

Benchmarking Graph Data Management Systems

Peter Boncz

Why Benchmarking?

What is the LDBC?

Linked Data Benchmark Council = LDBC

- Industry entity similar to TPC (<u>www.tpc.org</u>)
- Focusing on graph and RDF store benchmarking

Kick-started by an EU project

- Runs from September 2012 March 2015
- 9 project partners:

• Will continue independently after the EU project

LDBC Benchmark Design

Developed by so-called "task forces"

- Requirements analysis and use case selection.
 - Technical User Community (TUC)
- Benchmark specification.
 - data generator
 - query workload
 - metrics
 - reporting format
- Benchmark implementation.
 - tools (query drivers, data generation, validation)
 - test evaluations
- Auditing
 - auditing guide
 - auditor training

LDBC: what systems?

Benchmarks for:

- RDF stores (SPARQL speaking)
 - Virtuoso, OWLIM, BigData, Allegrograph,...
- Graph Database systems
 - Neo4j, DEX, InfiniteGraph, ...
- Graph Programming Frameworks
 - Giraph, Green Marl, Grappa, GraphLab,...
- Relational Database systems

LDBC: functionality

Benchmarks for:

- Transactional updates in (RDF) graphs
- Business Intelligence queries over graphs
- Graph Analytics (e.g. graph clustering)
- Complex RDF workload, e.g. including reasoning, or for data integration

Anything relevant for RDF and graph data management systems

LDBC:organization

- Board of Directors
 - Formed by LDBC member organizations

Task Forces

Takes care of a Benchmark or set of benchmarks from beginning to end

- Semantic Publishing Benchmark (SPB)
- Social Network Benchmark (SNB)
- Technical User Community (TUC)
 - Regular meetings with professional users
- End User Community
 - Initiates activities spring 2014
 - Draft Benchmark launches SPB & SNB

SPB scenario: Semantic Publishing

Home Football F	Formula 1 Cricket Rugby U Rugby L Tennis Golf London 2012		Mo	re Spo	rts 💌				
Countries Bulgar	Athletes	Schedule & Results Medals	Olymp	ne Spo	rts 💌				
Kare 🗹 🗹									
Information on this page will not be updated. Facts were accurate as of August 13, 2012.									
Bulgaria									
		Medal Table							
		Show me: Countries 💌 G	0						
2 202		Rank Country	1	5 6	Total				
	880	1 🛛 🗮 United States	46 2	9 29	104				
Sofia		2 🌥 China	38 2	27 23	88				
BULGARIA		3 Great Britain & N. Ireland	29 1	7 19	65				
	Team GB's Campbell	63 💻 Bulgaria	0	1 1	2				
	socuros model	1	/iew full	Bulgaria	a table				
Key Facts	Secures medal								
(pre-2012) Wrestling	Luke Campbell is guaranteed an Olympic medal after beating Bulgaria's Detelin Dalakliev in his bantamweight semi-final.	Bulgaria Medallists							
Capital	5 Aug 12	Bronze			V				
Sofia	Bulgaria beat GB volleyball	Men's Heavyweight (91kg)						
Population 7 500 000	men								
Size	MEN'S VULLEYBALL 29 Jul 12	Silver			V				
110,994km²		Women's Freestyle 7	ova 72kg						
Lanquaqes	Great Britain's men produce a battling display on their Ulympic debut but are								

SPB scope

- The scenario involves a media/ publisher organization that maintains semantic metadata about its Journalistic assets (articles, photos, videos, papers, books, etc), also called Creative Works
- The Semantic Publishing Benchmark simulates:
 - Consumption of RDF metadata (Creative Works)
 - Updates of RDF metadata, related to Annotations
- Aims to be an industrially mature RDF database benchmark (SPARQLI.I, some reasoning, text and GIS queries, backup&restore)

SNB Scenario: Social Network Analysis

- Intuitive: everybody knows what a SN is
 - Facebook, Twitter, LinkedIn, ...
- SNs can be easily represented as a graph
 - Entities are the nodes (Person, Group, Tag, Post, ...)
 - Relationships are the edges (Friend, Likes, Follows, ...)
- Different scales: from small to very large SNs
 - Up to billions of nodes and edges
- Multiple query needs:
 - interactive, analytical, transactional
- Multiple types of uses:
 - marketing, recommendation, social interactions, fraud detection, ...

Audience

- For **developers** facing graph processing tasks
 - recognizable scenario to compare merits of different products and technologies
- For vendors of graph database technology

 checklist of features and performance characteristics
- For researchers, both industrial and academic
 - challenges in multiple choke-point areas such as graph query optimization and (distributed) graph analysis

What was developed?

• Four main elements:

- data schema: defines the structure of the data
- workloads: defines the set of operations to perform
- *performance metrics*: used to measure (quantitatively) the performance of the systems
- execution rules: defined to assure that the results from different executions of the benchmark are valid and comparable
- Software as Open Source (GitHub)
 - data generator, query drivers, validation tools, ...

SNB: Data Generator

- Specified in UML for portability
 - Classes
 - associations between classes
 - Attributes for classes and associations
- Some of the relationships represent dimensions – Time (Y,QT,Month,Day)
 - Geography (Continent, Country, Place)
- Data Formats
 - CSV
 - RDF (Turtle + N3)

LDBC Social Network Benchmark (SNB)

Data Schema

Data Schema

Workloads

- On-Line: tests a system's throughput with relatively simple queries with concurrent updates
 - Show all photos posted by my friends that I was tagged in
- Business Intelligence: consists of complex structured queries for analyzing online behavior
 - Influential people the topic of open source development?
- **Graph Analytics**: tests the functionality and scalability on most of the data as a single operation
 - PageRank, Shortest Path(s), Community Detection

Workloads by system

System	Interactive	Business Intelligence	Graph Analytics
Graph databases	Yes	Yes	Maybe
Graph programming frameworks	-	Yes	Yes
RDF databases	Yes	Yes	-
Relational databases	Yes	Yes	Maybe, by keeping state in temporary tables, and using the functional features of PL-SQL
NoSQL Key-value	Maybe	Maybe	-
NoSQL MapReduce	-	Maybe	Yes

Roadmap for the Keynote

Choke-point based benchmark design

- What are Choke-points?
 - examples from good-old TPC-H
 - → relational database benchmarking
- A Graph benchmark Choke-Point, in-depth:
 - Structural Correlation in Graphs
 - and what we do about it in LDBC
- Wrap up

Keynote Roadmap

- LDBC and its benchmarks
- Benchmark Design → "choke points"
- Correlated Graph Generation
- SNB Details & Status
- Conclusion

Database Benchmark Design

Desirable properties:

- Relevant.
- Representative.
- Understandable.
- Economical.
- Accepted.
- Scalable.
- Portable.
- Fair.
- Evolvable.
- Public.

Jim Gray (1991) The Benchmark Handbook for Database and Transaction Processing Systems

Dina Bitton, David J. DeWitt, Carolyn Turbyfill (1993) Benchmarking Database Systems: A Systematic Approach

Multiple TPCTC papers, e.g.:

Karl Huppler (2009) The Art of Building a Good Benchmark

Stimulating Technical Progress

- An aspect of 'Relevant'
- The benchmark metric
 - depends on,
 - or, rewards:
 solving certain
 technical challenges

(not commonly solved by technology at benchmark design time)

Benchmark Design with Choke Points

Choke-Point = well-chosen difficulty in the workload

- "difficulties in the workloads"
 - arise from Data (distribs)+Query+Workload
 - there may be different technical solutions to address the choke point
 - or, there may not yet exist optimizations (but should not be NP hard to do so)
 - the impact of the choke point may differ among systems

Benchmark Design with Choke Points

Choke-Point = well-chosen difficulty in the workload

- "difficulties in the workloads"
- "well-chosen"
 - the majority of actual systems do not handle the choke point very well
 - the choke point occurs or is likely to occur in actual or near-future workloads

Example: TPC-H choke points

- Even though it was designed without specific choke point analysis
- TPC-H contained a lot of interesting challenges
 - many more than Star Schema Benchmark
 - considerably more than XMark (XML DB benchmark)
 - not sure about TPC-DS (yet)

TPC-H choke point areas (1/3)

TPC-H choke point areas (2/3)

Q1Q2Q3Q4Q5Q6Q7Q8Q9Q10Q11Q12Q13Q14Q15Q16Q17Q18Q19Q20Q21Q22

TPC-H choke point areas (3/3)

CPI.4 Dependent GroupBy Keys

SELECT c_custkey, c_name, c_acctbal, sum(l_extendedprice * (1 - l_discount)) as revenue, n_name, c_address, c_phone, c_comment FROM customer, orders, lineitem, nation WHERE c_custkey = o_custkey and l_orderkey = o_orderkey and o_orderdate >= date '[DATE]' and o_orderdate < date '[DATE]' + interval '3' month and l_returnflag = 'R' and c_nationkey = n_nationkey GROUP BY c_custkey, c_name, c_acctbal, c_phone, n_name, c address, c comment

ORDER BY revenue DESC

Q10

CPI.4 Dependent GroupBy Keys

SELECT c_custkey, c_name, c_acctbal, sum(l_extendedprice * (1 - l_discount)) as revenue, n_name, c_address, c_phone, c_comment FROM customer, orders, lineitem, nation WHERE c_custkey = o_custkey and l_orderkey = o_orderkey and o_orderdate >= date '[DATE]' and o_orderdate < date '[DATE]' + interval '3' month and l_returnflag = 'R' and c_nationkey = n_nationkey GROUP BY c_custkey, c_name, c_acctbal, c_phone, c address, c comment, n name

ORDER BY revenue DESC

Q10

Exasol: "foreign key check" phase after load

CPI.4 Dependent GroupBy Keys

- Functional dependencies:
 - c_custkey → c_name, c_acctbal, c_phone, c_address, c_comment, c_nationkey → n_name
- Group-by hash table should exclude the colored attrs
 → less CPU+ mem footprint
- in TPC-H, one can choose to declare primary and foreign keys (all or nothing)
 - this optimization requires declared keys
 - Key checking slows down RF (insert/delete)

CP2.2 Sparse Joins

- Foreign key (N:I) joins towards a relation with a selection condition
 - Most tuples will *not* find a match
 - Probing (index, hash) is the most expensive activity in TPC-H
- Can we do better?
 Bloom filters!

CP2.2 Sparse Joins

 Foreign key (N:I) joins towards a relation with a selection condition

probed: 200M tuplesresult: 8M tuples→ 1:25 join hit ratio

Q21

Vectorwise: TPC-H joins typically accelerate 4x Queries accelerate 2x

CP5.2 Subquery Rewrite

Q17

```
SELECT sum(l extendedprice) / 7.0 as avg yearly
FROM lineitem, part
WHERE p partkey = 1 partkey
  and p brand = '[BRAND]'
  and p container = '[CONTAINER]'
  and 1 quantity <(SELECT 0.2 * avg(1 quantity)
                    FROM lineitem
                    WHERE 1 partkey = p partkey)
This subquery can be extended with restrictions from
  the outer query.
```

Hyper: CP5.1+CP5.2+CP5.3 results in 500x faster Q17

```
SELECT 0.2 * avg(l quantity)
                   FROM lineitem
                   WHERE 1 partkey = p partkey
                     and p brand = '[BRAND]'
                     and p container = '[CONTAINER]'
+ CP5.3 Overlap between Outer- and Subquery.
```


Keynote Roadmap

- LDBC and its benchmarks
- Benchmark Design → "choke points"
- Correlated Graph Generation
- SNB Details & Status
- Conclusion

Data correlations between attributes

SELECT personID from person WHERE firstName = 'Joachim' AND addressCountry = 'Germany' Anti-Correlation SELECT personID from person WHERE firstName = 'Cesare' AND addressCountry = 'Italy'

Query optimizers may underestimate or overestimate the result size of conjunctive predicates

Data correlations **between attributes**

```
SELECT COUNT(*)
FROM paper pa1 JOIN conferences cn1 ON pa1.journal = jn1.ID
    paper pa2 JOIN conferences cn2 ON pa2.journal = jn2.ID
WHERE pa1.author = pa2.author AND
    cn1.name = 'VLDB' AND cn2.name = 'SIGMOD'
```

Data correlations over joins

```
SELECT COUNT(*)
FROM paper pa1 JOIN conferences cn1 ON pa1.journal = cn1.ID
    paper pa2 JOIN conferences cn2 ON pa2.journal = cn2.ID
WHERE pa1.author = pa2.author AND
    cn1.name = 'VLDB' AND cn2.name = 'SIGMOD'
```

A challenge to the optimizers to adjust estimated join hit ratio
 pal.author = pa2.author

depending on other predicates

Correlated predicates are still a frontier area in database research

Handling Correlation: a choke point for Graph DBs

What makes graphs interesting are the connectivity patterns

- who is connected to who?
 - → structure typically depends on the (values) attributes of nodes

Structural Correlation (> choke point)

- amount of common friends
- shortest path between two persons search complexity in a social network varies wildly between two random persons
- e.g. colleagues at the same company
- No existing graph benchmark specifically tests for the effects of correlations
- Synthetic graphs used for benchmarking do not have structural correlations

Need a data generator generating synthetic graph with data/structure correlations

Generating **Correlated** Property Values

• How do data generators generate values? E.g. FirstName

Generating Property Values

- How do data generators generate values?
 E.g. FirstName
- Value Dictionary D()
 - a fixed set of values, e.g.,

{"Andrea", "Anna", "Cesare", "Camilla", "Duc", "Joachim", .. }

- Probability density function F()
 - steers how the generator chooses values
 - cumulative distribution over dictionary entries determines which value to pick
 - could be anything: uniform, binomial, geometric, etc...
 - geometric (discrete exponential) seems to explain many natural phenomena

Generating Correlated Property Values

- How do data generators generate values? E.g. FirstName
- Value Dictionary D()
- Probability density function F()
- Ranking Function R()
 - Gives each value a unique rank between one and |D|
 - -determines which value gets which probability
 - Depends on some parameters (parameterized function)
 - value frequency distribution becomes correlated by the parameters or R()

Generating Correlated Property Values

- How do data generators generate values? E.g. FirstName

Compact Correlated Property Value Generation

Using geometric distribution for function F()

. . . .

Correlated Value Property in LDBC SNB

- Main source of dictionary values from DBpedia (<u>http://dbpedia.org</u>)
- Various realistic property value correlations (→)
 e.g.,

 $(person.location,person.gender,person.birthDay) \rightarrow person.firstName person.location \rightarrow person.lastName person.location \rightarrow person.university person.createdDate \rightarrow person.photoAlbum.createdDate$

Correlation Dimensions

Similarity metric + Probability function

Similar metric

Sort nodes on similarity (similar nodes are brought near each other)

London London Eton Eton Cambridge

<Ranking along the "Having study together" dimension> we use space filling curves (e.g. Z-order) to get a linear dimension

Probability function

Pick edge between two nodes based on their **ranked distance** (e.g. geometric distribution, again)

Generate edges along correlation dimensions

nodes for which edges are being generated

- Sort nodes using MapReduce on similarity metric
- Reduce function keeps a window of nodes to generate edges
 - Keep low memory usage (sliding window approach)

 Slide the window for multiple passes, each pass corresponds to one correlation dimension (multiple MapReduce jobs)

• for each node we choose degree per pass (also using a prob. function)

steers how many edges are picked in the window for that node

Correlation Dimensions in LDBC SNB

- Having studied together
- Having common interests (hobbies)
- Random dimension
 - motivation: not all friendships are explainable (...)

(of course, these two correlation dimensions are still a gross simplification of reali but this provides some interesting material for benchmark queries)

TPCTC 2012: www.cwi.nl/~boncz/tpctc2012_pham_boncz_erling.pdf "S3G2: A Scalable Structure-correlated Social Graph Generator"

SNB Data Generator results

Social graph characteristics

• Output graph has similar characteristics as observed in real social network (i.e., *"small-world network"* characteristics)

- Power-law social degree distribution
- Low average path-length
- High clustering coefficient

Scalability

- Generates up to 1.2 TB of data (1.2 million users) in half an hour
 - Runs on a cluster of 16 nodes

(part of the SciLens cluster, <u>www.scilens.org</u>)

Scales out linearly

TPCTC 2012: www.cwi.nl/~boncz/tpctc2012_pham_boncz_erling.pdf "S3G2: A Scalable Structure-correlated Social Graph Generator"

Summary

 correlation between values ("properties") and connection pattern in graphs affects many real-world data management tasks

 \rightarrow use as a choke point in the Social Network Benchmark

generating huge correlated graphs is hard!

MapReduce algorithm that approximates correlation probabilities with windowed-approach

See: for more info

- •<u>https://github.com/ldbc</u>
- SNB task-force wiki <u>http://www.ldbc.eu:8090/display/TUC</u>

Keynote Roadmap

- LDBC and its benchmarks
- Benchmark Design → "choke points"
- Correlated Graph Generation
- SNB Details & Status
- Conclusion

Validation: Metrics

- Largest Connected Component
- Average Clustering Coefficient
- Diameter
- Average Path Length
- Hop-plot User-Knows
- Attribute distributions
- Degree distributions
- Time evolution

Statistics (100K users / I year)

Group	Statistic	Value
Settings	Number of users (Person instances)	100,000
	Number of years	1
Elements	Nodes	80,767,146
	Edges	350,352,746
	Attribute Values	500,108,979
	RDF triples	942,563,664
Metrics	Largest connected component (community)	99.78%
	Average path length (small world)	3.93
	Average clustering coefficient (transitivity)	0.11
	Largest distance between two nodes (diameter)	11
Knows relationship	Edges	2,887,796
	Diameter	6

Friends Distribution @ IM persons

Interactive Query Set

- Tests system throughput with relatively simple queries and concurrent updates
- Current set: 12 read-only queries
- F<mark>or each</mark> query:
 - Name and detailed description in plain English
 - List of input parameters
 - Expected result: content and format
 - Textual functional description
 - Relevance:
 - textual description (plain English) of the reasoning for including this query in the workload
 - discussion about the technical challenges (Choke Points) targeted
 - Validation parameters and validation results
 - SPARQL query

Some SNB Interactive Choke Points

- Graph Traversals. Query execution time heavily depends on the ability to quickly traverse friends graph.
- Plan Variablility. Each query have many different best plans depending on parameter choices (eg. Hash- vs index-based joins).
- Top k and distinct: Many queries return the first results in a specific order: Late projection, pushing conditions from the sort into the query
- Repetitive short queries, differing only in literals, opportunity for query plan recycling

Choke Point Coverage

Group	Choke Point	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12
Aggregation Performance	1.2		+							+			
	1.6									+			
	1.7	+											
Join Performance	2.3	+											
	2.4		+					+					
	2.6					+		+	+		+		
	2.7		+		+	+		+		+	+	+	
Data Access Locality	3.3			+									
	3.5		+						+	+			
Expression Calculation	4.2a									+			
Correlated Subqueries	5.1									+			
	5.3									+			
Parallelism and Concurrency	6.3									+			
RDF and Graph Specifics	7.1	+								+			
	7.2						+						+
	7.3												+

Example: Q3

Name: Friends within 2 hops that have been in two countries

Description:

Find Friends and Friends of Friends of the user A that have made a post in the foreign countries X and Y within a specified period. We count only posts that are made in the country that is different from the country of a friend. The result should be sorted descending by total number of posts, and then by person URI. Top 20 should be shown. The user A (as friend of his friend) should not be in the result

Parameter:

- Person
- CountryX
- CountryY
- startDate the beginning of the requested period
- Duration requested period in days

Result:

- Person.id, Person.firstname, Person.lastName
- Number of post of each country and the sum of all posts

Relevance:

- Choke Points: CP3.3
- If one country is large but anticorrelated with the country of self then processing this before a smaller but positively correlated country can be beneficial

Example: Q5 - SPARQL

```
select ?group count (*)
where {
   {select distinct ?fr
    where {
        {%Person% snvoc:knows ?fr.} union
        {%Person% snvoc:knows ?fr2.
         ?fr2 snvoc:knows ?fr. filter (?fr != %Person%) }
   ?group snvoc:hasMember ?mem . ?mem snvoc:hasPerson ?fr .
   ?mem snvoc:joinDate ?date . filter (?date >= "%Date0%"^^xsd:date) .
   ?post snvoc:hasCreator ?fr . ?group snvoc:containerOf ?post
group by ?group
order by desc(2) ?group
limit 20
```


Example: Q5 - Cypher

```
MATCH (person:Person) - [:KNOWS*1..2] - (friend:Person)
WHERE person.id={person id}
MATCH (friend) <- [membership:HAS MEMBER] - (forum:Forum)</pre>
WHERE membership.joinDate>{join date}
MATCH (friend) <- [:HAS CREATOR] - (comment:Comment)
WHERE (comment) - [:REPLY OF*0..] -> (:Comment) - [:REPLY OF] -> (:Post) <-
   [:CONTAINER OF] - (forum)
RETURN forum.title AS forum, count(comment) AS commentCount
ORDER BY commentCount DESC
MATCH (person: Person) - [:KNOWS*1..2] - (friend: Person)
WHERE person.id={person id}
MATCH (friend) <- [membership:HAS MEMBER] - (forum:Forum)</pre>
WHERE membership.joinDate>{join date}
MATCH (friend) <- [:HAS CREATOR] - (post:Post) <- [:CONTAINER OF] - (forum)
RETURN forum.title AS forum, count(post) AS postCount
ORDER BY postCount DESC
```


Example: Q5 - DEX

```
v.setLongVoid(personId);
 long personOID = graph.findObject(personId, v);
 Objects friends = graph.neighbors (personOID, knows, EdgesDirection.Outgoing);
 Objects allFriends = graph.neighbors(friends, knows, EdgesDirection.Outgoing);
 allFriends.union(friends);
 allFriends.remove(personOID);
 friends.close();
 Objects members = graph.explode(allFriends, hasMember, EdgesDirection.Ingoing);
 v.setTimestampVoid(date);
 Objects candidate = graph.select(joinDate, Condition.GreaterEqual, v, members);
 Objects finalSelection = graph.tails(candidate);
 candidate.close();
 members.close();
 Objects posts = graph.neighbors(allFriends, hasCreator, EdgesDirection.Ingoing);
 ObjectsIterator iterator = finalSelection.iterator();
 while (iterator.hasNext()) {
      long oid = iterator.next();
      Container c = new Container();
      Objects postsGroup = graph.neighbors(oid, containerOf, EdgesDirection.Outgoing);
      Objects moderators = graph.neighbors (oid, hasModerator, EdgesDirection.Outgoing);
      long moderatorOid = moderators.any();
      moderators.close();
      Objects postsModerator = graph.neighbors(moderatorOid, hasCreator, EdgesDirection.Ingoing);
      postsGroup.difference(postsModerator);
      postsModerator.close();
      postsGroup.intersection(posts);
      long count = postsGroup.size();
      if (count > 0) {
        graph.getAttribute(oid, forumId, v);
        c.row[0] = db.getForumURI(v.getLong());
        c.compare2 = String.valueOf(v.getLong());
        c.row[1] = String.valueOf(count);
        c.compare = count;
        results.add(c);
      postsGroup.close()
I NRC. •
```

LDBC query driver

- Manages multiple parallel database clients
 - High-throughput testing, cluster-ready
 - Started out as a fork of YCSB
- Interactive Workload
 - Insert queries:
 - Bulk load first years of dataset
 - Play out "last year" of daaset as inserts
 - Challenge: respect data dependencies in the graph time window protocol between client processes
 - Read-only Query Set
 - Query set with parameters
 - → challenge: generate relatively stable query behavior use data mining on dataset to find "equivalence classes" in parameters

Some Experiments

- Virtuoso (RDF)
 - 100k users during 3 years period (3.3 billion triples, 60GB)
 - Ten SPARQL query mixes
 - 4 x Intel Xeon 2.30GHz CPU, 193 GB of RAM
- DEX (Graph Database)
 - Validation setup: 10k users during 3 years (19GB)
 - Validation query set and parameters (API-based)
 - 2 x Intel Xeon 2.40Ghz CPU, 128 GB of RAM

Virtuoso Interactive Workload

- Some queries could not be considered as truly interactive
 - e.g. Q4, Q5 and Q9
 - ... still all queries are very interesting challenges
- "Irregular" data distribution reflecting the reality of the SN
 - but complicates the selection of query parameters

Exploration in Scale

- 3.3 bn RDF triples per 100K users, 24G in triples, 36G in literals
- 2/3 of data in interactive working set, 1/4 in Bl working set
- scale out becomes increasingly necessary after 1M
- 10-100M users are data center scales
 - as in real social networks
 - larger scales will favor space efficient data models, e.g. column store with a schema, but
 - larger scales also have greater need for schema-last features

DEX Interactive Workload

- Query validation (no SPARQL)
- Identified some of implementation choke points
- New optimizations implemented and tested

Keynote Roadmap

- LDBC and its benchmarks
- Correlated Graph Generation
- SNB Details & Results
- Conclusion

Status

- First Draft Release of SNB & SPB
 - Data generators
 - Query Drivers
 - Documentation
- Launch of user-facing LDBC website

Expected April/May 2014

Pointers

- Code&Queries: github.com/ldbc
 - Idbc_socialnet_bm
 - Idbc_socialnet_dbgen
 - Idbc_socialnet_qgen
- Wiki: Idbc.eu:8090/display/TUC
 - Background & Discussions + Detailed report "November 213 SNB Task Force Report"
- LDBC Technical User Community (TUC) meeting:
 - Thursday April 3, CWI Amsterdam

Conclusion

- LDBC: a new graph/RDF benchmarking initiative
 - EU initatiated, Industry supported
 - benchmarks under development (SNB, SPB)
 - more to follow
- Choke-point based benchmark development
 - SNB: querying and analyzing Correlated graphs

