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Abstract

We investigate the use of first-order for lightweight software specification.
We show that is possible to use existing tools to provide automatic analysis
of specifications written in first-order logic plus (reflexive) transitive clo-
sure. The specifications are converted to pure first-order logic before they
are passed to the model finder. This specification method is mostly model
finder independent and it has been applied successfully to the development
of several example specifications.



Chapter 1

Introduction

Formalization works as “an early-warning system”
when things are getting contorted.

E.W. Dijkstra

1.1 Background and Context

Abstractions are fundamental to the design of software: good abstractions
ease development and increase flexibility, whereas flawed abstractions im-
pede development, cause defects, and hinder modification. Regrettably, ab-
stractions are hard to get right, but formal methods, and especially formal
specification, make better abstractions possible [12].

Formal methods are mathematically based techniques for the specification
and verification of computing systems. Specification is the process of de-
scribing a system, its environment, or both. Verification is the process of
establishing that a system has certain properties.

Specification is done using a specification language: a formal system which
consists of syntax, semantics, and proof rules. Specification languages can
be roughly classified as property-oriented or model-oriented [4]. Property-
oriented languages, such as CafeOBJ [19] and CASL [3], emphasise prop-
erties of entities and functions, whereas model-oriented languages, such as
VDM [17] and Z [20], emphasise mathematical values such as sets, maps,
and sequences and functions over these values. The main benefit of the spec-
ification process is intangible: gaining a deeper understanding of the system
in question [9], but there is a tangible byproduct, the written specification,
which can be used in verification.
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The two main methods for verification are deductive verification and model
checking. Deductive verification, which is also know as inferential verifica-
tion, is human-directed. Axioms and proof rules are used to prove that the
system in question has certain properties. It is a time-consuming process
which requires considerable expertise, therefore it is rarely used and it is
applied mainly to highly sensitive systems such as security protocols [8].
Model checking, in contrast, aims to be fully automatic, and for that reason
it is restricted to the verification of finite state machines. Properties, typi-
cally expressed in temporal logic, are verified by examining a model of the
system in question. The main problem in model checking is the potential
combinatorial explosion of the state space. This problem occurs in systems
with many different interacting components or in systems that have data
structures that contain many different values.

Full specification and verification are not economically viable for everyday
software development, therefore lightweight formal methods [16] focus on
the selective application of formal methods. Everyday software develop-
ment can benefit most from analysis: analysis can expose specification and
design errors when they are still inexpensive to fix. Lightweight formal
methods aim to make analysis economically feasible by reducing the cost of
specification and by automating the analysis itself. The cost of specification
is reduced, first, by emphasising the tractability of specification languages;
second, by encouraging partial analysis. The analysis is automated through
model finding. Given a specification model finding looks for a model of the
specification. On the surface model finding resembles model checking, but
actually they are each other’s inverse: model checking starts with a model
and checks if the model satisfies a formula, while model finding starts with
a formula and finds a model that satisfies the formula.

Lightweight formal methods emphasise the tractability of specification lan-
guages and thus favour small languages with simple semantics. This is
strikingly different from conventional formal methods which view specifica-
tion languages as general mathematical notations and accordingly emphasise
expressiveness. First-order logic is the smallest, possibly still useful specifi-
cation language we can think of. The goal of this project is to investigate
the use of first-order logic for lightweight software specification.

1.2 Overview

In chapter 2 we investigate if it possible to express (reflexive) transitive clo-
sure in first-order logic first, because common connectivity and reachability
properties cannot be expressed without (reflexive) transitive closure. Every
example specifications in this report uses (reflexive) transitive closure. One
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of the specifications, for example, models the structural properties of a file
system and uses the reflexive transitive closure of the “contents” relation of
the root directory to express that the file system is connected.

As it turns out (reflexive) transitive closure can be expressed in first-order
logic, at least for finite domains. This means it is possible, in theory, to use
first-order logic for lightweight software specification, but is it practical?
We noted above, for example, that automatic analysis is a key component
of lightweight software specification. Can we use existing tools to provide
automatic analysis of specifications written in first-order logic? This is pos-
sible as well. We have developed a toolkit that consists of an “off-the-shelf”
model finder, a compiler which translates first-order logic plus (reflexive)
transitive closure to first-order logic, and a visualisation tool. Chapter 3
introduces this toolkit. We assess the usability of the toolkit by applying
it to the development of several example specifications. We also compare it
with Alloy [14, 15], a state-of-the-art lightweight specification tool. Chapter
4 discusses the example specifications, chapter 5 contains the comparison
with Alloy. Lastly, chapter 6 summarises our main findings, discusses the
implications of those findings and outlines some ideas on future work.
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Chapter 2

Expressing Transitive
Closure in First-Order Logic

2.1 Preliminaries

Let R be a binary relation on some domain D.

Definition 2.1. The transitive closure R+ of R is the smallest relation on
D such that

(i) R ⊆ R+, i.e., ∀x, y. R(x, y) → R+(x, y)

(ii) R+ is transitive, i.e, ∀x, y, z. R+(x, y) ∧ R+(y, z) → R+(x, z)

Definition 2.2. The reflexive transitive closure R∗ of R is the smallest
relation on D such that

(i) R ⊆ R∗

(ii) R∗ is transitive

(iii) R∗ is reflexive, i.e., ∀x. R∗(x, x)

2.2 Transitive Closure in General

Transitive closure in general cannot be expressed in first-order logic. We
give a proof by contradiction using the compactness theorem.

Compactness Theorem. A set of sentences of first-order logic is satisfi-
able (has a model) iff every finite subset is satisfiable.
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Note that “sentence” here means “a formula without free variables”.

Let L be a first-order language whose parameters include two binary pred-
icate symbols R and TR, and two constant symbols a and b. Let φ be
a sentence that says that TR is the transitive closure of R. Assume φ is
satisfiable.

We define an infinite set Σ of sentences such that Σ = {σn | n ∈ N} where
σ0 is ¬R(a, b) and where σn for any n ≥ 1 is of the following form:

∀x1, . . . , xn. ¬(R(a, x1) ∧ R(x1, x2) ∧ . . . ∧ R(xn−1, xn) ∧ R(xn, b))

The sentence σn says that there is no R-path of length n+ 1 from a to b.

Let Γ be the infinite set of sentences such that Γ = {φ, TR(a, b)} ∪Σ. Every
finite subset Γ′ of Γ is satisfiable: a structure in which a R-path from a to
b exists and in which the length l of every R-path from a to b is such that
l > n+ 1 for every σn ∈ Γ′ is a model of Γ′.

Since every subset of Γ is satisfiable the compactness theorem gives us that
Γ is satisfiable, but this leads to a contradiction: given {φ, TR(a, b)} ⊂ Γ
there is a R-path from a to b, but σn ∈ Γ for every n, i.e., there is no R-path
from a to b.

2.3 Transitive Closure on Finite Domains

We have just seen that transitive closure in general cannot be expressed in
first-order logic, but the proof given is only valid for infinite domains. Model
finding is restricted to finite domains [13], thus for our purposes it is enough
if transitive closure on finite domains can be expressed in first-order logic.
In this section we will see that this is possible.

2.3.1 Rewriting Transitive Closure

An näıve solution to the problem of expressing transitive closure on finite
domains is to rewrite the transitive closure; given a domain of size n the
following formula expresses the transitive closure of a relation R on that
domain:

∀x, y. R+(x, y) ↔ R(x, y) ∨ σ1 ∨ . . . ∨ σn−2

where each sub-formula σn is of the following form:

∃z1, . . . , zn. R(x, z1) ∧ R(z1, z2) ∧ . . . ∧ R(zn−1, zn) ∧ R(zn, y)

The sub-formula σn says that there is a R-path of length n+ 1 from x to y.
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Though easy to understand this solution suffers some problems. Either the
domain size has to be known beforehand, or an extra sub-formula has to be
added for every increase in domain size. But, more importantly, it introduces
loads of auxiliary variables which slows down model finding, as we will see
in chapter 5.

2.3.2 Axiomatising Transitive Closure

Koen Claessen [6] shows that is possible to axiomatise transitive closure
on finite domains. This method of expressing transitive closure on finite
domains does, of course, work for domains of arbitrary size, in contrast to
the rewriting method discussed above. Claessen’s axiomatisation relies upon
the introduction of auxiliary symbols. Let’s look at the axioms.

Axioms

Given a binary relation R on some domain the axioms define the symbol TR

as the reflexive transitive closure of R.

The first three axioms echo definition 2.2 above. They express that TR is
reflexive (I1), that TR includes R (I2), and that TR is transitive (I3).

(I1) ∀x. TR(x, x)
(I2) ∀x, y. R(x, y) → TR(x, y)
(I3) ∀x, y, z. TR(x, y) ∧ TR(y, z) → TR(x, z)

But this is not enough: TR must be the smallest relation satisfying these
axioms. We must require there to be a R-path from a to b if TR(a, b).

The first two axioms we add require there to be a “next step” c from a
towards b such that R(a, c) and TR(c, b) if TR(a, b). The axioms introduce
a new function symbol sR; the term sR(a, b) = c indicates that c is a next
step from a towards b:

(E1) ∀x, y. TR(x, y) ∧ x 6= y → R(x, sR(x, y))
(E2) ∀x, y. TR(x, y) ∧ x 6= y → TR(sR(x, y), y)

If x = y then there is no need to constrain sR(x, y) because (I1) already
gives TR(x, y).

The axioms (E1) and (E2) do not constrain TR enough. Figure 2.1 shows a
counter example. Straight arrows denote R and dashed arrows denote TR.
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a b

Figure 2.1: Counter example to (I1),(I2),(I3),(E1), and (E2).

The problem in the counter example is that sR(a, b) = a. This combined
with R(a, a) makes the axioms (E1) and (E2) true for 〈a, b〉.

We could try to fix this by adding axiom (E3’).

(E3’) ∀x, y. TR(x, y) ∧ x 6= y → sR(x, y) 6= x

Axiom (E3’) does not fix the problem though. Figure 2.2 gives a new counter
example where sR(a, c) = b and sR(b, c) = a. This makes the axioms (E1)
and (E2) true for 〈a, c〉 and 〈b, c〉.

To solve this problem we observe the following: if we have TR(a, b) then we
want sR(a, b) to be closer to b than a. We introduce another symbol: CR,
the term CR(a, b, c) indicates that b is closer to c than a. For each element e
of the domain we want CR(x, y, e) to be a strict partial ordering (irreflexive
and transitive):

(C1) ∀x, y. ¬C(x, x, y)
(C2) ∀x, y, z, v. C(x, y, v) ∧ C(y, z, v) → C(x, z, y)

The final axiom connects the symbol CR with the other symbols:

(E3) ∀x, y. TR(x, y) ∧ x 6= y → C(x, sR(x, y), y)

The axiomatisation just presented only works for binary predicates, but
it can easily be adapted for predicates with more arguments: the extra

a b

c

Figure 2.2: Counter example to (I1),(I2),(I3),(E1),(E2), and (E3’).
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argument positions that are not involved in the transitive closure must be
added to the auxiliary symbols and all the axioms must get a number of
extra universally quantified variables.

Alternative Axioms

Jan van Eijck (personal communications, June, 2008) came up with an alter-
native axiomatisation of transitive closure on finite domains as a by-product
of trying to understand Claessen’s axioms.

Let R be a binary relation on some domain. We use R∗ for the reflexive
transitive closure of R and R+ for the transitive closure of R. We use I for
the identity relation. For n ∈ N we define Rn by induction:

R0 = I

Rn+1 = R ◦Rn

Where ◦ denotes relational composition.

Assume the domain is finite, then R∗ =
⋃

n≥0R
n and R+ =

⋃
n>0R

n.

We introduce a ternary relation symbol C whose intended interpretation is:

λxyz.∃n,m ∈ N (n > 0 ∧ xRnyRmz ∧ ∀k ∈ N(k < n+m → ¬xRkz) ).

The term Cxyz indicates that y is at some non-zero distance from x on a
shortest R-path from x to z.

Given that the domain is finite λxy.Cxyy expresses R+− I, accordingly we
can define reflexive transitive closure using a binary relation symbol TR as
follows:

(DEF) ∀x, y. TRxy → x = y ∨ Cxyy

Clearly, λxy.Cxyu is irreflexive and transitive for any u.

(C1) ∀x, u. ¬Cxxu
(C2) ∀x, y, z, v. Cxyu ∧ Cyzu → Cxzu

Axiom (C3) expresses that R+−I is almost transitive. Axiom (C4) expresses
that R− I ⊆ R+ − I.

(C3) ∀x, y, z. Cxyy ∧ Cyzz ∧ x 6= z → Cxzz

(C4) ∀x, y. Rxy ∧ x 6= y → Cxyy

Axiom (C5) expresses that if (x, y) ∈ (R+ − I) then it is possible to make a
first R-step on a shortest R-path from x to y.

(C5) ∀x, y. Cxyy → ∃z. Rxz ∧ Cxzy
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Finally, axiom (C6) expresses that if y is somewhere along a shortest R-path
from x to z and y 6= z, then (y, z) ∈ (R+ − I).

(C6) ∀x, y, z. Cxyz ∧ y 6= z → Cyzz
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Chapter 3

The ETPTP Toolkit

The ETPTP toolkit provides automatic analysis for specifications written
in ETPTP: a notation for first-order logic plus (reflexive) transitive closure
based on TPTP [21]. TPTP is the format used by the TPTP Problem
Library [22]: a standard set of test problems for automated theorem proving
systems. The toolkit consists of the following components:

• a compiler that uses one of the axiomatisations of (reflexive) transitive
closure described in the previous chapter to translate ETPTP to TPTP

• an “off-the-shelf” model finder that accepts TPTP input

• a visualisation tool that translates raw model finder output to the Dot
format

The Dot format is part of the graph visualisation system Graphviz [11].
Figure 3.1 shows a diagram of the ETPTP work flow.

.etptp
file

.tptp
file

raw
text

.dot
file

compilation model finding visualisation

Figure 3.1: ETPTP work flow

During our research we have mainly used the Paradox model finder [7]. We
selected Paradox because it has won the SAT/Models division of the CADE
ATP System Competition [23], the world championship for automated first-
order theorem provers, every year since 2003. The toolkit is mostly model
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finder independent though, and we have used the Darwin theorem prover
[2] as well.

The toolkit is command line based. The compiler is called etptp-e, and
the visualisation tool is called model2dot. Both are written in Haskell;
appendix B lists the source code. Usage of the toolkit, with Paradox as its
model finder, typically looks as follows:

$ etptp-e < example.etptp > example.tptp && \
> paradox --model example.tptp | \
> model2dot > example-model.dot

We will discuss the compiler and the visualisation tool in detail below, but
let’s look at the ETPTP format first.

3.1 The ETPTP Format

An ETPTP specification is basically a list of statements. ETPTP has four
types of statements: include directives, comments, annotated formulae, and
declarations. We will introduce these types with the help of a simple example
specification. The example models structural properties of a file system.
The next chapter explains the full details of this example. Note that the
line numbers are not part of the specification. They are added for ease of
reference.

1 include: ’minimum -domain -size -5.tptp ’
2
3 classes: file ,dir
4 axiom: (parent(X,Y) & parent(X,Z)) => Y = Z
5 axiom: contents(X,Y) => dir(X)
6 axiom: contents(X,Y) <=> parent(Y,X)
7 axiom: dir(root) & -parent(root ,X)
8 % the file system is connected
9 axiom: contents *(root ,X)

10
11 % is the file system acyclic?
12 conjecture:
13 ?[X,Y] : (contents(X,Y) & contents +(Y,X))

3.1.1 Include Directives

The example starts with an include directive. ETPTP’s include directive
works like C’s #include directive: the directive is replaced with the contents
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of the file. The file name must be enclosed in single quotes. The directive
can span multiple lines.

3.1.2 Comments

ETPTP has single- and multi-line comments. Single-line comments start
with the % character. Multi-line comments which start with the /* character
sequence and end with the */ character sequence.

3.1.3 Annotated Formulae

There are two kinds of formulae: axioms and conjectures. Lines 4 to 9 show
examples of axioms; lines 12 and 13 show an example of a conjecture. Line
12 and 13 also show that formulae, like include directives, can span multiple
lines. As usual axioms are accepted without proof, whereas conjectures are
to be proved.

Formula Syntax

Variable, function, and predicate names start with a letter. The rest of the
name can consist of letters, digits, and underscores. All letters in variable
names must be upper case, whereas all letters in function and predicate
names must be lower case. Table 3.1 lists the syntax for connectives, quan-
tifiers, and equations.

first-order logic ETPTP

¬P -p
P ∧Q p & q

P ∨Q ∨R p | q | r
P → Q p => q
P ↔ Q p <=> q

∀x, y. R(x, y) ![X,Y] : r(X,Y)
∃x. S(x) ?[X] : s(X)
x = y X = Y
x 6= y X != Y

Table 3.1: ETPTP syntax for connectives, quantifiers, and equations

The notation for (reflexive) transitive closure is like the one used in chapter
2: the + character denotes transitive closure and the * character denotes
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reflexive transitive closure. Line 9 of the example uses reflexive transitive
closure, line 13 uses transitive closure.

3.1.4 Declarations

There are two kinds of declarations: classes-declarations and singletons-
declarations. Line 3 of the example shows a classes-declaration; classes-
declarations are used to declare a number of mutually exclusive unary pred-
icates, thus partitioning the domain, singletons-declarations are used to
declare a number of unique constants.

3.2 Compiler

The etptp-e compiler is a source-to-source compiler: it translates first-order
logic plus (reflexive) transitive closure in ETPTP format to first-order logic
in TPTP format.

3.2.1 Front-End

The front-end of the compiler is essentially a combinator parser based on the
Parsec library [18]. It combines lexical, syntactic, and semantic analysis. An
ETPTP specification is a list of statements. Accordingly, the parser returns
a list of instances of the Statement data type. The Statement data type is
defined as follows:

data Statement = Include FilePath
| AnnotatedFormula { name :: Name

, role :: Role
, formula :: Formula
}

Recall that ETPTP has four types of statements: comments, include direc-
tives, formulae, and declarations. The data type has constructors for only
two of these four types: there is no constructor for comments and there is no
constructor for declarations. Comments are treated as white space and are
discarded during parsing. Declarations are converted to formulae. Consider,
for example, the classes-declaration from the example above:

classes: file ,dir

This declares two mutually exclusive unary predicates file and dir. For
this declaration the parser returns the same value as it would for the follow-
ing formula:

13



axiom: (file(X) | dir(X))
& (file(X) => -dir(X))
& (dir(X) => -file(X))

That is, a classes-declaration that declares the predicates p1, . . . , pn is
replaced with a formula of the form:

∀x. (p1(x) ∨ . . . ∨ pn(x)) ∧ σ1 ∧ . . . ∧ σn

where each sub-formula σm has the following form:

pm(x) → ¬(p1(x) ∨ ... ∨ pm−1(x) ∨ pm+1(x) ∨ . . . ∨ pn(x))

The sub-formula σm expresses that if pm(x) is true, then pk(x) is false for all
k 6= m. The parser treats singletons-declarations similarly. A declaration
of the constants c1, . . . , cn is replaced with a conjunction of clauses of the
form cx 6= cy for every pair of constants where x 6= y.

ETPTP formulae are implicitly universally quantified. TPTP, in contrast,
does not allow free variables, therefore all free variables are bound during
parsing. After replacing the declarations and after binding all free variables
the ETPTP statements are handed to the back-end of the compiler.

3.2.2 Back-End

The back-end of the compiler converts ETPTP statements to TPTP state-
ments. This mainly involves replacing (reflexive) transitive closure symbols
and adding axioms. Reflexive transitive closure symbols, such as contents*
on line 9 of our example, are replaced with a symbol where the asterisk has
been changed to _RTC. Transitive closure symbols, such as contents+ on
line 13 of our example, are replaced with a symbol where the plus has been
changed to _TC. Axioms are added for each replaced symbol; in our example
both symbols use the binary predicate contents, thus the following set of
axioms is added:

axiom: contents_TC(X,Y)
<=> ?[Z] : (contents(X,Z) & contents_RTC(Z,Y))

axiom: contents_RTC(X,X)

axiom: contents(X,Y) => contents_RTC(X,Y)

axiom: (contents_RTC(X,Y) & contents_RTC(Y,Z))
=> contents_RTC(X,Z)

axiom :( contents_RTC(X,Y) & X != Y)

14



=> contents(X,contents_S(X,Y))

axiom: (contents_RTC(X,Y) & X != Y)
=> contents_RTC(contents_S(X,Y),Y)

axiom: (contents_RTC(X,Y) & X != Y)
=> contents_C(X,contents_S(X,Y),Y)

axiom: -contents_C(X,X,V)

axiom: (contents_C(X,Y,V) & contents_C(Y,Z,V))
=> contents_C(X,Z,V)

Note that although they are presented in ETPTP format here the back-end,
obviously, uses an abstract syntax representation.

Finally, the two remaining types of statements, include directives and anno-
tated formulae, are converted to their TPTP counterparts. This done by a
pretty-printer to keep the object code readable.

3.3 Visualisation Tool

The visualisation tool is based on Graphviz [11]. It converts raw model
finder output to a graph using the Dot format. Figure 3.2 shows a model of
the example specification we have been using throughout this chapter.

1

dir root

3

dir

contents

2

file

contents

parent

parent

Figure 3.2: visualisation example

The example only has binary predicates and we want to explain the visu-
alisation of predicates of greater arity as well, therefore figure 3.3 is added.
It shows a model of a specification we will see in the next chapter. That
specification models operations on a file system.

The numbered nodes of the graph represent the objects in the domain of
the model. The labels on the nodes, such as “dir” and “fsys”, represent
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dir

1

dir root

parent (#1)

parent (#3)

5

dir

move (#1)

parent (#4)
3

fsys live

move (#1)

parent (#3)

parent (#4)

live

parent (#5)

live

2

fsys

live

parent (#1)

live

move (#1)

live

parent (#2)

parent (#2)

parent (#5)

Figure 3.3: extended visualisation example

nullary functions and unary predicates. Functions and predicates with a
greater arity, such as, “live” and “move”, are represented by edges, where
n-ary functions are treated like n + 1-ary predicates. Unnumbered edges
represent binary predicates, whereas numbered edges represent predicates
whose arity is greater than two. For example, in figure 3.3 “live” is a binary
predicate, while “move” is a quaternary predicate. Six tuples satisfy “live”:
〈2, 1〉,〈2, 4〉,〈2, 5〉,〈3, 1〉,〈3, 4〉, and 〈3, 5〉, but only one tuple satisfies “move”:
〈1, 2, 4, 3〉.

The conversion from raw model finder output to Dot format consist of the
following steps:

1. The input from the model finder is preprocessed. This is the only part
of our toolkit that is model finder dependent. The input is filtered
and rewritten to an intermediate format. After preprocessing the in-
put consist of strings representing equations and equivalences, such as
"root=1" and "parent(2,1)<=>$true".

2. The preprocessed input is parsed and converted to instances of a data
type that represents equivalences. Equations are treated as equiva-
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lences whose right-hand side is $true, thus "root=1" is treated like
"root(1)<=>$true".

3. The equivalences whose right-hand side is $true after substitution are
converted to nodes and edges of a graph.

4. The resulting graph is printed using the Dot format.

The next chapter contains more examples of the use of the visualisation tool
and the rest of the toolkit.
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Chapter 4

Example ETPTP
Specifications

We will now describe our example specifications: two introductory examples
and two more advanced examples. We discuss the introductory examples al-
most in their entirety, whereas we only discuss some features of the advanced
examples. Appendix A contains the complete listings of all four examples
plus the listings of their Alloy counterparts.

4.1 Introductory Examples

The introductory examples are based on the first two examples of the online
Alloy tutorial [1]. They both concern file systems. The first specification
provides a static model of a file system, whereas the second specification
provides a dynamic model of a file system. The use of these examples is
twofold. First, they formed a feasibility study, second, they give a feel for
what specification with the ETPTP toolkit is like.

4.1.1 Example 1: Structural Properties of a File System

We’ve already seen this example in the previous chapter. It models several
structural properties of a file system. We will now discuss all its details.
Everything in a file system is either a file or a directory. The first line uses
a classes-declaration to express this.

classes: file ,dir
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Directories have contents, whereas files do not, thus if something has con-
tents then it must be a directory.

axiom: contents(X,Y) => dir(X)

Where contents(a,b) means that b is part of a’s contents. A directory is
the parent of its contents: the parent relation and the contents relation
are each other’s inverse.

axiom: contents(X,Y) <=> parent(Y,X)

We are modelling a very simple file system: it does not have symbolic links,
accordingly, every object can have at most one parent.

axiom: (parent(X,Y) & parent(X,Z)) => Y = Z

The root directory, however, does not have a parent.

axiom: dir(root) & -parent(root ,X)

Finally we want to express that the file system is connected: every object
is reachable from the root directory, i.e., every object is in the reflexive
transitive closure of the contents-relation of the root directory.

axiom: contents *(root ,X)

Next we use the specification to find a model.

$ etptp-e < example1.etptp > example1.tptp && \
> paradox --model example1.tptp

Executing the preceding command gives the following output:

Paradox, version 2.3, 2007-11-01.
+++ PROBLEM: example1.tptp
Reading ’example1.tptp’ ... OK
+++ SOLVING: example1.tptp
domain size 1
+++ BEGIN MODEL
% domain size is 1

contents(!1,!1) <=> $false

contents_C(!1,!1,!1) <=> $false

contents_RTC(!1,!1) <=> $true
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contents_TC(!1,!1) <=> $false

contents_S(!1,!1) = !1

dir(!1) <=> $true

file(!1) <=> $false

parent(!1,!1) <=> $false

root = !1
+++ END MODEL
+++ RESULT: Satisfiable

Note the following:

• A model is found, albeit a very simple one: it consist of a single
directory that is the root directory of the file system.

• Several auxiliary symbols have been introduced because of the use of
the (reflexive) transitive closure of contents.

To get a more interesting model we add the following two lines to the spec-
ification.

singletons: obj1 ,obj2 ,obj3 ,obj4 ,obj5
axiom: ?[X] : file(X)

The singletons-declaration adds five unique objects to the domain. The
extra axiom guarantees that one of the elements of the domain will be a file.
Again we look for a model, but now we use the visualisation tool.

$ etptp-e < example1.etptp > example1.tptp && \
> paradox --model example1.tptp | \
> grep -v contents_ | grep -v obj | \
> model2dot > model.dot

We use grep to remove some predicates and functions, such as those intro-
duced because of the use of the (reflexive) transitive closure of contents,
from the model. Figure 4.1 shows the result.
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file

contents
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Figure 4.1: a model of the first example specification

4.1.2 Example 2: Operations on a File System

This second introductory example is an extension of the first one. It models
operations on a file system. It shows how to model dynamic systems: the
operations are modelled as transitions between two file system. The file
systems represent the state before and the state after the operation. We
need a predicate for file systems, fsys, and a predicate that relates file
systems to the files and directories they contain, live.

classes: fsys ,dir ,file
axiom: live(X,Y) => (fsys(X) & -fsys(Y))

The domain now contains multiple file systems, but they are intended as
different versions of the same file system and the operations we model do not
change the root directory, therefore the root directory remains a constant.
Every version of the file system contains the root directory.

axiom: dir(root) & (fsys(X) => live(X,root))

The other predicates, contents and parent, do change: they change from
binary predicate to ternary predicate. The extra argument represents the
version of the file system, for example parent(a,b,c) means “in version a
of the file system, c is b’s parent. As before, the root directory does not
have a parent. We also use the new version of parent to constrain live.

axiom: -parent(X,root ,Y)
axiom: (live(X,Y) & Y != root) <=> ?[V]: parent(X,Y,V)

The changes to the contents predicate are similar to the changes to the
parent predicate. We use the transitive closure of contents to express that
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the file system is acyclic, and contents and parent remain each other’s
inverse.

axiom: contents(X,Y,Z) => (fsys(X) & dir(Y) & -fsys(Z))
axiom: contents +(X,Y,Z) => Y != Z
axiom: contents(X,Y,Z) <=> parent(X,Z,Y)

We are now ready to model a file system operation: moving a file, move(a,
b,c,d) means “version b of the file system is the result of moving object c
to directory d in version a of the file system”.

axiom:
move(FS1 ,FS2 ,X,D) =>

( (fsys(FS1) & fsys(FS2) & -fsys(X) & dir(D))
& (X != root & X != D)
& (live(FS1 ,X) & live(FS1 ,D) & -parent(FS1 ,X,D) & ←↩

↪→ parent(FS2 ,X,D))
& ( Y!= X => (parent(FS2 ,Y,E) <=> parent(FS1 ,Y,E)))
)

The consequent of the implication above expresses the following constraints:

• the root directory cannot be moved

• an object cannot be moved to itself

• the object to be moved and the directory it is moved to must be part
of the “starting” file system

• only the parent of the moved object changes

This example models two more operations. The removal of a single file or
an empty directory from a file system (remove) and the recursive removal
of a file or directory from a file system (remove_all). We will not discuss
these operations because their specification is lot like the specification of
move above.

4.2 Advanced Examples

We will now discuss the two more advanced examples. We will only discuss
the features that distinguish them from the introductory examples. The first
of these two specifications models the solution to a river crossing puzzle. It
is based on the last example of the Alloy tutorial. The second specification
models a typical software design problem [24]: leader election in a ring.

22



4.2.1 Example 3: River Crossing Puzzle

This specification solves the well-known river crossing puzzle of a farmer
who wants to transport a fox, a chicken, and a bag of grain across a river
with a boat that can only hold one item in addition to the farmer. The fox
cannot be left alone with the chicken and the chicken cannot be left alone
with the grain.

The specification introduces the farmer, fox, chicken, and grain with a
singletons-declaration. The axiom following the declaration groups these
objects, thus introducing a notational shortcut.

singletons: farmer ,fox ,chicken ,grain
axiom: object(X) <=>

(X = farmer | X = fox | X = chicken | X = grain)

The sides of the river are introduced similarly.

singletons: none ,near ,far
axiom: river_side(X) <=>

(X = none | X = near | X = far)

The function side(x,y) returns the side of the river an object y is on in
state x. The none object is used to simulate a partial function.

axiom: side(X,Y) = none <=> -(state(X) & object(Y))

A solution to the puzzle is found by connecting the initial state and the
final state with the transitive closure of the next_state relation. The
next_state predicate puts the necessary constraints on the transition from
one state to the next state.

axiom: ?[X,Y]: ( init_state(X)
& final_state(Y)
& next_state +(X,Y)
)

4.2.2 Example 4: Leader Election in a Ring

The last example gives a specification of a well-known distributed algorithm
for finding the largest of a set of uniquely numbered processes arranged in
a ring [5]. The algorithm works as follows:

1. each process initially generates a message with its own number and
passes the message to its left
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2. a process receiving a message compares the number in the message to
its own number

• if its own number is lower, the process passes the message (again
to its left)

• if its own number is equal, the process declares itself leader

• if its own number is higher, the process it discards the message

This specification has one feature the other specifications do not have: a
subset of its domain, the processes, must be a totally ordered set, therefore
the following axioms are added:

axiom: proc_lte(X,Y) => (proc(X) & proc(Y))
axiom: (proc_lte(X,Y) & proc_lte(Y,Z)) => proc_lte(X,Z)
axiom: (proc_lte(X,Y) & proc_lte(Y,X)) => X = Y
axiom: (proc(X) & proc(Y)) => ( proc_lte(X,Y)

| proc_lte(Y,X))

proc_lte(a,b) means “the number of process a is less than or equal to the
number of process b”. Note that these axioms use the “standard” way of
defining a total order, using ≤, but restrict the order to certain elements
of the domain: those satisfying the proc predicate. We will return to this
example and especially to its use of total orderings in the next chapter which
compares the ETPTP toolkit and Paradox with Alloy.
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Chapter 5

Comparisons

We will now compare the ETPTP toolkit and Paradox with Alloy. Ideally
lightweight software specification has the immediacy of unit testing. We
focus on two aspects that can have a significant impact on that immediacy:
model finding performance and notational efficiency.

5.1 Model Finding Performance

We have carried out three performance tests. All test were run on a virtual
machine running under VMware Fusion on a 2GHz Intel Core 2 Duo Mac-
Book. The virtual machine ran Linux and was assigned 1GB of memory
and one virtual processor. We used version 4.1.6. of Alloy and version 3.0 of
Paradox. Paradox uses MiniSat [10] as its SAT engine. Alloy was configured
to use MiniSat as its SAT engine too.

The tests are based on the example specifications from the previous chapter.
The first test is based on the first example, the second test is based on the
second example, and the third test is based on the fourth example.

The first test compares the different ways of expressing (reflexive) transitive
closure. The example specification was translated to TPTP in three different
ways: using Koen Claessen’s axioms (KC ), using Jan van Eijck’s axioms
(JvE ), and using the rewriting method from section 2.3.1 (rewritten). For
reference the test also includes Alloy. Table 5.1 gives the results. Dashes
indicate timeouts (no result within five minutes). The results show that
the rewriting method performed poorly, as expected. There is not much
difference between the two axiomatisations.

The second test measures the time needed to prove the conjecture in the
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execution time (s)

Alloy Paradox

domain size KC JvE rewritten

5 0.05 0.19 0.06 0.17
6 0.14 0.24 0.08 0.45
7 0.87 0.27 0.12 3.88
8 9.30 0.37 0.20 203.94
9 69.18 1.07 2.57 -
10 230.38 18.09 8.96 -
11 - 204.60 200.95 -
12 - - - -

Table 5.1: Time needed to prove the conjecture in the first example specifi-
cation.

second example specification for a domain consisting of two file systems
and a given number of files and directories. Table 5.2 lists the results.
The third test measures the time needed to find a model of the fourth
example specification for a given number of processes. The results are in
table 5.3. In the first test the performance of Paradox was better than the
performance of Alloy. Here, we see the reverse. The difference on the third
test is noticeable, but easy to explain: Alloy has built-in optimisations for
specifications involving total orderings.

execution time (s)

files and Alloy Paradox
directories

5 0.14 0.89
7 0.14 1.24
9 0.23 1.69
11 0.36 5.00
13 0.56 3.98
15 1.19 32.45

Table 5.2: Time needed to prove
the conjecture in the second exam-
ple specification.

execution time (s)

processes Alloy Paradox

3 0.08 0.55
4 0.06 0.68
5 0.09 0.96
6 0.12 5.58
7 0.19 -

Table 5.3: Time needed to find a
model of the fourth example spec-
ification.

Our concern here is not which of the two model finders is the fastest though.
Alloy is used as a reference point and we want to verify that Paradox’s perfor-
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mance is at least acceptable. The test results confirm this, especially under
Daniel Jackson’s small scope hypothesis [15]. The small scope hypothesis
claims that most software defects have small counterexamples.

5.2 Notational Efficiency

This section compares the notational efficiency of ETPTP and Alloy. Let’s
define what we mean by notational efficiency first. Suppose we have two
semantically equivalent specifications written in two different specification
languages L1 and L2. If the specification written in L1 is smaller than the
specification written in L2, then we would call L1 more efficient than L2.

To assess the relative notational efficiency of Alloy and ETPTP we measured
the size of example specification examples written in both languages. We
first counted the number of lines filtering empty lines and comments. Table
5.4 lists the results. These result hardly show any difference between Alloy
and ETPTP, but a review of the example specifications at least gives the
impression that Alloy is somewhat more efficient than ETPTP. A count
of the number of characters in the specifications, table 5.5, confirmed this.
Again, the difference for the fourth example is noticeable, and again is has to
do with the use of total orderings in the specification. The Alloy specification
includes a library module for total orderings which we do not include in the
count. The size of that library module is 21 lines or 813 characters.

Again we use Alloy as a reference point, but now for the verification of
ETPTP’s notational efficiency. The test results confirm that ETPTP’s no-
tational efficiency is at least acceptable.

line count

example Alloy ETPTP

1 8 7
2 30 34
3 31 32
4 30 37

Table 5.4: Size of the example
specifications in lines.

character count

example Alloy ETPTP

1 324 243
2 838 1075
3 819 1073
4 726 1406

Table 5.5: Size of the example
specification in characters.
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Chapter 6

Conclusion

6.1 Main Findings

We have investigated the use of first-order logic for lightweight software
specification. We have shown that it is possible to use existing tools to
provide automatic analysis of specifications written in first-order logic plus
(reflexive) transitive closure, where the specifications are converted to pure
first-order logic before being passed to a model finder. The conversion to
pure first-order logic is based on an axiomatisation of (reflexive) transitive
closure on finite domains. This specification method is mostly model finder
independent and it has been applied successfully to the development of sev-
eral example specifications.

Our specification method has two advantages. First, it uses a standard logic;
second, it is mostly model finder independent. This allows us to benefit from
a large body of existing and future research on first-order logic, theorem
proving, and model finding. In fact, our application of Koen Claessen’s
work is already an example of this. Our specification method also gives
existing theorem provers and model finders a new application area.

During our research we mainly used Paradox as our model finder. We have
compared the performance of Paradox with the performance of Alloy on
the example specifications. Alloy’s performance is better than Paradox’s
performance, but Paradox’s performance is adequate for lightweight software
specification.

We have also compared the sizes of the example specifications and their
Alloy counterparts. The Alloy specifications are, on average, 25% shorter.
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6.2 Future Work

We would like to further extend the etptp-e compiler, thus allowing us to
remove boilerplate code from the example specifications. We are considering
the following extensions:

• Orderings declarations: the fourth example specification basically con-
tains the same set of axioms twice to make two of its sub-domains total
orderings. We could extend classes-declarations and add those ax-
ioms automatically. The first line of the fourth example would then
look something like classes: state[TO],proc[TO]. Of course, this
would also allow for partial orderings.

• Notation for multiplicity constraints: this would introduce notational
shortcuts for formulae such as:

– (p(X) & p(Y)) => X = Y

– ?[X,Y]: (X != Y & p(Z) => (Z = X | Z = Y))

– p(X) => (X = a | X = b | X = c)

• Sub-formula sharing: some definitions, like remove and remove_all
in the second example, have a lot of sub-formulae in common. A

mechanism to define and share these common sub-formula would an
improvement.

Care should be taken tough that we do not stray too far away from pure
first-order logic.

We can easily imagine all kinds of improvements to the visualisation tool.
Some way to interactively manipulate the graph and thus being able, for
example, to filter out certain relations would especially enhance the usability
of ETPTP toolkit.

We also need to improve the error messages of the ETPTP parser.
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Appendix A

Example Specifications
Listings

A.1 Example 1: Structural Properties of a File
System

ETPTP

classes: file ,dir

axiom: (parent(X,Y) & parent(X,Z)) => Y = Z

axiom: contents(X,Y) => dir(X)

axiom: contents(X,Y) <=> parent(Y,X)

axiom: dir(root) & -parent(root ,X)

% the file system is connected

axiom: contents *(root ,X)

% is the file system acyclic?

conjecture: ?[X,Y]: (contents(X,Y) & contents +(Y,X))

Alloy

// A file system object in the file system

sig FSObject { parent: lone Dir }

// A directory in the file system

sig Dir extends FSObject { contents: set FSObject }

// A file in the file system

sig File extends FSObject { }

// All file system objects are either files or directories

fact { File + Dir = FSObject }

// A directory is the parent of its contents
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fact { all d: Dir , o: d.contents | o.parent = d }

// There exists a root

one sig Root extends Dir { } { no parent }

// File system is connected

fact { FSObject in Root.* contents }

// The contents path is acyclic

assert acyclic { no d: Dir | d in d.^ contents }

A.2 Example 2: Operations on a File System

ETPTP

classes: fsys ,dir ,file

axiom: ?[X,Y,Z]: remove_all(X,Y,Z)

axiom: live(X,Y) => (fsys(X) & -fsys(Y))

axiom: dir(root) & (fsys(X) => live(X,root))

axiom: -parent(X,root ,Y)

axiom: (live(X,Y) & Y != root) <=> ?[V]: parent(X,Y,V)

axiom: contents(X,Y,Z) => (fsys(X) & dir(Y) & -fsys(Z))

axiom: contents +(X,Y,Z) => Y != Z

axiom: contents(X,Y,Z) <=> parent(X,Z,Y)

axiom: move(FS1 ,FS2 ,X,D) =>

( (fsys(FS1) & fsys(FS2) & -fsys(X) & dir(D))

& (X != root & X != D)

& (live(FS1 ,X) & live(FS1 ,D))

& (-parent(FS1 ,X,D) & parent(FS2 ,X,D))

& (Y != X => (parent(FS2 ,Y,E) <=> parent(FS1 ,Y,E)))

)

axiom: remove(FS1 ,FS2 ,X) =>

( (fsys(FS1) & fsys(FS2) & -fsys(X))

& X != root

& (live(FS1 ,X) & -live(FS2 ,X))

& -?[Y]: parent(FS1 ,Y,X)

& ![Y,D]:

(Y != X => (parent(FS2 ,Y,D) <=> parent(FS1 ,Y,D)))

)

axiom: remove_all(FS1 ,FS2 ,X) =>

( (fsys(FS1) & fsys(FS2) & -fsys(X))

& X != root

& (live(FS1 ,X) & -live(FS2 ,X))

& -?[D]: parent(FS2 ,X,D)

& ![Y,D]:

(Y != X =>

(parent(FS2 ,Y,D) <=> (parent(FS1 ,Y,D) & -contents +(FS1 ,X,Y))))

)

conjecture: move(FS1 ,FS2 ,X,D) => ![Y]: (live(FS1 ,Y) <=> live(FS2 ,Y))
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Alloy

// File system objects

abstract sig FSObject { }

sig File , Dir extends FSObject { }

// A File System

sig FileSystem {

live: set FSObject ,

root: Dir & live ,

parent: (live - root) ->one (Dir & live),

contents: Dir -> FSObject

}{

// live objects are reachable from the root

live in root.* contents

// parent is the inverse of contents

parent = ~contents

}

// Move x to directory d

pred move [fs, fs ’: FileSystem , x: FSObject , d: Dir] {

(x + d) in fs.live

fs ’. parent = fs.parent - x->(x.(fs.parent)) + x->d

}

// Delete the file or directory x

pred remove [fs, fs ’: FileSystem , x: FSObject] {

x in (fs.live - fs.root)

fs ’.root = fs.root

fs ’. parent = fs.parent - x->(x.(fs.parent))

}

// Recursively delete the object x

pred removeAll [fs , fs ’: FileSystem , x: FSObject] {

x in (fs.live - fs.root)

fs ’.root = fs.root

let subtree = x.*(fs.contents) |

fs ’. parent = fs.parent - subtree ->(subtree .(fs.parent))

}

// Moving doesn ’t add or delete any file system objects

moveOkay: check {

all fs, fs ’: FileSystem , x: FSObject , d:Dir |

move[fs , fs ’, x, d] => fs ’.live = fs.live

} for 5

A.3 Example 3: River Crossing Puzzle

ETPTP

classes: state ,object ,river_side

singletons: farmer ,fox ,chicken ,grain

axiom:

object(X) <=> (X = farmer | X = fox | X = chicken | X = grain)

singletons: none ,near ,far
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axiom: river_side(X) <=> (X = none | X = near | X = far)

axiom: side(X,Y) = none | side(X,Y) = near | side(X,Y) = far

axiom: side(X,Y) = none <=> -(state(X) & object(Y))

axiom:

init_state(X) <=> (state(X) & ![Y]: (object(Y) => side(X,Y) = near))

axiom:

final_state(X) <=> (state(X) & ![Y]: (object(Y) => side(X,Y) = far))

axiom: eats(X,Y,Z) <=>

( state(X)

& side(X,Y) = side(X,Z)

& side(X,Y) != side(X,farmer)

& ((Y = fox & Z = chicken) | (Y = chicken & Z = grain))

)

axiom: next_state(X,Y) <=>

( state(X)

& state(Y)

& -?[Z,V] : eats(Y,Z,V)

& side(X,farmer) != side(Y,farmer)

& ![Z]: (( Z != farmer

& side(X,Z) = side(X,farmer)

& side(Y,Z) = side(Y,farmer)

) => (( Z = fox | Z = chicken | Z = grain)

& ![V]: ((V != farmer & side(X,V) != side(Y,V))

=> V = Z))))

axiom:

?[X,Y]: (init_state(X) & final_state(Y) & next_state +(X,Y))

Alloy

open util/ordering[State] as ord

abstract sig Object { eats: set Object }

one sig Farmer , Fox , Chicken , Grain extends Object {}

fact eating { eats = Fox ->Chicken + Chicken ->Grain }

sig State {

near: set Object ,

far: set Object

}

fact initialState {

let s0 = ord/first |

s0.near = Object && no s0.far

}

pred crossRiver [from , from ’, to, to ’: set Object] {

// either the Farmer takes no items

( from ’ = from - Farmer &&

to’ = to - to.eats + Farmer ) ||

// or the Farmer takes one item

(some item: from - Farmer {

from ’ = from - Farmer - item

to’ = to - to.eats + Farmer + item
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})

}

fact stateTransition {

all s: State , s’: ord/next[s] {

Farmer in s.near =>

crossRiver[s.near , s’.near , s.far , s’.far] else

crossRiver[s.far , s’.far , s.near , s’.near]

}

}

pred solvePuzzle {

ord/last.far = Object

}

run solvePuzzle for 8 State expect 1

A.4 Example 4: Leader Election in a Ring

ETPTP

classes: state ,proc

axiom: ?[X]: init(X)

axiom: ?[X,Y]: lead(X,Y)

axiom: lead(X,Y) => (state(X) & proc(Y))

axiom: msg(X,Y,Z) => (state(X) & proc(Y) & proc(Z))

axiom: succ(X,Y) => (proc(X) & proc(Y))

axiom: init(X) => state(X)

axiom: next(X,Y) => (state(X) & state(Y))

% ring

axiom: proc(X) =>

( ?[Y] : (succ(X,Y) & ![Z] : (succ(X,Z) => Y = Z))

& ?[Y] : (succ(Y,X) & ![Z] : (succ(Y,Z) => X = Z))

& ![Y] : (proc(Y) => succ+(X,Y))

)

% initial state

axiom:init(X) =>

( state_fst(X)

& ![Y] : (proc(Y) => msg(X,Y,Y))

& ![Y,Z] : (msg(X,Y,Z) => Y = Z)

)

% state transition

axiom: (next(S1,S2) & succ(P1 ,P2)) =>

![P3]: (proc(P3)

=> (msg(S2,P2,P3) <=> ( msg(S1 ,P1,P3)

& proc_lte(P2,P3))))

axiom:

(state_lt(S1 ,S2) & -?[S3] : (state_lt(S1 ,S3) & state_lt(S3,S2)))

=> next(S1,S2)

% leader elected
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axiom: lead(S,P) <=> (-init(S) & msg(S,P,P))

% total ordering of processes

axiom: proc_lte(X,Y) => (proc(X) & proc(Y))

axiom: (proc_lte(X,Y) & proc_lte(Y,Z)) => proc_lte(X,Z)

axiom: (proc_lte(X,Y) & proc_lte(Y,X)) => X = Y

axiom: (proc(X) & proc(Y)) => (proc_lte(X,Y) | proc_lte(Y,X))

axiom: proc_lt(X,Y) <=> (X != Y & proc_lte(X,Y))

% total ordering of states

axiom: state_lte(X,Y) => (state(X) & state(Y))

axiom: (state_lte(X,Y) & state_lte(Y,Z)) => state_lte(X,Z)

axiom: (state_lte(X,Y) & state_lte(Y,X)) => X = Y

axiom: (state(X) & state(Y)) => (state_lte(X,Y) | state_lte(Y,X))

axiom: state_lt(X,Y) <=> (X != Y & state_lte(X,Y))

axiom: state_fst(X) <=> ![Y] : (state(Y) => state_lte(X,Y))

Alloy

module ringlead

open util/ordering[Time] as TO

open util/ordering[Process] as PO

sig Time {

elected: set Process

}

sig Process {

succ: one Process ,

toSend: Process -> Time

}

fact ring { all p: Process | Process in p.^succ}

pred init [t: Time] { all p: Process | p.toSend.t = p }

pred step [t, t’: Time , p: Process] {

let from = p.toSend , to = p.succ.toSend

| to.t’ = from.t - p.succ.prevs

}

fact defineElected {

no elected.first

all t: Time -first

| t.elected = {p: Process | p in p.toSend.t - p.toSend .(t.prev)←↩

↪→ }

}

fact traces {

init [first]

all t: Time -last |

let t’ = t.next |

all p: Process |

step [t, t’, p]

}

pred show { some elected }

run show for 5 Process , 6 Time
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Appendix B

ETPTP Toolkit Source Code

B.1 Compiler

module MinE where

import ETPTP.FrontEnd

import ETPTP.BackEnd

import ETPTP.PrettyPrinter

import System.Exit

import System.IO

import Text.ParserCombinators.Parsec.Prim (parse)

main = do input <- hGetContents stdin

parseResult <- return (parse parser "" input)

case parseResult of

Left error ->

do hPutStrLn stderr ("PARSE ERROR " ++ show error)

exitFailure

Right statements ->

do hPutStrLn stdout (printer (toTPTP statements ))

B.1.1 FrontEnd Module

module ETPTP.FrontEnd (parser) where

import Data.List (nub)

import ETPTP.AbstractSyntax hiding (formula)

import Text.ParserCombinators.Parsec

import Text.ParserCombinators.Parsec.Language

import qualified Text.ParserCombinators.Parsec.Token as P

-----------------------------------------------------------------------

-- Lexer

-----------------------------------------------------------------------

lexer = P.makeTokenParser

(emptyDef

38



{ commentStart = "/*"

, commentEnd = "*/"

, commentLine = "%"

, identStart = letter

, identLetter = alphaNum <|> char ’_’

, opStart = oneOf "=<-&|!?"

, opLetter = oneOf ">="

, reservedNames = [" include"

,"classes"

,"singletons"

,"axiom"

,"conjecture"

]

, caseSensitive = True

})

colon = P.colon lexer

commaSep = P.commaSep lexer

lexeme = P.lexeme lexer

operator = P.lexeme lexer

parens = P.lexeme lexer

reserved = P.reserved lexer

reservedOp = P.reservedOp lexer

symbol = P.symbol lexer

whiteSpace = P.whiteSpace lexer

lowerSymbol :: Parser String

lowerSymbol = lexeme $ do c <- lower

cs <- many $ lower <|> digit <|> char ’_’

return (c:cs)

upperSymbol :: Parser String

upperSymbol = lexeme $ do c <- upper

cs <- many $ upper <|> digit <|> char ’_’

return (c:cs)

-----------------------------------------------------------------------

-- Parser

-----------------------------------------------------------------------

parser :: Parser [Statement]

parser = do whiteSpace

ss <- many (include <|> declarations <|> annotatedFormula)

eof

return ss

-- Statements

include :: Parser Statement

include = let file = do char ’\’’

f <- manyTill anyChar (char ’\’’)

return f

in

do reserved "include"

colon

f <- lexeme file

return $ Include f

declarations :: Parser Statement

declarations = classes <|> singletons

classes :: Parser Statement
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classes = do reserved "classes"

colon

ss <- commaSep lowerSymbol

return $ AnnotatedFormula "classes" Axiom (formula ss)

where

formula :: [Symbol] -> Formula

formula ss = f

where

f = Forall [x] (And [f1,f2])

f1 = Or (map (\s -> predicate s) ss)

f2 = And (map (\(s1 ,s2) -> notBoth s1 s2) (combis ss))

x = Variable "X"

predicate s = Atom (Function s [x])

notBoth s1 s2 = Not (And [predicate s1,predicate s2])

combis xs

| xs == [] = []

| otherwise = [(x,y) | x <- [head xs], y <- tail xs]

++ combis (tail xs)

singletons = do reserved "singletons"

colon

ss <- commaSep lowerSymbol

return $ AnnotatedFormula

"singletons" Axiom (formula ss)

where

formula ss = Forall [Variable "X"] (And (map neq (combis ss)))

neq (s1,s2) = Atom (t1 ‘Neq ‘ t2)

where

t1 = Function s1 []

t2 = Function s2 []

combis xs

| xs == [] = []

| otherwise = [(x,y) | x <- [head xs], y <- tail xs]

++ combis (tail xs)

annotatedFormula :: Parser Statement

annotatedFormula = axiom <|> conjecture

where

axiom = parser Axiom "axiom"

conjecture = parser Conjecture "conjecture"

parser r s = do reserved s

colon

f <- formula

return $ AnnotatedFormula

"unnamed" r (bindFreeVars f)

-- Formulae

formula :: Parser Formula

formula = try binary <|> unitary

binary :: Parser Formula

binary = try nonassociative <|> associative

where

nonassociative = try equivalence <|> implication

where
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equivalence = parser Iff "<=>"

implication = parser Implies "=>"

parser :: (Formula -> Formula -> Formula) -> String

-> Parser Formula

parser c s = do f1 <- unitary

symbol s

f2 <- unitary

return $ c f1 f2

associative = unitary ‘chainr1 ‘ connective

where

connective

= do { symbol "&"; return (\ f1 f2 -> And [f1,f2]) }

<|> do { symbol "|"; return (\ f1 f2 -> Or [f1,f2]) }

unitary :: Parser Formula

unitary = parensFormula <|> negation <|> quantifiedFormula <|> atom

where

parensFormula = do symbol "("

f <- formula

symbol ")"

return f

negation = do reservedOp "-"

f <- unitary

return $ Not f

quantifiedFormula = do q <- oneOf "!?"

symbol "["

vs <- commaSep variable

symbol "]"

colon

f <- unitary

return $ case q of

’!’ -> Forall vs f

’?’ -> Exists vs f

atom = do t <- term

return $ Atom t

-- Terms

term :: Parser Term

term = try equation <|> (try function <|> constant <|> variable)

equation :: Parser Term

equation = try (eq Neq "!=") <|> eq Eq "="

where

term = variable <|> try function <|> constant

eq c rOp = do t1 <- term

op <- reservedOp rOp

t2 <- term

return $ c t1 t2

function :: Parser Term

function = do s <- lowerSymbol

isTC <- option False (do { char ’+’; return True })

isRTC <- option False (do { char ’*’; return True })

symbol "("

ts <- commaSep term

symbol ")"

41



return $ if isTC

then TC (Function s ts)

else if isRTC

then RTC (Function s ts)

else Function s ts

constant :: Parser Term

constant = do s <- lowerSymbol

return $ Function s []

variable :: Parser Term

variable = do s <- upperSymbol

return (Variable s)

B.1.2 AbstractSyntax Module

module ETPTP.AbstractSyntax

( Statement (..)

, Name

, Role (..)

, module ETPTP.Formula

)

where

import ETPTP.Formula

-- Statement

data Statement = Include FilePath

| AnnotatedFormula { name :: Name

, role :: Role

, formula :: Formula

}

deriving (Eq ,Show)

type Name = String

data Role = Axiom | Conjecture

deriving (Eq ,Show)

B.1.3 Formula Module

module ETPTP.Formula where

import Data.List (nub)

-----------------------------------------------------------------------

-- Formulae

-----------------------------------------------------------------------

data Formula = Atom Term

| Not Formula

| And [Formula]

| Or [Formula]

| Formula ‘Implies ‘ Formula

| Formula ‘Iff ‘ Formula

| Forall [Term] Formula
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| Exists [Term] Formula

deriving (Eq ,Show)

freeVars :: Formula -> [Term]

freeVars (Atom t) = vars t

freeVars (Not f) = freeVars f

freeVars (And fs) = nub (concatMap freeVars fs)

freeVars (Or fs) = nub (concatMap freeVars fs)

freeVars (f1 ‘Implies ‘ f2) = nub (concatMap freeVars [f1,f2])

freeVars (f1 ‘Iff ‘ f2) = nub (concatMap freeVars [f1,f2])

freeVars (Forall ts f) = filter (\x -> x ‘notElem ‘ ts) (freeVars f)

freeVars (Exists ts f) = filter (\x -> x ‘notElem ‘ ts) (freeVars f)

bindFreeVars :: Formula -> Formula

bindFreeVars f

| length (freeVars f) > 0 = Forall (freeVars f) f

| otherwise = f

-----------------------------------------------------------------------

-- Terms

-----------------------------------------------------------------------

data Term = Variable Symbol

| Function Symbol [Term]

| TC Term

| RTC Term

| Term ‘Eq ‘ Term

| Term ‘Neq ‘ Term

deriving (Show)

instance Eq Term where

Variable s1 == Variable s2 = s1 == s2

Function s1 ts1 == Function s2 ts2 = s1 == s2 && ts1 == ts2

TC t1 == TC t2 = t1 == t2

RTC t1 == RTC t2 = t1 == t2

t1 ‘Eq‘ t2 == t3 ‘Eq‘ t4 = t1 == t3 && t2 == t4

|| t1 == t4 && t2 == t3

t1 ‘Neq ‘ t2 == t3 ‘Neq ‘ t4 = t1 == t3 && t2 == t4

|| t1 == t4 && t2 == t3

t1 == t2 = False

type Symbol = String

vars :: Term -> [Term]

vars (Variable s) = [Variable s]

vars (Function s ts) = nub (concatMap vars ts)

vars (TC t) = vars t

vars (RTC t) = vars t

vars (t1 ‘Eq‘ t2) = nub (vars t1 ++ vars t2)

vars (t1 ‘Neq ‘ t2) = nub (vars t1 ++ vars t2)

B.1.4 BackEnd Module

module ETPTP.BackEnd

( Statement (..)

, toTPTP

)

where
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import Data.List (nub ,nubBy)

import ETPTP.AbstractSyntax

type Arity = Int

toTPTP :: [Statement] -> [Statement]

toTPTP ss = nubBy

(\s1 s2 -> (s1 == s2) && (not (s1 ‘elem ‘ ss)))

(concatMap convertStatement ss)

where

convertStatement :: Statement -> [Statement]

convertStatement (AnnotatedFormula n r f)

= (AnnotatedFormula n r (replaceRTCs f)) : extraStatements n f

convertStatement s = [s]

replaceRTCs :: Formula -> Formula

replaceRTCs (Atom t) = Atom (convertTerm t)

replaceRTCs (Not f) = Not (replaceRTCs f)

replaceRTCs (And fs) = And (map replaceRTCs fs)

replaceRTCs (Or fs) = Or (map replaceRTCs fs)

replaceRTCs (Implies f1 f2) = Implies (replaceRTCs f1)

(replaceRTCs f2)

replaceRTCs (Iff f1 f2) = Iff (replaceRTCs f1) (replaceRTCs f2)

replaceRTCs (Forall vs f) = Forall vs (replaceRTCs f)

replaceRTCs (Exists vs f) = Exists vs (replaceRTCs f)

convertTerm :: Term -> Term

convertTerm (RTC (Function s ts)) = Function (s ++ "_RTC") ts

convertTerm (TC (Function s ts)) = Function (s ++ "_TC") ts

convertTerm t = t

extraStatements :: Name -> Formula -> [Statement]

extraStatements n f = concatMap (axioms n) (extractDataRTCs f)

extractDataRTCs :: Formula -> [(Symbol ,Arity)]

extractDataRTCs f

= nub (map (\t -> (symbol t, arity t)) (extract f))

where

symbol :: Term -> Symbol

symbol (Function s ts) = s

arity :: Term -> Arity

arity (Function s ts) = length ts

extract :: Formula -> [Term]

extract (Atom (TC t)) = [t]

extract (Atom (RTC t)) = [t]

extract (Atom _) = []

extract (Not f) = extract f

extract (And fs) = concatMap extract fs

extract (Or fs) = concatMap extract fs

extract (Implies f1 f2) = (extract f1)

++ (extract f2)

extract (Iff f1 f2) = (extract f1)

++ (extract f2)

extract (Forall _ f) = extract f

extract (Exists _ f) = extract f

axioms :: Name -> (Symbol ,Arity) -> [Statement]

axioms n (s,a)

= [tc,i1,i2 ,i3,e1,e2 ,e3,c1,c2]

where
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ws = map Variable (map (\i -> (’W’:show i)) [1..a-2])

x = Variable "X"

y = Variable "Y"

z = Variable "Z"

v = Variable "V"

ne = Atom (x ‘Neq ‘ y)

sTC = s ++ "_TC"

sRTC = s ++ "_RTC"

sS = s ++ "_S"

sC = s ++ "_C"

function s ts = Atom (Function s ts)

tc = let vs = ws ++ [x,y]

vs1 = ws ++ [x,z]

vs2 = ws ++ [z,y]

f = Forall vs (g ‘Iff ‘ h)

g = function sTC vs

h = Exists [z] (And [function s vs1

,function sRTC vs2])

in AnnotatedFormula

sTC Axiom f

i1 = let vs = ws ++ [x]

vs’ = vs ++ [x]

f = Forall vs (function sRTC vs ’)

in AnnotatedFormula

(s ++ "_I1") Axiom f

i2 = let vs = ws ++ [x,y]

f = Forall vs (( function s vs)

‘Implies ‘ (function sRTC vs))

in AnnotatedFormula

(s ++ "_I2") Axiom f

i3 = let vs = ws ++ [x,y,z]

vs1 = ws ++ [x,y]

vs2 = ws ++ [y,z]

vs3 = ws ++ [x,z]

f = Forall vs ((And [function sRTC vs1

,function sRTC vs2])

‘Implies ‘ (function sRTC vs3))

in AnnotatedFormula

(s ++ "_I3") Axiom f

e1 = let vs = ws ++ [x,y]

ts = ws ++ [x,Function sS vs]

f = Forall vs ((And [function sRTC vs, ne])

‘Implies ‘ (function s ts))

in AnnotatedFormula

(s ++ "_E1") Axiom f

e2 = let vs = ws ++ [x,y]

ts = ws ++ [Function sS vs ,y]

f = Forall vs ((And [function sRTC vs, ne])

‘Implies ‘ (function sRTC ts))

in AnnotatedFormula

(s ++ "_E2") Axiom f

e3 = let vs = ws ++ [x,y]
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ts = ws ++ [x,Function sS vs,y]

f = Forall vs ((And [function sRTC vs, ne])

‘Implies ‘ (function sC ts))

in AnnotatedFormula

(s ++ "_E3") Axiom f

c1 = let vs = ws ++ [x,v]

vs’ = ws ++ [x,x,v]

f = Forall vs (Not (function sC vs ’))

in AnnotatedFormula

(s ++ "_C1") Axiom f

c2 = let vs = ws ++ [x,y,z,v]

vs1 = ws ++ [x,y,v]

vs2 = ws ++ [y,z,v]

vs3 = ws ++ [x,z,v]

f = Forall vs ((And [function sC vs1 ,function sC vs2])

‘Implies ‘ (function sC vs3))

in AnnotatedFormula

(s ++ "_C2") Axiom f

B.1.5 PrettyPrinter Module

module ETPTP.PrettyPrinter (printer) where

import ETPTP.AbstractSyntax

import Text.PrettyPrint.HughesPJ

printer :: [Statement] -> String

printer ss

= renderStyle style (vcat (map statementToDoc ss))

where

style = Style PageMode 64 0.5

-----------------------------------------------------------------------

-- Statements

-----------------------------------------------------------------------

statementToDoc :: Statement -> Doc

statementToDoc (Include f) = hcat (map text [" include(’", f, " ’)."])

statementToDoc (AnnotatedFormula n r f)

= sep [ hcat[text "fof(", space , text n, comma , space , role r, comma]

, nest 2 (formulaToDoc f <+> text ").")

]

where

role Axiom = text "axiom"

role Conjecture = text "conjecture"

-----------------------------------------------------------------------

-- Formulae

-----------------------------------------------------------------------

formulaToDoc :: Formula -> Doc

formulaToDoc (Atom t) = termToDoc t

formulaToDoc (Not f) = (char ’~’) <> formulaToDoc f

formulaToDoc (Forall vs f) = quantifiedFormulaToDoc ’!’ vs f

formulaToDoc (Exists vs f) = quantifiedFormulaToDoc ’?’ vs f

formulaToDoc (And fs)

= parens (sep (intersperse ’&’ (map formulaToDoc fs)))
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formulaToDoc (Or fs)

= parens (sep (intersperse ’|’ (map formulaToDoc fs)))

formulaToDoc (Implies f1 f2)

= parens (sep [formulaToDoc f1 , hsep [text "=>", formulaToDoc f2]])

formulaToDoc (Iff f1 f2)

= parens (sep [formulaToDoc f1 , hsep [text "<=>", formulaToDoc f2]])

intersperse :: Char -> [Doc] -> [Doc]

intersperse c ds = (head ds) : map (\d -> hsep [char c, d]) (tail ds)

quantifiedFormulaToDoc :: Char -> [Term] -> Formula -> Doc

quantifiedFormulaToDoc c vs f

= sep [bindings , hsep [char ’:’, formulaToDoc f]]

where

bindings = char c

<> char ’[’

<> (cat (punctuate comma (map termToDoc vs)))

<> char ’]’

-----------------------------------------------------------------------

-- Terms

-----------------------------------------------------------------------

termToDoc :: Term -> Doc

termToDoc (Variable s) = text s

termToDoc (TC (Function s ts)) = termToDoc (Function (s++[’+’]) ts)

termToDoc (RTC (Function s ts)) = termToDoc (Function (s++[’*’]) ts)

termToDoc (Eq t1 t2) = sep [termToDoc t1 , char ’=’, termToDoc t2]

termToDoc (Neq t1 t2) = sep [termToDoc t1, text "!=", termToDoc t2]

termToDoc (Function s []) = (text s)

termToDoc (Function s ts)

= (text s) <> (parens (cat (punctuate comma (map termToDoc ts))))

B.2 Visualisation Tool

module Model2Dot where

import Control.Monad.State

import Data.List (nub)

import System.IO

import Text.ParserCombinators.Parsec hiding (State ,Line)

import Text.Regex

main = do input <- hGetContents stdin

hPutStrLn stdout (toDot (lines input))

-----------------------------------------------------------------------

-- Printing and Conversion

-----------------------------------------------------------------------

toDot :: [String] -> String

toDot ls = g

where

ls ’= (map parseLine (filter (\x -> x /= "") (map preprocess ls)))

g = "digraph g {\n\tgraph [rankdir=LR];\n"

++ concatMap node (nodes (subRhs ls ’))

++ concatMap edge (edges (subRhs ls ’))
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++ "}\n"

node :: Node -> String

node (o,ss)

= "\ tnode" ++ o ++ " [label =\"" ++ o

++ "|{" ++ label ++ "}\", shape=record ];\n"

where

label

| length ss == 1 = head ss

| otherwise = foldl1 (\l1 l2 -> l1 ++ "|" ++ l2) ss

edge :: NumEdge -> String

edge ((os,s),n)

= "\t" ++ edge ++ " [label =\"" ++ s ++ label ++"\"];\n"

where

edge = foldl1 (\n1 n2 -> n1 ++ " -> " ++ n2)

(map (\n -> "node "++ n) os)

label

| length os > 2 = " (#" ++ (show n) ++ ")"

| otherwise = ""

type Node = (Object ,[ String ])

type Edge = ([ Object],String)

type NumEdge = (Edge ,Int)

nodes :: [Eqv] -> [Node]

nodes eqvs = map ss (nub (map fst ns))

where

ns = map node (filter test eqvs)

test (Eqv (_,os) ("$true",_)) = length os == 1

test _ = False

node (Eqv (s,[o]) _) = (o,[s])

ss o = (o, concatMap snd (filter (\x -> o == fst x) ns))

edges :: [Eqv] -> [NumEdge]

edges eqvs = numEdges es

where

es = map edge (filter test eqvs)

test (Eqv (_,os) ("$true",_)) = length os > 1

test _ = False

edge (Eqv (s,os) _) = (os,s)

numEdges :: [Edge] -> [NumEdge]

numEdges es = evalState (numEdges es) []

where

numEdges :: [Edge] -> State [String] [NumEdge]

numEdges [] = return []

numEdges (e:es) = do ne <- numEdge e

nes <- numEdges es

return (ne:nes)

numEdge e@(os,s) = do state <- get

newState <- return (s:state)

put newState

return $ (e,count s state)

count x ys = length (filter (\y -> y == x) ys)

-----------------------------------------------------------------------
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-- Right -Hand Side Substitution

-----------------------------------------------------------------------

subRhs :: [Eqv] -> [Eqv]

subRhs eqvs = evalState (subEqvs eqvs) []

where

subEqvs :: [Eqv] -> State [(Symbol ,[ Object ])] [Eqv]

subEqvs [] = return []

subEqvs (eqv:eqvs) = do e <- subEqv eqv

es <- subEqvs eqvs

return (e:es)

where

subEqv eqv = do state <- get

(newState ,newEqv) <- return (sEqv eqv state)

put newState

return newEqv

sEqv eqv@(Eqv l r) state

| r == ("$true ",[]) = (l:state ,eqv)

| r ‘elem ‘ state = (state ,Eqv l ("$true ",[]))

| otherwise = (state ,Eqv l (" $false ",[]))

-----------------------------------------------------------------------

-- Parsing

-----------------------------------------------------------------------

parseLine :: String -> Eqv

parseLine s

= case (parse line "" s) of

Left e -> error (show e)

Right l -> l

data Eqv = Eqv (Symbol ,[ Object ]) (Symbol ,[ Object ])

deriving (Eq ,Show)

type Symbol = String

type Object = String

line :: Parser Eqv

line = try equation <|> equivalence

where

equation = do s <- symbol

ns <- objects

char ’=’

n <- symbol

return $ Eqv (s,ns++[n]) ("$true ",[])

equivalence = do s1 <- symbol

ns1 <- objects

string "<=>"

s2 <- symbol

ns2 <- objects

return $ Eqv (s1,ns1) (s2 ,ns2)

symbol = many1 (alphaNum <|> char ’_’ <|> char ’$’)

objects = do many (char ’(’)

ns <- sepBy symbol (char ’,’)

many (char ’)’)

return ns
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-----------------------------------------------------------------------

-- Preprocessing

-----------------------------------------------------------------------

preprocess :: String -> String

preprocess l = l’

where

re = mkRegex "(.*)( <= >|=!)(.*)"

l’ = case matchRegex re (foldl (++) "" (words l)) of

Nothing -> ""

Just ss -> filter (\x -> x /= ’!’) (foldl1 (++) ss)
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