
Model Base generation of a
3 tier application

Student Yassin Asri
Mentor (UvA) Mark van den Brand

Mentor (Mattic) Jeanot Bijpost
Company Mattic Software, Lectoraat Software

Kwaliteit Hogeshool van Amsterdam

Date June-2004
Master Thesis Software Engineering Universiteit van Amsterdam UvA

Model Based Generation of A 3 tier Application Yassin Asri

Mattic Software BV 2 University of Amsterdam

Model Based Generation of A 3 tier Application Yassin Asri

Foreword

‘Time flies when you’re having fun’, is a remarkable proverb. Looking back on this past
year, I can certainly state that time did play some tricks on me. However boring software
engineering may seem to outsiders, I truly had a lot of fun in dealing with the challenges
we were confronted with. And, as the saying goes; time was flying fast indeed.

I would sincerely like to thank all of my teachers for doing their best. I would also like to
compliment Mr Bijpost, for he was an excellent mentor during my internship period.

Last but not least, I want to thank my family and my friends for their unlimited support.

Yassin Asri,
June 2004

Mattic Software BV 3 University of Amsterdam

Model Based Generation of A 3 tier Application Yassin Asri

Summary

Creating a data model before starting the actual project offers many benefits. The data
model serves as view of the system. There are numerous tools for creating a data model
(Fully Communication Oriented-Information Modelling FCO-IM, Unified Modelling
Language UML). The research in which I was engaged, deals with the ability of generating
a complete system, with a 3 tier architecture conform J2EE by taking the data model as
input.

Before building the generator, I had to do research about code generation concepts. I also
had to look at different already existing generators in order to find out what these are
capable of. Last but not least I had to do a lot of experimenting with J2EE.

The vision of J2EE to database is very simple. J2EE tries to get on top of a database to
reduce the effects of the impedance mismatch (the difference between OO and RDBMS).
Every table is represented by an Entity Bean and each instance of the bean represents a
row in that table. Relationships and primary keys are also taking in consideration.

The generator should consider many aspects that are important in software construction.
The generator should be easy to use and the generated files should be provided with
different features such as comments and exception handling to satisfy the needs of
different users. The generator generates the user interface layer (HTML/JSP and Swing),
the business layer (EJB) and the database.

Using a data model to generate the three tiers will bring us many advantages. It can save a
lot of time and it can increase productivity and quality. The generated files in different
layers can work together and they are combinable in one architecture.

Mattic Software BV 4 University of Amsterdam

Model Based Generation of A 3 tier Application Yassin Asri

Table of contents

FOREWORD...3

FOREWORD...3

SUMMARY..4

SUMMARY..4

TABLE OF CONTENTS..5

TABLE OF CONTENTS..5

1 GOAL AND CONTEXT..9

1 GOAL AND CONTEXT..9

1.1 Introduction...9

1.1 Introduction...9

1.2 Background...9

1.2 Background...9

1.3 The assignment..9

1.3 The assignment..9

1.4 Motivation...10

1.4 Motivation...10

1.5 Action plan..10

1.5 Action plan..10

2 J2EE CONCEPTS..12

Mattic Software BV 5 University of Amsterdam

Model Based Generation of A 3 tier Application Yassin Asri

2 J2EE CONCEPTS..12

2.1 Introduction...12

2.1 Introduction...12

2.2 Impedance mismatch..14

2.2 Impedance mismatch..14

3 THE GENERATOR..15

3 THE GENERATOR..15

3.1 Research on existing generators..15

3.1 Research on existing generators..15

3.2 Observations on existing generators...15

3.2 Observations on existing generators...15

3.3 Code generation concepts...16

3.3 Code generation concepts...16

3.4 Goal of the generator..16

3.4 Goal of the generator..16

3.5 Choice of the language and techniques...16

3.5 Choice of the language and techniques...16

3.6 The generated code...18

3.6 The generated code...18

3.7 Custom code issues...18

3.7 Custom code issues...18

4 THE APPLICATION...19

Mattic Software BV 6 University of Amsterdam

Model Based Generation of A 3 tier Application Yassin Asri

4 THE APPLICATION...19

4.1 Database layer...19

4.1 Database layer...19

4.2 Middleware (EJB)...19

4.2 Middleware (EJB)...19

4.3 User Interface layer..20

4.3 User Interface layer..20

4.4 Interoperability of the application..20

4.4 Interoperability of the application..20

5 CONCLUSIONS ..22

5 CONCLUSIONS ..22

6 WHAT’S NEXT? ..23

6 WHAT’S NEXT? ..23

..23

..23

7 EVALUATION ...24

7 EVALUATION ...24

8 LITERATURE ..25

8 LITERATURE ..25

Mattic Software BV 7 University of Amsterdam

Model Based Generation of A 3 tier Application Yassin Asri

9 APPENDIX 1..26

9 APPENDIX 1..26

Mattic Software BV 8 University of Amsterdam

Model Based Generation of A 3 tier Application Yassin Asri

1 Goal and Context

1.1 Introduction

Object Oriented, often cryptically referred to as ‘OO’, and Relational Database
Management Systems (RDBMS) concepts are nowadays essential to create reliable and
efficient information systems. Modern systems require a combination of both relational
database and object expertise. Therefore it is very important to connect these two
technologies with each other to assure a good integration of the system to be built.

There are numerous ways to make a connection between OO and RDBMS. Object to
Relational Mapping Concepts [1] provides different ways how to map a relational database
into OO-classes. The Java 2 Enterprise Edition (J2EE) approach of the relational database is
represented with Entity Beans of Enterprise Java Beans (EJB). Each entity bean represents a
table in the database and each instance of the bean corresponds to a row in that table.

In today’s world, software architecture is gaining more and more attention. Systems
should not be built out of the blue, but according to a pre-defined architecture. An
architectural view, or Data Model, is often used to represent a system. A suitable
architecture combines OO and RDMS. The layered architecture consists of multiple tiers
exchanging data mutually where OO and RDMS both play their unique role.

Using a code generator to generate classes brings many advantages in a software
development project. This can increase reliability by invoking highly tested code and
increase productivity by reducing valuable development time.

1.2 Background

Mattic Software BV is a small company specialised in designing, developing and
implementing information systems. Mattic also supports the development of two case-
tools: Infagon, better known as FCO-IM, for the development of databases and Cathedron
for the development of information systems.

Mattic wants to upgrade Cathedron with the ability to generate a 3 tier application
conform J2EE. By starting with the conceptual model of Infagon, a second goal can be
achieved: getting Infagon and Cathedron closer to each other. This survey may become a
steppingstone for further integrating these two tools. The research will produce a tool
that the students of the University of Amsterdam (UvA) and the Hogeschool van
Amsterdam (HvA) can experiment with.

1.3 The assignment

It is usually common to generate a database schema according to an information model
(created in UML/FCO-IM/EAR). We also know that it is possible to generate an Objected
Oriented Model based on that model.

The assignment is to connect these two concepts by developing an algorithm that is
capable of:

• Generating the database schema.

• Approaching the database by implementing middleware conform J2EE architecture.

• Generating a simple front end (in both HTML/JavaScript and Java-Swing) to access
the database via the middleware.

Mattic Software BV 9 University of Amsterdam

Model Based Generation of A 3 tier Application Yassin Asri

The generator will be provided with a conceptual model as input and should generate an
application with 3-tier architecture working together seamlessly (Interoperability).

The end result is a description of the used methods, techniques, algorithms and a
prototype that is capable of doing what is described earlier with an example of a given
database.

The essential part of the assignment is that we can convince that the relational model and
the OO model are close to each other and that they are easy to combine in one
architecture.
We can also prove that it is possible to generate an application from a Datamodel.

1.4 Motivation

Currently, J2EE technology is one of the most used technologies for building information
systems. J2EE has approved its efficiency to build reliable systems globally and there is a
widespread need for people that can build J2EE based systems.

In my view, this assignment deals with 3 points that are fundamental in better
understanding J2EE.

1. Code generation principles:
In today’s world we have to seek the best and most efficient ways to write and to
use source code. Writing a generator has to be seen from many perspectives. It is
not only a program that generates line of codes according to some input, but it
has to be something that satisfies different kind of users. The principles of the
generation here are very important.

2. J2EE technology:
Before contacting Mattic, I wanted to do something with J2EE due to its increasing
popularity. My knowledge of Java is quite good and using it with the J2EE
framework will certainly increase my skill and my techniques.

3. Data modeling:
Before generating the source code, we have to understand the model. This
includes relationships, columns, tables etc. This will increase my vision and
knowledge about modeling and databases.

1.5 Action plan

The assignment was planed for a period of 3 months, starting in April and ending at the
end of June. This period was divided as follow:

Period 1 or Investigation period: This took about 5 weeks and it was used as a period for
the necessary literature study. My knowledge of J2EE at start beginning was very limited
and constrained to some general concepts. I used the J2EE Sun tutorial to learn more and
to get familiar with it and to experiment with the J2EE 1.4 SDK (the server provided by Sun
Microsystems for developing J2EE applications). I also searched the internet for articles or
examples concerning the view and the vision of J2EE on relational databases and data
models.

Mattic Software BV 10 University of Amsterdam

Model Based Generation of A 3 tier Application Yassin Asri

Beside this, Code generation in action [2] was used as main literature to learn about code
generation in general. I also looked at some different example of EJB code generator
available on the internet.

To enrich my knowledge of data modeling, I used De UML toolkit [3] book as an important
source.

Period 2 or Building period: After learning more about data modeling, J2EE (EJB) and code
generation, the next step was to build the generator. This period was planed for 4 weeks.

Period 3 or final period: This period was divided between writing this document and trying
to add more features to the generator such as customizing the generated code and
producing a better user interface. This period took about 4 weeks.

Mattic Software BV 11 University of Amsterdam

Model Based Generation of A 3 tier Application Yassin Asri

2 J2EE Concepts

2.1 Introduction

Java 2 Enterprise Edition (J2EE) is a platform for developing Enterprise applications and
portals. It is one of the most commonly used technologies to build n-tiers applications.
J2EE uses Java, an objected oriented programming language. J2EE provides an
architectural framework where components can be placed and communicate according to
protocols. J2EE describes the architecture for designing, developing and deploying
component-based, enterprise-wide applications.

The J2EE application consists of 3 or 4 tiers:
• Client-layer: the components are run on the client machine.
• Web-layer: the components are run on the J2EE server
• Business-layer: the components are run on the J2EE server
• Database-layer: run on a database server.

Figure 1: the J2EE architecture, Source: the J2EE tutorial [1]

J2EE is made of 13 different technologies. The main ones are:
• Enterprise JavaBeans (EJB) architecture: an EJB is a server side component (located

in the business layer). There are 3 kinds of beans: session, message driven and
entity beans. The architecture defines an API that allows developers to create,
deploy and manage the components.

• Java Server Pages (JSP): JSP is based on Java language. JSP provides a method for
creating dynamic web sites. JSP is comparable with technologies as ASP, PHP and
Perl.

• Java Servlets: Java Servlets are Java classes where HTML is embedded. Java Servlets
are Comparable to a CGI.

The Entity Beans are very important for this assignment. An Entity Bean represents a
business entity that exists in the storage. Each entity bean has an underlying table in a

Mattic Software BV 12 University of Amsterdam

Model Based Generation of A 3 tier Application Yassin Asri

database and each instance of the bean represents a row in that table. The Entity Bean is
accessed by the local and the remote interfaces. The remote interface contains the
business methods of the application whereas the home interface contains the life cycle
methods such as remove and create.

Portability: Applications written in J2EE are in theory portable across any J2EE server. J2EE
uses Java. J2EE applications will run on any hardware and operating system with a J2EE
compliant application server.

“Vendors justify the addition of APIs to their implementation on the grounds it enables
them to add value and differentiate themselves against competitors” [5].
To retain portability the application must not be specified to any vendor extensions.
Switching from a server to another does not always happen smoothly. Sometimes some
configuration work must be done to ensure that the program works.

Buildability: Some services such as transactions do not have to be built. They are ready to
use. The developers can concentrate more on building the business logics of the system.

Scalability: The scalability is the measure of the capability of an application. The
infrastructure and layer abstraction reduces performance but increases scalability. J2EE
applications are built with the proper design patterns. The multi-tiered architecture
makes it easy to expand the numbers of servers.

Minimizing traffic between layers is the objective when creating a scalable solution. It is
often the reason for a scalable system to have a bad performance. The standard J2EE
pattern is not enough to guarantee a scalable and a perform application in the same time.
The use of other design patterns or techniques such as database caching is required.

Usability & Continuity: J2EE provides Java technology, Java Server Pages and Java Servlets
to suit different users. J2EE is a standard that is supported by different software providers.
There is a wide range of people and organizations that adopt the J2EE technology.

J2EE finds Microsoft’s .NET as its main competitor. There is a big debate about which one
is better and which one to use. Both of them target the market for enterprise applications
and web services. J2EE is a Java centric and platform independent and is basically a series
of standards, while .NET is Windows centric and uses Microsoft products.

J2EE provide solutions from multiple vendors with different tools and product. This adds a
varied functionality but it can also be a drawback. Different vendors means that the
applications may not run with every server which introduces a problem of portability.
Microsoft’s .NET provides a solution of tools and services from Microsoft.

Maintainability: The n-tier architecture is easy to maintain because the layers are
separated and work independent of each other.

Performance: The performance of an application depends on many factors: hardware
configuration, server configuration and the code. Within the J2EE Server the components
can be distributed on different machines. This can increase the performance of the
system.

J2EE applications are Java programs that utilize a database. Good coding techniques such
as the use of design patterns and the efficient use of database are necessarily to ensure a
good performance.

Mattic Software BV 13 University of Amsterdam

Model Based Generation of A 3 tier Application Yassin Asri

Coding and designing J2EE applications has its benefits, but it also has its downsides. One
of the more inconvenient aspects is that we have to do a lot of configuration work to get
an application working and it is more complicated than other type of applications. J2EE
applications are scalable, but we can have the same results with other technologies such
as COM+ and there are also some technologies for the transaction management. By using
the Java Data Objects the object relational persistence can also be guaranteed.

2.2 Impedance mismatch

The Impedance mismatch is the difference between relational and Object technologies [6].
OO and RDBMS are two different paradigms. Where OO is based on software engineering
principles, RDBMS on the other hand is based on mathematical principles. These two
technologies are different which means that they will not work together seamlessly. With
OO we traverse object via their relationships whereas with the relational we join the data
row of a table. J2EE tries to solve this problem by mapping the relational schema [1]. A
table will represent a class; a column and a foreign key will become an attribute.

Concept Implementation in J2EE Observations

Relationship EJBs are Java classes that support
relationships. An EJB can be related
to another EJB. It supports different
kinds of relationships: one to one,
many to one and many to many.

Java does not support pointers.
A foreign key is represented by
the association of the target
class. The EJB spec does not
specify how to deal with
relationships. The developer has
to develop his own Java classes
to handle them.

Persistency Persistency means that the data
exists in a storage mechanism even
after a system is shut down. Entity
Beans are persistence because their
state is saved in a database.

Shared
Access

Entity Bean can be shared by
multiple clients. The EJB container is
responsible for transactions in case
that a client wants to change data.

If the number of the clients
increases, a problem of
performance may arise.

Uniqueness Like in a table with a primary key, an
Entity Bean has an internal unique
object identifier called also primary
key. This object permits to locate a
particular entity bean.

The structure of the classes may
become complicated as the
number of classes with
composite primary key increase.

Concurrency J2EE applications support many
clients sharing a number of db
connections.

Data
Representation

J2EE is based on Java. The data is
represented by objects, methods,
inheritance.

J2EE uses only Java. A good
knowledge of Java is necessary.

Mattic Software BV 14 University of Amsterdam

Model Based Generation of A 3 tier Application Yassin Asri

3 The generator

3.1 Research on existing generators

EJBGen: http://www.beust.com/cedric/ejbgen/index.html
EJBGen is a command line EJB 2.0 generator. The idea behind it is to concentrate on
building the bean class and annotate it with Javadoc tags (@tags). The generator will then
generate the rest of the classes (the home, remote, local and localhome interfaces).

EJBGen provides a number of features which are very interesting:

• CMP 2.0 Entity beans, including relationships (one-one, one-many, many-many,
unidirectional and bidirectional)

• Stateful Session Beans
• Stateless Session Beans
• Message Driven Beans
• Local interfaces
• Value objects
• Compound Primary Keys
• Home methods
• Isolation levels
• Support for ant
• Inheritance of tags and attributes

EJBGen is not a model based generator. It does not provide for an automated process to
generate the beans since we have first to create the bean class itself. Furthermore, we
have to specify which methods and relationships we want to implement in the Javadoc
tags. If we want to generate a large number of beans, this would result in a lot of
handwork.

Percolator: http://www.backsource.org/source/java/percolator/
Percolator is a tool that lets you reverse engineer a database and auto generate EJB classes
representing that database. In order to use Percolator we will have to create an XML
description for each ''component'' in our information domain. This means an XML file for
every table. If there are more tables, several XML files have to be written. Unfortunately
Percolator does not support relationships between tables and does not generate the user
interface and the database layers.

XDoclet: http://xdoclet.sourceforge.net/xdoclet/index.html
XDoclet is one of the most popular tools for generating EJBs. It is an open source code
generation engine and it is based on Javadocs tags. There is a wide support for XDoclet (2
books: XDoclet in action and Java Open Source Programming). There is also a good
documentation available on the site.

Although XDoclet provides many interesting features and has a lot of support, it is not a
model based generator. You can not use a model as input, instead we have to specify
every bean in a descriptor file.

3.2 Observations on existing generators

Mattic Software BV 15 University of Amsterdam

Model Based Generation of A 3 tier Application Yassin Asri

The generators that have been used in my research do not use a data model or something
similar to generate the source code, instead they require to write a file to describe
separate beans themselves. This results in a lot of hand work. A data model is an ideal
view and description of the system, so why not use it as input for the generator?

The second conclusion is that these generators do only generate the EJBs, while it is
possible to generate basic user interfaces in both HTML/JSP and Swing. Generating SQL
statements for creating the database is also possible from a data model.

3.3 Code generation concepts

Code generation has a lot of advantages in a software engineering project. Choosing,
using or developing a good generator can have many benefits for engineers and
managers. By reducing the development time we can give more attention to design time.
The quality of the code is also high because it has been tested and approved. It also
encourages the programmers to work within the architecture.

When developing a generator, many points should be taken in consideration. Not only
attention should be paid to the construction of the generator, but also to the generated
code. Writing code is a kind of research on its own. We have to seek the best and most
efficient way to present it. Software Construction paradigms in these matter are essential.
The generator can be used by a variety of developers with different backgrounds.
Providing the generated code with standard naming and comments should have a high
priority to guarantee a better understanding and use of it.

Before beginning with the development of the generator, it is important that we define the
problem we want to solve. For this assignment, the generator will be responsible for
generating a 3-tier application conform J2EE (Description with more details will follow
later). The problem can be defined by gathering information about what the generator
needs to do. The next step is to research which are the best ways how to implement it by
making a structure of it, choosing the programming language, using templates or hard
codes, define input schemas. The last step would be deploying and documenting it.

Code generation in action [2] page 25-26 is about top ten code-generation rules. There
are some very useful advises on how to write a generator. I have followed most of these
tips for the generator.

3.4 Goal of the generator

The generator will take as input an XML schema file describing a data model. De data
model is usually generated by a data modeling tool such as FCO-IM. The generator should
then generate a 3 tier application. This includes a user interface in HTML and Swing
components, a business layer consisting of Bean classes, remote, home interfaces and a
database layer consisting of SQL statements for creating a database.

As mentioned in the 2nd tip of the top 10 code generation rules [2], it is a must that we
first understand the framework before generating the code. The first thing to do is to
handwrite a significantly board spectrum of code within the framework and then use that
code as the basis of the templates for the generator. This was the case; I began with an
example of a movieshop data model. I wrote all the necessary beans and their associated
interfaces. The movieshop example was taken as the basis of my generated code.

3.5 Choice of the language and techniques

Mattic Software BV 16 University of Amsterdam

Model Based Generation of A 3 tier Application Yassin Asri

Choosing the right language for the generator depends on many factors. We have to
exploit all the possibilities we have. The generator reads a number of text file(s) and
generates a number of text files as well. It is important to observe the format of every file
to make some pre-decisions such as using regular expression or not.

Jack Herrington [2] suggests using a different language than the language where the
generated code is written. In his case example he used Ruby, a powerful programming
language that supports many features such as regular expressions and has a good
portable file and directory I/O constructs.

We do prefer a single language for both the generator and the generated code (Java):
Combining the generated source code with different code brings some inconveniences. A
person needs to learn a new language first if he wants to maintain the generator. This can
not always be an easy step and it takes some time.

Some modern text editors can highlight the key words (a string between two quotes is
displayed with a different colour). This argument is against who things that it is easy to
write a generator in a different language because you can trace the code easily.

Java also provides the following which are very important for the use and the maintenance
of the generator:

• There are a large number of Java developers worldwide. Understanding and
maintaining the generator will not be a problem.

• With Java, the code will be portable to different operating systems.
• The input schema is an XML file. Java supports XML and there are a wide number

of components on the internet to read and to parse an XML file. There is no need
to use a complicated regular expression to read the input file.

Templates or regular expressions: We do not prefer to use regular expressions. It is true
that they are very powerful, but they are also difficult to maintain. Any change in the
structure will result to adequate the expression itself.

By looking at the base code of the Movieshop example we can conclude that it follows a
standard format. Using templates is thus ideal to generate the code. The main advantage
of templates is that code can be easily added or changed to the file without changing or
compiling the source code.

Using templates can have sometimes inconvenient effects. The structure can become
more complicated as the number of sub templates arises. This can be solved by making a
good and a logic structure to call and to use the different sub templates.

Our generator got the name of JCat (to pronounce as Jee-Cat). See Appendix 1 for a print
screen of it and the following figures represent two different views of the generator.

Mattic Software BV 17 University of Amsterdam

Model Based Generation of A 3 tier Application Yassin Asri

Figure 2: The structure of JCat

Figure 3: The JCat class diagram

3.6 The generated code

The generated code has to be very easy to understand and to maintain. Code Complete
[4] was for me a good reference to deal with different aspects of software construction.
The generated java files follow a standard naming convention, they are provided with
comments, javaDocs tag and exception handling.

JCat enables users to generate files at choice. They can choose to generate separate files
by using the checkboxes provided by the generator.

3.7 Custom code issues

JCat will generate the basic classes for the three tiers. It is obvious that people want to
add their own code to the generated one. We took consideration with this fact. JCat will
generate basic classes and child classes derived from them. The user can add their code
in the body of the derived ones. If the data model is changed and the user wants to re-
generate the classes, JCat will only re-generate the base classes; the derived classes will
stay intact.

Mattic Software BV 18 University of Amsterdam

Templates

XML The generator Business Logic EJB

Database

User interface

Information
model (FCO-IM)

HTMLGen.java

SwingGen.java

SQLGen.java

EJBGen.java GenUI.java

XMLReader.java

Model Based Generation of A 3 tier Application Yassin Asri

4 The application

This section describes the results and the choices made to implement the different
generated code.

4.1 Database layer

The XML schema input represents the data model. Generating the SQL statements for the
creating of the database layer is only a matter of reading the input file, parse it, traverse it
and then write the output as .sql file. Every table tag becomes a table, a column becomes
a column in that table and so on. The foreign keys are also taken in consideration. The
data model is a good description of the database. The generated SQL code is a mirror of
that data model. No additional things are required.

4.2 Middleware (EJB)

The middleware represented by EJBs is responsible for getting the data from the user
interface layer and send it to the database. The business methods of the application are
implemented here. There is no need to do this in the client (one of the advantages of the
3 tier architecture). The main charge of this layer is how to deal with the persistency.
EJBs of J2EE have a simple vision towards the databases. They try to lean on it as much as
possible to stay close to it and to reduce the effects of the impedance mismatch. We tried
to follow this vision in our generator.

Tables and columns: Every table tag in the XML schema descriptor will become a single
class (a base class). The name of the class corresponds to the name of that table. A
column in the table will become an attribute in the corresponding class. The type of the
attribute depends on the type of the column. For example a Varchar will become a String,
Integer an Int and so on.

Furthermore, the class will be provided with a standard number of business methods plus
some other methods depending on the relationship with other tables. The standard
classes are: the getters, the setters, ejbCreate, ejbFindByPrimaryKey, ejbRemove, ejbStore,
setEntityContext, unsetEntityContext, ejbActivate, ejbPassivate, ejbLoad and
ejbPostCreate.

Primary keys:like in a table, an EJB class require a primary key. The primary key is an
attribute of the class and corresponds to the primary key in the table. In case of a
composite primary key (a primary key composed by more than one column), an apart class
will be generated to represent that primary key.

Relationships: A relationship, an important concept of a RDMS and represented by a join,
should be also mapped to the classes.

One to one relationship: This is the simplest form of a relationship; each row in a table is
related to a single row in another table. The class corresponding to the child table should
implement a method findByAttribute where Attribute represents the join column to the
parent table.

One to many: This kind of relationship is very common in databases and it occurs when a
primary key in a parent table matches multiple foreign keys in the child table. The
“parent” class will then associate the “child” class by declaring the home interface and a

Mattic Software BV 19 University of Amsterdam

Model Based Generation of A 3 tier Application Yassin Asri

list (ArrayList) of it. The “child” class is provided with a method findByForeignKey where
Foreignkey represent the primary key in the “parent” table.

Many to many: In a many-to-many relationship, each entity can be related to multiple
occurrences of the other entity. For example, a college course has many students and
each student may take several courses. In a database, this relationship is represented by a
cross-reference table containing the foreign keys [1] page 957. Looking at the example
provided for this kind of relationship, I encounter a contradiction: they implement a
Session Bean (represents a single client inside the J2EE Server, a session bean is not
persistence and not shared) for the cross reference table in place of an Entity Bean. The
main task of a session bean is to read data form a database, while in the provided
example they used it also to insert the data. The primary key is also not implemented.

Our vision to this is simply. We consider the cross reference table as an Entity Bean class.
The many to many relationship will be interpreted as two times one to many relationship.

4.3 User Interface layer

The user interface consists of two types: HTML/JavaScript/JSP and Java Swing.

A brief description of generated Swing classes: The generated application is a Multiple
Document Interface (MDI). It consists of a parent screen with a menu for accessing the
child classes. For example, if the data model has three tables (e.g. X, Y, and Z) the parent
application will have a menu with three items X, Y and Z. Each item has two sub items:
“New” which calls a screen for inserting a new record and “View” for viewing all the
records in the database. For generating the “New” screens, the application looks if a class
is related to other classes. If is this the case, a tab control will be added to the screen to
“import” the related records.

A brief description of the HTML/JavaScript/JSP pages: The principle is the same as for the
Swing screens. A menu will be generated (using JavaScript) to access different screens. For
each table in the data model there will be an insert page called newX.html where X is the
name of the table. The HTML page forwards the insert form to the addX.jsp page which is
responsible for obtaining the parameters from the HTML page and calling the equivalent
bean of the business layer. The “view” screen is called viewX.jsp and it is used to view all
the records of a table X.

4.4 Interoperability of the application

The three tiers should work together to ensure the working of the entire application. The
user interface communicates with the business layer through the home and remote
interfaces of the beans. To inserting a record for example, the create method of the home
interface is called from the user interface with the insert parameters. The business layer
communicates on its turn with the database using the Java Database Connectivity (JDBC).
Figure 4 shows how the layers communicate.

Mattic Software BV 20 University of Amsterdam

Model Based Generation of A 3 tier Application Yassin Asri

Figure 4: Communication between the layers

Mattic Software BV 21 University of Amsterdam

Home Remote

Bean

JDBC

User Interface

DB

Model Based Generation of A 3 tier Application Yassin Asri

5 Conclusions

Having taking all aspects of this assignment in consideration, we can now begin to start
drawing conclusions.

It is not logical to start with a project without having a data model. The data model can
not only serve as a view for the architecture, but also serve as a base for the
programming. Generating classes based on it would therefore be ideal. There is no need
for write specific files to describe the classes.

Generating the middleware is not the only possibility. Generating the user interface and
the database can also be combined in one generator. Again, the data model can serve as a
basis to generate those two layers.

Object Oriented has a better data structures than RDBMS. Writing an own mapping
constructs with OO to lead the database is time and cost effective, and it differs by
programmer to another (Every programmer can have a different implementation of the
mapping). A good system has to be a combination of OO and RDBMS. The frame provided
by J2EE is good for creating database applications. Accessing the bean from the user
interface occurs via the remote and home interface of it. The bean contains the business
logic of the application; the user interface has only to call those methods. Accessing the
database occurs via JDBC.

It took me few weeks to write the necessary files for the user interface, business logic and
database for the Movieshop example. Generating the same files takes only few seconds.
Using a code generator based on a data model as a tool can save a lot of time and can
increase the quality of the system. A user of the tool will see on forehand which classes
and files will be generated only by looking at the data model.

The generator that has been invoked in my research is a model based. All of the
advantages of the Model-based Application Development (MAD) [7] are applicable here.

Mattic Software BV 22 University of Amsterdam

Model Based Generation of A 3 tier Application Yassin Asri

6 What’s next?

JCat was programmed over a period of 3 months and it has not been tested very well yet.
A test has to take place to remove possible bugs. The generated files are provided with
basic comments, adding more comments would off course aid a better understand of the
used code.

The user interface can be also improved or extended by implementing more controls such
as radio buttons, check boxes and combo boxes. Adding more pages to deal with the data
such as search screens will have a positive effect on the generator as a whole.

I expect this generator will proof to be a useful tool for both students and professionals
that want to familiarize themselves with EJB. Undoubtedly, this generator will be an ideal
tool for further experimenting with this powerful piece of technology.

Mattic Software BV 23 University of Amsterdam

Model Based Generation of A 3 tier Application Yassin Asri

7 Evaluation

This research proved to be an excellent way for to learn more about J2EE, data modeling
and Code generation concepts. It also was a great occasion to apply my theoretical
knowledge of software architecture and software construction acquired during my study
Master Software Engineering.

Although the planning of this research didn’t always go as I had expected, for example I
had to rewrite a few classes for the generator to make it easier to understand, and taking
in consideration the occasional bugs that took me days to resolve, I kept a sound believe
in this project.

It was something new for me to work with J2EE and to build a generator, but the most
important thing for me was how to deal with a research project. This research pushed me
to think further than just programming. I really enjoyed it and I think I learnt quite a lot
from it. Therefore, I give a 9 for the quality of the research.

I am happy with the results of this research. There is now a model based tool for
generating a 3 tier application. I did my best and I had to work very hard on developing
the generator including some sleepless nights. For the results I give a 8,5.

I tired to treat every aspect I dealt with during my internship in this report. Some points
could be more specific such as chapter 4. The application could be described with more
details than I wrote. I tried to keep it simple and brief. The reader of this report would
have a clear idea about my research and my results. For this report I give an 8.

Mattic Software BV 24 University of Amsterdam

Model Based Generation of A 3 tier Application Yassin Asri

8 Literature

[1] The J2EE 1.4 Tutorial, Eric Armstrong et al, March 17 2004,
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/
[2] Code Generation in Action, Jack Herrington, ISBN 1930110979
[3] De UML Toolkit, Hans Eric-Eriksson & Magnus Penker, ISBN 9039510156
[4] Code Complete, Steve McConnell, ISBN 1556154844
[5] J2EE Design and Development, Rod Johnson, chapter1:
http://www.wrox.com/books/sample-chapters/samplechapter_0764543857.pdf
[6] Understanding Impact of J2EE Applications on Relational Databases, Dennis Leung,
http://www.nocoug.org/download/2003-02/j2ee_rdb.pdf
[7] Extremely rapid development of high quality database systems, Jeant Bijpost and
Marco de Groot, http://www.mattic.nl

Mattic Software BV 25 University of Amsterdam

Model Based Generation of A 3 tier Application Yassin Asri

9 Appendix 1

Print screen of the user interface of JCat.

Mattic Software BV 26 University of Amsterdam

