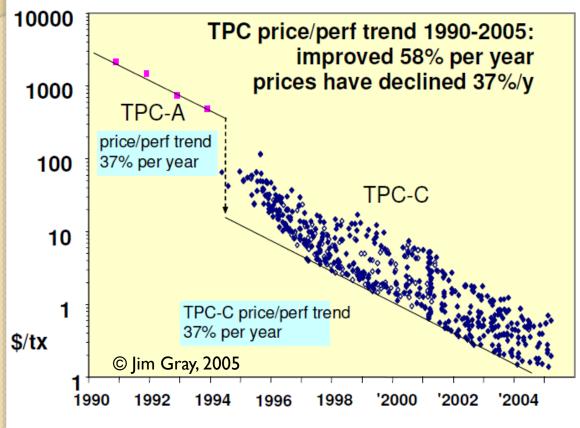


Industry-strength benchmarks for Graph and RDF Data Management

Peter Boncz

Why Benchmarking?



make competing products comparable

accelerate
 progress, make
 technology
 viable

What is the LDBC?

Linked Data Benchmark Council = LDBC

- Industry entity similar to TPC (<u>www.tpc.org</u>)
- Focusing on graph and RDF store benchmarking

Kick-started by an EU project

- Runs from September 2012 March 2015
- 9 project partners:

Will continue independently after the EU project

LDBC Benchmark Design

Developed by so-called "task forces"

- Requirements analysis and use case selection.
 - Technical User Community (TUC)
- Benchmark specification.
 - data generator
 - query workload
 - metrics
 - reporting format
- Benchmark implementation.
 - tools (query drivers, data generation, validation)
 - test evaluations
- Auditing
 - auditing guide
 - auditor training

LDBC: what systems?

Benchmarks for:

- RDF stores (SPARQL speaking)
 - Virtuoso, OWLIM, BigData, Allegrograph,...
- Graph Database systems
 - Neo4j, DEX, InfiniteGraph, ...
- Graph Programming Frameworks
 - Giraph, Green Marl, Grappa, GraphLab,...
- Relational Database systems

LDBC: functionality

Benchmarks for:

- Transactional updates in (RDF) graphs
- Business Intelligence queries over graphs
- Graph Analytics (e.g. graph clustering)
- Complex RDF workload, e.g. including reasoning, or for data integration

Anything relevant for RDF and graph data management systems

Roadmap for the Keynote

Choke-point based benchmark design

- What are Choke-points?
 - examples from good-old TPC-H
 - relational database benchmarking
- A Graph benchmark Choke-Point, in-depth:
 - Structural Correlation in Graphs
 - and what we do about it in LDBC
- Wrap up

Database Benchmark Design

Desirable properties:

- Relevant.
- Representative.
- Understandable.
- Economical.
- Accepted.
- Scalable.
- Portable.
- Fair.
- Evolvable.
- Public.

Jim Gray (1991) The Benchmark Handbook for Database and Transaction Processing Systems

Dina Bitton, David J. DeWitt, Carolyn Turbyfill (1993)
Benchmarking Database Systems: A Systematic Approach

Multiple TPCTC papers, e.g.:

Karl Huppler (2009) The Art of Building a Good Benchmark

Stimulating Technical Progress

An aspect of 'Relevant'

The benchmark metric

depends on,

or, rewards:solving certaintechnical challenges

(not commonly solved by technology at benchmark design time)

Benchmark Design with Choke Points

Choke-Point = well-chosen difficulty in the workload

- "difficulties in the workloads"
 - arise from Data (distribs)+Query+Workload
 - there may be different technical solutions to address the choke point
 - or, there may not yet exist optimizations (but should not be NP hard to do so)
 - the impact of the choke point may differ among systems

Benchmark Design with Choke Points

Choke-Point = well-chosen difficulty in the workload

- "difficulties in the workloads"
- "well-chosen"
 - the majority of actual systems do not handle the choke point very well
 - the choke point occurs or is likely to occur in actual or near-future workloads

Example: TPC-H choke points

- Even though it was designed without specific choke point analysis
- TPC-H contained a lot of interesting challenges
 - many more than Star Schema Benchmark
 - considerably more than Xmark (XML DB benchmark)
 - not sure about TPC-DS (yet)

TPC-H choke point areas (1/3)

TPCTC 2013: www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf "TPC-H Analyzed: Hidden Messages and Lessons Learned from an Influential Benchmark"

TPC-H choke point areas (2/3)

TPC-H choke point areas (3/3)

TPCTC 2013: www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf "TPC-H Analyzed: Hidden Messages and Lessons Learned from an Influential Benchmark"

CPI.4 Dependent GroupBy Keys

```
SELECT c_custkey, c_name, c_acctbal,
   sum(l_extendedprice * (1 - l_discount)) as revenue,
   n_name, c_address, c_phone, c_comment
FROM customer, orders, lineitem, nation
WHERE c_custkey = o_custkey and l_orderkey = o_orderkey
   and o_orderdate >= date '[DATE]'
   and o_orderdate < date '[DATE]' + interval '3' month
   and l_returnflag = 'R' and c_nationkey = n_nationkey
GROUP BY
   c_custkey, c_name, c_acctbal, c_phone, n_name,
   c_address, c_comment
ORDER BY revenue DESC</pre>
```

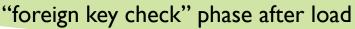
Q10

CPI.4 Dependent GroupBy Keys

```
SELECT c_custkey, c_name, c_acctbal,
   sum(l_extendedprice * (1 - l_discount)) as revenue,
   n_name, c_address, c_phone, c_comment
FROM customer, orders, lineitem, nation
WHERE c_custkey = o_custkey and l_orderkey = o_orderkey
   and o_orderdate >= date '[DATE]'
   and o_orderdate < date '[DATE]' + interval '3' month
   and l_returnflag = 'R' and c_nationkey = n_nationkey
GROUP BY
   c_custkey, c_name, c_acctbal, c_phone,
   c_address, c_comment, n_name
ORDER BY revenue DESC</pre>
```

4 6

Q10



CPI.4 Dependent GroupBy Keys

Functional dependencies:

- Group-by hash table should exclude the colored attrs → less CPU+ mem footprint
- in TPC-H, one can choose to declare primary and foreign keys (all or nothing)
 - this optimization requires declared keys
 - Key checking slows down RF (insert/delete)

CP2.2 Sparse Joins

- Foreign key (N:I) joins towards a relation with a selection condition
 - Most tuples will *not* find a match
 - Probing (index, hash) is the most expensive activity in TPC-H

- Can we do better?
 - Bloom filters!

CP2.2 Sparse Joins

• Foreign key (N:I) joins towards a relation with a selection condition \P 949,980

Q21

probed: 200M tuples result: 8M tuples

→ 1:25 join hit ratio

HashJoin01@10

time=5,053,398,219 (8.30%) (0.06% in bld)

cum_time=15,659,369,249 (25.71%)

in=199,157,657 (ut=7,949,980) el=3.99

hiMem=3,451,140 (0.46%)

build=1,634,964 (0%)

est_cost=4,644,284,160 est = 1/1 x

Vectorwise:

TPC-H joins typically accelerate 4x

Queries accelerate 2x

2G cycles 29M probes \rightarrow cost would have been I4G cycles \sim = 7 sec #PROF 2021162220 OWN 28950172 9.8avg rdtsc 307565 calls vht_lookup_keys() "vht_lookup_keys" in con #PROF 1575739535 OWN 199097581 7.9avg rdtsc 307534 calls sel bitfiltercheck uchr col slng val sint

1.5G cycles 200M probes → 85% eliminated

CP5.2 Subquery Rewrite

Q17

This subquery can be extended with restrictions from the outer query.

```
Hyper:
CP5.1+CP5.2+CP5.3
results in 500x faster
Q17
```

```
SELECT 0.2 * avg(l_quantity)
FROM lineitem
WHERE l_partkey = p_partkey
  and p_brand = '[BRAND]'
  and p_container = '[CONTAINER]'
```

+ CP5.3 Overlap between Outer- and Subquery.

Choke Points

- Hidden challenges in a benchmark
 - influence database system design, e.g. TPC-H
 - Functional Dependency Analysis in aggregation
 - Bloom Filters for sparse joins
 - Subquery predicate propagation
- LDBC explicitly designs benchmarks looking at choke-point "coverage"
 - requires access to database kernel architects

Roadmap for the Keynote

Choke-point based benchmark design

- What are Choke-points?
 - examples from good-old TPC-H
- Graph benchmark Choke-Point, in-depth:
 - Structural Correlation in Graphs
 - and what we do about it in LDBC

Wrap up

Data correlations between attributes

```
SELECT personID from person

WHERE firstName = 'Joachim' AND addressCountry = 'Germany'

SELECT personID from person

WHERE firstName = 'Cesare' AND addressCountry = 'Italy'
```

 Query optimizers may underestimate or overestimate the result size of conjunctive predicates

Joachime Loew Joachim Prandelli

Data correlations between attributes

```
SELECT COUNT(*)
FROM paper pa1 JOIN conferences cn1 ON pa1.journal = jn1.ID
    paper pa2 JOIN conferences cn2 ON pa2.journal = jn2.ID
WHERE pa1.author = pa2.author AND
    cn1.name = 'VLDB' AND cn2.name = 'SIGMOD'
```

Data correlations over joins

```
SELECT COUNT(*)

FROM paper pal JOIN conferences cn1 ON pal.journal = cn1.ID

paper pa2 JOIN conferences cn2 ON pa2.journal = cn2.ID

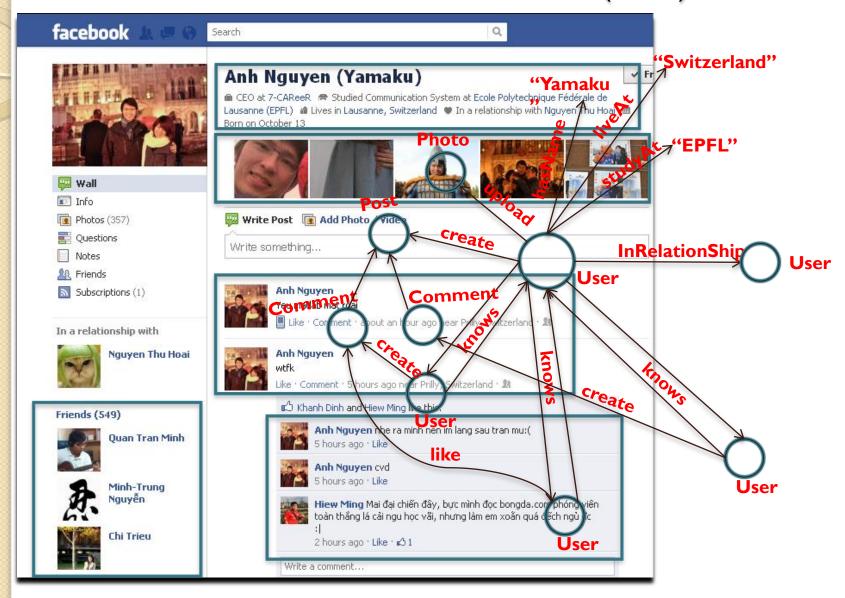
WHERE pa1.author = pa2.author AND

cn1.name = 'VLDB' AND cn2.name = 'SIGMO'D'
```

A challenge to the optimizers to adjust estimated join hit ratio
 pal.author = pa2.author
 depending on other predicates

Correlated predicates are still a frontier area in database research

LDBC Social Network Benchmark (SNB)



Handling Correlation: a choke point for Graph DBs

- What makes graphs interesting are the connectivity patterns
 - who is connected to who?
 - → structure typically depends on the (values) attributes of nodes
- Structural Correlation (→ choke point)
 - amount of common friends
 - shortest path between two persons
 search complexity in a social network varies wildly between
 - two random persons
 - e.g. colleagues at the same company
- No existing graph benchmark specifically tests for the effects of correlations
- Synthetic graphs used for benchmarking do not have structural correlations

Need a data generator generating synthetic graph with data/structure correlations

TPCTC 2012: www.cwi.nl/~boncz/tpctc2012_pham_boncz_erling.pdf "S3G2: A Scalable Structure-correlated Social Graph Generator"

Generating Correlated Property Values

• How do data generators generate values? E.g. FirstName

Generating Property Values

- How do data generators generate values? E.g. FirstName
- Value Dictionary D()
 - a fixed set of values, e.g.,

```
{"Andrea", "Anna", "Cesare", "Camilla", "Duc", "Joachim", ...}
```

- Probability density function F()
 - steers how the generator chooses values
 - cumulative distribution over dictionary entries determines which value to pick
 - could be anything: uniform, binomial, geometric, etc...
 - geometric (discrete exponential) seems to explain many natural phenomena

Generating Correlated Property Values

- How do data generators generate values? E.g. FirstName
- Value Dictionary D()
- Probability density function F()
- Ranking Function R()
 - Gives each value a unique rank between one and |D|
 - -determines which value gets which probability
 - Depends on some parameters (parameterized function)
 - value frequency distribution becomes correlated by the parameters or R()

Generating Correlated Property Values

How do data generators generate values? E.g. FirstName

 Value Dictionar {"Andrea",

How to implement R()?

geometric d

• Probability d limited #combinations

|Gender| X |Country| X |BirthYearl

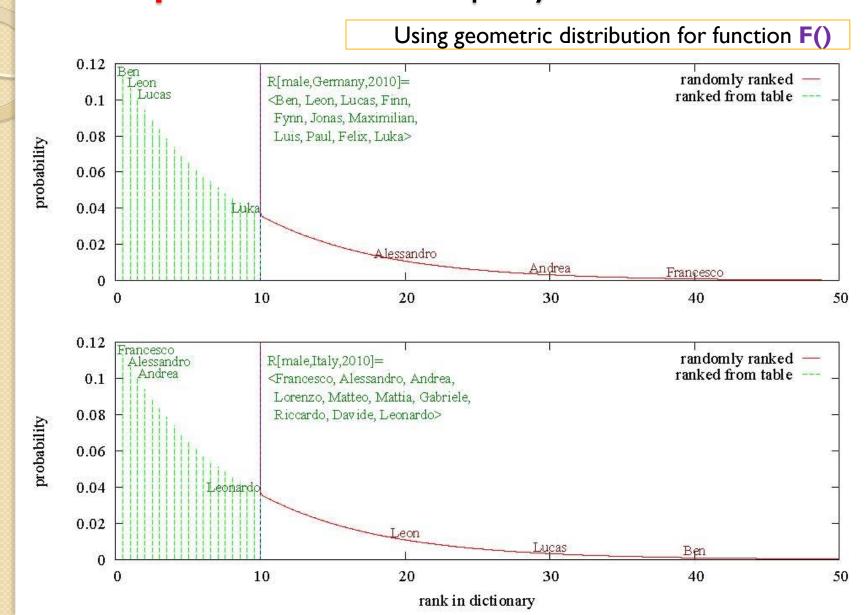
- Ranking Function R(gender,country,birthyear)
 - gender, country, birthyear -> correlation parameters

Potentially Many! 🙁

Solution:

- Just store the rank of the top-N values, not all D
- Assign the rank of the other dictionary values randomly

Compact Correlated Property Value Generation

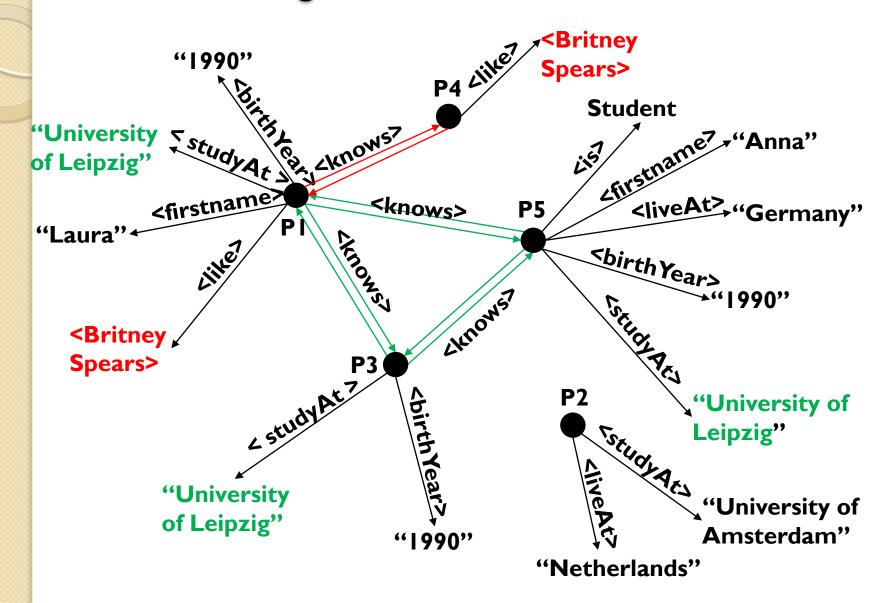


Correlated Value Property in LDBC SNB

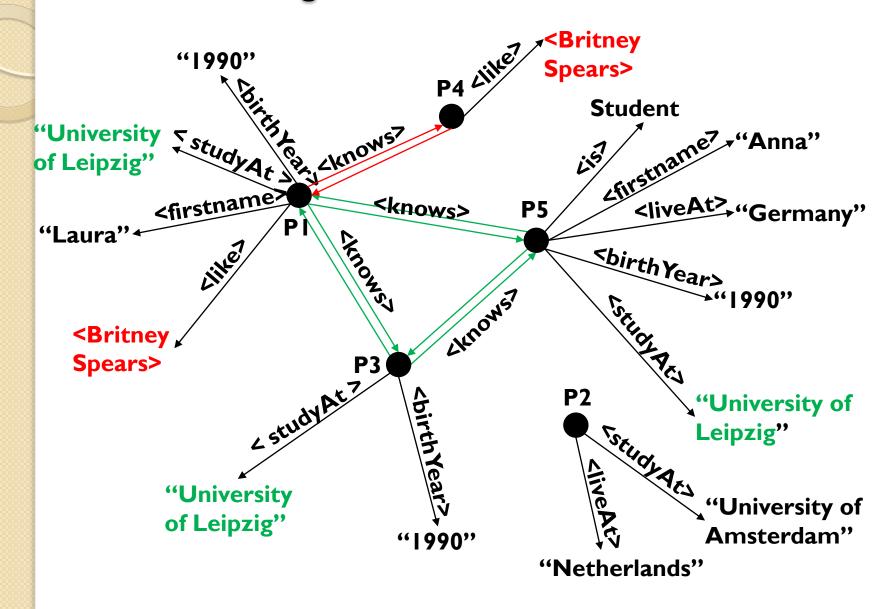
- Main source of dictionary values from DBpedia (http://dbpedia.org)
- Various realistic property value correlations (→)

 e.g.,
 (person.location,person.gender,person.birthDay) → person.firstName
 person.location → person.lastName
 person.location → person.university
 person.createdDate → person.photoAlbum.createdDate

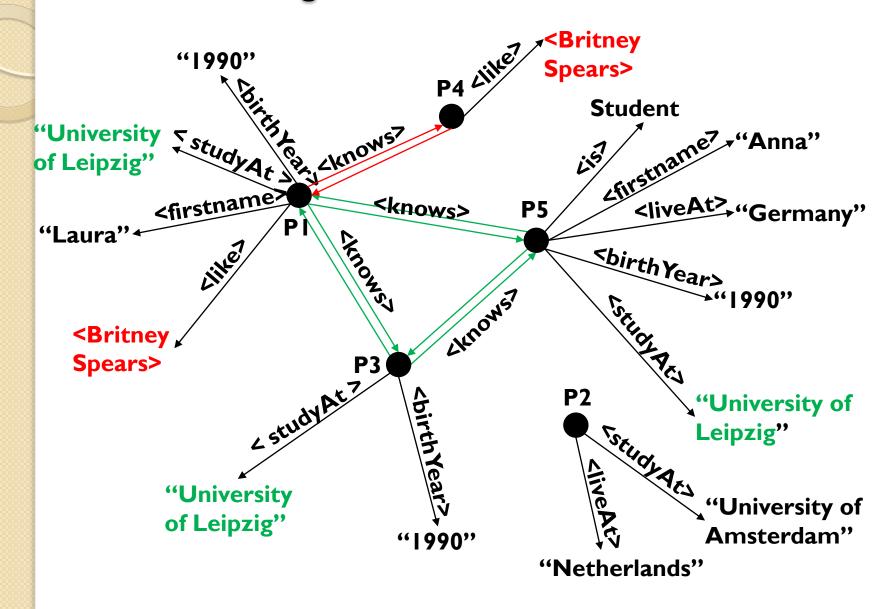
Correlated Edge Generation



Correlated Edge Generation

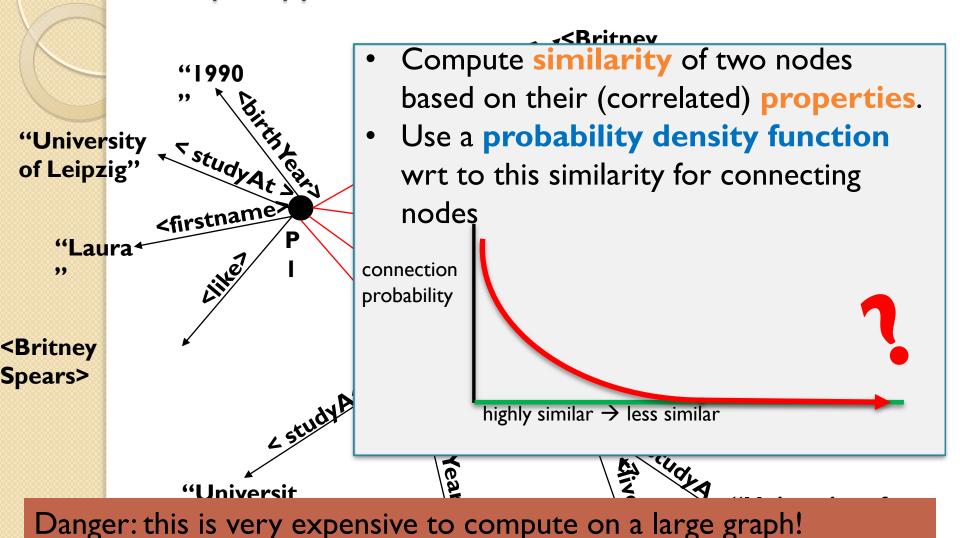


Correlated Edge Generation

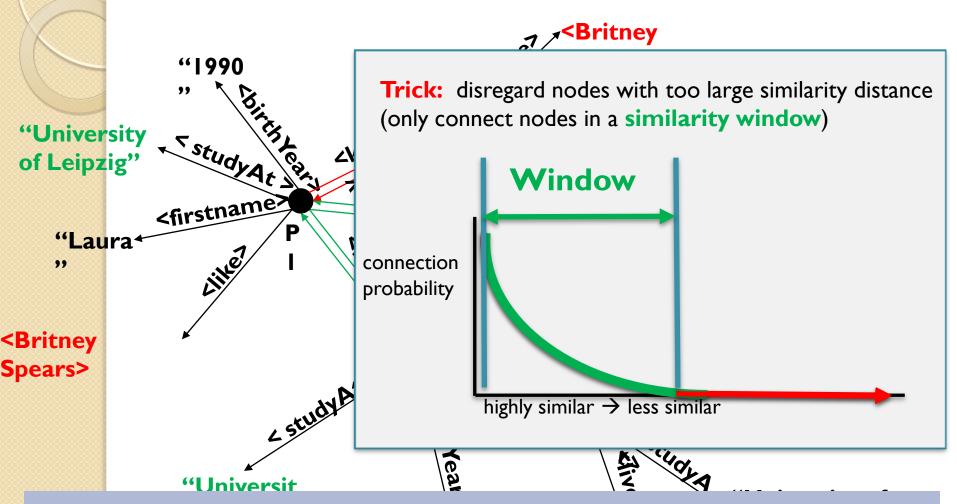


Simple approach

(quadratic, random access)



Our observation

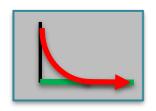


Probability that two nodes are connected is **skewed** w.r.t the **similarity** between the nodes (due to probability distr.)

3

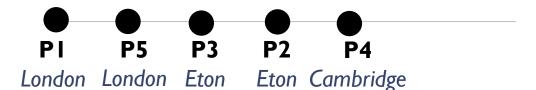
Correlation Dimensions

Similarity metric + Probability function



Similar metric

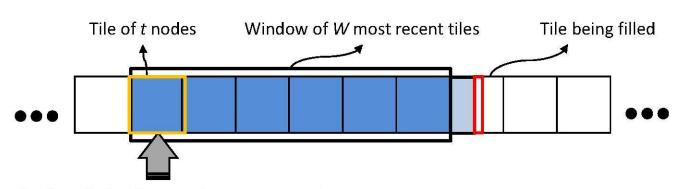
Sort nodes on similarity (similar nodes are brought near each other)



<Ranking along the "Having study together" dimension>
we use space filling curves (e.g. Z-order) to get a linear dimension

Probability function

Pick edge between two nodes based on their **ranked distance** (e.g. geometric distribution, again)



nodes for which edges are being generated

- Sort nodes using MapReduce on similarity metric
- Reduce function keeps a window of nodes to generate edges
 - Keep low memory usage (sliding window approach)
- Slide the window for multiple passes, each pass corresponds to one correlation dimension (multiple MapReduce jobs)
 - for each node we choose degree per pass (also using a prob. function)

steers how many edges are picked in the window for that node

TPCTC 2012: www.cwi.nl/~boncz/tpctc2012_pham_boncz_erling.pdf "S3G2:A Scalable Structure-correlated Social Graph Generator"

Correlation Dimensions in LDBC SNB

- Having studied together
- Having common interests (hobbies)
- Random dimension
 - motivation: not all friendships are explainable (...)

(of course, these two correlation dimensions are still a gross simplification of reali but this provides some interesting material for benchmark queries)

Evaluation (... see the TPCTC 2012 paper)

Social graph characteristics

- Output graph has similar characteristics as observed in real social network (i.e., "small-world network" characteristics)
 - Power-law social degree distribution
 - Low average path-length
 - High clustering coefficient

Scalability

- Generates up to I.2 TB of data (1.2 million users) in half an hour
 - Runs on a cluster of 16 nodes
 (part of the SciLens cluster, <u>www.scilens.org</u>)
- Scales out linearly

Summary

- correlation between values ("properties") and connection pattern in graphs affects many real-world data management tasks
 - → use as a choke point in the Social Network Benchmark
- generating huge correlated graphs is hard!
 - → MapReduce algorithm that approximates correlation probabilities with windowed-approach

See: for more info

- https://github.com/ldbc
- SNB task-force wiki http://www.ldbc.eu:8090/display/TUC

Roadmap for the Keynote

Choke-point based benchmark design

- What are Choke-points?
 - examples from good-old TPC-H
- Graph Choke-Point In depth
 - Structural Correlation in Graphs
 - And what we do about it in LDBC

Wrap up

LDBC Benchmark Status

- Social Network Benchmark
 - Interactive Workload
 - Lookup queries + updates
 - Navigation between friends and posts
 - → Graph DB, RDF DB, Relational DB
 - Business Intelligence Workload
 - Heavy Joins, Group-By + navigation!
 - → Graph DB, RDF DB, Relational DB
 - Graph Analytics
 - Graph Diameter, Graph Clustering, etc.
 - → Graph Programming Frageworks, Graph DB (RDF DB?, Relational DB?)

LDBC Benchmark Status

- Social Network Benchmark
- Semantic Publishing Benchmark
 - BBC use case (BBC data + queries)
 - Continuous updates
 - Aggregation queries
 - Light-weight RDF reasoning

LDBC Next Steps

- Benchmark Interim Reports
 - November 2013
 - SNB and Semantic Publishing

- Meet LDBC @ GraphConnect
 - 3rd Techical User Community (TUC) meeting
 - London, November 19, 2013

Conclusion

- LDBC: a new graph/RDF benchmarking initiative
 - EU initatiated, Industry supported
 - benchmarks under development (SNB, SPB)
 - more to follow
- Choke-point based benchmark development
 - Graph Correlation

thank you very much. Questions?