Universit degli studi‘Roma Tre”

==ROMA
A 1TRE

UNIVERSITA DEGLI STUDI

Facol& di Ingegneria

Corso di Laurea Magistrale in Ingegneria Informatica

A SPARQL front-end for MonetDB

Relatore Correlatore Laureando
Paolo Atzeni Peter A. Boncz Marco Antonelli
274455

Anno Accademico 2002008

Preface

This thesis starts with a collaboration with the CWI, CenteMathematics and
Informatics (in Dutch: Centrum voor Wiskunde en Informaljca prestigious
Dutch research center located in Amsterdam, one of the rpstrtant in Europe
in these fields and a member of the ERCIM, the European Researdodam
for Informatics and Mathematics.

One of the research themes at the CWI concerns the problenisedtathe
“data explosion”: how to find relevant information in the ieasing amount of the
available data?

On this theme one of the research groups of the CWI has beenogewg!
since 1994 MonetDB, an open-source database managemamsstcialized in
obtaining high performances in query-intensive applaatilike decision support
(OLAP), data mining, geographical information systemsJ{znd XQuery; this
DBMS is and has been since its early stages a scientific résplaiform in the
database field.

A new application of relational systems is RDF data storagkearery; the
goal of this language is to formally express metadatasunlgect-predicate-object
form, making the information that this language descrilmslligible to a com-
puter. A web page is now comprehensible only to humans; libeifneaning of
that page is expressed in a formal language then it can bmatitally processed
making content search, for instance, much mdfective. RDF constitute thus
the foundations of the web of the future, the “Semantic Web”.

How relational engines can manage and quéigotively considerable amoun-
ts of RDF triples, in the order of hundreds of millions, islstile object of a
remarkable scientific researchiat.

My job at CWI was to kick-start the MonetDB frgleind for SPARQL, the
RDF query language.

The developed code, in C language, brought on one side toréatian of
a new module of MonetDB, described in chapter 5, that definegdhational
structures that contain the RDF data and the import and ekpwtions from and
to plain textual documents; on the other to a SPARQL parsestwhiven a query,
it translates it to its algebraic form.

PREFACE ii

The theoretical work concerned the translation of the SPARQebra in
relational algebra, proposed in the last section of chapter

The first chapter describes RDF, both in its syntax and its sgosa chapter
2 introduces MonetDB, its fundamental principles, its aeatture and the data
structure on which this DBMS is centered on, the binary table.

Chapter 3 illustrates the general RDF storage techniques iaes @n over-
view of the main projects related to this subject.

Chapter 4 exposes, in examples and formally, the SPARQL gaegubhge
and its algebra; the last section, referref to above, pepés each operator of
this algebra an equivalent relational expression.

The last chapter describes the data structures used in BBt contain
the RDF triples, how these are imported from a textual docunaen which are
advantages and drawbacks of the suggested solution.

Appendix A, finally, examines a set of choices that MonetBIBARQL may
perform to get the maximum benefit from the adopted datatsires.

Prefazione

Questa tesi nasce da un esperienza di lavoro presso il CWI,dJsertla Mate-
matica e I'Informatica (in olandese: Centrum voor Wiskundérdormatica), un
prestigioso centro di ricerca olandese situato ad Amsterdao dei pil impor-
tanti in Europa in questi campi e membro dellERCIM, il consor@uropeo per
I'Informatica e la Matematica, di cui fa parte anche il CNRi&ao.

Una delle tematiche di ricerca scientifica presso il CWI rigade problema-
tiche relative alla “esplosione dei dati”: come trovareommhazioni rilevanti nella
sempre crescente quaatii informazioni disponibili?

In quest’ambito uno dei gruppo di ricerca del CWI sviluppa sah1994 Mo-
netDB, un DBMS open-source specializzato per ottenere adtamioni in appli-
cazioni “query-intensive” come il supporto decisionald &P), il data mining, i
sistemi informativi geografici (GIS) e XQuery; questo DB ®de stato per tutti
questi anni una piattaforma per la ricerca scientifica nedp@delle basi di dati.

Una nuova applicazione dei sistemi relazionali consisiéimenagazzina-
mento e la ricerca di dati espressi in RDF; lo scopo di quesgubggice di espri-
mere in maniera formale dei metadati sotto forma di trgdggetto-predicato-
oggettq rendendo in tal modo intellegibile per un calcolatore feimazioni che
questo linguaggio descrive. Una pagina web, oggiomprensibile solo ad un
essere umano; ma se le informazioni contenute sono espreaselinguaggio
formale allora queste possono essere processate autametite rendendo le ri-
cerche di contenuti, ad esempio, moltal gficaci. RDF costituisce dunque le
fondamenta del web del futuro, il “Web Semantico”.

Come possano perriuscire i sistemi relazionali a contenere ed interroga-
re dficacemente quanditconsiderevoli di triple RDF, dell’ordine di centinaia di
milioni, € ancora oggetto di un notevole sforzo di ricerca.

[mio compito presso il CWE stato quello di iniziare il frorend di MonetDB
per SPARQL, il linguaggio di interrogazione per RDF.

Lo sviluppo di codice, in linguaggio C, ha portato da una palfie creazione
di un nuovo modulo di MonetDB, descritto nel capitolo 5, chirdsce le strutture
relazionali per la rappresentazione dei dati RDF e le funzibrmportazione ed

PREFAZIONE v

esportazione di documenti in forma testuale; dall’altraiagbarser per SPARQL,
che data una query la traduce nella sua forma algebrica.

Il lavoro teorico ha riguardato la traduzione dell'algeBRARQL in algebra
relazionale, proposta nell’'ultima sezione del 4° capitolo

Il 1° capitolo della tesi descrive RDF, sia nella sintassi oéka semantica; il
secondo mentre il 2° introduce MonetDB, i sui principi basjla sua architettura
e la struttura dati sulla quale questo DBM $1centrato, la tabella binaria.

Il capitolo 3 illustra le tecniche generali di immagazziremto di RDF ed
effettua una panoramica dei principali progetti correlati agjo argomento.

Il quarto capitolo espone sia per esempi sia formalmenitegliaggio di inter-
rogazione SPARQL e la sua algebra; 'ultima sezione, conte depra, propone
per ogni operatore di quest’algebra una espressione sakei equivalente.

L'ultimo capitolo descrive le strutture dati utilizzate MonetDB progettate
per contenere le triple RDF, come gueste vengano importantendlocumento
testuale, e quali siano i vantaggi e gli svantaggi dellazgohe proposta.

L'Appendice A, infine, esamina un insieme di scelte che MDEB¢SPARQL
puo intraprendere per trarre il massimo vantaggio dalletstreidati utlizzate.

Contents

Preface i
Prefazione iii
1 The Resource Description Framework 1
1.1 Introduction 1
1.2 Uniform Resource Identifiers 1
1.3 GraphDataModel 2
1.4 RDF serializationlanguages 3
1.4.1 Notation3, Turtle and N-Triples 3
1.4.2 URInamespaces usedinthisthesis 4
143 RDEXML 4
15 Blanknodes 5
1.6 Literals e 6
1.6.1 Datatypes 6
1.6.2 Typedliterals 6
1.6.3 Plainliterals, 7
1.7 RDFSchema 7
171 Classes 8
1.7.2 Properties 8
1.7.3 Richerschemalanguages. 10
2 MonetDB 11
2.1 Designprinciples 11
2.1.1 Asimplebinaryalgebra 11
212 ManmemoryDBMS 12
2.2 Architectureoverview oo 13
2.3 Binarytablesstructure 14
2.4 Binary table optimizations 16
2.5 Currentstatusandfuture 17

CONTENTS Vi

3 RDF storage technigues and related work 19
3.1 RDFstoragetechniques 19
3.2 OpenLinkKVirtuoso 22

3.21 Maintableindexing 23
3.2.2 Query optimization through data sampling. 3 2
3.3 Sesame 24
3.3.1 ArchitectureofSesame, 24
3.32 SAIL ... e 24
3.4 Jena 27
3.4.1 Storageschema 27
3.42 Architecture. 28
3.5 Otherstorageengines 29

4 SPARQL 31
4.1 Introduction 31
4.2 GraphPatterns 31

4.2.1 BasicGraphPatterns 32
4.2.2 GroupGraphPatterns 33
4.2.3 Optional Graph Patterns 34
424 UnionGraphPatterns. 35
425 Filteringresults oL 36
43 RDFDatasets 36
4.3.1 PatternsonNamed Graphs 38
44 SPARQLsemantics, 40
4.4.1 Initial definitions L oL 40
442 SPARQL abstractquery 42
4.4.3 Graph Pattern translation to SPARQL algebra 43
4.4.4 Modifiers translation to SPARQL algebra 45
445 BasicGraphPatterns 45
446 SPARQLalgebra 46
447 Expression Evaluation 49
4.5 SPARQL to Relational Algebra translation 05
45.1 Relational algebraonmultisets 50
45.2 Filtertranslation 54
453 BGPtranslation. 54
454 Jointranslation, 55
455 Leftointranslation 57
45.6 Uniontranslation 58

45.7 Graphexpressiontranslation 59

CONTENTS Vi

5 RDF storage in MonetDB 60
5.1 Datastructures 60
5.1.1 Datatables 60
5.1.2 Dictionarytable. 60
5.2 Importing algorithmo oL 67
5.2.1 Firstphase 68
5.2.2 Secondphase—sorting 69
53 Conclusions 70
Appendices 74
A Materialized view choice 74
A.1 Single triple patternBGPs 74
A1l 3variables oo 74
Al2 2variables 75
A.l3 1lvariable 75
A.2 BGPsoftwotriplepatterns 76
A.2.1 Noconstraints 76
A22 lconstraint 77
A23 2constraints 79
A2.4 3constraints 81
A25 4constraints 83
A.3 MorecomplexBGPexamples 83
A3l Queryl 83
A3.2 Query2 e e 84

A3.3 Query3 e 85

Chapter 1

The Resource Description
Framework

1.1 Introduction

The Resource Description Framework [5] is “a language foreggnting infor-
mation about resources in the World Wide Web” [38].

RDF is based on the idea that each piece of information is airesdhat
has properties that have values. The resources can belsesdherefore, by a
set of statementsn the subject-predicate-object format: thebjectis that part
of the statement that identifies the Web resource underigésar, thepredicate
identifies a property of the subject, and thigiectis the value of that property.
Because all statements have this structure, they are alsd trgbles.

A statement with this simple subject-predicate-objeatcitire may be

’The page http://example.org/index.html has a creator whose value is John Smith ‘

wherehttp://example.org/index.html IS the subjectcreator is the predicate
andJohn Smith is the object.

1.2 Uniform Resource ldentifiers

The above example, however, does not unequivocally idewtifat the concept
of creator Or who John Smith iS. Any resource, that might be a web page, a
book, a person, or any abstract concept has to be describad Ugiform Re-
source Identifieor URI. URIs are a generalization of URLs (Uniform Resource
Locators), that identify a resource by its access mecharli#Ri are well suited
for web pages or mail boxes, but not for any other resourdeigheot physically
accessible on the Web.

CHAPTER 1. THE RESOURCE DESCRIPTION FRAMEWORK 2

The above statement may be represented by an RDF triple having
e asubjechttp://example.org/index.html

e a predicatexttp://purl.org/dc/elements/1.1/creator

e an objechttp://example.org/staffid/85740

wherehttp://purl.org/dc/elements/1.1/creator iS a URI that identifies the
“creator” concept, andttp://example.org/staffid/857460 unequivocally identi-
fies a specific John Smith.

A further generalization of URIs arkRls, i.e. Internationalized Resource
Identifiers that are not restricted to the ASCII character set but allse Bni-
code characters. Every URI is also an IRI, and every IRI can Imslated to an
URI, substituting every non-ASCII character with the eqeval‘percent encod-
ing”, that consists of a ‘%’ followed by the Unicode codepdimat identifies the
character.

1.3 Graph Data Model

Since the object of an RDF statement may be a subject of antitpler, a set
of statement forms a labeled and directed graph, where @slg@d objects are
nodes and each predicate is an edge directed from a subgatiigiect.

Figure 1.1 is a simple RDF graph that extends the above example

http://example.org/index.html

http://purl.org/dc/elements/1.1/creator

http://example.org/staffid/85740

http://example.orgfterms/name
http://example.org/mailbox

mailto://johnsmith@example.org

Figure 1.1: Simple RDF graph

John Smith

CHAPTER 1. THE RESOURCE DESCRIPTION FRAMEWORK 3

The URIhttp://example.org/staffid/85740 has two additional properties:
the name of the person represented by the URI and his mailbexigare 1.1
may suggest, object can be either URIs or constant valudeddia¢rals. In the
figure, literals are shown as boxes, and URIs as ellipses.

1.4 RDF serialization languages

This section introduces the languages to express RDF dataimtgxt files. It is
not intended to be a complete reference, but just an inttauoeeded to show
example data in a rigorous manner; many details will be skddpr the moment
and introduced later in this chapter, when necessary.

The recommended standard language is RDA [13], that encodes the
triples in the tree structure of XML. Since it is not easihadable for humans,
the Notation3 (or N3) [15] language has been developed:pghsach of N3 and
its dialects, Turtle [14] and N-Triples [29], is to expligilist the RDF statements
one after the other.

1.4.1 Notation3, Turtle and N-Triples

These languages are each a subset of the other, with Nd@&di&ing the largest
and N-Triples the smallest; for this reason, and becauskeofdtal compatibil-
ity of the smaller languages with the larger ones, N3, Tuatid N-Triples are
described together.

Each statement of an RDF graph is listed onféedent line, terminated by a
dot. The subject, the predicate and the object are sepdratethite spaces, the
URIs are written between<’ and ‘>’ characters and the literals are quoted.

The RDF graph in figure 1.1 can expressed with

<http://example.org/index.html> <http://purl.org/dc/elements/1.1/creator> <http://example.org/staffid/85740> .
<http://example.org/staffid/85740> <http://example.org/terms/name> "John Smith" .
<http://example.org/staffid/85740> <http://example.org/terms/mailbox> <mailto://johnsmith@example.org> .

or more compactly, in Turtle and N3, with

@prefix ex: <http://example.org/> .

@prefix exterms: <http://example.org/terms/> .
@prefix exstaff: <http://example.org/staffid/> .
@prefix dc: <http://purl.org/dc/elements/1.1/> .

ex:index.html dc:creator exstaff:85740 .
exstaff:85740 exterms:name "John Smith" .
exstaff:85740 exterms:mailbox <mailto://johnsmith@example.org> .

N3 and Turtle permit one to declare URI prefixes, while N-Tegptoes not
allow it. This language, in fact, was intended as a test-t@asguage, and thus
N-Triples documents were not supposed to be written or rgddilnans.

CHAPTER 1. THE RESOURCE DESCRIPTION FRAMEWORK 4

A URI reference can thus be expressed in N3 and Turtle wijiredified name
that consists of a prefix that has been assigned to a namedpaca colon and
a local name, without angle brackets. The full URI referesddé concatenation
of the namespace associated with the prefix and the local.name

1.4.2 URI namespaces used in this thesis

From now on, this thesis will make use of the following “wkhown” prefixes to
keep URI references short and to avoid repetition:

@prefix rdf: http://www.w3.0rg/1999/02/22-rdf-syntax-ns#
@prefix rdfs: http://www.w3.0rg/2000/01/rdf-schema#
@prefix dc: http://purl.org/dc/elements/1.1/

@prefix xsd: http://www.w3.0rg/2001/XMLSchema#

1.4.3 RDHXML

RDF/XML [13] is the recommended serialization language for RDE,dnce N3
and its subsets are easier to read, their use will be preféorehe examples of
this thesis.

The graph in figure 1.1 in RDKML can be expressed as:

<?xml version="1.0"7>
<!DOCTYPE rdf:RDF [
<!ENTITY rdf "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#">
<!ENTITY ex "http://example.org/">
<!ENTITY exstaff "http://example.org/staffid/">
<!ENTITY exterms "http://example.org/terms/">

<!ENTITY dc "http://purl.org/dc/elements/1.1/">
1>
<rdf:RDF xmlns:rdf = "&rdf;"
xmlns:exterms = "&exterms;"
xmlns:dc = "&dc;">

<rdf:Description rdf:about="&ex;index.html">
<dc:creator rdf:resource="&exstaff;85740"/>
</rdf:Description>

<rdf:Description rdf:about="&exstaff;85740">

<exterms:name>John Smith</exterms:name>

<exterms:mailbox rdf:resource="mailto://johnsmith@example.org"/>
</rdf:Description>

</rdf:RDF>

TheentiTy declarations are shorthand: the string associated witleniigy
rdf can be referenced further in the documengbyst; . The names of the tags
are qualified names, and are expanded as in N3; the prefixsicdise is declared
as an XML namespace (i.@nlns).

CHAPTER 1. THE RESOURCE DESCRIPTION FRAMEWORK 5

The URI references of a subject of a statement are generatlgree in the
rdf:about attribute of arnrdf:Description tag, whose internal nodes represent the
properties of that subject and their values.

1.5 Blank nodes

Other kinds of nodes that can be found in RDF graphs, togetitbruRI ref-
erences and literals, are blank nodes. These, unlikel&taral like the URIrefs
can be both subject and objects, but with thedence that they do not have a
universal name; blank nodes are therefore local to an RDFhgrap

Blank nodes are frequently used to encapsulate structuted @aashown in
figure 1.2 for an address.

http://example.org/staffid/85740

http://example.org/terms/address

http://example.org/terms/hdusenumber http://exampie.org/terms/state

http://example.grg/terms/street

http://example.org/terms/city
England

Royal College St. London

Figure 1.2: A blank node representing an address

In N3 a blank node is represented by a blank node identifieo idientical ids
in a graph refer to the same blank node, but equal identifredifierent graphs
refer to diferent nodes, since separate graphs do not share any of them.

The graph in figure 1.2 can be expressed in N3 as

@prefix exstaff: http://example.org/staffid/

@prefix exterms: http://example.org/terms/

exstaff:85740 exterms:address _:address .

_:address exterms:housenumber "34" .

_:address exterms:street "Royal College St." .
_:address exterms:city "London" .

_:address exterms:state "England" .

Blank node identifiers start with an underscore and a coldigwed by a
label: in the example:address is the identifier of the blank node that represents
the address.

CHAPTER 1. THE RESOURCE DESCRIPTION FRAMEWORK 6

1.6 Literals

The literals presented heretofore this section were udtypst sequences of char-
acters. Using the RDF terminology they atain literals. RDF permits alstyped
literals, were the type is identified by a URI reference.

Since XML Schema already defines a complete type system RIBI;, does
not define any new type except on@f:xMLLiteral , used for embedding XML
in RDF.

1.6.1 Datatypes

Formally, a datatype consists of a lexical space, a valueespad a lexical-to-

value mapping.
The XML boolean datatypesd:boolean , for example, has a value space of
two elements:

Vv ={T,F.
a lexical space of four elements:
L - {Htrue))’ “falsell’ Hl”, HOH }‘
and the following lexical-to-value mapping:

M = {<“true”, T>,<"1", T>, <0", F>, <"false”, F>}.

1.6.2 Typed literals

The general way to express a typed literal in the NotatioaBdts is:

"[Lexical Form]"""<[URI referencel>

and only in N3 and Turtle:

"[Lexical Form]"""[Qualified name]

The integer 24 is thug4" " “<http://www.w3.0rg/2001/XMLSchema#integer> OF
"24"""xsd:integer . N3 and Turtle can also parse numeric and boolean literals
with no datatype URI and cast them automatically. The comstalue true ,
with no quotes, is equivalent tarue""“xsd:boolean , and123 is equivalent to
123" "xsd:integer .

CHAPTER 1. THE RESOURCE DESCRIPTION FRAMEWORK 7

XML literals

XML literals are literals whose value space is an XML treeRIDF/ XML docu-
ments, custom XML markups can be embedded withréfieparseType="Literal"
attribute:

<?xml version="1.0"7>

<!DOCTYPE rdf:RDF [
<!ENTITY rdf "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#">
<!ENTITY ex "http://example.org/">

1>

<rdf:RDF xmlns:rdf = "&rdf;">

<rdf:Description rdf:about="&ex;someXML">
<rdf:value rdf:parseType="Literal">
<root/>
<node prop="value"/>
</root>
</rdf:Description>

</rdf:RDF>

XML literals can be expressed in the N3 dialects as well, brgquires a lot
of escaping:

@prefix ex: <http://example.org/> .
@prefix rdf: <http://www.w3.0org/1999/02/22-rdf-syntax-ns#>

ex:someXML rdf:value "<root/>\n\t<node prop=\"value\"/>\n</root>"""rdf:XMLLiteral .

1.6.3 Plain literals

A literal that has only the lexical form is called in RDFpdain literal. Plain
literals may specify d&anguage tagas defined by RFC 3066 [11], normalized to
lowercase.

In N3, Turtle and N-Triples, the optional language tag fetdhe lexical form
and the ‘@’ separator character. For example, the literalenze" with Italian
language tag iSFirenze"@it .

1.7 RDF Schema

When RDF users want to describe their resources, they areraksiing azocabu-
lary: a well defined set of terms offtierent classes, each with specific properties.
For example, people interested in describing bibliographsources would
describe classes such as:book , and use properties such as:author and

ex:title.

CHAPTER 1. THE RESOURCE DESCRIPTION FRAMEWORK 8

RDF Schema (or RDFS) [19] is a standard vocabulary that previgeterms
to describe such classes and properties: for example itifgeome to say that
ex:author IS an expected property of a&:book . In this sense RDFS provides
a type system for RDF, since it allows one to define classes]asdes and their
properties. But this information is not a constraint like ipbjext-oriented lan-
guages, but just provide an additional description abaRDF resources.

1.7.1 Classes

In RDF Schema, a class is an instance ofdi@:class resource, thus a class is
any resource having afaf:type property whose value igifs:Class .
This example defines a class of motor vehicles:

@prefix ex: http://example.org/schemas/vehicles .

ex:MotorVehicle rdf:type rdfs:Class .

A patrticular vehicle is then an instance&f:MotorVehicle :

@prefix ex: http://example.org/schemas/vehicles/ .
@prefix exterms: http://example.org/terms/ .

ex:MotorVehicle rdf:type rdfs:Class .
exterms: johnSmithsCar rdf:type ex:MotorVehicle .

Differently from some object-oriented languages, a resourcbean instance
of more than a single class.

Subclass relationships are defined with the standafsk subClassof predi-
cate. Trucks and vans, for example, are subclasses of tloe wadticle class, and
the minivan category is a subclass of van:

ex:Truck rdfs:subClassOf ex:MotorVehicle .
ex:Van rdfs:subClassOf ex:MotorVehicle .
ex:MiniVan rdfs:subClassOf ex:Van .

RDF software that understands the meaning of RDFS can inferisgpoint,
thatex:Minivan is also a subclass @k:Motorvehicle , SinCerdfs:subClassOf IS
a transitive property (see [19], section 3.4), and tk&tvan , ex:Minivan and
ex:Truck are classes as well.

1.7.2 Properties

In RDF Schema, the properties of the classes are describegl thed RDF class
rdf:Property , and the RDF Schema propertie&fs:domain , rdfs:range , and
rdfs:subPropertyOf .

CHAPTER 1. THE RESOURCE DESCRIPTION FRAMEWORK 9

A resource can be defined as a property by declaring it to bestarice of
rdf:Property . The RDFS termrdfs:domain can be used to indicate that a par-
ticular property applies to a designated class. For exarpleks should have an
author property:

ex:Book rdf:type rdfs:Class .
ex:author rdf:type rdf:Property .
ex:author rdfs:domain ex:Book .

The triple ex:author rdfs:domain ex:Book does not specify only that books
have an “author” property, but also that every resourcehthatan “author” prop-
erty is an instance ofx:Book .

In programming languages, many classes (and thus thesmics$) may have
properties with the same name; in RDFS if the same propertyesyp two difer-
ent classes, then every resource that has that propertgdeiustbe an instance
of both classes. For example:

ex:weight rdf:type rdf:Property .
ex:weight rdfs:domain ex:Book .
ex:weight rdfs:domain ex:MotorVehicle .

exterms:someResource ex:weight "10"""xsd:integer .

means also thafxterms:someResource IS both an instance afx:Book and of
ex:MotorVehicle.

In the same way asifs:domain tells one which is the class of tiseibjectof
a triple using a certain propertytifs:range allows one to specify the class of the
object the author of book, for example, should be an instance otth®erson
class:

ex
ex

ex:
ex:

ex:

:Person rdf:type
:Book rdf:type
author rdf:type

author rdfs:range

author rdfs:domain ex:Book .

rdfs:Class .
rdfs:Class .
rdf:Property .

ex:Person .

RDF Schema provides a way to specialize properties as welhases, us-
ing the standar@dfs:subPropertyof property. Allrdfs:range andrdfs:domain
predicates that apply to an RDF property also apply to eads stib-properties:

ex
ex
ex

ex

:driver
:driver
:driver

rdf:type
rdfs:domain
rdfs:range

rdf:Property .

ex:MotoVehicle .

ex:Person

:primaryDriver rdfs:subPropertyOf ex:driver .

The primary driver of a vehicle, therefore, is, of coursepalex:driver of it.

CHAPTER 1. THE RESOURCE DESCRIPTION FRAMEWORK 10

1.7.3 Richer schema languages

RDF Schema provides basic capabilities for describing RDRabolaries, but
additional capabilities are also possible and useful, éi#ding cardinality con-
straints on properties, e.g. thataPerson has exactly one biological father, or
that a basketball team has five players; or specifying thatdifferent resources,
with different URI references, actually represent the same concept.

These capabilities, and many others, are the targetsflogy languages
such as OWL [40]. OWL is based on RDF and RDF Schema, and its irst¢ot i
provide additional machine-processable semantics fauress, that is, to make
the machine representations of resources more closelyntdseheir intended
real world counterparts. Both RDF and OWL are part of the devety of the
Semantic Web

Chapter 2
MonetDB

MonetDB [2] is an open source database management systextoded at CWI
[1], the Dutch National Research Institute for Mathematio$ @omputer Science
(in Dutch: Centrum voor Wiskunde en Informatica), one of #eding European
research centers in the field of mathematics and theoret@alputer science.
MonetDB is a platform for scientific research in the datalféedd; a list of all
the publications related to this system can be found at [7].

2.1 Design principles

MonetDB has been designed tieiently process query intensive workloads over
large datasets, in application fields like data mining, OL(@®-Line Analytical
Processing), GIS (Geographic information system), XML Queext and multi-
media retrieval.

To achieve this goal, MonetDB adopts a decomposed storagelidSM),
opposed to the conventional N-ary storage model (NSM). TBMDapproach
models relations as sets of columns instead of sets of tupleere each column
is represented by a binary table BAT in MonetDB, which consists ofaeadand
atail column, with the first containing a row identifier and thedattontaining
the actual data (figure 2.1).

2.1.1 A simple binary algebra

The immediate benefit of the column-wise storage is thaviés#O when scan-
intensive queries on tables with a large number of columed nest a few of them,
since only the ones needed are accessed: in an OLAP apphicédr instance,
where the fact tables are normally huge and with many colur$\v would
perform significantly faster than NSM if only a few columng aeeded.

11

CHAPTER 2. MONETDB 12

Id Name City
21340852 | John Smith New York
09123103| Adam Stevenberg Philadelfia
23494502 | Susan Coen Washigton D.C.

34209345 Sarah Ceylon Seattle
61548651 | Victor Valdez Miami
03475610 | Carlos Ramirez | Orlando

'

Id Name City
000021340852 0000 John Smith 0000 New York
0001/09123103 0001] Adam Stevenberg 0001 Philadelfia
000223494502 0002 Susan Coen 0002 Washigton D.C,
000334209345 0003| Sarah Ceylon 0003 Seattle
000461548651 0004 Victor Valdez 0004 Miami
0005/03475610 0005| Carlos Ramirez 0005/ Orlando

Figure 2.1: Decomposed storage model

The most important reason for which vertical fragmentatias been cho-
sen, however, is that it improves computationf@ilcgncy since it does not fiier
from problems generated by tuple-at-a-time interpretatidonetDB, instead,
processes data a column at a time, essentially looping ovarmray; this improves
the performances dramatically, since it leads to predietadstructions that can
be pipelined by modern CPUs, thus avoiding branch mispriedgand achieving
a good instruction-per-cycle ratio.

The disadvantage of this simple approach is that query éxecaannot be
pipelined, in the sense that the result of an operator cdtowtdirectly into the
next one; in a row-store, each operator eats tuples and pesduples that can
flow to the next operator, in a pipeline. MonetDB, on the cdgtraas to mate-
rialize every intermediate result, and therefore does caleswell on problems
significantly larger that main memory.

2.1.2 Main memory DBMS

MonetDB makes aggressive use of main memory by assumingh@atatabase
hot-set fits into it. It does not mean that all the data has tod&ged into memory:
for large databases, MonetDB relies on the underlying apgyaystem’s virtual
memory by mapping large BATs into it. This aspect is taken extcount in the
BAT design, that must have the same representation on diskhanain memory
in order to take advantage of memory mapping, thus avoidieguise of hard

CHAPTER 2. MONETDB 13

pointers [17]. In this way the hot pages are kept in memorny,tha less accessed
ones can be automatically swapped out on disk by the OS.

This important assumption makes memory access a severerao#cgeneral
observation about main memory access is that CPU speed secreauch faster
than memory latency has decreased, turning it into an isgrgdottleneck.

MonetDB’s execution engine is therefore focused on explgitCPU caches
through cache-conscious algorithms; the DSM approach hasen also for this
reason [36].

The system also packages a calibrator tool [37] that caksilthe L1 and
L2 cache sizes, their line-size and their access and messdias; it extracts the
number of the Translation Lookaside fBer levels, the capacity of each level, and
measures the main memory and TLB miss latencies.

2.2 Architecture overview

The architecture of MonetDB has a front-end and back-enouiffig. 2.2); the
back-end is the heart of the system, that provides the boheteaymodel, the query
execution engine and basic concurrency and transactiohanesns, while the
front-ends are query-language processors that may sughferent data models,
which are all mapped onto the back-end’s binary algebra.

Client

MonetDB/SQL MonetDB/XQuery

\

Monet Interpreter

Goblin Database Kernel

Decomposed Storage Model

~

Figure 2.2: MonetDB architecture

CHAPTER 2. MONETDB 14

The front-ends currently distributed with MonetDB are MtidiB/SQL and
MonetDB/XQuery; MonetDBSPARQL was just started as part of the work of
this thesis.

The interface between the back and the front-ends is prawigieéheMonetDB
Assembly Languag@r MAL) for the current version of MonetDB (ver. 5) and
by theMonetDB Interpreter Languager MIL, for version 4 of MonetDB. The
latter is still used by the XQuery front-end.

The low-level table-handling code supplying the binaryleéabthe facilities
to map them into virtual memory and the concurrency mechasis Goblin
Database Kernel (GDK).

MAL (as well as MIL) is a Turing-complete interpreted and gedural lan-
guage whose operators form a closed algebra on the bindegtahrgeted to per
formance (in terms of parsing, analysis, and ease of tamyapiation by query
compilers) and extensibility.

The clients can communicate with the MonetDB server thraihghstandard
database interfaces JDBC and ODBC, or through the native M&BtDgram-
ming Interface (MAPI). The Perl, PHP, and Python API are dwih top of the
MAPI routines.

2.3 Binary tables structure

A BAT (fig. 2.3) is a binary table, hence it hash@adand atail column. It
can be accessed through a pointer tBAI descriptoy that points to twacol-
umn descriptorsone for the head and one for the tail. A column descriptods$ol
column-specific information, such as the type of the storata @nd search ac-
celerators such as if the column is sorted or not, or if it aor® unique values.
The actual data is stored in tB&N heap an array of binary tuples, call&®lUNs
(Binary Units). The BUN heap can be reached from a BAT desarifhrough the
BUN descriptor

Fixed size data, like integers, floating point numbers oestamps, are stored
directly in the BUN record; variable size records like sgsrare kept in a separate
heap, with the BUN storing anfiset into it.

In such a way BUNs always hold fixed size data, allowing a s&ratay
representation.

The columns can be of quite a large number of types; these are:

e oid: integer values used as object identifier. Their length ddpen the
system MonetDB is built on: 32-bits on 32-bit systems andfig-on 64-
bit systems. If MonetDB knows that&d column is a dense ascending
sequence, it can be represented by virtaas .

CHAPTER 2. MONETDB 15

Normal Mirror
BAT descriptor ﬁ f/ BAT descriptor
tail tail head
head
BUN
descriptor
first last
Column Column
descriptor descriptor
BUN heap
Tail heap

fixed-size| integer
atom offset

LuoJe 8zZIS a|geneA

Figure 2.3: BAT structure

e void : virtual oids . They are dense ascending sequences@f starting
from a baseid , that is stificient to represent the whole sequence. Virtual
oids take therefore no storage space, and since they represeatrty
index of the other column (plus the base of the sequenca)evabkup by
virtual oid can be done with extremdfiency by position.

e bit: booleans, implemented with one-byte values.
e chr: single 8-bit character.

e bte: tiny 8-bit integers.

e sht : short 16-bit integers.

e int : the C language 32-bit integers.

CHAPTER 2. MONETDB 16

e wrd : machine-word sized integers (32-bits on 32-bit systemshi& on
64-bit systems).

e ptr: memory pointer values. Their length is also system-depend
e f1t: the IEEE 32-bit float type.

e dbl: the IEEE 64-bit double type.

e Ing: 64-bit integers.

e str:. zero-terminated UTF-8 strings.

e bat : a column of typaat holds BAT descriptor numbers.

New types can be defined for MonetDB, although it is a complexajon that
requires registering the new atom (and the routines retatéylinto the database
kernel, by writing an extension module.

A number of user-defined types, like date, time, timestanil,. @nd blob for
instance, is shipped with the system.

2.4 Binary table optimizations

Reverse view

The complex structure of BATs allows the performance of mapgmizations.
Every binary table, for instance, has two incarnations figeee 2.3): thenormal
view and thereversedview, that coexist. The reverse view has the the pointers to
the head and tail column descriptors swapped. The M#dror operator, that
returns the reverse view, is therefore free of cost.

Void view

The MAL mark operator, given a BAT, creates a new view introducing a néw ta
column of virtualoids . The new view shares the head column descriptor and the
BUN heap of the given BAT, and has a new column descriptorierail (see fig.
2.4). Tointroduce a new head @fids, it is suficient to call themark operator on
the reverse view of the original BAT.

This operation is almost free of cost and independent of timber of binary
tuples in the heap, and since MonetDB very often needs todote a sequence
of dense system-generaigids during query processing, this simple optimization
is very profitable.

CHAPTER 2. MONETDB 17

Normal Mirror
BAT descriptor ﬁ ﬁ, BAT descriptor
tail tail head
head
BUN
descriptor
last
Column Column
. descriptor descriptor
Normal view
Void view :
voi d
head column
descriptor
Normal hea Mirror
BAT descriptor | talil BAT descriptor
Figure 2.4: BAT void view
Slice views

Range-selects performed on ordered values of a BAT are ingpited as alice
view. The BUN descriptor of this view points to the part of the BUbkD that
satisfies the selection predicate, as shown in figure 2.5.

Since the data is sorted, the lookup of the values that gatief selection
predicate can be performed with a fast binary search, or fagter by position if
the column contairoids .

2.5 Current status and future

MonetDB by now has almost fifteen years of maturity, and hasetiore all the
features that one would expect from a modern database system

Since it started as an OLAP and data-mining tool, and thusege® high-
performance in query-intensive scenarios, it is not suibedipdate-intensive ap-
plications like OLTP.

On the other hand, MonetDB exhibits extremly good perforoeain the ap-
plication fields it was developed for, as shown by the TPC-Hherark [8].

The future is the MonetDE100 kernel [18, 53], that squeezes the CPU until
the last cycle, better utilizing the caches by processimgove of values (of appro-
priate size to make them fit into the cache) at once in a Volstyle execution
pipeline. The current version of MonetDB, instead, process® column at a
time and therefore is bound by the memory latency and by ttietlat it has to

CHAPTER 2. MONETDB 18

Normal Mirror
BAT descriptor ﬁ ﬁ/ BAT descriptor
head tail tail head
BUN
descriptor
first last
Column Column
descriptor descriptor

BUN heap
1
3
10
15
17
20
25
30
31

. 40

Normal view
Slice view
) BUN
first | descriptor | 'ast
head tail X tail head
Normal ’J L Mirror
BAT descriptor BAT descriptor

Figure 2.5: A range-select of values between 10 and 25

materialize every intermediate result.
X100 also gets rid of MonetDB’s assumption that the datasetrfto main

memory, in order to deal with problems significantly largeart the available
RAM; this new kernel can process data at an incredible spaddt tvould be

useless if the data itself cannot be loaded fast enough fieka do overcome
this problem, X100 adopts a proprietary lightweight consgren, that permits
the increase the disk bandwidth by storing the data compdessding this larger
bandwidth with some CPU utilization to decompress the dataotier way in

which X100 speeds up the perceived disk speed is to sharectims detween

concurrent queries.

Chapter 3

RDF storage techniques and related
work

Since RDF [5] became a W3C Recommendation in 1999, a considarabiber
of storage engines have been developed for this kind of theanost known tools
are OpenLink Virtuoso [49], Sesame [46, 20] and Jena [33,\8lile an updated
survey on RDF storage systems is available in [48].

3.1 RDF storage techniques

The most natural way to store an RDF graph in a relational daamanagement
system is in a three column table, with each row containiegstibject, property
and object of every triple in the graph. In some cases a fartlinen is present

to store the graph IRI; the alternative is to store each graghditerent table of

triples.

Normalization Since IRIs are long strings, and since object literals may eve
represent an entire book, it is common to normalize the tadbkbat same IRIs or
literals are mapped to a same 32 or 64-bit integer identifierder to save space.
The mapping between ids and IRIs or literals is done by one oermittionary
tables; since many IRIs have the same prefix, it is possiblete sven more
space by assigning them an id as well.

Property tables It is usual to find patterns in the RDF data, that comes both
from the RDF specification itself and from the user data. FangXe, RDF per-
mits one to define sequences and bags of objects, that altirgame structure.

It is possible to optimize the relational schema to bette¢hése patterns: the use
of property tables is a way to capture them. A property tabkedne column for

19

CHAPTER 3. RDF STORAGE TECHNIQUES AND RELATED WORK 20

the subject of an RDF statement, and one or more columns ngytlae the object
values of one or more properties for that subject. It is Uselfien there are groups
of properties that are often accessed together; for exainplay be common to
retrieve all the data of a person, like “name”, “surname” &eity”, at the same
time. If these properties are stored altogether in a prgdatile, as shown in

figure 3.1, the retrieval is faster than in the common thi@eran layout.

subject name | surname city

http://xmins.com/foaf/0.1/Alice | Alice Green | London

http://xmins.com/foaf/0.1/Bob | Bob Adams | New York
http://xmins.com/foaf/0.1/Cindy| Cindy Logan | Liverpool
http://xmins.com/foaf/0.1/GeorgeGeorge| Smith Edinburgh

Figure 3.1: A property table

Multi-column property tables are not suited for multi-vedliproperties, i.e.
properties that may have more than one value for a singlesubi this case for
each diferent object value, a new row would be needed in the propaiote tthat
hasnull values in all the columns except for the subject and the ptppeat
caused the new row to be added. Two-column property tablestbave this
complication, sinceull values are always avoided.

Vertical Partitioning A recent proposal [9] suggests using only two-column
property tables (fig. 3.2, with normalized subject), ordeva the subject. It has
the disadvantage of spreading properties that may be aft&saed together and it
requires more joins than with multi-column property tablag has the advantage
of avoiding the usual giant three-column table anth values, generating less
I/O, since only the tables with the needed properties are sedeahile equi-joins
on subjects can be executed with the merge algorithm, sircddta is ordered.
The advantages may be even more considerable when usingirarcokiented
database like C-Store [47] or MonetDB.

Materialized Join Views Since the most relevant cost of queries on RDF data
is represented by the joins needed to traverse the graphieaiatiaed view of
some of these would speed up processing, as discussed ia@19].

In the latter, this approach is recommended for path exjmessfor example
to find all the works of authors who were born in a certain yddms query re-
guires finding a path in the RDF graph from a work to a date, pggkirough an
author, which can be done with a equi-join on object (an authsome work) and

CHAPTER 3. RDF STORAGE TECHNIQUES AND RELATED WORK 21

dictionary

00 | http://xmins.com/foaf/0.1/Alice
01 | http://xmins.com/foaf/0.1/Bob

02 | http://xmIns.com/foaf/0.1/Cindy
03 | http://xmIns.com/foaf/0.1/George

name surname city
00 | Alice 00 | Green 00 | London
01| Bob 01 | Adams 01 | New York
02 | Cindy 02 | Logan 02 | Liverpool
03 | George 03 | Smith 03 | Edinburgh

Figure 3.2: Vertical partitioning

subject (authors born in a certain year). In a verticallytipaned schema, more-
over, the new path can be stored in a two column property tiigl@ll the others
in this approach, whose name is the concatenation of the tomepties traversed
by the path; in the example, the new table would be callatior:wasBorn, as
shown in figures 3.3 and 3.4.

_:a dc:author _:z .
_:a dc:title "The Cherry Orchard" .
_:b dc:author _:y .

_:a dc:title "Moby Dick" .

_:y dc:name "Herman Melville" .
_:y dc:wasBorn 1819" "xsd:gYear .
_:z dc:name "Anton Chekhov" .

_:z dc:wasBorn 1860" "xsd:gYear .

Figure 3.3: Works and authors graph

Searching for a work whose author was in born in 1860, for gans much
faster with this new table, since no joins are required angéo.

While in [9] only object-subject join materialization ised, [21] recommends
also materializing subject-subject and object-objectgoiAfter all, materializing

CHAPTER 3. RDF STORAGE TECHNIQUES AND RELATED WORK 22

author:wasBorn

:a | 1860"xsd:gYear
‘b | 1829"xsd:gYear

Figure 3.4: Materialized join view in a vertical partitiog approach

these views in a vertically partitioned store would creages nables that would
not respect the usual two-column schema.

A second approach to materialize joins presented in thismaphe “Subject-
Property Matrix Materialized View”. This matrix is a propgtable that contains
not only direct properties, but also nested ones. A proppstis direct for a
subjects, if there exists a tripleg,, p1, X), while py, is nested when there exists
a set of triples such asy(, p;, 01), (01, P2, 02), ..., Om-1, Pm, Om). Nested property
tables, thus, are a way to implement path expressions asgedpn [9], but with
the limitation that only single-valued properties can bedis

3.2 OpenLink Virtuoso

Virtuoso is an open source and commercial product that coestan ORDBMS
engine, a Web Application and File server in a single prodasupports Web Ser-
vices, XQuery and XPath for XML data queries, RDF data stoeageSPARQL,
among many other functionalities.

Its relational RDF storage system consists in six tables [3]:

e A Quad table, with columns G, S, P, and O, that store respectiveiplyr
subject and predicate IRI ids, and the object, of tgpg

e An Objtable, that stores long string objects. It has three colyemmebject
ID as primary key, and the VAL and LONGAL columns.

e Four id-to-string mapping tables, for IRIs, IRI prefixes, d@b@s, and lan-
guage tags.

If the object value is a non-string SQL scalar, such as a numbdate, an IR,
or a string of less than 20 characters, it is stored in its/addinary representation
in the O column of theQuad table. Long strings and RDF literals with non-
default type or language are stored usingdfbox composite object. Its fields
are datatype, language, content (or beginning charactertoog string content)
of the object, and a possible reference to@g table, which holds string literals
longer than a certain threshold or that should be free-taldxed. Depending on

CHAPTER 3. RDF STORAGE TECHNIQUES AND RELATED WORK 23

the length of the text, this is stored into the VAL or in the LGNAL column.
The truncated value present in the O column of @hed table can be used for
determining equality and range matching, even if closelycimag values need
to look at the real string i®bj. When LONGVAL is used to store a very long
value, VAL contains a checksum of the value, to accelerateckefor identical
values when the table is populated by new values.

3.2.1 Main table indexing

The mainQuad table is represented by two indexes, one on GSPO and anather o
PGOS. These indexes have proven to heative for two common and practical
classes of queries: those that, given a subject and a pyppegrieve the associated
objects; and those that find subjects for some defined psopettto a value. In
both cases G has to be known, otherwise the queries are nerptssible to
evaluate, as stated in [27].

The PGOS index represents the subject column as a bitmaplen to obtain
a compression of the index itself (a detailed descriptiom loa found in [26]).
Instead of saving the subject IRI id in its binary represeoafor each PGO, up
to 8K different subject IRI ids are stored together in a bitmap strimfprag as they
have the same PGO and fall in the same segment of the integexilowhich is
divided in blocks of 8K values. This approach saves spaceetwi avoids many
repetitions of identical PGQO'’s, and may store up to 8192extbjin a bit array,
with just a small overhead for identifying a block in the ig¢e domain.

Ifin a segment there are less than 512 IRl ids to represen &it®ap would
waste space; in this case compression is achieved storuigecsas a 16 bit entry
in a list; each of the entries is aiffset from the start of the block. If in one of the
blocks there is only one IRI id to save, this is stored “as is”.

With the Wikipedia links set, the PGOS index size is a quastehe size of
the GSPO index, which cannot represent the objects as appbiinee these are
not fixed length integers in Virtuoso. It took 60% of the spat&SPO with the
WorldNet set. Both datasets can be found at [25].

3.2.2 Query optimization through data sampling

It is common for SQL optimizers to have statistics aboutdalib be queried,
such as the number of rows, or the number of distinct valuaxwlumn and their
distribution. These kinds of metadata become much lessiusen all the data
is stored in a single table [27].

A solution for this problem is to have a look at the actual datiaen a query is
compiled, Virtuoso’s optimizer takes a sample of the indexynting in each level
of the tree how many ways it branches out and how many of tietéaters match

CHAPTER 3. RDF STORAGE TECHNIQUES AND RELATED WORK 24

the search condition. For example, in a query where some &R values have
to be matched, it is possible to know how many siblings of itk tree have the
same given G, S, and P, allowing it to accurately estimatec#indinality of the
matching set. The same estimate can be made for the whole il key part
is known, using a few random samples of the index.

3.3 Sesame

Sesame is a store and a reasoning tool for RDF. It can be bankedmy RDBMS,
but it may also use plain files or main memory for storing the REfles; the
abstraction of the storage mechanism is provided by the $#/r (Storage And
Inference Layer), which also exploits the features of thtiaaar DBMS.

3.3.1 Architecture of Sesame

Sesame has a layered architecture (fig. 3.5), where eaahHaygea well-defined
and highly-cohesive set of responsibilities. The uppetneger is composed
of a set of ProtocolHandlers, namely HTTP, SOAP and RMI, whegeive the
requests of the clients. The RequestRouter directs theseseqgio one of the
underlying application modules, which are teery, admin andexport modules.

Thequery module parses and optimizes a query, that can be perforntad in
last version of Sesame in SeRQL (Sesame RDF Query Languag&PARIQL;
the optimized query is then passed to the SAIL layer. d¢h@in module allows
one to incrementally add data to an RDF repository or to déletéhile the role
of the export module, as the name may suggest, is to make batch exporte of th
RDF data.

3.3.2 SAIL

This layer transparently abstracts the specific storagbadeb the upper layers
of Sesame, and translates the requests (queries, incianresgrts and batch ex-
ports) to DBMS-specific SQL code, or to Java method calls theage main
memory and file storage. Thus, its API defines a basic interfacstoring, in-
serting and deleting RDF data.

The SAIL is also able to deal with RDFSchema: fiews methods for querying
class and property subsumption, and domain and rangectestd. Since any
SAIL implementation has a complete knowledge of the undwglgtorage engine,
for example the specific RDBMS schema, it can use this knowleulgger class
subsumption morefgciently.

CHAPTER 3. RDF STORAGE TECHNIQUES AND RELATED WORK 25

HTTP SOAP RMI

Protocol Handlers

Request Router

Application modules

query admin export

SAIL

Figure 3.5: Architecture of Sesame

The SAIL implementations that deal with DBMSs are currentlg tone that
integrates MySQL and one PostgreSQL.

SAIL /PostgreSQL

The PostgreSQL specific implementation exploits its obgeEnted features, in
particular subtables and table hierarchy.

As in many RDF engines, also in SARostgreSQL the IRIs and the literals
are normalized by mapping them to numeric ids, but this isedonan object-
oriented fashion: if a resource does not have a defidetype property, then it
will be mapped to an id in thResource table, otherwise in a table named as the
class, that extendBesource (in figure 3.6,Writer and Book extendResource,
andFamousWriter extendsWriter). Thus, if a new class is added to the store, a
new table has to be created.

If one class extends some other one, the two tables thatsesprénem will
constitute a row entry in thBubClassOf table, as subtableSamousWriter and
Writer tables are an example of this situation in figure 3.6. The sgppeoach is
used for properties and subproperties.

CHAPTER 3. RDF STORAGE TECHNIQUES AND RELATED WORK 26

Class Schema
uri SubClassOf
Resource source target
Writer Writer Resource Range
FamousWriter FamousWriter | Writer source target
Book Book Resource hasWritten Book
Property
- SubPropertyOf Domain
uri
hasWritten source target source target
hasTitle hasWritten Writer

Resource mapping
Resource

id iri

1000 | http://prefix/untyped-res

Book Writer Literal
id iri id iri id value
1020 | http://prefix/ISBN51546 1010 | http://prefix/Brown 1025 |’Moby Dick’
FamousWriter
id iri

1015 | http://prefix/Melville

hasWritten hasTitle Data
source target source target
1015 1020 1020 1025

Figure 3.6: SAIl/PostgreSQL database schema

This schema has proven to be satisfactory in querying sosndiut slow
during inserting, since in PostgreSQL the creation of néatians is an expensive
operation, and also since subtables cannot be inserted@sinalues, requiring
the destruction and rebuilding of tisaibClassOf table every time a new subclass
relationship has to be added; the only way to have subtableslaes is to specify
them at the time of creation of the container.

SAIL /MySQL

MySQL's specific implementation adopts a complex but diriclational schema
(see [20] for details), that stores RDFSchema informatiixe ¢/pe, class, sub-

CHAPTER 3. RDF STORAGE TECHNIQUES AND RELATED WORK 27

ClassOf, property or subPropertyOf) in separate tables from the triples, and nor-
malizes IRIs and the IRI prefixes. A colurimnderived is added in the triples table
and in the RDFS relations to encode the fact that a triple, pguty or class sub-
sumption, for instance, has been created by the RDFScheswneran the SAIL.
This schema has the advantages over PostgreSQL that dagsange when new
RDFSchema information is added, and performs significargtieb especially in
inserting new data.

3.4 Jena

Jena is an open source project written in Java, which is etlyren its second
version. The main storage problems addressed by JenaZ2 are:

e the excessive number of joins between the triples’ tablet@dd-to-string
dictionary

e the hugeness of the main triples’ table, which lead to sdélabomplica-
tions

e the reified statements storage, that would normally reduoire statements
for each statement to reify

e query optimization, which in Jenal was performed in the Jayer and did
not rely on the DBMS.

3.4.1 Storage schema

In its first version, Jena used to store its statements infadolumn table, where
the object was stored in one of twoff@rent columns, depending on if it was
an IRl or a literal. The schema was normalized, so two othdesakerved as
dictionaries, one for IRIs and one for literals.

This schema was adopted with any DBMS, except with BerkleyDBhis
case, the schema was not normalized, and replicated thmes,tindexed once on
subject, once on property and once on object. In many casesgtproach proved
to be faster, in part because of the lack of transactiongbatipn BerkleyDB,
but mostly because of the fewer number of joins required leyddnormalized
schema.

Thus, in its second version Jena stores the IRI strings ankitenals directly
in the main table, which consists of the classical threewool layout, except for
those which exceed a configurable threshold, whose de$s2g characters. Dif-
ferent RDF graphs can be stored iffdient statement tables, in order to keep the

CHAPTER 3. RDF STORAGE TECHNIQUES AND RELATED WORK 28

table size for each graph low. Common IRI prefixes are compddsgassigning
them an id and replacing their occurrences in the main taltteandatabase refer-
ence; since the number offtérent prefixes is expected to be low, the prefix table
would be held in main memory, so that expanding the ids wouold-equire any
1/O.

Exploiting data patterns

As discussed in section 3.1, RDF data may contain patterhgdmabetter fit in
property tables that in the usual three column approacta déows one to define
property and property-class tables; the latter are a kifgsaperty tables that
have a double purpose: each of them keeps the instancesrdfsariass in the
first column and the values of the properties of each instamt¢lee remaining
columns.

Jena also permits one to create two-column property tablesger to support
multi-valued properties.

By default, a Jena store is created with no property tablesoardproperty-
class table that stores reified statements; these are stafeboOUt Statements,
each of them made of four triples: one declaring an IRI of tygfestatement,
and three to associate this IRI to the subject, the propewdytiam object of the
triple to reify. A four-column property-class table canrsta reified statement in
a single row. In this manner much space is saved, espeaidihose applications
that need to reify every statement.

3.4.2 Architecture

The core of Jena consists in a set of interfaces defineMiwdel layer that lets one
to manipulate the RDF graph, adding, removing and searchatgrsents. Along
these functionalities, there are importing and exportipgrations for all the main
RDF serialization languages, such as RR¥L, N3 and N-triples. Client appli-
cations interact with th®lodel, which translates high-level operations in low-level
and storage technique-dependent operations.

Specialized Graph Interface

The layer underlying the model abstracts each RDF graph iffereint logical
graph; each of them is implemented as an ordered list of alms graphs, op-
timized for storing a particular style of statements. Anyei@ion on a logical
graph is performed by invoking it on each specialized graipis; process can be
optimized if an operation can be completely processed byn@lesispecialized
graph.

CHAPTER 3. RDF STORAGE TECHNIQUES AND RELATED WORK 29

Logical Graph 1

Specialized Graph 1 Specialized Graph 2 Specialized Graph 2

not optimized Optimized for reified statemenits | Optimized for data about peop

D

Logical Graph 2

Specialized Graph 1 Specialized Graph 2

Optimized for reified statemerjts

/

not optimized

Property table 1 /
stmt | subj | pred | obj

Triple table 1
S P)

Triple table 2
S P)

Property table 2
subj |name |surname |city

Figure 3.7: Specialized Graph Interface in Jena

Figure 3.7 shows two logical graphs. The first contains a oyiimized spe-
cialized graph and two optimized ones; the second contaitysasingle opti-
mized graph together with the non-optimized one.

Each non-optimized graph is stored in a separate standpte table; op-
timized graphs are stored in property tables, which can laeeshby diterent
logical graphs.

3.5 Other storage engines

KAON server The KAON server (KArlsruhe ONtology and Semantic Web tool
suite [34, 50]), is an ontology management infrastructhis tlso contains an
RDF store.

The KAON server lets one create, manage and query the omgsldgtores,
and also provides reasoning mechanisms that can infer r@estfrom them.

CHAPTER 3. RDF STORAGE TECHNIQUES AND RELATED WORK 30

RDFSuite RDFSuite [10], developed by the ICS-FORTH, is “a suite of tdofs
RDF validation, storage and querying using an on objectiocgel®BMS”, namely
PostgreSQL, which can be configured to use property tablesjes against the
store are performed in RQL (RDF Query Language), which wasldegd by
ICS-FORTH as well.

Chapter 4
SPARQL

4.1 Introduction

When RDF became a W3C Recommendation in 1999 there was no query lan
guage for it as yet, thus several teams developfdrdnt languages: for example
the Institute of Computer Science of the Foundation for Reseand Technol-
ogy (ICS-FORTH, Greece) proposed RQL [35], the Sesame [46jdeveloped
SeRQL, and HP proposed RDQL [45].

SPARQL [43] initiated as a W3C proposal to become a standard/dae-
guage for RDF. The first working draft appeared in October 200dune 2007 it
became a Candidate Recommendation and finally a Recommenutefianuary
2008.

ThewHere clause provides the central concept in SPARQL, thgtaph pat-
tern matching given an RDF graph, a query consists of a pattern which ismedtc
against the given graph. The presentation of the result o&plgpattern can be
manipulated bysolution modifierssimilar to the ones that SQLfters, namely
projection, distinct, order by, limit andfiset; finally the output can be offer-
ent types: yemo answers, selection of the values of the variables thathrtae
pattern, construction of new triples from those values,dagtription of specified
resources.

4.2 Graph Patterns
As previously stated, graph patterns matching is the cdrmewhich SPARQL is
built. There are dferent kinds of graph patterns, which can be combined to build

arbitrary complex queries:

e Basic Graph Patterns, where a set of triple patterns mustmatc

31

CHAPTER 4. SPARQL 32

Group Graph Patterns, where a set of graph patterns musatdhm

Optional Graph Patterns, where additional patterns magneiihe solution.

Union Graph Patterns, where two or more alternative grajptenpe are
tried.

Patterns on Named Graphs.

The latter type of patterns will be presented in the RDF Datssetion, at
4.3.1.

4.2.1 Basic Graph Patterns

Basic Graph Patterns, &@GPs are sets of triple patterns, which are like RDF
triples except they may present a variable as subject, gatdor object. A basic
graph pattern matches a subgraph of the RDF data when RDF tevmsthiat
subgraph may be substituted for the variables and the nssetiuivalent to the
subgraph. An example query will make it clearer:

Data:

@prefix :<http://library.org/>

@prefix cd:<http://example.org/cd/>

:syntstruct cd:author "Noam Chomsky" .
:syntstruct cd:title "Syntactic structures" .
:refactoring cd:author "Martin Fowler" .
:refactoring cd:title "Refactoring" .
:poetrycoll cd:title "Poetry collection" .

Query:

PREFIX cd:<http://example.org/cd/>
SELECT *
WHERE
{ ?bookid cd:author ?author .
?bookid cd:title 7?title }

Result:
bookid author title
<http://library.org/syntstruct> "Noam Chomsky" "Syntactic structures"”
<http://library.org/refactoring> "Martin Fowler" "Refactoring"

The first statement of the qUErSREFIX cd:<http://example.org/cd/> , de-
clares a IRI prefix similar to Turtle; the second statementmdges SQL, both
in notation and in meaning: all variables declared in where clause will be
returned in the result since‘a’ is present instead of a list of projection vari-
ables. TheHERE clause, finally, declares the graph pattern used to matatfetiae

CHAPTER 4. SPARQL 33

Each solution is a way in which the variables can be boundaidhle basic graph
pattern matches the data. The following two subgraphs atehmad by the BGP
when substituting its variables with the two solutions:

<http://library.org/syntstruct> cd:author "Noam Chomsky" .
<http://library.org/syntstruct> cd:title "Syntactic structures" .

<http://library.org/refactoring> cd:author "Martin Fowler" .
<http://library.org/refactoring> cd:title "Refactoring" .

When a variable occurs more than once in the BGP, the same RDFhtesm
to be substituted for each occurrence of that variable feryegolution; in the
example aboveshttp: //library.org/syntstruct> has to be substituted fok in
both the triple patterns of the BGP for the first solution, amel $ame has to be
done with<http://library.org/refactoring> for the second.

Since in basic graph pattern matching every variable has toolind in each
solution, the triple poetrycoll cd:title "Poetry collection" cannotbe matched
because the subjegfoetrycoll has nocd:author property, as requested by the

query.
Blank nodes in Basic Graph Patterns

A blank node in a BGP behaves like a variable, with tiEedénce that they cannot
be part of the result set. For example

PREFIX cd:<http://example.org/cd/>
SELECT *
WHERE
{ _:bookid cd:author ?author .
_:bookid cd:title ?title }

returns
author title
"Noam Chomsky" "Syntactic structures"”
"Martin Fowler" "Refactoring"

A formal definition of Basic Graph Patterns can be found in5t.4.

4.2.2 Group Graph Patterns

Group graph patterns are sets of graph patterns of any tgtieited by braces,
where all the patterns of the set must match. The exampl@ dt ghows a group
graph pattern of one BGP. The following query istélient in structure, but will
produce the same result, except for the fact that a projeetso takes place:

CHAPTER 4. SPARQL 34

PREFIX cd:<http://example.org/cd/>
SELECT ?7author ?title
WHERE
{ { ?bookid cd:author ?author } .
{ ?bookid cd:title ?title 1} }

Result:
author title
"Noam Chomsky" "Syntactic structures"”
"Martin Fowler" "Refactoring"

ThewHere clause is made of two nested group graph patterns, eachrof the
of one BGP of a single triple pattern. Other group graph patsiamples will
follow in the next section to introduce the other kinds oftpats.

4.2.3 Optional Graph Patterns

Optional graph pattern matching permits one to extend thatreet even in those
situations where the extra information is not availablegach tuple of the result.
Querying the same data in section 4.2.1 with:

PREFIX cd:<http://example.org/cd/>
SELECT ?title ?author
WHERE
{ ?x cd:title ?title .
OPTIONAL { ?x cd:author ?author }
}

will result in:
title author
"Syntactic structures" "Noam Chomsky"
"Refactoring" "Martin Fowler"
"Poetry Collection"

This query looks for all those subjects that haweiaritle and optionally a
cd:author property, and returns their values. Singeetrycoll has Nocd:author
property,zauthor iS unbound in its case.

Optional Graph Patterns are left-associative:

’pattern OPTIONAL { pattern } OPTIONAL { pattern }

is the same as

’{ pattern OPTIONAL { pattern } } OPTIONAL { pattern }

CHAPTER 4. SPARQL

4.2.4 Union Graph Patterns

SPARQL provides unions of graph patterns as a mechanism tbinersolutions
of several alternatives. In the following RDF data graph tame concept of
“book title” is expressed with two elierent IRIs. To retrieve all the book titles in

the graph, a union of two graph patterns is needed.
Data:

@prefix vocl: <http://rdfvocabularyl.org/example#> .
@prefix voc2: <http://rdfvocabulary2.org/example#> .

_:a vocl:title "Syntactic structures" .
_:b vocl:title "Refactoring" .

_:c voc2:title "Poetry Collection" .
_:d voc2:title "Ulysses" .

Query:

PREFIX vocl: <http://rdfvocabularyl.org/example#> .
PREFIX voc2: <http://rdfvocabulary2.org/example#> .

SELECT ?title

WHERE{ { 7?book vocl:title 7?title }
UNION
{ ?book voc2:title 7?title } }

Result:

title
"Syntactic structures"”
"Refactoring"
"Poetry Collection"
"Ulysses"

To determine which vocabulary stores a title, the query baefine a dierent

variable for each pattern:

PREFIX vocl: <http://rdfvocabularyl.org/example#> .
PREFIX voc2: <http://rdfvocabulary2.org/example#> .

SELECT ?title

WHERE{ { ?book vocl:title ?titlel }
UNION
{ ?book voc2:title 7?title2 } }

Result:

titlel title2
"Syntactic structures"”
"Refactoring"

"Poetry Collection"
"Ulysses"

CHAPTER 4. SPARQL 36

4.2.5 Filtering results

As one might expect from a query language, SPARQL providestaioenum-
ber of operators to construct arbitrary complex expressidkt this moment the
operator set counts 25 elements, among which there are siedréghmetic and
boolean operators, regular expression matching, RDF an&&QBAspecific func-
tions likeisIRI, isBlank , DATATYPE andLANG .

An example query that usesraL.TER may ask only for those books that cost
less than a certain price.

Data:

@prefix cd: <http://example.org/cd/>
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>

:a cd:author "Noam Chomsky" .
_:a cd:title "Syntactic structures"”
:a cd:price 32.25""xsd:decimal .

:b cd:author "Martin Fowler" .
cd:title "Refactoring" .
_:b cd:price 40" "xsd:integer .

&

_:c cd:title "Poetry collection"
_:c cd:price 9.95" "xsd:decimal .

:d cd:title "Ulysses" .

_:d cd:price 16.50" "xsd:decimal .

Query:

PREFIX cd:<http://example.org/cd/>
SELECT ?title ?price
WHERE
{ ?x cd:title ?title .
?x cd:price ?price .
FILTER(?price < 25) }

Result:
title price
"Poetry Collection" 9.95
"Ulysses" 16.50

4.3 RDF Datasets

A SPARQL query is executed againstRDF Datasewhich represents a collec-
tion of graphs. An RDF Dataset comprises an unnadefdult graph and zero
or morenamed graphseach graph is identified by an IRI. A query can formulate

CHAPTER 4. SPARQL 37

different graph patterns againsftdrent graphs; the graph that is used for match-
ing a basic graph pattern is called thetive graph Thecrapa keyword is used to
switch the active graph from the default to one of the nameghsg.

The dataset can be defined by a query throughrtre andrroM NAMED clauses.
A dataset then consists of:

e A default graph, which is thRDF-mergeof the graphs specified in threom
clauses.

e A setof (IRI, graph) couples, one from ear#omM NAMED clause.

The RDF-merge operation, described in [31] at section 0.3h&s union of
a set of graphs that is obtained by replacing the graphs iseéhéy equivalent
graphs that share no blank nodes”. The merge of the followirmygraphs, for
example:

graph identified by: <http://example.org/alice>
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Alice" .

_:a foaf:mbox <mailto:alice@work.example> .

graph identified by: <http://example.org/bob>
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Bob" .

_:a foaf:mbox <mailto:bob@oldcorp.example.org> .

is

RDF-merge of <http://example.org/alice> and <http://example.org/bob>
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:x foaf:name "Alice" .

_:x foaf:mbox <mailto:alice@work.example> .

_:y foaf:name "Bob" .

_:y foaf:mbox <mailto:bob@oldcorp.example.org> .

Blank nodes and their labels are local to an RDF graph, that snieat the
label_:a represents two distinct resources in the two graphs: a remanst take
place before the merge can be performed, as shown in the é&xamp

A query that is matched against such a merged graph is:

PREFIX foaf: <http://xmlns.com/foaf/0.1/> .

SELECT ?mbox

FROM <http://example.org/alice>
FROM <http://example.org/bob>
WHERE { ?s foaf:mbox ?7mbox }

Result:

CHAPTER 4. SPARQL 38

mbox
<mailto:alice@work.example>
<mailto:bob@oldcorp.example.org>

If the query does not specify ammgoM nor FRoM NAMED clause, like in all the
example queries in the previous sections, it is the querynenghplementation
that decides which RDF graph (or graphs) will be used as defgaph. If no
FROM clause is present, but there are one or nreoa NAMED clauses, then the
dataset includes an empty graph as the default graph.

4.3.1 Patterns on Named Graphs

ThecrapH keyword is used to change the active graph from the defawhé&oof
named graphs; &raph graph patterrcan be matched against a specific named
graph, providing its IRI, or against all named graphs prowgch variable instead,
which will be bound to the IRI of the graph being matched.

All the following examples will use these two data graphs:

graph id: <http://physicswiki.org/meta/articles>
@prefix : <http://physicswiki.org/metadata/> .

@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

:1hc dc:title "Large Hadron Collider" .
:1hc rdfs:seeAlso :higgsboson .
:lhc rdfs:seeAlso :atlas .

:atlas dc:title "ATLAS" .
:atlas rdfs:seeAlso :lhc .
ratlas rdfs:seeAlso :higgsboson .

:higgsboson dc:title "Higgs Boson" .
:higgsboson rdfs:seeAlso :lhc .

graph id: <http://itwiki.org/meta/articles>

@prefix : <http://itwiki.org/metadata/> .

@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
:0s dc:title "Operating Systems" .

:0s rdfs:seeAlso :kernel .

:kernel dc:title "Kernel" .
:kernel rdfs:seeAlso :microkernel .
:kernel rdfs:seeAlso :monolithickernel .

:microkernel dc:title "Microkernel" .
:microkernel rdfs:seeAlso :kernel .
:microkernel rdfs:seeAlso :monolithickernel .

:monolithickernel dc:title "Monolithic kernel"
:monolithickernel rdfs:seeAlso :kernel .
:monolithickernel rdfs:seeAlso :microkernel .

CHAPTER 4. SPARQL 39

Retrieve or restrict the source of information

This query retrieves all the titles of the articles in the twi&is, and the IRI of the
source graph for each of them:

PREFIX dc: <http://purl.org/dc/elements/1.1/> .

SELECT ?src ?title
FROM NAMED <http://physicswiki.org/meta/articles>
FROM NAMED <http://itwiki.org/meta/articles>

WHERE {
GRAPH ?src
{ ?s dc:title ?title }
}
Result:
src title
<http://physicswiki.org/meta/articles> "Large Hadron Collider"
<http://physicswiki.org/meta/articles> "ATLAS"
<http://physicswiki.org/meta/articles> "Higgs Boson"
<http://itwiki.org/meta/articles> "Kernel"
<http://itwiki.org/meta/articles> "Microkernel™
<http://itwiki.org/meta/articles> "Monolithic kernel”

Thewnere clause of the query is a group graph pattern of a single gremthg
pattern, that consists of a varialderc and a group graph pattern. The latter is
matched against every named graph, while: is bound to the source IRI of each
tuple of the result.

The same query may restrict the source of information to gisigraph:

PREFIX dc: <http://purl.org/dc/elements/1.1/> .

SELECT ?src ?7title
FROM NAMED <http://physicswiki.org/meta/articles>
FROM NAMED <http://itwiki.org/meta/articles>
WHERE {

GRAPH <http://itwiki.org/meta/articles>

{ ?s dc:title ?title }
}

Result:

title
"Kernel"
"Microkernel™
"Monolithic kernel"

CHAPTER 4. SPARQL 40

Named and default graphs

A query can involve both the default graph and the named grajpithe next
guery the physics wiki is the only named graph, but it pgrates also in the
default graph together with the IT wiki:

PREFIX dc: <http://purl.org/dc/elements/1.1/> .
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

SELECT ?title ?seeAlso
FROM <http://physicswiki.org/meta/articles>
FROM <http://itwiki.org/meta/articles>
FROM NAMED <http://physicswiki.org/meta/articles>
WHERE {
?s dc:title ?title .
OPTIONAL {
GRAPH <http://physicswiki.org/meta/articles>
{ ?s rdfs:seeAlso :?reference .
?reference dc:title ?seeAlso }

3

Result:
title seeAlso
"Large Hadron Collider" "ATLAS"
"ATLAS" "Large Hadron Collider"
"ATLAS" "Higgs Boson"
"Higgs Boson" "Large Hadron Collider"
"Kernel"
"Microkernel™
"Monolithic kernel"

The query selects the titles of the articles in both wikis artends this in-
formation with the references to other articles, but onlytfmse of the physics
wiki.

4.4 SPARQL semantics

Chapter 12 of the current SPARQL specification [44] formallyirtes which is
the correct interpretation of a SPARQL query string, giveiR&t Dataset.

The first formal description of SPARQL comes from &2kt al. in [41] and
subsequently in [42] in 2006. The SPARQL Working Draft of Ma2007 in-
cluded this almost unaltered. This section is largely tdkem their work.

4.4.1 Initial definitions

RDF Terms, Triples and Variables Letl, B, andL be pairwise disjoint sets of
all the IRIs, Blank nodes, and literals. The seRiF TermsT, is| U L U B.

CHAPTER 4. SPARQL 41

Atuple (s, p,0) € (lUB)xI xT is called arRDF triple, where s is theubject
p thepredicateand o theobject
Let V be the set of variables, disjoint from all the above sets.

RDF Graph and RDF Dataset An RDF Graphis a set of RDF triples. 16 is
an RDF graphterm(G)is the set of all the RDF Terms appearing in the triples of
G, andblank(G)is the set of blank nodes appearingdn

An RDF Datasets a set

D= {GO, (UJ_, Gl)’ (u2a GZ)’ "'(ul'h Gn)}

where eacls; is a graph and eadh is an IRI, withn > 0. G is called the
default graph each @, G;) is anamed graphwith u; the name of5;. EveryG in
D has a disjoint set of blank nodes, i.e. fot j, blankG;) N blankG;j) = 0.

Triple Pattern Atuplet € (TUV) X (1 UV) X (T UV)is atriple pattern Given

a triple patterrt, var(t) andblank(t) are respectively the set of variables and blank
nodes occurring irt. It has to be noted here that RDF literals are permitted as
subjects: the RDF core working group explained the reason [4]

(The RDF core Working Group) noted that it is aware of no reason
why literals should not be subjects and a future WG with a lessic-

tive charter may extend the syntaxes to allow literals assthgects

of statements.

Basic Graph Pattern A Basic Graph Patterns a set of triple patterns. Given
a basic graph patter, var(P) = |J..p var(t) andblankP) = |J..p blank(t) are
respectively the set of variables and blank nodes occuimify

Solution mapping A mappingu fromV to T is a partial functionu : V — T.
The domain ofu, dom(u), is the subset oV whereu is defined. The empty
mapping, is a mapping such thatom(yy) = 0. Given a triple pattern and a
mappingu such thawar(t) € dom(u), u(t) is the triple obtained by replacing the
variables in t according tg.

RDF instance mapping An RDF instance mapping is a functiono: B — T.
Given a triple or a triple patterty o(t) is respectively a triple or a triple pattern
obtained by replacing the blank nodeg iwith RDF terms according to.

Pattern instance mapping A Pattern instance mappingis the combination of
an RDF instance mappingand solution mapping. 7(X) = u(o(X)).

CHAPTER 4. SPARQL 42

Multiset of solutions When a graph pattern is evaluated against some graph, the
possible solutions form multiset also calletbag, that is an unordered collection

of elements in which each element can appear more than oncriltlsetQ can

be described by a set of the elements in it archalinality functiongiving the
number of occurrences of each element from the sgX ifhe cardinality of the
mappingu in the bag® will be denoted bycard,(u); if 4 ¢ Q, thencard,(u) = O.

Solution sequence A solution sequenc® is a list of solutiong:, possibly un-
ordered. The number of elements¥his denoted asiz€¥), and elements o
are counted starting from zero:

¥ = [uo, p1 - - - ptn1]
wheren = sizg¥). The solution at positionin is denoted a¥'[i].

Effective Boolean Value - EBV EBVis functionEBV: T — {true, falsg that
assigns a boolean value to an RDF térenT. EBV(t) returns:

e falseif t is boolean or numeric and the lexical form is not valid forttha
datatype (e.gvabc"""xsd:integer).

the value ot if t is a boolean value.

falseif t is a zero-length stringf, if t is a non zero-length string.

falseif t is numeric value equals to zero or Nake otherwise.

finally an error is raised in all other cases.

4.4.2 SPARQL abstract query

A SPARQL abstract query is a tuplg,(D, R), where
e E is aSPARQL algebraxpression
e D is an RDF dataset

e Ris aquery formy one amongELECT , CONSTRUCT , DESCRIBE OF ASK .

When a query string is parsed, it is converted into an absiyentéx tree com-
posed of:

CHAPTER 4. SPARQL

Graph Patterns | Modifiers | Query forms
Basic Distinct Select
Group Reduced| Construct
Optional Project Describe
Union Order By Ask
Graph Limit
Filter Offset

43

Such an abstract tree is converted in SPARQL algebra expresat com-
prises the following operators:

Graph Pattern operators | Solution modifiers
BGP ToList
Join OrderBy
LeftJoin Project
Union Distinct
Graph Reduced
Filter Slice

4.4.3 Graph Pattern translation to SPARQL algebra

The SPARQL specification [44], section 12.2, describes tgerahm to trans-
late a graph pattern in a SPARQL algebra expression. The raphgpattern is
the group graph pattern that forms titere clause; its translation proceeds as

follows:

CHAPTER 4. SPARQL 44

procedure TransformGroupGraphPattern(GroupGraphPattern)

Let FS := 0
Let G := 0

For each element E in the GroupGraphPattern
If E is of the form FILTER(expr)
FS := FS U expr
If E is of the form OPTIONAL { P }
Let A := TransformGroupGraphPattern(P)
If A is of the form Filter(F, A2)
G := LeftJoin(G, A2, F)
else
G := LeftJoin(G, A, true)

Else
Let A := undefined
If E is of the form TriplesBlock
Let A := BGP(E)
If E is of form UnionGraphPattern
Let A := TransformUnionGraphPattern(E)
If E is of form GraphGraphPattern
Let A := TransformGraphGraphPattern(E)
G := Join(G, A)

If FS is not empty:
Let X := Conjunction of expressions in FS
G := Filter(X, @)

The result is G.
end

procedure TransformUnionGraphPattern(UnionGraphPattern)
Let A := undefined

For each element G in the UnionGraphPattern
If A is undefined
A := TransformGroupGraphPattern(G)
Else
A := Union(A, TransformGroupGraphPattern(G))

The result is A
end

procedure TransformGraphGraphPattern(GraphGraphPattern)

If the form is GRAPH IRI GroupGraphPattern

The result is Graph(IRI, TransformGroupGraphPattern(GroupGraphPattern))
If the form is GRAPH Var GroupGraphPattern

The result is Graph(Var, TransformGroupGraphPattern(GroupGraphPattern))

end

Group graph patterns of a single basic graph patéebecome aloin of A
with the empty graph pattern; since the latter is the idgmhdit the Join operator,
the following simplification step can be performed:

Replace Join(®, A) by A
Replace Join(A, 0) by A

CHAPTER 4. SPARQL 45

4.4.4 Modifiers translation to SPARQL algebra

A series of steps transform the solution modifiers of a queslgebra operators;
these take place after the translation of the graph patterns

1. ToList : turns the multiset into a solution sequence with the sammehts
and cardinality; this step is always performed

’Let M := TolList(AlgebraExpression) ‘

2. ORDER BY : if the query string contains aRDER BY clause

‘Let M := OrderBy(M, list of order comparators)

3. DISTINCT : if the query string containSEASTINCT clause

’Let M := Distinct()

4. REDUCED : if the query string containS®EEDUCED clause

’Let M := Reduced(M)

5. oFrSET andLIMIT : if the query containSOFFSET start ” Or “LIMIT length”

start defaults to 0
length defaults to (size(M)-start)

Let M := Slice(M, start, length)

4.4.5 Basic Graph Patterns
Definitions

BGPs and solution mappings Given a basic graph pattefhand a mapping
such thavar(P) € dom(u), u(P) = Ukep u(t), i.e. u(P) is the set of triples obtained
by replacing the variables in the triples®faccording tqu.

CHAPTER 4. SPARQL 46

BGPs and RDF instance mappings Given a BGPP and a grapl, leto be an
RDF instance mapping that substitutes the blank nod&swiith RDF Terms in
G

o : blank(P) — term(G)

o(P) is the basic graph pattern that results from replacing taekonodes inP
according tar.

BGPs and Pattern instance mappings Given a BGPP, a graphG, an RDF
instance mapping : blankP) — term(G) and a solution mapping such that
var(P) ¢ dom(u), n(P) = u(c(P)) is the set of triples that results from the appli-
cation ofo- andu to P.

Basic Graph Pattern evaluation

Given an RDF grapls and a basic graph patteR) the evaluationof P overG,
denoted as []] ¢ is defined as the set of mappings

[Plle ={u:V->T]

(dom(u) = var(P)) A (Ao : blankP) — term(G) | u(c(P)) € G)}
If u € [[P]]e, thenu is asolutionfor P in G. If P = 0, then [[P]]lc = {1}, and if
G =0, for everyP # 0, [[P]]c = {0}.

Cardinality of Basic Graph Pattern Solutions Given a BGPP and a graph
G, the cardinality of a solutiom € [[P]]c is defined as the number of distinct
substitutionsr : blankP) — term(G) such thaj(o(P)) € G, formally

cardgpys(w) = l{o : blank(P) — term(G) | u(o(P)) < G|

4.4.6 SPARQL algebra
This section formally describes the correct interpretatb each operator of the

algebra, except for basic graph patterns which were coveréd.5.

Filter semantics

Let Q be a multiset of solution mappings aagdprbe an expression. Then

Filter(expr Q) = {u: V — T | u € Q A EBV(expr(u)) = true}
CardFiIter(expr,Q)(/J) = cardg(,u)

CHAPTER 4. SPARQL 47

Join semantics

Compatible Mappings Two solution mappingg; andu, arecompatibleif for
every variable @ e dom(u;) N dom(uy), u1 (V) = ua(A), i.e. whenu; U u, is also
a mapping. For example

_]?7a— 10 _J7a-> -1
= -5 He = -3
are not compatible, since foa® dom(u;) N dom(uy), ui(?a) # ux(?a), while
_]?7a—10 _|7a—>10
= -5 He = -3
are compatible, thus their union is a valid mapping:
7a— 10

MU =4 —-5
7 — 3

Given this definition, two mappings with disjoint domains.idom(u;) N
dom(u,) = 0, are always compatible. The union of the following mappings

3 7a—>1 B 77— 3
Hi= -2 Hz = 2d— 4

is therefore
7a— 1

M- 2

U =
M1 Y U2 % 3

d—-4

Join Given two multisets of solution mappings andQ,
Join(Qq, Qp) = {u1 U o | uy € Qq, up € Qp are compatiblp
cardiine,on() =)| cardn, (ua) - cardy, (uo)

H=paUp2

Union semantics
Given two multisets of solution mappings andQ,

Union(Qq, Q) = {u | 1 € Q1 V € Qp}
cardynion,,0,) (1) = cardy, (1) + card, (u)

CHAPTER 4. SPARQL 48

LeftJoin semantics

Difference Given two multisets of solution mappings andQ, and an expres-
sionexpr

Dlﬁ(Ql’ QZ, exp') = {/'l € Ql |
Yu' € Qp, (uandy’ are not compatibley EBV(expr(u U u')) = false

cardpigo,0.expn (i) = cardy, (1)

Left Join Given two multisets of solution mappings andQ, and an expres-
sionexpr

LeftJoinQ, Q,, expr) = Filter(expr, Join(Qy, Q,)) U Diff (Q1, Qp, eXpr)
Card_eftJoir(Ql,Qg,expr) (ﬂ) = CardFilter(expr, Joir(Ql,Qz))(ﬂ) + Card)l[f(gl,ﬂz,explj (ﬂ)

ToList semantics
Given a multiset of solution mapping,

ToLis(Q) = [u € Q],in any order
cardroLisg) (1) = cardy(u)

OrderBy semantics

Given a sequence of solution mappinggand an order conditiooond

OrderByY, cond = [u € Q | the sequence satisfieend
CardOrderB)(‘P,conc{)(/l) = Cardy(p)

Project semantics

Given a solution mapping : V — T and a set of variable#/ C V, therestriction
of u to W, denoted byyw, is a mapping such thaon(uw) = domu) N W and
uw(?X) = u(?X), ¥2x € dom(u) N W. TheProjectionof a solution sequenc# on
the variables oW is then:

Projec?, W) = [uw | 1 € ¥
CardDroject(‘P,W)(ﬂ) = Card‘{’(ﬂ)

CHAPTER 4. SPARQL 49

Distinct semantics

Given a sequence of solution mappings
Distinct(¥) = [u € V]
CardDistinct(‘I‘)(/J) =1

Reduced semantics

Given a sequence of solution mappings

Reduced?) = [u € ¥]
1 < cardgeducear)(1) < cardy(u)

Slice semantics Given a sequence of solution mappingfs and two natural
numbersstart andlength

Slicg¥, start, length) = [u € ¥ | u = P[start+], Vi = 0... (length— 1)]

4.4.7 Expression Evaluation

Let D be an RDF Dataset with active grafh D[i] the named graph with IRI
i in D and letD[d ft] be the default graph ob. The set of named graph IRIs
is namégD). The evaluationof a SPARQL algebra expressidhover the RDF
DataseD with active graplG is denoted as [f]]2, and the evaluation d? in the
dataseD as [[PI]° = [[P]134s4-

The evaluation semantics is defined as follows:

e [[BGHIR = [[BGH]g, see also 4.4.5

e [[Filter(expt P)]]12 = Filter(expr [[P]12)

o [[Join(Py, P)]]g = Join([[P4]]g. [[P1]]g)

o [[Leftdoir(Py, Py, expn]]2 = Leftdoin([P1]]2, [[P:]]12, expp)
o [[Uniom(Py, P,)]]g = Union([[P4]]g. [[P1]]¢)

e [[Graph(Iri,P)]]12 =

— [[P]I 3y if Iri € nam¢D)
— O if Iri ¢ namégD)

CHAPTER 4. SPARQL 50

o [[Graph(?x, P)]I2 = Ugenameo) (J0I([TPI1B1g- (ol

where{us.q} IS @ multiset that contains a single solution, that maps the
variable % to the graph namg, and where th¢ J is the SPARQL algebra
Union operator.

o [[ToLis(P)]]® = ToLis{([P]]3ry)

o [[Distinct(L)]]° = Distinct([[L]])

e [[Reduce@.)]]® = Reduce([L]]P)

e [[Projeci(L,var9)]]° = Project([[L]]P, var9

e [[OrderByL, cond]]® = OrderBy([[L]]°, cond

e [[SliceL, start, length]]° = Slicg[[L]]°, start, length

4.5 SPARQL to Relational Algebra translation

As seenin the previous section (in particular in 4.4.5), BRA is defined in terms
of solutions the formal model describes which properties a mappimgeds to
have to be a solution of a graph pattern. This definition datseil howto find
them, given an RDF graph.

Relational algebra on the contrary builds the result frondidia through a set
of operators: this approach is not only easier to understaddo implement, but
moreover makes available to the developers the large bodypi on relational
engines, in terms of query optimization, transaction isoaand reliability that
these mature systemser.

This topic had been discussed in previous works by Cyganiék arris [30]
and Newman [39].

4.5.1 Relational algebra on multisets

The most evident mismatch between SPARQL and relationabedge that mul-
tisets of solutions of SPARQL are collections of elements thay appear more
than once, where relations are pure sets. Even if a formapmggrom one al-
gebra to the other is for this reason impossible, nonethetsd systems usually
treat relations as multisets, as t@tinct keyword in SQL may suggest. In this
section, therefore, relational algebra operators ardirestein order to deal with
and produce multisets as results.

CHAPTER 4. SPARQL 51

RDF relations

A multiset of solutions, oRDF relation is a relation that admits duplicates. As in
the previous section, they will be described with the sel@hents appearing in
them and a cardinality function which returns the numberaafuorences of each
element in the multiset. Each solution mapping is a tupleh telation. The
termsRDF tuple tupleandsolution mappingvill be considered synonyms.

If a solution mapping in an RDF relation does not define whidghésvalue of
one of the attributes of the heading, then that value is saimtinbound Since
in many relational engines unbound values are represegtéUhLs, unbound
and NULL will be considered synonyms as well.

The columns of an RDF relation are in general of typehat is the set of all
RDF terms. Since i there are all kind of possible RDF values, for example
IRIs, strings and numerics, the columns of an RDF relation @ughly speaking
untyped.

An RDF relationQ2 may have two distinct sets of columnar(Q) is the set of
columns whose name is a variable name, hlatik(Q?) is the set columns whose
name is a blank node label. The latter kind of columns aregptesduring a BGP
match, where blank nodes act as variables; the final resatBGP evaluation,
however, contains only variables.

An RDF graph is an relation with three columsspject predicateandobject
or briefly ass, p, 0; every triple in the graph is a tuple of this relation. As failiy
described in 4.4.1, the domain of each column is the set ofdRésblank nodes
for s, the set of IRIs fomp, and the set of all RDF Terms for An RDF graph is a
special case of RDF relation, that does not admit duplicates.

In the following sections the storage schema for RDF tripges $simple table
of three columns, in which the RDF Terms are stored directlyiinno dictionar-
ies nor other kind of structures will be considered.

Selection on multisets

The selectoperator is not much fferent from its pure relational algebra version:
given aselection predicatand a (multi)set of tuples, it returns those tuples that
satisfy the predicate.

The only diference therefore consists of the possibility, in the RDF ,ciase
have duplicate tuples in the operand and in the result.

Projection on multisets

The result of a relational algebra projection is defined assét obtained when
the components of the tuples of the relation are restriated subset of those
components.

CHAPTER 4. SPARQL 52

In this section the projection will be only a column-seleatiwith no duplicate
elimination. The semantics of this operator is the same BREPLs projection as
found in 4.4.6, with the addition that new columns can bettom the values of
each tuple; this addition is useful to formally describegwhen unbound values
appear in the join columns. Thus, given a solution mappingy — T, two sets
of variablesw ¢ dom(u) andU:

U={u=exprvy...vp) |ue (V\W),v;y...v, € domu)}
i.e. a set of new variables, each built as a (possikfietent) expressioaxpr of
the components of the tuple thenyw,u is @ mapping such that

e dom(uwuy) = (donfu) N W) U U

u(X),if x e dom(u) N W
exprvy...v,),if xe U

o mwou(X) = {
Theprojectionof an RDF relatio is then:

wu () = {wou | € Q}
cardy,, @ (u) = cardo(u)

An example of construction of new columns may be the follayigiven a
relationR with two columns of integers:

a b
13 | -1
5 2
-0.5/ 0.5
10 | 4

The projection permits one to calculate sum anledence ofa andb, and
store them in two new columns; in this example= {sum= a+ b, diff = a— b}

7Ta,b,sum:a+b,diﬁ‘:a—b(R)

a b | sum | diff
13| -1 | 12 | 14
5 2 7 3
-05/05| O -1
10 | 4 14 6

CHAPTER 4. SPARQL 53

Natural join on multisets

The natural join will be used when no unbound values are ptese the join
attributes. Under this assumption, th&elience from the classical natural join is
again the cardinality of each tuple in the operands and irrélaelt, that can be
greater than one in RDF relations.

The natural join in this situation behaves as normally doeslational engines
that operate on multisets: given two RDF relatiéhsandQr with common at-
tributesv; . .. v, their natural join is

QLeOrR=0 g v, =opvt (QULXQR)

Q| .Vh = Qr.Vy

As usual for natural joins, the common colunwas. . v, are not repeated twice
in the result, one for the left and one for the right operanthasther joins, but
only once.

The cardinality of each element in the result relation camfoto the indication
of SPARQL algebra, i.e. the cardinality of a solution mapping a join result is
D= o CNGo, (L) - cardo, (ur), that is the sum, for eagih. € Q_ andug € Qr
that may generate, of the product of the cardinalities of sugh andug.

For example, given the relations

27 b b c
11| 21
111
11| 21
111
12 | 22
21|12
12 | 22
3|13
a1 14 14 | 24
15| 25

their natural join is:

a
1(11]21
1(11]21
11121
11121
2
2
4

12 | 22
12 | 22
14| 24

CHAPTER 4. SPARQL 54
that is the correct behavior also for SPARQL.

Difference on multisets

The multiset diference is defined here as a “not in” expression: given two RDF
relationsQ_ and Qg such thatvar(Q2.) = var(Qg) i.e. with same schema, their
difference is

Q\NQr={ueQ|u¢Qr}
cardo, \ox(1) = cardo, (1)

The multiplicity of the elements does not matter: if a tupses ftardinality
equals to two in2,. and one img, it will not take part in the dierence.

4.5.2 Filter translation

As seen in 4.4.7, thé&ilter operator evaluation has to pick from a multiset of
solutions those ones that satisfy an expression. This dersasidentical to the
the relationakelectoperator. Given a expressierprand an RDF relatiof:

Filter (expr Q) = oexpl€2)
EvenFilter andselectare conceptually identical, the SPARQL operators have
to deal with untyped columns; for example, a filter may seddidhe triples of an

RDF graph wher@bject< 24. This implies also thaibjecthas to be a numeric
value.

4.5.3 BGP translation
Single pattern matching

Triple patterns (4.4.1) can be expressed as a selectioredfifies of the active
graph, followed by a projection and rename. The selectiodition is determined
by the fixed terms in the triple pattern. Blank nodes act eyatlivariables.

For example, given the active gra@hthe triple pattern

_:person foaf:name ?name

becomes

T _persone subject (O'predicat&foaf:name(G))
“name« object

The evaluation of a triple pattetron the active grapf® is a multiset of solu-
tions denoted by {]] .

CHAPTER 4. SPARQL 55

Triple pattern join

Given two triple pattern$; andt, on the active grapls, and their evaluations
Q1 = [[ti]]lc andQ; = [[t2]] 6, Q1 pp Q2 is @ multiset defined as follows:

O by Qb = Q1 xQy if var(Qg) Nvar(Qy) = 0 A blankQ1) N blank(€,) = 0
L7MP 22 =10,y if var(Qi) nvar(@Qy) # 0 v blankQ1) N blankQy) # 0

wherex is the cartesian product amdis the natural join as defined in 4.5.1.

Basic graph pattern translation

Given a BGPP = {;,1,...t,} and the active grapB, and denoting aQ; = [[ti]]c
the evaluation of triple pattertn [[P]]g can be expressed as:

[[Pllc = mvar@u)uvar(@y)...uvar(@n) (21 ep Qo My . .. iy)

The projection removes all columns whose name is a blank radod.

45.4 Join translation

The Join definition in SPARQL is much dierent from the one in relational alge-
bra: two mappings can be part oflainif there is no conflict between them, that
is when a common attribute is bound on both sides ofithe with different val-
ues. Such mappings are calleoimpatible mappingsTwo disjoint mappings are
therefore always compatible, and an unbound value will maith every value,
even another unbound oneiLL values in relational algebra would cause the join
to fail.

Here is an example of SPARQL join between two RDF relations:

?a|?b ?b | ?c
20 1 1|30
21| 2 31
22 4 | 32
23| 4 5133

The result is

CHAPTER 4. SPARQL 56

?a|?b | ?c
201 1 | 30
200 1 | 31
21 2 | 31
221 1 | 30
22 31
22| 4 | 32
22| 5 | 33
23| 4 | 31
23| 4 | 32

The SPARQLIJoincan be relationally defined as a subset of the cartesian prod-
uct where two mappings are compatible; given two RDF relati®nandQg with
common attributesar(Q,) N var(Qr) = {v1 ...V}, theCompMappingpredicate
checks if a tuple of the cross product takes part of the SPABG1:

CompMappings= (Q..vi = Qr.v; V Q.v; = NULL V Qr.V; = NULL) A ...

/\(QL.Vn = QR.Vn V QL.Vn = NULL \/ QR.Vn = NULL)

TheJoin operator can then be expressed as

‘]OIn(QL’ QR) =n vy = (Qr.v1 # NULL 2 Q_.vp : QRr.v1) (O-CompMappinQS(QL X QR))

Vn = (QL.Vp # NULL ? Q[.Vp, : Qr.Vn)
(var(Qr) U var(Qr)) \ {va ... vn}

The projection builds the columw from Q, .v; andQg.v; picking from them
the bound value, if any; it then selects all the columns thatrat invar(Q,) N
var(Qg). In casevar(Q.) N var(Qr) = 0 no selection nor projection takes place
and only the cartesian product is performed.

Another semantics for SPARQL joins may be defined when thegtitbute
is only one. In this case the cartesian product can be linatey to those tuples
that present an unbound value on the join attribute.

Given two RDF relation$), andQg with common attribute

JOin(QL,QR) = (QL > QR) U

T v Qpv (O'V:NULL(QL) X O-V;tNULL(QR))U
(var(Q) U var(Qg)) \ {v}

CHAPTER 4. SPARQL 57

T yveav (ovenuLL(QL) X ov-nuLL(QR))U
(var(Qr) U var(Qr)) \ {v}

Tyveaw (ov=nuLL(QL) X ov=nuLL(22R))
(var(Qy) U var(Qr)) \ {v}
where Join is the natural join andU is a union that does not drop dupli-
cates. The last projection can select ffetientlyQ, .v or Qr.v, since both present
NULLSs on each row.

4.5.5 LeftJoin translation

Diff

The SPARQLDIff operator, given two relationQ,_ and Qr and an expression
expr, returns those mappingsof Q, that either are not compatible witil the
mappings:’ of Qg, or for which the evaluation axpris false for all the mappings
puU .

In SPARQL these united mappings do not replicate the commuibges,
while in a relational context the expressiexprhas to be evaluated against tuples
that replicate the common attributes twice, one for thetlgte u and one for
the right oney’. If the expression is defined on one or more of these, the ex-
pression has to pick the bound value, if any. Every occugefcan attribute
x that participates in the join must be substituted with theagy expression
(QL.x #NULL ? Q.X: Qgr.X).

For instance, the expression:

a+b>4

with botha andb join attributes, has to be rewritten as
(QL.a #NULL ? Q .a: QR.a) + (QLb # NULL ? QLb . QRb)

The expressioexprmodified in such manner will be denoted wekpr’.
The SPARQLDIff can the be expressed with:

Diﬁ(QL, Qr, eXp') =Q\ Tlvar(Q) (O'CompMappingsexpr‘ (QL X QR))

The second operand of theffdrence builds a multiset that contains those
tuples ofQ)_ that are compatible at least with one tupleCif, and among these,
those for which at least one evaluationexfris true. The result of the fference
contains therefore only tuples that are either incompattath all the tuples of
Qg or for which the evaluation oéxpris always false for all their combinations
with the compatible tuples dbdg.

CHAPTER 4. SPARQL

LeftJoin

TheLeftJoinis expressed in the SPARQL standard as a unionJoi@and aDiff.
Having already a definition of these operators in relati@gébra, thd_eftJoin

translation is trivial:

LeftJoin(Qy, Qr, expl) =

Vn = (QL.Vn # NULL ? Q[.V : QR.Vn)
(var(Q) U var(Qg)) \ {vi...va}

(QL \ Tlvar(Qy) (O'CompMappingsexpr’ (QL X QR)))

4.5.6 Union translation

SPARQL union cannot be a result of any of the classical relatioperators, but
nonetheless there are already some implementations tfia¢ @G&0UTER UNION ,

as described in [22]. The flierence with relational union is that in this latter the
schema of the tables being united must be the same. In SPARQLsuthis con-
dition is not needed: all the tuples of both relations take jpethe result without
duplicate elimination, and missing information is filledtlwvunbound values. For

U

example the union of the following tables

T vy =(QuLvi # NULL 2 Qi © QrVi) (O'CompMappingsexpr’ (QL X QR))

?a|?b ?a | ?c
1|21 4
2 | 22 5132
31|23 6 | 33
4 34

CHAPTER 4. SPARQL 59

?a|?b | ?c
1|21
2 | 22
31|23
4
4
5 32
6 33
34

4.5.7 Graph expression translation

Graph expressions on a fixed hamed graph of the dataset astatesd without
any dfort, since these kind of SPARQL algebra expressions justgehtre active
graph.

The situation in which a variable is present as graph IRI fkecknt: in this
case the evaluation of the graph pattern contained in thghgegpression has to
be performed once for each named graph in the dataset. highés been shown
that the evaluation of a Graph pattern in this case is

[(Graph> P12 = |] (Join(ILPIIBig, {ao))
genaméD)
A relational translation is still a union of all evaluatioagainst each named
graph; only theJoin has to be translated.
There are two possible casex €var(P), or 2 ¢ var(P)
In the first case, the join orxZan follow the definition given in 4.5.4 for joins
on a single attribute:

[[Graph(>x P)]]¢g =

U ([[Pl] B[g] > {#mag}) UT 2 o (O'?X:NULL ([[Pl] B[g]) X {,U?x—>g})
genaméD) var (P) \ {?x}
wherexg is thex column of the cross product given fy-_.q}.
In the second case the only operation to perform is to extem&®DF relation
returned by [P]] B[g] with a column containing the graph IRJ for each tuple;
relationally, this can be done with a cartesian product:

[(Graph(>x P12 = |] (IPNIBg X {uax})

genaméD)

Chapter 5
RDF storage in MonetDB

5.1 Data structures

As discussed in Chapter 3, the most conventional and natamaher to store RDF
triples is a three-column relational table, with dictionaompression for IRIs and
literals.

The solution proposed in MonetDB follows this approach,rbaterializes the
triples table six times, each sorted on one of the six periontsof the columns.
A single dictionary table maps integers to the RDF terms fiahal views.

Figures 5.1, 5.2 and 5.3 show how some example RDF data is saiéah-
etDB.

5.1.1 Datatables

Each of the six data tables is represented in MonetDB by thiregzry tables of
type (:void, :0id) , one for each column. The virtuald sequence identifies the
row number starting from zero, while the oid column actuatlyres the ids of the
RDF terms.

The first column of every table is sorted by ascending id \gltleose triples
that present the same value on the first column are arrangedditng to the ids
of the second. Finally, triples with same values on the fivst¢columns are sorted
according to the third.

5.1.2 Dictionary table

Since the id order has to reflect the one of the RDF terms, a¢sdittionary has
to be sorted, so that if an id is smaller than another one tiheheotwo terms
represented by the ids are not comparable (e.g. becausarthditerent in type)
or the first term is smaller than the second.

60

CHAPTER 5. RDF STORAGE IN MONETDB

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:f0 foaf:name "Alice" .

_:f0 foaf:mailboxes _:b® .

_:b® rdf:first mailto://alice@isp.com .

_:b0® rdf:rest _:bl .

_:bl rdf:first mailto://alice@foaf.org .

_:bl rdf:rest rdf:nil .

Figure 5.1: Example RDF data

S| PO P|S|O O| S|P

00| 03| 09 03| 00| 09 00| 02| 06

00| 05|01 03|01| 08 01| 00|05

01| 03|08 0500|011 04]01|05

01|/ 05| 04 05(01| 04 08| 01|03

02| 06| 00 06| 02| 00 09| 00| 03

02| 07|10 07|02 10 10| 02 | 07

S|O|P P|O]|S O|P|S

00| 01|05 03|08| 01 00| 06| 02

00| 09|03 03|09 00 01| 05| 00

01|04 |05 05|01 00 04 05|01

01|08| 03 05|04 |01 08| 03|01

02| 00| 06 06| 00| 02 09| 03| 00

02| 10| 07 07| 10| 02 10| 07 | 02
Figure 5.2: The six materialized views

Id | RDF Term

00 | b0

01| bl

02| fO

03 | httpy//www.w3.0rg199902/22-rdf-syntax-ns#firs

04 | http//www.w3.0rg199902/22-rdf-syntax-ns#nil

05 | httpy/www.w3.0rg199902/22-rdf-syntax-ns#res

06 | httpy/xmins.conffoaf/0.1}/mailboxes

07 | httpy/xmins.conffoaf/0.1/name

08 | mailtoy/alice@foaf.org

09 | mailtoy/alice@isp.com

10 | Alice

[

Figure 5.3: The dictionary table

61

CHAPTER 5. RDF STORAGE IN MONETDB 62

For the same reason terms with the same value must be mappesigame
integer, even if the lexical form or the type can bé&eaflent (e.g. the numbers ‘5’
and ‘5.0").

In MonetDB this table is a single BAT of typevoid, :str) , lexicographi-
cally ordered on the tail. This forces one to represent eRE&¥ term as a string
and to make the lexicographical order be equivalent to therakone; for numeric
values in particular, this situation required some expadie

Order of the RDF terms

The SPARQL standard defines an ordering among the three aetothpose the
superset of the RDF terms: blank nodes precede IRIs, whicloaetdefore the
literals ([44], section 9.1). The dictionary table, theref, needs to force the order
of these terms in such manner.

The way this is achieved in Monet is to prefix every term withrgke char-
acter that identifies a section in the dictionary: the redatirder of the sections is
thus imposed by the prefixes.

The set of literals is divided into several sections; on the band compara-
ble terms are grouped together, while on the other sectigtissame &ective
boolean value (see 4.4.1) are placed one next to the othes.strhtegy lets one
to implement the EBV function as a range check (see also figdre Binally,
different sections that contain comparable terms are sortpeyqe.g. positive
numerics follow negative numerics and zero).

The following is the list of the sections in the dictionaryitmtheir respective
prefixes:

e Blank nodes - ‘0’

e IRIs-‘1

e Negative infinity - 2’

¢ Negative numerics - ‘3’

e Boolean false - ‘4’

e Numeric zero - ‘5’

e Not a Number (NaN) - ‘6’
e Empty string - ‘7’

e Empty string with language tag - ‘8’

CHAPTER 5. RDF STORAGE IN MONETDB 63

e Strings -'9’

e Strings with language tag - ‘A
e Boolean true - ‘B’

e Positive Numerics - ‘C’

e Positive infinity - ‘D’

e Datetime values - ‘E’

e XML literals - ‘F’

e Literals with unsupported datatypes - ‘G’

Figure 5.4 is an example dictionary that contains at leastad@ment in each
section. It should be noted that sections that contain ordingle element, for
example negative and positive infinity, do not need to storghang more than
the prefix itself: they may not even be present if the RDF doaurfrem which
data is loaded does not contain such values.

Storing type information of literals

The dictionary does not save the XML type of numeric litei@tsl strings; nu-
meric values can be of typed: integer, xsd: float , xsd:decimal and many more
(see [16] for all XML datatypes), while what in the dictiogas categorized as
“string” can be a simple literal (a plain literal with no lamagge tag) or a literal of
typexsd:string .

This information cannot be lost, but cannot even be storatiendictionary
itself: literals with same value butfiierent in type must be mapped to the same
identifier. The type information is therefore stored togetwith the data tables,
thus for each permutation of the S, P and O columns an addit®Ar T of type
(:void, :bte) (wWhere:bte isthe smallest type in Monet) is present.

Figure 5.5 shows a complete data table complete with its Winan] but un-
normalized for ease of reading.

String literals

The dictionary distinguishes four kinds of strings: emptiyng, empty strings
with language tag and non-empty strings, with or withouglaamge tag.

The language tag is placed in front of the lexical form, sd #tangs of the
same language are sorted together. This is an extensioa ®RARQL standard
which does not define an order between literals with a lanegteag

CHAPTER 5. RDF STORAGE IN MONETDB

Id

RDF term

00
01
02
03

OblankO
Oblankl
1http://example.com/iril
1http://example.com/iri2

04
05
06

EBV true

2
33febffffffffffff
33ff3ffffffffffff

07
08
09
10
11
12

EBV false

8it

13
14
15
16
17
18
19
20

EBV true

9Another plain literal or string
9Plain literal or string
Aen@English literal
Ait@Stringa in italiano

B

Cc014000000000000
Cc02b000000000000

D

21
22
23

E800b31fa0lee6280
F<xmlTag name="xml literal"/>
Ghttp://types.org/custom”lexicalForn

Figure 5.4: Dictionary table in detall

64

N

As said in the previous subsection, simple literals anddygteings (literals
with typexsd: string) are grouped together and considered simply “strings”. Two
string literals with same lexical form, one typed and one ard considered equals
and mapped to the same integer.

At the moment the current SPARQL documentation ([44], sec8id) con-
tains an inconsistency on how plain literals and typed g&rshould be sorted: it
states both that they are not comparable and that the typedsstollow plain
literals. A discussion on this topic with one of SPARQL'’s aarhican be found in

the W3C mailing list [6].

In MonetDB this problem is faced by assigning the same id tmaégtrings
(typed or not), but at the same time giving a lower type codeéh@ T column) to
plain literals, so that they are sorted first.

CHAPTER 5. RDF STORAGE IN MONETDB 65

S P @] T
id:1 | dc:value| “string” plain
id:2 | dc:value| “string” | xsd:string
id:3 | dc:value 5 xsd:integer
id:4 | dc:value 5 xsd:double
id:5 | dc:value 5 xsd:decimal

Figure 5.5: Type column for the SPO table

Numeric literals

A numeric value can be expressed in many forms, for examgditérals 1o ,
10.0, "10"""xsd:integer and"10.0"""xsd:float are diferent representations of
the same number.

In order to assign to numeric literals with identical valuee same oid in
the dictionary, they are all (integers, decimal, floats)etonverted to a double-
precision representation and then converted to stringsexddecimal characters.

The lexicographical order of these hexadecimal stringsgiver, is not equiv-
alent to the natural one: positives would be lower than megmtsince the most
significant bit, the sign bit, is zero for positives; moreowegatives would be

sorted inversely, as shown in figure 5.6.

Value Double representation Double representation | Value
-9.50 bfe0000000000000 3£a9999999999990 0.05
-0.45 bfdccccccccecced 3£b9999999999995 0.10
-0.40 b£d999999999999a 3£c3333333333331 0.15
-0.35 bfd6666666666667 3£c9999999999998 0.20
-0.30 b£fd3333333333334 3fcffffffffffffe 0.25
-0.25 bfd0000000000001 3£d3333333333332 0.30
-0.20 b£c999999999999c 3fd6666666666665 0.35
-0.15 b£fc3333333333336 3£d9999999999998 0.40
-0.10 b£b999999999999f 3fdccccccccccech 0.45
-9.05 b£a99999999999a4 3fdffffffffffffe 0.50
0.05 3£29999999999990 b£a99999999999a4 -0.05
0.10 3£b9999999999995 b£b999999999999f -0.10
0.15 3£c3333333333331 b£fc3333333333336 -0.15
0.20 3£c9999999999998 b£c999999999999c -0.20
0.25 3fcffffffffffffe b£d0000000000001 -0.25
0.30 3fd3333333333332 b£fd3333333333334 -0.30
0.35 3£d6666666666665 b£d6666666666667 -0.35
0.40 3£d9999999999998 b£d999999999999a -0.40
0.45 3fdcccccccccccch bfdcccccecccccced -0.45
0.50 3fdffffffffffffe bfe0000000000000 -0.50

Figure 5.6: Numeric values and their double representatiorted on value on
the left and on the representation on the right

A simple solution consists in XORing the 64 bits of the douleleresentation.
Two different bit masks are needed, one for positive and one forinegatmbers.

CHAPTER 5. RDF STORAGE IN MONETDB 66

The first has just to invert the first bit (i.e8000000000000000 in hexadecimal
digits), while the second and to revert every bit (i.effffffff££f££f). The
result is shown in figure 5.7.

Value Representation

-0.50 | 401fffffffffffff
-0.45 | 4023333333333332
-0.40 | 4026666666666665
-0.35 | 4029999999999998
-0.30 | 402cccccccccccch
-0.25 | 402ffffffffffffe
-0.20 | 4036666666666663
-0.15 403ccccecccccccc9
-0.10 | 4046666666666660
-0.05 | 405666666666665b
0.05 b£29999999999990
0.10 b£b9999999999995
0.15 b£fc3333333333331
0.20 b£c9999999999998
0.25 bfcffffffffffffe
0
0

.30 b£fd3333333333332
.35 b£d6666666666665
0.40 b£d9999999999998
0.45 bfdcccccccccccch
0.50 bfdffffffffffffe

Figure 5.7: Representation order reflects value order

xsd:dateTime literals

Literals with XML type xsd:dateTime are stored as a concatenation of Monet’s
timestamp (a 64-bit binary format), converted to a stringp@tadecimal charac-
ters, with a character string that stores the fractions etarsd. The concatenation
is needed because the fractions of a second in Monet haveaudhd precision,
while they may contain an unspecified number of digits in X8/Mlype system.

If a timezone information is present, the timestamp is caredeand stored
in UTC, and when returned by a query it has to be converted lmattietclient’'s
timezone. If this information is not present, the timestampaved and returned
“as is”, without any conversion. In order to distinguishweén datetimes with
and without timezone, the RDF module defines two internalygds, whose code
is stored in the T column of the data table.

Also in this case, two datetime literals with same value aspped to the
same numeric identifier. Two literals with same date and tialees, one without
timezone information and the other in UTC are considereciscas well.

So as the double-precision representation of numbers, Mdseet’s times-
tamps need to be XORed with a bitmask to let the lexical ordexchavalent to
the natural one. The mask in this case has just to reverseashbifi

CHAPTER 5. RDF STORAGE IN MONETDB 67

Figure 5.8 shows some datetime literals and their repragens in the dictio-
nary table, without prefix. Literals with same representatire obviously mapped
to the same identifier.

XML dateTime Representation
2007-08-07T21:15:00 800b304c048£f4c20
2008-07-07T21:15:00 800b319b048£f4c20
2008-08-06T21:15:00 800b31b9048£f4c20
2008-08-07T20:15:00 800b31ba®4585dad
2008-08-07T21:14:00 800b31baf®48e61chd
2008-08-07T21:14:59 800b31ba®48£4838
2008-08-07T21:14:59.999 800b31ba®48£4838999
2008-08-07T21:15:00 800b31ba®48£f4c20
2008-08-07T21:15:00+00:00 800b31ba0®48f4c20
2008-08-07T22:15:00+01:00 800b31ba0®48£f4c20
2008-08-07T20:15:00-01:00 800b31ba0®48£f4c20
2008-08-07T21:15:00.0123 800b31ba0®48£f4c200123
2008-08-07T21:15:00.123 800b31ba®48£f4c20123
2008-08-07T21:15:00.987+00:00 800b31ba®48£4c20987
2008-08-07T21:15:00.9876+00:00 | 800b31ba®048f4c209876

Figure 5.8: Representation order reflects value order

Unsupported datatypes andrdf:XMLLiteral

Numeric, boolean, string and datetime literals have a spgeiatment since they
are required by SPARQL'’s standard operators, but other Kiitecals may ap-
pear in RDF documents as well.

In general, they are stored in section ‘G’, with the datatifpleas a prefix of
the lexical form; in this manner literals of the same typegmmiped together and
sorted on the lexical form.

Literals of typerdf:xMLLiteral , that are XML strings embedded in an RD-
F/XML document, are stored separately in section ‘F’; heneg to not need to
include the datatype IRI together with the lexical form.

5.2 Importing algorithm

The RDF document importing is performed in two phases; in tte¢ @ine the

document is parsed and a first dictionary and data table @eitrmns S, P, O and
T) are filled incrementally. In the second phase the dictipigsorted and the six
permutations of the data tables are created.

CHAPTER 5. RDF STORAGE IN MONETDB 68

5.2.1 First phase

MonetDB uses the Raptor Library [12] to parse RDF. This libiamwpkes a call-
back function for each triple of the document, that can beesged in almost
every RDF serialization language.

Each time the triples handler function is called, MonetDBeirts a mapping
in the dictionary for every term in the triple not previousglycountered, and adds
a row in the data table with the ids of terms and the one-bytle ©b the object’s
type.

Figure 5.10 shows the situation after the first phase of thgorting of the
RDF data in figure 5.1, which is copied to figure 5.9 for ease adirgg (T column
is omitted).

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:f0 foaf:name "Alice" .

_:f0 foaf:mailboxes _:b® .

_:b® rdf:first mailto://alice@isp.com .

_:b® rdf:rest _:bl .

_:bl rdf:first mailto://alice@foaf.org .

_:bl rdf:rest rdf:nil .

Figure 5.9: Example RDF data

Id | RDF Term
00 | Of0
01 | 1httpy/xmiIns.conjffoaf/0.1/name
) S|P |O

02 | 9Alice 00 01102
03 | 1httpy/xmins.conffoaf/0.}/mailboxes

00| 03| 04
04 | 0b0 04| 05| 06
05 | 1httpy/www.w3.0rg199902/22-rdf-syntax-ns#first 04| 07| 08
06 | 1mailtoy/alice@isp.com 08 | 05| 09
07 | 1httpy/www.w3.0rg199902/22-rdf-syntax-ns#rest

08| 07| 10
08 | Obl
09 | 1mailtoy/alice@foaf.org
10 | 1httpy/www.w3.0rg199902/22-rdf-syntax-ns#nil

Figure 5.10: Dictionary and data table after the first phdsmporting

CHAPTER 5. RDF STORAGE IN MONETDB 69

5.2.2 Second phase — sorting
Sorting the dictionary

The first step of the second phase sorts the dictionary oratheAs said above,
this is a simple lexicographical sort, for which MonetDB igtily optimized.
Since the head of the BAT is not a sequence anymore, it camnot type:void
but it is rather materialized and of typeid , as shown in figure 5.11.

Id | RDF Term
04 | 0b0O

08 | Obl

00 | Of0

05 | 1http7/www.w3.0rg199902/22-rdf-syntax-ns#first
10 | 1httpy/www.w3.0rg199902/22-rdf-syntax-ns#nil
07 | 1http7/www.w3.0rg199902/22-rdf-syntax-ns#rest
03 | 1httpy/xmins.conffoaf/0.1/mailboxes
01 | 1httpy/xmins.conffoaf/0.1/name

09 | 1mailtoy/alice@foaf.org

06 | 1mailtoy/alice@isp.com

02 | 9Alice

Figure 5.11: Dictionary just after sorting

Id translation

The final dictionary in figure 5.12 has the same tail of the BATigure 5.11, but
with a :void sequence on the head; a mapping of the ids created during the RD
document parsing and the final ones is therefore needed nidpping is created
as avoid view (see 2.4) of the head of the dictionary in figure 5.11,haswv in
figure 5.13.

This BAT is joined with the S, P and O BATSs, creating a new &gplable with
the final identifiers, shown in figure 5.14.

Sorting the triples table

The last step of the process creates the six copies of thesttgble. The algorithm
sorts one of three columns, then refines the order of the dileecolumns twice,
one for each permutation of the these latters. For exampiesarts first the S
column, then it refines the order on P and subsequently on €ating a triples
table ordered on SPO; then it refines the order on O and Pjrgehe SOP table.

CHAPTER 5. RDF STORAGE IN MONETDB 70

Id | RDF Term
00 | ObO

01 | Obl

02 | ofo

03 | 1http7/www.w3.0rg199902/22-rdf-syntax-ns#first
04 | 1http7/www.w3.0rg199902/22-rdf-syntax-ns#nil
05 | 1http7/www.w3.0rg199902/22-rdf-syntax-ns#rest
06 | 1lhttpy/xmins.conffoaf/0.1/mailboxes
07 | 1httpy/xmins.conffoaf/0.1/name

08 | 1mailtoy/alice@foaf.org

09 | 1mailtoy/alice@isp.com

10 | 9Alice

Figure 5.12: Final dictionary BAT

Old id | New id
04 00
08 01
00 02
05 03
10 04
07 05
03 06
01 07
09 08
06 09
02 10

Figure 5.13: Id translation BAT

This is done three times, each of them sorts one of three ecoAmd refines the
other two twice.

The first unsorted copy of the triple table, the one shown @dut4 is finally
deallocated.

5.3 Conclusions

Summarizing the concepts presented in this chapter, théekeyres of the phys-
ical layer adopted in Monet for RDF storage are:

e Equal RDF terms have same identifiers

CHAPTER 5. RDF STORAGE IN MONETDB 71

S|P |O
02| 07| 10
02| 06 | 00
00| 03| 09
00| 05| 01
01| 03|08
01| 05| 04

Figure 5.14: Triples table with final ids

e The order of two comparable RDF terms is the same of their iitienst
e The data is sorted in all possible ways

e Data with same EBV is grouped together

These characteristics permit to obtain several advantagesms of searches
and joins.

Fast searches and EBV predicate evaluations

One of the most important advantages is that every stringls@athe dictionary
and every id search in the six data tables are performed éedsdata, allowing
to implement range selects sifce viewsas discussed in section 2.4.

An id lookup in the dictionary can be performed by positiae, ithe fastest
way possible; every join between the data tables and thdaty is therefore a
positional join.

The search of values in the data tables, moreover, can berperd in the
identifier space, thus not requiring a join with the dictiopnaa SPARQL triple
pattern like?s foaf:name "Alice", for example, can be implemented as a search
in the POS or OPS table of those triples that have the i@&f:name in P and the
id of "Alice" in O. The join with the dictionary is needed only at the endudy
execution, before returning the result.

Fast joins

As with searches, value-based joins can be performed inlthgece, since identi-
fier equality assures equality of the RDF terms, and conwerdehtifier inequal-
ity assures inequality of the terms. As in any relationalieagMonetDB joins
ids much faster than strings.

One of the greatest issues of SPARQL is that requires manggeijoins of
the triples table, that can be an important bottleneck inymelational engines, as

CHAPTER 5. RDF STORAGE IN MONETDB 72

discussed in [9], [21]. The approach adopted in MonetDB jisrame to perform
merge-joins in many situations, or to have very often attleas of the operands
sorted on the join column; also a nested loop would perforramfaster in this
case if this table is chosen as inner table.

The following two example queries permit one to better gubesabove ad-
vantages; all SPARQL queries are translated to relatiogalba, and their exe-
cution explained. Theelectoperations make use of th&(RDF-Term t)function,
that returns the identifier of the given RDF term, or a spe@éale to suggest that
the term is not present in the dictionary; in this casegbkectreturns an empty
set. The final join with the dictionary to convert back ids msitted.

This simple query can found in the current SPARQL specificatio

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT 7name ?7mbox
WHERE
{ ?x foaf:name ?name .
?x foaf:mbox ?mbox }

In algebra it can be expressed as:

T mame (7T 2xes (O—p = Id (foaf : name) (PSQ) PMUTT s (O—p = Id (foaf : mbox) (PSQ))
2mbox Mame« o 2mbox« o

The selections on P are very fast since the data in PSO isisortihat column
and are thus implemented as slice views. Choosing the PS®, taareover,
assures that the S column is sorted for a given value of Pjgh@tof foaf:name
on the left table of the join and the id @baf:mbox on the right. Since the join is
on S, a merge-join (on the ids) can be performed.

The following query looks for the titles of the resourcesrehced by those
subjects 8, whose title is “RDF”:

PREFIX dc: <http://purl.org/dc/elements/1.1/> .
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#> .
SELECT 7seeAlso
WHERE {
?s dc:title "RDF".
?s rdfs:seeAlso :?x .
?x dc:title ?seeAlso

}

It can be translated as

(O— o= |d (“RDF") (Ops M TTox o (O—p = 1d (rdfs : seeAlso) (PSQ)) M TTox s (O—p =Id(dc: title) (Pos)
p=Id(dc: title)

Again, all theselectoperations are on sorted data, and the inmost join is per-
formed on two sorted columns. Even if the left operand of & jJoin is not

CHAPTER 5. RDF STORAGE IN MONETDB 73

sorted on R, nevertheless the right one is, thus it can be usidiently as the
inner table of a nested loop join; if the left operand is natremous, moreover,
Monet can still decide to sort it. Another benefit of MonetDB{sproach in this
example is that self joins are avoided, since the threeetqgltterns operate on
three distinct tables.

Although these examples are not barely comprehensive ane exbaustive
experiments have to be carried out, the possible benefitedkDF storage tech-
nique adopted in MonetDB, and especially of the exploitabbthe sorted and
dense properties, should be clear.

Drawbacks

The advantages of having the data tables replicated sist@reefollowed by their
disk occupation. For these reason it is already plannedMlibaietDB/SPARQL
will adopt lightweight compression of the data, following application in Monet-
DB/X100 [52, 54], and for which an extensive literature is prese the database
field [23, 28, 32]).

The dense identifier set makes updates impossible to be theegenlessly in
the proposed design, but they can be rather kept in sepaba#astructure that
keeps track of all the modifications. If tli#elta grows until the performance gets
noticeably worse, it will be possible to merge it, creatingeav dictionary and a
new set of data tables.

The particular way the data is stored in the dictionary resguthat even the
most trivial functions have to be reimplemented in orderéaldvith this repre-
sentation: a simple SPARQILTER like 70 < 50, for example, has to be RDF-
specific: the implementation has to transform 50 in its hegadal string rep-
resentation, find the id of the nearest value to it in the di@ry,max , and the
smallest numeric valuein , and finally express the filter as a range select of ids
greater thamin and smaller thamax , or equal to the id of zero.

Since diferent RDF graphs are stored irffdrent sets of tables, a query that
involves multiple graphs cannot benefit from all the advgesadescribed above,
since the assumptions on the order and equality of the idenstare lost. Even
if graph-specific operations can be optimized in this sejog@ng data from dif-
ferent graphs cannot be done in the id space. For this reasal be possible
for a database administrator to merge two or more graphs et afsqueries is
frequently executed against those graphs.

Appendix A

Materialized view choice

This appendix shows which are the best materialized vieasttte MonetDB-
SPARQL optimizer can choose when it has to evaluate a Basidx®atipern. The
target is to perform selections and joins on sorted columns.

The first two sections of the appendix examine all BGPs of owetwaan triple
patterns respectively, dividing them according to the neindf fixed terms in
them. The considered kind of joins aebject-subje¢subject-objecandobject-
object

The last section shows how this information can be used tothkaexecution
of more complex queries.

A.1 Single triple pattern BGPs
In this simple situation the optimizer would chose the viewtbe basis of the

ORDER BY clause or, if other group graph patterns are present, onasis bf the
kind of join that have to performed higher in the executicapl

A.1.1 3variables

View | Result order
SPO | (7?s, ?p, 70)
SOP | (7?s, 70, ?p)
PSO | (?p, ?s, 70)
POS | (?p, 70, ?%)
OSP | (70, 7s, 7p)
OPS | (70, ?p, ?9)

74

APPENDIX A. MATERIALIZED VIEW CHOICE 75

A.1.2 2 variables

o {f?p70}
View | Result order
SPO (?p, 20)
SOP (70, ?p)

e {7s f 70}
View | Result order
PSO (?s, 70)
POS (70, ?79)

o {?2s?p f}

View | Result order
OSP (?s, 7p)
OPS (?p, 79

A.1.3 1variable

The choice here depend on the selectivity of thand f; constraints. In the third
pattern for instance, the constraint on O is usually muchensetective than the
one on P, making therefore OPS a better choice.

o { fofy?0}

View Result order
SPO or PSQ (?0)

o {fo?p 1}

View Result order
SOP or OSP (?p)

e {75 f1}

View Result order
POS or OPS (?9)

APPENDIX A. MATERIALIZED VIEW CHOICE 76

A.2 BGPs of two triple patterns

In many cases in this section the result can be ordered in itfherehnt ways. This
depends on the merge join behaviour when the saimas encountered multiple
times in the join column R on both sides, since in these ranges the algorithm
performs a nested-loop: for eaehi of the outer table, it loops on the inner one
until a differentoid is found. In the result, the outer table has its columns dorte
before those of the inner one.

The optimizer can choose which should be the outer table erbésis its
needs.

A.2.1 No constraints

BGP View 1 | View 2 Result order
> 2
{ X ’)pl ?Ol . SPO SPO (’)X’ -pl; ?Ol! -pZ! %2)
X P 702} of
(?X7 ?pZa ?02! ?p11 ?01)
?X, 701, 701, 705, ?
L2 7 20 spo | sop | o er
X 7P 0,)
(?X1 %Za ?p21 ?p11 ?Ol)
20, 2
L2 % 20 SOP | SPO (96 Tou 2o T 00
X 7P 0,)
(?X1 ?p2) ?02! ?Ol) Opl)
2 2
{ X ’)pl ?01 . SOP Sop ('7)(’ ?Ola -pla ?02! p2)
X ! 0, |} or
(?X1 ?021 ?pZ! ?Oll ’)pl)
(?X! ?pll ?Ol! ?p2| OSZ)
2
{ ,::2 ;,gl ek , | sPo | ops o
R (7%, 2P2, 2, 7P, 701)
(?Xl ?pl! ?Oll ?521 ’)pZ)
2
{ ,;2; 5? ek , | sPo | osP or
e (?X, 2S5, P2, 2P1, 701)
(?X’ ?01, ?pl’ ?pZa ?SZ)
2
{ ,2(2 ,;El ik , | SoP | OPs or
. A - (’)X) ?p2| ?SQ, ?011 7p:l.)
(?X’ ?011 ?p11 ?&1 9p2)
2
{ ,2‘2 ;,El ek , | Sop | osP or
o (?X, 7S, 2P2, 201, 7Py)

APPENDIX A. MATERIALIZED VIEW CHOICE

BGP View 1 | View 2 Result order
(?Xl ?pla ?SJJ ?p2| 702)
2 2
{ j(l ;,S; ZXOZ , | ops | spO or
- . . (?X! ?pZa ?021 ?pla ’)Sl)
{ ’)Sl ’)pl ’)X . (?Xa ?pla ?Sla ?021 r)pZ)

OPS | SOP or

> ? ?0
p2 2 } (’)X) ?021 ?pZ) ?pll ?S:L)

(?X’ ?811 ?pla ?p2: %Z)
OSP | SPO or
(?X! ?p2| ?02! ?311 ?pl)

{ ?s1 ?p1 ?X.
X 7P 0,)

(?X) ?Sly ?pl) ?021 7pZ)
OSsP SOP or
(?X, 202, ?P2, 751, ?P1)

{ 7?1 ?p1 ?X.
X 7P 0,)

(?X! ?pl’ ?Sll ?p21 ,)SQ)

(2 7 ";<X OPS | OPS or
S P2 X} (?X, ?P2, 7%, 71, ?51)
(?X, ?pla ?811 ?SQ! ?p2)
L7 7 7;<X OPS | OSP or
S PP X} (?X, ?S2, ?P2, ?P1, 751)
(?X, 251, 2p1, P2, ?%2)
(7 % °;‘X OSP | OPS or
’S P X} (7%, ?P2, 7S, 751, ?P1)
(?X, 51, ?P1, 752, 7P2)
{2 % . OSP | OsP or
7S 0 X)
(?X, 7S, ?P2, 751, ?P1)
A.2.2 1 constraint
{ f ?pp ?0p.

e Constraint on subject %, M 0, |
! 7P 702

BGP View 1 | View 2 Result order
(?X, ?P1, ?P2, 02)
?
{ ofx 5? ZXO' , | sop | spo or
X P2 0, (?X, P2, 202, 7p1)
(?X, ?p1, 202, ?P2)
"
€1 551 x , | sop | sop or
X 7P 702 (?X, 202, ?P2, ?P1)

APPENDIX A.

MATERIALIZED VIEW CHOICE

BGP View 1 | View 2 Result order
(X, ?P1, 7P2, ?%)
5
{ ,,f e 7;‘)(, | sop | ops or
’S, P2 7 (?X, 7Pz, 7, ?P1)
(7%, ?Pp1, 72, ?P2)
7
{ ')fsz 5g1 x , | sop | osp or
S M (?X, ?S2, ?P2, 7P1)
?
e Constraint on property{ 72 ?:)2 7%2 }
BGP View 1 | View 2 Result order
(?X, 201, 2Pz, ;)
{ 2x f ?0. PSO SPO or
X ?p2 0,)
(X, P2, 202, 701)
(7%, 201, 202, 7P2)
{ zxx 7:) 9’?01)| PSO] SOR g
- P2 10 (?X, 202, ?p2, 701)
(7%, 201, 752, 7P2)
{ ;’;(2 9; ek , | Pso | osp or
s, P2 - (?X, 7, 7Pz, %01)
(7, 201, ?P2, ?%)
{ ;’;2 9:) ik , | Pso | ops or
! M2 ’ (’)X, ?p21 ?SZ! ’)01)
(7%, 751, 7Pz, 702)
?
{ i i 'f)’(;- POS | SPO or
¢ -p2 U2 } (’)X, ?pz; ?021 ’?Sl)
(?X, 251, 202, 7P2)
?
(% N x POS | SOP or
p P 70, |} (?X, 202, ?p2, ?s1)
(?X, 751, 75, 7p2)
?
{ 7 of ";‘X , | POs | osP or
’S P2 - (7%, 25, P2, ?51)
(?X, 51, 7Pz, 752)
?
{ % of 7;<X POS | OPS or
’S P2 ! } (?X, ?pz, ?s,, ')SJ.)
_ {7 ?p f.
e Constraint on object 2% P 20,)

78

APPENDIX A.

MATERIALIZED VIEW CHOICE

BGP View 1 | View 2 Result order
(?X, ?Pp1, ?P2, 702)
o
{ ?)XX P ,Io' OSP | SPO or
X P2 0 (?X, ?p2, 702, ?P1)
(?X! ?pla ?02! 7p2)
?)
L ,')Bl i , | OsP | sop or
e T (?X, 202, ?P2, ?P1)
(?X, ?p1, 72, ?P2)
?
L2 f,x , | osp | osp or
52 ' p2 | (?X; ?&l ?p21 ’?pl)
(?X, ?p1, P2, 7S2)
-
txm , | osp | ops or
2 P2 (?X, ?p2, 72, ?P1)
A.2.3 2 constraints
{ fa fb 701.
? P 0,)
BGP View 1 View 2 | Result order
{ fa fb ?X. ,)
x % %, | SPO or PSO SPO | (X, ?p2, 702)
{ fa fb ?X. ,)
x M 5) SPO or PSO SOP | (?x, 205, 2p2)
{ f f, ?X.
,_,; IV SPOorPSQ OSP | (7%, 75, 7p2)
{ f fo 7X.
?Sal M X%) SPO or PSO OPS | (7%, 22, ?s,)
° { fa ?pl ?01-
fo ?p2 20)
BGP View 1 | View 2 Result order
(?X, ?P1, ?P2)
f)
{ ;a 521 7;‘)(, | sop | sop or
b e . (7)(’ ?p21 Opl)
° { fa ?pl ?01-
7?5 fy 70,)

79

APPENDIX A.

MATERIALIZED VIEW CHOICE

BGP View 1 | View 2 Result order
(?Xl ?pl! 702)
s
,ﬁj‘(']'?1 ?7’3' SOP | PSO or
X e M) (2, %02, 7py)
(?X1 ?pla ?SZ)
2
o SOP | POS or
b (2, 755, 7p1)
{ fa ?pl ?01-
?% P2 oy)
BGP View 1 | View 2 Result order
(?Xl ?p]_! f)pZ)
s
,ﬁj‘(P 7;‘ SOP | OsP or
X P b (?X, P2, 2P1)
{ ?Sl fa fb-
?S% P 0
BGP View 1 View 2 | Result order
> fa fy.
POS or OPS SPO | (?X, ?p,, 70
X r)pz ?02 } (P2 2)
> fa fy.
POS or OPS SOP | (?x, 705, ?
X sz ?02 } (2 p2)
> fa .
POS or OPS OSP X, 7S, ?)
> fa .
POS or OPS OPS | (?X, ?py, ~
{ ’)S_]_ fa 701.
752 fb ?02

80

APPENDIX A. MATERIALIZED VIEW CHOICE

BGP View 1 | View 2 Result order
(?Xy ?Oll ’702)
{ ZXX :ﬁ ?%' PSO | PSO or
G (?X, 702, 201)
(?Xa ?01, 752)
{ ,2(2 fa ?9))1(' PSO | POS or
b (?X, 7S, 201)
(?X1 ?S]_, 902)
-
{ ,;1 % ?9’(;' , | Pos | Pso or
G (7%, 202, 75y)
(7%, 751, 7))
-
{ i]fa x , | Pos | pos or
i (72X, 72, 751)
{ ’)S_]_ fa 701.
?% P2
BGP View 1 | View 2 Result order
(?X, %1! ’)pZ)
{ ZXX ”fS ??1' PSO | OSP or
. he b (oxl ?p21 701)
(?Xy ?Sll ’ppZ)
-
L ,,‘;;‘ x POS | OSP or
o b (X, P2, ?S1)
° { ?51 ?pl fa-
?% P2 fp)
BGP View 1 | View 2 Result order
(?X! ?pl! 9p2)
o
L o o , | OsP | osP or
o (?X, 2P2, ?p1)
A.2.4 3 constraints
I A O
fc ?p2 ?02 }
BGP View 1 View 2 | Result order
f, f, 72X.
{ f: ?SZ 2 | | SPOOrPSQ soOP (72X, ?P2)

81

APPENDIX A

. MATERIALIZED VIEW CHOICE

. { fa fy ?01.
?s o 70,)
BGP View 1 View 2 | Result order
{ fa f, 72X.
x £ %0, | SPO or PSOQ PSO (?X, 200)
{ fa fy 2.
% £ X) SPO or PSO POS (7%, ?3p)
° { fa fb 70_‘]_.
?s P2 fe
BGP View 1 View 2 | Result order
{ fa fu 2x. -
x M, f SPO or PSQ OSP (?X, ?p2)
. { fa ?pr ?01.
?52 fb fc
BGP View 1 View 2 Result order
5
th 7o SOP | POS 0or OPS (2, 7py)
° { ?Sl fa fb-
BGP View 1 View 2 | Result order
{ & f, f.
x L 72, POS or OPS PSO (?X, 200)
{ 2 fi fp.
% £ %) POS or OPS POS (?X, ?3p)
° { ?Sj_ fa fb.
?s 2 fo)
BGP View 1 View 2 | Result order
{ >x f f.
POS or OPS OSP X, ?
% M fo | (7% 2)

82

APPENDIX A. MATERIALIZED VIEW CHOICE 83

A.2.5 4 constraints

BGP View 1 View 2 Result order
POS or OPS POS or OPS (?X)

POS or OPS SPO or PSQO (?X)

SPO or PSQ POS or OPS (?X)

~_
R el R|R R
oh
S

SPO or PSQ SPO or PSO (?X)

A.3 More complex BGP examples

Since the space of the possible combinations with threev@ar more) triple pat-
terns is too wide to be treated extensively, only a few exasplill be shown;
the MonetDBSPARQL optimizer, however, can generate such combinations a
tomatically during query execution as well as it can presglate some common

ones.
The information of the preceding section will be used assiasiind the most

convenient access to the data tables.

A.3.1 Queryl

select 7title
where { ?x dc:title ?title .
?x dc:author 7?y .
?y dc:name "Herman"
?y dc:surname "Melville" }

This query asks for the book titles whose author is calledfirien Melville”;
generalizing its sense, it asks for the object of a resowrcevhich are known
some nested property values.

Since the given object values are the most selective conditn the query, itis
better to start evaluating it from those triple patterng tmetain such conditions.

Figure A.1 shows the best plan for this query. Tthéunction, already used in
section 5.3, returns thed of the its RDF-term parameter; on each edge is shown
how a result is sorted.

The two selections are performed first on the most selectimdition, thus on
0, and then orp; the OPS view is therefore chosen, so that both selectioruare
against sorted data, as well as the following join of the ltesan %¥; the merge
algorithm can therefore be used.

APPENDIX A. MATERIALIZED VIEW CHOICE 84

(?y, ?x, ?title)
P> (?x, 2title)
2y,) N
P xes (0poid(dciite)
> Aitle — o
(?y) (?y, ?X) PSO
?y) > (?y) P _;y((_ o (o p:ld(dc:author)
X S
P?y«—s(0'0=ld(“MelviIIe") Ap:ld(dc:surname)
() ‘ POS
P2y—s\0 o=Id(“Herman”)A p=Id(dc:name
Py (‘ np=Id(OPS
OPS
Figure A.1:

As any selection on the data table, also the one POS is pextbam ordered
data. The result is sorted oly fhaking another merge join possible, but since
the cardinality of the left operand is expected to be very, iogtead of scanning
the full table as a merge join would normally do, it would bétéeto perform a
binary search on the right operand for each value in the tedt o

The same happens in the last join, where the left operandais agnall and
the search in the right operand is performed on the sortedroolX.

A.3.2 Query?2

select 7title ?name ?mbox
where { ?person foaf:publication ?doc

?doc dc:title ?title .
?person foaf:mbox ?mbox .
?person foaf:name ?name }

This query lists all the names and emails of those people wihtighed one
or more documents, along with the titles of these.

This query can have huge intermediate results if the datasige: the join
order chosen in figure A.2 keeps them as small as possibleekhgssvchoosing
the views in order to join sorted data.

If the first join combined the result of the selectiongtioaf:publication and
p=foaf:mbox Which are both multi-valued properties, the intermediataitt would
be much bigger than in the case shown in figure, sfiage:name is a single-valued
property.

Also in this query the first two joins can be merge-joins, wftihe last has
only its right operand ordered.

APPENDIX A. MATERIALIZED VIEW CHOICE 85

(?person, ?2doc, ?name, ?mbox, ?title)

>

(?doc, ?title)
(?person, ?doc, ?name, ?mbox)

P woces (O p=Id(deititie)

Pitle < o
(?person, ?doc, ?name) Wﬂ - ‘

PSO
P 2person—s (U'pzld(foaf:mbox)

(?person, ?name) mbox< 0
(?person, ?doc) ‘
P 2person—s (o-p Id(foaf: name) PSO

Mame« o
P 2persone—s (O'pzld(foaf:publication9 ‘
?doc— o
‘ PSO
PSO
Figure A.2:
A.3.3 Query 3

prefix m: <http://motorbikeontology.org/terms/>
select 7name ?price
where { 7bike m:modelname ?name .

?bike m:engine 7engine .
?engine m:cylinders 3 .
?bike dc:price ?price

FILTER(?price < 7000) }

The query searches for those motorbikes that have a thieeleyengine and
a price lower than 7000 Euros.

Two different plans are shown: the first (fig. A.3) selects the bikeks thie
requested price and joins the result first with the bikes whtiee cylinders and
then retrieves their names; the second (fig. A.4) pulls thecten on price up,
looking first for the bikes with the requested engine, theéna@ng their names
and prices and finally selecting the right price from the itesu

The second approach has the advantage to perform only menge ¢xcept
the first one (the leftmost in figure A.4), but the final selattlwe price has to scan
the full result. The first can perform the selection on prigdhvan almost free of
cost slice view 2.4, but it cannot perform merge joins; it aagway count on the
fact that at least one operand has always the join columadort

The selections on price take also the PRSM _MIN _ID argument, that rep-
resents theid of the smallest positive numeric in MonetDB’s dictionary.

APPENDIX A. MATERIALIZED VIEW CHOICE

(?price, ?bike, ?engine, ?2name)

>

(?price, ?bike, ?engine)

w ?name)

O p=Id(dc:modelname)
\

>

/ we) -
(?price, ?bike)

O POSNUM_MIN _ID<0<1d(7000)\ p=Id(dc:price) (?biwmw

T p=Ild(m:engine) O o=1d(3)A p=Id(m:cylinders)
OPS ‘ ‘
PSO OPS
Figure A.3:
(?bike, ?price, ?name, ?engine)
U POSNUM_MIN ID<?price<|d(7000)
DL (?bike, ?price)
(?bike, ?name, ?engine) \’ i
O p=Id(dc:price)
~
M PSO
(?bike, ?engine) (?bike, ?name)
(?biWN (?engine) 0 p=ld(dc:modelname)
O p=Id(m:engine) T o=1d(3)Ap=Id(m:cylinders) ‘
‘ ‘ PSO
PSO OPS

Figure A.4:

Bibliography

[1] Centrum voor Wiskunde en Informaticattp: //www.cwi.nl/.
[2] MonetDB - Query Processing at Light Speéd.tp: //monetdb.cwi.nl/.

[3] OpenLink Virtuoso - RDF Database and SPARQL.http://docs.
openlinksw.com/virtuoso/rdfdatarepresentation.html.

[4] RDF Issue Tracking. http://www.w3.0rg/2000/03/rdf-tracking/
#rdfms-literalsubjects.

[5] Resource Description Framework (RDFW3C Semantic Web Activity.
http://www.w3.org/RDF/.

[6] SPARQL specification inconsistendyttp://lists.w3.org/Archives/
Public/public-sparql-dev/2008]ulSep/0010.html.

[7] The research articles related to MonetDBattp://monetdb.cwi.nl/
projects/monetdb/Development/Research/Articles/index.html.

[8] TPC-H Benchmark Comparison. http://monetdb.cwi.nl/SQL/
Benchmark/TPCH/index.html.

[9] Daniel J. Abadi, Adam Marcus, Samuel R. Madden, and KatikeHbach.
Scalable Semantic Web Data Management Using Verticalti®artg. In
Proceedings of the 33th Very Large Data Bases (VLDB) Conéeyéfienna,
Austria, 2007.

[10] Sofia Alexaki, Vassilis Christophides, Greg KarvoutkdsaDimitris Plex-
ousakis, and Karsten Tolle. The ICS-FORTH RDFSuite: Manayfwlg-
minous RDF Description Bases. PRroceedings of the 2nd International
Workshop on the Semantic Weétong Kong, China, 2001.

[11] H. Alvestrand. RFC 3066 - Tags for the Identification ohgaageshttp:
//www.ietf.org/rfc/rfc3066.txt, January 2001.

87

BIBLIOGRAPHY 88

[12] Dave Beckett. Raptor RDF Parser Libratytp://librdf.org/raptor/.

[13] Dave Beckett. RDEXML Syntax Specification (Revised)http://www.
w3.org/TR/rdf-syntax-grammar/. Copyright © 2004 World Wide
Web Consortium, (Massachusetts Institute of Technologypfgean Re-
search Consortium for Informatics and Mathematics, Keiovesity).
All Rights Reserved. httywww.w3.orgConsortiuniLega)2002copyright-
documents-20021231.

[14] David Beckett and Tim Berners-Lee. Turtle - Terse RDF FEipanguage.
http://www.w3.org/TeamSubmission/turtle/, January 2008.

[15] Tim Berners-Lee. Notation3 (N3) A readable RDF syntaxtp://www.
w3.org/DesignIssues/Notation3.html.

[16] Paul V. Biron, Kaiser Permanente, and Ashok Malhotra. XM
Schema Part 2: Datatypes Second Edition - Built-in datatypestp:
//www.w3.org/TR/xmlschema-2/. Copyright © 2004 World Wide
Web Consortium, (Massachusetts Institute of Technologypean Re-
search Consortium for Informatics and Mathematics, Keioversity).
All Rights Reserved. httpywww.w3.orgConsortiuniLegaj2002copyright-
documents-20021231.

[17] P. A. Boncz and M. L. Kersten. MIL Primitives for QueryirgFragmented
World. The VLDB Journal8(2):101-119, October 1999.

[18] P. A. Boncz, M. Zukowski, and N. Nes. Monet[DBLO0: Hyper-Pipelining
Query Execution. IrProceedings of the Biennial Conference on Innova-
tive Data Systems Research (CIDRages 225-237, Asilomar, CA, USA,
January 2005.

[19] Dan Brickley and R.V. Guha. RDF Vocabulary Description Lan
guage 1.0: RDF Schema. http://www.w3.org/TR/rdf-schema/.
Copyright © 2004 World Wide Web Consortium, (Massachusetts
Institute of Technology, European Research Consortium fdiorin
matics and Mathematics, Keio University). All Rights Resetve
httpy//www.w3.orgConsortiuniLegaj2002copyright-documents-
20021231.

[20] Jeen Broekstra, Arjohn Kampman, and Frank van Harmekesame: A
Generic Architecture for Storing and Querying RDF and RDF 8theln
Proceedings of the First Internation Semantic Web Confer¢l8WC) Sar-
dinia, Italy, 2002.

BIBLIOGRAPHY 89

[21] Eugene Inseok Chong, Souripriya Das, George Eadon, agdndathan
Srinivasan. An Hicient SQL-based RDF Querying Scheme. Piroceed-
ings of the 31st International Conference on Very large dases (VLDB)
pages 1216-1227. VLDB Endowment, 2005.

[22] Burleson Consulting. Oracle tool tips - Relational Digisi http: //www.
dba-oracle.com/t_sql_patterns_relational_division.htm.

[23] Gordon V. Cormack. Data compression on a database systammun.
ACM, 28(12):1336-1342, 1985.

[24] Richard Cyganiak. A relational algebra for SPARQL. TechhiReport
HPL-2005-170, HP-Labs, 2005.

[25] DBpedia.http://dbpedia.org/.

[26] Orri Erling. Advances in Virtuoso RDF Triple Storage (Biap
Indexing). http://virtuoso.openlinksw.com/wiki/main/Main/
VOSBitmapIndexing.

[27] Orri Erling and Ivan Mikhailov. RDF Support in the Virtso
DBMS. http://virtuoso.openlinksw.com/dataspace/dav/wiki/
Main/VOSArticleRDF.

[28] Goetz Graefe and Leonard D. Shapiro. Data Compressidatabase Per-
formance. Inin Proc. ACMIEEE-CS Symp. On Applied Computim@ges
22-27,1991.

[29] Jan Grant and David Beckett. N-Tripleshttp://www.w3.org/TR/
rdf-testcases/#ntriples, February 2004.

[30] Stephen Harris. SPARQL query processing with conveafioelational
database systems. WISE Workshop$ages 235-244, 2005.

[31] Patrick Hayes. RDF Semantics.http://www.w3.org/TR/rdf-mt/.
Copyright © 2004 World Wide Web Consortium, (Massachusetts
Institute of Technology, European Research Consortium fdordin
matics and Mathematics, Keio University). All Rights Reserve
httpy//www.w3.orgConsortiuniLegaj2002copyright-documents-
20021231.

[32] Allison L. Holloway, Vijayshankar Raman, Garret Swaatid David J. De-
Witt. How to barter bits for chronons: compression and badtwtrade
offs for database scans. 81IGMOD '07: Proceedings of the 2007 ACM

BIBLIOGRAPHY 90

SIGMOD international conference on Management of dasmes 389—-400,
New York, NY, USA, 2007. ACM.

[33] Jena Semantic Web Framewotittp://jena.sourceforge.net/.

[34] KAON The KArlsruhe ONtology and Semantic Web tool suifettp://
kaon.semanticweb.org/.

[35] Gregory Karvounarakis, Sofia Alexaki, Vassilis Chrstades, Dimitris
Plexousakis, and Michel Scholl. RQL: a declarative quenglege for
RDF. InProceedings of the 11th International Conference on Worldeni
Weh pages 592-603, Honolulu, Hawaii, USA, 2002.

[36] S. Manegold, P. A. Boncz, and M. L. Kersten. Optimizingt&zmse Ar-
chitecture for the New Bottleneck: Memory Accesthe VLDB Journal
9(3):231-246, December 2000.

[37] Stefan Manegold. The Calibrator (v0.9¢e), a Cache-Menamy TLB Cali-
bration Tool.http://monetdb.cwi.nl/Calibrator/.

[38] Frank Manola and Eric Miller. RDF Primer. http://www.
w3.org/TR/rdf-primer/. Copyright © 2004 World Wide Web
Consortium, (Massachusetts Institute of Technology, Eemop Re-
search Consortium for Informatics and Mathematics, Keiovesity).
All Rights Reserved. httgpwww.w3.orgConsortiuniLega)2002copyright-
documents-20021231.

[39] Andrew Newman. Querying the Semantic Web using a Relati®@ased
SPARQL. Master’s thesis, The University of Queensland, 2006

[40] Web Ontology Language OWLW3C Semantic Web Activity.http://
www.w3.org/2004/0WL/.

[41] Jorge Perz and Marcel Arenas Claudio Gutierrez. Semantics and Com-
plexity of SPARQL. InProceedings of the 5th International Semantic Web
ConferenceAthens, GA, USA, November 2006.

[42] Jorge Pe¥z and Marcel Arenas Claudio Gutierrez. Semantics of SPARQL.
Technical report, Universidad de Chile, October 2006.

[43] Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Lagg
for RDF. http://www.w3.org/TR/rdf-sparql-query/. Copy-
right © 2006-2007 World Wide Web Consortium, (Massachusetts

BIBLIOGRAPHY 91

Institute of Technology, European Research Consortium fdiorin
matics and Mathematics, Keio University). All Rights Reserve
httpy//www.w3.orgConsortiuniLegaj2002copyright-documents-
20021231.

[44] Eric Prud’hommeaux and Andy Seaborne. SPARQL Query
Language for RDF. http://www.w3.0org/TR/2008/
REC-rdf-sparql-query-20080115/, January 2008. Copyright

© 2006-2007 World Wide Web Consortium, (Massachusetts In-
stitute of Technology, European Research Consortium for rinfo
matics and Mathematics, Keio University). All Rights Reserve
httpy//www.w3.orgConsortiuniLegaj2002copyright-documents-
20021231.

[45] Andy Seaborne. RDQL - A Query Language for RDittp: //www.w3.
org/Submission/2004/SUBM-RDQL-20040109/.

[46] Sesame: RDF Schema Querying and Storagetp://www.openrdf.
org/.

[47] Mike Stonebraker, Daniel Abadi, Adam Batkin, Xuedong @hditch Cher-
niack, Miguel Ferreira, Edmond Lau, Amerson Lin, Sam Madd#izabeth
O’Neil, Pat O’Neil, Alex Rasin, Nga Tran, and Stan Zdonik. @®t A Col-
umn Oriented DBMS. IiProceedings of the Very Large Data Bases (VLDB)
ConferenceTrondheim, Norway, 2005.

[48] SWAD-Europe Deliverable 10.2: Mapping Semantic WebtaDavith
RDBMSes. http://www.w3.0org/2001/sw/Europe/reports/rdf_
scalable_storage_report/.

[49] Virtuoso Universal Servehttp://www.openlinksw.com/virtuoso/.

[50] Raphael Volz, Daniel Oberle, Sten Staab, and Boris Motik. KAON
SERVER - a Semantic Web Management System.Pioceedings of the
12th International World Wide Web ConferenBaidapest, Hungary, 2003.

[51] Kevin Wilkinson, Craig Sayers, Harumi Kuno, and Dave Rags. Hficient
RDF storage and retrieval in Jena2. Rroceedings of the 1st International
Workshop on Semantic Web and DatabaBeslin, Germany, 2003.

[52] M. Zukowski. Improving JO Bandwidth for Data-Intensive Applications.
In Proceedings of the British National Conference on DatabaB&KJOD)
Sunderland, England, UK, July 2005. PhD Workshop.

BIBLIOGRAPHY 92

[53] M. Zukowski, P. A. Boncz, N. Nes, and S. Heman. MonetRBIO - A

DBMS In The CPU CachelEEE Data Engineering Bulletin28(2):17-22,
June 2005.

[54] M. Zukowski, S. Heman, N. Nes, and P. A. Boncz. SuperssddAM-CPU

cache compression. Technical Report INS-E0511, CWI, Amsterdédne
Netherlands, July 2005.

