
LDBC

Benchmarking Graph Data

Management Systems

Peter Boncz

 make competing

products

comparable

 accelerate

progress, make

technology

viable

Why Benchmarking?

© Jim Gray, 2005

What is the LDBC?

Linked Data Benchmark Council = LDBC

 Industry entity similar to TPC (www.tpc.org)

 Focusing on graph and RDF store benchmarking

Kick-started by an EU project

 Runs from September 2012 – March 2015

 9 project partners:

 Will continue independently after the EU project

http://www.tpc.org/

LDBC Benchmark Design

Developed by so-called “task forces”

 Requirements analysis and use case selection.

◦ Technical User Community (TUC)

 Benchmark specification.

◦ data generator

◦ query workload

◦ metrics

◦ reporting format

 Benchmark implementation.

◦ tools (query drivers, data generation, validation)

◦ test evaluations

 Auditing

◦ auditing guide

◦ auditor training

LDBC: what systems?

Benchmarks for:

 RDF stores (SPARQL speaking)

◦ Virtuoso, OWLIM, BigData, Allegrograph,…

 Graph Database systems

◦ Neo4j, DEX, InfiniteGraph, …

 Graph Programming Frameworks

◦ Giraph, Green Marl, Grappa, GraphLab,…

 Relational Database systems

LDBC: functionality

Benchmarks for:

 Transactional updates in (RDF) graphs

 Business Intelligence queries over graphs

 Graph Analytics (e.g. graph clustering)

 Complex RDF workload, e.g. including

reasoning, or for data integration

Anything relevant for RDF and graph data

management systems

LDBC:organization

 Board of Directors
◦ Formed by LDBC member organizations

 Task Forces
Takes care of a Benchmark or set of benchmarks

from beginning to end
 Semantic Publishing Benchmark (SPB)

 Social Network Benchmark (SNB)

 Technical User Community (TUC)
◦ Regular meetings with professional users

 End User Community
◦ Initiates activities spring 2014

◦ Draft Benchmark launches SPB & SNB

SPB scenario: Semantic Publishing

SPB scope

 The scenario involves a media/ publisher
organization that maintains semantic metadata
about its Journalistic assets (articles, photos,
videos, papers, books, etc), also called Creative
Works

 The Semantic Publishing Benchmark simulates:

◦ Consumption of RDF metadata (Creative Works)

◦ Updates of RDF metadata, related to Annotations

 Aims to be an industrially mature RDF database
benchmark (SPARQL1.1, some reasoning, text

and GIS queries, backup&restore)

SNB Scenario: Social Network Analysis

• Intuitive: everybody knows what a SN is
– Facebook, Twitter, LinkedIn, …

• SNs can be easily represented as a graph
– Entities are the nodes (Person, Group, Tag, Post, ...)
– Relationships are the edges (Friend, Likes, Follows, …)

• Different scales: from small to very large SNs
– Up to billions of nodes and edges

• Multiple query needs:
– interactive, analytical, transactional

• Multiple types of uses:
– marketing, recommendation, social interactions, fraud

detection, ...

Audience

• For developers facing graph processing tasks

– recognizable scenario to compare merits of different
products and technologies

• For vendors of graph database technology

– checklist of features and performance characteristics

• For researchers, both industrial and academic

– challenges in multiple choke-point areas such as graph
query optimization and (distributed) graph analysis

What was developed?

• Four main elements:
– data schema: defines the structure of the data

– workloads: defines the set of operations to perform

– performance metrics: used to measure (quantitatively)
the performance of the systems

– execution rules: defined to assure that the results
from different executions of the benchmark are valid
and comparable

• Software as Open Source (GitHub)
– data generator, query drivers, validation tools, ...

SNB: Data Generator

• Specified in UML for portability
– Classes
– associations between classes
– Attributes for classes and associations

• Some of the relationships represent dimensions
– Time (Y,QT,Month,Day)
– Geography (Continent,Country,Place)

• Data Formats
– CSV
– RDF (Turtle + N3)

LDBC Social Network Benchmark (SNB)

User

User

User

User

Photo

InRelationShip
User

“Yamaku”

“EPFL”

“Switzerland”

like

Data Schema

Main entity

Relationships

Profile

Interactions

Dimension

Dimension

Data Schema

Workloads

• On-Line: tests a system's throughput with relatively
simple queries with concurrent updates
– Show all photos posted by my friends that I was tagged in

• Business Intelligence: consists of complex structured
queries for analyzing online behavior
– Influential people the topic of open source development?

• Graph Analytics: tests the functionality and scalability
on most of the data as a single operation
– PageRank, Shortest Path(s), Community Detection

Workloads by system

System Interactive Business Intelligence Graph Analytics

Graph databases Yes Yes Maybe

Graph programming
frameworks

- Yes Yes

RDF databases Yes Yes -

Relational databases Yes Yes

Maybe, by keeping
state in temporary

tables, and using the
functional features of

PL-SQL

NoSQL Key-value Maybe Maybe -

NoSQL MapReduce - Maybe Yes

Roadmap for the Keynote

Choke-point based benchmark design

 What are Choke-points?

◦ examples from good-old TPC-H

◦ relational database benchmarking

 A Graph benchmark Choke-Point, in-depth:

◦ Structural Correlation in Graphs

◦ and what we do about it in LDBC

 Wrap up

Keynote Roadmap

 LDBC and its benchmarks

 Benchmark Design “choke points”

 Correlated Graph Generation

 SNB Details & Status

 Conclusion

Database Benchmark Design

Desirable properties:

 Relevant.

 Representative.

 Understandable.

 Economical.

 Accepted.

 Scalable.

 Portable.

 Fair.

 Evolvable.

 Public.

 Jim Gray (1991) The Benchmark Handbook for Database

 and Transaction Processing Systems

 Dina Bitton, David J. DeWitt, Carolyn Turbyfill (1993)

 Benchmarking Database Systems: A Systematic Approach

Multiple TPCTC papers, e.g.:

 Karl Huppler (2009) The Art of Building a Good Benchmark

Stimulating Technical Progress

 An aspect of ‘Relevant’

 The benchmark metric

◦ depends on,

◦ or, rewards:

solving certain

technical challenges

“Choke Point”

(not commonly solved by technology at benchmark
design time)

Benchmark Design with Choke Points

Choke-Point = well-chosen difficulty in the workload

 “difficulties in the workloads”

◦ arise from Data (distribs)+Query+Workload

◦ there may be different technical solutions to

address the choke point

 or, there may not yet exist optimizations (but should

not be NP hard to do so)

 the impact of the choke point may differ among

systems

Benchmark Design with Choke Points

Choke-Point = well-chosen difficulty in the workload

 “difficulties in the workloads”

 “well-chosen”

◦ the majority of actual systems do not handle

the choke point very well

◦ the choke point occurs or is likely to occur in

actual or near-future workloads

Example: TPC-H choke points

 Even though it was designed without specific

choke point analysis

 TPC-H contained a lot of interesting challenges

◦ many more than Star Schema Benchmark

◦ considerably more than XMark (XML DB benchmark)

◦ not sure about TPC-DS (yet)

TPCTC 2013: www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf
 “TPC-H Analyzed: Hidden Messages and Lessons Learned from an Influential Benchmark”

TPC-H choke point areas (1/3)

TPCTC 2013: www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf
 “TPC-H Analyzed: Hidden Messages and Lessons Learned from an Influential Benchmark”

TPC-H choke point areas (2/3)

TPCTC 2013: www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf
 “TPC-H Analyzed: Hidden Messages and Lessons Learned from an Influential Benchmark”

TPC-H choke point areas (3/3)

TPCTC 2013: www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf
 “TPC-H Analyzed: Hidden Messages and Lessons Learned from an Influential Benchmark”

CP1.4 Dependent GroupBy Keys
SELECT c_custkey, c_name, c_acctbal,

 sum(l_extendedprice * (1 - l_discount)) as revenue,

n_name, c_address, c_phone, c_comment

FROM customer, orders, lineitem, nation

WHERE c_custkey = o_custkey and l_orderkey = o_orderkey

 and o_orderdate >= date '[DATE]'

 and o_orderdate < date '[DATE]' + interval '3' month

 and l_returnflag = 'R‘ and c_nationkey = n_nationkey

GROUP BY

 c_custkey, c_name, c_acctbal, c_phone, n_name,

 c_address, c_comment

ORDER BY revenue DESC

Q10

TPCTC 2013: www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf
 “TPC-H Analyzed: Hidden Messages and Lessons Learned from an Influential Benchmark”

CP1.4 Dependent GroupBy Keys
SELECT c_custkey, c_name, c_acctbal,

 sum(l_extendedprice * (1 - l_discount)) as revenue,

n_name, c_address, c_phone, c_comment

FROM customer, orders, lineitem, nation

WHERE c_custkey = o_custkey and l_orderkey = o_orderkey

 and o_orderdate >= date '[DATE]'

 and o_orderdate < date '[DATE]' + interval '3' month

 and l_returnflag = 'R‘ and c_nationkey = n_nationkey

GROUP BY

 c_custkey, c_name, c_acctbal, c_phone,

 c_address, c_comment, n_name

ORDER BY revenue DESC

Q10

TPCTC 2013: www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf
 “TPC-H Analyzed: Hidden Messages and Lessons Learned from an Influential Benchmark”

TPCTC 2013: www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf
 “TPC-H Analyzed: Hidden Messages and Lessons Learned from an Influential Benchmark”

CP1.4 Dependent GroupBy Keys

 Functional dependencies:

 c_custkey c_name, c_acctbal, c_phone,

c_address, c_comment, c_nationkey n_name

 Group-by hash table should exclude the

colored attrs less CPU+ mem footprint

 in TPC-H, one can choose to declare

primary and foreign keys (all or nothing)

◦ this optimization requires declared keys

◦ Key checking slows down RF (insert/delete)

Exasol:

“foreign key check” phase after load

CP2.2 Sparse Joins

 Foreign key (N:1) joins towards a relation

with a selection condition

◦ Most tuples will *not* find a match

◦ Probing (index, hash) is the most expensive

activity in TPC-H

 Can we do better?

◦ Bloom filters!

TPCTC 2013: www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf
 “TPC-H Analyzed: Hidden Messages and Lessons Learned from an Influential Benchmark”

CP2.2 Sparse Joins

 Foreign key (N:1) joins towards a relation

with a selection condition

2G cycles 29M probes cost would have been 14G cycles ~= 7 sec

1.5G cycles 200M probes 85% eliminated

probed: 200M tuples

result: 8M tuples

 1:25 join hit ratio

Q21

Vectorwise:

TPC-H joins typically accelerate 4x

Queries accelerate 2x

CP5.2 Subquery Rewrite
SELECT sum(l_extendedprice) / 7.0 as avg_yearly

FROM lineitem, part

WHERE p_partkey = l_partkey

 and p_brand = '[BRAND]'

 and p_container = '[CONTAINER]'

 and l_quantity <(SELECT 0.2 * avg(l_quantity)

 FROM lineitem

 WHERE l_partkey = p_partkey)

This subquery can be extended with restrictions from
the outer query.

 SELECT 0.2 * avg(l_quantity)

 FROM lineitem

 WHERE l_partkey = p_partkey

 and p_brand = '[BRAND]'

 and p_container = '[CONTAINER]'

+ CP5.3 Overlap between Outer- and Subquery.

Q17

Hyper:

CP5.1+CP5.2+CP5.3

results in 500x faster

Q17

Keynote Roadmap

 LDBC and its benchmarks

 Benchmark Design “choke points”

 Correlated Graph Generation

 SNB Details & Status

 Conclusion

Data correlations between attributes

SELECT personID from person

WHERE firstName = AND addressCountry = ‘Germany’ ‘Joachim’

SELECT personID from person

WHERE firstName = AND addressCountry = ‘Italy’ ‘Cesare’

 Query optimizers may underestimate or overestimate the result size of

conjunctive predicates

Anti-Correlation

Loew Prandelli Joachim Cesare Cesare Joachim

SELECT COUNT(*)

FROM paper pa1 JOIN conferences cn1 ON pa1.journal = jn1.ID

 paper pa2 JOIN conferences cn2 ON pa2.journal = jn2.ID

WHERE pa1.author = pa2.author AND

 cn1.name = ‘VLDB’ AND cn2.name =

Data correlations between attributes

‘SIGMOD’

SELECT COUNT(*)

FROM paper pa1 JOIN conferences cn1 ON pa1.journal = cn1.ID

 paper pa2 JOIN conferences cn2 ON pa2.journal = cn2.ID

WHERE pa1.author = pa2.author AND

 cn1.name = ‘VLDB’ AND cn2.name =

Data correlations over joins

‘Nature’

‘SIGMOD’

 A challenge to the optimizers to adjust estimated join hit ratio

 pa1.author = pa2.author

 depending on other predicates

 Correlated predicates are still a frontier area in database research

 What makes graphs interesting are the connectivity patterns

• who is connected to who?

 structure typically depends on the (values) attributes of nodes

 Structural Correlation (choke point)

• amount of common friends

• shortest path between two persons search complexity in a social network

varies wildly between two random persons

• e.g. colleagues at the same company

 No existing graph benchmark specifically tests for the effects of correlations

 Synthetic graphs used for benchmarking do not have structural correlations

Handling Correlation: a choke point for Graph DBs

Need a data generator generating synthetic graph

with data/structure correlations

 How do data generators generate values? E.g. FirstName

Generating Correlated Property Values

 How do data generators generate values? E.g. FirstName

 Value Dictionary D()

• a fixed set of values, e.g.,

 {“Andrea”,“Anna”,“Cesare”,“Camilla”,“Duc”,“Joachim”, .. }

 Probability density function F()

• steers how the generator chooses values

 cumulative distribution over dictionary entries determines which value to pick

• could be anything: uniform, binomial, geometric, etc…

 geometric (discrete exponential) seems to explain many natural phenomena

Generating Property Values

 How do data generators generate values? E.g. FirstName

 Value Dictionary D()

 Probability density function F()

 Ranking Function R()

• Gives each value a unique rank between one and |D|

determines which value gets which probability

• Depends on some parameters (parameterized function)

 value frequency distribution becomes correlated by the parameters or R()

Generating Correlated Property Values

 How do data generators generate values? E.g. FirstName

 Value Dictionary D()

{“Andrea”,“Anna”,“Cesare”,“Camilla”,“Duc”,“Joachim”,“Leon”,“Orri

 Probability density function F()

 geometric distribution

 Ranking Function R(gender,country,birthyear)

• gender, country, birthyear correlation parameters

Generating Correlated Property Values

How to implement R()?

We need a table storing

|Gender| X |Country| X |BirthYear| X |D|

Solution:
- Just store the rank of the top-N values, not all|D|

- Assign the rank of the other dictionary values randomly

limited #combinations

Potentially

Many!

Compact Correlated Property Value Generation

Using geometric distribution for function F()

 Main source of dictionary values from DBpedia (http://dbpedia.org)

 Various realistic property value correlations ()

e.g.,

 (person.location,person.gender,person.birthDay) person.firstName

 person.location person.lastName

 person.location person.university

person.createdDate person.photoAlbum.createdDate

….

Correlated Value Property in LDBC SNB

http://dbpedia.org/
http://dbpedia.org/

Correlated Edge Generation

P4

P5

Student

“Anna”

“University of

Leipzig”

“Germany”

“1990”

P1

“University

of Leipzig”

“Laura”

“1990”

<Britney

Spears>

<Britney

Spears>

P3

“University

of Leipzig”
“1990”

P2

“University of

Amsterdam”

“Netherlands”

Correlated Edge Generation

P4

P5

Student

“Anna”

“University of

Leipzig”

“Germany”

“1990”

P1

“University

of Leipzig”

“Laura”

“1990”

<Britney

Spears>

<Britney

Spears>

P3

“University

of Leipzig”
“1990”

P2

“University of

Amsterdam”

“Netherlands”

Correlated Edge Generation

P4

P5

Student

“Anna”

“University of

Leipzig”

“Germany”

“1990”

P1

“University

of Leipzig”

“Laura”

“1990”

<Britney

Spears>

<Britney

Spears>

P3

“University

of Leipzig”
“1990”

P2

“University of

Amsterdam”

“Netherlands”

Simple approach

P

4

P

5

Student

“Anna”

“University of

Leipzig”

“Germany

”

“1990”

P

1

“University

of Leipzig”

“Laura

”

“1990

”

<Britney

Spears>

<Britney

Spears>

P

3

“Universit

y of

Leipzig” “1990

”

P

2

“University of

Amsterdam”
“Netherland

s”

Danger: this is very expensive to compute on a large graph!

(quadratic, random access)

• Compute similarity of two nodes

based on their (correlated) properties.

• Use a probability density function

wrt to this similarity for connecting

nodes

connection

probability

highly similar less similar

Our observation

P

4

P

5

Student

“Anna”

“University of

Leipzig”

“Germany

”

“1990”

P

1

“University

of Leipzig”

“Laura

”

“1990

”

<Britney

Spears>

<Britney

Spears>

P

3

“Universit

y of

Leipzig” “1990

”

P

2

“University of

Amsterdam”
“Netherland

s”

Probability that two nodes are connected is skewed w.r.t the

similarity between the nodes (due to probability distr.)

connection

probability

highly similar less similar

Window

Trick: disregard nodes with too large similarity distance

(only connect nodes in a similarity window)

Correlation Dimensions

 Similar metric

 Sort nodes on similarity (similar nodes are brought near each other)

 Probability function

 Pick edge between two nodes based on their ranked distance

 (e.g. geometric distribution, again)

Similarity metric +

Probability function

P1

London

P5

London

P3

Eton

P2

Eton

P4

Cambridge

<Ranking along the “Having study together” dimension>

 we use space filling curves (e.g. Z-order) to get a linear dimension

 Sort nodes using MapReduce on similarity metric

 Reduce function keeps a window of nodes to generate edges

• Keep low memory usage (sliding window approach)

 Slide the window for multiple passes, each pass corresponds to one correlation

dimension (multiple MapReduce jobs)

• for each node we choose degree per pass (also using a prob. function)

 steers how many edges are picked in the window for that node

Generate edges along correlation dimensions

W

 Having studied together

 Having common interests (hobbies)

 Random dimension

• motivation: not all friendships are explainable (…)

(of course, these two correlation dimensions are still a gross simplification of reality

 but this provides some interesting material for benchmark queries)

Correlation Dimensions in LDBC SNB

TPCTC 2012: www.cwi.nl/~boncz/tpctc2012_pham_boncz_erling.pdf
 “S3G2: A Scalable Structure-correlated Social Graph Generator”

 Social graph characteristics

• Output graph has similar characteristics as observed in real social network

(i.e., “small-world network” characteristics)

 - Power-law social degree distribution

 - Low average path-length

 - High clustering coefficient

 Scalability

• Generates up to 1.2 TB of data (1.2 million users) in half an hour

 - Runs on a cluster of 16 nodes

 (part of the SciLens cluster, www.scilens.org)

• Scales out linearly

SNB Data Generator results

TPCTC 2012: www.cwi.nl/~boncz/tpctc2012_pham_boncz_erling.pdf
 “S3G2: A Scalable Structure-correlated Social Graph Generator”

http://www.scilens.org/

 correlation between values (“properties”) and connection pattern in graphs

affects many real-world data management tasks

use as a choke point in the Social Network Benchmark

 generating huge correlated graphs is hard!

MapReduce algorithm that approximates correlation probabilities with

windowed-approach

See: for more info

• https://github.com/ldbc

• SNB task-force wiki http://www.ldbc.eu:8090/display/TUC

Summary

https://github.com/ldbc
https://github.com/ldbc
http://www.ldbc.eu:8090/display/TUC

Keynote Roadmap

 LDBC and its benchmarks

 Benchmark Design “choke points”

 Correlated Graph Generation

 SNB Details & Status

 Conclusion

Validation: Metrics

 Largest Connected Component

 Average Clustering Coefficient

 Diameter

 Average Path Length

 Hop-plot User-Knows

 Attribute distributions

 Degree distributions

 Time evolution

Statistics (100K users / 1 year)

Group Statistic Value

Settings
Number of users (Person instances) 100,000

Number of years 1

Elements

Nodes 80,767,146

Edges 350,352,746

Attribute Values 500,108,979

RDF triples 942,563,664

Metrics

Largest connected component (community) 99.78%

Average path length (small world) 3.93

Average clustering coefficient (transitivity) 0.11

Largest distance between two nodes (diameter) 11

Knows relationship
Edges 2,887,796

Diameter 6

Friends Distribution @ 1M persons

Interactive Query Set

• Tests system throughput with relatively simple queries and
concurrent updates

• Current set: 12 read-only queries
• For each query:

– Name and detailed description in plain English
– List of input parameters
– Expected result: content and format
– Textual functional description
– Relevance:

• textual description (plain English) of the reasoning for including this query in
the workload

• discussion about the technical challenges (Choke Points) targeted

– Validation parameters and validation results
– SPARQL query

Some SNB Interactive Choke Points

• Graph Traversals. Query execution time heavily depends
on the ability to quickly traverse friends graph.

• Plan Variablility. Each query have many different best
plans depending on parameter choices (eg. Hash- vs
index-based joins).

• Top k and distinct: Many queries return the first results
in a specific order: Late projection, pushing conditions
from the sort into the query

• Repetitive short queries, differing only in literals,

opportunity for query plan recycling

Choke Point Coverage
Group Choke Point Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

Aggregation Performance

1.2 + +

1.6 +

1.7 +

Join Performance

2.3 +

2.4 + +

2.6 + + + +

2.7 + + + + + + +

Data Access Locality
3.3 +

3.5 + + +

Expression Calculation 4.2a +

Correlated Subqueries
5.1 +

5.3 +

Parallelism and Concurrency 6.3 +

RDF and Graph Specifics

7.1 + +

7.2 + +

7.3 +

Example: Q3

Name: Friends within 2 hops that have been in two countries

Description:

 Find Friends and Friends of Friends of the user A that have made a post in the

foreign countries X and Y within a specified period. We count only posts that are

made in the country that is different from the country of a friend. The result

should be sorted descending by total number of posts, and then by person URI. Top

20 should be shown. The user A (as friend of his friend) should not be in the

result

Parameter:

 - Person

 - CountryX

 - CountryY

 - startDate - the beginning of the requested period

 - Duration - requested period in days

Result:

 - Person.id, Person.firstname, Person.lastName

 - Number of post of each country and the sum of all posts

Relevance:

 - Choke Points: CP3.3

 - If one country is large but anticorrelated with the country of self then

 processing this before a smaller but positively correlated country can be

 beneficial

Example: Q5 - SPARQL

select ?group count (*)

where {

 {select distinct ?fr

 where {

 {%Person% snvoc:knows ?fr.} union

 {%Person% snvoc:knows ?fr2.

 ?fr2 snvoc:knows ?fr. filter (?fr != %Person%)}

 }

 } .

 ?group snvoc:hasMember ?mem . ?mem snvoc:hasPerson ?fr .

 ?mem snvoc:joinDate ?date . filter (?date >= "%Date0%"^^xsd:date) .

 ?post snvoc:hasCreator ?fr . ?group snvoc:containerOf ?post

}

group by ?group

order by desc(2) ?group

limit 20

Example: Q5 - Cypher

MATCH (person:Person)-[:KNOWS*1..2]-(friend:Person)

WHERE person.id={person_id}

MATCH (friend)<-[membership:HAS_MEMBER]-(forum:Forum)

WHERE membership.joinDate>{join_date}

MATCH (friend)<-[:HAS_CREATOR]-(comment:Comment)

WHERE (comment)-[:REPLY_OF*0..]->(:Comment)-[:REPLY_OF]->(:Post)<-

[:CONTAINER_OF]-(forum)

RETURN forum.title AS forum, count(comment) AS commentCount

ORDER BY commentCount DESC

MATCH (person:Person)-[:KNOWS*1..2]-(friend:Person)

WHERE person.id={person_id}

MATCH (friend)<-[membership:HAS_MEMBER]-(forum:Forum)

WHERE membership.joinDate>{join_date}

MATCH (friend)<-[:HAS_CREATOR]-(post:Post)<-[:CONTAINER_OF]-(forum)

RETURN forum.title AS forum, count(post) AS postCount

ORDER BY postCount DESC

Example: Q5 - DEX
v.setLongVoid(personId);

long personOID = graph.findObject(personId, v);

Objects friends = graph.neighbors(personOID, knows, EdgesDirection.Outgoing);

Objects allFriends = graph.neighbors(friends, knows, EdgesDirection.Outgoing);

allFriends.union(friends);

allFriends.remove(personOID);

friends.close();

Objects members = graph.explode(allFriends, hasMember, EdgesDirection.Ingoing);

v.setTimestampVoid(date);

Objects candidate = graph.select(joinDate, Condition.GreaterEqual, v, members);

Objects finalSelection = graph.tails(candidate);

candidate.close();

members.close();

Objects posts = graph.neighbors(allFriends, hasCreator, EdgesDirection.Ingoing);

ObjectsIterator iterator = finalSelection.iterator();

while (iterator.hasNext()) {

 long oid = iterator.next();

 Container c = new Container();

 Objects postsGroup = graph.neighbors(oid, containerOf, EdgesDirection.Outgoing);

 Objects moderators = graph.neighbors(oid, hasModerator, EdgesDirection.Outgoing);

 long moderatorOid = moderators.any();

 moderators.close();

 Objects postsModerator = graph.neighbors(moderatorOid, hasCreator, EdgesDirection.Ingoing);

 postsGroup.difference(postsModerator);

 postsModerator.close();

 postsGroup.intersection(posts);

 long count = postsGroup.size();

 if (count > 0) {

 graph.getAttribute(oid, forumId, v);

 c.row[0] = db.getForumURI(v.getLong());

 c.compare2 = String.valueOf(v.getLong());

 c.row[1] = String.valueOf(count);

 c.compare = count;

 results.add(c);

 }

 postsGroup.close()

}

LDBC query driver

• Manages multiple parallel database clients
– High-throughput testing, cluster-ready
– Started out as a fork of YCSB

• Interactive Workload
– Insert queries:

• Bulk load first years of dataset
• Play out “last year” of daaset as inserts
challenge: respect data dependencies in the graph
 time window protocol between client processes

– Read-only Query Set
• Query set with parameters
 challenge: generate relatively stable query behavior
 use data mining on dataset to find “equivalence classes” in

parameters

Some Experiments

• Virtuoso (RDF)
– 100k users during 3 years period (3.3 billion

triples, 60GB)

– Ten SPARQL query mixes

– 4 x Intel Xeon 2.30GHz CPU, 193 GB of RAM

• DEX (Graph Database)
– Validation setup: 10k users during 3 years (19GB)

– Validation query set and parameters (API-based)

– 2 x Intel Xeon 2.40Ghz CPU, 128 GB of RAM

Virtuoso Interactive Workload

• Some queries could not be considered as truly interactive
– e.g. Q4, Q5 and Q9

– … still all queries are very interesting challenges

• ”Irregular” data distribution reflecting the reality of the SN
– … but complicates the selection of query parameters

Exploration in Scale

• 3.3 bn RDF triples per 100K users, 24G in triples,
36G in literals

• 2/3 of data in interactive working set, 1/4 in BI
working set

• scale out becomes increasingly necessary after 1M
• 10-100M users are data center scales

– as in real social networks
– larger scales will favor space efficient data models, e.g.

column store with a schema, but
– larger scales also have greater need for schema-last

features

DEX Interactive Workload

• Query validation (no SPARQL)

• Identified some of implementation choke points

• New optimizations implemented and tested

Keynote Roadmap

• LDBC and its benchmarks

• Benchmark Design “choke points”

• Correlated Graph Generation

• SNB Details & Results

• Conclusion

Status

 First Draft Release of SNB & SPB

◦ Data generators

◦ Query Drivers

◦ Documentation

 Launch of user-facing LDBC website

Expected April/May 2014

Pointers

 Code&Queries: github.com/ldbc

◦ ldbc_socialnet_bm

 ldbc_socialnet_dbgen

 ldbc_socialnet_qgen

 Wiki: ldbc.eu:8090/display/TUC

◦ Background & Discussions + Detailed report

 “November 213 SNB Task Force Report”

 LDBC Technical User Community (TUC)
meeting:

◦ Thursday April 3, CWI Amsterdam

Conclusion

 LDBC: a new graph/RDF benchmarking

initiative

◦ EU initatiated, Industry supported

◦ benchmarks under development (SNB, SPB)

 more to follow

 Choke-point based benchmark

development

◦ SNB: querying and analyzing Correlated graphs

Thank you very much!!

Questions?

