
�

�

�

�

���������	��
����
���������
����
���

�

�

D���������	
	���

���	�
���
����	T��
���	
�����
��	���	
	��
��	���	����������
	
����
���
�

A Case study at Basket Builders BV
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Students

Company

Peter R. Lamers
Goudwespmeent 53

1218 GP Hilversum, The Netherlands
+31 6 27 205 064

prlamers@hotmail.com

August L. P. de l’Annee de Betrancourt
Straatsburgflat 18A

1422 VV Uithoorn, The Netherlands
+31 297 527888 / +31 6 51609516

august.lannee@xs4all.nl

Basket Builders BV
Prinseneiland 7

1013 LL Amsterdam
+31 20 42 22 383

info@b-b.nl

����������	
	�
���
����	���
���	�����
��		 �	

PREFACE

This document is our Master Project Thesis for the study “Software Engineering” at the University of
Amsterdam.
The title of our Master Project assignment is “Developing a suitable structured testing approach for a
small web development company”.
We chose to do this project as a cooperation between 2 students because of the limited time available
(3 months). Furthermore, we believe that through combined viewpoints one can obtain a higher
quality level.
The subject of software testing was given a reasonable amount of attention within our study. For the
subject Software Testing we studied the TMap theory, which is quite a formal and extensive testing
method. Also for the subject Software Process the testing workflow within the overall process was
given a considerable amount of attention. It is interesting to see how testing is handled in practice:
which problems surround the testing workflow? Which theory on testing is applicable? And how does
the testing activity fit into the total development process?
We executed this project for and at Basket Builders BV, a web application development company.
We experienced it as very useful and because of the interesting project definition, we were able to
perform a research in which we gained a lot of knowledge and could apply much of the theory learned
during our study.
Hereby, we would like to thank our counselors, David Smits and Bart Ferwerda (from Basket
Builders) and Alban Ponse (from UvA) whom continuously provided us with good and critical advice
and guidance.
Furthermore, we would like to thank: Jos van Rooyen (LogicaCMG), Martin Pol (founder TMap),
Reza Esmaili, Mark van den Brand, Hans ter Wal and Justin van Beijereren for their help during the
project.
We composed this Thesis in the form of a
paper. It is divided into 8 sections. Section
I and II are introductory and describe the
company, the research questions and give
a concise overview of the followed
approach. In order to get straight to the essence of the matter, this part can be passed over and one can
directly begin with Section III, which describes the current situation concerning testing at Basket
Builders.
Part IV holds an overview of the results of our extensive literature study after which in part V the
answers to the research questions and the recommendations following from the study are described.
These recommendations were tested in a project and the findings are described in Section VI.
The Thesis is concluded with a conclusion in Section VII, an overview of the references (Section
VIII) and, a number of attachments.

���������	
���
��������
�
�
��������
������������
����
�
���

���������
����
����
��
1
�

Final Assignment paper
Version 1.0
June 24 2004
Students: Peter R. Lamers & August L. P. de l’Annee de Betrancourt
Mentor (Basket Builders): David Smits (david@b-b.nl)
Mentor (UvA): Alban Ponse (alban@science.uva.nl)

1 from http://www.testen.nl�

����������	
	�
���
����	���
���	�����
��		 �	

INDEX

PREFACE .. 2
INDEX.. 2
INDEX.. 3

Abstract... 4
Keywords.. 5

SECTION I: BACKGROUND.. 6
The company... 6
Project motivation... 6
Research question ... 6
Goals ... 6
Scope... 6

SECTION II: RESEARCH APPROACH... 7
SECTION III: CURRENT SITUATION ... 8

Current project approach... 8
Current issues.. 9
The *Net Toolbox... 10
Requirements .. 10

SECTION IV: LITERATURE STUDY... 12
Basic principles... 12
The process ... 12
Available testing methods and techniques.. 14
Supporting tools.. 16

SECTION V: RESULTS... 17
General.. 17
Recommendations... 17
Quality assurance.. 20

SECTION VI: THE CASE... 21
Case description.. 21
Project realization ... 21
Findings: evaluation.. 21

SECTION VII: CONCLUSION.. 22
Glossary of terms .. 22

SECTION VIII: REFERENCES .. 24
Literature references ... 24
Software references... 25

POSTFACE.. 26
ATTACHMENT A: Screenshots of the Poll User Control... 29
ATTACHMENT B: Summary Testing Manual for Basket Builders.. 30
ATTACHMENT C: TMap Rood.. 32

����������	
	�
���
����	���
���	�����
��		 �	

D���������	
	���

���	�
���
����	T��
���	
�����
��	���	
	��
��	���	����������
	
����
��	

�

���������

Our case study was done at a web development
company called Basket Builders. This is a
company that currently does not apply a formal
development method in general. The main
requirement within this company is a structured
testing approach because testing is now mostly
done at the end of a project.

After analyzing the development activities and
method of the company, we identified the
problem areas and requirements concerning
testing.
In a literature study we focused on the available
theory and solutions on testing smaller non-
critical web development projects.

With small projects it is difficult to fit in all the
good testing practices without overplaying the
testing approach.
Concerning the use of formal testing techniques,
the balance between extra (maintenance) costs of
test scripts versus the advantage of having
standard and conserved formal tests is an
important consideration. Furthermore, a lot of
test scripts tend to become outdated. The ability

of running them more than once is not always a
relevant asset.

One basically wants a test roadmap that:

- provides a structured and risk based
guideline to make sure that all the
important tests are performed.

- is easy to compose and maintain.
- is dynamic in the sense that it leaves

enough room for the tester to use
creativity and respond to findings
following from the test.

The formal method TMap [19] is too extensive
for complete use within small projects of low
risk. Exploratory Testing [17] offers more
dynamics and less overhead and maintenance.
However TMap can be handled as a toolbox and
so it offers several formal techniques which are
indeed useful. Formal techniques provide a
certain degree of assurance on the test coverage.

It is important that the overall process is
structured first. If there are flaws in the
requirements and specifications, the testing
activity can never restore this.
By studying agile methods as DSDM [29], RUP
[30] and Extreme Programming (also referred to

A Case study at Basket Builders BV
by August de l’Annee de Betrancourt & Peter Lamers

 here is a wide selection of testing methods and techniques available. Some are formal; some
leave a lot of room for creativity. Testing is a key activity within the software development process
though often a “suppressed matter”. This is remarkable since it typically takes in 25-50% of the total
development time.
This especially applies to smaller development projects and companies where finding a balance
between structure and flexibility is a constant tradeoff.
Although a small web development company requires an adapted testing approach compared to high
risk, business critical projects where formal methods are more directly applicable, a structured testing
approach is certainly needed. Combined with a good set of tools, guidelines and support from within the
organization (especially from the developers), a new testing approach can be successfully adopted by
an organization and integrated into its projects resulting in a higher quality level.

TT

����������	
	�
���
����	���
���	�����
��		 �	

as XP) [10], we defined additional
recommendations concerning the overall
software approach in cooperation one of the
project managers.

The testing approach itself can be separated into
a global part and parts that are customized for
the different development activities. The
recommendations include:
• Use of code reviews for early fault

detection (whitebox testing).
• Set up an acceptance site for functional

testing by the customer.
• In the development phase, write Unit tests

using the NUnit framework [22]. In
particular NunitASP [35].

• Apply Test Driven Development from XP
within development of the Content
Management System (CMS).

• Apply at least the Dataflow test technique
from TMap for formal tests for the CMS.

• Assign a dedicated test manager /
coordinator. This may seem expensive and
obsolete for a small organization but the
coordination and responsibility is
centralized. This provides a form of
Quality assurance for the testing activity.

The result of the project was a structured testing
approach combined with a set of test tools
customized for use within Basket Builders’
projects.

The new approach now needs to be evaluated
within a project at Basket Builders. There was
insufficient time to do this during the 3 month
assignment. We did however assess the technical
part of using NUnit. This was tested in a small
project.

���������

Unit testing, functional testing, development
method, NUnit, software process, Microsoft
.NET, testing methods, TMap, Exploratory
Testing, Test Driven Development�

����������	
	�
���
����	���
���	�����
��		 �	

SECTION I: BACKGROUND

�	����������

The project has been executed at Basket Builders
BV. This Amsterdam based company was
founded at the end of 1996 and it currently has
26 employees.
Basket Builders develops its own Content
Management System (CMS) for web
applications, the *Net Toolbox. Next to
developing this system, the company implements
their own CMS in website development projects.
These projects vary from small to middle size
and normally do not exceed a 6 month
development time.
A few of Basket Builders’ clients are:
Neckerman, Sky Radio and Interpolis.

For more information on Basket Builders we
refer to the website: http://www.b-b.nl.

�����������
���
���

Both from the fields of management and
development there was a call for a testing
approach. Testing is an activity that gets too little
attention and above all is now not structured into
the development cycle. Testing is mostly done at
the end of a project.
As a result there are problems of exceeding time
and budget because of program errors that are
expensive to fix and late additional requirements.
This outlet of projects must be reduced because
this will increase the total profit. For example
decreasing the average exceeding time with only
1% will pay off this research because this will
result in a theoretical profit increase of �6000
per quarter. 1

�������	������
���

The following main research question was set:

In order to answer the main research question,
we defined smaller research questions that
needed to be answered first:

1 Based on Basket Builders’ financial data

Question A: What is the current project
approach?
Question B: How are the products currently
tested? What procedures are followed?
Question C: What available testing techniques
and methods are suitable for Basket Builders?
Question D: Which aspects of the current
approach are useful for the testing approach and
which should be replaced or rejected?
Question E: How does testing fit into the rest of
the software process?
Question F: Which tools can be used to support
the testing activities?

 ��!��

Not only was it needed to answer the research
questions, it was also needed to set some clear
goals that needed to be reached. The research
questions form a more theoretical approach,
while the goals are more practical. The following
goals were set:

• Business Driver: Reducing the average

exceeding time per working hour with 2%
(�10.000 more profit per quarter).

• The main result/goal of this project: Define a
structured testing approach supported by the
use of software tools and tailored to the needs
and current process of Basket Builders B.V.
The approach should be described in a
compact and clear manual.

• Get an overview of the current project and
testing approach.

• Provide additional recommendations
concerning the software process that support
the testing workflow.

• Set up a knowledge database containing the
theory on testing techniques and methods.

������

The scope of this project encloses all methods,
techniques, tools and activities concerning the
testing workflow. Testing stretches to other
fields like the project approach of the company.
This overlap was examined to see what parts can
be used to support the testing process.
A risk was that the scope would get too wide
because the whole development program needs
refinements. This is something we had to be
particularly aware of.

How can testing be structured into the
software process for small web projects, in
order to achieve a higher quality level?

����������	
	�
���
����	���
���	�����
��		 �	

SECTION II: RESEARCH APPROACH
�

Before the actual research could be done some
preparations had to be taken. The short timescale
and the relatively large scope demanded a fixed
plan. In concurrence with good development
practises we used time boxing, frequent project
deliverables and several evaluation sessions with
both stakeholders and experts to verify that
everything was going according to plan. A
logbook was used to give detailed information
about the work that has been done.
	
The following activities were completed:

1. Execute a small project to obtain more insight
in Basket Builders’ situation and attain
additional background information that is
relevant for the research.

2. Study Basket Builders’ available project
documentation [1]. This method gives, in a more
formal way, insight into the current working
methods.

3. Interview several programmers and a manager
to discuss their opinions on the current situation
and needs for the future. Their view on testing
was requested and the results were used for
future recommendations. This also promotes
support for future plans.

4. Gather and study papers relevant to the
research question(s). Findings were reviewed
weekly together with a project manager at
Basket Builders. Testing is a practical matter but
also needs theoretical support to understand its
background and its necessity. Papers were also
useful because they discuss the practical use of
testing. Subjects and methods that look useful
for Basket Builders were further examined and
translated to a practical solution for the
company.
Because testing for small projects differs
substantially from testing for bigger projects,
papers have been searched that specifically focus
on testing web applications for smaller
companies.

5. Findings from the papers, interviews and
project documentation were documented into
notes for the Thesis. These notes were used to
write the section Literature Study and form the
basis for our recommendations.

6. During the research period a knowledge
database was used to save all relevant
documentation (papers, intern documents, results
interviews and meeting notes). Because the
research was a combined effort by two students,
this approach has been considered very useful.

7. To maintain a certain level of quality, findings
were discussed with people not directly involved
in the project. These people can give a clean new
view on the results.
We also wanted some practical input from the
business field. We visited a testing conference2
where some leading persons were present.
Furthermore we discussed the Thesis with the
head of the testing department of LogicaCMG,
Jos van Rooyen, and Martin Pol, founder of
structured testing in Holland and author of
several books (for example TMap [18]).

8. Our plan was to apply the recommended
approach to testing within a pilot project in order
to gather tangible measurements and adjust the
approach accordingly. Unfortunately we lacked
time to evaluate the new approach within a
project.

2 TestNet Spring Event June 9th 2004

Start research

Small project (1)

Current situation (2,3)

Literature study (4)

Future recommendations
(3,4,7,8)

T
H

E
SIS (5)

������	��	��������	��	
��	����
���	
����
��	

����������	
	�
���
����	���
���	�����
��		 �	

SECTION III: CURRENT SITUATION

"����������������������	�

In this section Basket Builders’ current project
approach is documented.
�
Basket Builders is a small and quite informal
company. Projects rarely exceed a period longer
than 2 months.

No specific formal development method is
applied and a tight project approach is absent.
PRINCE23 [2] is applied as the project
management method. More specifically, the
following parts of PRINCE2 are used:

• A Project Initialisation Document is
drafted (PID).

• Several other templates of PRINCE2
deliverables are used like the Highlight
Report, Project Issue and Request for
Change.

Projects are divided into smaller tasks. A
projects manager defines and assigns these tasks
to a specific developer. These tasks need to be
approved first by the head of a team before
development can be started.

Basket Builders’ project manual [1] describes on
a global level how projects need to be executed.
The main focus is what roles need to be fulfilled
and what stages consist during a project.

The project role hierarchy is divided into 3
levels:

• Project management – acquisition,
functional specifications and client
contact.

• Team leaders – coordination of
development activities and client
contact.

• Developers – technical design, pursued
clarification on functional specifications
and programming.

The development activities can be divided into
two main parts:

3 Project IN Controlled Environments [2]

� Continuous development of Basket
Builders’ own Content Management
System (the code of the CMS is referred
to as the Core).

� Developing web based applications for
customers (usually by implementing the
*Net Toolbox).

New developments and changes to the Core are
mostly planned and communicated during cluster
meetings. There is no fixed quality assurance
procedure for maintenance and improvement of
the Core.

Client projects normally start as follows. After
acquisition and first contacts with the customer,
the functional requirements will have to be
specified. This is normally done through one of
the following methods:

• A functional design is provided by an
extern company.

• Workshops are held with customers.

A manager is responsible for acquiring the
functional requirements, and provides this
information to the head of a group of developers.

After that he will select which developers (based
on technique) are going to be deployed for the
project. Developers handle further contact with
the customer in order to elaborate and refine the
functional requirements.

If necessary, a technical design is made. Often,
the same technological architecture is used for
the project solution. Therefore an extensive
technical design is not always needed.

Optionally, a prototype is developed to eliminate
any doubt a customer may have. Prototypes are
also used to see if a project can be realised
(proof of concept).

After the project is completed and handed over, a
warrantee stage is initialised. During this stage,
a customer can report bugs which are solved.
This part can be seen as a testing stage.
At the moment, testing activities are mainly
without any structure.
Testing is currently done as follows. After
writing a piece of code the developer tests it

����������	
	�
���
����	���
���	�����
��		 		

himself. Usually the software is also tested by a
second person (the head of the project team)
though this is not enforced by any procedure.
Incidentally, testing scripts are made but
normally no testware is developed and conserved
because Basket Builders does not apply formal
testing techniques.

Unit testing is used but only on a very limited
scale: Basket Builders has developed an
automatic generator for stored procedures and
access functions based on database tables. This
application also generates Unit tests that check
whether the stored procedures are correctly
handled.
For Integration testing [31] a standard checklist
is used.

Code reviews have been done in the past but also
only incidentally.

"�������
������

When looking at the current development
method the following current were found.

No structured test approach
First of all, testing is an activity that is mainly
done at the end of a project. Even then there is
often too little time available for testing because
it is not planned into the project cycle. Tasks are
tested by the project manager however.
Last minute functional additions also harm
testing. Result is project delay or a product that
has many errors. As Basket Builders main
objective is satisfying its customers, this is a
problem.

Projects exceed time schedule
Projects often exceed the time schedule set at the
start of the project. This happens because of
changing requirements at the end of a project. A
customer does not know exactly what his own
needs are. Software is mainly complex, large and
overview is missing. Only when the application
is ready, a customer can see what can be done
with the application.

Lack of overview
During development, team members do not
know what their colleagues are doing. An
overview of the project is missing. The
developers lack awareness of the used project
approach, while managers lack information
about what the developers are doing exactly.

Managers and developers are standing too far
apart from each other.
There are several standard guidelines towards
development available but developers are not
always aware of this and so they remain unused.

*Net Toolbox complexity
The Toolbox is quite advanced so it takes more
effort to find software errors. Moreover, the Core
still contains errors.
Up to date documentation is very limited and
flawed which makes it even more complicated.

Testing takes too much time
According to programmers, testing currently
takes too much time and effort.

���
�
���

���	

��	

acquisition

set requirements

������	

��	

functional design /
PID

technical design

!����	

��	

implement tasks

build prototype

"
��
�
��	

��	

fix reported errors

Project M
anager

D
evelopers

activity

optional

 = next

������	#�	$�
����
�	��������	��	
��	�������	

Legend:

����������	
	�
���
����	���
���	�����
��		
�	

Because testing is mainly done at the end of the
project the cost of finding and fixing errors is too
high. The further the project progresses, the
more time it takes to fix errors and retrofit the
necessary design adjustments.

�	��#$������!��%�

Before discussing the requirements in the next
paragraph, a short introduction of the *Net
Toolbox, Basket Builders’ Content Management
System, is in place.

Extra functionality can be added to the *Net
Toolbox, by using so called controls (also called
objects in programming terminology). The new
functionality can be loaded and configured from
the back-end and be shown on the front-end (the
actual website).

Templates can be defined to specify a standard
design for the web application. Views can be
defined to show data from a database, on the
website.

More info on the *Net Toolbox can be found on
the official website: http://www.nettoolbox.nl

����
��������

Like in every project, even this research, there
are requirements that have to be fulfilled. The
following requirements were defined in co-
operation with the stakeholders:

There is a need for a structured testing approach.
This is the main trigger and requirement for this
project.
The development activities at Basket Builders
can be divided into sub activities. The most
important issue is that testing is tuned to match
these activities. Some of these activities require
special attention and measurements concerning
testing.

The following activities need to be considered
(when focusing on development) for the testing
approach:
1 The provided front-end HTML, that will be

implemented in the *Net Toolbox, must be
tested to ascertain it will work on different
browsers and platforms. HTML can easily be
tested by using a tool.

2. So called Templates & Views are used to
show content within the front-end. Both need
to be tested because they will show the
actual information to a web visitor. This
needs to be done manually because this
concerns the front-end of the CMS.

3. Adding new functionality to the *Net
Toolbox can easily be done by using .NET
User Controls. These controls are developed
in the .Net development environment and
then placed into the *Net Toolbox. Both
Functional and Unit tests are needed
(whitebox testing). The User Controls can
then be blackbox tested in the CMS.

4. The total integration of Controls, Views and
Templates need to be tested. Again a more
manual approach is needed because this can
only be tested from within the CMS.

5. After installing the CMS on the actual
working server the application needs to be
tested again. Certain variables need to be set
too. A semi-automatic approach is desired
here.

6. The CMS is constantly under development.
Core development needs a specific test
approach.

7. Finally stress testing is needed to verify the
application can deal with a big group of
users. This can also be done automatically.

When examining the current approach and
gathering the opinion of the developers, it is
clear to see that there is more need for a
‘lightweight, more creative’ method than a tight
one. The projects are too small for very formal
and extensive methods. The projects are not
business critical so there is little need for formal
methods.

A lightweight method like Extreme
Programming is preferred by many people
working at Basket Builders. According to them,
if they use XP, efficiency will rise and a higher
quality level of programming code will be
reached.

The new Microsoft .NET framework provides a
wide scale of new opportunities. .NET stimulates
the use of little components. Methods like test-
driven development can seamlessly be used from
within XP.

����������	
	�
���
����	���
���	�����
��		

	

Manager and developers need to shift to a closer
integration of both fields. Both are unaware of
each others activities and responsibilities.

Basket Builders plans to expand in the future.
Currently, more work than manpower is
available. When a company grows there
normally is more need for formal procedures and
standard guidelines. This only strengthens the
call for a structured testing approach. If the new
testing plans will fit in the current process, new
developers can immediately use them.
Eventually this enables a smoother transition.

������	��	����
	
�	������	��
���

���	��
����	
�
�
�����
	
��	����������
	

����������	
	�
���
����	���
���	�����
��		
�	

SECTION IV: LITERATURE STUDY
�

When taking the first step for defining a suitable
testing method for Basket Builders it is
important to define the focus points for testing.
Based on the issues and requirements described
in the previous section we analyzed the possible
solutions and theory on testing. Focus was on
finding theory that suited the following
characteristics of the organization:

• Activities
• Goals (also for the future)
• Magnitude

&��
����
��
�!���

After studying the wide and large theoretical part
of testing, one can identify some basic principles
that can be found throughout the literature..
These principles are widely accepted and were
evaluated many times. They are guidelines
which can always be used when creating a
suitable test approach.

1. The cost of fixing an error in the software
rises exponentially as the project progresses. As
Boehm observed in 1987: “Finding and fixing a
software problem after delivery is often 100
times more expensive than finding and fixing it
during the requirements and design phase.”[%].
2. Testing needs to be integrated throughout the
entire software process. Examples that subscribe
this are DSDM4 [29], RUP5 [30] and the TMap6
[19] testing method.
3. Code reviews are widely used and respected.
Software inspection, which was invented by
Mike Fagan in the mid 70’s at IBM, has grown
to be recognized as one of the most efficient
methods of debugging code [8]. It is argued that
software inspection can easily provide a ten
times gain in the process of debugging software
[8].
4. Testing is an important process that is
performed to support quality assurance. Testing
activities support quality assurance by gathering
information about the nature of the software
being studied [6,7].

4 Dynamic Systems Development Method [32]
5 Rational Unified Process [4]
6 Test Management Approach [18]

5. The process of testing produces many
artefacts. Artefacts from the testing include the
execution traces of the software execution with
test cases. These artefacts can be conserved for
future (regression) testing [6].

��	����������

Testing is one of the many parts of Software
Engineering. It is not possible to see testing
without any of the other parts of Software
Engineering, in particular the software process.
Because testing needed to be integrated in the
current development method it is wise to analyse
how well-known methods apply testing.

Small projects tend to be highly iterative both
because synchronizing the developers requires
less effort and because the management structure
allows more direct feedback [&].
The extra effort normally involved when
applying formal methods is likely to pay back.
However this takes time and patience because
the methods need to be learned and controlled
first. Also, they typically involve extra effort in
the form of additional deliverables.

We started to look at the PRINCE2 methodology
because it is used as overall management
method. A management method alone is not
sufficient; a development method is needed as
well. Methods like DSDM, RUP and Extreme
Programming were researched, in particular how
they deal with testing. Testing needs to be
integrated in both the management approach and
development method in order to be successful.
Management has to plan the testing activities and
the tests need to be executed during
development. A dynamic approach like DSDM
and the control emphasis of PRINCE2 seem very
different at first glance, but when looked at in
more detail they have a certain overlap and
shared goals. Both handle quality and testing in
the overall process. Both suggest that quality is
based on pre-determined quality criteria. During
testing these criteria will be validated [3].

In cooperation with Basket Builders we explored
the different development methods and extracted
the key features from these methods.

����������	
	�
���
����	���
���	�����
��		
�	

PRINCE2
PRINCE2 is a project management method that
is applicable to many kinds of projects, not just
ICT-projects. It specifically deals with changes
in the project environment that influence the
success of a project [2].
PRINCE2 is clearly an overlapping method. It
prescribes a phased approach.
Above all, PRINCE2 is very flexible. It is a set
of tools that can be used where and whenever
appropriate.

DSDM
DSDM is an iterative development method. It is
an extension of Rapid Application Development
(RAD) [32]. In DSDM the customer is part of
the development team. DSDM also focuses on
dealing with a changing environment, especially
changing customer requirements. This is
facilitated by making timeboxing and
prototyping essential parts of the project
lifecycle [3].
Workshops in which requirements are defined
and tested form a central role within DSDM.
Requirements are prioritized by MoSCoW7 lists
[32].

RUP
RUP is a collection of best practices from the
field of software development.
RUP is an iterative process, in which there is a
specific focus on software architecture, business
modeling and design.
The method prescribes using testing as a
continuous workflow during the entire project
life cycle [4].

Extreme Programming
Extreme Programming (XP) generally focuses
on technical work, whereas the PRINCE2
generally focuses on management issues [11].
The XP approach contains 4 basic project
management variables:

• Cost
• Time
• Quality
• Scope (!)

7 Must have (o) Should have, Could have (o) Won’t
have [32]

It is very interesting to see that scope is defined
as a project variable, for this normally is
considered as a constant factor. If the scope is
dynamic it seems difficult to manage the project.
In XP the project team gets to control one of the
4 basic variables. This is decided by the
customer who gets control over the other three
[12].
It is a lightweight method in the sense that there
are little overhead and additional project assets
that need to be produced.
XP focuses on the short future. It is not suitable
for bigger projects. We doubt that XP is suitable
for middle size projects.

The 4 basic principles of XP are [10, 13]:

• Communication
• Simplicity
• Feedback (i.e. by testing, reviews, etc.)
• Courage

XP prescribes the following solutions based on
these principles; these solutions are basically the
best software practices that are taken to the
extreme [10]:

• Metaphors as means for communication
• Unit Testing – code based testing of

small pieces of code
• Design as an iterative process – by

refactoring
• Pair programming
• Collective ownership – everyone in the

project owns the code

Feedback is vital; and the most basic and critical
feedback is that of Extreme Testing [16].
Extreme Testing will be discussed further in this
chapter.

����������	
	�
���
����	���
���	�����
��		
�	

���
!��!������
������	��������

���	�
�����

The following techniques and methods were
analyzed during our research:
• The testing phases: Unit testing,

Integration testing and Acceptance testing
• Functional testing (type of testing)
• TMap (testing method)
• Exploratory Testing and Extreme Testing

These methods and techniques dictate the
literature on testing. There are other testing
techniques like Context Driven Testing, Risk
Based Testing [27], etc. However, these are
basically forms of Exploratory Testing.
Furthermore, there are other testing techniques
that we did not study because they are not
applicable for small projects.

Unit testing
Although early and frequent testing is very
important, there is little guidance to date in terms
of the specifics of the testing process [14]. In
particular, XP requires Unit testing, with a strong
emphasis on early and frequent testing during the
development process [14].

Unit tests let developers evolve the system
rapidly and with confidence and functional tests
give customers and developers confidence that
the whole product is progressing in the right
direction [16].
Unit testing might well be the most agreed upon
software best practice of all time [8].
A maintained suite of Unit tests [#']:

• Represents the most practical design
possible.

• Provides the best form of documentation
for classes.

• Determines when a class is "done".
• Gives a developer confidence in the

code.
• Is a basis for refactoring quickly.

Next to Unit testing, there are two other testing
phases:
• Integration testing [31]
• Acceptance testing [24]

Functional testing
Functional testing [25] is a tyoe of testing. One
tests the functionality that the application needs
to provide.
The difference between Unit tests and Functional
tests is that Unit tests tell a developer that the
code is doing things right, whereas Functional
tests tell a developer that the code is doing the
right things [20].
For Functional tests the specifications are
provided by the customer. Functional tests can
also be completely done by the customer himself
[25].

TMap
TMap is considered as the standard (in the
Netherlands, and more and more abroad as well)
when it comes to testing. TMap is a formal and
above all extensive method that does not have to
be applied in total but can be used as a toolbox
and guideline. This especially goes for small
organizations. In studying TMap, we focused
especially on the techniques offered by this
method.
Formal methods are needed most for assuring
sufficient test coverage when testing multiple
application paths that originate from possible
property settings (for instance for the activity
when testing a User control for the *Net
Toolbox) or possible variable values in the CMS
core code.
TMap offers several formal testing techniques
that are appropriate for these kinds of tests such
as data cycle test, dataflow test and algorithm
test [18, 19].

TMap is a testing method executed
simultaneously to developing. The test activities
typically take 30%-40% of the whole
development time. TMap uses a clear test
strategy to set the goals about what is important
to test. Based on quality attributes and a risk
analysis, a well defined approach can be used.
The method clearly states the difference between
whitebox & blackbox testing [19]. While Unit
testing is mainly concerned with code-testing,
whitebox testing goes further and even includes
evaluating technical designs. This corresponds
with the importance that faults are detected as
soon as possible.

����������	
	�
���
����	���
���	�����
��		
�	

TMap also deals with the other basic principles.
The author of the method states that: “For all
types of testing the main activities are planning,
preparation and execution” [18]. And just like
Boehm observed, TMap also confirms the
following statement: “It is known that rework
effort on defects increases exponentially per
development phase”. It is way too extensive to
use it completely within a small company like
Basket Builders. Even the short timescale makes
use of all the aspects impossible. In the method
this is also recognized. The following statements
are part of the method description:
“For white-box testing it contains too many
activities. Only in highly circumstances will all
activities be applicable” and
“Choices have to be made, since it is impossible
to test a software product completely; 100%
coverage on all functionality and quality
characteristics is perhaps possible in theory, but
no organisation has the time and money to do it”
[18, 19].

Exploratory testing
A more loosely way to test is the testing
technique Exploratory testing. Exploratory
testing is simultaneous learning, test design, and
test execution [17].

The technique is based on the touring bus
principle. People on the touring bus take a
personal route during a stop but always come
back to the main course. So in terms of testing:
there is a roadmap that needs to be followed but
there must be room to further explore interesting
parts that are revealed during the testing activity
itself. The case with extensive test scripts is that
they sometimes tend to lose significance after
they have successfully run once. This is the case
with static functionality.

In Exploratory testing a plan is made for each
test. In this plan the overall testing strategy (from

the Master Test Plan) is made specific for the
part of the system that is the subject of the test:
the risks and critical parts are identified and
where applicable specific testing techniques are
prescribed.
The roadmap for the test is also used by the
tester as a guideline for the test report.

Extreme testing
Extreme testing, the testing approach of XP,
focuses on Test Driven Development: this
basically means that tests are written before any
code is developed.
In XP, ideally, every test should be automated.
But it is not always worth automating every test.
[16] Fully automating GUI testing, for instance,
does not work well most of the time. One ends
up spending too much time adjusting the tests to
the many small (mostly cosmetic) changes that
are made to the use interface [23].
When deciding which tests should be automated,
one must always assess the following three
criteria [23]:
1. Automating this test and running it once

will cost more than simply running it
manually once. How much more?

2. An automated test has a finite lifetime,
during which it must recoup that
additional cost. Is this test likely to die
sooner or later? What events are likely to
end it?

3. During its lifetime, how likely is this test
to find additional bugs (beyond whatever
bugs it found the first time it ran)? How
does this uncertain benefit balance against
the cost of automation?

The currently developed testing framework by
Kent Beck, the founder of XP, with his
implementation NUnit [35, 21] can be used to
test the software.

�

�����������������
�
�
����������
�
�����	��

��������	����	������������
��������������

�	�����

������	������������	��������������

������ ������������
���� ��
���
�
����

!	
�������
�
�������

����!������������
��������

�"� ���#��	�	(�)*

����������	
	�
���
����	���
���	�����
��		
�	

�������
������!��

Automating tests is only possible on a very
limited scale. In the end, Functional test will
have to be manually defined. However, they can
be defined in code or scripts. These can then be
automatically executed time and time again.

Automatic testing is possible for testing the
HTML code, Stored Procedure tests, code format
(macro) tests and stress/performance tests.

Our criteria for selecting a tool were based on:
usability, availability of information and
popularity.

NUnit [22]
NUnit is a free Unit testing framework for all
Microsoft .Net programming languages. Unit
testing can easily be integrated in the
development code and executed automatically
when necessary. NUnit is widely accepted as the
standard framework for Unit testing.

NUnit is relatively easy to use and also provides
advanced Unit testing for more skilled users.

The Unit tests can easily be executed by using a
small Windows program.

VSNUnit [34]
VSNUnit provides the same functionality as
NUnit. A big difference is that the Unit tests are
not executed from a separate program but from
Microsoft Visual Studio .NET itself.

NUnitASP [35]
NUnitASP is an extension of NUnit specially for
testing ASP.NET web pages. NUnitASP focuses
on web functionality like buttons, forms and
dropdown lists.

One big advantages of NUnitASP is that the
testing code does not to be integrated within the
development code. The Unit tests directly call
the front-end of the web application.

NUnit is free but very limited

HarnessIt [33]
HarnessIt is a more advanced (commercial) tool
for Unit testing.. Some highlights:

• Easier integration of testing code.
• Thread testing.
• Difficult to cheat testing.

NUnit should be used first to learn the basics of
Unit testing.

MS Web Application Stress Tool [36]
MS Web Application Stress Tool can easily be
used to test the performance of websites.

Certain user actions can be recorded and be
executed on the tested website. The stress tool
can simulate more than 5000 users
simultaneously accessing a web application.

The application is free of charge.

CSE HTML Validator [37]
CSE HTML Validator can easily be used to test
HTML. The commercial tool tests HTML,
XHTML, CSS (style sheets), links, spelling and
accessibility.

����� ��
�
��	����������������� ������	�����

�!!!��������� ���$�
�!���
���	�%�&'(+	
%)

����������	
	�
���
����	���
���	�����
��		
�	

SECTION V: RESULTS

 �����!�

The project objective is to set up a testing
procedure. During the project we experienced
that the overall software process itself is in need
of improvement. This process needs to be
structured first before a testing approach can be
successful. Problems already arise in the phase
of delivering specifications to the developers.
A testing approach can not work if the overall
software process is not in place [28].
This is an important issue in Test Process
Imporovement (TPI) as well. It stresses that
when improving the test process it is important
to maintain a distinction between the test process
itself and activities that have impact on the test
process [28].
In setting the scope we identified the risk of
ending up structuring the entire software
process; therefore we needed to set a clear
boundary.
We tried to provide recommendations for the
software process where this supports the testing
approach. The recommendations for the overall
software process will stimulate testing efficiency
as well.

In order to promote support and acceptance of
the new approach, it was presented to all the
employees at Basket Builders.

�����������
����

The recommendations are divided in 4
categories:

• The overall software process.
• The testing process.
• Specific core based testing.
• Specific web application based testing.

The recommendations have been assimilated into
a concrete manual for testing that can be used by
everybody at Basket Builders as a roadmap and
reference for the testing approach.

A summary of this manual has been added to the
Thesis as attachment B.

Overall software Proces

1. Development method
The testing process is part of an overall software
process.
As described earlier, we studied the current
project approach and, together with a project
manager, we explored several development
methods.
Combining the key features of these methods
with the requirements at Basket Builders leads to
a set of supporting recommendations that
promote a structured (testing) approach:

� The business drivers of the customer
organization form the input for
prioritizing the requirements. DSDM’s
MoSCoW method should be applied.
Timeboxing should be part of the
planning. This enables small releases of
features which can be tested
independently.

� Incremental development should be
applied (RUP & DSDM).

� Testing should be integrated throughout
the complete project life cycle (RUP &
DSDM).

The following principles originate from studying
the Extreme Programming method:

� Testing is an integral part for
verification. Especially for a product that
is constantly under development (the
CMS Core) this is very useful in order to
get rapid assurance on the quality of
code adjustments.

� Describe changes and features bases on
a metaphor as means for easy
communication. This can be applied
within the PID.

The points above together should ensure a more
integral approach and promote a closer
cooperation between the fields of management
and development.

����)���*��+������������	
�
������*��
+������

�,���������

���	
�����	��
	���-$$��..
����	
��
�����$/�	�
�$,�����$

���
�
�$031009/14

����������	
	�
���
����	���
���	�����
��		
�	

2. Evaluation sessions
Evaluate every project after it has been
completed. The focus within the evaluation
sessions should be on parts that went wrong and
how to prevent these in future projects? But also,
what parts were responsible for the success of a
project. It is useful to examine how these can be
used in future projects.

During testing, artifacts have been created and
these need to be analyzed as well.

Testing process

3. Define Master Testplan
A Master Testplan (from the TMap theory)
should be included in the Project Initialisation
Document. This document includes the
following parts:

• Testing mission: Why is testing
necessary?

• Prerequisites. Like project delivery
date, etc.

• Business drivers
• Risks

- Business risks
- Project risks
- Technical risks

• Quality attributes prioritised
• Testing strategy
• Roles
• Planning testing

- System testing
- Integration testing
- Acceptance testing

The Master Testplan should be drafted by the
Project Manager.
For detailed information about the Master
Testplan we redirect to TMap [18]. This
information is beyond the scope of this Thesis.
However we will include a template for the
Master Testplan in the testing manual for Basket
Builders.

4. Dedicated test coordinator
Our advice is to assign one person as test
coordinator within a project.

This is very important because this person will
be responsible for coordinating the testing
activities. He/she will pan out the testing strategy
based on the business drivers and (technical)
risks.
This task belongs to the head of the project team
as this person is in direct contact with the
developers and can easily relate to the technical
matters of testing. This is necessary because
he/she needs to provide the developers with
testing techniques and discuss technical content.
The testing coordinators can attend courses and
transfer knowledge to the other developers.
Tasks of the testing coordinator include:

- Assign the right people to the testing
activities.

- Plan tests.
- Analyze testing and take appropriate

measures.
- Make the development team aware of

the necessity of testing. They must
support and implement the overall
testing approach.

- Facilitate an evaluation session at the
end of a project. The test coordinator
must also communicate findings to the
other test coordinators within Basket
Builders.

5. Code reviews
Code reviews should be a fixed part of the
development cycle. Code reviews are intended to
ensure conformance to standards. They also
intend to help disseminate knowledge about the
code to the rest of the team. [10]
Furthermore they are intended to ensure that the
code is clear, efficient and works. It is a form of
early (whitebox) testing. Peer reviews catch
about 60 percent of the defects [9].
We recommend to enforce a code review for
each integration. These reviews must be included
into the project planning because otherwise
developers will not have enough time for this.
Code reviews should be done by a pair of
programmers. It is also valuable to swap
between code review partners in order to acquire
overall coding insights from multiple
perspectives.

����������	
	�
���
����	���
���	�����
��		
		

6. Exploratory testing
Apply principles of Exploratory testing. Each
test should be executed according to a specific
test plan. This test plan should be based on the
content of the Master Test plan combined with
the specific (technical) properties of the part that
is the subject of the test.
The test plan contains the goals of every test and
a risk assessment of the critical features.
This should be the guideline for the test and the
results should be reported accordingly. Benefit is
that the test is structured and risk based while
still leaving enough room for the tester to use
creativity and respond to the results of the tests
performed without losing track.
A template for the Exploratory test plan is
included in the testing manual for Basket
Builders.
This approach is compatible with TMap.
Because TMap is too extensive for use within
small projects of relatively low risk we
combined Exploratory testing with some aspects
of TMap.
A structured roadmap is needed but tests (test
scripts) should never cause higher setup and
maintenance costs than cost savings.
Especially within small projects test scripts tend
to be too static and of high maintenance. Formal
testscripts can always be used within
Exploratory tests.
Exploratory tests provide both structure and low
maintenance.

7. Unit testing
The developer should always provide Unit tests
within the code. Not every function needs a Unit
test, though. A good guideline for the developers
is to write one whenever he feels the need to
comment on a function or method.
For ASP.NET development NUnit is a very
practical method.
The extension NUnitAsp is an implementation
specifically for the use within web applications
(this enables the use for Web User Controls).

8. Force testing by second person
Next to the Unit tests (whitebox testing), a
component should always be blackbox tested as
well. The testing approach should enforce that
every component is always tested by another

person (other than the developer). The developer
should provide the test guideline and risk
assessment in the form of the test plan.
When a person tests his own code, it might
unconsciously be tested positively. A test
performed by a second person can eliminate this
problem as well as a possible bias.

CMS development (the Core)

9. Fixed integration times
Determine standard integration times for the
Core code of the CMS. This enforces limited
time between integrations so that the source of
possible faults and errors can be more easily
located.

10. Test Driven Development
Apply Test Driven Development (TDD) for the
development of the core code for the CMS. This
idea originates from the Extreme Programming
approach and has been positively evaluated in
many projects.
This approach results in more confidence in the
correctness of code adaptations and additions.
Faults will be much easier to locate.
Maybe it would even be worth the effort to write
Unit tests for the existing core code (retrofitting).
At the moment it is not possible for us to assess
this.
The NUnit framework can be used for TDD.

11. Fixed test database
Tests should always be executed using a fixed
test database. Multiple sources confirm this
theory (for example [26]).
A standard test database is needed for
performing the standard set of Unit tests. The
values in the database should be aimed at testing
the boundary values. For instance, when a
functional requirement forces the application to
react in a certain way to values higher than 10,
the concerning test values should be 10 (do not
respond) and 11 (respond).

12. Dataflow test
There is need for a formal testing technique for
testing the Core. The Core uses a lot of internal
properties and variables. This often leads to a

����������	
	�
���
����	���
���	�����
��		 ��	

extensive finite set of application paths. A
certain degree of test coverage is needed.

From examining the different formal techniques
included in the TMap method, we found that
Dataflow testing is very suitable for Basket
Builders. Dataflow testing is useful when
fixating complex schemas for passing variables
and properties. Often the extra effort involved in
formally describing this (by the developer) is a
wise investment. It helps to keep an overview
and to ensure a sufficient degree of test
coverage.

13. Additional recommendation for the
Core

During the project we experienced an issue that
is not directly related to testing but that we did
want to include in our recommendations.
It might be wise to invest in good documentation
of the CMS; currently, the documentation of the
Core is poor. We experienced that it is very
difficult to set up a new installation of the Core
and develop a new Control. Because every new
employee would have this experience we think it
is efficient to improve the documentation.

Testing of web applications for customers

14. Acceptation site
Organize an acceptation site where the customer
can regularly check the intermediate states of the
project product so that early feedback is
promoted. The customer can be asked to verify
certain functionality even though the product is
far from finished. For example, an interface test
by the customer is often useful.
Early functional testing by the customer prevents
expensive product adoptions at the end of the
project and minimizes the risks involved
following the bias between customer
requirements and developers understanding of
those requirements.

15. Additional tests
Additional tests like performance tests, stress
tests (where applicable) should be part of the
approach. The additional tests should be planned
in the Master Test Plan based on the identified
importance of the quality attributes.

16. Tool support
The testing approach we recommend is
supported by a suite of matching testing tools.
This simplifies and enhances the testing activity.
The tools recommended in the manual for the
testing approach are:

• Microsoft Web Application Stress Tool
• CSE HTML Validator
• VSNUnit

'��!
��������������

To assure a certain level of quality (for now and
in the future) for the new defined testing
approach and its tools, it is essential that new
trends, techniques and tools are watched and
implemented when required.

We advise to assign one person as testing
manager. This person is responsible for the
overall testing approach.
He/she has to watch developments from the
scientific field of testing and introduce them
where useful.
A more practical part of this task is the support
of tools. Tools need to be examined and
evaluated when appropriate.

Finally, the used testing process needs to be
watched and metrics should be acquired and
used to evaluate the whole. The testing manager
also promotes testing and our recommendations
and approach. A manager from Basket Builders
can be assigned to the task of test manager.

test manager
(promoter)

test
coordinator

developers /
testers

developers /
testers

developers /
testers

������	,�	��������	
��
���	�����	

project
manager

����������	
	�
���
����	���
���	�����
��		 �
	

SECTION VI: THE CASE

"���������
��
���

The case involved the development of a control
by using Microsoft .NET’s framework. The
control is a small poll system that can be placed
on a website.
This poll control can be added to websites by
using Basket Builders’ CMS.
In the back-end of the CMS, properties for the
control can be set:

• authorisation – for which users will the
poll control be visible

• show graph – a graph with results will
be displayed

By developing this control we learned about
Basket Builders’ development approach and the
CMS architecture.

From the point of view of testing we focussed on
Unit testing. Unit testing is the first step towards
semi-automatic testing.
The objective was to assess if the NUnit
framework, in particular NUnitASP, is suitable
for writing Unit tests.

�����������!
(��
���

A functional report was provided. It was not very
specific so some additional research was needed.
We used NUnit to internally test our code and
NUnitASP to externally test on functional level.

The most complicated part was integrating the
poll control into the front-end.

)
��
���*����!���
���

We experienced a steep learning curve but
eventually the result was successful.

NUnitASP is a very handy framework,
especially for web applications. The test cases
are not integrated into the program code so there
is a clear separation between program code and
test code.

The integration with the CMS was troublesome
because documentation was missing.

Software architecture is an important issue when
looking at Basket Builders CMS. The whole
organization is depending on the CMS because
the main activities surround it. Controls need to
be integrated in the *Net Toolbox so a well
defined architecture is needed.
�

The case was too short to give good insight in
the testing process. It provided good information
about the tools but not about the testing process.
Time was not available to execute a project with
a longer timescale.
�

�

����������	
	�
���
����	���
���	�����
��		 ��	

SECTION VII: CONCLUSION

Research questions:
A well defined testing process will fail if the
overall process is not valid. The process has to
be well organized before a test approach can be
implemented.

Our first research question on the current project
approach (Question A: What is the current
project approach?), confirmed the statements
above. We started by examining the test
approach and often we ended up in the software-
or management approach. It also became clear
that a formal process is not essential in small
companies, however structured testing is.

Our second research question (Question B: How
are the products currently tested? What
procedures are followed?) made clear that
Basket Builders applies testing but is not aware
of the full potential. Testing is done at the end of
a project to find and fix errors; it is seen as a
negative activity. In the future testing must be
seen as a useful positive means for achieving a
higher quality level.

Answering research question C (What available
testing techniques and methods are suitable for
Basket Builders?) made clear that many testing
methods and techniques are too formal and
require too much set-up and maintenance effort
for use within small, low risk projects.

Question D (Which aspects of the current
approach are useful for the testing approach and
which should be replaced or rejected?) showed
that a Master Testplan can be added to the PID
and the task system is a useful way of delegating
and monitoring tasks. These tasks can be tested
individually.

Question E (How does testing fit into the rest of
the software process?) revealed that testing
needs to be integrated within all the different
levels in the organization, also in the
development approach. Management has to plan
the activities and developers need to execute
them.

Concerning the final research question (Question
F: Which tools can be used to support the testing
activities?), automating the whole testing
approach is not possible. Structured planning and
execution of testing is needed. Tools can only
support these activities.

The main research question resulted in a testing
approach tailored for use within a small web
company, more specifically Basket Builders. To
support the approach we drafted a manual
containing templates, checklists and guidelines
for the testing activities.

Overall discussion:
Exploratory testing is more suitable for small
projects where fewer risks are involved. More
lightweight methods should then be used to save
time and money. Web projects are typically low
risk. TMap also recognizes Exploratory testing
as a useful addition in the new TMap book
labeled “TMap Rood” (See attachment C).
Another issue is the need for a more lightweight
testing approach that can be used with iterative
software methods. Smaller projects, with less
risk, need an adjusted testing approach. There is
a wide scale of techniques and we combined the
ones that were useful.
It was very interesting and reassuring to see that
the chosen direction for our findings and
recommendations very much corresponded with
the subjects that are now part of the new TMap
Rood approach.

 !��������
�������
back-end = the part of a software system that
processes the input from the front-end.
blackbox testing = blackbox tests are based on
the functional specifications and quality
requirements. The system is evaluated in its
eventual form.
the Core = references to the core code of the
Content Management System of Basket
Builders: the *Net Toolbox
error = this is more catastrophic. You get an
error resulting from an error condition you did
not check for.
failure = an anticipated problem. When you
write tests you check for expected results. If you
get a different answer, that is a failure.

����������	
	�
���
����	���
���	�����
��		 ��	

front-end = the front-end is the part of a
software system that deals with the user. The
front-end is responsible for collecting input from
the user and processing it in such a way that it
conforms to a specification that the back-end can
use.
refactoring = ongoing improvement of the
design of existing code.
variation = refers to a specific combination of
input conditions to yield a specific output
condition.
whitebox testing = testing based on the program
code, the program description on the technical
design. It is aimed at the internal operation.

����������	
	�
���
����	���
���	�����
��		 ��	

SECTION VIII: REFERENCES

+
�����������
��������

�
1. [Basket Builders 2002] Basket Builders

Projecthandleiding 1.0 (Internal
Report)., David Smits.

2. [Pink Elephant 2000] De kleine Prince2,
Mark van Onna, Brigit Hendriks,
Günther Schraven.

3. [DSDM 2000] Using DSDM with
PRINCE2, DSDM Consortium 2000

4. [Rational 2003] Prince2 and RUP:
Loose coupling works best, Russel
Norlund.

5. [IEEE 2000] A Software Development
Process for Small Projects, Melissa L.
Russ and John D. McGregor, IEEE
Software September/October 2000.

6. [Harrold 2000] Testing: A Roadmap,
Mary Jean Harrold, 22nd International
Conference of Software Engineering,
June 2000.

7. [Marick 1997] Classic Testing Mistakes,
Brian Marick, Testing Foundations.

8. [IBM 1999] Software Testing Best
Practices, Ram Chillarege, Center for
Software Engineering, IBM Research,
April 4th 1999.

9. [Boehm 2001] Software Defect
Reduction Top 10 List, Barry Boehm and
Victor R. Basili, Software Management,
January 2001.

10. [Beck 1999] Extreme Programming
Explained, Kent Beck, Addison Wesley
Publishing Company.

11. [IEEE 2001] Extreme Programming
from a CMM Perspective, Mark C.
Paulk, Software Engineering Institute,
November/December 2001, IEEE
Software.

12. [IEEE 2001] Extreme Programming:
The Good, the Bad, and the Bottom Line,
Robert L. Glass, November/December
2001, IEEE Software, Loyal Opposition,
Computing Trends.

13. How XP solves Testing and Quality
Assurance Problems,
http://www.xptester.org/_ZABLE[0]_/ta
b/9/excerpts/xpsolvesqa.htm.

14. [Parrish/Jones/Dixon] Extreme Unit
Testing: Ordering Test Cases to
Maximize Early Testing, Allen Parrish,
Joel Jones and Brandon Dixon.

15. [Ynchausti] Integrating Unit Testing
Into A Software Development Team’s
Process, Rany A. Ynchausti.

16. [Jeffries 1999] Extreme Testing: Why
aggressive software development calls
for radical testing efforts, Ronald E.
Jeffries, Software Testing & Quality
Engineering, March/April 1999,
www.stqemagazine.com.

17. [Bach 2003] Exploratory Testing
Explained, James Bach, 2002-2003,
james@satisfice.com.

18. [Pol/Teunissen/Veenendaal 1997] A Test
Management approach for structured
testing, Erik van Veenendaal en Martin
Pol, UTN Publishers 1997.

19. [Pol/Teunissen/Veenendaal 2000] Testen
volgens TMap, Martin Pol, Ruud
Teunissen, Erik van Veenendaal, UTN
Publishers 2000.

20. [IBM 2001] Testing, fun? Really?, Jeff
Canna, IBM developerworks, March
2001, http://www-
106.ibm.com/developerworks/library/j-
test.html.

21. [Beck] Simple Smalltalk Testing: With
Patterns, Kent Beck, First Class
Software Inc.

22. [Beck 2004] NUnit 2.0, Kent Beck,
2002-2004,
http://www.nunit.org/index.html.

23. [Finstarwalder 1999] Automating
Acceptance Tests for GUI Applications
in an Extreme Programming
Environment, Malte Finstarwalder.

24. [Millar/Collins] Acceptance Testing,
Roy W. Millar, Christopher T. Collins.

25. [Holcombe/Bogdanov/Gheorghe]
Functional Test Generation for Extreme
Programming, Mike Holcombe, Kirill
Bogdanov, Marian Gheorghe.

26. [MSDN 2003] Get Test Infected with
NUnit: Unit Test Your .NET Data Access
Layer, Steven A. Smith,
http://msdn.microsoft.com/library/defaul
t.asp?url=/library/en-
us/dnaspp/html/aspnet-testwithnunit.asp.

����������	
	�
���
����	���
���	�����
��		 ��	

27. [Rosenberg/Stapko/Gallo]Risk-based
Object Oriented Testing, Linda H.
Rosenberg, Ruth Stapko, Albert Gallo.

28. [Koomen/Pol 2000] Test Process
Improvement, Tim Koomen, Martin Poll,
Praktijkreeks Software testen, 2000.

29. DSDM Consortium,
http://www.dsdm.org/.

30. [Kruchten 2004] The Rational Unified
Process: An Introduction, Philippe
Kruchten.

31. [Chan/Chen/Tse 2002] An Overview of
Integration Testing Techniques for
Object-Oriented Programs, W.K. Chan,
T.Y. Chen, T.H. Tse.

32. [Stapleton 1997] DSDM, the method in
practice, Jennifer Stapleton, Addison
Wesley Professional.

��
��������
��������

33. HarnassIt, http://www.unittesting.com/
34. VSNUnit,

http://www.relevancellc.com/vsnunit.ht
m

35. NunitASP,
http://nunitasp.sourceforge.net/

36. Microsoft Web Application Stress Tool,
http://www.microsoft.com/technet/itsolu
tions/intranet/downloads/webstres.mspx

37. CSE HTML Validator,
http://www.htmlvalidator.com

����������	
	�
���
����	���
���	�����
��		 ��	

POSTFACE

Originally we started with another project for our final assignment. Unfortunately, this proved to be a
project that in our opinion could not be justified as having sufficient academic level. Luckily we acted
quickly and were able to switch to the eventual assignment. Better agreements on the actual
assignment should have been made from the beginning.
After 3 months of hard work we are happy that we were able to conclude this extensive project as
scheduled despite the week of work that was lost. Ultimately though, the first week is more an
introductory period.
Overall we have to say that we were very pleased with this assignment for our Master Project. It
presented us the challenge we wanted and the possibility for an extensive research on an academic
level. We studied most of the technological developments in the Software Testing domain.
Also the project very much suited the theory already learned during the master Software Engineering.

We learned that a tester needs to be a good communicator. He or she needs to build bridges between
the different stakeholders and provide information about the current state of the project. Testing is not
only about software anymore but also about people.
Overall the project contributed to being able to see the theory in its right frame and perspective.
A lot of the classical faults were illustrated in practice: testing only at the end of a project, insufficient
communication with customer, no frequent deliverables, too little attention for documentation, etc.
Because of the limited time available, planning was essential, even more so because the assignment
was a cooperation between 2 students. The planning proved to be effective; in the beginning of the
project we drafted a Plan of Approach in which we defined clear timeboxes and goals. This planning
was monitored and worked out in more detail every week.
Furthermore the study expanded our knowledge and trained our capability. We believe our knowledge
has a strong foundation and now it is time to gain experience and train our capabilities.

Below, Bart Ferweda, project manager at Basket Builders has reflected (in Dutch) on the project and
its usability for Basket Builders. We have deliberately not translated his reflection.

On the following pages, a personal reflection and conclusion from both authors can be found:

01�����
�������	������,����������
����
��� ��������� ��	��
����������	�
2������������
���

����!������!
��������2�������3����
2�� ��
�
�.
2��.��
��	�����.�������
�!���
�
�����
��

�����
���1�����
��������������
�������
���
����� ������������	�
�

���������	�
������ ����

��������
2�����������������
�������!
���� ��	�����������2��� ���
� �������	�
������
��	���

�������
���������������������
���
���������������#������#�
������	������
��������
�����

�����
�
2���������������
����������

+����������
������������� ��	��
���
��� ����
���������.����
��
���
�����
�
4�����������������

���1���������
����.���

������!
���� ��	����������2��� ���
� ���� ��	��
�����������������

��� �����������������5��������������
��
���	
���!���	��������
�
2������1���������������

���
������������������ ���������������2��� ���
� ���� ��	�����
��#������#�
���������������

�����
��������� ��� �������-��������
���
��������2����������#������#�
����������.����

�����
�
2���������.����
2������������
�!��������

������������� ������!��	��
������������� ��	��
����
��,����������
����	������

�6������������.�����
�����������
�
4���������!
�������2�������1�������
2��.���	�������
�!
2.����
��

�������
��!��7�
�

#����8��!������

,��2��� ���
����

#������#�
�����

����������	
	�
���
����	���
���	�����
��		 ��	

09����������� ���������������	���!�����������	�����

�
�:���������2�����	��� ���	�������������

�����!�����������	���� �������
�������
 ��!��������������������!��������������������
���
�����	��

���2�����������
�
������������������������2�������

9�������	���
��
����
���
��!�
�
�
��	��+	��
��!���������
�
����!�����!������
�
�����������
�
��

��
���
�-�9������	�����	���
��
�
��	���������������
����
�������������
���������
���!�����������

�	����	���	����������	
�
�	���������2���
�
��������
�
������� ��
�������+	��+	��
��������	����

���
����������������(;;���
����*����
���������������	��������������	�� ������������
�����

�

*��!�������������

�������������
���
���	����� ����
�������:�������������
�
���
���	������� �

��������
����
�������
�!���	
��
����
��������*
�	�������� ���������������� ����	��
��
�
�����

���
�
�� ��� �	�� ��������� 	���� �
����� ���
�
�� ���������� 	������� �� �
�������� ���������

 ��
���
����������	
�� ��
���
���
��
�������
�
��

��������	
����	
���������
������	�����
*�����
�����������
�
�����������
�!�����	�����������
����
����
������������<�
�� ������9���

���� �����
���������������� ��� ���
�
��	
������	������������� �����������
����
���������

�������������
�
�
��� �������!��
�������2������

=�������������
��!���
 ����
������������
����	���������
�������	���������	�!
�	
����#������

#�
���������2�������
�
��	��
������
������

� �����+	
��!�����	����

���� ��������
�������	��

<���
�������	���������>�	�!������	
��!������������
��
��
���� �
��������	
����	
���
��������
��� �����
���������	��<���
�������	���������������	��+	��
���9�	��!
������!�����	���� ����

��2��� �����������������
����!����	�������	����������	�����2����������������
���������
�
��!��

	����� ���
 ��������������
�!������������������
������
�
��	��+	��
��������
�
����

+	��+	��
��
����!����
�!�����������������������#������#�
������� ���������������� ��������

�����
������	����������!�������
�
������������	����	������������	�������������������+	
�� �����

 �����������
������������	��<���
�������	������ �����

�����������	
����	
���������
�����	�������
���!����	�����

�
�����
������!������������ �����
�����	���!�������	�����������������������

�����
���
�
����5�!������	���������	�<����
���
������!�������������
��
������
�����������

����
��
�
��	�������� �������
����
�
��	�����
�������	���������!	���
����
������������!��
���!���

���2�������������
��
������!��� �
���
�
�
��	���������

�����������
����	
����� ��	�����	
���	�!
������"���	��#�	
���$�� ��	����
������������
������ ��	�����2������������������!����
�������������������
�����-�?���!����

���	
�������������������?���!����,��������������������������?���!����+���
�
��

8���
���������	�� ����
 �������� ����
����� �?���!����+���
�
�!����	����	��������������!����

��������������������!������
��
.�����������	������
�
����������������
 ��������+	
��!��������

���������
�������

@������
�
�?���!�������	
����������	��
 ���������������	
�����������������
������
��!���

������������	���
	�A3���+�������������������	���
������
����������
�
�����	��������������

�

B���
�
����������	�������������������	���
��!����������
�����
��������
��!	
�	�����������	�����

!���	��������1��
�
��	���� ��������	����!����

�����
 �������������
���
���������2���>��	
��

:������,��2�����
������
����	
����������
�����

+	�������	���
�������<�
�������������!�	�����	������
�
��	����C � ��	���������������������

����	�����	

	����������
������������*���������������������?���!������

����
�
���� �����������

��������
������� ���!� ��������
���������������	���������
��������
�������������������������

�	������
�
�
�
�������	��2��� ������
���	���
�����������
�
�7�

�

�,�����B� �����

����������	
	�
���
����	���
���	�����
��		 ��	

Let us conclude with expressing the hope that the testing approach will indeed also bring Basket
Builders to a higher level. For sure we will try to follow the development of the company.

0�������
�
�	
�
��	��
�����
����	�����
�������������	����������	��:������,��2������������
����������

�	�����
�-�+	�����������	����������������������
������#������#�
�������@������
�
��	��������

�����
���!�����������	�����
�������	����	�����
��!������
�
�
�������������
�
��	������������	��

+	��
���+���
�
�
�������������2�����������������!
�	� ������	����
��������?���!������

����
�
��

8
����
�
�������������
���� ��
���!�����!��������������������	���������
�������� �����	�����2����

�����
�����
����?�
���!�� ���
������������������������	�������������2���������������������!
�	���

�
� ��� �
���
����������
�
����	�
<���������
���������� �������!��
�������2������

�

+	�������!
�
��������
���!��������-��

�

��������	
����	
���������
������	�����
@�������
�
��	�������������	��!
����
��������� �����	�����2������������	�����
���+	��������������

��� � ����
�������
�!������
�������
�
����������	��������
���������
�
�������������
��������

����

����� ���������!��
������2������1��
�
� ���
�
��!
�	������������������� ��	���
����!��!������������

���������	� �!
�	��	���� ������������
�
������������������������ ���� ������������
���������	��

<���
�������	���������	����������

�

#����������������
 ��
��!������������������
�����������������	����!�����
�
������������
�
���������
���

���2��������������!�������������
���	������
�
������������� ��
�	���
������
�������
��������

��������	
����	
���
��������
*	�������
�
��������� ������ �����!�
��������
�
�����
����
������	
�����	
���
 ���� ��	�	

	���

<���
���������	����������	
������:����	���
������	
������������ ��
 ����������������
����+	��

������������������
�������
������� �����!	
�	���������
������

	������	����
������� �����
�����

:����������������������	����	��+	��
��
����2���������������!	
�����
���	��
�
���	

	������
����������

�

+	������
������������������!����,��������� ������ ����
�����������
���������	
������	

	���

<���
����������*�����	��	��������
�
�����
�!������������2������������������2���
�
����
�����������
��

�������������������	��+	��
���

�����������	
����	
���������
�����	�������
���!��
�
��	���������	�<����
���!���<�
������	�����
���:��������
�
����	�
<��������������

�

���2��������������������
����������� ����!����� ���
����+	���������
������ ���������������������

������� �����	�����2������������
��
������� ��
 �����
�
���	��������!����������������������	���

��������������������������� �
���
��������!
�	
���	�����2������

�����������
����	
����� ��	�����	
���	�!
������"���	��#�	
���$�� ��	����
:����������������2��������?���!������

����
�
����-�?���!�������	
����������	
��!����������������

#������#�
�����C�@:?���?���!����������
����#������#�
�����C�@:?�
������������������
�
���

D�<�
�� �������

����
�
������
�
�������2������� ���������2���� ����������������
�����������

?���!����,����������!�����������������
�
�����!�������2����������?���!����+���
�
������ �
��

�������	��
��������!�������������������������������	���
�����������2�����!
�	
��#������#�
�������?�
���

��������	����	�������
���	
�����!�����	���
�����������2�����
������������������?� �����2������
���

?���!�������	
������������D�<�
�� �������

����
�
���� ��� ��	� ���������
�����	����	��

���������	��������?���!����,�����������?���!����+���
�
��

�

*	������
�
� �������
������
�����������	�����!���
��
�
��	�����������
�������������!����

������� ��������!�����������	����� �����
�
�������	��2��� �������+	��������?���!����

��

����
�
�
������
������������
�������������� ����������������
����������3�!��������
�
�	
�
�

�	
��������������� ��������
������������	���
�����������2��������?���!������

����
�
���������������

�����	���!
������
�������
�
������������� ���������

�

8����
�
��������
�
� ���� ������
.���	��
������������
�
������������������
�
������	���������

����
�
�!
������� ����!�������
�������
���������	��
��� ���
�!���� ��
����������	�����������	����

!
��������!�����E7�
���
��������C���������#������������

����������	
	�
���
����	���
���	�����
��		 �		

ATTACHMENTS

����",��$���*��������	�����
��	����!!�-����"�����!

These are two screenshots of the Poll User Control we developed in the case study:

������	&�	-�������

���	��	
��	����
	���	.
��	����
��+/	

������	0�	-�������

���	��	
��	�
�1	���	.
��	23 +/	

����������	
	�
���
����	���
���	�����
��		 ��	

����",��$��&*�������������
��������!�
���&��.���&�
!�����

Below, a summary of the manual written for Basket Builders can be found. The manual and the
summary are written in Dutch.

/�!�
�
��	
De handleiding beschrijft de verschillende onderdelen van het testproces in detail. In de handleiding
zijn templates bijgevoegd ter ondersteuning van het proces. Deze zijn niet meegenomen in deze
samenvatting.

Het testproces is onderverdeeld in de volgende specifieke onderdelen. De handleiding volgt dezelfde
structuur:
• PRINCE2 Projectaanpak.
• Algemene testaanpak.
• Testaanpak voor ontwikkeling van de Core (de *Net Toolbox).
• Testaanpak voor commerciële projecten.

��/$"�0�������������.�1���������/�
�
�!
���
���2�������3�
In het PID zal de basis gelegd worden van het testen door middel van het Master Testplan. De
volgende onderdelen komen terug in het Master Testplan:
• De business drivers.
• De teststrategie.
• De kwaliteitsattributen.
• De toegewezen resources en planning.
• Rollen en verantwoordelijkheden.
• Mijlpalen.
Het Master Testplan wordt opgesteld door het management.

�!����������������.�

De algemene testaanpak maakt gebruik van het Exploratory testing principe. Het zogeheten
Exploratory Testplan is een specifieke invulling van het Master Testplan voor het testen van een
bepaald systeemdeel.

Exploratory testing volgt het touring bus principe. De bus (test) volgt een vooraf vastgestelde route
zodat men uiteindelijk op de plaatsen komt waar men wil komen. Onderweg is er echter wel de
mogelijkheid om even uit te stappen en de omgeving zelf te verkennen.
Mocht meer structuur nodig zijn dan kan men gebruik maken van testscripts.
Het Exploratory Testplan wordt opgesteld door de teamleider.

"��������
..�!
���
De inhoud van dit hoofdstuk omvat de onderdelen van de testaanpak die speciaal gericht zijn op de
(nieuwe) ontwikkeling van de Core (CMS programmacode). De Core ontwikkeling vereist immers
een aangepaste aanpak omdat dit een continuerende ontwikkeling van een complex systeem betreft..

Vaste test database
Testen zouden altijd moeten worden uitgevoerd aan de hand van een vaste testdatabase. De standaard
testdatabase is nodig voor het uitvoeren van de standaard set Unit tests en de functionele tests.

����������	
	�
���
����	���
���	�����
��		 �
	

Test Driven Development
Test Driven Development is een krachtige manier of effectief foutloze software te programmeren. Er
wordt eerst een test geschreven, dan programmacode, om deze test positief te laten draaien.
Wanneer alle tests succesvol uitvoerbaar zijn is de code af. NUnit kan gebruikt worden om eenvoudig
Unit tests voor Test Driven Development te schrijven.

Technieken
Vanwege het feit dat de *Net Toolbox functioneert als basis van bijna elk project binnen Basket
Builders en de compliteit van dit systeem is het noodzakelijk om meer formele technieken te
gebruiken om de correctheid te garanderen.
Technieken als Dataflow testen (om de gegevensstroom te controleren), Semantisch testen (om de
functionele eisen te verifiëren) en Syntactisch testen (om bijv. invoervelden te testen) zijn daar meer
van toepassing. TMap kan gebruikt worden als handig naslagwerk om bepaalde technieken te
selecteren.

Tools
Het gebruik van Unit testing moet tijdens ontwikkeling zoveel mogelijk gestimuleerd worden. Unit
tests kunnen eenvoudig geschreven worden door middel van NUnit en NUnitASP.

4���
�������
..�!����������
Naast het ontwikkelen van de Core van de *Net Toolbox, zijn er natuurlijk de diverse projecten voor
klanten (meestal een implementatie van de *Net Toolbox).
De volgende onderdelen zijn van toepassingen voor commerciële projecten:
• Een acceptatie pagina waar de opdrachtgever de applicatie tijdens het project kan bekijken in

huidige vorm. Dit kan gebruikt worden om vroeg delen van het systeem functioneel te testen.
• Unit testing om voornamelijk bedrijfslogica en complexe functionaliteit te testen.
• Code reviews om in korte sessies met een aantal mensen naar de programmacode te kijken en te

verantwoorden waarom bepaalde keuzen zijn gemaakt.

����������	
	�
���
����	���
���	�����
��		 ��	

����",��$��"*�����������

Below, an introduction (in Dutch) can be found to the new TMap book called “TMap Rood” which is
scheduled to be introduced in the year 2004. This introduction originates from the official TMap
website from Sogeti (http://www.tmap.net).

����������

��	��
	1
���	�
�	��
	������	�3
�	�

	 ���
�	��	1������	
�4�	���	����	
�3
�5-���	.���1
�
��+/	��
	��	���	���1	�

	����
	���������	��
	�����	���	
��6���������	��4�	����	�������	������	�����������	��	��	�2�	��	�3
�/	��	
�����������	��	�3
�5-���	��4��	
	
�/	!�������	������	
��
�
�
�����
	
���
���

���	�
����	��	��
��11�����	�
�	������	��	����4�����	�2�5���
����	
��	��������
7	1��
��7	��������
�4�	��	������8�/	��	��
	������	�3
�	����
	��
	

��
�
�
�����
	�
���11���41��	����	����	���������	������7	��
	�����
����	
���
�����
��	����	������
�
����7	
��
�
�

�������
����	��	5�����
���	��	��	
����

��������	
��
�
�
�����

�
���
��
��	
�4����	��	�������������	�3
�5
�
���/		
	

�����
��!�������
��	
#/	�3
�5����
	
9�	��4�	��
�

���	�

���	��
	���������	��	��	�����
�	���	�����1
	

�

�	������
��	��
	�3
�	
��	
�	�
����/	
��	��	����	��
�

���	��
	������1	�
�	�3
�	
�	������
11���41��	��	����	����
�	�
��
�
	���������7	�3
�5
����
	���

��/		
:/	���
��	��	;�	�
�	�
11�

���
�������	
	
,/	�
��

���<��������
	���
�����	��
��11����	
	
&/	���
��	�
�	�

�
���������	
	
����������1���	�
�.��		
0/	=�
��
��
��	
����	����	�
�	
��
��	����
	��1	���	���
�����
���

��5	��	����������
���

��
��
��	�������/	
	
)/	9>����

���	
��
���	
	
���	��
��	����!��
��	
?/	���
��	����
	��

�	��	��	���
�>
	�
�	���
�����
��11�����	��	5���������/	!�4	��	������
���	�
�	��
	

��
��	���
	��1�����	������	��������	��
	��	��1����	

��
1	����	��	���
�����
��11�����/	�3
�5-���	
�������
	��	����	��
��������	���

����	�3
�	��	� �37	�3
�	��	@�����#	��	�3
�	��	-A@/	
	
��	��
�����	��	�

	��
	���1	������	#'',	��
1��
/	3���	������

���	�
���	���	�5�
��	�

��	

TMap@sogeti.nl		
	

������	0�	��
�����
���	
�	�3
�	-���	

