the UnionGraphPattern

If A is undefined

A := TransformGroupGraphPattern(G)

Else

A := Union(A, TransformGroupGraphPattern(G))

The result is A

end

procedure TransformGraphGraphPattern(GraphGraphPattern)

If the form is GRAPH IRI GroupGraphPattern

The result is Graph(IRI, TransformGroupGraphPattern(GroupGraphPattern))

If the form is GRAPH Var GroupGraphPattern

The result is Graph(Var, TransformGroupGraphPattern(GroupGraphPattern))

end

Group graph patterns of a single basic graph patternA become aJoin of A
with the empty graph pattern; since the latter is the identity for the Join operator,
the following simplification step can be performed:

Replace Join(∅, A) by A

Replace Join(A, ∅) by A
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4.4.4 Modifiers translation to SPARQL algebra

A series of steps transform the solution modifiers of a query to algebra operators;
these take place after the translation of the graph patterns:

1. ToList : turns the multiset into a solution sequence with the same elements
and cardinality; this step is always performed

Let M := ToList(AlgebraExpression)

2. ORDER BY : if the query string contains anORDER BY clause

Let M := OrderBy(M, list of order comparators)

3. DISTINCT : if the query string contains aDISTINCT clause

Let M := Distinct(M)

4. REDUCED : if the query string contains aREDUCED clause

Let M := Reduced(M)

5. OFFSET andLIMIT : if the query contains “OFFSET start ” or “ LIMIT length ”

start defaults to 0

length defaults to (size(M)-start)

Let M := Slice(M, start, length)

4.4.5 Basic Graph Patterns

Definitions

BGPs and solution mappings Given a basic graph patternP and a mappingµ
such thatvar(P) ⊆ dom(µ), µ(P) =

⋃

t∈P µ(t), i.e.µ(P) is the set of triples obtained
by replacing the variables in the triples ofP according toµ.
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BGPs and RDF instance mappings Given a BGPP and a graphG, letσ be an
RDF instance mapping that substitutes the blank nodes inP with RDF Terms in
G

σ : blank(P)→ term(G)

σ(P) is the basic graph pattern that results from replacing the blank nodes inP
according toσ.

BGPs and Pattern instance mappings Given a BGPP, a graphG, an RDF
instance mappingσ : blank(P) → term(G) and a solution mappingµ such that
var(P) ⊆ dom(µ), π(P) = µ(σ(P)) is the set of triples that results from the appli-
cation ofσ andµ to P.

Basic Graph Pattern evaluation

Given an RDF graphG and a basic graph patternP, theevaluationof P overG,
denoted as [[P]]G is defined as the set of mappings

[[P]]G = {µ : V → T |

(dom(µ) = var(P)) ∧ (∃σ : blank(P)→ term(G) | µ(σ(P)) ⊆ G)}

If µ ∈ [[P]]G, thenµ is asolutionfor P in G. If P = ∅, then [[P]]G = {µ∅}, and if
G = ∅, for everyP , ∅, [[P]]G = {∅}.

Cardinality of Basic Graph Pattern Solutions Given a BGPP and a graph
G, the cardinality of a solutionµ ∈ [[P]]G is defined as the number of distinct
substitutionsσ : blank(P)→ term(G) such thatµ(σ(P)) ⊆ G, formally

card[[P]]G(µ) = |{σ : blank(P)→ term(G) | µ(σ(P)) ⊆ G}|

4.4.6 SPARQL algebra

This section formally describes the correct interpretation of each operator of the
algebra, except for basic graph patterns which were coveredin 4.4.5.

Filter semantics

LetΩ be a multiset of solution mappings andexprbe an expression. Then

Filter(expr,Ω) = {µ : V → T | µ ∈ Ω ∧ EBV(expr(µ)) = true}

cardFilter(expr,Ω)(µ) = cardΩ(µ)
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Join semantics

Compatible Mappings Two solution mappingsµ1 andµ2 arecompatibleif for
every variable ?v ∈ dom(µ1) ∩ dom(µ2), µ1(?v) = µ2(?v), i.e. whenµ1 ∪ µ2 is also
a mapping. For example

µ1 =















?a→ 10

?b→ 5
µ2 =















?a→ −1

?c→ 3

are not compatible, since for ?a ∈ dom(µ1) ∩ dom(µ2), µ1(?a) , µ2(?a), while

µ1 =















?a→ 10

?b→ 5
µ2 =















?a→ 10

?c→ 3

are compatible, thus their union is a valid mapping:

µ1 ∪ µ2 =



























?a→ 10

?b→ 5

?c→ 3

Given this definition, two mappings with disjoint domains, i.e. dom(µ1) ∩
dom(µ2) = ∅, are always compatible. The union of the following mappings

µ1 =















?a→ 1

?b→ 2
µ2 =















?c→ 3

?d→ 4

is therefore

µ1 ∪ µ2 =







































?a→ 1

?b→ 2

?c→ 3

?d→ 4

Join Given two multisets of solution mappingsΩ1 andΩ2

Join(Ω1,Ω2) = {µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2 are compatible}

cardJoin(Ω1,Ω2)(µ) =
∑

µ=µ1∪µ2

cardΩ1(µ1) · cardΩ2(µ2)

Union semantics

Given two multisets of solution mappingsΩ1 andΩ2

Union(Ω1,Ω2) = {µ | µ ∈ Ω1 ∨ µ ∈ Ω2}

cardUnion(Ω1,Ω2)(µ) = cardΩ1(µ) + cardΩ2(µ)
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LeftJoin semantics

Difference Given two multisets of solution mappingsΩ1 andΩ2 and an expres-
sionexpr

Diff (Ω1,Ω2,expr) = {µ ∈ Ω1 |

∀µ′ ∈ Ω2, (µ andµ′ are not compatible)∨ EBV(expr(µ ∪ µ′)) = false}

cardDiff (Ω1,Ω2,expr)(µ) = cardΩ1(µ)

Left Join Given two multisets of solution mappingsΩ1 andΩ2 and an expres-
sionexpr

LeftJoin(Ω1,Ω2,expr) = Filter(expr, Join(Ω1,Ω2)) ∪ Diff (Ω1,Ω2,expr)

cardLeftJoin(Ω1,Ω2,expr)(µ) = cardFilter(expr, Join(Ω1,Ω2))(µ) + cardDiff (Ω1,Ω2,expr)(µ)

ToList semantics

Given a multiset of solution mappingsΩ,

ToList(Ω) = [µ ∈ Ω], in any order

cardToList(Ω)(µ) = cardΩ(µ)

OrderBy semantics

Given a sequence of solution mappingsΨ and an order conditioncond

OrderBy(Ψ, cond) = [µ ∈ Ω | the sequence satisfiescond]

cardOrderBy(Ψ,cond)(µ) = cardΨ(µ)

Project semantics

Given a solution mappingµ : V → T and a set of variablesW ⊆ V, therestriction
of µ to W, denoted byµ|W, is a mapping such thatdom(µ|W) = dom(µ) ∩W and
µ|W(?x) = µ(?x),∀?x ∈ dom(µ) ∩W. TheProjectionof a solution sequenceΨ on
the variables ofW is then:

Project(Ψ,W) = [µ|W | µ ∈ Ψ]

cardProject(Ψ,W)(µ) = cardΨ(µ)
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Distinct semantics

Given a sequence of solution mappingsΨ

Distinct(Ψ) = [µ ∈ Ψ]

cardDistinct(Ψ)(µ) = 1

Reduced semantics

Given a sequence of solution mappingsΨ

Reduced(Ψ) = [µ ∈ Ψ]

1 ≤ cardReduced(Ψ)(µ) ≤ cardΨ(µ)

Slice semantics Given a sequence of solution mappingsΨ, and two natural
numbersstart andlength

S lice(Ψ, start, length) = [µ ∈ Ψ | µ = Ψ[start+ i],∀i = 0 . . . (length− 1)]

4.4.7 Expression Evaluation

Let D be an RDF Dataset with active graphG, D[i] the named graph with IRI
i in D and letD[d f t] be the default graph ofD. The set of named graph IRIs
is name(D). The evaluationof a SPARQL algebra expressionP over the RDF
DatasetD with active graphG is denoted as [[P]] D

G, and the evaluation ofP in the
datasetD as [[P]] D = [[P]] D

D[d f t].
The evaluation semantics is defined as follows:

• [[BGP]] D
G = [[BGP]]G, see also 4.4.5

• [[Filter(expr,P)]] D
G = Filter(expr, [[P]] D

G)

• [[Join(P1,P2)]] D
G = Join([[P1]] D

G, [[P1]] D
G)

• [[LeftJoin(P1,P2,expr)]] D
G = LeftJoin([[P1]] D

G, [[P1]] D
G,expr)

• [[Uniom(P1,P2)]] D
G = Union([[P1]] D

G, [[P1]] D
G)

• [[Graph(Iri ,P)]] D
G =

– [[P]] D
D[Iri ] if Iri ∈ name(D)

– ∅ if Iri < name(D)
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• [[Graph(?x,P)]] D
G =

⋃

g∈name(D)

(

Join
(

[[P]] D
D[g] , {µ?x→g}

))

where{µ?x→g} is a multiset that contains a single solution, that maps the
variable ?x to the graph nameg, and where the

⋃

is the SPARQL algebra
Unionoperator.

• [[ToList(P)]] D = ToList([[P]] D
D[d f t])

• [[Distinct(L)]] D = Distinct([[L]] D)

• [[Reduced(L)]] D = Reduced([[L]] D)

• [[Project(L, vars)]] D = Project([[L]] D
, vars)

• [[OrderBy(L, cond)]] D = OrderBy([[L]] D
, cond)

• [[Slice(L, start, length)]] D = Slice([[L]] D
, start, length)

4.5 SPARQL to Relational Algebra translation

As seen in the previous section (in particular in 4.4.5), SPARQL is defined in terms
of solutions: the formal model describes which properties a mappingµ needs to
have to be a solution of a graph pattern. This definition does not tell how to find
them, given an RDF graph.

Relational algebra on the contrary builds the result from thedata through a set
of operators: this approach is not only easier to understandand to implement, but
moreover makes available to the developers the large body ofwork on relational
engines, in terms of query optimization, transaction isolation and reliability that
these mature systems offer.

This topic had been discussed in previous works by Cyganiak [24], Harris [30]
and Newman [39].

4.5.1 Relational algebra on multisets

The most evident mismatch between SPARQL and relational algebra is that mul-
tisets of solutions of SPARQL are collections of elements that may appear more
than once, where relations are pure sets. Even if a formal mapping from one al-
gebra to the other is for this reason impossible, nonetheless real systems usually
treat relations as multisets, as theDISTINCT keyword in SQL may suggest. In this
section, therefore, relational algebra operators are redefined in order to deal with
and produce multisets as results.
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RDF relations

A multiset of solutions, orRDF relation, is a relation that admits duplicates. As in
the previous section, they will be described with the set of elements appearing in
them and a cardinality function which returns the number of occurrences of each
element in the multiset. Each solution mapping is a tuple of this relation. The
termsRDF tuple, tupleandsolution mappingwill be considered synonyms.

If a solution mapping in an RDF relation does not define which isthe value of
one of the attributes of the heading, then that value is said to beunbound. Since
in many relational engines unbound values are represented by NULLs, unbound
and NULL will be considered synonyms as well.

The columns of an RDF relation are in general of typeT, that is the set of all
RDF terms. Since inT there are all kind of possible RDF values, for example
IRIs, strings and numerics, the columns of an RDF relation are roughly speaking
untyped.

An RDF relationΩmay have two distinct sets of columns:var(Ω) is the set of
columns whose name is a variable name, andblank(Ω) is the set columns whose
name is a blank node label. The latter kind of columns are present during a BGP
match, where blank nodes act as variables; the final result ofa BGP evaluation,
however, contains only variables.

An RDF graph is an relation with three columns,subject, predicateandobject,
or briefly ass, p, o; every triple in the graph is a tuple of this relation. As formally
described in 4.4.1, the domain of each column is the set of IRIsand blank nodes
for s, the set of IRIs forp, and the set of all RDF Terms foro. An RDF graph is a
special case of RDF relation, that does not admit duplicates.

In the following sections the storage schema for RDF triples is a simple table
of three columns, in which the RDF Terms are stored directly into it; no dictionar-
ies nor other kind of structures will be considered.

Selection on multisets

Theselectoperator is not much different from its pure relational algebra version:
given aselection predicateand a (multi)set of tuples, it returns those tuples that
satisfy the predicate.

The only difference therefore consists of the possibility, in the RDF case, to
have duplicate tuples in the operand and in the result.

Projection on multisets

The result of a relational algebra projection is defined as the set obtained when
the components of the tuples of the relation are restricted to a subset of those
components.
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In this section the projection will be only a column-selection, with no duplicate
elimination. The semantics of this operator is the same of SPARQL’s projection as
found in 4.4.6, with the addition that new columns can be built from the values of
each tuple; this addition is useful to formally describe joins when unbound values
appear in the join columns. Thus, given a solution mappingµ : V → T, two sets
of variablesW ⊆ dom(µ) andU:

U = {u = expr(v1 . . . vn) | u ∈ (V \W), v1 . . . vn ∈ dom(µ)}

i.e. a set of new variables, each built as a (possibly different) expressionexprof
the components of the tupleµ, thenµ|W∪U is a mapping such that

• dom(µ|W∪U) = (dom(µ) ∩W) ∪ U

• µ|W∪U(x) =















µ(x), if x ∈ dom(µ) ∩W

expr(v1 . . . vn), if x ∈ U

Theprojectionof an RDF relationΩ is then:

πW,U(Ω) = {µ|W∪U | µ ∈ Ω}

cardπW,U (Ω)(µ) = cardΩ(µ)

An example of construction of new columns may be the following, given a
relationRwith two columns of integers:

a b
13 -1
5 2

-0.5 0.5
10 4

The projection permits one to calculate sum and difference ofa andb, and
store them in two new columns; in this exampleU = {sum= a+ b,diff = a− b}

πa,b,sum=a+b,diff=a−b(R)

a b sum diff
13 -1 12 14
5 2 7 3

-0.5 0.5 0 -1
10 4 14 6
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Natural join on multisets

The natural join will be used when no unbound values are present on the join
attributes. Under this assumption, the difference from the classical natural join is
again the cardinality of each tuple in the operands and in theresult, that can be
greater than one in RDF relations.

The natural join in this situation behaves as normally does in relational engines
that operate on multisets: given two RDF relationsΩL andΩR with common at-
tributesv1 . . . vn, their natural join is

ΩL Z ΩR = σ ΩL.v1 = ΩR.v1
.
.
.

ΩL.vn = ΩR.vn

(ΩL ×ΩR)

As usual for natural joins, the common columnsv1 . . . vn are not repeated twice
in the result, one for the left and one for the right operand asin other joins, but
only once.

The cardinality of each element in the result relation conforms to the indication
of SPARQL algebra, i.e. the cardinality of a solution mappingµ in a join result is
∑

µ=µL∪µR
cardΩL(µL) · cardΩR(µR), that is the sum, for eachµL ∈ ΩL andµR ∈ ΩR

that may generateµ, of the product of the cardinalities of suchµL andµR.
For example, given the relations

a b
1 11
1 11
2 12
3 13
4 14

b c
11 21
11 21
12 22
12 22
14 24
15 25

their natural join is:

a b c
1 11 21
1 11 21
1 11 21
1 11 21
2 12 22
2 12 22
4 14 24
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that is the correct behavior also for SPARQL.

Difference on multisets

The multiset difference is defined here as a “not in” expression: given two RDF
relationsΩL andΩR such thatvar(ΩL) = var(ΩR) i.e. with same schema, their
difference is

ΩL \ΩR = {µ ∈ ΩL | µ < ΩR}

cardΩL\ΩR(µ) = cardΩL(µ)

The multiplicity of the elements does not matter: if a tuple has cardinality
equals to two inΩL and one inΩR, it will not take part in the difference.

4.5.2 Filter translation

As seen in 4.4.7, theFilter operator evaluation has to pick from a multiset of
solutions those ones that satisfy an expression. This semantics is identical to the
the relationalselectoperator. Given a expressionexprand an RDF relationΩ:

Filter(expr,Ω) = σexpr(Ω)

EvenFilter andselectare conceptually identical, the SPARQL operators have
to deal with untyped columns; for example, a filter may selectall the triples of an
RDF graph whereobject< 24. This implies also thatobjecthas to be a numeric
value.

4.5.3 BGP translation

Single pattern matching

Triple patterns (4.4.1) can be expressed as a selection of the triples of the active
graph, followed by a projection and rename. The selection condition is determined
by the fixed terms in the triple pattern. Blank nodes act exactly as variables.

For example, given the active graphG, the triple pattern

_:person foaf:name ?name

becomes

π :person← sub ject
?name← ob ject

(σpredicate=foaf:name(G))

The evaluation of a triple patternt on the active graphG is a multiset of solu-
tions denoted by [[t]]G.
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Triple pattern join

Given two triple patternst1 and t2 on the active graphG, and their evaluations
Ω1 = [[ t1]]G andΩ2 = [[ t2]]G,Ω1 Ztp Ω2 is a multiset defined as follows:

Ω1 Ztp Ω2 =















Ω1 ×Ω2 if var(Ω1) ∩ var(Ω2) = ∅ ∧ blank(Ω1) ∩ blank(Ω2) = ∅

Ω1 Z Ω2 if var(Ω1) ∩ var(Ω2) , ∅ ∨ blank(Ω1) ∩ blank(Ω2) , ∅

where× is the cartesian product andZ is the natural join as defined in 4.5.1.

Basic graph pattern translation

Given a BGPP = {t1, t2 . . . tn} and the active graphG, and denoting asΩi = [[ ti]]G

the evaluation of triple patternti, [[P]]G can be expressed as:

[[P]]G = πvar(Ω1)∪var(Ω2)...∪var(Ωn)(Ω1 Ztp Ω2 Ztp . . . Ztp Ωn)

The projection removes all columns whose name is a blank nodelabel.

4.5.4 Join translation

TheJoin definition in SPARQL is much different from the one in relational alge-
bra: two mappings can be part of aJoin if there is no conflict between them, that
is when a common attribute is bound on both sides of theJoin with different val-
ues. Such mappings are calledcompatible mappings. Two disjoint mappings are
therefore always compatible, and an unbound value will match with every value,
even another unbound one.NULL values in relational algebra would cause the join
to fail.

Here is an example of SPARQL join between two RDF relations:

?a ?b
20 1
21 2
22
23 4

?b ?c
1 30

31
4 32
5 33

The result is
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?a ?b ?c
20 1 30
20 1 31
21 2 31
22 1 30
22 31
22 4 32
22 5 33
23 4 31
23 4 32

The SPARQLJoincan be relationally defined as a subset of the cartesian prod-
uct where two mappings are compatible; given two RDF relationsΩL andΩR with
common attributesvar(ΩL) ∩ var(ΩR) = {v1 . . . vn}, theCompMappingspredicate
checks if a tuple of the cross product takes part of the SPARQLJoin:

CompMappings= (ΩL.v1 = ΩR.v1 ∨ΩL.v1 = NULL ∨ΩR.v1 = NULL) ∧ . . .

∧(ΩL.vn = ΩR.vn ∨ΩL.vn = NULL ∨ΩR.vn = NULL)

TheJoinoperator can then be expressed as

Join(ΩL,ΩR) = π v1 = (ΩL.v1 , NULL ?ΩL.v1 : ΩR.v1)
.
.
.

vn = (ΩL.vn , NULL ?ΩL.vn : ΩR.vn)
(var(ΩL) ∪ var(ΩR)) \ {v1 . . . vn}

(

σCompMappings(ΩL ×ΩR)
)

The projection builds the columnvi from ΩL.vi andΩR.vi picking from them
the bound value, if any; it then selects all the columns that are not invar(ΩL) ∩
var(ΩR). In casevar(ΩL) ∩ var(ΩR) = ∅ no selection nor projection takes place
and only the cartesian product is performed.

Another semantics for SPARQL joins may be defined when the joinattribute
is only one. In this case the cartesian product can be limitedonly to those tuples
that present an unbound value on the join attribute.

Given two RDF relationsΩL andΩR with common attributev

Join(ΩL,ΩR) = (ΩL Z ΩR)∪

π v← ΩR.v
(var(ΩL) ∪ var(ΩR)) \ {v}

(σv=NULL(ΩL) × σv,NULL(ΩR))∪
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π v← ΩL.v
(var(ΩL) ∪ var(ΩR)) \ {v}

(σv,NULL(ΩL) × σv=NULL(ΩR))∪

π v← ΩL.v
(var(ΩL) ∪ var(ΩR)) \ {v}

(σv=NULL(ΩL) × σv=NULL(ΩR))

where Join is the natural join and∪ is a union that does not drop dupli-
cates. The last projection can select indifferentlyΩL.v orΩR.v, since both present
NULLs on each row.

4.5.5 LeftJoin translation

Diff

The SPARQLDiff operator, given two relationsΩL andΩR and an expression
expr, returns those mappingsµ of ΩL that either are not compatible withall the
mappingsµ′ ofΩR, or for which the evaluation ofexpris false for all the mappings
µ ∪ µ′.

In SPARQL these united mappings do not replicate the common attributes,
while in a relational context the expressionexprhas to be evaluated against tuples
that replicate the common attributes twice, one for the lefttuple µ and one for
the right one,µ′. If the expression is defined on one or more of these, the ex-
pression has to pick the bound value, if any. Every occurrence of an attribute
x that participates in the join must be substituted with the ternary expression
(ΩL.x , NULL ? ΩL.x : ΩR.x).

For instance, the expression:

a+ b > 4

with botha andb join attributes, has to be rewritten as

(ΩL.a , NULL ? ΩL.a : ΩR.a) + (ΩL.b , NULL ? ΩL.b : ΩR.b)

The expressionexprmodified in such manner will be denoted withexpr’.
The SPARQLDiff can the be expressed with:

Diff(ΩL,ΩR,expr) = ΩL \ πvar(ΩL)

(

σCompMappings∧expr’ (ΩL ×ΩR)
)

The second operand of the difference builds a multiset that contains those
tuples ofΩL that are compatible at least with one tuple ofΩR, and among these,
those for which at least one evaluation ofexpr is true. The result of the difference
contains therefore only tuples that are either incompatible with all the tuples of
ΩR or for which the evaluation ofexpr is always false for all their combinations
with the compatible tuples ofΩR.
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LeftJoin

TheLeftJoinis expressed in the SPARQL standard as a union of aJoinand aDiff.
Having already a definition of these operators in relationalalgebra, theLeftJoin
translation is trivial:

LeftJoin(ΩL,ΩR,expr) =




















































π v1 = (ΩL.v1 , NULL ?ΩL.v1 : ΩR.v1)
.
.
.

vn = (ΩL.vn , NULL ?ΩL.vn : ΩR.vn)
(var(ΩL) ∪ var(ΩR)) \ {v1 . . . vn}

(

σCompMappings∧expr’ (ΩL ×ΩR)
)





















































∪
(

ΩL \ πvar(ΩL)

(

σCompMappings∧expr’ (ΩL ×ΩR)
))

4.5.6 Union translation

SPARQL union cannot be a result of any of the classical relational operators, but
nonetheless there are already some implementations that define anOUTER UNION ,
as described in [22]. The difference with relational union is that in this latter the
schema of the tables being united must be the same. In SPARQL unions this con-
dition is not needed: all the tuples of both relations take part in the result without
duplicate elimination, and missing information is filled with unbound values. For
example the union of the following tables

?a ?b
1 21
2 22
3 23
4

?a ?c
4
5 32
6 33

34

is
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?a ?b ?c
1 21
2 22
3 23
4
4
5 32
6 33

34

4.5.7 Graph expression translation

Graph expressions on a fixed named graph of the dataset are translated without
any effort, since these kind of SPARQL algebra expressions just change the active
graph.

The situation in which a variable is present as graph IRI is different: in this
case the evaluation of the graph pattern contained in the graph expression has to
be performed once for each named graph in the dataset. In 4.4.7 it has been shown
that the evaluation of a Graph pattern in this case is

[[Graph(?x,P)]] D
G =

⋃

g∈name(D)

(

Join
(

[[P]] D
D[g] , {µ?x→g}

))

A relational translation is still a union of all evaluationsagainst each named
graph; only theJoinhas to be translated.

There are two possible cases: ?x ∈ var(P), or ?x < var(P)
In the first case, the join on ?x can follow the definition given in 4.5.4 for joins

on a single attribute:

[[Graph(?x,P)]] D
G =

⋃

g∈name(D)















(

[[P]] D
D[g] Z {µ?x→g}

)

∪ π ?x←?xR

var (P) \ {?x}

(

σ?x=NULL

(

[[P]] D
D[g]

)

× {µ?x→g}
)















wherexR is thex column of the cross product given by{µ?x→g}.
In the second case the only operation to perform is to extend the RDF relation

returned by [[P]] D
D[g] with a column containing the graph IRIg for each tuple;

relationally, this can be done with a cartesian product:

[[Graph(?x,P)]] D
G =

⋃

g∈name(D)

(

[[P]] D
D[g] × {µ?x→g}

)



Chapter 5

RDF storage in MonetDB

5.1 Data structures

As discussed in Chapter 3, the most conventional and natural manner to store RDF
triples is a three-column relational table, with dictionary compression for IRIs and
literals.

The solution proposed in MonetDB follows this approach, butmaterializes the
triples table six times, each sorted on one of the six permutations of the columns.
A single dictionary table maps integers to the RDF terms for all the views.

Figures 5.1, 5.2 and 5.3 show how some example RDF data is savedin Mon-
etDB.

5.1.1 Data tables

Each of the six data tables is represented in MonetDB by threebinary tables of
type(:void, :oid) , one for each column. The virtualoid sequence identifies the
row number starting from zero, while the oid column actuallystores the ids of the
RDF terms.

The first column of every table is sorted by ascending id values; those triples
that present the same value on the first column are arranged according to the ids
of the second. Finally, triples with same values on the first two columns are sorted
according to the third.

5.1.2 Dictionary table

Since the id order has to reflect the one of the RDF terms, also the dictionary has
to be sorted, so that if an id is smaller than another one then or the two terms
represented by the ids are not comparable (e.g. because theyare different in type)
or the first term is smaller than the second.

60
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@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:f0 foaf:name "Alice" .

_:f0 foaf:mailboxes _:b0 .

_:b0 rdf:first mailto://alice@isp.com .

_:b0 rdf:rest _:b1 .

_:b1 rdf:first mailto://alice@foaf.org .

_:b1 rdf:rest rdf:nil .

Figure 5.1: Example RDF data

S P O
00 03 09
00 05 01
01 03 08
01 05 04
02 06 00
02 07 10

P S O
03 00 09
03 01 08
05 00 01
05 01 04
06 02 00
07 02 10

O S P
00 02 06
01 00 05
04 01 05
08 01 03
09 00 03
10 02 07

S O P
00 01 05
00 09 03
01 04 05
01 08 03
02 00 06
02 10 07

P O S
03 08 01
03 09 00
05 01 00
05 04 01
06 00 02
07 10 02

O P S
00 06 02
01 05 00
04 05 01
08 03 01
09 03 00
10 07 02

Figure 5.2: The six materialized views

Id RDF Term
00 b0
01 b1
02 f0
03 http://www.w3.org/1999/02/22-rdf-syntax-ns#first
04 http://www.w3.org/1999/02/22-rdf-syntax-ns#nil
05 http://www.w3.org/1999/02/22-rdf-syntax-ns#rest
06 http://xmlns.com/foaf/0.1/mailboxes
07 http://xmlns.com/foaf/0.1/name
08 mailto://alice@foaf.org
09 mailto://alice@isp.com
10 Alice

Figure 5.3: The dictionary table
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For the same reason terms with the same value must be mapped tothe same
integer, even if the lexical form or the type can be different (e.g. the numbers ‘5’
and ‘5.0’).

In MonetDB this table is a single BAT of type(:void, :str) , lexicographi-
cally ordered on the tail. This forces one to represent everyRDF term as a string
and to make the lexicographical order be equivalent to the natural one; for numeric
values in particular, this situation required some expedient.

Order of the RDF terms

The SPARQL standard defines an ordering among the three sets that compose the
superset of the RDF terms: blank nodes precede IRIs, which are sorted before the
literals ([44], section 9.1). The dictionary table, therefore, needs to force the order
of these terms in such manner.

The way this is achieved in Monet is to prefix every term with a single char-
acter that identifies a section in the dictionary: the relative order of the sections is
thus imposed by the prefixes.

The set of literals is divided into several sections; on the one hand compara-
ble terms are grouped together, while on the other sections with same effective
boolean value (see 4.4.1) are placed one next to the other. This strategy lets one
to implement the EBV function as a range check (see also figure 5.4. Finally,
different sections that contain comparable terms are sorted properly (e.g. positive
numerics follow negative numerics and zero).

The following is the list of the sections in the dictionary, with their respective
prefixes:

• Blank nodes - ‘0’

• IRIs - ‘1’

• Negative infinity - ‘2’

• Negative numerics - ‘3’

• Boolean false - ‘4’

• Numeric zero - ‘5’

• Not a Number (NaN) - ‘6’

• Empty string - ‘7’

• Empty string with language tag - ‘8’
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• Strings - ‘9’

• Strings with language tag - ‘A’

• Boolean true - ‘B’

• Positive Numerics - ‘C’

• Positive infinity - ‘D’

• Datetime values - ‘E’

• XML literals - ‘F’

• Literals with unsupported datatypes - ‘G’

Figure 5.4 is an example dictionary that contains at least one element in each
section. It should be noted that sections that contain only asingle element, for
example negative and positive infinity, do not need to store anything more than
the prefix itself: they may not even be present if the RDF document from which
data is loaded does not contain such values.

Storing type information of literals

The dictionary does not save the XML type of numeric literalsand strings; nu-
meric values can be of typexsd:integer , xsd:float , xsd:decimal and many more
(see [16] for all XML datatypes), while what in the dictionary is categorized as
“string” can be a simple literal (a plain literal with no language tag) or a literal of
typexsd:string .

This information cannot be lost, but cannot even be stored inthe dictionary
itself: literals with same value but different in type must be mapped to the same
identifier. The type information is therefore stored together with the data tables,
thus for each permutation of the S, P and O columns an additional BAT T of type
(:void, :bte) (where:bte is the smallest type in Monet) is present.

Figure 5.5 shows a complete data table complete with its T column, but un-
normalized for ease of reading.

String literals

The dictionary distinguishes four kinds of strings: empty string, empty strings
with language tag and non-empty strings, with or without language tag.

The language tag is placed in front of the lexical form, so that strings of the
same language are sorted together. This is an extension to the SPARQL standard
which does not define an order between literals with a language tag.
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00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

0blank0

0blank1

1http://example.com/iri1

1http://example.com/iri2

2

4

5

23

6

7

9Plain literal or string

8en

8it

B

D

F<xmlTag name="xml literal"/>

Ghttp://types.org/custom^lexicalForm

RDF termId

9Another plain literal or string

Aen@English literal

Ait@Stringa in italiano

E800b31fa01ee6280

33ff3ffffffffffff

33febffffffffffff

Cc014000000000000

Cc02b000000000000

EBV false

EBV true

EBV true

Figure 5.4: Dictionary table in detail

As said in the previous subsection, simple literals and typed strings (literals
with typexsd:string ) are grouped together and considered simply “strings”. Two
string literals with same lexical form, one typed and one not, are considered equals
and mapped to the same integer.

At the moment the current SPARQL documentation ([44], section 9.1) con-
tains an inconsistency on how plain literals and typed strings should be sorted: it
states both that they are not comparable and that the typed strings follow plain
literals. A discussion on this topic with one of SPARQL’s authors can be found in
the W3C mailing list [6].

In MonetDB this problem is faced by assigning the same id to equal strings
(typed or not), but at the same time giving a lower type code (in the T column) to
plain literals, so that they are sorted first.
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S P O T
id:1 dc:value “string” plain
id:2 dc:value “string” xsd:string
id:3 dc:value 5 xsd:integer
id:4 dc:value 5 xsd:double
id:5 dc:value 5 xsd:decimal

Figure 5.5: Type column for the SPO table

Numeric literals

A numeric value can be expressed in many forms, for example the literals10 ,
10.0 , "10"ˆˆxsd:integer and"10.0"ˆˆxsd:float are different representations of
the same number.

In order to assign to numeric literals with identical valuesthe same oid in
the dictionary, they are all (integers, decimal, floats etc.) converted to a double-
precision representation and then converted to strings of hexadecimal characters.

The lexicographical order of these hexadecimal strings, however, is not equiv-
alent to the natural one: positives would be lower than negatives, since the most
significant bit, the sign bit, is zero for positives; moreover negatives would be
sorted inversely, as shown in figure 5.6.

Value Double representation
-0.50 bfe0000000000000

-0.45 bfdccccccccccccd

-0.40 bfd999999999999a

-0.35 bfd6666666666667

-0.30 bfd3333333333334

-0.25 bfd0000000000001

-0.20 bfc999999999999c

-0.15 bfc3333333333336

-0.10 bfb999999999999f

-0.05 bfa99999999999a4

0.05 3fa9999999999990

0.10 3fb9999999999995

0.15 3fc3333333333331

0.20 3fc9999999999998

0.25 3fcffffffffffffe

0.30 3fd3333333333332

0.35 3fd6666666666665

0.40 3fd9999999999998

0.45 3fdccccccccccccb

0.50 3fdffffffffffffe

Double representation Value
3fa9999999999990 0.05

3fb9999999999995 0.10

3fc3333333333331 0.15

3fc9999999999998 0.20

3fcffffffffffffe 0.25

3fd3333333333332 0.30

3fd6666666666665 0.35

3fd9999999999998 0.40

3fdccccccccccccb 0.45

3fdffffffffffffe 0.50

bfa99999999999a4 -0.05

bfb999999999999f -0.10

bfc3333333333336 -0.15

bfc999999999999c -0.20

bfd0000000000001 -0.25

bfd3333333333334 -0.30

bfd6666666666667 -0.35

bfd999999999999a -0.40

bfdccccccccccccd -0.45

bfe0000000000000 -0.50

Figure 5.6: Numeric values and their double representation, sorted on value on
the left and on the representation on the right

A simple solution consists in XORing the 64 bits of the double representation.
Two different bit masks are needed, one for positive and one for negative numbers.
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The first has just to invert the first bit (i.e.8000000000000000 in hexadecimal
digits), while the second and to revert every bit (i.e.ffffffffffffffff ). The
result is shown in figure 5.7.

Value Representation
-0.50 401fffffffffffff

-0.45 4023333333333332

-0.40 4026666666666665

-0.35 4029999999999998

-0.30 402ccccccccccccb

-0.25 402ffffffffffffe

-0.20 4036666666666663

-0.15 403cccccccccccc9

-0.10 4046666666666660

-0.05 405666666666665b

0.05 bfa9999999999990

0.10 bfb9999999999995

0.15 bfc3333333333331

0.20 bfc9999999999998

0.25 bfcffffffffffffe

0.30 bfd3333333333332

0.35 bfd6666666666665

0.40 bfd9999999999998

0.45 bfdccccccccccccb

0.50 bfdffffffffffffe

Figure 5.7: Representation order reflects value order

xsd:dateTime literals

Literals with XML type xsd:dateTime are stored as a concatenation of Monet’s
timestamp (a 64-bit binary format), converted to a string ofhexadecimal charac-
ters, with a character string that stores the fractions of a second. The concatenation
is needed because the fractions of a second in Monet have millisecond precision,
while they may contain an unspecified number of digits in XML’s type system.

If a timezone information is present, the timestamp is converted and stored
in UTC, and when returned by a query it has to be converted back to the client’s
timezone. If this information is not present, the timestampis saved and returned
“as is”, without any conversion. In order to distinguish between datetimes with
and without timezone, the RDF module defines two internal subtypes, whose code
is stored in the T column of the data table.

Also in this case, two datetime literals with same value are mapped to the
same numeric identifier. Two literals with same date and timevalues, one without
timezone information and the other in UTC are considered equals as well.

So as the double-precision representation of numbers, alsoMonet’s times-
tamps need to be XORed with a bitmask to let the lexical order beequivalent to
the natural one. The mask in this case has just to reverse the first bit.
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Figure 5.8 shows some datetime literals and their representations in the dictio-
nary table, without prefix. Literals with same representation are obviously mapped
to the same identifier.

XML dateTime Representation
2007-08-07T21:15:00 800b304c048f4c20

2008-07-07T21:15:00 800b319b048f4c20

2008-08-06T21:15:00 800b31b9048f4c20

2008-08-07T20:15:00 800b31ba04585da0

2008-08-07T21:14:00 800b31ba048e61c0

2008-08-07T21:14:59 800b31ba048f4838

2008-08-07T21:14:59.999 800b31ba048f4838999

2008-08-07T21:15:00 800b31ba048f4c20

2008-08-07T21:15:00+00:00 800b31ba048f4c20

2008-08-07T22:15:00+01:00 800b31ba048f4c20

2008-08-07T20:15:00-01:00 800b31ba048f4c20

2008-08-07T21:15:00.0123 800b31ba048f4c200123

2008-08-07T21:15:00.123 800b31ba048f4c20123

2008-08-07T21:15:00.987+00:00 800b31ba048f4c20987

2008-08-07T21:15:00.9876+00:00 800b31ba048f4c209876

Figure 5.8: Representation order reflects value order

Unsupported datatypes andrdf:XMLLiteral

Numeric, boolean, string and datetime literals have a special treatment since they
are required by SPARQL’s standard operators, but other kind of literals may ap-
pear in RDF documents as well.

In general, they are stored in section ‘G’, with the datatypeIRI as a prefix of
the lexical form; in this manner literals of the same type aregrouped together and
sorted on the lexical form.

Literals of typerdf:XMLLiteral , that are XML strings embedded in an RD-
F/XML document, are stored separately in section ‘F’; hence they do not need to
include the datatype IRI together with the lexical form.

5.2 Importing algorithm

The RDF document importing is performed in two phases; in the first one the
document is parsed and a first dictionary and data table (withcolumns S, P, O and
T) are filled incrementally. In the second phase the dictionary is sorted and the six
permutations of the data tables are created.
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5.2.1 First phase

MonetDB uses the Raptor Library [12] to parse RDF. This libraryinvokes a call-
back function for each triple of the document, that can be expressed in almost
every RDF serialization language.

Each time the triples handler function is called, MonetDB inserts a mapping
in the dictionary for every term in the triple not previouslyencountered, and adds
a row in the data table with the ids of terms and the one-byte code of the object’s
type.

Figure 5.10 shows the situation after the first phase of the importing of the
RDF data in figure 5.1, which is copied to figure 5.9 for ease of reading (T column
is omitted).

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:f0 foaf:name "Alice" .

_:f0 foaf:mailboxes _:b0 .

_:b0 rdf:first mailto://alice@isp.com .

_:b0 rdf:rest _:b1 .

_:b1 rdf:first mailto://alice@foaf.org .

_:b1 rdf:rest rdf:nil .

Figure 5.9: Example RDF data

Id RDF Term
00 0f0
01 1http://xmlns.com/foaf/0.1/name
02 9Alice
03 1http://xmlns.com/foaf/0.1/mailboxes
04 0b0
05 1http://www.w3.org/1999/02/22-rdf-syntax-ns#first
06 1mailto://alice@isp.com
07 1http://www.w3.org/1999/02/22-rdf-syntax-ns#rest
08 0b1
09 1mailto://alice@foaf.org
10 1http://www.w3.org/1999/02/22-rdf-syntax-ns#nil

S P O
00 01 02
00 03 04
04 05 06
04 07 08
08 05 09
08 07 10

Figure 5.10: Dictionary and data table after the first phase of importing
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5.2.2 Second phase – sorting

Sorting the dictionary

The first step of the second phase sorts the dictionary on the tail. As said above,
this is a simple lexicographical sort, for which MonetDB is highly optimized.
Since the head of the BAT is not a sequence anymore, it cannot be of type:void
but it is rather materialized and of type:oid , as shown in figure 5.11.

Id RDF Term
04 0b0
08 0b1
00 0f0
05 1http://www.w3.org/1999/02/22-rdf-syntax-ns#first
10 1http://www.w3.org/1999/02/22-rdf-syntax-ns#nil
07 1http://www.w3.org/1999/02/22-rdf-syntax-ns#rest
03 1http://xmlns.com/foaf/0.1/mailboxes
01 1http://xmlns.com/foaf/0.1/name
09 1mailto://alice@foaf.org
06 1mailto://alice@isp.com
02 9Alice

Figure 5.11: Dictionary just after sorting

Id translation

The final dictionary in figure 5.12 has the same tail of the BAT in figure 5.11, but
with a :void sequence on the head; a mapping of the ids created during the RDF
document parsing and the final ones is therefore needed. Thismapping is created
as avoid view (see 2.4) of the head of the dictionary in figure 5.11, as shown in
figure 5.13.

This BAT is joined with the S, P and O BATs, creating a new triples table with
the final identifiers, shown in figure 5.14.

Sorting the triples table

The last step of the process creates the six copies of the triples table. The algorithm
sorts one of three columns, then refines the order of the othertwo columns twice,
one for each permutation of the these latters. For example, if it sorts first the S
column, then it refines the order on P and subsequently on O , creating a triples
table ordered on SPO; then it refines the order on O and P, creating the SOP table.
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Id RDF Term
00 0b0
01 0b1
02 0f0
03 1http://www.w3.org/1999/02/22-rdf-syntax-ns#first
04 1http://www.w3.org/1999/02/22-rdf-syntax-ns#nil
05 1http://www.w3.org/1999/02/22-rdf-syntax-ns#rest
06 1http://xmlns.com/foaf/0.1/mailboxes
07 1http://xmlns.com/foaf/0.1/name
08 1mailto://alice@foaf.org
09 1mailto://alice@isp.com
10 9Alice

Figure 5.12: Final dictionary BAT

Old id New id
04 00
08 01
00 02
05 03
10 04
07 05
03 06
01 07
09 08
06 09
02 10

Figure 5.13: Id translation BAT

This is done three times, each of them sorts one of three column and refines the
other two twice.

The first unsorted copy of the triple table, the one shown figure 5.14 is finally
deallocated.

5.3 Conclusions

Summarizing the concepts presented in this chapter, the keyfeatures of the phys-
ical layer adopted in Monet for RDF storage are:

• Equal RDF terms have same identifiers
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S P O
02 07 10
02 06 00
00 03 09
00 05 01
01 03 08
01 05 04

Figure 5.14: Triples table with final ids

• The order of two comparable RDF terms is the same of their identifiers

• The data is sorted in all possible ways

• Data with same EBV is grouped together

These characteristics permit to obtain several advantages, in terms of searches
and joins.

Fast searches and EBV predicate evaluations

One of the most important advantages is that every string search in the dictionary
and every id search in the six data tables are performed on sorted data, allowing
to implement range selects asslice views, as discussed in section 2.4.

An id lookup in the dictionary can be performed by position, i.e. the fastest
way possible; every join between the data tables and the dictionary is therefore a
positional join.

The search of values in the data tables, moreover, can be performed in the
identifier space, thus not requiring a join with the dictionary; a SPARQL triple
pattern like?s foaf:name "Alice" , for example, can be implemented as a search
in the POS or OPS table of those triples that have the id offoaf:name in P and the
id of "Alice" in O. The join with the dictionary is needed only at the end of query
execution, before returning the result.

Fast joins

As with searches, value-based joins can be performed in the id space, since identi-
fier equality assures equality of the RDF terms, and conversely identifier inequal-
ity assures inequality of the terms. As in any relational engine, MonetDB joins
ids much faster than strings.

One of the greatest issues of SPARQL is that requires many selfequi-joins of
the triples table, that can be an important bottleneck in many relational engines, as
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discussed in [9], [21]. The approach adopted in MonetDB permits one to perform
merge-joins in many situations, or to have very often at least one of the operands
sorted on the join column; also a nested loop would perform much faster in this
case if this table is chosen as inner table.

The following two example queries permit one to better guessthe above ad-
vantages; all SPARQL queries are translated to relational algebra, and their exe-
cution explained. Theselectoperations make use of theId(RDF-Term t)function,
that returns the identifier of the given RDF term, or a special value to suggest that
the term is not present in the dictionary; in this case theselectreturns an empty
set. The final join with the dictionary to convert back ids is omitted.

This simple query can found in the current SPARQL specification:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name ?mbox

WHERE

{ ?x foaf:name ?name .

?x foaf:mbox ?mbox }

In algebra it can be expressed as:

π ?name
?mbox

(

π ?x← s
?name← o

(

σp = Id (foaf : name) (PSO)
)

Z π ?x← s
?mbox← o

(

σp = Id (foaf : mbox) (PSO)
)

)

The selections on P are very fast since the data in PSO is sorted on that column
and are thus implemented as slice views. Choosing the PSO table, moreover,
assures that the S column is sorted for a given value of P, thatis id of foaf:name
on the left table of the join and the id offoaf:mbox on the right. Since the join is
on S, a merge-join (on the ids) can be performed.

The following query looks for the titles of the resources referenced by those
subjects ?s, whose title is “RDF”:

PREFIX dc: <http://purl.org/dc/elements/1.1/> .

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

SELECT ?seeAlso

WHERE {

?s dc:title "RDF".

?s rdfs:seeAlso :?x .

?x dc:title ?seeAlso

}

It can be translated as

(

σ o = Id (“RDF” )
p = Id (dc : title)

(OPS) Z π?x← o

(

σp = Id (rdfs : seeAlso) (PSO)
)

)

Z π?x← s

(

σp = Id (dc : title) (POS)
)

Again, all theselectoperations are on sorted data, and the inmost join is per-
formed on two sorted columns. Even if the left operand of the last join is not
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sorted on ?x, nevertheless the right one is, thus it can be used efficiently as the
inner table of a nested loop join; if the left operand is not enormous, moreover,
Monet can still decide to sort it. Another benefit of MonetDB’sapproach in this
example is that self joins are avoided, since the three triple patterns operate on
three distinct tables.

Although these examples are not barely comprehensive and more exhaustive
experiments have to be carried out, the possible benefits of the RDF storage tech-
nique adopted in MonetDB, and especially of the exploitationof the sorted and
dense properties, should be clear.

Drawbacks

The advantages of having the data tables replicated six times are followed by their
disk occupation. For these reason it is already planned thatMonetDB/SPARQL
will adopt lightweight compression of the data, following its application in Monet-
DB/X100 [52, 54], and for which an extensive literature is present in the database
field [23, 28, 32]).

The dense identifier set makes updates impossible to be merged seamlessly in
the proposed design, but they can be rather kept in separate aDelta structure that
keeps track of all the modifications. If theDeltagrows until the performance gets
noticeably worse, it will be possible to merge it, creating anew dictionary and a
new set of data tables.

The particular way the data is stored in the dictionary requires that even the
most trivial functions have to be reimplemented in order to deal with this repre-
sentation: a simple SPARQLFILTER like ?o < 50 , for example, has to be RDF-
specific: the implementation has to transform 50 in its hexadecimal string rep-
resentation, find the id of the nearest value to it in the dictionary,max , and the
smallest numeric value,min , and finally express the filter as a range select of ids
greater thanmin and smaller thanmax , or equal to the id of zero.

Since different RDF graphs are stored in different sets of tables, a query that
involves multiple graphs cannot benefit from all the advantages described above,
since the assumptions on the order and equality of the identifiers are lost. Even
if graph-specific operations can be optimized in this sense,joining data from dif-
ferent graphs cannot be done in the id space. For this reason it will be possible
for a database administrator to merge two or more graphs if a set of queries is
frequently executed against those graphs.



Appendix A

Materialized view choice

This appendix shows which are the best materialized views that the MonetDB/-
SPARQL optimizer can choose when it has to evaluate a Basic Graph Pattern. The
target is to perform selections and joins on sorted columns.

The first two sections of the appendix examine all BGPs of one and two triple
patterns respectively, dividing them according to the number of fixed terms in
them. The considered kind of joins aresubject-subject, subject-objectandobject-
object.

The last section shows how this information can be used to plan the execution
of more complex queries.

A.1 Single triple pattern BGPs

In this simple situation the optimizer would chose the view on the basis of the
ORDER BY clause or, if other group graph patterns are present, on the basis of the
kind of join that have to performed higher in the execution plan.

A.1.1 3 variables

View Result order
SPO (?s, ?p, ?o)
SOP (?s, ?o, ?p)
PSO (?p, ?s, ?o)
POS (?p, ?o, ?s)
OSP (?o, ?s, ?p)
OPS (?o, ?p, ?s)

74
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A.1.2 2 variables

• { f ?p ?o }

View Result order
SPO (?p, ?o)
SOP (?o, ?p)

• { ?s f ?o }

View Result order
PSO (?s, ?o)
POS (?o, ?s)

• { ?s ?p f }

View Result order
OSP (?s, ?p)
OPS (?p, ?s)

A.1.3 1 variable

The choice here depend on the selectivity of thef0 and f1 constraints. In the third
pattern for instance, the constraint on O is usually much more selective than the
one on P, making therefore OPS a better choice.

• { f0 f1 ?o }

View Result order
SPO or PSO (?o)

• { f0 ?p f1 }

View Result order
SOP or OSP (?p)

• { ?s f0 f1 }

View Result order
POS or OPS (?s)
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A.2 BGPs of two triple patterns

In many cases in this section the result can be ordered in two different ways. This
depends on the merge join behaviour when the sameoid is encountered multiple
times in the join column ?x on both sides, since in these ranges the algorithm
performs a nested-loop: for eachoid of the outer table, it loops on the inner one
until a differentoid is found. In the result, the outer table has its columns sorted
before those of the inner one.

The optimizer can choose which should be the outer table on the basis its
needs.

A.2.1 No constraints

BGP View 1 View 2 Result order

{ ?x ?p1 ?o1 .
?x ?p2 ?o2 }

SPO SPO
(?x, ?p1, ?o1, ?p2, ?o2)

or
(?x, ?p2, ?o2, ?p1, ?o1)

{ ?x ?p1 ?o1 .
?x ?p2 ?o2 }

SPO SOP
(?x, ?p1, ?o1, ?o2, ?p2)

or
(?x, ?o2, ?p2, ?p1, ?o1)

{ ?x ?p1 ?o1 .
?x ?p2 ?o2 }

SOP SPO
(?x, ?o1, ?p1, ?p2, ?o2)

or
(?x, ?p2, ?o2, ?o1, ?p1)

{ ?x ?p1 ?o1 .
?x ?p2 ?o2 }

SOP SOP
(?x, ?o1, ?p1, ?o2, ?p2)

or
(?x, ?o2, ?p2, ?o1, ?p1)

{ ?x ?p1 ?o1 .
?s2 ?p2 ?x }

SPO OPS
(?x, ?p1, ?o1, ?p2, ?s2)

or
(?x, ?p2, ?s2, ?p1, ?o1)

{ ?x ?p1 ?o1 .
?s2 ?p2 ?x }

SPO OSP
(?x, ?p1, ?o1, ?s2, ?p2)

or
(?x, ?s2, ?p2, ?p1, ?o1)

{ ?x ?p1 ?o1 .
?s2 ?p2 ?x }

SOP OPS
(?x, ?o1, ?p1, ?p2, ?s2)

or
(?x, ?p2, ?s2, ?o1, ?p1)

{ ?x ?p1 ?o1 .
?s2 ?p2 ?x }

SOP OSP
(?x, ?o1, ?p1, ?s2, ?p2)

or
(?x, ?s2, ?p2, ?o1, ?p1)
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BGP View 1 View 2 Result order

{ ?s1 ?p1 ?x .
?x ?p2 ?o2 }

OPS SPO
(?x, ?p1, ?s1, ?p2, ?o2)

or
(?x, ?p2, ?o2, ?p1, ?s1)

{ ?s1 ?p1 ?x .
?x ?p2 ?o2 }

OPS SOP
(?x, ?p1, ?s1, ?o2, ?p2)

or
(?x, ?o2, ?p2, ?p1, ?s1)

{ ?s1 ?p1 ?x .
?x ?p2 ?o2 }

OSP SPO
(?x, ?s1, ?p1, ?p2, ?o2)

or
(?x, ?p2, ?o2, ?s1, ?p1)

{ ?s1 ?p1 ?x .
?x ?p2 ?o2 }

OSP SOP
(?x, ?s1, ?p1, ?o2, ?p2)

or
(?x, ?o2, ?p2, ?s1, ?p1)

{ ?s1 ?p1 ?x .
?s2 ?p2 ?x }

OPS OPS
(?x, ?p1, ?s1, ?p2, ?s2)

or
(?x, ?p2, ?s2, ?p1, ?s1)

{ ?s1 ?p1 ?x .
?s2 ?p2 ?x }

OPS OSP
(?x, ?p1, ?s1, ?s2, ?p2)

or
(?x, ?s2, ?p2, ?p1, ?s1)

{ ?s1 ?p1 ?x .
?s2 ?p2 ?x }

OSP OPS
(?x, ?s1, ?p1, ?p2, ?s2)

or
(?x, ?p2, ?s2, ?s1, ?p1)

{ ?s1 ?p1 ?x .
?s2 ?p2 ?x }

OSP OSP
(?x, ?s1, ?p1, ?s2, ?p2)

or
(?x, ?s2, ?p2, ?s1, ?p1)

A.2.2 1 constraint

• Constraint on subject
{ f ?p1 ?o1 .

?s2 ?p2 ?o2 }

BGP View 1 View 2 Result order

{ f ?p1 ?x .
?x ?p2 ?o2 }

SOP SPO
(?x, ?p1, ?p2, ?o2)

or
(?x, ?p2, ?o2, ?p1)

{ f ?p1 ?x .
?x ?p2 ?o2 }

SOP SOP
(?x, ?p1, ?o2, ?p2)

or
(?x, ?o2, ?p2, ?p1)
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BGP View 1 View 2 Result order

{ f ?p1 ?x .
?s2 ?p2 ?x }

SOP OPS
(?x, ?p1, ?p2, ?s2)

or
(?x, ?p2, ?s2, ?p1)

{ f ?p1 ?x .
?s2 ?p2 ?x }

SOP OSP
(?x, ?p1, ?s2, ?p2)

or
(?x, ?s2, ?p2, ?p1)

• Constraint on property
{ ?s1 f ?o1 .

?s2 ?p2 ?o2 }

BGP View 1 View 2 Result order

{ ?x f ?o1 .
?x ?p2 ?o2 }

PSO SPO
(?x, ?o1, ?p2, ?o2)

or
(?x, ?p2, ?o2, ?o1)

{ ?x f ?o1 .
?x ?p2 ?o2 }

PSO SOP
(?x, ?o1, ?o2, ?p2)

or
(?x, ?o2, ?p2, ?o1)

{ ?x f ?o1 .
?s2 ?p2 ?x }

PSO OSP
(?x, ?o1, ?s2, ?p2)

or
(?x, ?s2, ?p2, ?o1)

{ ?x f ?o1 .
?s2 ?p2 ?x }

PSO OPS
(?x, ?o1, ?p2, ?s2)

or
(?x, ?p2, ?s2, ?o1)

{ ?s1 f ?x .
?x ?p2 ?o2 }

POS SPO
(?x, ?s1, ?p2, ?o2)

or
(?x, ?p2, ?o2, ?s1)

{ ?s1 f ?x .
?x ?p2 ?o2 }

POS SOP
(?x, ?s1, ?o2, ?p2)

or
(?x, ?o2, ?p2, ?s1)

{ ?s1 f ?x .
?s2 ?p2 ?x }

POS OSP
(?x, ?s1, ?s2, ?p2)

or
(?x, ?s2, ?p2, ?s1)

{ ?s1 f ?x .
?s2 ?p2 ?x }

POS OPS
(?x, ?s1, ?p2, ?s2)

or
(?x, ?p2, ?s2, ?s1)

• Constraint on object
{ ?s1 ?p1 f .

?s2 ?p2 ?o2 }
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BGP View 1 View 2 Result order

{ ?x ?p1 f .
?x ?p2 ?o2 }

OSP SPO
(?x, ?p1, ?p2, ?o2)

or
(?x, ?p2, ?o2, ?p1)

{ ?x ?p1 f .
?x ?p2 ?o2 }

OSP SOP
(?x, ?p1, ?o2, ?p2)

or
(?x, ?o2, ?p2, ?p1)

{ ?x ?p1 f .
?s2 ?p2 ?x }

OSP OSP
(?x, ?p1, ?s2, ?p2)

or
(?x, ?s2, ?p2, ?p1)

{ ?x ?p1 f .
?s2 ?p2 ?x }

OSP OPS
(?x, ?p1, ?p2, ?s2)

or
(?x, ?p2, ?s2, ?p1)

A.2.3 2 constraints

•
{ fa fb ?o1 .

?s2 ?p2 ?o2 }

BGP View 1 View 2 Result order
{ fa fb ?x .

?x ?p2 ?o2 }
SPO or PSO SPO (?x, ?p2, ?o2)

{ fa fb ?x .
?x ?p2 ?o2 }

SPO or PSO SOP (?x, ?o2, ?p2)

{ fa fb ?x .
?s1 ?p2 ?x }

SPO or PSO OSP (?x, ?s2, ?p2)

{ fa fb ?x .
?s1 ?p2 ?x }

SPO or PSO OPS (?x, ?p2, ?s2)

•
{ fa ?p1 ?o1 .

fb ?p2 ?o2 }

BGP View 1 View 2 Result order

{ fa ?p1 ?x .
fb ?p2 ?x }

SOP SOP
(?x, ?p1, ?p2)

or
(?x, ?p2, ?p1)

•
{ fa ?p1 ?o1 .

?s2 fb ?o2 }
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BGP View 1 View 2 Result order

{ fa ?p1 ?x .
?x fb ?o2 }

SOP PSO
(?x, ?p1, ?o2)

or
(?x, ?o2, ?p1)

{ fa ?p1 ?x .
?s2 fb ?x }

SOP POS
(?x, ?p1, ?s2)

or
(?x, ?s2, ?p1)

•
{ fa ?p1 ?o1 .

?s2 ?p2 fb }

BGP View 1 View 2 Result order

{ fa ?p1 ?x .
?x ?p2 fb }

SOP OSP
(?x, ?p1, ?p2)

or
(?x, ?p2, ?p1)

•
{ ?s1 fa fb .

?s2 ?p2 ?o2 }

BGP View 1 View 2 Result order
{ ?x fa fb .

?x ?p2 ?o2 }
POS or OPS SPO (?x, ?p2, ?o2)

{ ?x fa fb .
?x ?p2 ?o2 }

POS or OPS SOP (?x, ?o2, ?p2)

{ ?x fa fb .
?s2 ?p2 ?x }

POS or OPS OSP (?x, ?s2, ?p2)

{ ?x fa fb .
?s2 ?p2 ?x }

POS or OPS OPS (?x, ?p2, ?s2)

•
{ ?s1 fa ?o1 .

?s2 fb ?o2 }
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BGP View 1 View 2 Result order

{ ?x fa ?o1 .
?x fb ?o2 }

PSO PSO
(?x, ?o1, ?o2)

or
(?x, ?o2, ?o1)

{ ?x fa ?o1 .
?s2 fb ?x }

PSO POS
(?x, ?o1, ?s2)

or
(?x, ?s2, ?o1)

{ ?s1 fa ?x .
?x fb ?o2 }

POS PSO
(?x, ?s1, ?o2)

or
(?x, ?o2, ?s1)

{ ?s1 fa ?x .
?s2 fb ?x }

POS POS
(?x, ?s1, ?s2)

or
(?x, ?s2, ?s1)

•
{ ?s1 fa ?o1 .

?s2 ?p2 fb }

BGP View 1 View 2 Result order

{ ?x fa ?o1 .
?x ?p2 fb }

PSO OSP
(?x, ?o1, ?p2)

or
(?x, ?p2, ?o1)

{ ?s1 fa ?x .
?x ?p2 fb }

POS OSP
(?x, ?s1, ?p2)

or
(?x, ?p2, ?s1)

•
{ ?s1 ?p1 fa .

?s2 ?p2 fb }

BGP View 1 View 2 Result order

{ ?x ?p1 fa .
?x ?p2 fb }

OSP OSP
(?x, ?p1, ?p2)

or
(?x, ?p2, ?p1)

A.2.4 3 constraints

•
{ fa fb ?o1 .

fc ?p2 ?o2 }

BGP View 1 View 2 Result order
{ fa fb ?x .

fc ?p2 ?x }
SPO or PSO SOP (?x, ?p2)
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•
{ fa fb ?o1 .

?s2 fc ?o2 }

BGP View 1 View 2 Result order
{ fa fb ?x .

?x fc ?o2 }
SPO or PSO PSO (?x, ?o2)

{ fa fb ?x .
?s2 fc ?x }

SPO or PSO POS (?x, ?s2)

•
{ fa fb ?o1 .

?s2 ?p2 fc }

BGP View 1 View 2 Result order
{ fa fb ?x .

?x ?p2 fc }
SPO or PSO OSP (?x, ?p2)

•
{ fa ?p1 ?o1 .

?s2 fb fc }

BGP View 1 View 2 Result order
{ fa ?p1 ?x .

?x fb fc }
SOP POS or OPS (?x, ?p1)

•
{ ?s1 fa fb .

?s2 fc ?o2 }

BGP View 1 View 2 Result order
{ ?x fa fb .

?x fc ?o2 }
POS or OPS PSO (?x, ?o2)

{ ?x fa fb .
?s2 fc ?x }

POS or OPS POS (?x, ?s2)

•
{ ?s1 fa fb .

?s2 ?p2 fc }

BGP View 1 View 2 Result order
{ ?x fa fb .

?x ?p2 fc }
POS or OPS OSP (?x, ?p2)
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A.2.5 4 constraints

BGP View 1 View 2 Result order
{ ?x fa fb .

?x fc fd }
POS or OPS POS or OPS (?x)

{ ?x fa fb .
fc fd ?x }

POS or OPS SPO or PSO (?x)

{ fa fb ?x .
?x fc fd }

SPO or PSO POS or OPS (?x)

{ fa fb ?x .
fc fd ?x }

SPO or PSO SPO or PSO (?x)

A.3 More complex BGP examples

Since the space of the possible combinations with three (or even more) triple pat-
terns is too wide to be treated extensively, only a few examples will be shown;
the MonetDB/SPARQL optimizer, however, can generate such combinations au-
tomatically during query execution as well as it can pre-calculate some common
ones.

The information of the preceding section will be used as basis to find the most
convenient access to the data tables.

A.3.1 Query 1

select ?title

where { ?x dc:title ?title .

?x dc:author ?y .

?y dc:name "Herman"

?y dc:surname "Melville" }

This query asks for the book titles whose author is called “Herman Melville”;
generalizing its sense, it asks for the object of a resource for which are known
some nested property values.

Since the given object values are the most selective conditions in the query, it is
better to start evaluating it from those triple patterns that contain such conditions.

Figure A.1 shows the best plan for this query. TheId function, already used in
section 5.3, returns theoid of the its RDF-term parameter; on each edge is shown
how a result is sorted.

The two selections are performed first on the most selective condition, thus on
o, and then onp; the OPS view is therefore chosen, so that both selection arerun
against sorted data, as well as the following join of the results on ?y; the merge
algorithm can therefore be used.
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(?y)

(?y, ?x, ?title)

(?y)

(?y) (?y, ?x)

(?y, ?x)

OPS

POS

(?x, ?title)

PSO

OPS

ρ?y←s(σo=Id(“Herman”)∧p=Id(dc:name))

ρ?y←s(σo=Id(“Melville”) ∧p=Id(dc:surname))

ρ ?y← o
?x← s

(σp=Id(dc:author))

ρ ?x← s
?title← o

(σp=Id(dc:title))

Z

Z

Z

Figure A.1:

As any selection on the data table, also the one POS is performed on ordered
data. The result is sorted on ?y making another merge join possible, but since
the cardinality of the left operand is expected to be very low, instead of scanning
the full table as a merge join would normally do, it would be better to perform a
binary search on the right operand for each value in the left one.

The same happens in the last join, where the left operand is again small and
the search in the right operand is performed on the sorted column ?x.

A.3.2 Query 2

select ?title ?name ?mbox

where { ?person foaf:publication ?doc .

?doc dc:title ?title .

?person foaf:mbox ?mbox .

?person foaf:name ?name }

This query lists all the names and emails of those people who published one
or more documents, along with the titles of these.

This query can have huge intermediate results if the datasetis large: the join
order chosen in figure A.2 keeps them as small as possible, as well as choosing
the views in order to join sorted data.

If the first join combined the result of the selection onp=foaf:publication and
p=foaf:mbox which are both multi-valued properties, the intermediate result would
be much bigger than in the case shown in figure, sincefoaf:name is a single-valued
property.

Also in this query the first two joins can be merge-joins, while the last has
only its right operand ordered.
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(?person, ?doc, ?name) (?person, ?mbox)

(?person, ?doc, ?name, ?mbox)

(?person, ?doc, ?name, ?mbox, ?title)

PSO

(?person, ?name)

PSO

PSO

(?person, ?doc)

(?doc, ?title)

PSO

ρ ?person← s
?doc← o

(σp=Id(foaf:publication))

ρ ?person← s
?name← o

(σp=Id(foaf:name))

ρ ?person← s
?mbox← o

(σp=Id(foaf:mbox)

ρ ?doc← s
?title← o

(σp=Id(dc:title)
Z

Z

Z

Figure A.2:

A.3.3 Query 3

prefix m: <http://motorbikeontology.org/terms/>

select ?name ?price

where { ?bike m:modelname ?name .

?bike m:engine ?engine .

?engine m:cylinders 3 .

?bike dc:price ?price

FILTER(?price < 7000) }

The query searches for those motorbikes that have a three-cylinder engine and
a price lower than 7000 Euros.

Two different plans are shown: the first (fig. A.3) selects the bikes with the
requested price and joins the result first with the bikes withthree cylinders and
then retrieves their names; the second (fig. A.4) pulls the selection on price up,
looking first for the bikes with the requested engine, then retrieving their names
and prices and finally selecting the right price from the result.

The second approach has the advantage to perform only merge joins, except
the first one (the leftmost in figure A.4), but the final select on the price has to scan
the full result. The first can perform the selection on price with an almost free of
cost slice view 2.4, but it cannot perform merge joins; it cananyway count on the
fact that at least one operand has always the join column sorted.

The selections on price take also the POSNUM MIN ID argument, that rep-
resents theoid of the smallest positive numeric in MonetDB’s dictionary.
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OPS

PSO OPS

(?bike, ?engine)
(?price, ?bike)

(?engine)(?bike, ?engine)

(?price, ?bike, ?engine)

(?price, ?bike, ?engine, ?name)

(?bike, ?name)

PSO

σp=Id(m:engine) σo=Id(3)∧p=Id(m:cylinders)

σPOSNUM MIN ID<o<Id(7000)∧p=Id(dc:price)

σp=Id(dc:modelname)

Z

Z

Z

Figure A.3:

PSO OPS

(?engine)(?bike, ?engine)

(?bike, ?engine) (?bike, ?name)

PSO

(?bike, ?name, ?engine)

PSO

(?bike, ?price)

(?bike, ?price, ?name, ?engine)

σp=Id(m:engine) σo=Id(3)∧p=Id(m:cylinders)

σp=Id(dc:price)

σp=Id(dc:modelname)

σPOSNUM MIN ID<?price<Id(7000)

Z

Z

Z

Figure A.4:
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