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 make competing 

products 

comparable 

 

 accelerate 

progress, make 

technology 

viable 

 

Why Benchmarking? 

© Jim Gray, 2005 



What is the LDBC? 
 

Linked Data Benchmark Council = LDBC 

 Industry entity similar to TPC (www.tpc.org) 

 Focusing on graph and RDF store benchmarking 

 

Kick-started by an EU project 

 Runs from September 2012 – March 2015 

 9 project partners: 

 

 

 

 

 

 Will continue independently after the EU project 

http://www.tpc.org/


LDBC Benchmark Design 

Developed by so-called “task forces” 

 

 Requirements analysis and use case selection.  

◦ Technical User Community (TUC)  

 Benchmark specification.  

◦ data generator  

◦ query workload 

◦ metrics 

◦ reporting format 

 Benchmark implementation.  

◦ tools (query drivers, data generation, validation)   

◦ test evaluations  

 Auditing 

◦ auditing guide 

◦ auditor training 



LDBC: what systems? 

Benchmarks for: 

 RDF stores (SPARQL speaking) 

◦ Virtuoso, OWLIM, BigData, Allegrograph,… 

 Graph Database systems 

◦ Neo4j, DEX, InfiniteGraph, … 

 Graph Programming Frameworks 

◦ Giraph, Green Marl, Grappa, GraphLab,… 

 Relational Database systems 

 

 



LDBC: functionality 

Benchmarks for: 

 Transactional updates in (RDF) graphs 

 Business Intelligence queries over graphs 

 Graph Analytics (e.g. graph clustering) 

 Complex RDF workload, e.g. including 

reasoning, or for data integration 

 

Anything relevant for RDF and graph data 

management systems 

 



Roadmap for the Keynote 

Choke-point based benchmark design 

 

 What are Choke-points? 

◦ examples from good-old TPC-H 

◦  relational database benchmarking 

 

 A Graph benchmark Choke-Point, in-depth: 

◦ Structural Correlation in Graphs 

◦ and what we do about it in LDBC 

 

 Wrap up 

 



Database Benchmark Design  

Desirable properties: 

 Relevant.  

 Representative. 

 Understandable. 

 Economical.  

 Accepted. 

 Scalable. 

 Portable. 

 Fair. 

 Evolvable. 

 Public.  

 Jim Gray (1991) The Benchmark Handbook for Database  

  and Transaction Processing Systems 

 

 Dina Bitton, David J. DeWitt, Carolyn Turbyfill (1993) 

  Benchmarking Database Systems: A Systematic Approach  

 

Multiple TPCTC papers, e.g.: 

 Karl Huppler (2009) The Art of Building a Good Benchmark 

 



Stimulating Technical Progress 

 An aspect of ‘Relevant’ 

 The benchmark metric 

◦ depends on,  

◦ or, rewards: 

solving certain  

technical challenges 

 

“Choke Point” 

 

(not commonly solved by technology at benchmark 
design time)   



Benchmark Design with Choke Points 

Choke-Point = well-chosen difficulty in the workload 

 “difficulties in the workloads” 

◦ arise from Data (distribs)+Query+Workload 

◦ there may be different technical solutions to 

address the choke point 

 or, there may not yet exist optimizations (but should 

not be NP hard to do so) 

 the impact of the choke point may differ among 

systems 

 

 

 



Benchmark Design with Choke Points 

Choke-Point = well-chosen difficulty in the workload 

 “difficulties in the workloads” 

 “well-chosen” 

◦ the majority of actual systems do not handle 

the choke point very well 

◦ the choke point occurs or is likely to occur in 

actual or near-future workloads 



Example: TPC-H choke points 

 Even though it was designed without specific 

choke point analysis 

 TPC-H contained a lot of interesting challenges 

◦ many more than Star Schema Benchmark 

◦ considerably more than Xmark (XML DB benchmark) 

◦ not sure about TPC-DS (yet) 

TPCTC 2013:              www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf 
   “TPC-H Analyzed: Hidden Messages and Lessons Learned from an Influential Benchmark” 



TPC-H choke point areas (1/3) 

 

TPCTC 2013:              www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf 
   “TPC-H Analyzed: Hidden Messages and Lessons Learned from an Influential Benchmark” 



TPC-H choke point areas (2/3) 

 

TPCTC 2013:              www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf 
   “TPC-H Analyzed: Hidden Messages and Lessons Learned from an Influential Benchmark” 



TPC-H choke point areas (3/3) 

 

TPCTC 2013:              www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf 
   “TPC-H Analyzed: Hidden Messages and Lessons Learned from an Influential Benchmark” 



CP1.4 Dependent GroupBy Keys 
SELECT c_custkey,  c_name, c_acctbal,  

 sum(l_extendedprice * (1 - l_discount)) as revenue,  

n_name,  c_address,  c_phone, c_comment 

FROM  customer, orders,  lineitem,  nation 

WHERE  c_custkey = o_custkey and l_orderkey = o_orderkey 

 and o_orderdate >= date '[DATE]' 

 and o_orderdate < date '[DATE]' + interval '3' month 

 and l_returnflag = 'R‘ and c_nationkey = n_nationkey 

GROUP BY  

 c_custkey, c_name,   c_acctbal,  c_phone,  n_name,  

 c_address, c_comment 

ORDER BY revenue DESC 

Q10 

TPCTC 2013:              www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf 
   “TPC-H Analyzed: Hidden Messages and Lessons Learned from an Influential Benchmark” 
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TPCTC 2013:              www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf 
   “TPC-H Analyzed: Hidden Messages and Lessons Learned from an Influential Benchmark” 

CP1.4 Dependent GroupBy Keys 

 Functional dependencies: 

 c_custkey  c_name,   c_acctbal,  c_phone, 

c_address, c_comment, c_nationkey  n_name 

 Group-by hash table should exclude the 

colored attrs  less CPU+ mem footprint 

 in TPC-H, one can choose to declare 

primary and foreign keys (all or nothing) 

◦ this optimization requires declared keys 

◦ Key checking slows down RF (insert/delete) 

 

Exasol: 

“foreign key check” phase after load 



CP2.2 Sparse Joins 

 Foreign key (N:1) joins towards a relation 

with a selection condition  

◦ Most tuples will *not* find a match 

◦ Probing (index, hash) is the most expensive 

activity in TPC-H 

 

 Can we do better? 

◦ Bloom filters! 

TPCTC 2013:              www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf 
   “TPC-H Analyzed: Hidden Messages and Lessons Learned from an Influential Benchmark” 



CP2.2 Sparse Joins 

 Foreign key (N:1) joins towards a relation 

with a selection condition  

2G cycles        29M probes    cost would have been 14G cycles ~= 7 sec  

1.5G cycles    200M probes     85% eliminated 

probed: 200M tuples 

result: 8M tuples 

 1:25 join hit ratio 

Q21 

Vectorwise:  

TPC-H joins typically accelerate 4x 

Queries accelerate 2x  



CP5.2 Subquery Rewrite 
SELECT sum(l_extendedprice) / 7.0 as avg_yearly 

FROM lineitem,  part 

WHERE p_partkey = l_partkey  

 and p_brand = '[BRAND]' 

 and p_container = '[CONTAINER]'  

 and l_quantity <( SELECT 0.2 * avg(l_quantity) 

    FROM lineitem 

    WHERE l_partkey = p_partkey) 

This subquery can be extended with restrictions from 
the outer query. 

    SELECT 0.2 * avg(l_quantity) 

    FROM lineitem 

    WHERE l_partkey = p_partkey  

      and p_brand = '[BRAND]'  

      and p_container = '[CONTAINER]' 

+ CP5.3 Overlap between Outer- and Subquery. 

 

Q17 

Hyper: 

CP5.1+CP5.2+CP5.3 

results in 500x faster 

Q17 



Choke Points 

 Hidden challenges in a benchmark 

influence database system design, e.g. TPC-H 

 Functional Dependency Analysis in aggregation 

 Bloom Filters for sparse joins 

 Subquery predicate propagation 

 

 LDBC explicitly designs benchmarks 

looking at choke-point “coverage” 

◦ requires access to database kernel architects   



Roadmap for the Keynote 

Choke-point based benchmark design 

 

 What are Choke-points? 

◦ examples from good-old TPC-H 

 

 Graph benchmark Choke-Point, in-depth: 

◦ Structural Correlation in Graphs 

◦ and what we do about it in LDBC 

 

 Wrap up 

 



Data correlations between attributes 

SELECT personID from person 

WHERE firstName =           AND addressCountry = ‘Germany’ ‘Joachim’ 

SELECT personID from person 

WHERE firstName =           AND addressCountry = ‘Italy’ ‘Cesare’ 

 

 Query optimizers may underestimate or  overestimate the result size of 

conjunctive predicates  

 

Anti-Correlation 

Loew Prandelli Joachim Cesare Cesare Joachim 



SELECT COUNT(*) 

FROM paper pa1 JOIN conferences cn1 ON pa1.journal = jn1.ID 

     paper pa2 JOIN conferences cn2 ON pa2.journal = jn2.ID 

WHERE pa1.author = pa2.author   AND 

  cn1.name = ‘VLDB’  AND  cn2.name =  

Data correlations between attributes 

‘SIGMOD’ 

 



SELECT COUNT(*) 

FROM paper pa1 JOIN conferences cn1 ON pa1.journal = cn1.ID 

     paper pa2 JOIN conferences cn2 ON pa2.journal = cn2.ID 

WHERE pa1.author = pa2.author   AND 

  cn1.name = ‘VLDB’  AND  cn2.name =  

Data correlations over joins 

‘Nature’ 

 

‘SIGMOD’ 

 

 A challenge to the optimizers to adjust estimated join hit ratio  

    pa1.author = pa2.author  

    depending on other predicates  

 Correlated predicates are still a frontier area in database research 

 



LDBC Social Network Benchmark (SNB) 
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like 



 What makes graphs interesting are the connectivity patterns 

• who is connected to who? 

   structure typically depends on the (values) attributes of nodes 

 Structural Correlation ( choke point) 

• amount of common friends 

• shortest path between two persons 

search complexity in a social network varies wildly between 

• two random persons 

• e.g. colleagues at the same company 

 No existing graph benchmark specifically tests for the effects of correlations 

 Synthetic graphs used for benchmarking do not have structural correlations 

Handling Correlation:  a choke point for Graph DBs 

Need a data generator generating synthetic graph 

with data/structure correlations  

TPCTC 2012:              www.cwi.nl/~boncz/tpctc2012_pham_boncz_erling.pdf 
   “S3G2: A Scalable Structure-correlated Social Graph Generator” 



 How do data generators generate values?      E.g.  FirstName 

Generating Correlated Property Values 

TPCTC 2012:              www.cwi.nl/~boncz/tpctc2012_pham_boncz_erling.pdf 
   “S3G2: A Scalable Structure-correlated Social Graph Generator” 



 How do data generators generate values?      E.g.  FirstName 

 

 Value Dictionary D()  

• a fixed set of values, e.g., 

  {“Andrea”,“Anna”,“Cesare”,“Camilla”,“Duc”,“Joachim”, .. }  

 

 Probability density function F()  

• steers how the generator chooses values 

 cumulative distribution over dictionary entries determines which value to pick 

• could be anything: uniform, binomial, geometric, etc… 

 geometric (discrete exponential) seems to explain many natural phenomena  

Generating Property Values 

TPCTC 2012:              www.cwi.nl/~boncz/tpctc2012_pham_boncz_erling.pdf 
   “S3G2: A Scalable Structure-correlated Social Graph Generator” 



 How do data generators generate values? E.g.  FirstName 

 

 Value Dictionary D()  

  

 Probability density function F()  

 

 Ranking Function R() 

• Gives each value a unique rank between one and |D| 

determines which value gets which probability 

• Depends on some parameters (parameterized function) 

 value frequency distribution becomes correlated by the parameters or R()  

 

 

 

Generating Correlated Property Values 

TPCTC 2012:              www.cwi.nl/~boncz/tpctc2012_pham_boncz_erling.pdf 
   “S3G2: A Scalable Structure-correlated Social Graph Generator” 



TPCTC 2012:              www.cwi.nl/~boncz/tpctc2012_pham_boncz_erling.pdf 
   “S3G2: A Scalable Structure-correlated Social Graph Generator” 

 How do data generators generate values? E.g.  FirstName 

 

 Value Dictionary D()  

{“Andrea”,“Anna”,“Cesare”,“Camilla”,“Duc”,“Joachim”,“Leon”,“Orri

  

 Probability density function F() 

    geometric distribution  

 

 Ranking Function R(gender,country,birthyear) 

• gender, country, birthyear  correlation parameters 

 

 

 

Generating Correlated Property Values 

How to implement R()? 
 

We need a table storing  

 

|Gender| X |Country| X  |BirthYear| X |D| 

Solution: 
- Just store the rank of the top-N values, not  all|D| 

- Assign the rank of the other dictionary values randomly 
 

limited #combinations 

Potentially 

Many!  



Compact Correlated Property Value Generation 

Using geometric distribution for function F() 



 Main source of dictionary values from DBpedia (http://dbpedia.org) 

 

 Various realistic property value correlations () 

e.g.,  

 (person.location,person.gender,person.birthDay)   person.firstName 

 person.location   person.lastName 

 person.location  person.university 

person.createdDate   person.photoAlbum.createdDate 

…. 

 

Correlated Value Property in LDBC SNB 

TPCTC 2012:              www.cwi.nl/~boncz/tpctc2012_pham_boncz_erling.pdf 
   “S3G2: A Scalable Structure-correlated Social Graph Generator” 

http://dbpedia.org/
http://dbpedia.org/


 

  

Correlated Edge Generation 
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Simple approach 
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Danger: this is very expensive to compute on a large graph! 

(quadratic, random access) 

• Compute similarity of two nodes 

based on their (correlated) properties. 

• Use a probability density function 

wrt to this similarity for connecting 

nodes 
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highly similar  less similar 

 



 

  

Our observation 
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Probability that two nodes are connected is skewed w.r.t the 

similarity between the nodes (due to probability distr.) 

 

 

 

 

 

 

connection 

probability 

 

highly similar  less similar 

 

Window 

Trick:  disregard nodes with too large similarity distance 

(only connect nodes in a similarity window) 



Correlation Dimensions 

 

 

 

 Similar metric  

 Sort nodes on similarity (similar nodes are brought near each other) 

 

 

 

 

 

 Probability function 

  Pick edge between two nodes based on their ranked distance  

 (e.g. geometric distribution, again) 

Similarity metric +  

Probability function 

P1 

London 

P5 

London 

P3 

Eton 

P2 

Eton 

P4 

Cambridge 

<Ranking along the “Having study together” dimension> 

   we use space filling curves (e.g. Z-order) to get a linear dimension 

 

 

 

 

 

 



 Sort nodes using MapReduce on similarity metric  

 Reduce function keeps a window of nodes to generate edges 

• Keep low memory usage (sliding window approach) 

 

 Slide the window for multiple passes, each pass corresponds to one correlation 

dimension (multiple MapReduce jobs) 

• for each node we choose degree per pass (also using a prob. function) 

 steers how many edges are picked in the window for that node 

Generate edges along correlation dimensions 
 

 

 

 

 

 

W 

TPCTC 2012:              www.cwi.nl/~boncz/tpctc2012_pham_boncz_erling.pdf 
   “S3G2: A Scalable Structure-correlated Social Graph Generator” 



 Having studied together  

  

 Having common interests (hobbies) 

 

 Random dimension 

• motivation: not all friendships are explainable (…) 

 

 

(of course, these two correlation dimensions are still a gross simplification of reality

 but this provides some interesting material for benchmark queries) 

Correlation Dimensions in LDBC SNB 

TPCTC 2012:              www.cwi.nl/~boncz/tpctc2012_pham_boncz_erling.pdf 
   “S3G2: A Scalable Structure-correlated Social Graph Generator” 



 Social graph characteristics 

• Output graph has similar characteristics as observed in real social network 

(i.e., “small-world network” characteristics) 

  - Power-law social degree distribution 

  - Low average path-length 

  - High clustering coefficient 

 

 

 Scalability 

• Generates up to 1.2 TB of data (1.2 million users) in half an hour 

  - Runs on a cluster of 16 nodes  

   (part of the SciLens cluster, www.scilens.org) 

• Scales out linearly 

Evaluation (… see the TPCTC 2012 paper)  

TPCTC 2012:              www.cwi.nl/~boncz/tpctc2012_pham_boncz_erling.pdf 
   “S3G2: A Scalable Structure-correlated Social Graph Generator” 

http://www.scilens.org/


 correlation between values (“properties”) and connection pattern in graphs 

affects many real-world data management tasks 

use as a choke point in the Social Network Benchmark 

 

 generating huge correlated graphs is hard! 

MapReduce algorithm that approximates correlation probabilities with 

windowed-approach 

 

See: for more info  

• https://github.com/ldbc 

• SNB task-force wiki http://www.ldbc.eu:8090/display/TUC 

Summary 

https://github.com/ldbc
https://github.com/ldbc
http://www.ldbc.eu:8090/display/TUC


Roadmap for the Keynote 

Choke-point based benchmark design 

 

 What are Choke-points? 

◦ examples from good-old TPC-H 

 

 Graph Choke-Point In depth 

◦ Structural Correlation in Graphs 

◦ And what we do about it in LDBC 

 

 Wrap up 

 



LDBC Benchmark Status 

 Social Network Benchmark 

◦ Interactive Workload 
 Lookup queries + updates 

 Navigation between friends and posts 

Graph DB, RDF DB, Relational DB 

◦ Business Intelligence Workload 

 Heavy Joins, Group-By + navigation! 

 Graph DB, RDF DB, Relational DB 

◦ Graph Analytics 

 Graph Diameter, Graph Clustering, etc. 

 Graph Programming Frageworks, Graph DB (RDF DB?, 
Relational DB?) 



LDBC Benchmark Status 

 Social Network Benchmark 

 Semantic Publishing Benchmark 

◦ BBC use case (BBC data + queries) 

 Continuous updates 

 Aggregation queries 

 Light-weight RDF reasoning 



LDBC Next Steps 

 Benchmark Interim Reports 

◦ November 2013 

◦ SNB and Semantic Publishing 

 

 Meet LDBC @ GraphConnect 

◦ 3rd Techical User Community (TUC) meeting 

◦ London, November 19, 2013 

 



Conclusion 

 LDBC: a new graph/RDF benchmarking 

initiative 

◦ EU initatiated, Industry supported 

◦ benchmarks under development (SNB, SPB) 

 more to follow 

 Choke-point based benchmark 

development 

◦ Graph Correlation  



LDBC 

thank you very much. 

Questions? 


