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habe und nur die angegebenen Hilfsmittel und Quellen verwendet wurden.

∗) This work was supported by the DFG Research Training Group GK-1042 ”Explorative
Analysis and Visualization of large Information Spaces”.



Contents

1 Introduction 1
1.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The XML Query Language: XQuery . . . . . . . . . . . . . . . . . . . . . 1
1.3 MonetDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Pathfinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Relational Storage 6
2.1 pre/post Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 XML Document Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Item Sequence Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Item Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Core to MIL Translation 11
3.1 Loop-Lifting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Relational Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Inference Rule Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Algebraic Translation Rules . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4.1 Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4.2 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4.3 Variable References . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4.4 Let Bindings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4.5 For Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4.6 If-Then-Else . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4.7 Typeswitch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.8 Path Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.9 Text Constructor . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4.10 Attribute Constructor . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.11 Element Constructor . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.12 Count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4.13 Arithmetic and Comparison Operators . . . . . . . . . . . . . . . . 28
3.4.14 Order by Expression . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.15 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.16 Casts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Translation to MIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5.1 Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5.2 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.5.3 Let Bindings and Variable References . . . . . . . . . . . . . . . . 34
3.5.4 For Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5.5 If-Then-Else . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5.6 Typeswitch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5.7 Path Steps and Constructors . . . . . . . . . . . . . . . . . . . . . 36
3.5.8 Count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

i



3.5.9 Arithmetic and Comparison Operators . . . . . . . . . . . . . . . . 37
3.5.10 Order by Expressions . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5.11 Built-In Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5.12 User-Defined Functions . . . . . . . . . . . . . . . . . . . . . . . 38

4 Optimizations 39
4.1 Order Awareness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.1 Merged Union . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.1.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Loop-Lifted Path Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.1 Basic Staircase Join . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.2 Loop-Lifted Child Step . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.3 Loop-Lifted Descendant Step . . . . . . . . . . . . . . . . . . . . 47
4.2.4 Early Name and Kind Tests . . . . . . . . . . . . . . . . . . . . . 50
4.2.5 Loop-Lifted Path Steps for Other Axes . . . . . . . . . . . . . . . 52

4.3 Avoiding the iter|pos|item|kind Interface . . . . . . . . . . . . . . . . . . . 54
4.4 Join Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4.1 Join Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4.2 Join Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4.3 Existential Semantics . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Experiments 63
5.1 Order Awareness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 Loop-Lifted Path Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3 Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.4 Join Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.5 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.6 System Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6 Conclusions and Outlook 69

Bibliography 72

Acknowledgments 74

A XMark Queries 75

ii



Abstract

This master thesis proposes the use of a relational database as special query processor
for the XML query language XQuery. We chose MonetDB, an extensible RDBMS, to be-
come our relational back-end. Its low level interpreter language MIL, which combines a
relational algebra and a procedural language, became our target language for the XQuery
compilation. The thesis first sketches concepts of the two languages as well as general
ideas of the MonetDB DBMS and the Pathfinder compiler. The overview is followed by
the description of storage structures for XML documents and XQuery item sequences.

The mapping from normalized XQuery Core to relational algebra by means of inference
rules formalizes the compilation scheme and serves as basis for explaining the concepts of
the transformation. From the inference rules we also derive the mapping from normalized
XQuery Core to our target language MIL. Different optimizations increase the performance
of the semantically correct but sometimes inefficient translation. Amongst others, an ex-
tension of the staircase join algorithm, which efficiently evaluates XPath location steps,
enables us to exploit its techniques in the domain of XQuery. Another important opti-
mization is the join recognition that, based on normalized XQuery Core patterns, detects
relational joins and emits appropriate join plans.

Experiments not only justify the optimizations, but also demonstrate the outstanding
scaling of our approach. An extensive performance comparison with other XQuery proces-
sors (using the XMark benchmark) furthermore marks the effectiveness of the approach.
Finally, a conclusion sums up the ideas developed in this thesis and provides an outlook for
the future topics in the course of the Pathfinder project.



Chapter 1

Introduction

Pathfinder is a research prototype whose task is to compile XQuery into a target language
that can be interpreted by a relational database system. Its main focus lies on the devel-
opment of ideas, which allow the efficient execution of the emitted query plans. Since the
project was started at the University of Konstanz, Germany, in 2001, not only the XQuery
language evolved, but also Pathfinder — researchers from the University of Twente, The
Netherlands, and the Center for Mathematics and Computer Science (CWI) in Amsterdam,
The Netherlands, joined the effort. Together many new ideas were developed (e.g., XPath
Accelerator [13], staircase join [17], and XQuery on SQL Hosts [15, 16]).

The work, on which this thesis is based, is a full implementation of these ideas, thus
proving their significance in practice. The result is MonetDB/XQuery — a prototype
system, which uses the MonetDB RDBMS [2] as its relational back-end to query large
(multi-gigabyte) documents in interactive time. MonetDB/XQuery is available in open
source [22].

1.1 Outline

The introduction proceeds with overviews of the XQuery language, MonetDB and its low
level interpreter language, which is the target language of the approach explained in the fol-
lowing, as well as the Pathfinder compiler and its integration into the MonetDB RDBMS.
The second chapter provides insight into the relational storage of both shredded and gen-
erated XML documents and explains how the basic data model in XQuery, namely ordered
sequences of items are encoded. Chapter 3 presents the mapping from normalized XQuery
Core to relational algebra. It closely follows the mapping described in [15, 16] and there-
fore repeats the ideas, before applying them on the relational algebra used in MonetDB.
Early versions of Pathfinder/MonetDB struggled with large overhead as well as huge mem-
ory and time consumption. Order awareness, join recognition, and exploiting more prop-
erties in path steps are the optimizations, which allowed us to overcome these problems.
They are explained in Chapter 4. Several experiments demonstrate the impact of these op-
timizations in Chapter 5. Furthermore, a complete system comparison against the latest
versions of Galax [11] and X-Hive [26] using the XMark benchmark shows our unprece-
dented performance on larger documents. The last chapter concludes this thesis and gives
an outlook of the ongoing work.

1.2 The XML Query Language: XQuery

As increasing amounts of information are stored, exchanged, and presented using XML, the
ability to intelligently query XML data becomes increasingly important. XQuery satisfies
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that need and allows flexible access to a broad spectrum of XML information sources.
XQuery is derived from an XML query language called Quilt [6], which in turn borrowed
features from several other languages, including XPath 1.0, XQL, XML-QL, SQL, and
OQL.

The basic building block of XQuery is the expression, which may be constructed from
keywords, symbols, and operands. In general, the operands of an expression are other ex-
pressions. XQuery is a functional language, which means that expressions can be nested
with full generality. Path expressions and FLWOR expressions are two of the most impor-
tant constructs in XQuery and they are therefore explained in more detail. The discussion
of other concepts, like atomic types, comparisons, computations, casting, type checking,
conditionals, variables, and XML construction are beyond the scope of this work and there-
fore omitted here. To follow this work it is, however, reasonable to be familiar with these
constructs. To understand some decisions in the sequel it may be even necessary to know
some basics about the XQuery semantics (e.g., node identity, document order, or subtree
copy). For a full reference, please refer to [5].

Path Expressions

Path expressions can be used to locate nodes within XML documents. A path expression
consists of a series of one or more steps, separated by ”/”. A path step returns a sequence
of nodes that are reachable from a given element (the context node) via a specified axis.
Such a step has two parts: an axis, which defines the direction of movement for the step,
and a node test, which selects nodes based on their kind, name, and/or type annotation.
For example, the step child::book selects the book element children of the context node:
child is the name of the axis, and book is the name of the element nodes to be selected on
this axis. All together there are 12 axes in XQuery, which are listed with their semantics in
Table 1.1. As a path step may contain several context nodes, it retrieves the resulting nodes
for every context node, combines them, and returns them with duplicates removed in the
order they appear in the document.

Axis Result nodes
v/child child nodes of v
v/descendant all nodes in the subtree of v
v/descendant-or-self v itself and its descendants
v/parent parent of v
v/ancestor recursive closure of parent axis
v/ancestor-or-self v itself and its ancestors
v/following nodes following v in document order
v/preceding nodes preceding v in document order
v/following-sibling followings with the same parent as v
v/preceding-sibling precedings with the same parent as v
v/self v
v/attribute attribute nodes of v

Table 1.1: Overview of axis semantics originated in context node v.

FLWOR Expressions

A FLWOR expression is a feature of XQuery that supports iteration and binding of variables
to intermediate results. It is often useful to compute joins between two or more documents
and to restructure data. The name FLWOR, pronounced flower, is suggested by the key-
words for, let, where, order by, and return. The for clause in a FLWOR expression
consecutively binds each item in an input sequence to a variable, called the tuple stream.
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The let allows binding variables to additional sequences of items. The optional where
clause serves to filter the tuple stream, retaining some tuples and discarding others. The
optional order by clause can be used to reorder the tuple stream. The return clause
constructs the result of the FLWOR expression. It is evaluated once for every retained tu-
ple in the tuple stream using the respective variable bindings. The result of the FLWOR
expression is an ordered sequence containing the results of these evaluations.

Query Q1 is such a FLWOR expression, whose for loop consists of 5 iterations:

for $a in (8, 15, 12, 4, 9)

let $b := (string($a), "even")

where ($a mod 2 = 0)

order by $a ascending

return string-join($b, " is ")

. (Q1)

In every iteration $a gets bound to one value in the input sequence and a sequence of two
strings (the string value of $a and "even") is assigned to $b. The where clause filters all
iterations where $a is bound to an even value and order by sorts the remaining values
by their value. The return value is a concatenation of the strings in $b using the string "

is " as delimiter. The result of the query is the item sequence: ("4 is even", "8 is

even", "12 is even").

1.3 MonetDB

We chose to use the MonetDB RDBMS as our relational back-end for the Pathfinder com-
piler. MonetDB is an extensible main memory database system developed at the CWI in
Amsterdam. Its aim to support multiple domains and to get the best performance out of
modern CPU and memory hardware especially suits our demand. To reach these goals,
MonetDB comes with some non-standard facilities.

One of these facilities is full vertical fragmentation, meaning that MonetDB only knows
binary tables. The first column in such a table is called head, the second tail, and the com-
plete table is named Binary Association Table (BAT). To avoid the loss of information, a
fully vertically fragmented relation needs to save a unique key in each binary relation. This
is shown in Figure 1.1(b), which introduces a new pre key column, after splitting relation
r in Figure 1.1(a). The obvious performance penalty, which comes with the necessary key
joins, is avoided in MonetDB by introducing virtual object identifiers (void) as keys. The
columns of relations are saved in arrays allowing the void values to correspond to the off-
sets in the array (+ a given number). The storage of relation r in MonetDB consists of
two arrays. The key column pre is not materialized anymore, because it matches the void
column. To combine the columns in relation r, a positional lookup is used, which makes
the key join almost a no cost operation.

pre size level
0 4 0
1 0 1
2 2 1
3 0 2
4 0 2

(a) Relation r

pre size
0 4
1 0
2 2
3 0
4 0

pre level
0 0
1 1
2 1
3 2
4 2

(b) Vertically fragmented
relation r

void size
0 4
1 0
2 2
3 0
4 0

void size
0 0
1 1
2 1
3 2
4 2

(c) Relation r in MonetDB

Figure 1.1: Full vertical fragmentation in MonetDB.

MonetDB strictly follows a front-end/back-end architecture, which is introduced to
reach the design goal of extensibility and to support multiple logical data models. A re-
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lational front-end maps, e.g., SQL queries into MonetDB requests — Pathfinder follows
the same approach. The interface, to communicate with the underlying database kernel, is
the low level interpreter language MIL1. Its table manipulation operations form a closed
algebra on the binary model. Additionally, it is a computationally complete procedural
language and allows extensions with new primitives, data types, and associated search
accelerator structures. This extension mechanism will be used in Section 4.2 to add an ef-
ficient implementation of the staircase join algorithm in the programming language C. The
remaining part of this chapter is used to shortly review some MIL operators.

MonetDB Interpreter Language (MIL)

The operators in MIL can be divided into two groups: table manipulation operations and
programming language operators. The latter ones are inspired by the C programming lan-
guage and contain, e.g., variables, assignments, computations, comparisons, conditionals,
loops, and functions. The former ones are basic database operations (e.g., join, project,
select, unique, diff, union, intersect, aggregates, . . . ) as well as additional oper-
ators, to support the binary data model. The basic database operators, which expect more
than one BAT as input (like join), return again a binary relation, to fulfill the need for a
closed algebra on the BAT type. In case of a join, this is achieved by projecting out the two
join columns, retaining the other two columns.

reverse, mirror, and mark are specific operators implied by the binary table model.
reverse switches head (the first column) and tail (the second column) of a BAT. This is
necessary, because most operations (e.g., select, project, aggregates) only work on the
tail column. To combine multiple columns it is sometimes necessary to copy the key. This
can be done using mirror, which copies the values of the head into the tail. mark is the
operator, which creates a new key column. It consecutively assigns object identifiers (oid),
which are numbers syntactically marked by ”@0”, starting at a given offset. This is also the
mechanism to create void columns.

These three operators are for free as they modify only the descriptors of the BAT. For
reverse the references to the arrays storing the values are switched and for mirror the
references are copied. The mark operator only stores the offset in the BAT descriptor
without materializing the enumerated column.

Figure 1.2 shows how relation r from Figure 1.1 can be generated: bat(void, int)

creates a new BAT with the head type void and the tail type integer. nil stands for an
undefined value; the dot concatenates multiple operations, and the semicolon finishes an
expression. Because mark only works on tail values, a reverse is necessary twice, to
create new numbers in the head column starting at offset 0.

> var r_size := bat(void,int);

> var r_level := bat(void,int);

> r_size .insert(nil, 4).insert(nil, 0).insert(nil, 2).insert(nil, 0).insert(nil, 0);

> r_level.insert(nil, 0).insert(nil, 1).insert(nil, 1).insert(nil, 2).insert(nil, 2);

> r_size := r_size .reverse().mark(0@0).reverse();

> r_level := r_level.reverse().mark(0@0).reverse();

Figure 1.2: Creation of relation r (see Figure 1.1) in MIL.

A special operator is the multiplex ([f]), which bridges the gap between the table
manipulation and the procedural operators. [f] maps an operator f like e.g., + to each row
of a BAT. If such an operator expects more than one operand and input to the multiplex are
multiple BATs, an implicit equi-join on the heads is performed.

Figure 1.3 continues the MIL example started in Figure 1.2. First we select the rows
with size equal to 0 (discarding the first and the third row), copy the pre values into the
tail and cast every row in the tail to an integer. The second row calculates the post values

1MIL stands for MonetDB Interpreter Language.
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(pre/post encoding will be explained in the following chapter) using the multiplex operator.
The implicit joins of [+] and [-] return only three rows, because of r_pre. The print

performs an implicit join on the head values as well and therefore prints only three rows.
The common head is printed as first column and the three remaining columns correspond
to the tails.

> var r_pre := r_size.select(0).mirror().[int]();

> var r_post := r_pre.[+](r_size).[-](r_level);

> print (r_size, r_level, r_post);

#---------------------------------#

# t tmp_214 tmp_190 tmp_241 # name

# void int int int # type

#---------------------------------#

[ 1@0, 0, 1, 0 ]

[ 3@0, 0, 2, 1 ]

[ 4@0, 0, 2, 2 ]

Figure 1.3: Calculate post value of all leaf nodes in relation r

A complete overview of MIL goes beyond the scope of this thesis. Most unexplained
operators used in the next chapters, however, should be known either from relational al-
gebra or from programming languages. For interested readers, [2, 21] will provide more
details.

1.4 Pathfinder

Server
MonetDB

− Core Optimization
− Type Checking
− Core Simplification
− Core Generation

XML

XQuery
Client XQuery

MIL

Compiler Module

− Normalization
− XQuery Parsing

− MIL Generation

Runtime Module

− XML Schema Import

MonetDB Kernel

− (Loop−lifted) Staircase Join

− XML Serialization
− multijoin

Figure 1.4: System architecture.

The Pathfinder XQuery compiler can be used as
new front-end to the MonetDB RDBMS (sketched
in Figure 1.4). It consumes an XQuery expres-
sion, which is parsed, normalized, and translated
into XQuery Core. The Core expression is then sim-
plified, type checked and optimized. The last step of
the compilation is the MIL code generation, which
is also the focus of this thesis. Other approaches,
which translate XQuery Core to relational algebra or
SQL instead, are currently investigated in the course
of the Pathfinder research project.

The MIL code generated by the Pathfinder com-
piler relies on some extensions added to the Mon-
etDB back-end. The most prominent ones are the
result serialization and the intelligent path step evaluation (staircase join). Others, how-
ever, will be mentioned in the course of this thesis.
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Chapter 2

Relational Storage

A relational evaluation requires the tabular encoding of two principal data models. XML
documents (or fragments thereof) form ordered, unranked trees of nodes. XQuery’s pro-
cessing model in turn is based on ordered, finite sequences of items. The first data model
can be mapped using the pre/post encoding developed in [13]. It will be shortly summarized
in Section 2.1, where we compare it with the pre/size encoding. The pre/size encoding is
the mapping, which underlies our XML document storage and will be explained in detail
in Section 2.2. The mapping of item sequences to relations as well as its actual storage is
subject of Section 2.3 and Section 2.4, respectively.

2.1 pre/post Encoding

The pre/post encoding is a schema-independent mapping of XML documents into relations.
It is a true isomorphism with respect to the tree structure. The encoding can be generated
by counting the number of opening tags as pre values and the closing tags as post values
during a sequential scan over the document. The pre and post values are then stored in
a 2-column relation, where each row represents one node. The pre values alone already
reflect the document order as well the node identity, which are two characteristics required
in XQuery. Figure 2.1(a) shows the document tree of example document Doc:

<a><b>c</b><d><e/><f/></d><g a="42"/></a> . (Doc)

Figure 2.1(b) shows the nodes plotted into a two-dimensional plane using the pre and post
values to define their position. Node d for example resides at a pre value of 4 and a post
value of 3. This tree encoding allows a highly efficient XPath processing. The staircase
join [17] evaluates XPath location steps for a given sequence of context nodes in a single
sequential scan over the tree encoding table. It works based on ranges on the pre/post re-
lation visible in 2.1(b), where context node d divides the plane into four quadrants, which
correspond to the four major XPath axes (ancestor, descendant, following, and pre-

ceding). Staircase join furthermore prunes the context node sequence to avoid overlap,
partitions the document to completely avoid duplicate result nodes, and speeds up the pro-
cessing by skipping considerable parts of the encoded tree, which do not contribute to the
result.

The pre/post mapping records one more attribute (level), which stores the distance of
a node to the root node. This additional column speeds up the processing of the child,
parent, following-sibling, and preceding-sibling axes, which rely on the node
depth of the context node.

In this work we use a different encoding variant by saving the pre values and the size
of the subtree for each node. It is equivalent to the pre/post encoding, due to the fact
that the post value can be recovered using the simple equation: post = pre + size - level.

6



a
•

b•w
ww
ww

"c"
•­
­­
­ d◦

e
•­
­­
­

f
•
44
44 g•

GG
GG

G

(a) Document tree

• document node
◦ context node

post
OO

pre//
〈0,0〉

−1
−
−
−
−5
−

+
1
++++

5
+

•a

•
b
•
c

◦
d

•
e

•
f

•
g

(b) pre/post plane

• document node
◦ context node

pre+ size
OO

pre//
〈0,0〉

−1
−
−
−
−5
−

+
1
++++

5
+

•a

•
b
•
c

◦
d
•
e

•
f

•
g

(c) pre/pre+size plane

Figure 2.1: Graphical representations of document Doc

The pre/size mapping comes with similar characteristics like the pre/post mapping. Fig-
ure 2.1(c) shows Doc plotted on a pre/pre+size plan, where result nodes of the four major
axes are still visible. But the pre/size encoding has even more advantages. To evaluate an
XPath step, the pre/size encoding works with a small number of lookups (only lower bound-
ary pre and upper boundary pre+size), whereas the pre/post encoding requires a post value
comparison for each matching node to test the node containment. XPath location steps of
the forward axes relying on the level information (child and following-sibling) in
addition require only pre and size and therefore allow skipping. With the pre/post encod-
ing, these axes require level, which prohibits skipping. To illustrate, for the child axis, we
have that:

v ∈ c/child⇔
v1.pre = c.pre+1 ∧ v1.pre 6 c.pre+ c.size ∪

vi+1.pre = vi.pre+ vi.size+1 ∧ vi+1.pre 6 c.pre+ c.size .

The last but perhaps most important advantage of the pre/size encoding is that element
subtree copies, necessary for every element construction, are self containing in the pre/size
encoding. The reason is that size is invariant with respect to copying and moving. In
comparison, post values require updates for each subtree copy, because the new pre values
automatically effect the post values.

2.2 XML Document Storage

The encoding described in the last section only saves the XML document structure. In this
section the tree skeleton is enriched with the textual content of the document. Furthermore
we explain the storage of multiple fragments and transient nodes created during querying.

Single Document Storage

The straightforward storage model would be one big relation holding all values of the five
node kinds (document, element, text, comment, or processing-instruction):

pre size level kind prefix uri loc text comment pi target
2@0 0 2 text null null null c null null null

Since every node has exactly one node kind, the records are heterogeneous. A fully de-
composed storage model as described by Copeland and Khoshafian therefore seems to be
a much better fit [8]. MonetDB internally already stores the relations columnwise and now
additionally discards the large number of null tuples. In the following aligned columns
like e.g., prefix, uri, and loc are grouped to logical relations (e.g., qn) whereas the under-
lying storage remains fully decomposed. The main table, in the following named pre|size

7



relation, holds the common values (pre, size, level, kind) and a foreign key ref, which to-
gether with kind refers to the values of the nodes. In addition, duplicate records in these
aligned relations are eliminated to save storage space and to allow reference comparisons
instead of string comparisons.

attributes attribute values

text comments

qualified names
(attributes + elements)

instructions
processing

size level ref kind

text

elem

elem
elem

elem
elem
elem

2

1

0
1

1
2
2

0

0

6
1

2
0
0

2@0

6@0

0@0
1@0

3@0
4@0
5@0

""

""
""

""
""
""

"d"

"a"
"b"

"e"
"f"
"g"

""

""
""

""
""
""

0@0

5@0

0@0
1@0

2@0
3@0
4@0

propqnpre val

val val val targetlocuri

pre|size table

6@00@0 0@0 0@0 0@0 "42"

prefix

2@0
1@0

3@0
4@0
5@0

0@00@0 "c"

pre

’kind’ determines to which table ’ref’ refers

attr prop

text com insqn

Figure 2.2: Relational storage of document Doc in MonetDB.

Figure 2.2 shows our relational storage, which stores document Doc. It contains two
more relations (attr and prop), saving attributes and their content. The main reason behind
this decision is the difference between attributes and other node kinds. Attributes do not
follow a fixed order and have to be omitted during path steps. The column pre in relation
attr saves the ownership of attributes as foreign keys. The names of attributes are saved in
the qn relations together with the element names and referenced via the column qn. The
relation prop saves the text content of the attributes (again kept unique).

Shallow Copying

One more reason, to use multiple relations instead of one big relation, is the copying effort
necessary for a subtree copy of a node. With this storage scheme, we only have to copy
slices of the shallow pre|size and attr relations. The copied rows contain only a small
number of fixed size values and we avoid any string copying.

Multiple Documents and Transient Nodes

An XQuery expression may reference several documents in one query. Since we use a re-
lational database, we do not want to shred a document for each query but use a persistent
version of its shredded representation (see Figure 2.2). Multiple documents could be stored
in one such set of document relations (in the following also called container), if a column
frag was added to the pre|size relation to distinguish different documents. The drawback
of this approach becomes clear immediately. For every XQuery expression all stored docu-
ments are loaded, even if only one small document is referenced. Each query furthermore
has to copy or to lock the complete container during evaluation to add transient nodes. The
same applies for storing additional XML documents.
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attributes

text commentsqualified names
(attributes + elements) instructions

processing

attribute values

size reflevel

qnpre

prefix targetval val val

name containerheight

contkind frag

prop valcont

locuri

pre|size table

X.xml
Y.xml

7
9
2

∆

attr

pre

com ins

doc

text

prop

qn

− each query creates a transient container
  (transient node properties generally

refer to persistent containers)

XML Storage Schema
− doc container = instance of schema
− each doc is a persistent container

’kind’ determines to which table ’ref’ refers

For each query, there is a ’loaded document’ table:

transient container (for transient nodes)

Figure 2.3: Horizontally partitioned XML storage in document containers.

The complete copying and loading overhead as well as the loss of concurrency can be
avoided, if each shredded document resides on the disk separately according to the storage
scheme sketched above. These document containers can be loaded separately during query
evaluation and allow concurrent read operations as well. A transient document node con-
tainer, which saves all nodes created during a query, also fits into this setup. The connection
between these document containers builds a relation doc, which saves the document’s name
and exists for every query separately. With multiple referenced documents and each having
pre values starting at 0, we loose the node identity. We overcome this problem by using the
combination of doc and pre as our node identifier.

Figure 2.3 displays such an XML storage scheme for an example query with two loaded
documents (X .xml and Y.xml). For each XQuery expression an additional set of document
tables (called ∆ in Figure 2.3) is created, which saves the transient nodes constructed during
query evaluation. In comparison to other containers, which encode always exactly one
document, the transient document node container may contain multiple XML fragments.
The additional frag column is used to mark the different fragments.

Multijoin

The shallow copying described in the last paragraph makes it necessary to add the cont
column in the attr and the pre|size relation. It saves the document (or container) id, where
the values of the nodes reside. This is the reason why the key of a node value lookup in
the transient document node container now consists of ref, kind, and cont. To gather the
node values of a set of nodes we added a new primitive multijoin to MonetDB, which does
the lookup of the horizontally fragmented value tables efficiently. It groups the lookups by
the document container and copes with the difference between the transient document node
container and the other document containers. A more detailed description of multijoin will
follow in Section 3.4.11.

The following XQuery expression Q2 constructs new XML fragments, which generate
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new nodes as well as a subtree copy of parts of Doc:

(<h> doc("Doc")//d </h>, <i/>) . (Q2)

Figure 2.4 illustrates the resulting pre|size table of the transient document node container.

pre size level ref kind frag cont
0@0 3 0 0@0 elem 0 ∆
1@0 2 1 2@0 elem 0 Doc
2@0 0 2 3@0 elem 0 Doc
3@0 0 2 4@0 elem 0 Doc
4@0 0 0 1@0 elem 1 ∆

Figure 2.4: pre|size table of the tran-
sient document node container of Q2

The names of the new nodes h and i are saved in the
qn relation of the transient document node container.
The entries for element d and its descendants in the
pre|size relation of the document container of Doc are
copied to the transient document node container and
updated in the columns pre and level only. The other
values (e.g., the names) still reside in the document
container of Doc (see column cont). The last row (el-
ement i) is in a different fragment and therefore has a
different frag value.

2.3 Item Sequence Encoding

After fixing the encoding for the first datatype, this section now focuses on the second prin-
ciple data type of XQuery: ordered, finite sequences of zero or more items. Assuming the
underlying RDBMS provides polymorphic columns, a sequence of items can be easily saved
in single column. The empty sequence then corresponds to an empty table and a single item

pos item
1 2
2 "x"

3 <a/>

maps to a relation with only one row. With such an encoding, we support finite
sequences of zero or more items, but cannot rely on their order. [15, 16] suggest
adding a second column pos, which stores the position of an item in the sequence.
pos is a dense numbering starting at 1 for every sequence to support positional
predicates (e.g., //d[2]). The relation on the right encodes such a sequence
(2,"x",<a/>).

2.4 Item Storage

MonetDB does not offer polymorphic columns per se. We thus introduce a relation with
the appropriate tail type for each type (and query). For attributes, other nodes, and QNames
these relations are the document storage introduced in Section 2.2. An item is then im-
plemented using a combination of reference and its type. Like in the document storage, a
reference points to a value in its respective value relation. The entries of the value relations
are kept unique to avoid multiple copies. E.g., the query for $a in 1 to 100 return

ref value
0@0 "x"

"x" saves "x" only once instead of 100 times. The relation on the right shows
the corresponding string relation. The type (or value relation) a reference points
to is encoded in a new column kind. Furthermore the attribute, node, and QName
kinds are overloaded with the document id they refer to, therefore allowing to test node
identity using item and kind.

pos item kind
1 0@0 integer

2 0@0 string

3 0@0 node(∆)

The example sequence from above ((2,"x",<a/>)) results in the
relation depicted on the left. 2 is saved in the integer relation at offset
0@0, "x" in the string relation at offset 0@0, and the node <a/> is saved
as first node in the transient document container ∆ (again at offset 0@0).
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Chapter 3

Core to MIL Translation

The relational storage structure explained in the previous chapter is suitable to support a
fully relational XQuery evaluation engine. The following mapping, which relies on this
storage scheme, is based on the compilation techniques described in [15, 16]. The starting
point of the compilation is a normalized, simplified XQuery Core expression. Expressions,
which are replaced during normalization are e.g., the where clause and the comparisons
operators with existential semantics (=, !=, <,. . . ). Their replacements are additional for
expressions, if then else constructs, functions like e.g., fn:empty, and explicit com-
parisons (eq, ne, lt,. . . ).

The mapping from normalized, simplified XQuery Core expression to a standard rela-
tional algebra is the subject of Section 3.4. The rules that describe the mapping process
as well as the accompanying ideas were originally developed in [15, 16]. The loop-lifting
concept, which builds the basis of the transformation, the relational operators, and the in-
ference rule notation are recapped in Section 3.1, 3.2, and 3.3, respectively.

The inference rules in Section 3.4 are an extension of the rules in [15, 16] and serve
as platform to illustrate the mapping process. Section 3.5 explains the application of the
mapping using MIL as the relational target language.

3.1 Loop-Lifting

The iterative nature of the for expression in XQuery and a bulk-oriented relational pro-
cessing appear to be contradictory. However as XQuery is side-effect free it is semantically
sound to evaluate the loop body e for all iterations in parallel. This works by replacing all
free occurrences of variable $v for all bindings in e by xi (e[xi/$v] denotes that substitution):

for $v in (x1,x2, . . .,xn) return e≡
(e[x1/$v],e[x2/$v], . . .,e[xn/$v])

With such a replacement, the iterations are avoided completely and a bulk-oriented pro-
cessing is possible. In the following we describe a transformation, which implements the
substitution. To distinguish separate logical iterations, we extend the pos|item 1 relation
with a column iter, which stores the iteration number. Figure 3.1(a) shows the additional
column iter attached to the encoded sequence expression (2,"x",<a/>). The iter column
contains the integer 1 in all three rows, stating that all items are in the same iteration (the
initial iteration 1).

The variable binding of a for loop takes such a sequence as input and replaces the iter
values with a new dense numbering, which respects the order given by the combination of

1Note: The item|kind representation is replaced by a polymorphic item column, again, for ease of readability.
The mapping itself is not influenced by this change.
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iter pos item
1 1 2

1 2 "x"

1 3 <a/>

(a) Input sequence
(2,"x",<a/>)

iter pos item
1 1 2

2 1 "x"

3 1 <a/>

(b) Loop-lifted se-
quence ($a)

outer inner
1 1
1 2
1 3

(c) Mapping re-
lation

iter pos item
1 1 42

2 1 42

3 1 42

(d) Loop-lifted
constant 42

iter pos item
1 1 42

1 2 42

1 3 42

(e) Backmapped
body of for loop

Figure 3.1: Loop-lifting of $a and 42 in the query for $a in (2, "x", <a/>) return

42

old iter and pos column, starting at 1. The values in the pos column are then replaced by a
1, because every item is now a singleton sequence within its iteration. This mapping will be
called lifting or loop-lifting in the following. It perfectly matches the semantics of the for
expression: each item is bound in exactly one iteration. Figure 3.1(b) shows the binding of
variable $a in the query for $a in (2,"x",<a/>) return 42. In the first iteration $a
is bound to 2, in the second to "x" and to <a/> in the last.

All other variable bindings (e.g., bound in a let clause or another for expression)
and constants are loop-lifted using a map relation (outer|inner). This table records the just
explained change of the iter values in the loop input sequence, where outer stores the iter
before and inner the iter column after renumbering. A tuple 〈o, i〉 in this relation indicates
that during the ith iteration of the inner loop body the outer loop body is in its oth iteration.
The lifting proceeds in three steps: first an equi-join join between map and iter|pos|item,
on the columns outer and iter, is performed. Then the outer and iter columns are removed
and thirdly the column inner is renamed to iter. Figure 3.1(d) shows the lifted constant 42,
which consisted of one tuple 〈1,1,42〉 before the join.

A similar mapping step is needed after the evaluation of the for loop body. The result
has to be transformed into a sequence again. An equi-join of iter with the inner column of
the map relation and the renaming of the outer column to iter performs the backmapping.
Additionally a renumbering of the pos values is necessary. It takes the order of the old iter
(inner) and pos columns into account and starts at 1 for each group defined by the new iter
column (outer). Figure 3.1(e) shows the result of this backmapping step — the three item
sequence (42, 42, 42), whose iter column is mapped back to 1 and the pos column to a
dense enumeration.

Nested Scopes and Constant Expressions

The loop-lifting concept also works for nested for expressions. This is achieved by com-
piling each subexpression in dependence of all enclosing for loops. In example query Q3

the loop body of the former example is replaced by a nested for loop:

s







for $a in (2, "x", <a/>) return

sa

{
for $b in (10, 20) return

sa·b
{
($a, 100)

. (Q3)

The map relation of the outer for loop stays the same (see Figure 3.1(c) and Figure 3.2(a)).
It is used to lift the two constants (10 and 20), which form the input sequence of the inner
for loop illustrated in Figure 3.2(b). This sequence is the basis for the new map relation of
the second loop in Figure 3.2(c). To keep the two map relations apart we introduce a notion
of scopes. For each loop body a new scope sv1·····vn·vn+1 is created, whose subscript is the
subscript of the enclosing scope v1 . . .vn and the name of the for loop variable vn+1 (e.g., s,
sa, sa·b in Q3). Now the map relations can be identified by attaching the scope information
of the two scopes they connect. The map relation of the outer for expression in query Q3

is then called maps,sa
and the other mapsa,sa·b

. Note that mapsa,sa·b
is the Cartesian product
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outer inner
1 1
1 2
1 3

(a) maps,sa

iter pos item
1 1 10

1 2 20

2 1 10

2 2 20

3 1 10

3 2 20

(b) (10, 20) in
scope sa

outer inner
1 1
1 2
2 3
2 4
3 5
3 6

(c) mapsa ,sa·b

iter pos item
1 1 2

2 1 2

3 1 "x"

4 1 "x"

5 1 <a/>

6 1 <a/>

(d) $a in scope sa·b

iter pos item
1 1 100

2 1 100

3 1 100

4 1 100

5 1 100

6 1 100

(e) 100 in sa·b

Figure 3.2: map relations and intermediate loop-lifted results of Q3

of both loops, which is a consequence of this compilation scheme as well as of the XQuery
semantics. Section 4.4 will describe how to avoid this cross product in certain cases.

Variable $a in query Q3 is defined in scope sa, but also visible in scope sa·b. To lift
$a to scope sa·b a join with mapsa,sa·b

is necessary — Figure 3.2(d) shows the result. For
the second argument of the loop body, the constant 100, the same mapping (join with
both map relations) can be avoided. Because constants are always defined in the outer
most scope s, it is valid to directly loop-lift them to the required scope by applying the
Cartesian product of their pos|item tuple and a loop relation, which is the inner column
of the respective map relation. In query Q3 the current loop relation loopsa·b

is the inner
column of mapsa,sa·b

and the evaluation of the cross product with the constant 100 results
in its loop-lifted representation displayed in Figure 3.2(e).

3.2 Relational Operators

In this section a short summary of the relational operators, which form the target language
of the mapping in Section 3.4, is provided. Figure 3.3 lists the available operators, which

πa1:b1,...,an:bn projection (and renaming)
σa selection
.
∪ disjoint union
× cartesian product
ona=b equi-join
\a1,...,an difference
max, sumb:〈a〉/p aggregates
a b literal table
ρb:〈a1,...,an〉/p,s row numbering
~b:〈a1,...,an〉 n-ary arithmetic/comparison operator ∗

α,n XPath axis join (axis α, node test n)

Figure 3.3: Operators of the relational algebra (a and b are column names).

are mostly variants of operators found in standard relational algebra [7, 10, 20]. While the
projection operator π also supports renaming (a1 : b1 renames column b1 to a1), the join
operator on is restricted to equi-joins and the union operator

.
∪ does not have to cope with

duplicates. The difference operator returns all rows from the first argument, whose columns
a1, . . . ,an have no matching tuples in the second argument. In addition to the normal aggre-
gates (e.g., max), which return a single value, we also support enhanced aggregates (e.g.,
sumb:〈a〉/p) that partition a relation by a column p and evaluate within these partitions the
aggregates on the column a. A binary relation, which stores for each partition the aggre-
gated value (in column b), holds the result. The row numbering operator ρ is similar to
the DENSE RANK operator in SQL:1999. It is one of the most important operators in the
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algebra, because XQuery heavily relies on order. ρb:〈a1,...,an〉/p,s(q) assigns each tuple in q
a consecutive number, which is saved in column b. The constraint for the enumeration is
the implicit order of q by the columns a1, . . . ,an. Numbers start at offset s in each partition
defined by the optional grouping column p. Operator ~b:〈a1,...,an〉 applies the n-ary operator
∗ to columns a1, . . . ,an and extends the input tuples with the result column b. The staircase
join algorithm α,n supports the XPath axes. It calculates the result nodes for each iteration
and returns them as an iter|item|kind relation, where all duplicates are removed.

3.3 Inference Rule Notation

To formally describe the mapping of XQuery Core to relational algebra we introduce a
notation of inference rules. These inference rules are of the form:

Γ; loop;∆ ` e Z⇒ (q,∆′) .

The first argument of an inference rule denotes the variable environment Γ, which holds
all visible variables and their algebraic expression. The second argument loop saves the
current loop relation, to support efficient constant translation. The third argument stands
for the container ∆, which is the transient document node container (see the relations in
Figure 2.3) extended with the value relations (one for each kind). One specific characteristic
of this container is that the value relations string and untypedAtomic as well as the document
relations prop (attribute values), text (text content), and com (content of comments) are all
represented by the same relation. The same holds for the value relation QName and the
document relation qn. In both cases, this helps to minimize the copying effort necessary
for node construction while still being able to reference the relations separately. Because
the container ∆ can be modified during evaluation (e.g., by inserting values or by creating
elements), it is also a return value of the inference rule (∆′). The whole inference rule can
be read as: Given Γ, loop, and ∆, the XQuery expression e compiles into the algebraic
expression q with the (possibly) modified container ∆′.

Each XQuery compilation starts with an empty variable environment Γ = /0, a singleton
loop relation (loop = iter

1 ), empty relations in the container ∆, and the XQuery expression.
All inference rules pass Γ, loop, and ∆ top-down, while the resulting algebra expression is
synthesized bottom-up. The result is a single algebra query that operates on the tree and
sequence encodings sketched in Section 2.

All documents, which are referenced in the query are accessed read only and are there-
fore combined in a separate container doc2. doc and ∆ both represent a set of tables. To
reference one of their relations directly we introduce the notation cont [name], which refer-
ences the name table of the container cont. E.g., ∆ [pre|size] references the pre|size table
of the container ∆.

Additionally, inference rules use a notation to inspect static type information during
compile time. Operator :: tests the static type of an expression during compile time. e :: kind
means that XQuery expression e has the static type kind. We denote,

∆′ ≡ ∆ [. . . ,name 7→ q, . . . ] ,

to make the modification of a relation in the container ∆ and thus the modification of ∆
explicit. It assigns the relation name of ∆ the new relational representation q. The modified
container ∆′ records this side effect. All other relations of the container remain unaffected.
Adding rows to an already filled relation can be done by union the representation before
the replacement and the new tuples (e.g., q≡ ∆ [name]

.
∪ tuplesnew).

2doc may contain multiple documents and thus represent multiple containers itself. This however is ignored,
because the relations of doc are used only by special operators that are aware of this representation (staircase join
and multijoin).
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Thirdly the wrapper function ref is a shorthand for a much more space consuming al-
gebra expression. ref modifies a container (first argument) by extending one of its relations
with the values from the second argument. Then it extends the second argument with the
references of the modified relation in the container. Depending on its subscript ref chooses
a different implementation. The following equivalence rule illustrates the extended expres-
sion of ref with subscript integer:

valuesnew ≡ unique(∆ [integer]\value q)

offset ≡ max(∆ [integer])+1

tuplesnew ≡ πref ,value
(
ρref ,offset (valuesnew)

)

∆′ ≡ ∆
[

. . . , integer 7→ ∆ [integer]
.
∪ tuplesnew, . . .

]

q′ ≡ ∆′ [integer] onvalue=value q
(
∆′,q′

)
≡ ref integer (∆,q)

.

The two input arguments are the container ∆ and a relation q that requires a column value.
The result is a modified container ∆′ and a relation q′ that contains an additional column ref.
Because the subscript of ref is integer, the integer relation of ∆ gets extended by the values
in the value column of q. This is done in the first four rows. The first rule determines
the unique list of values that are not stored in the integer relation yet. The second rule
determines the first free offset of the integer relation in ∆ and the third enumerates the new
values starting from this offset. Line four updates the integer relation as explained above to
extend it with new values. The join in the last rule extends the second argument q with the
references to the values in the modified container ∆′. With the wrapper function ref name,
we thus have a simple and elegant way to look up the references in the container relation
name without paying attention to the necessary value insertion.

An example is the call of ref integer with container ∆ whose integer relation is empty.
It results in a new tuple in the integer relation, whose reference is 0@0, and the extended
second input relation:

(

∆′, ref value
0@0 2

)

≡ ref integer

(

∆, value
2

)

.

3.4 Algebraic Translation Rules

Now all prerequisites are set up to translate XQuery to relational algebra. Every subsection
in the sequel explains the transformation of one XQuery construct by means of an inference
rule. Every rule compiles into a relational expression, which results in an iter|pos|item|kind
relation3. While the inference rules exactly constitute the compilation scheme, the cor-
responding explanations will sometimes mix compile time and runtime. To motivate the
relational expressions we describe their role during the evaluation. The mapping, however,
compiles the complete query before evaluating the first operator. Note that the changes of
the variable environment Γ only extend relational expressions. These expressions substitute
the variables at compile time. The variable environment Γ therefore only helps to manage
the relational expressions representing variables and is available at compile time only.

Query Q4 combines constants, sequence construction, variable lookups, let, and for

expressions. It will be the example, which helps to demonstrate the first mapping rules:

s







let $a := (10, 20) return

for $b in (1, 2, 3) return

sb
{
($a, $b)

. (Q4)

3For certain scenarios another kind of interface may perform better. These alternatives will be the focus of
Section 4.3.
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Q4 first binds the sequence (10, 20) to the variable $a and then iterates over the sequence
(1, 2, 3) (bound to $b). It returns the concatenation of $a and $b, which is the sequence
(10, 20, 1, 10, 20, 2, 10, 20, 3).

3.4.1 Constants

The translation of constants is depicted in inference Rule CONST and starts with retrieval of
the type information of constant c, followed by the generation of the relational expression
that looks up the reference of c in the value relation kind (see extension of ref in the
previous section). The second equivalence rule uses a cross product to attach the columns
pos and kind to the returned reference. The compilation is completed by introducing a
cross product between the relational expression in qres and the loop relation. During the
evaluation of such a relational expression the iter column lifts the constant c to the current
scope. In addition to the compiled expression, the CONST rule also returns the (possibly)
modified container ∆1.

c :: kind

(∆1,q)≡ ref kind(∆, valuec )

qres ≡
pos kind
1 kind ×

(
πitem:ref q

)

Γ; loop;∆ ` c Z⇒ (loop×qres,∆1)
(CONST)

ref value
0@0 10

1@0 20

2@0 1

3@0 2

4@0 3

If we pick the constant 3 from query Q4, then the retrieved type is integer. The
ref integer function call adds 3 to the integer relation of container ∆ and returns the

reference q ≡ ref value
4@0 3 (see integer table on the right). The extension of the

reference q with pos and kind results in pos item kind
1 4@0 integer and the cross product

with loop ( iter
1 ) produces iter pos item kind

1 1 4@0 integer . Here the container ∆ has been

modified by the insertion of the tuple 〈4@0,3〉 into the integer relation.

3.4.2 Sequences

The SEQ rule concatenates exactly two sequences. Sequences with more than two items
have to be compiled by applying Rule SEQ multiple times. The mapping first generates a
relational representation of the first argument and then takes the modified container ∆1 as
input for the transformation of the second XQuery expression. The resulting algebra plans
(q1 and q2) are merged with a disjoint union

.
∪ after adding a column ord, which marks the

difference between the two expressions. The ord column and the pos1 column are the order
constraints for the row numbering operator, which assigns new positions (pos) starting at
1 for each distinct iteration (iter). The role of the ord column is to ensure that every tuple
of the first argument comes before the first tuple of the second argument within the same
iteration. The pos column is used to maintain the original sequence order. The projection
at the end removes the old pos and the ord column.

Γ; loop;∆ ` e1 Z⇒ (q1,∆1) Γ; loop;∆1 ` e2 Z⇒ (q2,∆2)

Γ; loop;∆ ` (e1,e2) Z⇒
(

πiter,pos:pos1,item,kind

(

ρpos1:〈ord,pos〉/iter,1

((
ord
1 ×q1

) .
∪
(

ord
2 ×q2

)))

,∆2

)

(SEQ)

The sequence construction of 10 and 20 is straightforward. The relational representations
are prefixed with an ord column and concatenated with a union:

ord iter pos item kind
1 1 1 0@0 integer

.
∪

ord iter pos item kind
2 1 1 1@0 integer

≡
ord iter pos item kind
1 1 1 0@0 integer

2 1 1 1@0 integer
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The row numbering operator creates a new position column containing the values 1 and 2
and the projection removes the ord column.

The more interesting sequence construction happens in the for loop body, where the
loop-lifted representations of $a and $b are concatenated. The disjoint union just combines
both extended item representation (see Figure 3.4). The row numbering starts for each
iteration a consecutive sequence with the position 1. Because ord is the first order argument,
all tuples from $a get the lower pos numbers (matching the order of the old pos column)
and the tuples in $b then follow as third sequence item for all iterations (see the last column
pos1 in Figure 3.4).

$a :

ord iter pos item kind
1 1 1 0@0 integer

1 1 2 1@0 integer

1 2 1 0@0 integer

1 2 2 1@0 integer

1 3 1 0@0 integer

1 3 2 1@0 integer
.
∪

$b :

ord iter pos item kind
2 1 1 2@0 integer

2 2 1 3@0 integer

2 3 1 4@0 integer

≡

ord iter pos item kind
1 1 1 0@0 integer

1 1 2 1@0 integer

1 2 1 0@0 integer

1 2 2 1@0 integer

1 3 1 0@0 integer

1 3 2 1@0 integer

2 1 1 2@0 integer

2 2 1 3@0 integer

2 3 1 4@0 integer

pos1
1
2
1
2
1
2
3
3
3

Figure 3.4: Sequence construction in loop body of query Q4

3.4.3 Variable References

The sequence construction in Figure 3.4 just uses the relational representation of the vari-
ables $a and $b. They, however, are only available because the Rule VAR does produce
the code. Rule VAR compiles a variable reference into a lookup of the variable $v in the
environment Γ. This integrates the relational expression of $v stored in the variable envi-
ronment Γ into the overall query plan. The correct loop-lifting of the variable $v is already
encoded in its relational representation. A description, how variables are loop-lifted, will
follow in Section 3.4.5.

{. . . ,$v 7→ qv, . . .} ; loop;∆ ` $v Z⇒ (qv,∆)
(VAR)

3.4.4 Let Bindings

The previous inference Rule VAR looks up variable representation in the variable environ-
ment Γ. The environment Γ contains these representations because every variable assign-
ment in XQuery adds a new binding to Γ. The let expression is one XQuery construct,
which introduces variable bindings.

Rule LET first compiles the let binding e1 into its relational representation (q1). For
the compilation of the let body it extends the variable environment with the binding ($v 7→
q1). During the compilation of e2 the relational expression representing variable $v is
therefore available. At runtime, there are no variable bindings anymore, because every
reference was replaced by its relational expression (see also Rule VAR).

Γ; loop;∆ ` e1 Z⇒ (q1,∆1)
Γ+{$v 7→ q1} ; loop;∆1 ` e2 Z⇒ (q2,∆2)

Γ; loop;∆ ` let $v := e1 return e2 Z⇒ (q2,∆2)
(LET)

In query Q4 the let expression compiles the two item sequence (10, 20) and adds its
relational representation into the variable environment Γ. During the compilation of the
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let body variable $a is looked up and its relational expression is included in the query
plan (see Rule VAR).

3.4.5 For Expressions

The mapping of a for loop was already explained informally in Section 3.1. In this section
the transformation is described again in more detail, adding also concepts, which were not
discussed before. The inference Rule FOR maps the XQuery construct

for $v at $p in e1 return e2

to its relational representation. The optional part ’at $p’ introduces variable $p, which
encodes the position of the current item (bound in $v) in the input sequence (starting with
the number 1).

The mapping starts with the compilation of the for loop binding e1 that results in
the relational expression q1 (see line (1) in Rule FOR). The expression in the second line
generates the loop numbering of the nested scope. The next equivalence rule uses this
enumeration to encode the loop-lifted item representation of $v (one value per iteration).

The rules in line (4) and (5) translate the optional at $p part of the for expression. The
position values of the compiled input expression e1, q1 match the required numbers. The
pos values are therefore added to the integer relation of container ∆ and their references
together with the corresponding kind integer are assigned to qp. Like the relational ex-
pression in qv that represents the lifted variable $v, qp also encodes one tuple per iteration
(pos = 1).

(1) {. . . ,$vi 7→ qvi , . . .}; loop;∆ ` e1 Z⇒ (q1,∆1)

(2) extv ≡ ρinner:〈iter,pos〉,1(q1)

(3) qv ≡
pos
1 ×πiter:inner,item,kind (extv)

(4) (∆2,re fp)≡ ref integer

(
∆1,πiter:inner,value:pos (extv)

)

(5) qp ≡
pos kind
1 integer ×πiter,item:ref (re fp)

(6) map≡ πouter:iter,inner (extv)

(7) loopv ≡ πiter:inner (extv)

(8)

{
. . . ,$vi 7→ πiter:inner,pos,item,kind (qvi oniter=outer map) , . . .

}

+{$v 7→ qv}+{$p 7→ qp} ; loopv;∆2 ` e2 Z⇒ (q2,∆3)

{. . . ,$vi 7→ qvi , . . .}; loop;∆ ` for $v at $p in e1 return e2 Z⇒
(
πiter:outer,pos:pos1,item,kind

(
ρpos1:〈iter,pos〉/outer,1 (q2 oniter=inner map)

)
,∆3
)

(FOR)

The map relation in line (6) relates the iteration of the current scope (outer) with the
iterations of the new scope (inner) and the expression in line (7) prepares the new current
loop relation. The transformation of the loop body e2 can be seen in line (8). All variable
representations in variable environment Γ are lifted to the next scope by adding an equi-
join with the map relation generated in line (6). The loop-lifting at this place ensures, that
all visible variables are mapped correctly. Then the relational representations of the for

loop variables $v and $p are added to the variable environment Γ to enable their reference
lookups. loopv becomes the new current loop relation and the (possibly) modified container
∆1 completes the input for the compilation of the loop body e2.

The relational representation of the loop body q2 is mapped back to the enclosing scope
by means of a join with the relation map (on iter and inner). The following row numbering
ensures that each iteration in the outer scope has a consecutive pos value without changing
the order of the inner scope (order by iter and pos).

Example query Q4 starts the for loop evaluation with the translation of the input se-
quence e1 resulting in q1 depicted in Figure 3.5(a). The row numbering applied in line (2)
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iter pos item kind
1 1 2@0 integer

1 2 3@0 integer

1 3 4@0 integer

(a) q1

iter pos item kind
1 1 2@0 integer

2 1 3@0 integer

3 1 4@0 integer

(b) qv

iter pos item kind
1 1 0@0 integer

1 2 1@0 integer

2 1 0@0 integer

2 2 1@0 integer

3 1 0@0 integer

3 2 1@0 integer

(c) $a in scope sb

outer iter pos item kind pos1
1 1 1 0@0 integer 1
1 1 2 1@0 integer 2
1 2 1 0@0 integer 4
1 2 2 1@0 integer 5
1 3 1 0@0 integer 7
1 3 2 1@0 integer 8
1 1 3 2@0 integer 3
1 2 3 3@0 integer 6
1 3 3 4@0 integer 9

(d) Backmapping of loop body q2

Figure 3.5: for loop mapping of
query Q4

adds a new inner column, which matches the pos col-
umn of q1 in Figure 3.5(a). qv takes this inner col-
umn as new iter column and sets the positions (pos)
to 1 (see Figure 3.5(b)). Because query Q4 has no at

clause, line (4) and (5) are omitted. The map relation
is the combination of the iter columns of Figure 3.5(a)
and Figure 3.5(b). The code generated for the loop-
lifting in line (8) at runtime lifts the relational represen-
tation of variable $a from scope s to sb (shown in Fig-
ure 3.5(c)). Similar to the let expression of query Q4,
the for expression extends the environment Γ with
variable $b and its binding qv at compile time. The re-
lational representation is integrated into the query plan
by the variable reference in the loop body. The eval-
uation of the for loop body processes the expression
and returns the intermediate result (see Figure 3.4).

The backmapping join with map results in Fig-
ure 3.5(d) where all rows have an outer value of 1.
The row numbering therefore interprets all rows as one
partition and generates the new pos1 values using the
order of iter and pos. The projection builds the ubiqui-
tous iter|pos|item|kind relation and completes the for
loop evaluation.

3.4.6 If-Then-Else

The expression if (e1) then e2 else e3 is the only
conditional in normalized XQuery Core. Amongst
others it e.g., substitutes the where clause. Expres-
sion e1 is evaluated first and returns a boolean value.
If it holds true e2 is evaluated otherwise e3 is the result
of the if expression. In this compilation scheme we
cope with multiple if clauses (one for each iteration)
at the same time.

Rule IF starts with the compilation of the boolean
expression e1. The result is split into two new loop

relations (loop2 and loop3), which select all true and
false values respectively. loop2 is used as current
loop relation for the compilation of e2 and loop3 as
loop relation for the mapping of e3. To ensure the correct representation of the variables in
Γ a join with the corresponding loop relation is performed, which filters out all unnecessary
iterations. The result is the union of both branches combining the iterations again.

(1) {. . . ,$vi 7→ qvi , . . .}; loop;∆ ` e1 Z⇒ (q1,∆1)

(2) loop2 ≡ πiter (σitem=TRUE (q1))

(3)

{
. . . ,$vi 7→ πiter,pos,item,kind (qvi oniter=iter1 (πiter1:iter (loop2))) , . . .

}
;

loop2;∆1 ` e2 Z⇒ (q2,∆2)

(4) loop3 ≡ πiter (σitem=FALSE (q1))

(5)

{
. . . ,$vi 7→ πiter,pos,item,kind (qvi oniter=iter1 (πiter1:iter (loop3))) , . . .

}
;

loop3;∆2 ` e3 Z⇒ (q3,∆3)

{. . . ,$vi 7→ qvi , . . .}; loop;∆ ` if (e1) then e2 else e3 Z⇒
((

q2
.
∪q3

)

,∆3

)

(IF)
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Query Q5 shows a modification of query Q4, where an if expression is used. Instead
of the concatenation of both variables $a is returned if its value is even and $b otherwise:

s







let $a := (10, 20) return

for $b in (1, 2, 3) return

sb {if ($b mod 2 eq 0) then $a else $b
. (Q5)

The result of the if clause is depicted in Figure 3.6(a), where the first and the third iteration
return FALSE. loop2 in line (2) of the IF rule contains only the tuple 〈2〉. It is used to discard
all other iterations of the variables in line (3). Therefore the result in q2 is the two item
sequence shown in Figure 3.6(b). The evaluation of lines (4) and (5) returns the relational
representation of iteration 1 and 3 accordingly (see Figure 3.6(c)).

iter pos item kind
1 1 FALSE boolean

2 1 TRUE boolean

3 1 FALSE boolean

(a) Mapping of $a mod 2 eq 0:
q1

iter pos item kind
2 1 0@0 integer

2 2 1@0 integer

(b) Mapping of $a in then

clause: q2

iter pos item kind
1 1 2@0 integer

3 1 4@0 integer

(c) Mapping of $b in else

clause: q3

Figure 3.6: if expression of query Q5

3.4.7 Typeswitch

While most of the typeswitches were removed during the simplification phase, some of
them still remain. These are the ones, whose sequence type ty has to be decided dynam-
ically at runtime. The type knowledge is wrapped in an operator instanceof representing
some logic, which makes the runtime decision possible. It takes an item representation
of the form iter|pos|item|kind and replaces the item values by the result of the comparison
between type ty and the values in column kind. Having such a boolean mapping for the
different iterations allows to apply the same compilation scheme as in Rule IF. The equiv-
alence rules in lines (3)–(6) of Rule TYPESWITCH perfectly match the ones in lines (2)-(5) of
the inference Rule IF in Section 3.4.6.

(1) {. . . ,$vi 7→ qvi , . . .}; loop;∆ ` e1 Z⇒ (q1,∆1)

(2) inst1 ≡ instanceof ty (q1)

(3) loop2 ≡ πiter (σitem=TRUE (inst1))

(4)

{
. . . ,$vi 7→ πiter,pos,item,kind (qvi oniter=iter1 (πiter1:iter (loop2))) , . . .

}
;

loop2;∆1 ` e2 Z⇒ (q2,∆2)

(5) loop3 ≡ πiter (σitem=FALSE (inst1))

(6)

{
. . . ,$vi 7→ πiter,pos,item,kind (qvi oniter=iter1 (πiter1:iter (loop3))) , . . .

}
;

loop3;∆2 ` e3 Z⇒ (q3,∆3)

{. . . ,$vi 7→ qvi , . . .}; loop;∆ `
typeswitch (e1) case ty return e2 default return e3 Z⇒

((

q2
.
∪q3

)

,∆3

)

(TYPESWITCH)

3.4.8 Path Steps

The evaluation of path steps is encapsulated in the staircase join operator , which takes
an iter|item|kind relation as input, evaluates the path step for all iterations, and returns again
an iter|item|kind relation. Section 4.2 provides more details on the underlying algorithms.
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Rule STEP starts with the compilation of the context set e. Its result is used as one
input of the staircase join operator. additionally uses the axis and node test information
as input arguments as well as all available XML fragments. These fragments can be either
documents (stored in doc) or transient nodes in the container ∆. Since the evaluation of an
XPath step never escapes the fragment of its context node, it is possible to evaluate the step
for each document in separation.

The result of the path step respects the XPath semantics and orders the resulting nodes
according to their document order (depicted in the generation of column pos). The likewise
required duplicate elimination is already applied inside the operator.

Γ; loop;∆ ` e Z⇒ (qe,∆1)

Γ; loop;∆ ` e/α::n Z⇒
(

ρpos:〈kind,item〉/iter,1

(

(πiter,item,kindqe) α,n (doc
.
∪∆1)

)

,∆1

)

(STEP)

3.4.9 Text Constructor

In XQuery there exists the possibility to create new XML fragments with so called node
constructors. These can be either direct constructors or computed ones. The first are XML
nodes (e.g., <a/>), while the latter ones use XQuery keywords. During normalization to
XQuery Core all constructors are transformed into computed ones.

The next three sections will describe the mapping of text, attribute, and element

constructors, respectively. The mapping of all other constructors is almost identical to the
explained transformations and is therefore omitted.

The text constructor translates a string into a text node. In inference Rule TEXT

the first step is the transformation of the strings (one in each iteration) to their relational
representation q1. Since the string relation and the text relation of container ∆ both refer to
the same table, q1 automatically stores the correct references to the string representations of
the text nodes. The equivalence rules in lines (2) and (3) emit the code, which determines the
first free pre and the first free frag value. The following algebra expression in line (4) uses
the results as starting points of the row numberings, which generate new pre and frag values
for each text node. The frag values are incremented in parallel to the pre values, because the
fragments of text nodes always consists of a single node (size = 0). The size information as
well as the level, kind, and cont values are attached to the pre|ref|frag relation. Together they
form the new entries for the pre|size relation of the container ∆ representing the new text
nodes (nodesnew in line (5)). The insertion into the pre|size relation of ∆ in line (6) makes
them retrievable for later references. The result of Rule TEXT is the list of references (item)
to the text nodes in the transient document node container ∆ (kind) with one reference per
iteration (pos = 1) as well as the modified container ∆2.

(1) Γ; loop;∆ ` e Z⇒ (q1,∆1)

(2) offsetpre ≡ max(πpre (∆1 [pre|size]))+1

(3) offsetfrag ≡ max
(
πfrag (∆1 [pre|size])

)
+1

(4) q3 ≡ ρpre:〈iter〉,offsetpre

(

ρfrag:〈iter〉,offsetfrag
(q2)

)

(5) nodesnew ≡
size level kind cont

0 0 text ∆ ×πpre,ref :item,frag (q3)

(6) ∆2 ≡ ∆1

[

. . . ,pre|size 7→ ∆1 [pre|size]
.
∪nodesnew, . . .

]

Γ; loop;∆ ` text{e} Z⇒
(

pos kind
1 node(∆) ×πiter,item:pre (q3) ,∆2

)

(TEXT)

Query Q6 shows an example, where an text constructor is applied. The variable $a is
bound to the sequence ("one", "two", "three") and for each item in this sequence a
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text node with the respective textual representation is created:

for $a in ("one", "two", "three") return

text {$a}
. (Q6)

ref value
0@0 "one"

1@0 "two"

2@0 "three"

The strings are stored in the string (text) relation using the references
shown on the right. offsetpre and offsetfrag both hold the value 1, since
the pre|size relation in ∆1 is empty and the new pre and frag values are
1,2,3 for both columns. The cross product with the columns size, level,
kind, and cont is illustrated in Figure 3.7(a). The result of the text node
construction, which holds the references to the new nodes can be seen in Figure 3.7(b).

pre size level ref kind cont frag
1 0 0 0@0 text ∆ 1
2 0 0 1@0 text ∆ 2
3 0 0 2@0 text ∆ 3

(a) pre|size relation after insertion in ∆3

iter pos item kind
1 1 1 node(∆)
2 1 2 node(∆)
3 1 3 node(∆)

(b) Resulting relation

Figure 3.7: Result of the text constructor in query Q6

3.4.10 Attribute Constructor

The attribute construction has two input arguments: the attribute name and its value. After
transforming both arguments (depicted in lines (1) and (2)), the relational representations
implicitly — similar to the text construction — store references to the names in the qn
relation and accordingly to the values in the prop relations of ∆. The determination of the
first free attr value in the equivalence rule of line (3) is also similar to the text construction.
The next step in the transformation is the combination of the name and value references
in one relation (line (4)) followed by the generation of new attribute keys (attr) starting at
offsetattr (line (5)). The resulting relation first gets extended by a cont and a pre column to
match the schema of the attr relation and is then added to the attr table of the container ∆.
Since the attributes are not owned by elements, the pre column is empty. The cont column
contains ∆, because the textual content (prop and qn) is stored in the transient document
node container. The overall result of the attribute constructor is the iter|pos|item|kind
relation holding the references to the new attributes and the extended container ∆3 (saving
the attributes).

(1) Γ;map;∆ ` e Z⇒ (q1,∆1)

(2) Γ;map;∆1 ` e Z⇒ (q2,∆2)

(3) offsetattr ≡ max(πattr (∆2 [attr]))+1

(4) qqn·prop ≡ (πiter,prop:item (qprop)) oniter=iter1 (πiter1:iter,qn:item (qqn))

(5) qattr ≡ ρattr:〈iter〉,offsetattr
(qqn·prop)

(6) ∆3 ≡ ∆2

[

. . . ,attr 7→ ∆2 [attr]
.
∪
(

pre cont
null ∆ ×πattr,prop,qn (qattr)

)

, . . .
]

Γ;map;∆ ` attribute e1 {e2 } Z⇒
(

pos kind
1 attr(∆) ×πiter,item:attr (qattr) ,∆3

) (ATTR)

Example query Q7 is a modification of query Q6 that replaces the text constructor with
an attribute constructor. The name of the attributes is number for all three iterations:

s

{
for $a in ("one", "two", "three") return

sa {attribute number {$a}
. (Q7)
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qn prefix uri loc
0@0 "" "" "number"

(a) qn relation

prop val
0@0 "one"

1@0 "two"

2@0 "three"

(b) prop relation

attr pre qn prop cont
1 null 0@0 0@0 ∆
2 null 0@0 1@0 ∆
3 null 0@0 2@0 ∆

(c) attr relation

Figure 3.8: Transient document node container ∆5 after evaluation of query Q7

The evaluation of the attribute constructor begins with the evaluation of the attribute
names. Since the constant translation of number applies duplicate elimination, the name
is added only once (see Figure 3.8(a)). The same is done with the values of the attributes
using the prop relation as their storage (shown in Figure 3.8(b)). The join on iter combines
the references to names and values. The row numbering starting from offsetattr, which is 1,
creates the new attribute key. An extension with the columns pre and cont completes the
new attribute entries. These are appended to relation attr (see Figure 3.8(c)) and complete
the modification of the transient document node container ∆. The resulting relation holds
the reference to the new attributes in the ubiquitous iter|pos|item|kind representation.

3.4.11 Element Constructor

Similar to the attribute constructor, the element constructor specifies the name of the
new element in its first argument and the content in the second. Unlike the text and
attribute constructor, the element constructor builds not only a single node, but has to
cope with structural information as well. It has to combine zero or more node fragments and
is enriched with zero or more attributes. The XQuery semantics furthermore expect these
attributes and other nodes (together with their subtrees) to be a new copy of the existing
ones (the input of the element content).

Since elements can contain elements and attributes can be either attributes assigned
to the new nodes or in the subtree of a content node, some naming confusion may arise.
Therefore we will call nodes listed in the element content ”context root nodes” in the fol-
lowing. Together with all their subtree nodes they will be named ”context nodes” and the
attributes of this context nodes will be titled ”context attributes” accordingly. The elements,
which are created by the element construction, will be named root nodes. Their attributes
(listed in the element content) will be called root attributes.

With the document encoding explained in Section 2, the compilation of the element

constructor can be grouped into 5 phases. The first phase retrieves all context nodes with
a path step starting from the context root nodes and modifies the level information. The
second phase builds the relational encoding of the root nodes. The third merges root and
context nodes, creates new pre values keeping the correct order, and inserts the copies into
the pre|size relation of the container ∆. The last two phases create copies of the root and
context attributes, update their foreign key pre, and append them to the attr table of ∆.

The element constructor uses the function multijoin mentioned in Section 2.2. It has
three arguments, where the first argument is a set of relations (e.g., the pre|size relations of
all documents) and the second is the name of the join column of the first argument (e.g.,
pre). The last argument is the second join relation, which contains at least an item and a doc
column. The task of these two columns is to identify the equal entries (item) in the correct
relation doc (e.g., item refers to pre values in the pre|size relation of document doc). It
returns a relation whose schema contains the columns of the relations grouped in the first
argument and the columns of the second join relation (like in a normal join).

The inference Rule ELEM starts with the compilation of the second argument to its
relational representation q2. q2 is split into attributes (line (21)) and other nodes (line (2)).
The latter ones are the context root nodes. These are extended in line (2) with a column
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(1) Γ; loop;∆ ` e2 Z⇒ (q2,∆1)

ContextNodes

(2) ctxroot ≡ ρkey:〈iter,pos〉,1 (σkind=node q2)

(3) ctxnodes ≡
(
πiter:key,item,kind (ctxroot)

)

descendant-or-self,node()

(

∆1
.
∪doc

)

(4) nodes≡ ∆1 [pre|size]
.
∪doc [pre|size]

(5) ctxroot·extended ≡ multijoin
(
nodes,pre,πkey,iter,item,doc:kind (ctxroot)

)

(6) ctxroot·level ≡ πkey,iterin:iter,levroot:level (ctxroot·extended)

(7) ctxnodes·level ≡ πiter:iterin,item,doc:kind,levroot,key
(
ctxnodes oniter=key ctxroot·level

)

(8)

ctx≡ πiter,pre,size,level:levnew,ref ,kind,cont,doc,key

(

⊕levnew:〈levdiff ,one〉

(
one

1 ×
(

ªlevdiff :〈level,levroot〉 (multijoin(nodes,pre,ctxnodes·level))
)))

RootNodes

(9) Γ; loop;∆1 ` e Z⇒ (q1,∆2)

(10) ctxcount ≡ countsize:〈iter〉/iter (ctx)

(11) rootsize ≡ πiter1:iter,size

((
size

0 × (loop \iter ctxcount)
) .
∪ ctxcount

)

(12) root ≡ pre level kind cont doc key
nil 0 elem ∆ − −1 ×πiter,size,ref :item (rootsize oniter1=iter qqn)

NodeInsertion

(13) offsetpre ≡ max(πpre (∆2 [pre|size]))+1

(14) res≡ ρprenew:〈iter,ord,key,pre〉,offsetpre

((
ord
1 × root

) .
∪
(

ord
2 × ctx

))

(15) offsetfrag ≡ max
(
πfrag (∆2 [pre|size])

)
+1

(16) frag≡ πiter1:iter,frag

(

ρfrag:〈iter〉,offsetfrag
(loop)

)

(17) nodesnew ≡ πpre:prenew,size,level,ref ,kind,frag,cont (frag oniter1=iter res)

(18) ∆3 ≡ ∆2

[

. . . ,pre|size 7→ ∆2 [pre|size]
.
∪nodesnew, . . .

]

RootAttributes

(19) attrs≡ ∆3 [attr]
.
∪doc(attr)

(20) offsetattr ≡ max(πattr (∆3 [attr]))+1

(21) attrroot·extended ≡ multijoin(attrs,attr,πiter,item,doc:kind (σkind=attr q2))

(22) attrroot ≡ (πiter1:iter,prenew (σlevel=0 res)) oniter1=iter attrroot·extended

(23) attrroot·new ≡ πattr:attrnew,pre:prenew,qn,prop,cont
(
ρattrnew:〈attr〉,offsetattr

(attrroot)
)

(24) ∆4 ≡ ∆3

[

. . . ,attr 7→ ∆3 [attr]
.
∪attrroot·new, . . .

]

ContextAttributes

(25) attrctx·extended ≡ multijoin
(
attrs,pre,πitem:pre,prenew,doc

(
σlevel6=0 res

))

(26) offsetattr·2 ≡ offsetattr + count (attrroot)

(27) attrctx ≡ ρattrnew:〈attr〉,offsetattr·2
(attrctx·extended)

(28) ∆5 ≡ ∆4

[

. . . ,attr 7→ ∆4 [attr]
.
∪ (πattr:attrnew,pre:prenew,qn,prop,cont (attrctx)) , . . .

]

Γ; loop;∆ ` element e1 {e2 } Z⇒
(

pos kind
1 node(∆) ×πiter,item:prenew (σlevel=0 res) ,∆5

)

(ELEM)

key that stores keys generated from the unique combination of iter and pos values. Using
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this column key as new iter column ensures that no duplicates are removed within the
operator in line (3). The staircase join operator with the axis descendant-or-self returns
all context nodes. The sole task of the next five equivalence rules (line (4)–(8)) is the update
of the level column. Since the level of context nodes is arbitrary and the direct child of
a new element is always in level 1, the level of all context nodes has to be changed in
dependence of their context root node. That means the level of each context node has to be
subtracted by the level of its context root node and added by 1. The algebra expression in
line (5) looks up the level for all the context root nodes using a multijoin with the pre|size
relations of all nodes. A join of the context root nodes with the context nodes on key maps
the original iter value as well as the level of the context root nodes (levroot ) to all subtree
nodes. The multijoin in line (8) enhances the context nodes with their node information and
the ª as well as the ⊕ operation update the level information.

The next phase of Rule ELEM creates the new element nodes specified in the element
constructor (root nodes). The first task is the compilation of the tagnames and the second
task is the retrieval of the size values, which are the number of subtree nodes. Counting the
context nodes within each iteration provides the answer (see line (10)). This works because
every iteration constructs exactly one element. Since all iterations, which have no context
nodes, are not listed in ctx (remember that an empty sequence corresponds to an empty
relation), the expression in line (11) is needed. It determines all empty iterations using the
difference of the current loop relation and the counted iterations (ctxcount ) and adds them
with an size of zero to ctxcount . The join on iter in line (12) and the extension with the
columns pre, level, kind, cont, doc, and key collects the remaining attributes and aligns the
root node representations (root) with the relational representations of the context nodes
(ctx).

One of the missing attributes is the new pre column, which has to contain new unique
preorder ranks representing the document order of the nodes. The expression in line (13)

looks up the first available pre value in the transient document node container ∆ and the
union in line (14) merges context and root nodes. The resulting relation is the input for a
row numbering, which creates the new pre values starting at offsetpre. The order of the pre
values is chosen in such a way, that all nodes in a fragment are in the same range (iter), all
root nodes occur before their context nodes (ord), every context subtree is within one group
(key) and the old pre order is retained in these subtree fragments. Note that the dummy
values of the root nodes in pre and key do not matter for the generation of the new pre
values, since the order is already defined using iter and ord. The last necessary column
for the insertion of the new nodes into the pre|size relation of the transient document node
container is the column frag, which has to be a new available fragment id for each new
root node (iteration). The following equivalence rules (lines (15)–(17)) compute the offset,
generate the new numbers, and map these numbers to their corresponding nodes. The
algebra expression in line (17) furthermore adds a projection with a renaming that prepares
the nodes for their insertion into the container ∆. The equivalence rule in line (18) then
extends the current pre|size relation with the new nodes.

Without context and root attributes the inference Rule ELEM would conclude with the
generation of the node references similar to the other constructors. The only difference for
the compilation of the intermediate results is that only the references to the root nodes are
returned (level = 0).

With attributes, two more phases have to be added to the compilation process. The first
one generates code that adds copies of the root attributes to the attr relation of ∆. It starts
with the computation of the first free attr value and then looks up the attribute information
using a multijoin between the set of attr relations and the references of the root attributes.
The foreign key relationship stored in column pre is updated by applying a join on iter
between the resulting nodes (res) and the attributes. A row numbering updates the attr
values and an insertion into the attr relation of the transient document node container ∆
completes the mapping for the root attributes.

The relational expression generated in the last phase copies all the attributes owned
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by context nodes. Therefore all the attributes of the context nodes (level 6= 0) are looked
up using a multijoin on the column pre in all attr relations. Here the reason why the doc
column was retained during the merge of the context and root nodes becomes obvious.
Another observation is that the multijoin in line (25) is a real join in comparison to the
previous invocations where it applies only a positional lookup. Exactly like the context
attributes before a new attr values are introduced by the row numbering operator, the old
pre values are replaced by the new ones , and the updated attributes are added to the attr
relation of ∆.

let $ctx := doc("Doc")/a/* return

for $a at $pos in ("one", "two", "three") return

element {$a} {$ctx[position() mod 2 + 1 = $pos ]}

(Q8)

Query Q8 iterates over the same three-item sequence as query Q6 and uses the strings of
this sequence items as new element names ($a). The variable $ctx saves the three-item
sequence containing the nodes b, d, and g from the document Doc. These nodes are the
content of the new elements, where the rather complicated predicate [position() mod

2 + 1 = $pos] assigns iteration 1 node d (with the reference 3@0), iteration 2 the nodes
b and g (references 1@0 and 6@0, respectively), and iteration 3 no content. The serialized
result of query Q8 is the following sequence:

<one><d><e/><f/></d></one>,

<two><b>c</b><g a="42"/></two>,

<three></three>

.

iter pos item kind
1 1 3@0 node(Doc)
2 1 1@0 node(Doc)
2 2 6@0 node(Doc)

The starting point of the element construction is the con-
tainer ∆, whose only non-empty table is the string relation with
the strings of the for loop input and the container doc that con-
tains the document Doc (see Figure 2.2). The evaluation of line
(1) results in the relation q2 depicted on the right. It is the input for the row numbering,
which adds a new key column. This key ensures that no duplicate nodes are removed dur-
ing the descendant-or-self path step. Figure 3.9(a) shows the result of the path step in
line (3) (ctxnodes). The algebra expression in line (4) retrieves the node information of the
context root nodes. The level for all context root nodes is 1. Together with the original iter
column they are mapped to the context nodes, which is displayed in Figure 3.9(b). The
multijoin followed by the addition and the subtraction in line (4) then provides the updated
level values.

The evaluation of the element names in line (9) looks up the variable $a. The count in
line (10) takes the resulting context nodes and counts them for each iteration. The result is
a relation where iteration 1 and 2 both have a counted size of 3. Iteration 3 is not listed
in ctxcount and therefore added using a difference and an union operation. The algebra ex-
pression in line (12) combines names and size information and extends the resulting relation
with the missing values (shown in Figure 3.9(c)).

Because the pre|size relation of ∆ is empty, offsetpre and offsetfrag in the third phase
both hold the value 1. Figure 3.9(d) shows res, which is the concatenation of context and
root nodes enhanced with new pre values. The generated frag column is identical to the
iter column and, after its mapping, completes the new entries for the pre|size relation (see
Figure 3.9(e)).

For query Q8 the fourth phase works on empty relations, since no root attributes are
present. The subtree copy of the context attributes on the other hand has to copy the at-
tribute of node g. The multijoin with the pre values in the attr relations and the context
elements (σlevel 6=0res) in line (25) provides the attribute a="42":

ctxattr·extended ≡
attr pre qn prop cont item prenew doc
0@0 6@0 0@0 0@0 Doc 6@0 8@0 node(Doc)
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iter item kind
1 3@0 node(Doc)
1 4@0 node(Doc)
1 5@0 node(Doc)
2 1@0 node(Doc)
2 2@0 node(Doc)
3 6@0 node(Doc)

(a) ctxnodes

iter item doc levroot key
1 3@0 node(Doc) 1 1
1 4@0 node(Doc) 1 1
1 5@0 node(Doc) 1 1
2 1@0 node(Doc) 1 2
2 2@0 node(Doc) 1 2
2 6@0 node(Doc) 1 3

(b) ctxnodes·level

pre size level ref kind cont iter key doc
nil 3 0 0@0 elem ∆ 1 −1 −
nil 3 0 1@0 elem ∆ 2 −1 −
nil 0 0 2@0 elem ∆ 3 −1 −

(c) root

prenew ord pre size level ref kind cont iter key doc
1 1 nil 3 0 0@0 elem ∆ 1 −1 −
5 1 nil 3 0 1@0 elem ∆ 2 −1 −
9 1 nil 0 0 2@0 elem ∆ 3 −1 −
2 2 3@0 2 1 2@0 elem Doc 1 1 node(Doc)
3 2 4@0 0 2 3@0 elem Doc 1 1 node(Doc)
4 2 5@0 0 2 4@0 elem Doc 1 1 node(Doc)
6 2 1@0 1 1 1@0 elem Doc 2 2 node(Doc)
7 2 2@0 0 2 0@0 text Doc 2 2 node(Doc)
8 2 6@0 0 1 5@0 elem Doc 2 3 node(Doc)

(d) res

pre size level ref kind frag cont
1@0 3 0 0@0 elem 1 ∆
5@0 3 0 1@0 elem 2 ∆
9@0 0 0 2@0 elem 3 ∆
2@0 2 1 2@0 elem 1 Doc
3@0 0 2 3@0 elem 1 Doc
4@0 0 2 4@0 elem 1 Doc
6@0 1 1 1@0 elem 2 Doc
7@0 0 2 0@0 text 2 Doc
8@0 0 1 5@0 elem 2 Doc

(e) nodesnew

Figure 3.9: Intermediate results of the element construction in query Q8
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The insertion into the attr relation of the transient document node container ∆ with updated
pre values concludes the element construction.

The result is the iter|pos|item|kind representation storing the references to the root nodes
(1@0, 5@0, and 9@0 with the kind node(∆)).

3.4.12 Count

The counting of sequences in Rule COUNT is similar to the size determination of root nodes
(lines (10) and (11)) in Rule ELEM. After the compilation of the subexpression e into q a
count partitioned by the iter values creates the relation qcount . Similar to the element con-
struction, empty iterations are added using a difference and a union. The integers storing
the count information are added to the integer relation of ∆ and their reference form the
overall result.

The compilation of the function fn:count can be easily modified to support the other
aggregate functions (e.g., min, max, and sum). These functions only require an additional
join with a value relation to retrieve the values.

(1) Γ; loop;∆ ` e Z⇒ (q,∆1)

(2) qcount ≡ countvalue:〈iter〉/iter (q)

(3) res≡
(

value
0 × (loop \iter qcount)

) .
∪ qcount

(4) (∆2,qres)≡ ref integer (∆1,res)

Γ; loop;∆ ` count(e) Z⇒
(

pos kind
1 integer ×πiter,item:ref (qres) ,∆2

) (COUNT)

If we once more modify query Q6 and count the looping variable $a this will of course
result in the sequence (1,1,1) (see query Q9):

for $a in ("one", "two", "three") return

count ($a)
. (Q9)

The most interesting observation in query Q9 is that the expression in line (4) adds the
tuple 〈0@0,1〉 only once. Without duplicate elimination this would result in a much bigger
integer relation.

3.4.13 Arithmetic and Comparison Operators

The compilation of comparison and arithmetic operators is very similar. Here the rules PLUS

and LESS represent all other calculations and comparisons. Both rules first compile their
subexpressions e1 and e2. The next step is a join with the value relations to gather the
values. The test in line (1) therefore decides, using the static type of e1, which kind relation
has to be chosen. A join on the iter values combines both relational representations. Note
that this join in line (6) perfectly matches the XQuery semantics: If either argument is the
empty sequence the join finds no matching tuple and returns an empty sequence as well.
The n-ary operator (here ⊕ and 4) generates the result for all iterations.

(1) e1 :: kind

(2) Γ; loop;∆ ` e1 Z⇒ (q1,∆1)

(3) q1·extended ≡ πiter1:iter,value1:value
(
q1 onitem=ref ∆1 [kind]

)

(4) Γ; loop;∆1 ` e2 Z⇒ (q2,∆2)

(5) q2·extended ≡ πiter2:iter,value2:value
(
q2 onitem=ref ∆2 [kind]

)

(6) res≡⊕value:〈value1,value2〉 (q1·extended oniter1=iter2 q2·extended)

(7) (∆3,qres)≡ ref kind (∆2,res)

Γ; loop;∆ ` e1 + e2 Z⇒
(

pos kind
1 kind ×πiter:iter1,item:ref (qres) ,∆3

) (PLUS)
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(1) e1 :: kind

(2) Γ; loop;∆ ` e1 Z⇒ (q1,∆1)

(3) q1·extended ≡ πiter1:iter,value1:value
(
q1 onitem=ref ∆1 [kind]

)

(4) Γ; loop;∆1 ` e2 Z⇒ (q2,∆2)

(5) q2·extended ≡ πiter2:iter,value2:value
(
q2 onitem=ref ∆2 [kind]

)

(6) res≡4value:〈value1,value2〉 (q1·extended oniter1=iter2 q2·extended)

Γ; loop;∆ ` e1 lt e2 Z⇒
(

pos kind
1 boolean ×πiter:iter1,item:value (res) ,∆2

) (LESS)

The only difference between arithmetic and comparison operators is the result type.
Comparison operators have a boolean type and encode their result directly in the item
value. In comparison, the arithmetic operators have the same result type (kind) as their
input and need to store the values in the value relation kind before returning the references.

for $a in (10, 20, 30) return

$a + 30
(Q10)

for $a in (10, 20, 30) return

$a < 30
(Q11)

The only difference between Query Q10 and Q11 is the operator in the for body. Both
operations have the input kind integer and the join relation in line (6) is the same as well
(see Figure 3.10(a)). The n-ary operators add and accordingly compare the values in the
two value columns for each row. The result column value for Rule PLUS can be seen in
Figure 3.10(b) and the one for Rule LESS in Figure 3.10(c).

iter1 value1 iter2 value2
1 10 1 30
2 20 2 30
3 30 3 30

(a) q1·extended oniter1=iter2

q2·extended

value
40
50
60

(b) ⊕

value
T RUE
T RUE
FALSE

(c) 4

Figure 3.10: Intermediate results of the queries Q10 and Q11

3.4.14 Order by Expression

The order by clause can be understood as an optional extension of the for expression
similar to the at clause (see XQuery pattern of Rule ORDER BY). Its expressions e1, . . . ,en

store for each iteration a singleton sequence, whose values are used to change the order of
the resulting sequence ereturn. The order is determined first by the values of e1 and then the
secondary orderings in e2, . . . ,en.

Because the XQuery pattern in Rule ORDER BY includes a for loop, large parts of
the inference rule are identical to the Rule FOR (see lines (1)–(9)). The explanations of
these inference rules are therefore omitted here. The compilation of the order by clause
starts with the current map relation map0. Each expression ek (1 ≤ k ≤ n) is compiled
and integrated applying the equivalence rules in lines (12)–(15). Every expression e1, . . . ,en

is compiled in dependence of the inner-most scope. Its input arguments are the mapped
variable environment Γ′ as well as the loop relation loopv. The kind lookup in line (13)

determines for each expression ek the value relation whose values are looked up in line
(14). For each expression ek the relational expression in line (15) then extends the current
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map relation mapk−1 with the value column retrieved in the previous equivalence rule. In
comparison to the FOR rule, the Rule ORDER BY applies the backmapping join of the for
loop on the extended map relation mapn and the result of the return clause. The row
numbering uses the additional columns of the map relation mapn to create the positions
within an iteration (outer) according to the values of the order by expression (c1, . . . ,cn),
thus implicitly realizing the new order.

Instead of the keyword ascending in Rule ORDER BY, descending can be used. Its
compilation requires a reverse sorting or a reverse row numbering operator. Additionally
the order by copes with sorting criterions, which contain values only for some iterations.
The iterations storing the empty sequence are treated as if they either hold the smallest
(keywords empty least) or the biggest (empty greatest) values. For these cases, the
mapping proceeds similar to the compilation of missing values in the Rule COUNT. The
difference operator retrieves the iterations with empty sequences and combines them with
the existing iterations, using either the minimum or maximum value of their domain as
sorting criterion.

(1) {. . . ,$vi 7→ qvi , . . .}; loop;∆ ` ein Z⇒ (qin,∆′)

(2) extv ≡ ρinner:〈iter,pos〉,1(qin)

(3) qv ≡
pos
1 ×πiter:inner,item,kind (extv)

(4)

(
∆′′,re fp

)
≡ ref integer

(
∆′,πiter:inner,value:pos (extv)

)

(5) qp ≡
pos kind
1 integer ×πiter,item:ref (re fp)

(6) map≡ πouter:iter,inner (extv)

(7) loopv ≡ πiter:inner (extv)

(8)

Γv ≡
{
. . . ,$vi 7→ πiter:inner,pos,item,kind (qvi oniter=outer map) , . . .

}

+{$v 7→ qv}+{$p 7→ qp}

(9) Γv; loopv;∆′′ ` ereturn Z⇒ (qreturn,∆′′′)

orderby

(10) map0 ≡map

(11) ∆0 ≡ ∆′′′

for each
ek in

e1,. . . ,en








(12) Γv; loopv;∆k−1 ` ek Z⇒ (qk,∆k)

(13) ek :: kindk

(14) resk ≡ πiter,ck:value
(
qk onitem=ref ∆k [kindk]

)

(15) mapk ≡ πinner,outer,c1,...,ck (mapk−1 oninner=iter resk)

{. . . ,$vi 7→ qvi , . . .}; loop;∆ ` for $v at $p in ein order by

e1, . . . ,en ascending return ereturn Z⇒
(
πiter:outer,pos:pos1,item,kind(

ρpos1:〈c1,...,cn,pos〉/outer,1 (qreturn oniter=inner mapn)
)
,∆n
)

(ORDER BY)

Query Q12 contains an order by pattern in the loop body of the first for loop:

s







for $a in (30, 20) return

sa







for $b in (2, 3, 1)

sa·b







let $c := $a + $b
order by $c ascending

return $c

. (Q12)

The Rule ORDER BY compiles the inner for loop, before mapping the expressions of
the order by clause. Because $c is the only expression in the order by clause, the
equivalence rules of lines (12)–(15) are applied only once. Because e1 and ereturn are both
compiled in dependence of the inner-most scope sa·b and both contain the same XQuery
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iter pos item kind
1 1 5@0 integer

2 1 6@0 integer

3 1 7@0 integer

4 1 8@0 integer

5 1 9@0 integer

6 1 10@0 integer

(a) $c in scope sa·b (qreturn

and q1)

ref value
5@0 32
6@0 33
7@0 31
8@0 22
9@0 23
10@0 21

(b) Part of the inte-
ger relation

outer inner c1
1 1 32
1 2 33
1 3 31
2 4 22
2 5 23
2 6 21

(c) map1

iter pos item kind
1 1 7@0 integer

1 2 5@0 integer

1 3 6@0 integer

2 1 10@0 integer

2 2 8@0 integer

2 3 9@0 integer

(d) Result of Rule ORDER

BY

Figure 3.11: Intermediate results of the query Q12

expression, their relational representations (qreturn and q1) are identical at runtime as well
(see Figure 3.11(a)). The join of the algebra expression in line (14) with the integer relation
depicted in Figure 3.11(b) prepares the new order column c1. In the equivalence rule of line
(15) this column then extends the map relation (see Figure 3.11(c)). During the backmap-
ping step this extended map relation is joined with the return clause. The following row
numbering then implicitly sorts each resulting item sequence according to the column c1

by assigning new position values. The outer column furthermore ensures that the order of
the outer for loop is not modified. Figure 3.11(d) shows the result of the Rule ORDER BY,
which encodes the two item sequences (31, 32, 33) and (21, 22, 23) in the first and
accordingly second iteration.

3.4.15 Functions

There are two different kinds of functions in XQuery: built-in functions and user-defined
functions (UDF). The built-in functions extend XQuery with new functionalities. For many
of these functions, there exists a relational representation (see, e.g., function fn:count in
Section 3.4.12). Others rely on operators, which evaluate a simple operation in a loop-
lifted manner, like the ⊕ operator. The few remaining ones, which do not fit into these two
groups, require a special treatment. The mismatch occurs because of the XQuery semantics,
which, e.g., introduce dependencies between successive sequence items.

The user-defined functions can be compiled by replacing the function call with the
function body before the algebra code gets generated. This replacement goes along with
the replacement of the function variables and some additional casts. While this only works
for non-recursive UDFs, the compilation of recursive user-defined functions is possible in
MonetDB and will be topic of Section 3.5.12.

3.4.16 Casts

cast is the last keyword in XQuery, which is missing in this compilation scheme. Because
casts rely on the static input type as well as the target type, a large variety of relational
expressions can be generated. The basic idea is to use the cast operators of the underlying
database back-end to evaluate a cast expression. Using a selection σ for each distinct kind
value splits up the different types. For each kind the values are retrieved and then casted to
the target type. A concatenation of the new references then completes the cast.

3.5 Translation to MIL

With the inference rules described in the previous section, the XQuery Core to MIL map-
ping can be adopted almost without further changes. The compilation creates for each
XQuery construct a block of MIL code, resulting in one large MIL script, which then can
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be evaluated sequentially. As relations in MonetDB are fully vertically fragmented, the
mapping to MIL dedicates large parts of the MIL code to management purposes (e.g.,
alignment of relations). Another feature of MonetDB is the materialization of intermedi-
ate results. This enables us to bind these intermediate results to MIL variables and reuse
the bindings (similar to the names in the equivalence rules). We thus avoid the repeated
evaluation of algebra expressions. For frequently used expressions, like e.g., loop this sig-
nificantly increases the performance. The four variables iter, pos, item, and kind are
used as interface between the different blocks by assigning the result of every evaluated
XQuery construct to them. The iter as well as the pos column use oid values, because in
MIL the type oid is more carefully tuned than the integer type (e.g., void, mark,. . . ).
The same holds for the loop and map relations, which are generated by mark operations.

With each new scope new loop and map relations are introduced. Because the old
ones may be required at a later point (e.g., to map back the results), new variable names
are required. A distinct number for each scope solves this problem. These numbers (e.g.,
num1 and num2) are generated at compile time and then used as suffixes for variables
names. Intermediate results are stored in such suffixed variables as well to avoid loosing
their information during the evaluation of a second nested expression (e.g., during sequence
construction).

In the following we describe the compilation of the single XQuery constructs to MIL.
As the generated MIL programs describe their task in a very explicit, assembly style man-
ner, the resulting MIL code gets pretty large. The compilation of the element construction,
which requires a page in Rule ELEM, e.g., maps to about 300 operations in MIL. Most of
the operations are no cost operations, like e.g., reverse, mark, or positional joins on void

columns that are used only to align the binary relations. A detailed listing of this code
would thus not give any new insight into the matter. We therefore restrict ourselves in the
following to the explanation of the more interesting MIL fragments and refer the interested
reader to the Pathfinder implementation.

3.5.1 Constants

Constants are compiled almost identical to Rule CONST in Section 3.4.1. The first two lines
in Figure 3.12 correspond to the wrapper function ref of Rule CONST. The first assignment
inserts the constant 10 into the integer value relation. For other kinds the compilation would
choose a different relation. Setting the seqbase to nil before and to 0@0 afterwards
ensures that the head column is not materialized during the insertion. The next line assigns
the row containing the value 10 and its key to the variable ref. The used selection returns
exactly one row, because the key property of the int_relation (set during initialization)
implicitly removes duplicates.

In comparison to Rule CONST, we avoid building the literal table, but use the current
loop relation as new iter column. The other three columns pos, item, and kind are generated
using the project operator, which creates a copy of the head column (in our case a void
column with the key) and inserts the respective second argument in all rows of the tail.
Therefore we also looked up the itemID (see row three in Figure 3.12) instead of building
the cross product.

1 int_relation := int_relation.seqbase(nil).insert(nil,10).seqbase(0@0);

2 var ref := int_relation.select(10);

3 var itemID := ref.reverse().fetch(0);

4 iter := loop;

5 pos := iter.project(1@0);

6 item := iter.project(itemID);

7 kind := iter.project(integer);

Figure 3.12: MIL code generated for the integer constant 10.
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3.5.2 Sequences

The compilation of a sequence construction to MIL is shown in Figure 3.13. The mapping
generates almost 50 commands to translate the operations in Rule SEQ to MIL. The main
reasons are the management overhead as well as the explicit order necessary for the row
numbering operator. The compilation starts with the mapping of the first argument e1

(depicted in line 1 of Figure 3.13). During evaluation, its result will be stored in the four
BATs assigned to iter, pos, item, and kind. Because the compilation of the second
argument overwrites these bindings, the assignments in lines 2–5 save the intermediate
result in a new unique variable set before the second argument e2 is mapped to MIL (see
row 6).

1 { .... } # code generated for first argument e1
2 var iter_num := iter;

3 var pos_num := pos;

4 var item_num := item;

5 var kind_num := kind;

6 { .... } # code generated for second argument e2
7 if (iter.count() = 0) {

8 iter := iter_num;
9 pos := pos_num;

10 item := item_num;
11 kind := kind_num;
12 } else if (iter_num.count() != 0) {

13 var seqb := int(max(iter_num.reverse())) + 1;

14 iter := iter.reverse().[int]().[+](seqb).[oid]().reverse();

15 pos := pos.reverse().[int]().[+](seqb).[oid]().reverse();

16 item := item.reverse().[int]().[+](seqb).[oid]().reverse();

17 kind := kind.reverse().[int]().[+](seqb).[oid]().reverse();

18 var iter_new := iter.append(iter_num);
19 var pos_new := pos.append(pos_num);
20 var item_new := item.append(item_num);
21 var kind_new := kind.append(kind_num);
22 var ord_new := iter.project(1).append(iter_num.project(2));
23 var order := ord_new.reverse().sort().reverse();

24 order := order.CTrefine(pos_new);

25 order := order.mark(0@0).reverse();

26 iter := order.join(iter_new);

27 pos := iter.sort().mark_grp(iter.tunique().project(1@0));

28 item := order.join(item_new);

29 kind := order.join(kind_new);

30 }

Figure 3.13: MIL code generated for the sequence operator.

The following 6 rows (lines 7–12) make use of the programming language concepts
in MIL. If at runtime one intermediate result is empty (meaning all iterations return an
empty sequence) the sequence construction is avoided completely. Otherwise the sequence
construction proceeds with the concatenation of both intermediate results. The generated
code in row 13 looks up the first unused key of the first argument and adds its value to all
keys in the second argument (row 14–17), thus creating overall unique keys. Rows 18–21
combine both arguments and row 22 creates the new column ord.

The remaining rows generate the MIL code to support the row numbering operator
(ρpos1:〈ord,pos〉/iter,1) of the SEQ rule. The MIL equivalent of the grouped row numbering
operator ρ is the operator mark_grp. This operator however relies on the internal order of
its input BAT. Hence explicit sorting of the iter BAT is needed before the mark_grp can
be applied. Primary sorting in MonetDB is done using the sort operator, which works
on the values in the head (see line 23). The CTrefine operator in MIL applies secondary
orderings without violating the primary order. It uses the values of the second argument
to re-sort the groups of tuples in the first argument whose tail values are equal (see line
24). After sorting we add a new void key (in line 25) and replace the old one (line 26, 28,
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and 29). The new iter BAT (with its order ensured) is the first argument of the mark_grp

command. The second argument is an unique list of iterations, which encodes in the tail the
first values of the numbering within each group — 1@0.

3.5.3 Let Bindings and Variable References

The straightforward way to implement the variable mapping would be to paste the gener-
ated MIL code for a variable binding wherever the variable is used. Since this would result
in evaluating each binding multiple times, we decided to store the variable representations
like intermediate results. To avoid a large number of small BATs (four for every variable),
which have to be lifted for every for loop translation, we decided to interpret the variable
environment Γ described in the inference rules in a literal way. We introduce a variable
environment Γ, which stores the evaluated relational representations of the variables at
runtime using an vid|iter|pos|item|kind relation (in MIL the five respective BATs). New
variables are added by inserting their evaluated relational representation extended with a
unique variable identifier vid (see also Figure 3.14).

1 { .... } # code generated for variable binding e1
2 var vid := iter.project(vid);
3 varenv_vid_num := varenv_vid_num.seqbase(nil).insert(vid).seqbase(0@0);
4 varenv_iter_num := varenv_iter_num.seqbase(nil).insert(iter).seqbase(0@0);
5 varenv_pos_num := varenv_pos_num.seqbase(nil).insert(pos).seqbase(0@0);
6 varenv_item_num := varenv_item_num.seqbase(nil).insert(item).seqbase(0@0);
7 varenv_kind_num := varenv_kind_num.seqbase(nil).insert(kind).seqbase(0@0);
8 { .... } # code generated for return expression e2

Figure 3.14: MIL code generated for the let expression.

The variable reference is solved by a simple selection on the vid column using a given
variable identifier (see row 1 of Figure 3.15). The MIL code ”.mark(0@0).reverse()”
in line 2 creates a new virtual key and the join with the other variable environment BATs
produces the aligned iter|pos|item|kind representation.

1 var vid := varenv_vid_num.select(vid);
2 vid := vid.mark(0@0).reverse();

3 iter := vid.join(varenv_iter_num);
4 pos := vid.join(varenv_pos_num);
5 item := vid.join(varenv_item_num);
6 kind := vid.join(varenv_kind_num);

Figure 3.15: MIL code generated for the variable lookup.

A single join between the map relation and the current variable environment lifts all
variables. Note that similar to the relations map or loop we create a new variable envi-
ronment for each scope. These different representations of Γ can be used to additionally
filter out the variables, which are not used in a nested scope, thus avoiding unnecessary
loop-lifting. The filter relation, which stores the pairs of scope and variable identifier, can
be generated at compile time. Figure 3.16 shows the loop-lifting from a scope num1 to a
scope num2. Lines 3 and 4 create the filter, by looking up all vids in var_mapping using
a given for loop identifier ( f orid), and rows 5–9 apply the filter, storing its result in a new
set of variable environment BATs. Lines 11–13 lift the key to the next scope and lines 14
to 18 create the expanded (lifted) representation using a join on the old keys.

3.5.4 For Expressions

for expressions are mapped analogously to the transformations in the previous three sec-
tions (3.5.1-3.5.3). Like the sequence construction it prunes parts of the unnecessary MIL
code at runtime. Thus the lifting as well as the evaluation of the return value can be skipped
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1 # filtering out the variables not used in a deeper nesting

2 # (var_mapping stores relation between variable and nesting)

3 var vid_map := var_mapping.select( f orid).mirror();

4 vid_map := varenv_vid_num1.join(vid_map).mark(0@0).reverse();

5 var varenv_vid_num2 := vid_map.join(varenv_vid_num1);

6 var varenv_iter_num2 := vid_map.join(varenv_iter_num1);

7 var varenv_pos_num2 := vid_map.join(varenv_pos_num1);

8 var varenv_item_num2 := vid_map.join(varenv_item_num1);

9 var varenv_kind_num2 := vid_map.join(varenv_kind_num1);

10 # loop-lifting of the filtered variables

11 var outer_inner := outer_num2.reverse().join(inner_num2);

12 var iter_map := varenv_iter_num2.join(outer_inner);

13 iter_map := iter_map.mark().reverse();

14 varenv_vid_num2 := iter_map.join(varenv_vid_num2);

15 varenv_iter_num2 := iter_map.join(varenv_iter_num2);

16 varenv_pos_num2 := iter_map.join(varenv_pos_num2);

17 varenv_item_num2 := iter_map.join(varenv_item_num2);

18 varenv_kind_num2 := iter_map.join(varenv_kind_num2);

Figure 3.16: MIL code generated for lifting the variables from scope num1 to num2.

completely, if the loop binding contains only empty sequences. Furthermore, we map
Cartesian products using the MIL primitive project as well as the explicit sorting fol-
lowed by the mark or mark_grp to evaluate the row numbering ρ. The lifting of variables
and the insertion of the loop variables into the variable environment follows the description
given in previous section.

1 var values := iter_values.reverse().mark(nil).reverse();

2 int_relation := int_relation.seqbase(nil).insert(values).seqbase(0@0);

3 var ref := iter_values.join(int_relation.reverse());

4 iter := loop;

5 pos := iter.project(1@0);

6 item := loop.join(ref);

7 kind := iter.project(integer);

Figure 3.17: MIL code generated for the wrapper function ref integer in a for loop.

The only unmentioned concept used in the for loop mapping is the function application
of the wrapper function ref integer. In comparison to the function call in the constant mapping
(see Figure 3.12), it adds a whole relation instead of a single value to the integer relation.
This can be seen in line 1 of Figure 3.17, where iter_values corresponds to the second
argument of ref integer. In the int_values BAT the key property in the tail is set, which
implicitly triggers the duplicate elimination during the insertion. A single join on the values
obtains the references (see line 3).

3.5.5 If-Then-Else

For the mapping of an if expression we are almost done if we re-use parts of the MIL code
produced for a for expression. The most interesting part here is the additional pruning,
which can be applied using MIL conditionals. After evaluating the conditional expression
e1 we check whether we have no true or no false values. This allows us to prune either the
complete then or the complete else branch evaluation. In Figure 3.18 these tests are eval-
uated in lines 6 and 7 and their result is used to skip lines 11–18 and 20–25, respectively.
Furthermore the variable mapping (lines 11–12 and 21–22) as well as the evaluation of the
union of both intermediate results in row 28 can be skipped if either branch is empty.

3.5.6 Typeswitch

The typeswitch expression is compiled into almost the same plan as the If-Then-Else.
The only modification of Figure 3.18 is an additional instanceof test in line 2. Depending
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1 { ... } # code generated for conditional expression e1
2

3 var falses := kind.select(FALSE);

4 var trues := kind.select(TRUE);

5

6 var skip_then := trues.count() = 0;

7 var skip_else := falses.count() = 0;

8

9 if (not(skip_then))

10 {

11 if (not(skip_else))

12 { ... } # code generated for filtering out false iterations in Γ
13

14 { ... } # code generated for then expression e2
15

16 if (not(skip_else))

17 { ... } # store intermediate result in new variable set (num)
18 }

19 if (not(skip_else))

20 {

21 if (not(skip_then))

22 { ... } # code generated for filtering out true iterations in Γ
23

24 { ... } # code generated for else expression e3
25 }

26

27 if (not(skip_then) and not(skip_else))

28 { ... } # union both intermediate result into overall result

Figure 3.18: MIL code generated for the If-Then-Else expression.

on the static input type ty instanceof compiles into different MIL code.
Figure 3.19 shows the code emitted for the instanceof call with the type integer. The

grouped count ({count}) in line 1 returns all iterations annotated with the number of oc-
currences in iter and the following equivalence test replaces the numbers by boolean values,
which are true for the value 1 only. Line 3 selects the matching iterations, line 4 prepares
them to be a filter on the kind column and row 5 evaluates the condition on the kind inte-
ger for the iterations with exactly one item. Together with the missing iterations stored in
iter_false they build the result of the conditional expression.

1 var iter_bool := iter.reverse().{count}(loop.reverse())[=](1);

2 var iter_false := iter_bool.select(false);

3 var iter_true := iter_bool.select(true);

4 var iter_true_key := iter.join(iter_true.mirror()).reverse();

5 var iter_kind_bool := iter_true_key.join(kind).[=](integer);

6 var iter_item := iter_kind_bool.union(iter_false);

7 iter := iter_item.mark(0@0).reverse();

8 pos := iter.project(1@0);

9 item := iter_item.[oid]().reverse.mark(0@0).reverse;

10 kind := iter.project(boolean);

Figure 3.19: MIL code generated for the function call instanceof integer(e1).

3.5.7 Path Steps and Constructors

The compilation of path steps and constructors to MIL strictly follows the mapping rules
provided in Sections 3.4.8–3.4.11. Path steps, multijoins, and max are mapped to their cor-
responding primitives in MIL and will not be explained in more detail. The few remaining
operators like ⊕, ª, and \ will be described in the following sections.
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3.5.8 Count

For the mapping of the built-in function fn:count MIL offers special support. The rather
complicated compilation using a grouped count followed by a difference and a union (see
lines (2) and (3) of Rule COUNT) matches a single operator in MIL. Line 2 of Figure 3.20
shows this grouped count operator. {count} uses a copy of the second argument as result
relation and records in the tail the number of corresponding tuples in the head of the first
argument. With the iter column as first argument and the loop relation as second argument,
we even handle empty iterations correctly. The remaining operations (lines 3-9) apply the
ref integer function and prepare the result for any following XQuery expression.

1 { .... } # code generated for the argument e
2 var iter_count := {count}(iter.reverse(), loop.reverse());

3 var values := iter_count.reverse().mark(nil).reverse();

4 int_relation := int_relation.seqbase(nil).insert(values).seqbase(0@0);

5 var ref := iter_count.join(int_relation.reverse());

6 iter := loop;

7 pos := iter.project(1@0);

8 item := loop.join(ref);

9 kind := iter.project(integer);

Figure 3.20: MIL code generated for the built-in function fn:count.

3.5.9 Arithmetic and Comparison Operators

The arithmetic and the comparison operators rely on MonetDB’s multiplex operator (see
Section 1.3), which evaluates single item operations on a complete relation. It perfectly
supports the loop-lifting of MIL functions like arithmetic and comparison operators. Its
implicit equi-join between relations furthermore simplifies the mapping process.

The less-than comparison operation in Figure 3.21 compares two integer values in mul-
tiple iterations. Line 2 and 3 store the necessary information of the evaluated first argument.
Line 6 creates a BAT for the first argument, which holds the iter values in the head and the
integer values in the tail. Row 7 does the same for the second argument. The multiplex
operator ([<]) alone performs the join and the n-ary comparison operation of line (6) in
Rule LESS.

1 { .... } # code generated for first argument e1
2 var iter_num := iter;

3 var item_num := item;

4 { .... } # code generated for second argument e2
5

6 var fst_arg := iter_num.reverse().join(item_num).join(int_relation);
7 var snd_arg := iter.reverse().join(item).join(int_relation);

8 var iter_item := [<](fst_arg, snd_arg).[oid]();

9 iter := iter_item.mark(0@0).reverse();

10 pos := iter.project(1@0);

11 item := iter_item.reverse().mark(0@0).reverse();

12 kind := iter.project(boolean);

Figure 3.21: MIL code generated for 4 comparison on integers.

3.5.10 Order by Expressions

The compilation of an order by expression follows the ideas described in Rule ORDER

BY. The main difference between the algebra and the MIL mapping is the refinement of
the order after each of the n steps using the CTrefine operator4. This allows to prune the

4The functionality of CTrefine was already explained in Section 3.5.2.

37



evaluation of the remaining argument list (ek+1, . . . ,en) as soon as there is a clear — and
thus not modifiable — ordering.

3.5.11 Built-In Functions

Many of the built-in functions as well as the basic casts perform typical programming
language operations. These are lifted with the help of the multiplex operator. The aggregate
functions (e.g., min, max, and sum) use a grouped aggregate like the {count} operator for
their compilation. Most of the other built-in functions (e.g., fn:name, fn:string,. . . ) can
be mapped to MIL equally well. The few remaining ones, which are hard to translate using
MIL, are solved using new primitives, written in C.

3.5.12 User-Defined Functions

Section 3.4.15 already suggests replacing the function call of user-defined functions by
their body. However, for recursive user-defined functions, this would lead to an infinite
recursion at compile time. We thus map user-defined functions into MonetDB functions
(using the MIL primitive proc) that happily deal with recursive invocations. We compile
the body of an user-defined function in XQuery like every other XQuery expression. The
main difference is that the compiled expression is a stand alone MIL script in the proc

body, which returns an iter|pos|item|kind relation. To evaluate the function body in depen-
dence of the current scope the current loop and map relations are arguments of the function.
Furthermore the relational representation of the XQuery function arguments and the global
variables are collected in a new variable environment. This environment is passed to the
function body as another argument of the proc. It makes the relational representations of
all visible variables available in the function body.
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Chapter 4

Optimizations

Following the compilation scheme described in Chapter 3 we built a first working version of
our XQuery compiler. It enabled us to generate and evaluate MIL code for large parts of the
XQuery Use Cases [1] as well as all XMark benchmark queries [25]. While the compilation
provided us with a semantically correct translation, it did not avoid obvious performance
bottlenecks. The moderate performance was confirmed by the execution times resulting
from the evaluation of the XMark benchmark on medium sized documents (11 MB and
110 MB). The most important bottleneck became obvious in XMark Queries 8–12, whose
evaluation took minutes on the 11 MB document and did not finish on the 110 MB file.
These five queries compile nested for loops into Cartesian products (due to the necessary
loop-lifting) before applying a comparison that discards most of the tuples (much like a
relational join). But even queries without implicit joins failed to scale linearly. One reason
was the large set of sort operations each query contained. The other obvious problem were
the path steps, which scaled above linear.

In this chapter we discuss four different optimizations, which helps us to overcome this
performance problems and enable the implementation to exploit the scalability of the rela-
tional backend MonetDB. The optimization in Section 4.1 provides a solution to the sorting
overhead introduced by the explicit ordering necessary for the row numbering operator. It
describes the idea of an order aware implementation, which keeps all results sorted by iter
and pos. The high costs for XPath location steps on increasing document sizes were trig-
gered by the iterative evaluation of the path algorithms. A path step and therefore also
a scan over the document was necessary for each iteration. The loop-lifted staircase join
discussed in Section 4.2 allows to evaluate a path step on all iterations within one scan over
the document. The third optimization in Section 4.3 avoids the storage of intermediate re-
sults in their value relations, whenever their values are used by the next expression (e.g., in
the construction of nested elements or input values of a function call). In Section 4.4 our
fourth optimization detects a large number of implicit relational joins in the XQuery Core
expression and overcomes the emerging performance bottleneck with a more intelligent
MIL translation.

4.1 Order Awareness

The mapping of XQuery into relational query plans, as described in Chapter 3, maintains
order information in the relations that encode the input XML documents and in the (inter-
mediate) results of XQuery expressions. Document order is reflected by the node surrogates
(preorder ranks). Likewise, sequence order is maintained in the iter and pos columns of the
intermediate relational results. The mapping would allow keeping track of order informa-
tion without the need for explicit sorting in the physical relational query plans. However,
it turns out that all conceivable implementations of the row numbering operator ρ impose
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some ordering on their input relation as a precondition. This may thus lead to a large
number of sort operators in the physical plans.

We decided to minimize the number of sort operations by keeping the intermediate
results sorted on iter and pos. This is done by introducing new logical MIL operators for
selections, joins, and distinct unions. Their underlying physical algorithms all preserve the
order. All other operators in MonetDB already maintain order.

In case of a selection, we limit ourselves to the use of the ScanSelect implemen-
tation. This is no limitation since indices are only created for persistent relations. XML
documents, which are stored in such relations, are only accessed over the path step algo-
rithms. But these can make use of all select implementation and thus exploit the indices, as
long as the result is sorted on iter and pos again. Joins are restricted to NestedLoopJoin,
SortMergeJoin, and HashJoin implementations, which all maintain the order of their
left argument. Some implementations (e.g., NestedLoopJoin) even keep the order of the
inner relation as minor ordering.

4.1.1 Merged Union

The distinct union is the only operation that requires a new implementation. The normal
AppendUnion implementation just concatenates two relations, which are sorted on iter and
pos, resulting in a relation, which is only sorted on pos given a grouping by iter. While this
is enough for the next row numbering, an explicit sorting is required for the row numbering
in the back-mapping phase of the for loop or the result serialization.

Figure 4.1(a) shows the both input relations ($a and $b) of the sequence construction
in Query Q13:

let $a := (100, 200) return

for $b in (10, 20) return

($a, $b)
. (Q13)

Figure 4.1(b) displays the result of the AppendUnion. The following mark_grp in Fig-
ure 4.1(c) can be applied without sorting. For the backmapping, however, a sort is required
because the physical order (100, 200, 100, 200, 10, 20) does not match the sequence order
(100, 200, 10, 100, 200, 20) and therefore the mark_grp would return a wrong result.

The new MergedUnion algorithm we will now introduce uses one column as merging
criterion. It scans both input relations and merges them into a new result relation. Tuples
with smaller values in the merge column appear before tuples with larger values. If tuples
with equal merge values appear both in the first and the second relation, the tuples from
the first relation are always generated first in the result. For the sequence construction we
use the iter column as merge criterion. Because of the precedence of the first argument, we
can actually omit the introduction of the ord column altogether, whose only purpose is to
enforce left-before-right union order.

Figure 4.1(d) shows the result of the MergedUnion operation. Here the iter columns
are the merge columns. The smallest iteration in both relations is 1 and all tuples of the
first argument $a in this iteration (see the first two rows in Figure 4.1(d)) appear before
the tuples of $b (see third tuple 〈1,1,10〉). The same applies for the following iterations
(here only iteration 2). After the mark_grp operation in Figure 4.1(e) we once again have
a result, which is sorted on iter and pos.

The new MergedUnion implementation allows us to avoid more explicit sorting op-
erations at the price of a sequential scan of both input relations. One scenario where the
MergedUnion implementation clearly pays off is the union of root nodes and content nodes
in the element construction. The mark operation, which creates new pre values (see line
(16) in Rule ELEM), requires the result of the union to be sorted. This is the case if we apply
MergedUnion.
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$a

iter pos item
1 1 100

1 2 200

2 1 100
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$b
iter pos item
1 1 10
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(a) Input relations

iter pos item
1 1 100
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2 1 100
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2 1 20

(b) Result of
AppendUnion

iter pos item
1 1 100

1 2 200

2 1 100
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(c) Result of
sequence con-
struction with
AppendUnion

iter pos item
1 1 100

1 2 200

1 1 10

2 1 100

2 2 200

2 1 20

(d) Result of
MergedUnion

iter pos item
1 1 100

1 2 200

1 3 10

2 1 100

2 2 200

2 3 20

(e) Result of
sequence con-
struction with
MergedUnion

Figure 4.1: Sequence construction using different physical Union implementations

4.1.2 Conclusion

Replacing the logical operators allowed us to maintain the order on iter and pos for all
iter|pos|item|kind representations. This leads to the minimization of the sort operations. A

.
∪AppendUnion
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×q1
ord
1

ggggg

×q2
ord
2

sortiter,ord,pos

ρpos1:〈ord,pos〉/iter,1

πiter,pos1:pos,item

(a) sequence construction
without order preservation

.
∪MergedUnion

WWWWW

q1

ggggg

q2

(b) sequence construction
with order preservation

second and even more important result is that this physical
order already encodes the pos information. We therefore can
completely omit the pos column as well as the necessary row
numbering operations. The few places where the positional
information is required (e.g., in the at clause of the for

expression) a row numbering creates the pos column from
scratch.

The order preservation additionally simplifies many map-
ping rules. E.g., the sequence construction with order preser-
vation consists of a single MergedUnion. The difference is
shown by the relational plans on the right.

In some situations the positional information is not nec-
essary at all. The XQuery keyword unordered is one exam-
ple for such a case. The subexpressions of aggregations (e.g.,
fn:count) also omit the pos column completely. In these sit-
uations our solution probably does not exploit the full strength
of MonetDB. A mixed approach, which chooses the better
physical representation at runtime, would be the best choice.
However making the backend database aware of these order
properties is beyond the scope of this thesis.

4.2 Loop-Lifted Path Steps

One way to evaluate path steps using the pre/size encoding, introduced in Section 2.1, are
region scans. These scans can be evaluated in every database. The XPath semantics how-
ever require the result of a path step to be sorted in document order and duplicate free.
Because fulfilling this additional requirements can become quite expensive, the staircase
join was introduced in [17]. Staircase join evaluates a path step for multiple node preorder
ranks (in the following called context nodes) in one sequential scan over the document.
It exploits the tree knowledge of the XML documents and returns its result without dupli-
cate nodes in document order. A more detailed description of staircase join will follow in
Section 4.2.1.

For the evaluation of location path steps in XPath the staircase join is a good fit. It
evaluates a path step starting from a set of context nodes within one scan over the docu-
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Figure 4.2: Intersection and inclusion of the ancestor and descendant paths of the con-
text node sequence (c, g, h, l).

ment. But in XQuery path steps have to be evaluated for multiple context node sequences
if they are nested inside for expressions. A loop-lifting of the staircase join therefore be-
comes necessary. Query Q14 illustrates a possible XQuery expression that embeds a child
location step:

for $v in (x1,x2, . . .,xn) return

e($v)/child::t
. (Q14)

iter pre
1 γ1,1
1 γ1,2...

...
1 γ1,s1...

...
n γn,1...

...
n γn,sn

The figure on the right shows the input relation of the child step, where the
expression e evaluates each binding of $v into a sequence of node preorder ranks
(γi,1, . . .,γi,si) of length si (1 6 i 6 n). Because the basic staircase join cannot
cope with iter values, alternatives have to be considered. The simplest idea would
be to fall back to the regions scan, and eliminate the duplicates within iterations
afterwards. Drawbacks are the size of the intermediate result, which may contain
up to the number of document nodes multiplied by the number of iterations, and
the costs of the duplicate elimination phase.

A second alternative is the repeated application of the basic staircase join that evalu-
ates an XPath location step for a single context node sequence (i.e., for one of the above
sequences (γi,1, . . .,γi,si)) during a single scan over a pre/size relation of an XML docu-
ment. While this alternative is probably cheaper than the first approach, it still requires a
sequential scan of the document for each iteration. For large documents and a large number
of iterations this becomes expensive as well. The third alternative, which we will bring up
in the sequel, is a new loop-lifted staircase join, which inherits many beneficial features of
the basic staircase join and evaluates XPath location steps for multiple iterations in a single
sequential scan over the document.

After describing the basic staircase join we will introduce loop-lifted variants of the
staircase join for the descendant and child axes. Section 4.2.4 will describe how early
kind and name tests are integrated in the staircase join and Section 4.2.5 will sketch the
loop-lifted staircase join implementations for the remaining axes.

4.2.1 Basic Staircase Join

The staircase join allows to evaluate XPath location steps along arbitrary axes. It requires
at most a single scan over document and context relation to produce a result that complies
to the XPath semantics: duplicate free and sorted in document order. To achieve this, both
input relations have to be sorted on the preorder ranks. In many cases this is no problem,
since most path expression start at the root node and every following step returns its result
nodes in document order. The staircase join relies on three techniques, namely pruning,
partitioning, and skipping, which will be summarized in the following paragraphs. For
more information please refer to [17].
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Figure 4.3: Pruning applied to the context node sequence (c, g, h, l) for the ancestor and
the descendant paths.

Pruning Some nodes in the context node set of an XPath location step will never contribute
to the result. These nodes lie in the result regions of some other context nodes. The result
regions of an ancestor and a descendant step starting from the context node sequence
(c, g, h, l) are illustrated by gray shadings in Figure 4.2(a) and Figure 4.2(b), respectively.
The saturation depicts the overlap of the regions. In Figure 4.2(a) node g and its results
is already included by the nodes h and l and in Figure 4.2(b) node g already spans the
complete subtree including the context nodes h and l. By pruning the included context
nodes from the context set, a large number of duplicate result values can be avoided. In
case of the ancestor axis in Figure 4.2(a) node g can be pruned and for the descendant
step in Figure 4.2(b) nodes h and l do not produce any new results. The result of pruning
can be seen in Figure 4.3, where the more general effects of pruning are visible as well:
For all axes except the ancestor and parent axes pruning removes all context nodes
that introduce duplicates. The reason is the tree structure that prohibits partial overlaps for
these axes. Only the ancestor and parent axes follow paths to the root and thus have
common result nodes. Pruning therefore reduces only the number of context nodes but a
partial overlap remains.

pre size
0 11
1 2
2 1
3 0
4 1
5 0
6 5
7 1
8 0
9 1
10 0
11 0

In the pre/size encoding, pruning can be evaluated efficiently by a simple com-
parison. In case of a descendant step, the pre, pre+size range of a context node
ctx is used to prune another context node p: ctx.pre < p.pre≤ ctx.pre+ ctx.size.
To prune ancestor context nodes, we simply switch the condition and ances-
tor node p gets pruned: p.pre < ctx.pre ≤ p.pre + p.size. The pre/size encod-
ing for the XML tree in Figure 4.2 and 4.3 is listed on the right. The equation
6 < 7≤ 6+5 = 11 depicts the relationship between node g and node h. A similar
condition also holds for node g and node l (pre value 11). A descendant step
thus prunes node h and l and an ancestor step node g.

Partitioning After pruning the context node sequence of the ancestor step, overlap and
thus duplicate result nodes might remain (see Figure 4.3(a)). Partitioning the document
along the preorder ranks of the context nodes into distinct intervals solves this problem (see
Figure 4.4). Within each interval only one single context node is active and determines the
result nodes. Each partition is scanned once in document order and the properties of the
currently active context node are used to collect matching tuples. The single sequential scan
ensures that no document node is returned more than once, thus avoiding all duplicates. It
also guarantees that the result is generated in document order since both input relations of
the staircase join are sorted in document order. All requirements of the XPath semantics
are therefore satisfied and no post-processing is necessary.

Figure 4.4 illustrates the partitions introduced by the remaining context nodes of the
ancestor step (c, h, and l). Node a is now generated by context node c only and appears
only once in the result. The same applies for node g, which is generated by node h. Node l
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Figure 4.5: Evaluation of XPath location steps with skipping starting from the context node
sequence (c, g, h, l). (Skipping is depicted by the dotted arrows and scanning by the normal
arrows.)

produces no new result within its partition p2.

Skipping While pruning and partitioning already fulfill the requirements posed by the
XPath semantics, more tree knowledge can be utilized to speed up the path step evaluation.
One observation is that parts of the XML tree do not contain any result nodes. Scanning
these possibly large parts is surely wasteful. Staircase join therefore stops the sequential
scan and skips to the next interesting node1. In case of the descendant axis, skipping is
applied directly after the last node in the subtree of the current context node. The jump
target is the next context node. For the ancestor axis it is the next possible ancestor node
in the document, thus skipping any preceding nodes. For a child path step, we know that
the first child of a context node c (if it is not a leaf) has the pre value v1.pre = c.pre+1 and
the next children are siblings of this child (vi+1.pre = vi.pre + vi.size + 1). As long as we
do not reach the end of the subtree region (c.pre+c.size+1) we thus can skip either to the
next sibling omitting the complete subtree or to the next context node, which is then a node
in the subtree.

Figure 4.5 demonstrates the skipping for the ancestor, descendant, and child path
steps, whose context node sequence is the pruned node sequence (c, g, h, l). The ancestor
location step starts scanning ( ¿¿) from the beginning of the document until it reaches node
c. After node c, node h becomes active. The subtree of node c is skipped (c.pre+c.size+1),
because it contains only preceding nodes. The subtree of the next node (e) also contains
preceding nodes only and is skipped as well. Now the scanning condition is fulfilled again
and it proceeds with nodes g and h, where again skipping starts. The descendant path
step in Figure 4.5(b) directly jumps to the first context node c, evaluates all its descendants
(c.pre + c.size), and jumps to the next context node (g) where again all descendants are
scanned. The evaluation of the child axis proceeds similarly. It also directly skips to node
c and keeps skipping to the next children (here only node d). As soon as all children vi are
collected (vi.pre > c.pre + c.size) it jumps to the next context node. In Figure 4.5(c) the
evaluation of node g is paused as long as the nested context node h collects its children and
then proceeded.

1This is perfectly supported in MonetDB, where positional jumps correspond to an array lookup.
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Basic Staircase Join Algorithms The staircase join implementations combine the three
techniques pruning, partitioning, and skipping into a single sequential scan over the pre-
sorted relations. Here, we shortly repeat the implementations for the descendant, ances-
tor, and child axes to allow a later comparison with their loop-lifted variants.

scj desc (doc : TABLE(pre,size),ctx : TABLE(pre))
BEGIN

ASSERT (doc.pre IS DENSE AND ASCENDING); /* for positional lookup */
ASSERT (ctx IS SORTED ON (pre)); /* document order */
result ← NEW TABLE(pre);
nxtCtx ← 0;
lstCtx ← SIZE(ctx);
cur node ← 0;
WHILE (nxtCtx ≤ lstCtx) DO /* iterate over all context nodes */

IF (cur node ≤ ctx[nxtCtx].pre) THEN /* pruning */
cur node ← ctx[nxtCtx].pre; /* skipping */
lst node ← cur node + doc[cur node].size;
cur node ← cur node + 1; /* omit self node */
WHILE (cur node ≤ lst node) DO /* collect all descendant nodes */

APPEND 〈cur node〉 TO result;
cur node ← cur node + 1;

nxtCtx ← nxtCtx + 1;
RETURN result;

END

Figure 4.6: Staircase join: descendant axis.

Figure 4.6 shows the implementation of the descendant location step. Inside the
outer loop, which iterates over the context node sequence, a conditional prunes the context
nodes that are in the subtree of the outer context node. The pruned context nodes are
discarded because the previous active context node already consumed the matching part
of the document. Skipping is applied by jumping directly to the next context node and
the inner loop partitions the document by iterating over all the descendant nodes v of the
currently active context node c in the document (c.pre < v.pre <= c.pre+ c.size).

scj anc (doc : TABLE(pre,size),ctx : TABLE(pre))
BEGIN

ASSERT (doc.pre IS DENSE AND ASCENDING); /* for positional lookup */
ASSERT (ctx IS SORTED ON (pre)); /* document order */
result ← NEW TABLE(pre);
nxtCtx ← 0;
lstCtx ← SIZE(ctx);
cur node ← 0;
WHILE (nxtCtx ≤ lstCtx) DO /* partitioning */

WHILE (cur node < ctx[nxtCtx].pre) DO /* iterate over document nodes */
lst node ← cur node + doc[cur node].size;
IF (ctx[nxtCtx].pre ≤ lst node) THEN /* check ancestor property */

APPEND 〈cur node〉 TO result;
cur node ← cur node + 1;

ELSE

cur node ← lst node + 1; /* skip preceding nodes */
nxtCtx ← nxtCtx + 1;

RETURN result;
END

Figure 4.7: Staircase join: ancestor axis.

The implementation of the ancestor axis in Figure 4.7 also consists of two nested
loops. Similar to the descendant step, the nesting does not introduce multiple scans
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but a merge-like sweep over the relations. In comparison to the descendant axis, the
implementation of an ancestor step looks up the size information of the document nodes
instead of the sizes of the context nodes. Another difference is the missing pruning in
the implementation of the ancestor location step. To prune context nodes for this axis a
reverse scan would be required, which is more expensive than splitting up the document
into a larger number of partitions. The evaluation of the ancestor step in Figure 4.5(a)
however still matches the algorithm (node g is active during skipping from node d to g).

scj child (doc : TABLE(pre,size), ctx : TABLE(pre))
BEGIN */

ASSERT (doc.pre IS DENSE AND ASCENDING); /* for positional lookup */
ASSERT (ctx IS SORTED ON (pre)); /* document order */
result ← NEW TABLE(pre);
nxtCtx ← 0;
lstCtx ← SIZE(ctx);
active ← NEW STACK(eos,nxtChld); /* stack of active context nodes */
WHILE (nxtCtx ≤ lstCtx) DO /* iterate over all context nodes */

IF (active IS EMPTY) THEN /* stack is empty */
nxtCtx ← push ctx(nxtCtx); /* push next context on stack */

ELIF (TOP(active).eos ≥ ctx[nxtCtx].pre) THEN/* next context is descendant of current context */
inner loop child(ctx[nxtCtx].pre); /* process children of current context until next context */
nxtCtx ← push ctx(nxtCtx); /* push next context on stack */

ELSE /* next context is not descendant of current context */
inner loop child(TOP(active).eos); /* process all children of current context */
POP(active);

/* no context node left */
WHILE (active IS NOT EMPTY) DO /* finish all remaining active context nodes */
inner loop child(TOP(active).eos); /* process all remaining children of current context */
POP(active);

RETURN result; /* return result */
END

push ctx (nxtCtx)
BEGIN

curPre ← ctx[nxtCtx].pre;
eor ← curPre+doc[curPre].size; /* end of result region */
nxtChld ← curPre+1; /* first child of current context */
WHILE (ctx[nxtCtx].pre = curPre) DO /* prune all duplicate context nodes */

nxtCtx ← nxtCtx+1;
PUSH 〈eor,nxtChld〉 ON active; /* push current context on stack */
RETURN nxtCtx; /* return next context */

END

inner loop child (eor)
BEGIN

nxtChld ← TOP(active).nxtChld; /* next child of current context */
WHILE (nxtChld ≤ eor) DO /* iterate over all children in current region */

APPEND 〈nxtChld〉 TO result;
nxtChld ← nxtChld +doc[nxtChld].size+1; /* skip directly to next child */

IF (nxtChld ≤ TOP(active).eor) DO /* current context not yet finished */
TOP(active).nxtChld ← nxtChld; /* recall where to proceed */

RETURN;
END

Figure 4.8: Staircase join: child axis.

The staircase join algorithm of the child location step in Figure 4.8 has to cope with
a special case. To return the result in document order it has to pause active context nodes
during the evaluation of nested context nodes. A stack called active is used to store the
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active nodes. All items on the stack, except the top item, which is the currently active
node, represent paused context nodes. Like the other algorithms, the outer loop of the
child step implementation iterates over the context nodes. The first branch of the con-
ditional calls push ctx. The helper function push ctx only pushes the current context
node to the stack, thus making it active, and removes duplicates (identical nodes). If there
is already an active node the implementation calls inner loop child and either retrieves
all result nodes (ELSE clause) or produces results until the next nested context node is
reached and then pushes the nested context nodes on the stack (ELIF clause). The function
inner loop child jumps from child to child until it reaches its given end of the region.
If the end of the region is caused by the next context node the pre value of the next child
is stored on the stack to remember where to proceed. After iterating over the complete
context set an additional loop ensures that the paused context nodes are completed as well.

4.2.2 Loop-Lifted Child Step

The loop-lifted variants try to maintain as much as possible from their basic staircase join
counterparts. One prerequisite is again the document order of the context node sequence.
The main difference to the basic versions is that we need to retain duplicate nodes if they
belong to different iterations.

The child axis requires only small modifications to lift the implementation, because
overlap and the corresponding duplicate result nodes is restricted to the node identity. Fig-
ure 4.9 shows the processing of the child step, which is almost identical to the basic ver-
sion. In the loop-lifted variant a result tuple is formed by the combination of the resulting
node and the iter value of the context node. Instead of pruning the duplicate context nodes
(in push ctx), we now record the offset of the first and the last tuple (fstIter and lstIter).
We enrich the active stack by two new fields that store the respective offsets. These offsets
are used again during the generation of result nodes. A nested loop in inner loop child

iterates over the context relation from fstIter to lstIter and adds the current result node to-
gether with all iterations. Everything else stays the same in the loop-lifted variant. The
concepts of the basic staircase join like skipping and partitioning are still in use.

In the following example we use the algorithm in Figure 4.9 to evaluate a child step
on the XML tree shown in Figure 4.10(a). The input are two item sequences, where the first
context node sequence consists of the nodes c and h and the second one contains the node
sequence (g, h, l). The ctx relation of the loop-lifted child step is listed in Figure 4.10(b).
The evaluation starts with the context node c (pre value 2). In push ctx fstIter and lstIter
both point to the the first row of ctx. The generated result for the child node d thus consists
of the tuple 〈1,3〉 (see also Figure 4.10(c)). After skipping, the evaluation proceeds at node
g (6) and produces the result tuple 〈2,7〉 (node h in iteration 2). The nested node h appears
in two iterations and the offsets of fstIter and lstIter therefore point to the third and fourth
row of ctx, respectively. The inner loop in inner loop child iterates over these rows
and the tuples 〈1,8〉 and 〈2,8〉 are appended to the result (node i in both iterations). Then
node g becomes active again and produces result for the remaining two children (〈2,9〉 and
〈2,10〉) skipping once more the subtree of node j.

4.2.3 Loop-Lifted Descendant Step

Loop-lifting the descendant axis modifies the basic staircase join algorithm much more
than the lifting of the child location step. In comparison to the basic variant, it has to cope
with nested context nodes belonging to different iterations. The difficulty becomes clearer
if we apply a loop-lifted descendant step on the same context and document relations as
the loop-lifted child step (see Figure 4.10(a) and 4.10(b)). Node g is active in iteration
2 and node h is active in iteration 1. Since we cannot prune node h anymore, both nodes
have to be active at the same time. Our solution is to borrow the stack idea from the
implementation of the child axis. The stack (active) then holds the active iter values as
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ll scj child (doc : TABLE(pre,size), ctx : TABLE(iter,pre))
BEGIN */

ASSERT (doc.pre IS DENSE AND ASCENDING); /* for positional lookup */
ASSERT (ctx IS SORTED ON (pre)); /* document order */
result ← NEW TABLE(iter,pre);
nxtCtx ← 0;
lstCtx ← SIZE(ctx);
active ← NEW STACK(eor,nxtChld, fstIter, lstIter); /* stack of active context nodes */
WHILE (nxtCtx ≤ lstCtx) DO /* iterate over all context nodes */

IF (active IS EMPTY) THEN /* stack is empty */
nxtCtx ← push ctx(nxtCtx); /* push next context on stack */

ELIF (TOP(active).eor ≥ ctx[nxtCtx].pre) THEN /* next context is descendant of current context */
inner loop child(ctx[nxtCtx].pre); /* process children of current context until next context */
nxtCtx ← push ctx(nxtCtx); /* push next context on stack */

ELSE /* next context is not descendant of current context */
inner loop child(TOP(active).eor); /* process all children of current context */
POP(active);

/* no context node left */
WHILE (active IS NOT EMPTY) DO /* finish all remaining active context nodes */
inner loop child(TOP(active).eor); /* process all remaining children of current context */
POP(active);

RETURN result; /* return result */
END

push ctx (nxtCtx)
BEGIN

curPre ← ctx[nxtCtx].pre;
eor ← curPre+doc[curPre].size; /* end of result region */
nxtChld ← curPre+1; /* first child of current context */
fstIter ← nxtCtx; /* first appearance of current context node */
WHILE (ctx[nxtCtx].pre = curPre) DO /* prune all duplicate context nodes */

nxtCtx ← nxtCtx+1;
lstIter ← nxtCtx−1; /* last appearance of current context node */
PUSH 〈eor,nxtChld, fstIter, lstIter〉 ON active; /* push current context on stack */
RETURN nxtCtx; /* return next context */

END

inner loop child (eor)
BEGIN

nxtChld ← TOP(active).nxtChld; /* next child of current context */
fstIter ← TOP(active).fstIter;
lstIter ← TOP(active).lstIter;
WHILE (nxtChld ≤ eor) DO /* iterate over all children in current region */

FOR i FROM fstIter TO lstIter DO /* iterate over all iters of current context */
APPEND 〈ctx[i].iter,nxtChld〉 TO result; /* append (iter,pre) to result */

nxtChld ← nxtChld +doc[nxtChld].size+1; /* skip directly to next child */
IF (nxtChld ≤ TOP(active).eor) DO /* current context not yet finished */

TOP(active).nxtChld ← nxtChld; /* recall where to proceed */
RETURN;

END

Figure 4.9: Loop-lifted staircase join: child axis.

well as the last pre value where they are active. In comparison to the child step, not only
the top item is active but all items on the stack are active at the same time.

The algorithm in Figure 4.11 still iterates over the context node sequence. In com-
parison to the basic staircase join version, it does not evaluate a complete subtree before
consuming the next context node. Instead it consumes the next context node as soon the
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Figure 4.10: Evaluation of different loop-lifted path steps starting from the ctx relation in
4.10(b). The context nodes of the first sequence (c,h) are marked with × and the nodes of
the second sequence (g,h, l) are depicted with ◦.

pre value stored in the variable cur node, that iterates over the document, is aligned with
the context node. The nested conditional prunes all context nodes whose iterations are
already active and adds the context nodes and its iteration value to the stack otherwise.
So all duplicates within iterations are avoided. In the loop-lifted variant skipping is only
possible if no context node is active (meaning the stack is empty). The first ELIF clause
implements this skipping. The second ELIF clause as well as the ELSE clause are similar to
the child step evaluation again. The ELIF clause calls the function finish region that
itself calls inner loop desc. The function inner loop desc scans the document doc in
a given range and produces for each document node result tuples for all active iterations.
Afterwards the variable cur node is set to the last processed document node. The function
finish region additionally removes all items from the stack, which reached the end of
their region. Clearing the stack, after the last context node is consumed, completes the
loop-lifted descendant step.

The following example evaluates a loop-lifted descendant step on the document in
Figure 4.10(a) and the context relation in Figure 4.10(b). The processing starts with the
context node c (2) whose iter value (1) and the last node of the region (3) are pushed
on the active stack. In the second iteration the third branch of the condition is chosen
(3 < 6) where the result tuple 〈1,3〉 is added to the result. Additionally the condition in
finish region becomes true and the only stack item is removed. In the third iteration
the first condition is still false (3 6= 6). Since the stack is empty, the variable cur node is
set to 6. In the next iteration the first condition matches and the last descendant of node
g as well as the iter value (〈11,2〉) are pushed on the stack. In the following iteration the
last branch of the conditional is chosen for the first time. The descendants of node g are
evaluated until the next context node is reached. Here only node h in iteration 2 is added to
the result (〈2,7〉). The next iteration pushes a second item on the stack: the last descendant
of node h and iter value 1. Then the first condition matches again. But node h in the
second iteration is discarded because iteration 2 is already active. The evaluation proceeds
and finishes the scan of the top stack item, where the document nodes in the range are
produced for both active iterations (〈1,8〉, 〈2,8〉). After removing the top of the stack only
the item representing node g remains active. In the following the tuples 〈2,9〉 and 〈2,10〉
are generated and node l is ignored. The complete context node relation is now consumed
and the additional loop finishes the remaining active context nodes — here popping the last
item completes the evaluation of the descendant step.
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ll scj desc (doc : TABLE(pre,size),ctx : TABLE(iter,pre))
BEGIN

ASSERT (doc.pre IS DENSE AND ASCENDING); /* for positional lookup */
ASSERT (ctx IS SORTED ON (pre)); /* document order */
result ← NEW TABLE(iter,pre);
nxtCtx ← 0;
lstCtx ← SIZE(ctx);
nxt node ← ctx[nxtCtx].pre;
cur node ← nxt node; /* start scanning at first context node */
active ← NEW STACK(eor, iter); /* stack of active iterations */
WHILE (nxtCtx ≤ lstCtx) DO /* iterate over all context nodes */

nxt node ← ctx[nxtCtx].pre;
IF (nxt node = cur node) THEN /* context and document relation are aligned */

IF (ctx[nxtCtx].iter NOT ON active) THEN /* pruning of context nodes */
eor ← cur node+doc[cur node].size;
PUSH 〈eor,ctx[nxtCtx].iter〉 ON active; /* add context node with region and new iteration */

nxtCtx ← nxtCtx + 1;
ELIF (active IS EMPTY) THEN /* skip to next context node */

cur node ← nxt node;
ELIF (TOP(active).eor < nxt node) THEN /* next node is no descendant of the active node */

cur node ← finish region(cur node); /* finish active region */
ELSE /* next node is descendant of the active node */

inner loop desc(cur node,nxt node); /* find all results til nxt node */
cur node ← nxt node;

WHILE (active IS NOT EMPTY) DO /* process all remaining active regions */
cur node ← finish region(cur node);

RETURN result;
END

finish region (cur node)
BEGIN

eor ← TOP(active).eor;
inner loop desc(cur node,eor); /* find all results in the current region */
cur node ← eor;
WHILE (TOP(active).eor = eor) DO /* remove all iterations whose regions are processed */

POP(active);
RETURN cur node;

END

inner loop desc (first, last)
BEGIN

FOR pre FROM first + 1 TO last DO /* skip self node; for every doc node in the range */
FOREACH DISTINCT 〈 , iter〉 ON active DO /* and for every active iteration */

APPEND 〈iter,pre〉 TO result; /* add a result tuple */
END

Figure 4.11: Loop-lifted staircase join: descendant axis.

4.2.4 Early Name and Kind Tests

Until now, we completely ignored any name and kind test and focused on the evaluation
of the axis specifier. While this specifier may be already enough to answer certain queries,
most XPath location steps use an additional name or kind test. These tests may retain all
tuples generated by the axis specifier unchanged or may be highly selective. In the latter
case, applying the name or kind test as a post-processing step seems to waste resources. An
early name or kind test therefore helps to avoid extra evaluation and space consumption for
certain queries. (Loop-lifted) staircase join behaves like any other relational join. In our
query plans we can safely push selections (e.g., name/kind tests) down through the staircase
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join, to reduce the amount of tuples to process as early as possible. Duplicate result nodes
in different iterations, whose name or kind has to be checked separately after the result
generation, make another argument for early tests.

Because the staircase join requires the pre/size document relation for the skipping, our
implementation uses a third input relation that keeps candidate nodes. The candidate node
list stores the pre value of any node whose kind or name satisfies the test. It is sorted in
document order like the other input relations. The candidate list is scanned together with the
document in a merge-like synchronized sweep. As soon as a node satisfies the given axis
specifier, a matching tuple in the candidate list confirms the match. If the candidate list does
not contain the pre value the apparent result node is discarded. To avoid scanning (possibly
large) parts of the candidate list, while these parts are just skipped in the document, we
perform a binary search on the remaining nodes of the candidate list.

scj desc (doc : TABLE(pre,size),ctx : TABLE(pre),cand : TABLE(pre))
BEGIN

ASSERT (doc.pre IS DENSE AND ASCENDING); /* for positional lookup */
ASSERT (ctx IS SORTED ON (pre)); /* document order */
ASSERT (cand IS SORTED ON (pre)); /* document order */
result ← NEW TABLE(pre);
nxtCtx ← 0;
lstCtx ← SIZE(ctx);
nxtCand ← 0;
lstCand ← SIZE(cand);
cur node ← 0;
WHILE (nxtCtx ≤ lstCtx AND nxtCand ≤ lstCand) DO /* iterate over all context nodes */

IF (cur node ≤ ctx[nxtCtx].pre) THEN /* pruning */
cur node ← ctx[nxtCtx].pre; /* skipping */
nxtCand ← FIRST c≥ nxtCand /* binary search */

WITH cand[c].pre ≥ cur node;
lst node ← cur node + doc[cur node].size;
cur node ← cur node + 1; /* omit self node */
WHILE (cur node ≤ lst node AND /* collect all descendant nodes */

nxtCand ≤ lstCand) DO

IF (cand[nxtCand].pre < cur node) THEN /* align candidate list */
nxtCand ← nxtCand + 1;

ELIF (cand[nxtCand].pre = cur node) THEN /* return matching tuple and proceed */
APPEND 〈cur node〉 TO result;
cur node ← cur node + 1;

ELSE /* skip non matching node */
cur node ← cur node + 1;

nxtCtx ← nxtCtx + 1;
RETURN result;

END

Figure 4.12: Staircase join: descendant axis with candidate list.

Figure 4.12 shows the basic staircase join of a descendant location step extended
with candidate list processing. The skipping in the candidate list is imitated by a binary
search. The inner loop of the staircase join furthermore aligns the current candidate node
and confirms or prunes the descendant nodes. Similar extensions apply for all loop-lifted
staircase join implementations.

The following example evaluates the XPath location step descendant::text() start-
ing from the context sequence (c,g,h, l) (see also Figure 4.13(b)). The nodes in Fig-
ure 4.13(a) marked with × as well as the relation in Figure 4.13(c) illustrate the candidate
nodes. The evaluation starts at node c and the first candidate node is node d (3). Inside
the inner loop variable cur node matches the candidate node d and becomes the first result
tuple (depicted by the first row in Figure 4.13(d)). The next context node g becomes active
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2
6
7
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(b) Context node re-
lation ctx

pre
3
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8
10

(c) Candidate node
relation cand

pre
3
8
10

(d) Result of
descendant::text()

path step

Figure 4.13: Evaluation of the XPath location step descendant::text() starting from
the ctx relation in 4.13(b). The context nodes are marked with ◦ and the candidate nodes
are depicted with ×.

and the binary search in the candidate relation skips node f and returns node i as new can-
didate (8). In the inner loop node h does not match the candidate node i and gets discarded.
The next node matches i and is appended to the result. In the following iteration candidate
node i has a smaller pre value than the current node. Therefore the next candidate node (k)
becomes active and prunes node j in the next iteration. After adding node k to the result
the current node is larger than the candidate node again and we increase variable nxtCand.
Because all candidate nodes are now consumed, the evaluation stops and the evaluation of
the descendant::text() step is complete.

The candidate list of the previous example contained all preorder ranks of text nodes.
To retrieve such a kind list one kind in the kind column of the pre/size table can be selected.
Because these selections would occur for every path step at runtime, we generate an index
for every kind already during document shredding. These indices can be used as candidate
lists for the kind tests. To support name tests the element index has a second column, which
additionally stores the reference id from column ref of the pre/size document table. The
generation of a candidate list for a name test then maps to the selection of a given reference
in the element node index. For names with wildcards multiple references may match. An
order preserving join then does the job.

4.2.5 Loop-Lifted Path Steps for Other Axes

In the previous section we only described the loop-lifting of the child and descendant

axes. These are also the only axes used in the XMark benchmark, which we will use in
the experiments in following section. But loop-lifting is possible for the other axes as
well. In the following paragraphs we shortly sketch the ideas for the implementation of the
remaining XPath axes and conclude this section with a short discussion of the drawbacks
of the applied techniques.
self The self axis requires no document relation for the evaluation of the axis specifier, as
pruning duplicate nodes within iterations works on the pre value alone and the name and
kind tests can be processed by a merge-like scan over the context and candidate relation.
attribute Because we do not include the attributes in the pre/size relation but in a sepa-
rate attribute relation, an attribute path step consists only of a join between the context
sequence and the attribute relation on the foreign key column pre.
descendant-or-self The implementation of the descendant-or-self axis is almost iden-
tical to the descendant axis. The only modifications are minor shifts of the ranges to
include the self nodes.
following-sibling An implementation for the following-sibling location step is similar
to the one of the child axis. It also uses a stack of context nodes, where only the top item
represents the active node c. In comparison to the child step, the first node is not the next
node in the subtree, but the next sibling (v1.pre = c.pre + c.size + 1 ∧ v1.level ≥ c.level)
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and the end of a region has to be determined by the level (vi.level < c.level). The evaluation
of the result nodes, however, applies the same skipping as a child step. A distinct list of
active iterations within each stack item furthermore ensures the duplicate elimination.

following For the basic staircase join the context nodes sequence of the following step
can be pruned to a single node. In the loop-lifted variant each iteration can be pruned to
one context node. During the sequential scan over the document each context node either
can be pruned because its iteration is already active or the list of active iter values (similar
to the active stack of the descendant step) is extended by the new value. Each matching
document node is then emitted for all values in the active iter list.

ancestor and ancestor-or-self The two axes ancestor and ancestor-or-self can be
implemented by combining the ideas of the child and the descendant steps. While the
latter two keep a stack for active context nodes, the ancestor axis keeps a stack with
the currently active path to the root. It uses the same skipping as the basic staircase join
implementation and emits the active path together with the iter value as soon as a context
node is reached. To maintain document order every tuple is added into a list according to
its level. Duplicate result nodes are avoided by using an additional list of highest pre values
per iteration to discard nodes on the currently active path stack. The multiple result lists
(one per level), which are sorted on document order, are merged afterwards to return the
overall result in document order as well.

parent The implementation of the parent axis uses the same ideas as the ancestor step,
but adds only the parent node on the active path stack to the result lists.

preceding-sibling For the preceding-sibling location step the ancestor step imple-
mentation also plays an important role. It uses an additional list of preceding-sibling nodes
for each item on the active path stack to collect the possible result nodes. A second list of
active context nodes is then used to generate the results for all active iterations in document
order.

preceding The context nodes of the preceding axis can be pruned to one context node
per iteration similar to the following axis. For these remaining context nodes we can
retrieve the ancestor nodes that can be used as second candidate list. In comparison to
the candidate list for name or kind tests, this list is used to prune only the ancestor nodes
during the scan over the document.

The implementations of the axes can be grouped into three categories. The first group
requires no special staircase join operator and retrieves its result with ordinary database
operations. The two axes self and attribute, which form that group do not rely on the
tree structure of the XML document and therefore have no use for concepts like skipping.
The second category consists of the forward axes and the third is put together of the reverse
axes. Both groups make use of the staircase join concepts pruning, partitioning, and skip-
ping. For the reverse axes, however, processing requires more internal state keeping and
intermediate results (e.g., level lists to support document order). But the main cost factor
in comparison to the iterative application of the basic staircase join is the sorting overhead
required to match the physical order.2 These are the sorting costs for the creation of the
input in item order and the output in iter|item order. The next optimization in Section 4.3
will describe how this sorting overhead can be avoided in a list of path steps. Because
most queries start from a single context node, the item sorting for the first path step may
be cheap. What remains is the need to produce the output of the last path step sorted on
iter and then on item. One solution to avoid the sorting is to use a separate result list for
each iteration in the last path step. Because result nodes are generated in document order,
the lists are also sorted in document order. The concatenation then returns the result sorted
first on iter and secondly on item.

2The performance differences for avoiding multiple scans of the document relation are ignored here.
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4.3 Avoiding the iter|pos|item|kind Interface

To support heterogeneous sequences our item encoding copes with polymorphic types. In
most cases, however, the iter|pos|item|kind representation encodes sequences with homo-
morphic types. Very often the values of these sequences are added to the value relations
only to be looked up again by the following operation. As we could store such values
directly in a single column, the indirection is certainly wasteful.

In our compilation scheme we addressed this problem by introducing additional in-
terfaces. These new interfaces allow to return intermediate results using representations
other than the the iter|pos|item|kind relation. The first different representation was already
sketched in the motivating example. The value interface avoids adding values to their value
relations if they are immediately required by the next construct. It can be used whenever the
returning intermediate result has a monomorphic static type. The decision whether the in-
termediate result returns its values using the value interface or the normal iter|pos|item|kind
representation is solved at compile time and the calling construct adapts its MIL code ac-
cordingly.

In Query Q15 the value interface is used for both arguments of the contains function:

for $a in doc("fairy_tailes.xml")//story return

where contains ("gold", string(data($a/text())))
return $a/@name

. (Q15)

As contains directly works on the strings, both intermediate results return an iter|pos|itemstring

relation. The more story nodes the path step in Query Q15 returns the more we benefit
from the modified compilation, which avoids the insertion and its duplicate elimination.

The second interface uses an iter|item|kind representation and is used only between
directly following path steps. While it does not seem to be different from the normal in-
terface, it exploits the information obtained in the previous two sections (4.1 and 4.2). The
result of the first path step does not have to be sorted on iter and item, since the second path
step wants its input sorted in document order item only. We thus omit two sort operations
without any drawbacks.

If we reconstruct XML document Doc in XQuery (see Query Q16) we have to keep the
XQuery semantics in mind.

<a><b>c</b><d><e/><f/></d><g a="42"/></a> (Q16)

These require each node in the element body to be a subtree copy of the element content.
In Query Q15 we create 13 element nodes, 3 text nodes, and 3 attribute nodes to recursively
built a result with 8 nodes. The evaluation cost and the storage overhead explode with a
growing number of nodes and increasing nesting depth.

The node interface speeds up the nested node construction. It makes use of the fact,
that we do not need the constructed element content after the subtree copy anymore, if
it is not referenced elsewhere. In such a case, the mapping can act similar to the value
interface and store the constructed nodes in an intermediate result instead of the transient
document node container. These nodes then can be used as subtree copies and require no
explicit copying. A recursive XML tree construction then creates each node exactly once
and additionally avoids the path steps to retrieve the subtree nodes, since these nodes are
already in the intermediate result.

In addition to the changes in the node constructors, which cope with both, the normal
and the node interface, we added a separate mapping for the sequence constructor, which
combines multiple subtrees and attributes. The relations this node interface uses, match the
pre and attr relations of the transient document node container extended with the iteration
information. All other values like, e.g., element names or text values are already stored in
the transient document node container ∆, because they are not changed anymore.
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iter pre size level ref kind frag cont
1 1@0 0 0 0@0 elem 1 ∆
1 2@0 0 0 1@0 elem 1 ∆

(a) Input sequence using the node interface
(nodes e and f)

iter pre size level ref kind frag cont
1 1@0 2 0 2@0 elem 1 ∆
1 2@0 0 1 0@0 elem 1 ∆
1 3@0 0 1 1@0 elem 1 ∆

(b) Result of element construction using the
node interface (node d)

Figure 4.14: Content and result of element construction using the node interface

Figure 4.14(a) shows the input relation of the element construction of node d from
Query Q16 and Figure 4.14(b) its returning representation. After compiling the content
expression the element construction skips the code generation of the content nodes in
Rule ELEM. Instead only the level of all content nodes is increased by one. The MIL
code creation for the root nodes remains the same. If the result expression is compiled us-
ing the node interface like, e.g., node d the node insertion phase of the ELEM rule has to be
modified. The main difference is that the new tree representation is not added to the tran-
sient document node container but returned as result relation. Furthermore, both pre and
frag values start at 1 and the result relation nodesnew also retains the column iter. For node
d the intermediate result is displayed in Figure 4.14(b). Note that the element names are
already stored in the transient document node container (see line (11) in Rule ELEM). For
the attributes a similar modification is performed. Two attr relations that are both extended
with the column iter are used as intermediate storage. The reason for the two relations is
the distinction between root attributes and content attributes.

4.4 Join Recognition

At the beginning of this section we mentioned the performance problems of the compilation
scheme without join recognition. The reason is the naive compilation of nested XQuery for
expressions, which lead to the computation of Cartesian products. The query

s0







for $u in (30, 20)

su







for $v in (1, 2, 3)

su·v

{
where $u eq $v * 10

return "match"

(Q17)

is a simplified but representative instance of such a nested for expression. The compila-
tion rules given in Section 3 require both argument expressions of the eq operator $u and
$v * 10 to be represented with respect to scope su·v (see Figure 4.15(a)). Consequently,
the intermediate result $v * 10 is compiled in dependence of scope su and is thus explic-
itly represented for each binding of $u. For the resulting expression "match", however,
only the loop relation generated from the matching iterations is important. The observation
that both arguments of the equality expression are independent of each other enables us
to avoid the nested evaluation. Instead we can split up the compilation of the comparison
input arguments:

for $u in (30, 20)

return $u
for $v in (1, 2, 3)

return $v * 10
.

The application of a relational join between the two independent item sequences then pro-
vides the same loop relation for the result expression "match" (see Figure 4.15(b)) as the
loop-lifted version that builds a Cartesian product.

In the following we propose a join pattern that detects a large subset of the XQuery joins,
including those in the XMark benchmark set [25] or in Appendix H.1 (“Joins”) of the W3C
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oniter1=iter2

???

iter1 pos1 item1
1 1 30
2 1 30
3 1 30
4 1 20
5 1 20
6 1 20

︸ ︷︷ ︸

$u in su·v

ÄÄÄ

iter2 pos2 item2
1 1 10
2 1 20
3 1 30
4 1 10
5 1 20
6 1 30

︸ ︷︷ ︸

$v * 10 in su·v

???

eq item:〈item1,item2〉

σitem

πiter:iter1≡
iter
3
5

×
²²

// pos item
1 "match"

︸ ︷︷ ︸

ereturn

≡
iter pos item
3 1 "match"
5 1 "match"

(a) Relational evaluation of XQuery example Q17. Evaluation
of predicate eq requires both operands ($u and $v * 10) to be
represented loop-lifted with respect to the inner for loop. iter
values that satisfy the eq predicate form the loop relation for
the loop-lifted evaluation of the return clause.

onitem1 eq item2

?????

iter1 pos1 item1
1 1 30
2 1 20

︸ ︷︷ ︸

$u in su

¨̈
¨̈
¨̈iter2 pos2 item2

1 1 10
2 1 20
3 1 30

︸ ︷︷ ︸

$v * 10 in sv

//
//
/

ρiter:〈iter1,iter2〉,1

πiter≡
iter
1
2

×
²²

// pos item
1 "match"

︸ ︷︷ ︸

ereturn

≡. . .

(b) Join plan for the evaluation of exam-
ple Q17. Both operands are computed in-
dependently. The join result ultimately
serves as relation loop to compile the
return part.

Figure 4.15: Simplified evaluation of Query Q17 without (a) and with join recognition (b)
applied.

XQuery Working Draft [5]. After checking the conditions necessary for an independent
evaluation we describe the mapping to algebraic join plans in Section 4.4.2. An inference
rule similar to the ones in Chapter 3 formalizes our translation. Because most XQuery joins
compare sequences of items instead of single values, we describe an extended join pattern
and the respective adoption of the translation in Section 4.4.3.

4.4.1 Join Pattern

The starting point of the join detection is a normalized XQuery Core expression. It is the
basis to recognize the following pattern at arbitrary nesting depth:

for $v in ein

return if (p(e1,e2)) then ereturn else () .
(P1)

This subexpression qualifies for an XQuery join, if

(i) variable $v does not appear free in e1
3,

(ii) variables occurring free in e2 and ein are bound in any enclosing scope, except for
the scope that directly encloses P1, and

(iii) predicate p is supported by the theta-join implementation of the relational back-
end (i.e., typically, p will be eq, lt, . . . , or one of the XQuery general comparison
operators with existential semantics like =, <; see Section 4.4.3).

The normalized XQuery Core expression of Query Q17 looks like Query Q18

s0







for $u in (30, 20)

su







for $v in (1, 2, 3)

su·v

{
return if ($u eq $v * 10)

then "match" else ()

(Q18)

3The roles of e1, e2 may be arbitrarily swapped.
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•
•

•
•

s0 = si = sc

su = so

su·v

(30, 20)

(1, 2, 3)

$u $v + 10

(a) Loop-lifted compilation without
join recognition

•
•

•
•

s0 = si = sc

su = so sv

(30, 20) (1, 2, 3)

$u $v + 10

(b) Compilation with join recogni-
tion applied

Figure 4.16: Tree of scopes for Query Q18, which shows the nesting of the scopes for the
loop-lifted translation (a) and for the compilation with join recognition applied (b). For the
latter case the arguments of the operator eq are shifted into higher, less expanded scopes.

whose where clause has been replaced by an if expression. The join pattern

for $v in (1, 2, 3) return if ($u eq $v * 10) then "match" else ()

in Query Q18 is clearly visible. The item sequence (1, 2, 3) matches ein, eq is the join
predicate, $u is e1, $v * 10 is e2, and "match" corresponds to ereturn.

The eq operator in Query Q18 can be evaluated in MonetDB and thus satisfies the
XQuery join condition (iii). The other two conditions require a check of the variable oc-
currences in the three XQuery expressions e1, e2, and ein. In Query Q18 the variable $v
appears free in e2 only and thus matches the first condition. The only variable form the
directly enclosing scope $u appears free in e1 only, which fulfills the last remaining re-
quirement (condition (ii)) for a valid join pattern.

4.4.2 Join Translation

Recognizing the join pattern and checking the independent execution of both join argu-
ments is the first important step to compile an XQuery join efficiently. The join translation
exploits this independence to compile the input arguments of the theta-join in the least
expanded scope thus minimizing the sizes of the input relations. The compilation is de-
scribed by means of an inference rule that, in comparison to the earlier inference rules in
Chapter 3, has to cope with multiple scopes. The relationship between the scopes and the
mapping can be explained using a tree of scopes. In this tree, scopes are represented by
nodes (or frames), whose connecting edges depict for expressions. Figure 4.16(a) shows
the tree of scopes for Query Q18, which is evaluated with a Cartesian product. Both ex-
pressions of the join pattern comparison are evaluated in the inner-most scope su·v. The
join-aware compilation on the other hand splits up the tree in such a way that both argu-
ments of the theta-join are evaluated in independent scopes. Figure 4.16(b) illustrates the
modified tree of scopes for Query Q18 where the join recognition is applied. The for loop
binding of ein is compiled in dependence of scope s0 and the second join argument e2 in
the therein nested scope sv. In comparison, the first argument of the theta-join is evaluated
in scope su, since this scope introduces the inner-most free variable of the expression e1.
The results are the two input relations visible in Figure 4.15(b).

In the above example, both input arguments of the theta-join only depend on variables
in the directly enclosing scopes. In the more general case, however, they may depend
on variables in higher scopes. Figure 4.17(a) shows the tree of scopes for the general
case where the named scope si depicts the inner-most scope that binds a variable, which
appears free in e2 or ein. Because either e2 or ein need to access this variable binding, the
inner for loop has to be evaluated in dependence of scope si. The same applies for e1,
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ereturn

(c) Compilation with join
recognition applied includ-
ing return clause transla-
tion

Figure 4.17: Tree of scopes for the general join pattern. The nesting of the scopes for
the loop-lifted translation compiles everything in the inner-most scope sk·v (a). The join
recognition breaks up the arguments of the eq operator and shifts them to the highest (outer-
most) scope possible (b). The outer of the both scopes si and so determines the common
scope sc, which is used to link both input relations of the theta-join. The return clause is
compiled in dependence of the current scope sk and the both argument scopes (c).

which for the same reason has to be evaluated in dependence of scope so. The join-aware
compilation exploits these dependencies and compiles the expression e1 in scope so and
for $v in ein return e2 in scope si (see Figure 4.17(b)). Because both scopes may
depend on a common subset of scopes, we furthermore determine a common scope sc, that
corresponds to the outer scope of the scopes si and so

4. The common scope sc is necessary
to link the two theta-join arguments. Otherwise both expressions are treated as if they are
completely independent, which leads to the duplication of the surrounding scopes (s0-sc).
For Query Q18 scope si and scope sc is the outer-most scope s0. Scope so matches scope su

because e1 references variable $u, which is introduced in this scope (see Figure 4.15(b)).

The inference Rule JOIN in the following refers to these three named scopes. In order
to apply the relational join, its arguments need to be mapped to their common scope sc.
The respective map relations correspond to joins along the scope hierarchy, indicated by
the ellipsis in line (8) and (12). Furthermore w.l.o.g. we assume scope so to be nested in
scope si. The compilation of an XQuery join starts with the mapping of the first theta-join
argument using the loop relation as well as the variable environment Γ of scope so (line
(2) of Rule JOIN). The for loop of the join pattern is compiled in dependence of scope
si using the second theta-join argument as return clause (see lines (3) to (7)). Instead of
mapping back the result, like in Rule FOR, the intermediate results are extended with their
values and the outer column of the common scope sc. While this may be a concatenation of
several map relations for the first argument e1 (from scope sc to scope so), it is only the last
map relation for the second argument e2 (map(i,v)). The outer column of the common scope
sc links the two theta-join arguments to avoid result tuples in non-matching iterations. (see
line (11) of Rule JOIN). Without the join predicate on the outer columns, the loop-lifting

4In the following, we assume w.l.o.g. scope si to be the common scope sc.
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from scope s0 to scope sc would be applied twice (for each theta-join input argument once).

(1) e1 :: kind

(2) Γo;mapo;∆ ` e Z⇒ (q1,∆1)

(3) Γi;mapi;∆1 ` ein Z⇒ (qin,∆2)

(4) extin ≡ ρinner:〈iter,pos〉,1 (qin)

(5) qv ≡
pos
1 ×πiter:inner,item,kind (extin)

(6) map(i,v) ≡ πouter:iter,inner (extin)

(7)

{

∀$vn ∈ Γi : $vn 7→ πiter:inner,pos,item,kind

(

qn oniter=outer map(i,v)

)}

+{$v 7→ qv} ;

map(i,v);∆2 ` e2 Z⇒ (q2,∆3)

(8) map(c,o) ≡ πouter,inner

(

map(c,c+1) on · · ·on map(o−1,o)

)

(9) q1·extended ≡ πiter1:iter,value1:value,outer1:outer
(
map(c,o) oninner=iter q1 onitem=ref ∆3 [kind]

)

(10) q2·extended ≡ πiter2:iter,value2:value,outer2:outer
(
map(i,v) oninner=iter q2 onitem=ref ∆3 [kind]

)

(11) qjoin ≡ πiter1,iter2

(
q1·extended onp(value1,value2)∧outer1=outer2

q2·extended
)

(12) map(o,k) ≡ πouter,inner

(

map(o,o+1) on · · ·on map(k−1,k)

)

(13) qjoin·mapped ≡ πiter1:inner,iter2

(

map(o,k) onouter=iter1 qjoin

)

(14) extjoin ≡ ρinner:〈iter1,iter2〉,1
(
qjoin·mapped

)

(15) map(k,k+1) ≡ πouter:iter1,inner (extjoin)

(16) qv·mapped ≡ πiter:inner,pos,item,kind (qv oniter=iter2 extjoin)

(17)

{

∀$vn ∈ Γk : $vn 7→ πiter:inner,pos,item,kind

(

qn oniter=outer map(k,k+1)

)}

+
{
$v 7→ qv·mapped

}
;map(k,k+1);∆3 ` ereturn Z⇒ (qreturn,∆4)

Γk;mapk;∆ ` for $v in ein return if p(e1,e2) then ereturn else () Z⇒
(

πiter:outer,pos:pos1,item,kind

(

ρpos1:〈iter,pos〉/outer,1

(

qreturn oniter=inner map(k,k+1)

))

,∆4

)

(JOIN)
Query Q19 probably demonstrates the need for this additional predicate best:

s0







for $t in (10, 10)

st







for $u in (30, 20)

st·u







for $v in (1, 2, 3)

st·u·v

{
where $u eq $t * $v
return "match"

(Q19)

Query Q19 contains a relational join and has the same XQuery join pattern as Q17 and
Q18. In contrast to the former two examples, it iterates over $t thus creating a four-item
sequence as result. The scope so required for the expression e1 is scope st·u and the scope
of the pattern for loop si as well as the common scope sc correspond to scope st . For
the first join argument $u the theta-join input relation is the four-item sequence shown
in Figure 4.18(a) and the second join argument ($t * $v) is displayed in Figure 4.18(b).
Because both relations are loop-lifted through scope st , we have to add the additional join
predicate on the outer columns. Otherwise we would apply the outer-most for loop twice
(resulting in 8 matches).

If the common scope sc matches the outer-most scope s0, like in Query Q18, the outer
relation of scope s0 contains only the value 1 and the join predicate on the outer columns is
always true (see Figure 4.19). Therefore the comparisons of the outer columns as well as
the mapping of these columns can be skipped completely.

With the evaluation of the theta-join in line (11) of Rule JOIN, the matching iterations
are in scope so (iter1) and scope si·v (iter2). They need to be mapped to the current scope sk
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iter1 values1 outer1
1 30 1
2 20 1
3 30 2
4 20 2

(a) $u in scope st·u (q1·extended)

iter2 values2 outer2
1 10 1
2 20 1
3 30 1
4 10 2
5 20 2
6 30 2

(b) $t * $v in scope st·v

(q2·extended)

iter1 iter2
1 3
2 2
3 6
4 5

(c) Result of theta-join
in scope st·v (q join)

Figure 4.18: Input and result relations of theta-join in Query Q19

iter1 values1 outer1
1 30 1
2 20 1

(a) $u in scope su (q1·extended)

iter2 values2 outer2
1 10 1
2 20 1
3 30 1

(b) $t * $v in scope sv

(q2·extended)

iter1 iter2
1 3
2 2

(c) Result of theta-join
in scope su (q join)

Figure 4.19: Input and result relations of theta-join in Query Q18

because the return clause ereturn may use variables introduced in this scope and the result
of the join pattern is expected to be in scope sk as well. The first step in the compilation is
the creation of the map relation, which maps from scope so to scope sk. Extending the theta-
join result with the map relation (map(o,k)) results in a relation (qjoin·mapped) that stores for
each iteration in scope sk (iter1) the offsets of the tuples in the original inner-most for loop
(iter2), which are retained by the conditional (theta-join). The following row numbering
that uses the two columns as sorting criterion prepares the mapping from scope sk to sk·v

(see Figure 4.17(c)). The remaining compilation of the return clause ereturn as well as the
backmapping proceeds like every regular for loop compilation. The only difference is the
transformation of the variable $v, which is mapped from scope si·v using the iter2 column
of the extended join result (ext join).

The theta-join results of Query Q18 and Query Q19 are already in scope sk, which
matches scope su and st·u, respectively. The row numberings generate new dense inner
columns, which, together with the columns iter1 as outer columns, from the map relations
to the scope sk·v. The variables $v are mapped to scope sk·v by joining their representation
with the iter2 columns of the extended join results. In scope sk·v of Query Q18 variable $v
stores the value 3 in the first iteration and the value 2 in iteration 2.

4.4.3 Existential Semantics

General comparisons in XQuery like, e.g., =, <, and >= are existentially quantified com-
parisons that may be applied to operand sequences of any length. The result of such a
comparison is true if there exists at least one pair of values, which produces a match using
the corresponding value comparison operator. The same applies for the quantified expres-
sion some. During the XQuery Core normalization all quantified expressions are translated
into conditionals, nested for expressions, and value comparisons (depicted in the normal-
ization of Query Q20 to Q21).
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s0







for $u in (30, 20)

su







for $v in (1, 2, 3)

su·v

{
where $u = $v * 10

return "match"

(Q20)

Query Q20 returns the same result as the Queries Q17 and Q18, but uses a general compar-
ison (namely = instead of eq). With static type checking, all three queries are normalized
to Query Q18. If we however ignore the static type checking Query Q20 gets normalized to
Query Q21:

s0







for $u in (30, 20) return

su







for $v in (1, 2, 3) return

su·v







if (empty (for $tmp1 in $u return

su·v·tmp1







if (empty (for $tmp2 in $v * 10 return

su·v·tmp1·tmp2







if ($tmp1 eq $tmp2)

then 1

else ()))

then ()

else 1))

then ()

else "match"

. (Q21)

The two additional for loops over tmp1 and tmp2 ensure that the value comparison in the
inner-most scope only works on single values instead of sequences. The additional empty
function calls are used to restrict the evaluation of the return expression "match" to the
sequences, which have at least one matching value. The general patterns for an XQuery
join with existential semantics (P2) is almost identical:

for $v in ein return

if (empty (for $tmp1 in e1 return

if (empty (for $tmp2 in e2 return

if (p(tmp1, tmp2))
then 1

else ()))

then ()

else 1))

then ()

else ereturn

. (P2)

Similar to the simple join pattern P1, four subexpressions (ein, e1, e2, and ereturn) and the
join comparison p can be extracted . The three conditions from the simple pattern have to
be fulfilled for this extended pattern as well. XQuery joins, where one argument contains a
list of values and the other a single value, are matched by additional, but similar, patterns.
All these pattern, however, share the same translation. The existential semantics effect only
the result generation of the theta-join, which produces duplicate result tuples if more than
one match per sequence occurs. An additional duplicate elimination step during or after
the theta-join therefore has to ensure the correctness of the result.

Query Q22 is similar to the Queries Q17, Q18, Q20, and Q21 and only differs in the first
comparison argument that consists of a list of values instead of a single value ((20, $u)):

s0







for $u in (30, 20)

su







for $v in (1, 2, 3)

su·v

{
where (20, $u) = $v * 10

return "match"

. (Q22)
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iter1 values1
1 20

1 30

2 20

2 20

(a) (20, $u)

iter2 values2
1 10

2 20

3 30

(b) $t * $v

iter1 iter2
1 2
1 3
2 2
2 2

(c) Theta-join re-
sult without dupli-
cate elimination

iter1 iter2
1 2
1 3
2 2

(d) Theta-join re-
sult with duplicate
elimination

Figure 4.20: Input and result relations of theta-join in Query Q22

iter1 values1
1 30

2 20

(a) Pruned (20, $u)

iter2 values2
1 10

2 20

3 30

(b) Pruned $t * $v

iter1 iter2
1 1
1 2
2 1

(c) Theta-join result

Figure 4.21: Pruned input and result relations of inequality theta-join (replaced = in
Query Q22 by <)

Figure 4.20 shows both input arguments of the theta-join as well as the result with and
without duplicate elimination applied. Because the common scope sc is the outer-most
scope s0, the outer columns and the corresponding join predicate are omitted.

since the duplicate elimination can become expensive with increasing document sizes,
we extended our join translation with more intelligent duplicate elimination operations.
For the equality join, we added a dynamic evaluation strategy, which samples the theta-
join input relation and decides at runtime between two solutions. The first one uses a
HashJoin implementation with a duplicate elimination and sorting step (to re-establish the
order awareness). The second strategy is a NestedLoopJoin, which preserves the physical
order and prunes the duplicates during evaluation.

Theta-joins with inequality predicates, which have to cope with existential semantics,
can even prune the duplicates before the evaluation of the join. For both theta-join input
arguments, depending on the predicate p, the maximum and accordingly the minimum
value grouped by iterations is determined. The theta-join then only produces one tuple per
combination of iterations at most.

If we replace the = operator in Query Q22 by a > operator, the input relations stay the
same as depicted in Figure 4.20(a) and 4.20(b). The pruning step for the inequality operator
> however looks up the maximum values grouped by iteration in the first argument and the
minimum values (again per iteration) in the second theta-join argument. Figure 4.21 shows
the pruned input as well as the output of the inequality join. The first argument is reduced
to the value 30 in iteration 1 and 20 in iteration 2. The second argument stays unchanged
since there already was only value per iteration.
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Chapter 5

Experiments

After the explanation of our compilation scheme and description of the various optimiza-
tions it is time to deliver the hard facts. We therefore show the benefit of the optimizations
described in Sections 5.1–5.4. Because the main focus of this work was to build a scalable
XQuery system, we demonstrate the performance of our implementation on XML docu-
ments up to 11 GB in Section 5.5. We complete our experimental evaluation by comparing
the implementation of Pathfinder/MonetDB (MonetDB/XQuery) [22] to other approaches.

Our experimentation platform was a 1.6 GHz AMD Opteron 242 (1 MB L2 cache) sys-
tem with 8 GB RAM and a RAID-5 disk subsystem (3ware 7810, configured with eight
250 GB IDE disks of 7200 RPM). The operating system was Linux 2.6.9, using a 64-bit
address space. In the experiments, we focused on the XMark benchmark [25], which con-
sists of 20 queries and is the most frequently used benchmark to evaluate XQuery efficiency
and scalability. The first column of Table 5.1 shows the tasks of the different queries (see
also the complete XMark query set in Appendix A). With the XML generator from the
XMark project, XMLgen, we generated documents of sizes 11 MB, 110 MB, 1 GB, and
11 GB (scaling factor 0.1 to 100).

For the XMark test set the query compilation times vary between 60 and 100 ms. A
11 MB XML document instance is loaded in 835 ms and its query result is serialized in
less than 50 ms (except for query Q10 that requires 690 ms as it returns a large part of the
document). For all following experiments we excluded query parsing, document loading,
and serialization times thus measuring only the pure query evaluation time. Each query
was evaluated 5 times in a row and the optimum was chosen. We only observed a small
variance in the measured values, and all measurements were easily reproducible.

5.1 Order Awareness

We used two different versions of the Pathfinder compiler to generate MIL code for the
XMark queries, which was then evaluated on a 110 MB XML document. The first ver-
sion uses explicit sorting to support the row numbering operators (mark and mark_grp)
and accesses all available algorithms in MonetDB. The second version that applies the op-
timization described in Section 4.1 uses only the order preserving operators and avoids
sorting as much as possible. Figure 5.1 shows both versions normalized to the evaluation
times of the non order preserving version. For all queries the order aware version performs
better. In most cases, we observe an improvement of more than factor 2. Query Q1 evalu-
ates a particularly simple query, which contains only a small number of order operations. It
is quite remarkable that the overhead of the sorting operations is about 40% of the overall
evaluation time.
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Figure 5.1: Benefits of order preserving operators. The evaluation times are normalized to
the non-order preserving implementation. The order preserving variant shows an average
performance improvement of factor 2.3.

5.2 Loop-Lifted Path Steps

Figure 5.2 shows the effect of using loop-lifted staircase join. We again used the 110 MB
XML document and normalized the evaluation times to the measured times for the original
version (see broad lightgray bars). While the original version calls the basic staircase join
for each iteration separately, the loop-lifted staircase join evaluates a path in one sequential
pass over the pre|size table for multiple sequences of context nodes in one go. In the XMark
benchmark only the child and the descendant steps are relevant.

The leftmost narrow bar of each query shows the speedup achieved by the loop-lifting
of the child step alone. The performance improvements are already of a factor 2, if we
ignore the queries Q6 and Q7, which do not contain child steps. The queries Q8–Q12
furthermore spend a large part of their evaluation time on an XQuery join and Q14 requires
most of its execution time in the evaluation of a full-text search and its preparation. Query
Q1 spends most of its time in path steps in the outer-most scope with only a single iteration
and the remaining part in nested path steps. The overhead for evaluating the lifted version
in the outer-most scope compensates the performance gain in the nested scopes. Queries
Q15 and Q16 are an even better example. Both queries evaluate a particularly long path
expression of 13 steps. While query Q15 does evaluate all steps outside any for loop,
query Q16 uses all result tuples of the fourth path step as one-item context node sequences
for the remaining steps. The corresponding performance results are not surprising. Query
Q15 pays for the unnecessary state keeping of the loop-lifted variant and Q16 exploits the
new algorithm.

The second narrow bar from left in Figure 5.2 displays the performance improvement
of the loop-lifted descendant path step (without loop-lifting the child axis). Queries Q1,
Q4, Q15, and Q16 either contain no descendant step or evaluate such a location step on
text nodes or attributes only. The descendant steps for most other queries are implicitly
added by the translation of the element constructor. The only explicit descendant loca-
tion steps are used in the queries Q6, Q7, and Q14. For queries Q6 and Q7 this speeds up
the evaluation by more than a factor 2. In Q14 the full-text search mentioned earlier and
the child path steps narrow the improvement.

The combination of both loop-lifted child and loop-lifted descendant step, illus-
trated in the second narrow bar from right, nicely adds up the performance improvements
of the previous two versions. Ignoring queries Q1 and Q15 that suffer from the additional
state keeping of the loop-lifted versions we obtained a performance gain by a factor 10 in
most queries.

The early name and kind test optimization introduced in Section 4.2.4 is represented by
the right-most narrow bar in Figure 5.2. Its application is most obvious in the queries Q1
and Q15. In both cases, we see a clear performance decrease. The reasons are the candidate
lists, which are not selective enough. Aligning these lists becomes more expensive than
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Figure 5.2: Benefits of loop-lifted staircase join. The four optimizations (narrow bars) show
the performance gain in comparison to the iterative application of the basic staircase join.
The loop-lifting of child and descendant step significantly speeds up the evaluation of
most queries. The benefits of the early name tests can be seen by comparing the two right-
most narrow bars.

applying a post-filter on the small results. On the other hand there are the queries Q6 and
Q7 whose explicit descendant steps clearly benefit from the early name tests. Without
the name test, these path steps produce quite large intermediate results that dominate the
overall cost. Since the name test is quite selective for them, using early tests yields another
factor 6 and 12 for Q6 and Q7, respectively, thus resulting in an overall improvement of
factor 15 and 25, respectively. For all other queries the selection pushdown in the child

location steps results in minor performance changes.

5.3 Interfaces

In comparison to the other optimizations, using the different interfaces does not introduce
better evaluation strategies. Instead, it exploits more knowledge about the applied strategies
and thus avoids unnecessary operations. In case of the value interface, the insertion with
duplicate elimination can be avoided. For the node interface it is the additional path step as
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Figure 5.3: Benefits of avoiding
normal interface. Queries Q14
performs about 25% faster for all
sizes using the value interface.

well as the storage overhead and for the path step inter-
face the two order operations are not needed.

Therefore, no further justification for the application
of these interfaces is necessary. Nevertheless we com-
pared the evaluation times of query Q14 using the nor-
mal and the value interface for the input arguments of
the contains function to get an idea what impact this
optimization has. The value interface avoids the inter-
mediate storage of an especially large part of the doc-
ument in the string relation. The additional MIL code
of the normal interface for the insertion, duplicate elim-
ination, and value lookup required about 25 percent of
the overall evaluation time for all document sizes (see
Figure 5.3).

5.4 Join Recognition

Without join detection, our implementation requires minutes to evaluate the XMark join
queries (Q8–Q12) on the 11 MB XML document and larger instances do not finish within
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Figure 5.4: Benefits of XQuery join op-
timization. Queries Q8, Q9, and Q11
perform over a 100 times faster with
join recognition applied.

hours, due to excessive resource consumption. The
reason for this behavior is the generation of huge
intermediate results in the size of Cartesian prod-
ucts, a consequence of loop-lifting. With the join
optimization described in Section 4.4, we are able
to significantly increase the performance. With join
detection, XQuery join queries on large documents
(11 GB) can be evaluated in interactive time. Fig-
ure 5.4 (using logarithmic scale) shows the results
of the five XMark join queries with and without join
recognition applied. For the queries Q8, Q9, and
Q11 the performance improves by more than two
orders of magnitude!

5.5 Scaling

With the optimizations described in Chapter 4, we were not only able to improve our perfor-
mance by up to three orders of magnitude, but also reached our goal of a scalable system.
MonetDB/XQuery is able to query documents up to 11 GB size achieving linear perfor-
mance scaling. Figure 5.5 shows the performance results normalized to the elapsed time
on the 110 MB document (again with logarithmic scale). With the document sizes grow-
ing exponentially (11 MB, 110 MB, 1 GB, 11 GB), the graph shows that MonetDB/XQuery
scales linearly with the document size. To be more precise, it scales with the size of the
biggest intermediate result, which is limited in most cases by the document size.
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Figure 5.5: Scalability with respect to document size. All evaluation times are normalized
to the time on the 110 MB document. The only quadratically scaling queries are Q11 and
Q12, which did not finish the evaluation of the 11 GB document.

While most queries scale perfectly for the sizes above 110 MB, they seem to gain less
than factor 10 from 11 to 110 MB. The reasons are the parsing costs of the large MIL scripts
as well as the initialization costs. These fixed costs slow down the otherwise very fast
queries (e.g., query Q6 evaluates the 110 MB instance in just 50 ms). For larger document
sizes these costs become negligible.

The queries, which do not scale perfectly linear with the document size, are the join
queries (Q8–Q12), whose join result is bigger than the input document, and query Q14,
where excessive memory consumption makes our system start swapping to hard disk for
the 11 GB document. Two of the five join queries (Q11 and Q12) even fail to complete on
the 11 GB document size. The bottleneck in both queries is a theta-join (comparison via
>) that generates an intermediate result with about 120G tuples for the 11 GB document
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(with 16G tuples). Thus any XQuery system must necessarily exhibit quadratic scaling
with document size on the query Q11 and Q12.

5.6 System Comparison

After showing the advantages of the applied optimizations and the resulting scalability,
we will now compare our approach against two other XQuery systems. The test set is
once more the XMark benchmark at scaling factors 0.1 to 100 (which yield documents of
respectively 11 MB to 11 GB).

The first reference system is the latest version of Galax (0.5.0) as the most popular
and well known ”native” XQuery engine in open-source [11]. Galax is a file-oriented im-
plementation, which parses the referenced XML documents for each query. This often
dominates the evaluation time. To compare fairly, we used the monitor feature of Galax
and selected only the running times for the evaluation phase.

The second reference system, a native XML database system, is the current version
of X-Hive (X-Hive/DB 6.0), which claims to be the ”The fastest and most scalable XML
database powered by open standards” [26]. Performance figures in [9] attest X-Hive a
high scalability, which convinced us to include it in our evaluation. For X-Hive again we
measured only the query evaluation time.

11 MB 110 MB 1.1 GB 11 GB
operation: Q Galax X-Hive Pf/M Galax X-Hive Pf/M X-Hive Pf/M Pf/M
selection 1 0.06 0.37 0.04 0.72 1.29 0.18 9.9 1.2 13
positional predicate 2 0.03 0.45 0.06 0.31 1.75 0.30 33.0 2.4 25
value comparison 3 0.14 0.65 0.24 1.76 5.66 1.48 25.1 12.5 126
document order 4 0.22 0.10 0.06 2.91 1.00 0.45 18.1 3.8 36
implicit casting 5 0.05 0.13 0.05 0.63 0.90 0.16 20.7 1.2 11

6 1.30 1.07 0.02 13.29 10.17 0.05 178.1 0.3 3descendant steps
7 2.68 1.57 0.03 30.01 24.84 0.07 278.4 0.4 4

join 8 0.16 0.85 0.12 2.12 3.51 0.74 49.1 10.4 208
nested joins 9 113.23 32.25 0.16 DNF 12280.66 0.87 DNF 12.9 289
join, element constructions 10 1.74 5.28 0.64 18.61 442.37 5.05 DNF 55.0 1882

11 2.62 98.91 0.16 DNF 19927.29 3.28 DNF 872.5 DNFjoins on generated values
12 1.44 23.39 0.12 DNF 5100.19 1.66 DNF 150.7 DNF

result reconstruction 13 0.03 0.10 0.06 0.66 1.03 0.21 12.9 1.3 13
full text search 14 1.92 0.72 0.17 99.53 11.16 1.40 110.2 13.7 959

15 0.02 0.03 0.08 0.20 0.49 0.27 10.6 1.7 16long path (child steps),
16 0.03 0.03 0.09 0.46 0.52 0.26 10.9 1.8 18fn:not, fn:empty
17 0.06 0.09 0.06 0.82 0.85 0.29 11.8 2.6 26

user-defined functions 18 0.07 0.08 0.04 0.73 0.64 0.13 14.8 0.9 9
order by 19 1.17 0.67 0.10 14.73 12.15 0.55 254.5 5.3 88
aggregation 20 0.28 0.11 0.17 2.98 1.40 0.62 24.6 4.9 50

Table 5.1: Overview of XMark query evaluation times (elapsed time in seconds).

Table 5.1 lists our full experimental results. Galax numbers are available only for the
11 MB and 110 MB XML documents, since it fails to load the 1 GB file. For the simpler
queries on the 11 MB file, Galax is on par with the other systems and sometimes performs
fastest although by a small margin. For the same queries on the 110 MB document Galax
already looses some ground, but still completes the evaluation in reasonable time. The more
expensive queries for Galax are the ones with descendant steps (Q6 and Q7), the join
queries (Q8–Q12), the full text search (Q14), and the order by implementation (Q19).
While Galax seems to spot the joins in queries Q8 and Q10, it fails to do so otherwise.
Again the performance difference on these two queries increases with growing document
size. The other three join queries crashed on the 110 MB document with materialization
out of bounds errors, most probably due to the quadratic join complexity.

X-Hive behaves similar to Galax for most queries. We could speed up the evalua-
tion on a number of queries by creating value indices on the paths buyer/@person and
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profile/@income. Thanks to these indices it evaluates the join query Q8 fast as well.
However, the quadratic performance on Q9–Q12 indicates that such indices only help on a
small class of queries. As soon as queries join intermediate query results, indices cannot
be used and performance degrades strongly.

For the queries with descendant steps (Q6, Q7, and Q14) our implementation of loop-
lifted staircase join clearly outperforms both other systems. The same applies for the join
queries (Q8–Q12), where we can benefit from our join recognition logic. The remaining
queries, whose main tasks are database operations (full text search in Q14 and order by in
query Q19), furthermore show the big difference between the mature algorithms of the re-
lational database MonetDB, the stand-alone implementation Galax and the native database
X-Hive.
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Chapter 6

Conclusions and Outlook

This work builds on an XPath aware relational encoding of XML trees [13, 17] and a re-
lational XQuery compiler [15, 16] to turn a relational database back-end into an XQuery
processor. It combines the concepts of the XML document encoding and the XQuery se-
quence encoding in a storage scheme, which is applicable in the MonetDB database. Based
on this relational encoding, we enhanced the inference rules described in [16] with more ex-
plicit storage information. Furthermore we extended the mapping with additional XQuery
constructs (e.g., conditionals, constructors, and order by) to support large parts of the
XQuery language. The mapping of XQuery to MIL in Section 3.5, which also corresponds
to the practical part of this thesis, applied all these ideas. Together with the optimizations
developed in this work, we delivered not only a proof of concept but also created a fast and
highly scalable XQuery system [3].

Other attempts of building an XQuery processor on top of a relational database like e.g.,
Microsoft’s SQL Server 2005 [24] extend the relational back-end with additional operators
that cope with the different XQuery constructs (e.g., the for expression). Such imple-
mentations as well as native XML database systems could overcome these specific XQuery
operators by integrating our compilation scheme in their work. The changes would be re-
stricted to the document storage, the path step evaluation and the node constructors. The
support of XQuery and SQL/XML [18] would then be a matter of additional optimization
rules instead of a new, full-fledged evaluation engine.

We believe, however, that exchanging the encoding and storage of XML documents as
well as the relational back-end MonetDB may provide a significant performance decrease.
The reason is that the dense preorder ranks of our XML document encoding support the
XPath location steps especially well. In MonetDB, evaluating path steps maps to positional
lookups in arrays. If our system was backed just by ordinary B-tree index lookups, we
expected a significant drop in performance. In contrast, variable-length surrogates such as,
ORDPATH labels [23], are designed to allow “low-cost” updates while still encoding docu-
ment order. However, fast updates come at the expense of higher storage and manipulation
costs (positional skipping is not possible and index lookups must be used instead).

In our pre/size encoding, structural updates on the other hand are considered to be
problematic (i.e., physical cost linear to document size), because they cause shifts in all
preorder ranks after the update point. Furthermore, they require updates of the size val-
ues of all ancestors, such that the root of the tree becomes a locking bottleneck. In [4],
we showed how such problems can be avoided by updating the size of ancestors using
delta-increments, which are transaction-commutative operations. The proposal addition-
ally reduces the physical cost to the minimum (i.e., linear to update volume) by carefully
exploiting the virtual column feature of MonetDB to store pre numbers.

In Chapter 4, we focused on the optimizations that promised to improve the implemen-
tation most. In [9], where the authors describe an XQuery compiler that was originally de-
signed to emit SQL code, two of these optimizations, namely built-in order-awareness and
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XQuery join recognition were also recognized as key features to process XML documents of
serious size. While their XQuery join pattern resembles the query pattern discussed in Sec-
tion 4.4, it largely remains unclear how to derive a relational join plan. Performance-wise,
we really reap the benefits of using an extensible RDBMS kernel as an XQuery runtime
environment: the XMark benchmark figures obtained here surpass those reported in [9] by
two orders of magnitude.

While these optimizations improve our implementation significantly, a great number
of optimizations has not yet been explored. One decision that we never compared with
other opportunities was the design of our storage scheme. It is therefore not clear whether
splitting up all document fragments into different containers or one big set of relations
would be a better choice. We also tested only scenarios with single documents. It could be
interesting to analyze queries, which operate on a large collection of documents.

In this work, the elimination of common sub-expressions is done in a very naive way,
which leaves a large number of them undetected. In Pathfinder/MonetDB, variable bindings
of XQuery variables are evaluated once. This, however, restricts the number of eliminated
common sub-expressions only to variables in the XQuery expression. In XMark query Q20,
for example, the same path steps are evaluated three times. An equivalent version that binds
these steps to a variable would perform faster. Other common sub-expression eliminations
occur within XQuery constructs, where the same expressions (e.g., the input sequence of
a for loop) are evaluated only once, and between XQuery constructs, where the expres-
sions of the different loop relations are evaluated once. A real common sub-expression
elimination thus would certainly improve our implementation. The impact, however, is yet
unknown.

With the decision to keep all intermediate results sorted on iter and pos, we restrict
ourself again to a naive mapping. The keyword unordered, aggregates and XPath location
steps for example could utilize more algorithms without our order constraints. More work
on this topic will be required in the future.

The join recognition is another optimization, which is far from complete. The main
problem is that the join pattern works on normalized XQuery core expressions. While our
patterns match a large number of XQuery joins, they will be always inferior to simplified
patterns on relational algebra. In [14], the author sketches the properties necessary for such
more robust join patterns.

While this work already provides a fast and scalable XQuery processor, the implementa-
tion does not offer enough support for a large number of optimizations: With the mapping
to MIL, we loose too much context information, whereas normalized XQuery Core may
be too abstract for some optimizations. As an intermediate step between the normalized
XQuery Core and MIL, we will therefore use an annotated relational algebra, like the one
described in Section 3.2, in the future. As the mapping rules from XQuery Core to rela-
tional algebra are already provided in Section 3.4, we can focus on the optimization of the
relational algebra.

Algebraic optimizations have proven to be very successful in relational database man-
agement systems and various approaches to implement XQuery processors also rely on
algebras as the basis for possible efficient optimizations. Timber [19], Natix [12], and
Galax [11] e.g., all use algebras that are specific to their respective XQuery system. These
algebras try to utilize the special features of XQuery.

In contrary, our approach — using pure relational algebra — leverages mature opti-
mization techniques of relational systems. Properties like (multi-valued) dependencies and
constant relations, which were already used in the context of relational systems, enable
efficient optimizations (e.g., join recognition) in our approach as well [14]. Additionally
other XQuery specific annotations like type and schema information might become useful.
Moreover valuable information from a more abstract level, that is required for optimiza-
tions when finally generating the physical query plans, may be stored as annotation.

The optimized relational algebra expression easily maps to an underlying database lan-
guage. While this may be any database that understands relational algebra plans, we will
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stick to MonetDB, which in the current version of our XQuery processor already proves
to be a good choice. Until this effort is completed, MonetDB/XQuery, the current imple-
mentation of Pathfinder/MonetDB described in this thesis, will provide a competitive and
scalable relational runtime for XQuery.
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Appendix A

XMark Queries

XMark Q1

for $b in doc("auction.xml")/site/people/person[@id = "person0"]

return $b/name/text()

XMark Q2

for $b in doc("auction.xml")/site/open_auctions/open_auction

return

<increase>

{ $b/bidder[1]/increase/text() }

</increase>

XMark Q3

for $b in doc("auction.xml")/site/open_auctions/open_auction

where zero-or-one($b/bidder[1]/increase/text()) * 2

<= $b/bidder[last()]/increase/text()

return

<increase

first="{ $b/bidder[1]/increase/text() }"

last="{ $b/bidder[last()]/increase/text() }"

/>

XMark Q4

for $b in doc("auction.xml")/site/open_auctions/open_auction

where

some $pr1 in $b/bidder/personref[@person = "person20"],

$pr2 in $b/bidder/personref[@person = "person51"]

satisfies $pr1 << $pr2

return

<history>

{ $b/reserve/text() }

</history>

XMark Q5

count(

for $i in doc("auction.xml")/site/closed_auctions/closed_auction

where $i/price/text() >= 40

return $i/price

)
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XMark Q6

for $b in doc("auction.xml")//site/regions

return

count($b//item)

XMark Q7

for $p in doc("auction.xml")/site

return

count($p//description) + count($p//annotation) + count($p//emailaddress)

XMark Q8

for $p in doc("auction.xml")/site/people/person

let $a :=

for $t in doc("auction.xml")/site/closed_auctions/closed_auction

where $t/buyer/@person = $p/@id

return $t

return

<item person="{$p/name/text()}">

{ count($a) }

</item>

XMark Q9

for $p in doc("auction.xml")/site/people/person

return

<person name="{$p/name/text()}">

{

for $t in doc("auction.xml")/site/closed_auctions/closed_auction

where $p/@id = $t/buyer/@person

return

<item>

{

let $n :=

for $t2 in doc("auction.xml")/site/regions/europe/item

where $t/itemref/@item = $t2/@id

return $t2

return $n/name/text()

}

</item>

}

</person>

XMark Q10

for $i in distinct-values(doc("auction.xml")/site/people/

person/profile/interest/@category)

return

<categorie>

{

<id>{$i}</id>

,

for $t in doc("auction.xml")/site/people/person

where $t/profile/interest/@category = $i

return
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<personne>

<statistiques>

<sexe>{$t/profile/gender/text()}</sexe>

<age>{$t/profile/age/text()}</age>

<education>{$t/profile/education/text()}</education>

<revenu>{fn:data($t/profile/@income)}</revenu>

</statistiques>

<coordonnees>

<nom>{$t/name/text()}</nom>

<rue>{$t/address/street/text()}</rue>

<ville>{$t/address/city/text()}</ville>

<pays>{$t/address/country/text()}</pays>

<reseau>

<courrier>{$t/emailaddress/text()}</courrier>

<pagePerso>{$t/homepage/text()}</pagePerso>

</reseau>

</coordonnees>

<cartePaiement>{$t/creditcard/text()}</cartePaiement>

</personne>

}

</categorie>

XMark Q11

for $p in doc("auction.xml")/site/people/person

let $l :=

for $i in doc("auction.xml")/site/open_auctions/open_auction/initial

where $p/profile/@income > 5000 * exactly-one($i/text())

return $i

return

<items name="{$p/name/text()}">

{ count($l) }

</items>

XMark Q12

for $p in doc("auction.xml")/site/people/person

let $l :=

for $i in doc("auction.xml")/site/open_auctions/open_auction/initial

where $p/profile/@income > 5000 * exactly-one($i/text())

return $i

where $p/profile/@income > 50000

return

<items person="{$p/profile/@income}">

{ count($l) }

</items>

XMark Q13

for $i in doc("auction.xml")/site/regions/australia/item

return

<item name="{$i/name/text()}">

{ $i/description }

</item>

XMark Q14
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for $i in doc("auction.xml")/site//item

where contains(string(exactly-one($i/description)), "gold")

return $i/name/text()

XMark Q15

for $a in

doc("auction.xml")/site/closed_auctions/closed_auction/annotation/

description/parlist/listitem/parlist/listitem/text/emph/keyword/text()

return

<text>

{ $a }

</text>

XMark Q16

for $a in doc("auction.xml")/site/closed_auctions/closed_auction

where

not(

empty(

$a/annotation/description/parlist/listitem/

parlist/listitem/text/emph/keyword/text()

)

)

return

<person id="{$a/seller/@person}"/>

XMark Q17

for $p in doc("auction.xml")/site/people/person

where empty($p/homepage/text())

return

<person name="{$p/name/text()}"/>

XMark Q18

declare namespace local = "http://www.example.org";

declare function local:convert($v as xs:decimal?) as xs:decimal?

{

2.20371 * $v (: convert Dfl to Euro :)

};

for $i in doc("auction.xml")/site/open_auctions/open_auction

return

local:convert(zero-or-one($i/reserve))

XMark Q19

for $b in doc("auction.xml")/site/regions//item

let $k := $b/name/text()

order by $b/location ascending empty greatest

return

<item name="{$k}">

{ $b/location/text() }

</item>

XMark Q20
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<result>

<preferred>

{

count(

doc("auction.xml")/site/people/person/

profile[@income >= 100000]

)

}

</preferred>

<standard>

{

count(

doc("auction.xml")/site/people/person/

profile[@income < 100000 and @income >= 30000]

)

}

</standard>

<challenge>

{

count(

doc("auction.xml")/site/people/person/

profile[@income < 30000]

)

}

</challenge>

<na>

{

count(

for $p in doc("auction.xml")/site/people/person

where empty($p/profile/@income)

return $p

)

}

</na>

</result>
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