
LDBC

Industry-strength benchmarks for

Graph and RDF

Data Management

Peter Boncz

 make competing

products

comparable

 accelerate

progress, make

technology

viable

Why Benchmarking?

© Jim Gray, 2005

What is the LDBC?

Linked Data Benchmark Council = LDBC

 Industry entity similar to TPC (www.tpc.org)

 Focusing on graph and RDF store benchmarking

Kick-started by an EU project

 Runs from September 2012 – March 2015

 9 project partners:

 Will continue independently after the EU project

http://www.tpc.org/

LDBC Benchmark Design

Developed by so-called “task forces”

 Requirements analysis and use case selection.

◦ Technical User Community (TUC)

 Benchmark specification.

◦ data generator

◦ query workload

◦ metrics

◦ reporting format

 Benchmark implementation.

◦ tools (query drivers, data generation, validation)

◦ test evaluations

 Auditing

◦ auditing guide

◦ auditor training

LDBC: what systems?

Benchmarks for:

 RDF stores (SPARQL speaking)

◦ Virtuoso, OWLIM, BigData, Allegrograph,…

 Graph Database systems

◦ Neo4j, DEX, InfiniteGraph, …

 Graph Programming Frameworks

◦ Giraph, Green Marl, Grappa, GraphLab,…

 Relational Database systems

LDBC: functionality

Benchmarks for:

 Transactional updates in (RDF) graphs

 Business Intelligence queries over graphs

 Graph Analytics (e.g. graph clustering)

 Complex RDF workload, e.g. including

reasoning, or for data integration

Anything relevant for RDF and graph data

management systems

Roadmap for the Keynote

Choke-point based benchmark design

 What are Choke-points?

◦ examples from good-old TPC-H

◦  relational database benchmarking

 A Graph benchmark Choke-Point, in-depth:

◦ Structural Correlation in Graphs

◦ and what we do about it in LDBC

 Wrap up

Database Benchmark Design

Desirable properties:

 Relevant.

 Representative.

 Understandable.

 Economical.

 Accepted.

 Scalable.

 Portable.

 Fair.

 Evolvable.

 Public.

 Jim Gray (1991) The Benchmark Handbook for Database

 and Transaction Processing Systems

 Dina Bitton, David J. DeWitt, Carolyn Turbyfill (1993)

 Benchmarking Database Systems: A Systematic Approach

Multiple TPCTC papers, e.g.:

 Karl Huppler (2009) The Art of Building a Good Benchmark

Stimulating Technical Progress

 An aspect of ‘Relevant’

 The benchmark metric

◦ depends on,

◦ or, rewards:

solving certain

technical challenges

“Choke Point”

(not commonly solved by technology at benchmark
design time)

Benchmark Design with Choke Points

Choke-Point = well-chosen difficulty in the workload

 “difficulties in the workloads”

◦ arise from Data (distribs)+Query+Workload

◦ there may be different technical solutions to

address the choke point

 or, there may not yet exist optimizations (but should

not be NP hard to do so)

 the impact of the choke point may differ among

systems

Benchmark Design with Choke Points

Choke-Point = well-chosen difficulty in the workload

 “difficulties in the workloads”

 “well-chosen”

◦ the majority of actual systems do not handle

the choke point very well

◦ the choke point occurs or is likely to occur in

actual or near-future workloads

Example: TPC-H choke points

 Even though it was designed without specific

choke point analysis

 TPC-H contained a lot of interesting challenges

◦ many more than Star Schema Benchmark

◦ considerably more than Xmark (XML DB benchmark)

◦ not sure about TPC-DS (yet)

TPCTC 2013: www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf
 “TPC-H Analyzed: Hidden Messages and Lessons Learned from an Influential Benchmark”

TPC-H choke point areas (1/3)

TPCTC 2013: www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf
 “TPC-H Analyzed: Hidden Messages and Lessons Learned from an Influential Benchmark”

TPC-H choke point areas (2/3)

TPCTC 2013: www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf
 “TPC-H Analyzed: Hidden Messages and Lessons Learned from an Influential Benchmark”

TPC-H choke point areas (3/3)

TPCTC 2013: www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf
 “TPC-H Analyzed: Hidden Messages and Lessons Learned from an Influential Benchmark”

CP1.4 Dependent GroupBy Keys
SELECT c_custkey, c_name, c_acctbal,

 sum(l_extendedprice * (1 - l_discount)) as revenue,

n_name, c_address, c_phone, c_comment

FROM customer, orders, lineitem, nation

WHERE c_custkey = o_custkey and l_orderkey = o_orderkey

 and o_orderdate >= date '[DATE]'

 and o_orderdate < date '[DATE]' + interval '3' month

 and l_returnflag = 'R‘ and c_nationkey = n_nationkey

GROUP BY

 c_custkey, c_name, c_acctbal, c_phone, n_name,

 c_address, c_comment

ORDER BY revenue DESC

Q10

TPCTC 2013: www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf
 “TPC-H Analyzed: Hidden Messages and Lessons Learned from an Influential Benchmark”

CP1.4 Dependent GroupBy Keys
SELECT c_custkey, c_name, c_acctbal,

 sum(l_extendedprice * (1 - l_discount)) as revenue,

n_name, c_address, c_phone, c_comment

FROM customer, orders, lineitem, nation

WHERE c_custkey = o_custkey and l_orderkey = o_orderkey

 and o_orderdate >= date '[DATE]'

 and o_orderdate < date '[DATE]' + interval '3' month

 and l_returnflag = 'R‘ and c_nationkey = n_nationkey

GROUP BY

 c_custkey, c_name, c_acctbal, c_phone,

 c_address, c_comment, n_name

ORDER BY revenue DESC

Q10

TPCTC 2013: www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf
 “TPC-H Analyzed: Hidden Messages and Lessons Learned from an Influential Benchmark”

TPCTC 2013: www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf
 “TPC-H Analyzed: Hidden Messages and Lessons Learned from an Influential Benchmark”

CP1.4 Dependent GroupBy Keys

 Functional dependencies:

 c_custkey  c_name, c_acctbal, c_phone,

c_address, c_comment, c_nationkey  n_name

 Group-by hash table should exclude the

colored attrs  less CPU+ mem footprint

 in TPC-H, one can choose to declare

primary and foreign keys (all or nothing)

◦ this optimization requires declared keys

◦ Key checking slows down RF (insert/delete)

Exasol:

“foreign key check” phase after load

CP2.2 Sparse Joins

 Foreign key (N:1) joins towards a relation

with a selection condition

◦ Most tuples will *not* find a match

◦ Probing (index, hash) is the most expensive

activity in TPC-H

 Can we do better?

◦ Bloom filters!

TPCTC 2013: www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf
 “TPC-H Analyzed: Hidden Messages and Lessons Learned from an Influential Benchmark”

CP2.2 Sparse Joins

 Foreign key (N:1) joins towards a relation

with a selection condition

2G cycles 29M probes  cost would have been 14G cycles ~= 7 sec

1.5G cycles 200M probes  85% eliminated

probed: 200M tuples

result: 8M tuples

 1:25 join hit ratio

Q21

Vectorwise:

TPC-H joins typically accelerate 4x

Queries accelerate 2x

CP5.2 Subquery Rewrite
SELECT sum(l_extendedprice) / 7.0 as avg_yearly

FROM lineitem, part

WHERE p_partkey = l_partkey

 and p_brand = '[BRAND]'

 and p_container = '[CONTAINER]'

 and l_quantity <(SELECT 0.2 * avg(l_quantity)

 FROM lineitem

 WHERE l_partkey = p_partkey)

This subquery can be extended with restrictions from
the outer query.

 SELECT 0.2 * avg(l_quantity)

 FROM lineitem

 WHERE l_partkey = p_partkey

 and p_brand = '[BRAND]'

 and p_container = '[CONTAINER]'

+ CP5.3 Overlap between Outer- and Subquery.

Q17

Hyper:

CP5.1+CP5.2+CP5.3

results in 500x faster

Q17

Choke Points

 Hidden challenges in a benchmark

influence database system design, e.g. TPC-H

 Functional Dependency Analysis in aggregation

 Bloom Filters for sparse joins

 Subquery predicate propagation

 LDBC explicitly designs benchmarks

looking at choke-point “coverage”

◦ requires access to database kernel architects

Roadmap for the Keynote

Choke-point based benchmark design

 What are Choke-points?

◦ examples from good-old TPC-H

 Graph benchmark Choke-Point, in-depth:

◦ Structural Correlation in Graphs

◦ and what we do about it in LDBC

 Wrap up

Data correlations between attributes

SELECT personID from person

WHERE firstName = AND addressCountry = ‘Germany’ ‘Joachim’

SELECT personID from person

WHERE firstName = AND addressCountry = ‘Italy’ ‘Cesare’

 Query optimizers may underestimate or overestimate the result size of

conjunctive predicates

Anti-Correlation

Loew Prandelli Joachim Cesare Cesare Joachim

SELECT COUNT(*)

FROM paper pa1 JOIN conferences cn1 ON pa1.journal = jn1.ID

 paper pa2 JOIN conferences cn2 ON pa2.journal = jn2.ID

WHERE pa1.author = pa2.author AND

 cn1.name = ‘VLDB’ AND cn2.name =

Data correlations between attributes

‘SIGMOD’

SELECT COUNT(*)

FROM paper pa1 JOIN conferences cn1 ON pa1.journal = cn1.ID

 paper pa2 JOIN conferences cn2 ON pa2.journal = cn2.ID

WHERE pa1.author = pa2.author AND

 cn1.name = ‘VLDB’ AND cn2.name =

Data correlations over joins

‘Nature’

‘SIGMOD’

 A challenge to the optimizers to adjust estimated join hit ratio

 pa1.author = pa2.author

 depending on other predicates

 Correlated predicates are still a frontier area in database research

LDBC Social Network Benchmark (SNB)

User

User

User

User

Photo

InRelationShip
User

“Yamaku

”

“EPFL”

“Switzerland”

like

 What makes graphs interesting are the connectivity patterns

• who is connected to who?

  structure typically depends on the (values) attributes of nodes

 Structural Correlation ( choke point)

• amount of common friends

• shortest path between two persons

search complexity in a social network varies wildly between

• two random persons

• e.g. colleagues at the same company

 No existing graph benchmark specifically tests for the effects of correlations

 Synthetic graphs used for benchmarking do not have structural correlations

Handling Correlation: a choke point for Graph DBs

Need a data generator generating synthetic graph

with data/structure correlations

TPCTC 2012: www.cwi.nl/~boncz/tpctc2012_pham_boncz_erling.pdf
 “S3G2: A Scalable Structure-correlated Social Graph Generator”

 How do data generators generate values? E.g. FirstName

Generating Correlated Property Values

TPCTC 2012: www.cwi.nl/~boncz/tpctc2012_pham_boncz_erling.pdf
 “S3G2: A Scalable Structure-correlated Social Graph Generator”

 How do data generators generate values? E.g. FirstName

 Value Dictionary D()

• a fixed set of values, e.g.,

 {“Andrea”,“Anna”,“Cesare”,“Camilla”,“Duc”,“Joachim”, .. }

 Probability density function F()

• steers how the generator chooses values

 cumulative distribution over dictionary entries determines which value to pick

• could be anything: uniform, binomial, geometric, etc…

 geometric (discrete exponential) seems to explain many natural phenomena

Generating Property Values

TPCTC 2012: www.cwi.nl/~boncz/tpctc2012_pham_boncz_erling.pdf
 “S3G2: A Scalable Structure-correlated Social Graph Generator”

 How do data generators generate values? E.g. FirstName

 Value Dictionary D()

 Probability density function F()

 Ranking Function R()

• Gives each value a unique rank between one and |D|

determines which value gets which probability

• Depends on some parameters (parameterized function)

 value frequency distribution becomes correlated by the parameters or R()

Generating Correlated Property Values

TPCTC 2012: www.cwi.nl/~boncz/tpctc2012_pham_boncz_erling.pdf
 “S3G2: A Scalable Structure-correlated Social Graph Generator”

TPCTC 2012: www.cwi.nl/~boncz/tpctc2012_pham_boncz_erling.pdf
 “S3G2: A Scalable Structure-correlated Social Graph Generator”

 How do data generators generate values? E.g. FirstName

 Value Dictionary D()

{“Andrea”,“Anna”,“Cesare”,“Camilla”,“Duc”,“Joachim”,“Leon”,“Orri

 Probability density function F()

 geometric distribution

 Ranking Function R(gender,country,birthyear)

• gender, country, birthyear  correlation parameters

Generating Correlated Property Values

How to implement R()?

We need a table storing

|Gender| X |Country| X |BirthYear| X |D|

Solution:
- Just store the rank of the top-N values, not all|D|

- Assign the rank of the other dictionary values randomly

limited #combinations

Potentially

Many! 

Compact Correlated Property Value Generation

Using geometric distribution for function F()

 Main source of dictionary values from DBpedia (http://dbpedia.org)

 Various realistic property value correlations ()

e.g.,

 (person.location,person.gender,person.birthDay)  person.firstName

 person.location  person.lastName

 person.location  person.university

person.createdDate  person.photoAlbum.createdDate

….

Correlated Value Property in LDBC SNB

TPCTC 2012: www.cwi.nl/~boncz/tpctc2012_pham_boncz_erling.pdf
 “S3G2: A Scalable Structure-correlated Social Graph Generator”

http://dbpedia.org/
http://dbpedia.org/

Correlated Edge Generation

P4

P5

Student

“Anna”

“University of

Leipzig”

“Germany”

“1990”

P1

“University

of Leipzig”

“Laura”

“1990”

<Britney

Spears>

<Britney

Spears>

P3

“University

of Leipzig”
“1990”

P2

“University of

Amsterdam”

“Netherlands”

Correlated Edge Generation

P4

P5

Student

“Anna”

“University of

Leipzig”

“Germany”

“1990”

P1

“University

of Leipzig”

“Laura”

“1990”

<Britney

Spears>

<Britney

Spears>

P3

“University

of Leipzig”
“1990”

P2

“University of

Amsterdam”

“Netherlands”

Correlated Edge Generation

P4

P5

Student

“Anna”

“University of

Leipzig”

“Germany”

“1990”

P1

“University

of Leipzig”

“Laura”

“1990”

<Britney

Spears>

<Britney

Spears>

P3

“University

of Leipzig”
“1990”

P2

“University of

Amsterdam”

“Netherlands”

Simple approach

P

4

P

5

Student

“Anna”

“University of

Leipzig”

“Germany

”

“1990”

P

1

“University

of Leipzig”

“Laura

”

“1990

”

<Britney

Spears>

<Britney

Spears>

P

3

“Universit

y of

Leipzig” “1990

”

P

2

“University of

Amsterdam”
“Netherland

s”

Danger: this is very expensive to compute on a large graph!

(quadratic, random access)

• Compute similarity of two nodes

based on their (correlated) properties.

• Use a probability density function

wrt to this similarity for connecting

nodes

connection

probability

highly similar  less similar

Our observation

P

4

P

5

Student

“Anna”

“University of

Leipzig”

“Germany

”

“1990”

P

1

“University

of Leipzig”

“Laura

”

“1990

”

<Britney

Spears>

<Britney

Spears>

P

3

“Universit

y of

Leipzig” “1990

”

P

2

“University of

Amsterdam”
“Netherland

s”

Probability that two nodes are connected is skewed w.r.t the

similarity between the nodes (due to probability distr.)

connection

probability

highly similar  less similar

Window

Trick: disregard nodes with too large similarity distance

(only connect nodes in a similarity window)

Correlation Dimensions

 Similar metric

 Sort nodes on similarity (similar nodes are brought near each other)

 Probability function

 Pick edge between two nodes based on their ranked distance

 (e.g. geometric distribution, again)

Similarity metric +

Probability function

P1

London

P5

London

P3

Eton

P2

Eton

P4

Cambridge

<Ranking along the “Having study together” dimension>

 we use space filling curves (e.g. Z-order) to get a linear dimension

 Sort nodes using MapReduce on similarity metric

 Reduce function keeps a window of nodes to generate edges

• Keep low memory usage (sliding window approach)

 Slide the window for multiple passes, each pass corresponds to one correlation

dimension (multiple MapReduce jobs)

• for each node we choose degree per pass (also using a prob. function)

 steers how many edges are picked in the window for that node

Generate edges along correlation dimensions

W

TPCTC 2012: www.cwi.nl/~boncz/tpctc2012_pham_boncz_erling.pdf
 “S3G2: A Scalable Structure-correlated Social Graph Generator”

 Having studied together

 Having common interests (hobbies)

 Random dimension

• motivation: not all friendships are explainable (…)

(of course, these two correlation dimensions are still a gross simplification of reality

 but this provides some interesting material for benchmark queries)

Correlation Dimensions in LDBC SNB

TPCTC 2012: www.cwi.nl/~boncz/tpctc2012_pham_boncz_erling.pdf
 “S3G2: A Scalable Structure-correlated Social Graph Generator”

 Social graph characteristics

• Output graph has similar characteristics as observed in real social network

(i.e., “small-world network” characteristics)

 - Power-law social degree distribution

 - Low average path-length

 - High clustering coefficient

 Scalability

• Generates up to 1.2 TB of data (1.2 million users) in half an hour

 - Runs on a cluster of 16 nodes

 (part of the SciLens cluster, www.scilens.org)

• Scales out linearly

Evaluation (… see the TPCTC 2012 paper)

TPCTC 2012: www.cwi.nl/~boncz/tpctc2012_pham_boncz_erling.pdf
 “S3G2: A Scalable Structure-correlated Social Graph Generator”

http://www.scilens.org/

 correlation between values (“properties”) and connection pattern in graphs

affects many real-world data management tasks

use as a choke point in the Social Network Benchmark

 generating huge correlated graphs is hard!

MapReduce algorithm that approximates correlation probabilities with

windowed-approach

See: for more info

• https://github.com/ldbc

• SNB task-force wiki http://www.ldbc.eu:8090/display/TUC

Summary

https://github.com/ldbc
https://github.com/ldbc
http://www.ldbc.eu:8090/display/TUC

Roadmap for the Keynote

Choke-point based benchmark design

 What are Choke-points?

◦ examples from good-old TPC-H

 Graph Choke-Point In depth

◦ Structural Correlation in Graphs

◦ And what we do about it in LDBC

 Wrap up

LDBC Benchmark Status

 Social Network Benchmark

◦ Interactive Workload
 Lookup queries + updates

 Navigation between friends and posts

Graph DB, RDF DB, Relational DB

◦ Business Intelligence Workload

 Heavy Joins, Group-By + navigation!

 Graph DB, RDF DB, Relational DB

◦ Graph Analytics

 Graph Diameter, Graph Clustering, etc.

 Graph Programming Frageworks, Graph DB (RDF DB?,
Relational DB?)

LDBC Benchmark Status

 Social Network Benchmark

 Semantic Publishing Benchmark

◦ BBC use case (BBC data + queries)

 Continuous updates

 Aggregation queries

 Light-weight RDF reasoning

LDBC Next Steps

 Benchmark Interim Reports

◦ November 2013

◦ SNB and Semantic Publishing

 Meet LDBC @ GraphConnect

◦ 3rd Techical User Community (TUC) meeting

◦ London, November 19, 2013

Conclusion

 LDBC: a new graph/RDF benchmarking

initiative

◦ EU initatiated, Industry supported

◦ benchmarks under development (SNB, SPB)

 more to follow

 Choke-point based benchmark

development

◦ Graph Correlation

LDBC

thank you very much.

Questions?

