
Syntax Error Handling in Scannerless
Generalized LR Parsers

Ron Valkering

Master's thesis

August 2007

17 August 2007

One year master program Software Engineering

Thesis supervisor: Jurgen Vinju

Internship supervisor: Rob Economopoulos

Company or institute: CWI

Availability: Public Domain

Universiteit van Amsterdam

Acknowledgement

This thesis is the outcome of a project I conducted at the CWI in Amsterdam.
I would like to thank all people working at SEN1 for providing a pleasant envi-
ronment to work. Special thanks have to go to Rob Economopoulos and Jurgen
Vinju for getting me started and for their valuable suggestions. Especially Jur-
gens suggestion to start with implementing a visualisation tool for GSS proved
to be extremely useful. Both for getting insight in the workings of SGLR and
for debugging the new algorithms.

Furthermore I want to thank everybody who reviewed the draft versions of this
thesis, Jurgen and Rob again, and Paul Klint and my fellow students Bas Basten
and Jan Derriks. Their remarks and suggestions were very valuable.

I also want to thank the Open Universiteit Nederland, as an institution and in
particularly its instructors/course-writers. Without them, it would never have
been within my grasp to conduct a project like this, not at my age and with my
level of pre-education.

i

Contents

1 Introduction 1

1.1 Improved error handling for SGLR 3

1.2 Structure of this thesis . 3

2 Background and related work 5

2.1 Parsing . 5

2.2 Error handling . 12

2.3 Summary . 17

3 Structure of consumed part 19

3.1 Current implementation and proposed improvement. 19

3.2 Algorithms . 20

3.3 Analysis . 28

3.4 Conclusion . 30

3.5 Summary . 31

4 Expected symbols 33

4.1 Current implementation and proposed improvement. 33

4.2 Algorithm . 34

4.3 Analysis . 38

4.4 Conclusion . 39

4.5 Summary . 40

5 Language speci�c error messages 41

5.1 Current implementation and proposed improvement. 41

5.2 Algorithm . 42

5.3 Analysis . 43

5.4 Conclusion . 45

5.5 Summary . 45

ii

6 Halting after an error 47

6.1 Current implementation and proposed improvement. 47

6.2 Algorithm . 48

6.3 Analysis . 50

6.4 Conclusion . 51

6.5 Summary . 51

7 Continuing after an error as a substring parser 53

7.1 Current implementation and proposed improvement. 53

7.2 Algorithm . 54

7.3 Analysis . 58

7.4 Conclusion . 60

7.5 Summary . 61

8 Experimental results 63

8.1 Measurements . 63

8.2 Examples . 66

9 Conclusions and future work 73

9.1 Conclusions . 73

9.2 Future work . 74

iii

Abstract

This thesis is about a master's project as part of the one year master study
'Software-engineering'. This project is about methods for improving the quality
of reporting and handling of syntax errors that are produced by a scannerless
generalized left-to-right rightmost (SGLR) parser, and is done at Centrum voor
Wiskunde en Informatica (CWI) in Amsterdam.

SGLR is a parsing algorithm developed as part of Generic Language Technol-
ogy Project at SEN1, one of the themes at CWI. SGLR is based on the GLR
algorithm developed by Tomita.

SGLR parsers are able to recognize arbitrary context-free grammars, which
enables grammar modularization. Because SGLR does not use a separate scan-
ner, also layout and comments are incorporated into the parse tree. This makes
SGLR a powerful tool for code analysis and code transformations. A drawback
is the way SGLR handles syntax errors.

When a syntax error is detected, the current implementation of SGLR halts the
parsing process and reports back to the user the point of error detection only.
The text at the point of error detection is not necessarily the text that has to
be changed to repair the error.

This thesis describes three kinds of information that could be reported to the
user, and how they could be derived from the parse process when an error is
detected. These are:

�The structure of the already parsed part of the input in the form of a partial
parse tree.

�A listing of expected symbols; those tokens or token sequences that are accept-
able instead of the erroneous text.

�The current parser state which could be translated into language dependent
informative messages.

Also two ways of recovering from an error condition are described. These are
non-correcting recovery methods that enable SGLR to always return a parse
tree that can be unparsed into the original input sentence.

�A method that halts parsing but incorporates the remainder of the input into
the parse tree.

�A method that resumes parsing by means of substring parsing.

During the course of the project the described approaches have been imple-
mented and incorporated in the implementation of SGLR as used by the Meta-
Environment, some fully, some more or less prototyped.

Chapter 1

Introduction

The Generic Language Technology Project at CWI (Centrum voor Wiskunde
en Informatica / Centre for Mathematics and Computer science) accumulates
to the Meta-Environment[METAWS], an interactive environment for language
development, source code analysis, and source code transformation based on
ASF+SDF. SDF (Syntax De�nition Formalism[HEERING1989]) is the gram-
mar de�ning part. Texts obeying these grammars can be analysed and trans-
formed with rules speci�ed in ASF (Algebraic Speci�cation Formalism).

The Meta-Environment is constructed of a series of tools. It uses the ToolBus
[BERGSTRA1994], a generic coordination architecture, to operate these tools.
The workings of the ToolBus are controlled by means of ToolBus scripts. Along-
side the ToolBus interface for use with the ToolBus, most tools also provide for
a command line interface.

For ASF+SDF a parser generator has been developed. Parsers are used to
convert a sentence of a language into some structure called a parse tree. The
parsers generated by the Meta-Environment use a very generic parse algorithm
called generalized left-to-right rightmost (GLR). This is one of a whole family
of left-to-right rightmost (LR) parsing algorithms.

The GLR algorithm can be used to parse sentences de�ned by any context-
free grammar. A grammar de�nes the structures used to build the parse tree
and limits the number of acceptable trees. Because the result of combining
two context-free grammars is also a context-free grammar, the use of this algo-
rithm enables the modularization and mixing of grammars. This is contrary to
other LR algorithms which can be used for only a certain subset of context-free
grammars. A combination of grammars from such a subset will often not be a
member of that subset.

Furthermore these parsers are scannerless, which means they take as input raw
sentences of the language character by character, instead of a stream of tokens,
which are produced by a lexical syntax interpreting scanner.

Usually a scanner removes parts of the sentence that have no semantic meaning
like layout and comments. A scannerless parser on the other hand does not
remove any of those. The resulting parse tree therefore can be converted back,
or unparsed, into an exact copy of the input sentence.

Therefore the algorithm used by the generated parsers is called SGLR, which is

1

shorthand for scannerless generalized left-to-right rightmost.

Any parsing algorithm needs some way of determining how a certain token
should be interpreted. Mostly this can be determined by the remainder of the
input sentence. If there exists a sentence that is acceptable for some grammar,
but has more than one possible interpretation, then both the sentence as the
grammar is called ambiguous.

For programming languages, often grammar independent disambiguation rules
are used to disambiguate otherwise ambiguous grammars.

Many parsing algorithms do their job with the aid of a parse table and a parse
stack. The parse table is used to determine the actions to be taken, and the
parse stack is used to store intermediate results.

These algorithms only need a di�erent parse table to be able to parse texts
for di�erent grammars, and parser generation then boils down to parse table
generation. SGLR is one of those algorithms.

When a grammar is ambiguous, then the parse table will contain non deter-
ministic entries. The usual methods to deal with non-deterministic parse table
entries limit the class of accepted grammars to a sub class of the context-free
grammars. For GLR there is not such limitation.

GLR parsers handle non-deterministic parse table entries by means of splitting
up the parse stack, creating a branch for each possibility. Such a branch is
terminated again when a token is read which cannot be a legitimate continuation
for that branch. Merging of branches where possible, prevents that memory
usage will grow exponential.

When the stack has no branches left before the end of the sentence is reached, or
when the parse process does not result in an acceptable parse tree, the sentence
is rejected. Such a rejection is called a syntax error.

The text at the place of error detection is not acceptable for the speci�c text
that came before it. This does not mean it will be unacceptable for every text
that comes before it. Therefore the error might be repaired by changes in the
text at a certain number of points left of the point of error detection.

Syntax errors should be reported in such a way that the report aids the user
as much as possible in �nding the best repair for the error. The best repair is
such a change to the sentence, that the repaired sentence can be parsed into the
structure that the user intended in the �rst place.

Error reports should include the nature of the error, the position of the error,
and possible corrections. If an error is detected before the end of the sentence
is reached, then normal parsing cannot commence. Therefore a strategy should
exist for how to recover from an error situation.

The speci�cation of SGLR says nothing about error handling or error reporting.
This is left to the implementation. The current implementation provides for
a bare minimum. It halts operations and reports the location where it was
forced to do so. This minimal error management decreases the usability of the
generated parsers and the Meta-Environment as a whole. [BRAVENBOER2006]
mentions this too as one of the points on which SGLR might be improved.

This project aims to improve the quality of both reporting and recovering from
syntax errors. As a starting point it tries to do this in a grammar independent
way and without alterations to the grammars. It focusses on what information
can be retrieved from the parse stack, at the moment of error detection.

2

1.1 Improved error handling for SGLR

SGLR di�ers from other LR parsing algorithms in that it uses a parse table
that is not deterministic. At any moment during parsing multiple actions might
be possible. Also SGLR uses tokens of one character each. Because of these
di�erences error handling routines developed for LR parsers are not applicable
for SGLR just like that. And because there exists no separate scanner, errors
in the lexical syntax have to be handled by the parser also.

This project investigated three possible pieces of information that can be ex-
tracted from the parse stack and that can be used to create an error report that
is more informative then the reports currently issued:

1. The structure of the consumed part of the input text.

2. The expected symbols, the tokens or token sequences that are acceptable
instead of the erroneous text.

3. Language speci�c error messages, extracted from the parser state that the
error is detected at.

Also two non-correcting methods of recovering from an error situation have been
looked in to:

1. Halting after an error.

2. Continuing after an error as a substring parser.

All these approaches have been integrated into the current implementation of
SGLR.

No existing literature has been found about error management for SGLR or GLR
parsing algorithms. For the more widely used LR(k) algorithm, on the other
hand lots of research in this �eld has been done. The results are evaluated for
the conditions found in that literature.

1.2 Structure of this thesis

The background for this study is described in chapter 2. That chapter gives
an overview of parsing and the major algorithms for that, and it describes the
SGLR algorithm fully. The second section of chapter 2 describes how error
handling (error-detection, -reporting, -recovering) is done in LR parsers.

The chapters 3 to 7 discuss the techniques developed during this project. Each
chapter describes a single technique in depth. Each chapter is set up of four
sections. The �rst section discusses the background for the technique, why it
could be useful, how it is used in other situations, what is the current situation
in SGLR, etc. The second section gives a full description of the algorithms
used to implement the technique in SGLR. The third section of each chapter
evaluates the results of the technique. Section 2.2.2 lists requirements derived
from literature that are used to aid this evaluation. Each chapter wraps up with
a conclusion.

Chapter 8 approaches the �ve techniques as a whole. It gives some examples
of how the results are visualized in the Meta-Environment. It also provides
measurements about the implementation. Overall conclusions are drawn and
suggestions for future work are given in chapter 9.

3

4

Chapter 2

Background and related work

This chapter provides background information about parsers. The �rst section
describes brie�y the parsing process in general and the SGLR algorithm in
particular. The second section describes literature about error handling for
parsers and compilers.

2.1 Parsing

A parser processes an input text into some structure. See �g 2.1. This structure
is referred to as the parse tree and is formally described by a (usually context-
free) grammar. A grammar is de�ned by a four tuple {N,Σ, P, S} where N
is a set of non-terminals, Σ is a set of terminals disjoint from N , P is a set
of production rules, and S is an element of N that is the start symbol. A
grammar is context-free when the production rules are of the form V → w
where V ∈ N and w is any combination of elements of N ∪Σ. Non-terminals of
the grammar form the nodes of the tree and the leaves represent the terminals of
the grammar. Many examples in this thesis use the following grammar, Gsum,
which is adopted from [FTAT]:

N = {S, N, D}
Σ = {+, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
P ={S → N, S → N + S, N → D, N → DN, D → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9}
S = S

Usually parsing is performed in two steps. First a lexical analysis converts
a sequence of characters into a sequences of tokens that correspond with the
terminals of the grammar. This analysis is performed by the scanner or lexer.
The scanner is usually based on a �nite state machine which can recognize
regular expressions. The scanner also removes parts that have no semantic
meaning like layout and comments.

5

N

N

N

N

S

S

D

DD

D

4 1+2 3

4 2 + 1 3

parsing

inputstring parsetree

Figure 2.1: Parse tree for the sentence �42+13�

The sequence produced by the scanner forms the input string for the parser.
For parsing there are two main strategies: top-down, which builds the parse
tree starting with the root, and bottom-up which builds the parse tree starting
with the leaves.

The most widely used technique for parsing programming languages is a bottom-
up technique called LR parsing. L(eft-to-right) for reading the input string from
left to right and R(ightmost) for making rightmost derivations from the grammar
in reverse.

LR parsers use a stack upon which shift and reduce actions are taken. Shift
actions put tokens from the input string, which are terminals from the grammar,
on the stack. Reduce actions pop one or more items from the stack and replace
them with a non-terminal from the grammar. (table 2.1)

What reduce and or shift actions have to be performed for a given parser state
is determined by the lookahead. The lookahead consists of the tokens that have
to be read next.

Parsers that use a lookahead of k tokens are called LR(k) parsers. The gram-
mars, they accept are called LR(k) grammars. These grammars are determin-
istic for a lookahead k.

An algorithm called simple left right (SLR)[DEREMER1971] is used to generate
a table, the parse table, from which shift and reduce actions can be looked up.
The existence, in the parse table, of multiple entries for a given parser state
and lookahead k, indicate that the grammar is not LR(k). Such a grammar is
non-deterministic for the given k.

2.1.1 SGLR

The Meta-Environment uses a parsing algorithm called scannerless generalized
left-to-right rightmost (SGLR).[VISSER1997] It is based on the GLR algorithm
of [REKERS1992], which itself is a slightly improved implementation of the

6

input string action stack

42+13 shift 4
42+13 reduce1 D
42+13 shift 2D
42+13 reduce1 DD
42+13 reduce1 ND
42+13 reduce2 N
42+13 shift +N
42+13 shift 1+N
42+13 reduce1 D+N
42+13 shift 3D+N
42+13_ reduce1 DD+N
42+13_ reduce1 ND+N
42+13_ reduce2 N+N
42+13_ reduce1 S+N
42+13_ reduce3 S

Table 2.1: LR stack for parsing the sentence �42+13�

GLR algorithm originally proposed by [TOMITA1987]. Tomita developed this
algorithm for parsing natural languages.

Advantages of GLR are that it can be used for arbitrary context-free gram-
mars. The set of context-free grammars is closed under union, which means
that combining two or more context-free grammars results in another context-
free grammar. This enables modularization of the grammar, also two or more
grammars can be mixed together, which enables embedded languages and cross
language transformations. All this is contrary to the more widely used LL(k)
or LR(k) algorithms whose sets of accepted grammars are not closed under
union. LL(k) and LR(k) grammars are deterministic for a speci�c lookahead k,
combined grammars with the same k are not necessarily deterministic for that
k.

In GLR, which is based on LR, non deterministic parse table entries are handled
by starting a new parallel parse stack each time more than one continuation is
possible. Such stack is terminated when no more actions are possible given the
next token from the input string. This way, while using a lookahead of only one,
the real lookahead is as long as the remainder of the input string. Thus GLR
provides for a dynamic lookahead.

A LR(k) parser uses a stack to hold information during the parse process. In
SGLR this leads to an extra stack each time a non deterministic parse table entry
is encountered. Instead of many separate stacks, all stacks are handled with a
memory e�cient graph structured stack (GSS) as proposed by [TOMITA1987].
GSS consists of nodes, which hold parser states, and edges, which hold parse
trees. These trees are subtrees from the resulting parse tree.(�gure 2.2)

Each token from the input string provides for a level in GSS. Each level in GSS
contains at much one node with the same parser state, multiple stacks may
share such a node. GSS forms a stack with one common bottom, and several
tops.

7

s

r

r

s

s

r

4

s

2

D

r

N

s

+

1

r
D

3

r

D

N

S

4 2 + 1 3 eos
levels

with tokens

s nodes created by shift action

r nodes created by reduce action

rD

r

N

r

N

r

S

nodes marked accept

S edge with topmost production of the tree it holds

Figure 2.2: GSS while parsing �42+13�. This example grammar is fully deter-
ministic, therefore this �gure shows only one parse stack.

GLR parses LR(k) grammars as e�cient as the usual algorithms, and uses the
same SLR[DEREMER1971] parse table generation algorithm.

The dynamic lookahead of GLR makes it possible to use the individual char-
acters of the text as input, instead of tokens produced by a separate lexical
scanner. A scanner usually uses a separate regular grammar for recognizing lex-
ical syntax. Scannerless SGLR makes it possible to use the same context-free
formalism to de�ne the lexical syntax.

To be able to separate non-terminals, introduction of auxiliary context-free lay-
out productions are necessary. For simplicity these and other productions added
by the normalization process [VISSER1997] are not shown in the examples.

Furthermore by consuming the input string character by character all layout
and comments are also stored in the parse tree. Unparsing therefore returns an
exact copy of the original text.

SGLR produces a parse forest rather then a parse tree. Each stack that is not
terminated provides for a tree in this forest. To this parse forest a couple of
disambiguation �lters could be applied. Among others, 'longest match' and
'prefer keywords' disambiguation rules are implemented using these �lters.

8

Figure 2.3: SGLR parse architecture[METAWS]

To be able to understand the error handling techniques proposed in this thesis,
it is necessary to have a reasonable understanding of the GLR parsing algorithm
and the vocabulary that comes with it. Next subsection will give an in depth
description of this algorithm. Words that are particularly for the vocabulary
of the (GLR) parsing algorithm are printed in a bold typeface near the place
where they are explained.

2.1.1.1 GLR parsing algorithm

GLR parsing progresses in cycles, the parse cycles. Each parse cycle consumes
one token from the input string. In SGLR a token consists of exactly one
character. During parsing, the input string can be divided in two parts: the
consumed part or parsed pre�x and the not consumed part or not-parsed
su�x. The token being consumed a.k.a. the current token is the �rst token
of the not-parsed su�x.

Another term in connection with the input sentence is the lookahead. The
lookahead usually has a speci�ed length. If the lookahead has length one, then
the lookahead is the same as the current token. Longer lookaheads consists of
the current token extended with as many tokens from the not consumed part of
the input string as needed.

There exists one special token, the end of string token (eos), which will be the
current token when the last token of the input string is consumed.

Actions taken during each parse cycle are determined by the parse table. The
parse table consists of two two-dimensional tables. The action table de�nes
actions for each parser state dependent on the current token. There may be
multiple actions for each parser state token combination. This is where SGLR
di�ers from LR(k) parsing algorithms. The goto table de�nes new parser states
for each parser state dependent on the action.

9

SGLR uses a graph structured stack (GSS) to hold information during the
parse process. GSS is made up of a directed graph which consists of nodes and
directed edges. The nodes of GSS hold a parser state. Parser states form an
index into the parse table. Each edge of GSS holds a parse tree. This is a sub
tree of the �nal result of the parse process.

There exists one node that has no edges leaving from it. This is the bottom
of the stack. This node holds the startstate, and it is created when parsing
begins.

The nodes in GSS can be divided into levels. The number of levels is equal to
the number of parse cycles, but the switch from one level to another is made
in the middle of a cycle not at the end of it. The level to which newly created
nodes are added is referred to as the current level. From each node in the
current level, there exists a path to the bottom of the stack.

The leaves of the combined trees, which are held by the edges of such a path,
form exactly the consumed part of the input string.

During each parse cycle, actions are retrieved from the parse table and executed.
Actions are retrieved for a given node by means of the state of that node and the
current token. There exist four kinds of actions: shift actions, reduce actions,
accept, and error.

Error is not really an action, but the absence of other actions.

Accept is committed to eos. It marks a node as accepting. Typically this node
has a direct edge to the bottom of the stack. That edge holds the resulting
parse tree.

Reduce actions consist of a tuple 〈production, length〉. Where production
designates the production rule and length denotes the number of tokens in the
right hand side of production.

When reduce actions are executed, they replace a path with length length with
a new edge. The tree that this new edge holds has production as its root. This
root has as its branches the trees which were held by the edges of the path that
this new edge replaces. The head of the new edge is the head of the path it
replaces. If length is zero, then the head of this new edge is the node with the
state that induces the reduce action. The state of the tail of the new edge is
looked up in the parse table by means of production and the state that is held
by the head of the new edge.

Shift actions consist of a goto state. When executed they add a new edge. The
head of this new edge is the node with the state that induces the shift action.
The state of the tail of the new edge is the goto state of the shift action. The
new edge holds a tree that consists only of the current token.

Shift actions cannot be induced by eos and no other token than eos can induce
accept. Therefore accept and shift actions are mutually exclusive for a given
token.

Each parse cycle consists of two phases, the reduce phase and the shift phase.
It starts with the reduce phase. During the reduce phase, for each node in the
current level the actions are retrieved. With the start of the �rst cycle, the
current level consists of the bottom of the stack.

If the action is error then it is ignored. If the action is accept, then the node is
marked as accepting stack.

10

Reduce actions are executed immediately. New nodes created as a result of a
reduce action are added to the current level. And actions for those new nodes
are also retrieved.

Shift actions are stored in the shift queue. This shift queue consists of tuples
〈node, gotostate〉.
If all possible reduce actions are executed, then the shift phase is started.

If, at the start of the shift phase, the shift queue is empty, then parsing halts.
When parsing halts, there are two possibilities. Either there exists an accepting
stack in the current level, which indicates a successful parse, or no accepting
stack exists which indicates a syntax error. The latter does not mean that
no reduce actions has been executed during the reduce phase of the same parse
cycle. I will call the current token for the parse cycle in which an error is
detected the error token.

If the shift queue is not empty, then parsing commences with execution of the
shift actions. At the start of the shift phase a new level in GSS is started.
During the shift phase all shift actions in the shift queue are executed. The
nodes created during this phase form the new current level.

When all shift actions are executed, then the current token is added to the
consumed tokens and the next token from the input string becomes the current
token.

After this all nodes from the lower levels that have no inedges, can be removed
from GSS. Together with the edges they are the tail of. Removal of a node
brings about other nodes with no inedges, which could also be removed and so
on. This process is referred to as garbage collection.

There are two important restrictions to the process described above. Firstly no
level in GSS can contain two nodes with the same parser state. Instead any
node can be the tail of multiple edges. Secondly no nodes in GSS are connected
through more than one edge. Instead of inserting edges with the same head
and tail, the trees that those edges hold, are stored as ambiguity clusters

in the ambiguity table. The �lter process, which follows parsing, decides
how to handle these ambiguities. Depending on the �lters used, trees from the
ambiguity cluster are either inserted into the parse tree or discarded.

These two restrictions make GSS memory e�cient.

The nodes in GSS could be classi�ed in two ways. Firstly, as a result of the
action that created them, nodes could be divided in shift nodes and reduce
nodes. Secondly they could be classi�ed as a result of the action or actions
they induced.

After the reduce phase four kinds of nodes exist in the current level:

1. The nodes in the shift queue or the node marked accepting stack. These
are the active stacks.

2. The nodes which induced a reduce action of zero length. These are part
of a path from an active stack to the bottom of the stack.

3. The nodes which induced no action, that is induced error. These are not
usually distinguished from the nodes in category four, but as this thesis is
about error handling, I will call them the error stacks.

11

4. All other nodes not in the above categories. These are the nodes that
induced no other actions than reduce actions with length greater than
zero.

The nodes in the third and fourth categories are subjected to garbage collection.

For a complete discussion of the SGLR algorithm together with all restrictions
and exceptions see [VISSER1997]. For simplicity these restrictions and excep-
tions have been left out of the above explanations. However one exception has
to be mentioned. This is the existence of reject productions.

Reject productions are used to achieve a prefer keyword disambiguation rule.
Reject productions can introduce reject nodes into GSS. Reject nodes are
nodes on which no action is possible, although their parser state tells otherwise.
Also the shift queue might contain reject nodes. Therefore, whenever an empty
shift queue is mentioned in this thesis, one should read: an empty shiftqueue,
or a shiftqueue containing only reject nodes.

2.2 Error handling

The error handling process consists of three steps: error detection, error re-
porting, and error management.[DEGANO1995] This section will provide back-
ground for each step from the literature about compilers and type inference
tools, which use a LR(k) parser. Speci�c literature on error handling by GLR
parsers has not been found.

2.2.1 Error detection

The grammar speci�es whether an input string is acceptable or not. Disagree-
ments with the syntactic rules speci�ed by the grammar are called syntax errors.
An error is not necessarily detected where it is made. In the remainder of this
thesis, I will refer to the current token at the point of error detection as the
error token.

An erroneous part of the input string is a part that when it is replaced by
something else, then the input string will be correct. The smallest possible
erroneous part is the part that gets replaced by the minimum distance technique.
(see section 2.2.3) The error token is not necessarily contained in, or directly
following, the smallest possible erroneous part. Nor is it certain that replacing
the smallest possible erroneous part will render the structure the user intended.

Two things are certain however. The consumed part at the point of error de-
tection is a pre�x of some sentence of the language, and the consumed part
extended with the error token is not a pre�x of any sentence of the language.

An error has one of two possible causes. Either the end of the input string is
reached while the stack is not in an accepting state. Or, when all reductions for
the current token are done, there exists no shift action for the current token.
Each time a parser reaches an error condition, it has to do two things: First
compose a message to inform the user about the error. And secondly recover
from the error state as good as possible.

12

2.2.2 Error reporting

[HORNING1974] described the characteristics of good error messages for com-
pilers. [YANG2000] de�ned a manifesto for good type error reporting, which
addressed about the same issues, basically leaving out only the demand for po-
liteness. The same characteristics could be used to test the soundness of syntax
errors reported by a parser. Combined together and adapted to suit syntax
error reports, we can derive the following list of desired properties of good error
reports:

1. Correct. This implies both correct detection; all errors must be found, as
well as found errors must be reported correctly.

2. Precise. The cause of the error must be located in the smallest part of the
input string such that everything that contributed to the error is included.

3. Succinct. Each error report should maximise useful information, but min-
imise non-useful information.

4. Source-based and A-mechanical. An error report should not be based on
parser states or actions, but must be expressed in terms of the de�ning
grammar and input sentence.

5. Unbiased. An error report should not take for granted that everything to
the left is correct because it is successfully parsed, nor should the report
assume that the de�ning grammar is correct.

6. Readable.

7. Polite and Restrained.

2.2.2.1 Multi-stage error reports

While the parser state in itself will not help the user much, (point 4 above more
or less forbids it to be reported to the user), [JEFFERY2003] describes a method
in which the parser state is used to generate messages that are tailored to the
language at hand.

This method assumes that there is a direct relation between the parser state
and the type of the error. Therefore it maps parser states, possibly re�ned with
the current input token, to descriptive messages.

Small changes in the grammar can completely change the meaning of all parser
states. Therefore the error message table needs to be adapted each time the
grammar is changed. This can be a tedious job when it has to be done by hand.

To automate the building of the error message table, Je�ery uses a table that
maps small example strings that expose the error, to the relevant messages. This
table can then be used to generate the error message table. Usually, changes in
the grammar will a�ect only a limited number of examples.

13

2.2.3 Error recovery

[HORNING1974] distinguishes six possible reactions on errors:

1. Crash or loop

2. Produce invalid output

3. Quit

4. Recover and continue checking

5. Recover and continue compilation

6. Correct

The �rst three are called less desirable. The last one could theoretically be
achieved with the minimum distance technique [AHO1972], but is considered
unwanted because it is too time consuming.

Syntax errors can be recovered from by altering the stack and or altering the
input string. Altering the stack is thought of as impossible or at least very
dangerous. Thus several techniques are discussed that aim to alter the input
string in a way that is acceptable. Preferably in a way the user meant the input
string to be.

The simplest way is called 'panic mode recovery', which just skips input tokens
until an acceptable token is reached. This could be done in a language inde-
pendent way, but usually a set of synchronization tokens is used (for instance
a statement delimiter like ;), from which the parse could restart in any situa-
tion. Main disadvantage of this approach is that a (possible large) part of the
source is not checked. Later research is mainly aimed at improving recovering
techniques by reducing the length of the unchecked part.

[DEGANO1995] describes and classi�es those techniques for LR parsers. The
distinguished classes are:

Non correcting recovery; A non correcting recovery technique, as for in-
stance the one proposed by [RICHTER1985], tries to detect syntax errors
without any correction. It only locates them. Contrary to panic mode
recovery, which is also a kind of non correcting recovery technique, those
techniques don't discard parts of the input string. Instead they try to
demonstrate that the part after the error is a substring of the language.

An advantage of this approach is that no spurious errors are introduced,
as a consequence of earlier corrections. Introduction of spurious errors is
a problem with all correcting recovery strategies.

Disadvantages are that sometimes an error masks another error, and most
time the resulting parse tree is not suitable for further semantic analysis.

Phrase level recovery; Phrase level recovering techniques are characterized
by a two phase approach: The condensation phase collects the part of
the input string that contains the error. It is followed by the correction
phase which returns an error description together with the action taken
to resume parsing.

14

The condensation phase consists of a forward move in which it continues
to parse, without left context, the unread portion of the input string, thus
collecting right context. It does so until an attempt is made to reduce
over the error token.

Some of the earlier phrase level techniques as for instance [GRAHAM1975]
started with a backward move, in which as many reductions were made
as possible, in order to collect left context. The gathered information can
then be used to select a correction.

For this class two subclasses could be distinguished. One is called the
error production recovery class, which uses special error productions
and a special synchronization token to guide the synchronization between
stack and corrected input string.

Another subclass is called the validation recovery class. This class
attempts to validate a correction by parsing ahead. If a certain number of
tokens are shifted without an error then the repair is accepted, otherwise
a di�erent repair is tried.

The major problem of this method is to determine whether the found
second error is a spurious error introduced by the repair or just another
actual error. In the �rst case another repair to the �rst error should be
tried, and in the latter case a new error recovery process should be started
which should try to repair the second error.

Experimental results have shown that phrase level recovery does not work
well with productions that have a right hand side consisting of both ter-
minals and non-terminals. [SIPPU1983] introduced a way to reduce these
e�ects.

Local recovery; Local recovery techniques di�er from the phrase level tech-
niques in that they limit the forward move to one token. Thus they im-
prove the e�ciency of the error recovery. Considered modi�cations are in-
sertion, deletion, substitution, fusion of two adjacent tokens, and spelling
corrections.

The main properties of local recovery techniques are: language indepen-
dency, usage of standard parse tables, easily interfacing with semantic
processing, and no augmentation of original grammar. As with phrase
level recovery, it is not guaranteed that a correction is found. Therefore a
secondary recovery technique like panic mode recovery should be in place.

Global recovery; Global recovery techniques use a large portion of the input
string. Therefore better corrections are obtained. They are ine�cient
because they spend equal e�orts on correct and incorrect parts of the
program.

To make the handling time of an error independent of the length of the
input string, regional recovery methods have been proposed. These con-
sider only a �xed limited part of the context. To that purpose, particular
symbols are selected that uniquely identify the context where they must
appear.

Interactive recovery; A method is called interactive when it asks the user to
correct a detected error and restarts the analysis from the point which is

15

as near as possible from the modi�ed tokens.

An interactive technique provides the user with information about the
error and suggests possible corrections. Because the location of detection
of an error is not always the exact location for the repair of the error, a
user should be allowed to make corrections everywhere. This raises the
problem of deciding which part has to be reanalyzed. To be able to do
that, auxiliary information must be kept during parsing; this decreases
performance even when an input string is correct.

A major advantage is that all errors are detected in a single pass and that
no spurious errors are introduced. These methods are particularly suitable
for use with syntax directed editors and incremental parsers.

'76

'75

'72

'87

'88

'85

'80

'77

Minimum Distance

& Panic Mode

Correcting

Noncorrecting

Phrase
Global

Error production

Validation

Regional

Interactive

Local

Figure 2.4: Relations among error recovery classes.[DEGANO1995]

[DEGANO1995] mentions two dimensions by which the e�ciency of error man-
agement techniques could be measured. Firstly normal non-error execution time
and storage space must not be incremented considerably. And secondly error
processing time must be independent of input string length. They compare the
various techniques on: quality of correction, language independency this is the
possibility of changing the language without changing the error handling rou-
tine, �exibility this is the possibility of tuning the error handling routine, and
performance degradation.

16

2.3 Summary

The literature about error handling by LR(k) parsers is focussed on �nding as
many errors as possible, thereby minimizing the not interpreted part of the input
sentence. Contrary to SGLR, a parse tree is always returned. This tree can be
further interpreted, and mostly will be, by type inference tools, type checkers,
and compilers. Their error messages will provide additional information.

Also, with LR(k) parsers, the output of the scanner can be used for syntax
highlighting and pretty printers. Being scannerless, with SGLR this is only
possible with the full parse tree.

Next chapters will describe some approaches to achieve an interpretable output
with SGLR, together with information about the nature of the error.

17

18

Chapter 3

Structure of consumed part

3.1 Current implementation and

proposed improvement.

One important thing that can be reported to the user is how the input string
has been interpreted so far. In the Meta-Environment there exists already three
means of communicating the structure of the parse tree: highlighting, showing
the non-terminal under the cursor, and visualizing (parts of) the parse tree. If
a part of the error report exists of a parse tree in some form, then these existing
aids can be used to help the user understand why an error is detected in the
given place.

The current implementation makes no e�ort to inform the user of any inter-
pretation of the already consumed part of the input string. This information,
existent in GSS, is simply lost.

It is in the nature of SGLR that there exists more than one possible interpre-
tation of the input string up to the token that caused the error. (see section
2.1.1) Therefore the ultimate interpretation cannot be taken from GSS.

GLR uses a non-deterministic parse table. To solve this non-determinism it
tries all possible interpretations, and continues parsing until no more possible
interpretations exist. It is possible that the intended interpretation encountered
an error while parsing commences because also a not intended interpretation
exists.

This looks like the kind of error masking with non-corrective recovery as de-
scribed in chapter 7. This is inherent to the GLR parsing algorithm, which
won't detect an error until no more possible interpretations exist.

Presenting the structure of the parsed pre�x could be done in the form of a
partial parse tree. This tree is partial in two respects. It does not re�ect the
whole of the input sentence. And because its root is not the grammar's start
symbol, it is not an acceptable tree for the grammar, although the partial tree
itself complies to the structure de�ned by the grammar. If the consumed part
of the input sentence would be a pre�x for some sentence of the language, then
the partial tree would be a sub tree from the parse tree for that sentence.

The next sections describe an algorithm with which one or more interpretations

19

in the form of a partial parse tree can be derived from GSS. For this algorithm
three versions exist, which di�er in the number of interpretations they give:

1. The �excluding� algorithm which produces interpretations excluding the
last consumed token.

2. The �including� algorithm which produces interpretations including the
last consumed token.

3. The �omniscient� algorithm which produces all possible interpretations of
the consumed part of the input string included those already discarded
before the point of error detection.

3.2 Algorithms

The algorithm used to derive a partial parse tree produces, like SGLR, a parse
forest rather than a parse tree. (see �gure 2.3) This parse forest has to be
�ltered with the same �lters that are used for a parse forest resulting from an
error free input string. (see section 2.1.1)

The �lter process combines the parse tree that is the result of the parse process
with the ambiguity clusters in the ambiguity table. Also, depending on the
�lters used, the �lter process removes trees from the forest that don't comply
to grammar independent disambiguation rules like longest match and prefer
literals.

The algorithm used to produce this parse forest can be divided in two parts.
The main part consists of a series of reduce actions that compresses GSS to two
nodes connected by one edge. This edge holds the desired parse forest. Before
the reduce actions can be started, the nodes that will form the source for these
reduce actions has to be selected. The three versions of the algorithm di�er in
the selection procedure for these source nodes.

3.2.1 Reducing GSS to one edge.

GSS could be viewed of as a directed graph where each node holds a parse
state. Each edge holds a tree that has tokens of the input string at its leaves.
All edges are directed towards the (single) node that holds the start state a.k.a.
the bottom of the stack. The combined trees from each path, from the nodes
in the current level to the node that holds the start state, hold exactly the
consumed part of the input string.

When an error is detected GSS will look something like �gure 3.1(A), with at
the left the bottom of the stack and at the right the nodes in the current level.
Figures 3.1(B) to 3.1(D) show the consecutive reduce actions which must be
done to produce a useful parse tree.

For each path from a node with no in-edges to a node with two or more in-edges
the trees are collected into an auxiliary treenode. If two nodes get connected
by more than one edge, then only one of them is actually present in the stack.
Instead of inserting edges with the same head and tail, the trees that those
edges hold, are stored as ambiguity clusters in the ambiguity table. The �lter

20

process, which follows parsing, decides how to handle these trees. Depending
on the �lters used, trees are inserted into the parse tree or discarded.

This algorithm will not work when there exists cycles in GSS. Therefore the
algorithm has to start by removing all cycles from GSS.

These reduce actions are repeated until GSS consists of only two nodes con-
nected by one edge. This edge then holds a tree with exactly the consumed part
of the input string at its leaves. It is however highly likely that the resulting
tree contains one or more ambiguities that could not be �ltered away. Figure
3.2 shows this algorithm in pseudo code.

Key:

discarded nodes and edges

current nodes and edges

A

D

C

B

sourcenodes

Figure 3.1: Reducing GSS

21

define ERRORGOTOSTATE := -2

define ERRORPROD := "<possibility>"

define PARSEDPROD := "<parsed>"

reduceParsedPart(StacknodeSet sourcenodes){
remove all cycles from GSS

while number of paths from sourcenodes to startnode > 1 do

sourcenodes := handleAmbiguity(sourcenodes)

TreeSet kids := the trees of the edges that form the single

path from sourcenodes to startnode

StackNode newStack := new stacknode with state ERRORGOTOSTATE

reducer(startnode, newStack, kids, PARSEDPROD)

}

StackNodeSet handleAmbiguity(StackNodeSet sourcenodes){
StackNode newStack := new stacknode with state ERRORGOTOSTATE

for each StackNode source ∈ sourcenodes do

for each Path path from stacknode source to a StackNode target that

has more then one inEdge do

kids := the trees of the edges that form path
reducer(target, newStack, kids, ERRORPROD)

StackNodeSet newsourcenodes := {newStack}
return newsourcenodes

}

reducer(StackNode target, StackNode newStack,
TreeSet kids, Production prod){

Tree newTree := application of prod to kids

if an edge from newStack to target exists then

add newTree to ambiguitytable

else

create edge from newStack to target holding newTree
}

Figure 3.2: Pseudo code for the reduce phase of creating a partial tree.
startnode is the bottom of the stack. It is the only node in GSS that has no
edges leaving from it.
ambiguitytable is used to collect all duplicate trees for the same part of the
input string. During �ltering, these trees are either rejected, or inserted into
the resulting parse tree.

22

3.2.2 Selecting source nodes

An error condition arises when there are no nodes left in GSS that have a shift
action. This means that all stacks have been discarded. Running the garbage
collector at this point would render GSS empty. So which nodes should be used
as source nodes to apply the above procedure to? There are three sets of nodes
to be considered. And this is where the three versions of the algorithm di�er.

A level in GSS consists of two sets of nodes: set A the nodes created while
shifting the last consumed token, the shift nodes, and set B the nodes created
while doing the reduce actions induced by the lookahead, the reduce nodes. The
current level of GSS at the point of error detection consists of the shift nodes of
the token before the error token and the reduce nodes of the error token. (see
�gure 3.3)

Both sets are possible candidates to act as source nodes for the reduce phase
described in section 3.2.1. However both sets have their drawbacks.

s

r5

r3

s

s

r

4

s

2

D

r

N

s

+

1

r
D

3

r1

D

N

S

4 2 + 1 3 error
levels

with tokens

nodes created by shift action

nodes created by reduce action

rD

A

B

B
1

r

N

r2

N

r4

S

s

r

Figure 3.3: GSS upon detection of an error

23

N

N

DD

D

4 1+2 3

parsed

Figure 3.4: Partial tree for sentence �42+13error� as a result of the excluding
algorithm

3.2.2.1 Excluding algorithm

The excluding algorithm uses set A as source nodes for its reduce phase. These
nodes can simply be derived from the current level. But using these nodes means
that the token just before the error token, the last consumed token, cannot be
a part of any production, and will be left dangling on its own in the resulting
tree. (see �gure 3.4)

3.2.2.2 Including algorithm

The nodes of set B (�gure 3.3) do lead to productions that incorporate the
last consumed token. However the reduce actions that created those nodes
depend on the token that caused the error. It is clear that, from the sheer fact
that we have an error situation, these reduce actions are not all the possible
ones. Therefore the nodes of set B cannot be used as a source for the including
algorithm just like that. A set of nodes that does incorporate the last consumed
token and includes all possibilities is computed with the following algorithm.
That set contains the nodes that the including algorithm uses as source nodes
for its reduce phase.

If we want to be complete, we �rst should look at all reduce actions for the
nodes in set A independent of the lookahead. This can be done by performing
all reduce actions possible for the nodes in set A. The nodes, created by those
actions, that are only intermediate results can be discarded. Only those nodes
that are possible shift targets should be used as source nodes for the reduce
phase of partial tree creation.

24

StackNodeSet preparesource nodes(StackNodeSet shiftNodes,
TokenSet reduceTokens){

StackNodeSet sourceNodes := {}
StackNodeSet usedNodes := {}
for each Token token ∈ reduceTokens do

parseToken(shiftNodes, token)
sourceNodes := sourceNodes− currentLevel
sourceNodes:=sourceNodes ∪ (shiftQueueNodes− usedNodes
usedNodes:=usedNodes ∪ (currentLevel − shiftQueueNodes)
currentLevel := {}
shiftQueue := {}

return source nodes

}

parseToken(stackNodeSet actives, Token currentToken)

This function is essentially the function PARSE-CHARACTER from [VISSER1997]

it performs the reduce phase of the parse cycle. Reduce actions

are executed. Newly created nodes as a consequence of these

reduce actions are added to the currentLevel.

Shift actions are collected in the shift queue. The set actives is

extended with the newly created nodes and actions for those are

performed also.

Figure 3.5: Pseudo code for computing the set of source nodes for the inclusive
algorithm.

parsed

possibility

N

N

N

N

S

S

D

DD

D

4 1+2 3

possibility

N

N

N

N

D

DD

D

4 1+2 3

possibility

N

N

N

D

DD

D

4 1+2 3

Figure 3.6: Partial tree for sentence �42+13error� as a result of the including
algorithm with maximum redundancy. Each possible tree is an extension of the
tree to its left. The leftmost tree is a result when the lookahead is a digit, the
second one when the lookahead is a + sign and the last one when the lookahead is
the end of the string. By means of removing redundancy the including algorithm
will only produce the rightmost tree.

However, this introduces redundancies. These redundancies will be shown in the
resulting parse tree as ambiguities. In the example of �gure 3.3, if the lookahead
is a digit, then node r1 and r2will be created and r2will be a shift target. If the
lookahead is the + sign, then nodes r1 to r3 will be created, but only r3 will be
a shift target. The eos token will create r1to r5, none of which are shift targets,
but r5 will be designated as accepting stack. (�gure 2.2) Therefore, when we
had used only the eos token as lookahead, we would have had all information
we wanted without any redundancy. Figure 3.6 shows all those trees.

This redundancy could be decreased by removing all those nodes that are an
intermediate result in the creation of another. This will produce set B1 Un-
fortunately because of the way context-free layout is handled, not all of this
redundancy could be removed that way. Figure 3.5 shows this algorithm in
pseudo code.

3.2.2.3 Omniscient algorithm

It is possible that the intended interpretation encountered an error somewhere
to the left of the error token. In that case the intended interpretation won't be
revealed by the including algorithm.

If we want to be sure that among all possible trees, the intended tree is detected,
we have to consider all error stacks that are produced by the parse process so
far. (section 2.1.1) Collecting these is possible by maintaining an extra stack to
which every token is shifted. This stack forms a direct path to the bottom of
the stack.

?

Each edge on this path holds an one-node tree which leaf contains one token
from the input string. The nodes on that path each have edges to the error
stacks of the previous cycle, i.e. the nodes for which no shift or reduce action
existed. (�gure 3.7)

To be perfectly clear no nodes outside sets A and B in �gure 3.3 fall in this
category. Those nodes that have no in-edges actually had a shift or reduce
action and are not terminated parse stacks, but leftovers from a non-terminated
parse stack.

Alternatively, to minimize memory usage the stack that has to be kept a ref-
erence to, could be reduced to one edge by the process described in section
3.2.1.

The omniscient algorithm adds this extra stack to the set of source nodes for
the including algorithm and uses the result for its reduce phase.

3.2.3 Implementation

During the course of this project, the creation of the partially tree as discussed
in section 3.2 is fully implemented and incorporated into the current imple-
mentation of SGLR. SGLR uses the 'universal parse tree representation and
manipulation format' (UPTR) to express the parse trees it produces.

A proper expression of a partial tree in UPTR would use auxiliary nodes for
holding the parsed and not-parsed parts and to distinguish between di�erent
possible interpretations. However no such nodes currently exist in UPTR.

26

Key:

otherwise discarded nodes and edges

'normal' nodes and edges

extra nodes for collecting

discarded paths

Figure 3.7: Collecting all error stacks. Those enable the omniscient algorithm
to present all possible interpretations.

27

No additions are made to UPTR so far. Instead of the needed auxiliary nodes,
ordinary productions nodes are used. Instead of ordinary productions from the
grammar, these nodes show productions with an unde�ned left-hand-side and a
descriptive message as the right-hand-side.

In order to know the number of in-edges for a particular node in GSS, the
method of garbage collecting has been changed in such a way that this number is
updated when nodes are deleted. The number of in-edges is needed to determine
the length of the reduction paths.

Implementing the inclusive algorithm turned out to be rather awkward. In order
to let the ambiguity table do its work, multiple tokens need to be parsed on the
same level of GSS. This means that when the reduce phase of a parse cycle
is executed for a speci�c token (parseToken() in �gure 4.1), the current level
contains nodes that normally would not be there. Therefore some nodes would
already exist which normally would be created. Special provision are needed to
process nodes, as with normal parsing.

After each token the nodes used by that token (those that would normally form
the current level) are checked. The following sets are distinguished:

• Nodes that didn't exist before and either have the accepting state, or the
given token can be shifted to i.e. are in the shift queue. Those nodes are
added to the set of source nodes. Due to handling of context-free layout,
a little alteration is necessary: When a node's only edge has as its tree a
layout tree that is not re�ected in the input string, then the target node
of this edge should be added to the set of source nodes instead.

• Nodes that existed already in the current level and for which the given
token is a useful token i.e. doesn't lead to an error stack. Those nodes are
removed from the set of source nodes.

• Nodes that didn't exist before and for which the given token is not a useful
token. Those nodes are removed from the current level.

3.3 Analysis

This section evaluates the quality of reporting the structure of the consumed
part. It does this on the basis of the list of requirements formulated in section
2.2.2. The polite requirement has been left out because this report does not
adress the user directly. The list is completed with the e�ciency and �exibility
criteria of [DEGANO1995].

The other criteria that Degano uses, correction quality, and language indepen-
dency are either not applicable for any of the techniques proposed in this thesis
or already covered by the other requirements.

3.3.1 Correct

It is proved by [REKERS1991] that the GLR algorithm correctly rejects strings
that are not part of the given language. Therefore no accepted input sentence
will contain syntax errors.

28

The stack of a LR parser always consists of a correct interpretation for a pre�x
of some sentence of the language.[DAIN1994] GSS is a combination of one or
more stacks of LR parsers, therefore it holds one or more interpretations of a
pre�x of some sentence of the language. The partial tree created by the process
described in section 3.2.1 is derived from GSS and will always be a correct
interpretation for a pre�x of some sentence of the language.

3.3.2 Precise

This report takes the whole consumed part of the input string into account, and
it uses exactly what is needed to generate the report. Also the exact location
where the error is detected is part of the report. No measures are taken to
communicate which part of the input string does not contribute to the error.

3.3.3 Succinct

There is a trade-o� between being complete and decreasing the amount of non-
useful information. The excluding algorithm won't introduce any redundancy,
but will provide for the least amount of information. The including algorithm
increases the amount of useful information, but may introduce redundancy. The
omniscient algorithm, �nally, will guarantee completeness, but introduces lots
of non-useful information.

3.3.4 Source-based

The partial tree is based on the de�ning grammar just like the parse tree that
would have been the result when no error was encountered. However some nodes
speci�c for erroneous trees have to be inserted.

3.3.5 Unbiased

The partial tree is biased as it reports one or more possible interpretations for
the consumed part of the input sentence according to the given grammar. It
assumes that both the interpreted part of the input sentence as the grammar is
right. No e�ort is made to locate the error anywhere else than on the point of
detection.

3.3.6 Readable

The Meta-Environment has various ways to show the structure of a parsed
sentence, such as highlighting, pretty printing, showing the right-hand-side of
a selected production, and visualisation of the parse tree. Except from pretty
printing, these can all be used for erroneous parse trees as created by the error
handling process.

However redundancies introduced during creation of a partial tree and multiple
interpretations within a partial tree are shown as ambiguities in the resulting
parse tree.

29

Unfortunately, the Meta-Environment o�ers no easy way for discovering di�er-
ences between two or more interpretations of (a part of) the parsed sentence.
Additional work has to be done there, which will also bene�t the grammar writer
who wants to write an un-ambiguous grammar.

3.3.7 E�ciency

One of the e�ciency criteria for error handling is that it must not increase
time and memory usage for parsing an error-free input string considerably
[DEGANO1995]. For creation of a partial tree this di�ers with the algorithm
used. The excluding algorithm will increase memory usage slightly, because
shift nodes needs to be distinguished from reduce nodes. The including algo-
rithm also starts of with the shift nodes and adds no costs to those for the
including algorithm. The omniscient algorithm however places a big burden on
memory usage which could be reduced somewhat, but that will increase time
consumption for parsing an error-free input string.

The other e�ciency criterion is that error handling time must be independent
of the length of the input string. Computing time of the reduce actions is linear
with the number of possible paths through GSS. This number is not directly
related to the length of the input string, but depends on how the grammar
has been constructed and on where in the input string the error is detected.
Computing the source nodes for the including algorithm depends also on the
nature of the grammar (O(reduce-actions × number-of -tokens)) and is also
independent of the length of the input string.

3.3.8 Flexibility

There is a trade-o� between completeness and the amount of (non-useful) in-
formation. This provides possibilities for �ne tuning the error handling. The
preferred or default algorithm for creation of a partial tree would probably be the
including algorithm, but the excluding algorithm (no redundant information) or
the omniscient algorithm (complete, but only feasible for small sentences) could
be o�ered as an option.

3.4 Conclusion

A partial tree can inform the user about how the consumed part of the input
sentence is interpreted by the parse process. This is an advantage over the
current implementation which provides no information. Although it is biased
on the consumed part of the input sentence, the user should be able to, by
comparison of the presented interpretation(s) with the intended interpretation,
to determine the nature of the error.

For syntax errors this bias on the parsed pre�x of the input sentence is less
an issue then for instance for type inference tools. In that case, it is naive to
assume that the �rst type assignment will be correct when it is the only one
that is deviant. With syntax errors usually no correction solution has preference
over another. For instance when bracket pairs are out of sync, the error won't

30

be detected until there really is a closing bracket missing or super�uous. This
could be corrected by inserting or deleting a bracket anywhere left of the error
detection point. (But of course right of the point where they were in sync
last.) Any of these solutions is as good as another. By the way, the case of
a super�uous closing bracket is an example where the current error message is
very accurate.

The including algorithm is in most cases the algorithm that provides the best
possible feedback. For grammars where the interpretations, produced by the
including algorithm, are to blurred to be useful, the excluding algorithm can be
used as an alternative.

The omniscient algorithm is neither succinct nor e�cient, but it is very complete.
It provides all possible interpretations of all possible pre�xes of the consumed
part of the input sentence. Therefore it may be useful for situations where the
error in the intended interpretation gets concealed by other interpretations.

Presenting this information, gives the user an opportunity to select the track he
intended, and follow it to the point where it went wrong. However the amount
of information would quickly explode. For instance in C, a simple assignment
would already provide for at least four error stacks, each of which will bring
about a separate, ambiguous branch in the resulting partial parse tree. Also
collecting these discarded paths places considerably costs on errorfree parsing.

Therefore the omniscient algorithm is only feasible for small sentences of lan-
guages where it is likely that the actual error is somewhere left of the point of
error detection.

3.5 Summary

This chapter presented three algorithms to create interpretations of the con-
sumed part of the input sentence in the form of a partial parse tree. The
algorithms di�er in the number of interpretations they give. Although every
presented interpretation is a correct one for the consumed part of the input sen-
tence, there is a tradeo� between completeness and the amount of redundant
useless information.

Next chapter present a method to extract a list of symbols that are an acceptable
continuation of the consumed part of the input sentence.

31

32

Chapter 4

Expected symbols

4.1 Current implementation and

proposed improvement.

The Meta-Environment already provides support for error reporting. Each error
report consists of one verbal message, followed by one or more sub messages.
To each sub message, an exact location (URL + location in the �le) can be
attached. The current error report tells the user what is not expected, namely
the token for which there were no shift actions available.

This can be extended with the tokens that are expected. The expected tokens
are those tokens that when they were in the place of the error token would
induce a shift action. If one of the expected tokens was in the place of the
error token, then an error would not occur, at least not at that location. Daniel
Jackson uses this approach for the parser used by his Alloy Analyzer.[ALLOY]

However SGLR uses tokens of one character each. Those would not provide for
very readable and succinct error reports. The aim is to extend those tokens to
what they are the pre�x of.

Next sections describe an algorithm that selects the expected tokens, and ex-
tends them, if applicable to context-free literals.

Context-free literals are the quoted words or characters in the lefthandsides of
production rules expressed in SDF. As for instance in the following production
rule from the grammar of the pico example language:

"if" EXP "then" {STATEMENT";"}* "else" {STATEMENT";"}* "fi" -> STATEMENT

This is the most used method to de�ne keywords in SDF.

The algorithm with which single tokens could be extended to character classes
or literals is based on the fact that the normalization process of SDF replaces
context-free literals by a production that absorbs a series of tokens into the
desired literal.[VISSER1997]

For instance, for the SDF production rule �begin� StatementList �end� -> Block-
Statement the following production rules are added by the normalisation pro-
cess:

[b][e][g][i][n] -> �begin�

[e][n][d] -> �end�

33

The square brackets denote characterclasses, the sets of characters to choose
from. In this case each characterclass consists of exactly one character. In the
parse table the production rules of this type can be distinguished by means of
the existence of a direct shift action from one characterclass to another. For
instance if the last consumed token is 'e' then there exists a shift action when
the current token is 'g' for the �begin� rule and when the current token is 'n' for
the �end� rule.

Separate tokens could be extended to character classes or literals, by looking at
right-hand-side of the production that absorbs them. (In SDF this is the right-
hand-side. In [DEREMER1971], BNF, and many other grammar notations this
will be the left-hand-side.)

The right-hand-sides of the found productions, may contain some already ac-
cepted tokens. For instance: In the above example If begin was misspelled as
beg!n and beg! could not be interpreted in any way, but beg could be inter-
preted, for instance as the pre�x of an identi�er, then the error will be detected
with the !, but the expected symbol found will be begin not in. Probably also
the character class [a-z] will be reported as expected, when these characters can
be used to provide for a valid identi�er.

To be able to determine what tokens and symbols are really expected the whole
of GSS at the moment of error detection is necessary. This cannot be derived
from the parse states of the last active stacks alone. Only the whole of GSS can
provide the necessary context.

4.2 Algorithm

4.2.1 Selecting what is expected

4.2.1.1 Selection of tokens

As discussed in section 3.2.2 the current level of GSS at the point of error
detection consists of the shift nodes of the token before the error token and the
reduce nodes of the error token. Sets A and B in �gure 3.3. The nodes in set B
owe their existence to the error token and are not very interesting. The tokens
we are looking for, the expected tokens, are the tokens that, when they were
the current token, would leave the current level with one or more active stacks
after the reduce phase of the current parse cycle.

Because the current parse cycle starts with set A as the current level, the search
for expected tokens also starts with set A. From the parse table we can retrieve
all tokens that induce an action other than error for any of the nodes in set
A. According to their actions, these nodes could be divided in shift tokens and
reduce tokens.

The shift tokens induce either a shift action or accept for any of the nodes in set
A. The reduce tokens induce a reduce action for any of the nodes in set A. The
set of shift tokens is not necessarily disjoint from the set of reduce tokens. These
sets can be made disjoint by removing all shift tokens from the set of reduce
tokens. that leaves the set of reduce-only tokens. Now all possible tokens are
divided into three disjoint sets, all with respect to the nodes in set A.

�The tokens that induce no action at all are certainly not expected.

34

TokenSet expectedTokens(StackNodeSet shiftnodes){

TokenSet shiftTokens :={}

TokenSet reduceTokens :={}

for each StackNode stack ∈ shiftnodes do

shiftTokens := shiftTokens ∪ lookupShiftTokens(stack)
reduceTokens := reduceTokens ∪ lookupReduceTokens(stack)

TokenSet reduceOnlyTokens := reduceTokens− shiftTokens
TokenSet usefulTokens :={}

for each Token token ∈ reduceOnlyTokens do

if isUsefulToken(shiftNodes, token) then

usefulTokens := usefulTokens ∪ token

return shiftTokens ∪ usefulTokens
}

TokenSet lookupShiftTokens(StackNode stack){
retrieve from the parse table all tokens that induce a shift

or accept action for the parse state of the given StackNode

}

TokenSet lookupReduceTokens(StackNode stack){
retrieve from the parse table all tokens that induce a

reduce action for the parse state of the given StackNode

}

Boolean isUsefulToken(StackNodeSet nodes, Token token){
currentlevel := {}

parseToken (nodes, token)
Boolean returnV alue := shift queue != empty or acceptingStack exists

deleteshift queue

return returnV alue
}

parseToken() see figure 3.5

Figure 4.1: Pseudo code for selecting the expected tokens.

�The shift tokens are expected, as their actions immediately render an active
stack for the shift phase.

�The reduce only tokens might or might not be expected. That depends on
whether any of their reduce actions leads to an active stack eventually. To
determine whether a reduce only token is expected or not, the reduce phase of
a parse cycle has to be executed with that token as the current token. If after
that the shift queue is not empty, or an accepting stack exists, the token is
expected. Otherwise, the token is not expected. Figure 4.1 shows pseudo code
for this algorithm.

35

4.2.1.2 Extending tokens to symbols

Figure 4.2 shows the pseudo code for an algorithm that �nds the productions
that absorb the expected tokens. It �rst performs the reduce and shift actions
for each expected token to the nodes of set an of �gure 3.3. Per token we then
have a new set of nodes from which we can derive the desired production by
looking at the reduce actions for each expected token in that situation. These
are the productions that absorbs the expected tokens found in section 4.2.1.1.

The productions denoted by such a reduce action may only be added to the set
of expected symbols when its consecutive reduce actions lead to an active stack.

Shift actions that are induced by a single token rather then by a set of tokens
indicate that the tokens parsed so far, form the pre�x of a literal. The process
will have to be repeated for the tokens that induce those actions.

4.2.2 Implementation

During the course of this project both algorithms described in the previous
section are fully implemented in the way described. These algorithms bring
about repetitive extensions to GSS. Two things has to be observed here.

First the whole of GSS is needed to be able to decide whether a given token or
symbol is really expected or not. This cannot be decided by the parse states of
the shift nodes from the current level alone. Only the whole of GSS can provide
the necessary context.

Secondly before processing each token and after the whole procedure, before
creation of the partial tree described in chapter 3, the state of GSS should be
an exact copy of the state at the moment of error detection.

To be able to ful�l both requirements, the methods that implement the reduce
phase of the parse cycle are adapted. In the current implementation objects like
current token and active stacks are de�ned globally. These have been parame-
terized where necessary.

Although GSS is implemented as a separate module, for its garbage collection
procedure it depends on information from outside the module. Only nodes in
the shift queue and in the current level can be addressed from inside GSS. This
has been changed by means of a di�erent implementation of the StackNodeSets.

In the Meta-Environment the sets of expected tokens and expected symbols are
reported by attaching two sub messages to the existing error report.

36

ProductionSet findAllSymbolsRecursive(ProductionSet exptdSymbols,
StackNodeSet nodes,
TokenSet exptdTokens){

storeCurrentLevel

for each Token token ∈ exptdTokens do

parseToken(nodes, token)

TokenSet shiftTokens := lookupShiftTokens(nodes∪currentLevel,1)
TokenSet reduceTokens := lookupReduceTokens(nodes∪currentLevel)

expctdSymbols:= expctdSymbols ∪findAllSymbolsRecursive(exptdSymbols,
nodes ∪ currentLevel,

shiftTokens)
expctdSymbols:= expctdSymbols ∪ appendSymbols(exptdSymbols,

nodes ∪ currentLevel,
reduceTokens)

resetCurrentLevel

return expctdSymbols
}

ProductionSet appendSymbols(ProductionSet exptdSymbols,
StackNodeSet nodes,
TokenSet reduceTokens){

for each StackNode stack ∈ nodes do

for each Token token ∈ reduceTokens do

for each reduce action action 〈stack, token〉 do

Production prod := production denoted by action

for each path from stack with length denoted by action do

storeCurrentLevel

StackNode target := head of path
StackNode newStack := new StackNode with state denoted by 〈target, action〉
reducer(target, newStack, {}, prod)

if isUsefulToken({newStack},token) then

exptdSymbols := exptdSymbols ∪ prod

resetCurrentLevel

return exptdSymbols

TokenSet lookupShiftTokens(StackNode stack, int max){
retrieves from the parse table all tokens that induce an accept or

a restricted shift action for the parse state of the given StackNode.

For shift actions there is a restriction that no more than max tokens

induce the same action.

}

lookupReduceTokens() see figure 4.1

isUsefulToken() see figure 4.1

parseToken() see figure 3.5

reducer() see figure 3.2

Figure 4.2: Pseudo code for extending expected symbols to expected symbols.
The �rst call to �ndAllSymbolsRecursive has as parameters: an empty Pro-
ductionSet, the shift nodes of the current level, and the expected tokens as
computed with the code in �gure 4.1

37

4.3 Analysis

This section evaluates the quality of reporting the list of expected symbols. It
does this on the basis of the list of requirements formulated in section 2.2.2, as
well as on the e�ciency and �exibility criteria of [DEGANO1995].

The other criteria that Degano uses, correction quality, and language indepen-
dency are either not applicable for any of the techniques proposed in this thesis
or already covered by the other requirements.

4.3.1 Correct

The list of expected tokens which is used as a starting point for the list of
expected symbols, consists of the tokens that won't cause an error when they
had been in the place of the error token. This list can be derived directly from
the parse table, and will be both correct and complete.

The algorithm that extends those tokens to symbols collects only those symbols
that possess a valid su�x when combined with the given pre�x. Therefore those
symbols are correctly identi�ed as expected. However this list is not necessary
complete. Only those symbols that are de�ned as context-free literals will be
found.

4.3.2 Precise

This report takes the whole consumed part of the input string into account,
and uses exactly what is needed to generate the report. Also the exact location
where the error is detected is part of the report. No measures are taken to
communicate which part of the input string does not contribute to the suggested
acceptable continuation.

4.3.3 Succinct

The algorithm used to compute the list of expected symbols, also detects which
character classes could be used as a correct continuation. Presenting those to
the user is however seldom useful, as most of the time it is not precisely clear
to what language constructs these character classes contribute. Also certain
character classes as for instance layout characters are almost always acceptable.
Therefore this list is limited to the symbols marked as literal.

Acceptable character classes are re�ected in the list of expected characters.

Another issue here, is that often this list consists of a possible large number
of di�erent items which are essentially the same. For instance when, in C, an
operator between expressions is appropriate, then this will produce a list of 32
possible operators. Other options in such a list will easily be overlooked.

4.3.4 Source-based

Only constructions of the de�ning grammar are used for these reports.

38

4.3.5 Unbiased

These reports assume that the consumed part of the input sentence is right and
suggest a correct continuation. Therefore they are biased on the consumed part
of the input sentence.

4.3.6 Readable

Generally lists, especially longer lists, do not make up very readable reports.
However in the Meta-Environment they are presented in such a way that they
only need to be looked at when the user thinks they will be helpful.

4.3.7 Polite and restrained

The politeness of verbal messages goes without saying, but is very much up to
the implementer. However, it must by no means be forgotten, therefore it still
appears in this list.

4.3.8 E�ciency

Computing the set of expected symbols starts o� with the same state of GSS
as creating the partial tree described in chapter 3. Therefore it imposes no
additional strain on parsing errorfree sentences.

Computing the sets could be a costly operation, but it is unrelated to the length
of the input string. It depends mainly on the number of tokens. For the current
implementation of SDF this is limited to the 256 (extended) ASCII characters.
Should this be expanded to for instance Unicode, then the proposed algorithm
would not be satisfactory. In that case some other way to handle character
classes should be used.

4.3.9 Flexibility

As a way of �ne tuning to special circumstances, for instance with grammars
that makes a very distinctive use of characterclasses, the list of expected symbols
might be extended with expected character classes.

4.4 Conclusion

The usefulness of the list of expected symbols depends very much on the length
of this list. At most one symbol of this list could be the intended symbol;
therefore it is most useful when it contains only one symbol. And this applies
only when one assumes that the consumed part of the input sentence is right.
Unfortunately computing time also increases with the length of the list, and is
therefore inversely proportional with usability. However as it does not in�uence
parsing time of error-free sentences, and it does not strain handling time too
much, this could be considered as a reasonable extension of the error report.

39

4.5 Summary

This chapter presented an algorithm to derive, from the current state of GSS,
a list of expected tokens. Because the tokens in SGLR consist of only one
character, this will be a list of expected characters. The expected characters
are those characters that are a correct continuation of the consumed part of the
input sentence.

Where appropriate, the characters in this list can be extended to the literal they
are a part of. These lists are both correct and complete.

Usefulness decreases with the length of the list, where computing time increases
with the length of the list.

Next chapter describes a way of supplying language speci�c error messages with-
out alterations to either the grammar or the generated parsers.

40

Chapter 5

Language speci�c error

messages

5.1 Current implementation and

proposed improvement.

Currently SGLR has no provisions for the grammar writer to in�uence the
generated error reports. Neither by making additions to the grammar, nor by
adding speci�c functions to the generated parser.

According to [JEFFERY2003], each type of error together with a limited amount
of context will result in the same parser state, independent of the larger context
in which it appears. Therefore the reported parser state could be used to look
up speci�c messages in a table.

Such a table could be constructed by parsing small examples of input strings
that contain a speci�c error. That way relieving the grammar writer of the task
of putting speci�c error messages into the parser implementation. A task which
otherwise should be redone each time the grammar changes. For this purpose,
Je�ery has built a tool called Merr that does this for parsers generated with
Yacc.

If it is possible to infer from GSS a parser state that designates rather exact
the grammar constructs currently parsed, then, in case of an error, this parser
state can be used to look up language speci�c messages from a table.

A parser state is an index into the parse table. With LR(k) parsers such a parser
state can be clearly distinguished between two consecutive tokens, looking at
the top of the stack. The top of the stack always contains a parser state. In
SGLR these states are blurred in two ways.

Firstly the error could occur in the middle of a lexical construct. Therefore
misspellings of for instance then by ten , tehn, or the will each produce its
own parser state. This is due to the fact that SGLR is scannerless.

Secondly, most of the times GSS will consist of more than one parse stack. The
states of all these stacks should be re�ected in the general parser state. To
distinguish this general parser state from the indexes into the parse table which

41

are also called parser state, I will refer to the general parser state as the GSS
parser state.

Because the GSS parser state is a combination of the parser states of all active
stacks, a bigger part of the context is re�ected in the GSS parser state than with
ordinary LR(k) parsing. For instance, a parser state for a missing semicolon in a
semicolon-separated statement list will also re�ect the context of the statement
list e.g. a while-loop or an if-then clause. This could be an advantage, because
more speci�c messages could be used, but it increases the number of examples
needed.

The Merr tool developed by Je�ery o�ers the possibility to also use the error
token to distinguish between di�erent reports for the same parser state. The
single character tokens of SGLR are not very useful for this purpose. However,
by means of the stacks that are used for the GSS parser state, also the error
token is re�ected in the GSS parser state, and with that also grammar constructs
for which the error token is a pre�x. This adds extra context information to the
GSS parser state.

Next sections describe an algorithm that retains the GSS parser state and a
prototype that uses this GSS parser state the way the Merr tool developed by
Je�ery does with parsers generated by Yacc.

5.2 Algorithm

The GSS parser state is formed by the set of parser states that are held by
certain nodes in GSS. The GSS parser state changes after the reduce phase of
a parse cycle. That is the same point in the parse cycle as where an error is
detected. The GSS parser state consists of the parser states of all error stacks.
These error stacks are created by reduce actions in�icted by the error token.
Contrary to when creating a partial tree, in this case the reduce actions induced
by the error token provide valuable context information.

If the set of error stacks is empty, then we have the situation that the error is in
the middle of a literal. In that case the active stacks of the last parse cycle that
had reduce actions is used. This re�ects the GSS parser state at the beginning
of the literal, rather than at the point of error detection.

The error stacks cannot be distinguished from other nodes subjected to garbage
collection. Therefore the parser states of the nodes that has no action are
collected in a set of parser states during the function that retrieves the actions.
After the reduce phase of each parse cycle, the function setParserState uses
either that set or the shift queue to compose the GSS parser state. Figure 5.1
shows the algorithm used for setParserState.

5.2.1 Implementation

To communicate the GSS parser state, another sub message is added to the
error message. The text of this message ends with a semicolon separated list of
individual parser states.

To check whether the parser state could be used for any meaningful purpose,
a little prototype java application has been made. This application processes a

42

define global: ParserStateSet GSSParserState, errorParserStates
setParserState(){

if currentLevel contains reduce nodes then

if shift queue is empty then

GSSParserState := errorParserStates
else

GSSParserState :={}

for each StackNode stack ∈ errorParserStates do

GSSParserState := GSSParserState ∪ {ParserState from stack}
errorParserStates :={}

}

errorParserStates contains the ParserStates from the error stacks

in the current level

Figure 5.1: Pseudo code for function setParserState. This function is called
after the reduce phase of each parse cycle.

XML formatted �le with example message pairs, and outputs a java hashtable,
which stores the messages using the parser state as a key. This hashtable can
then be used by the GUI to translate the parser state from the error report to
the message stored in the hashtable.

From implementing and using the prototype, some issues could be derived, and
a proper implementation should handle these issues:

• A possibility must exist to provide a common context for more examples.
In the prototype one can specify the correct version of the example. This
will then be used to start every subsequent example with.

• It should be possible that the same message is de�ned by more than one
example.

• A warning should be generated when two examples, leading to the same
error message, de�ne the same state and are thus redundant.

• A warning should be generated when two examples de�ne the same state,
but lead to di�erent messages. In this case only one can actually be used,
thus blocking the other intended message.

The prototype has been used to create speci�c syntax error messages for the
example programming language Pico. For 17 common errors speci�c message
have been written. 20 examples were needed to cover all GSS parser states
identifying those errors. In the used examples, all these errors were correctly
identi�ed.

5.3 Analysis

This section evaluates the quality of using the GSS parser state for grammar
speci�c messages. It does this on the basis of the list of requirements for-
mulated in section 2.2.2, as well as on the e�ciency and �exibility criteria of
[DEGANO1995].

43

The other criteria that Degano uses, correction quality, and language indepen-
dency are either not applicable for any of the techniques proposed in this thesis
or already covered by the other requirements.

5.3.1 Correct

The GSS parser state itself can neither be correct nor incorrect, it is just a
property of the parser. Whether the reports generated with the aid of the
GSS parser state are appropriate can not be guaranteed. It depends on the
set of examples used, but this set will probably never be exhaustively. There
will always be GSS parser states for which no translation is available. And
probably also sometimes translations will be used for errors for which they were
not intended.

5.3.2 Precise

As the other error reports do, the GSS parser state re�ects the whole consumed
part of the input string. But often it will be possible to derive from the GSS
parser state the context of the error and communicate this in the report. From
this the user can discover what part of the input string contributed to the error.

5.3.3 Succinct

Based on The GSS parser state very speci�c error reports are possible.

5.3.4 Source-based

The GSS parser state can be used to compose grammar speci�c messages. This
is the main purpose to use this method.

5.3.5 Unbiased

As the other reports this reports is biased on the parsed pre�x of the input
string.

5.3.6 Readable

Messages that are used for these reports are specially written, and not composed
from some generic literals completed with speci�c variables, like �<token> un-
expected�. The combined methods proposed in this chapter should therefore
produce very readable reports.

5.3.7 Polite and restrained

The politeness of verbal messages that reach the user as a result of this error
reports depends on the grammar writer whom writes those messages.

44

5.3.8 E�ciency

Keeping the parser state imposes no strain on error free parsing time. (see sec-
tion 8.1.1) Including the parser state in the error report is almost free. Trans-
lation to a pre de�ned error message depends on the number of those messages.

5.3.9 Flexibility

No methods exist to adapt the methods proposed in this chapter. Except for
whether the GSS parser state is actually shown or not shown. For the common
user, this is useless information. But a grammar writer will need the GSS parser
state to be able to �nd the right examples.

5.4 Conclusion

It has been investigated whether Je�ery's approach to use small example sen-
tences for creating descriptive, language dependent error reports is feasible for
SGLR. First thing needed for this method is a parser state. It turns out to be
possible that, although GSS could exist of many parser states, a state can be
derived from GSS that is unique for certain kinds of errors.

As a proof of concept a prototype has been developed such that the Meta-
Environment could translate parser states to error messages. For the example
language Pico this worked reasonably well. Parser states for spelling errors as
well as omissions of keywords could easily be recognized. Parser states that
uniquely identi�ed errors related to uneven or tangled begin end pairs have not
been found.

It cannot be guaranteed that found messages are appropriate in all situations.
Also, it will prove to be a tedious job to provide enough examples as to cover
a reasonable number of errors. Probably this method will only be useful for
some domain speci�c languages that have a rather large group of users who are
unaware of the language development.

However, this translation scheme will come on top of other error reports. There-
fore even if only one peculiar error situation can be clari�ed, this will be an
advantage.

5.5 Summary

This chapter presented an algorithm to derive a parser state from GSS. This GSS
parser state can be used to, following the method described in [JEFFERY2003],
�rstly create a table of message indexed by those parser states and then use this
table to provide these messages with the error reports for the actual errors.

The last three chapters presented methods to retrieve and communicate infor-
mation about the consumed part of the input sentence. The next two chapters
present methods to handle the not consumed part of the input string.

45

46

Chapter 6

Halting after an error

6.1 Current implementation and

proposed improvement.

After an error is detected, and a report is created, a decision must be made on
how to go on. Apart from halting after the �rst error, this could be a correcting
or a non-correcting approach. [DEGANO1995] Contrary to literature in this
�eld I think halting should be looked in to as a serious option.

In the literature about LR(k) parsing, halting after the �rst error detected
is simply considered not done. In fact most literature about error handling
concentrates on algorithms that detect as many errors as possible. This is
partly because panic mode recovery was used rather soon after the introduction
of LR parsing. Much research on error handling was aimed at improving this
technique.

Furthermore in those days compiling, of which parsing was the �rst step could
be a time-consuming operation. It would be very disappointing, if, after a couple
hours, the whole process halted on one forgotten semicolon. And �nding the
second missing semicolon took another two hours, redoing most of the work
already done the �rst time. Nowadays parsing hardly leaves you time to take a
sip of your co�ee. Therefore the time does not play an important part anymore.

Being a highly generic tool there exists no panic mode recovery technique for
SGLR, because panic mode recovery uses certain language dependent synchro-
nization tokens to provide a starting point and parser state to resume parsing.
Therefore halting gracefully should be considered as an option.

The current implementation just halts and returns an error report. In chapter 3
it is proposed to return the structure of the consumed part of the input sentence
in the form of a partial parse tree. This tree will only re�ect the parsed pre�x
of the input sentence.

The next section will present an algorithm to extend that partial tree. The
resulting tree re�ects the whole of the input sentence, with a clear distinction
between the parsed pre�x and the not-parsed su�x. Unparsing this tree will
produce the original input sentence.

47

N

N

N

N

S

S

D

DD

D

4 1+2 3

parsed not-parsed

result

rorre

Figure 6.1: Completed result tree with not parsed part.

6.2 Algorithm

Processing the not-parsed su�x is pretty straight forward, All remaining tokens
from the input string are shifted to the remaining stack of the partial tree, while
counting the number of actual shifts. If eos is reached, then two reduce actions
are performed, the �rst with a length of the number of shifts and the second
with length two. The resulting stack is marked as the accepting stack. The
resulting parse tree will look like �gure 6.1. Figure 6.2 shows pseudo code for
this algorithm.

6.2.1 Implementation

The halting procedure has been fully implemented during the course of this
project according to the method described above. Halting is executed when an
error is encountered while the prede�ned maximum number of errors has been
found. The maximum number of errors is connected with the non-correcting
recovery method that is described in chapter 7. If the maximum number of
errors is set to one, then parsing halts after the �rst error as described above.

48

define RESULTPROD := "<result>"

define NOTPARSEDPROD := "<not-parsed>"

processNotParsedPart(){

Token currentToken := next token from input string

StackNode target := last new stack from reduceParsedPart()

int numberOfShifts := 0

while currentToken != eos do

StackNode newStack := new stacknode with state ERRORGOTOSTATE

create edge from newStack to target holding "currentToken"

numberOfShifts++
currentToken:= next token from input string

target := newStack

StackNode active reduceNotParsed(target, numberOfShifts)
reduceResult(active)

}

StackNode reduceNotParsed(StackNode source, Integer length){
TreeSet kids := the trees of the edges that form the path with

length length from source
StackNode newStack := new stacknode with state ERRORGOTOSTATE

reducer (head of path, newStack, kids, NOTPARSEDPROD)

}

reduceResult(StackNode source){
TreeSet kids := the trees of the edges that form the path

from source to startnode

StackNode newStack := new stacknode with state ERRORGOTOSTATE

reducer (startnode, newStack, kids, RESULTPROD)

mark newStack acceptingStack

}

reducer() see figure 3.2

Figure 6.2: Pseudo code for processing the not-parsed su�x.

49

6.3 Analysis

This section evaluates the quality of the halting procedure. From the list of
requirements used in the previous chapters, source-based, unbiased, readable,
and polite are not applicable for the halting procedure. The other requirements
form the basis for this evaluation.

6.3.1 Correct

The halting procedure moves exactly the not-parsed su�x from the input sen-
tence into the parse tree. If combined with the partial tree as created by the
methods described in chapter 3, the result is an erroneous parse tree that ex-
actly re�ects the input sentence, and that can be unparsed to an exact copy of
the original input sentence. It is still an erroneous parse tree however, because
its structure does not comply to the grammar and its root is not the grammars
start symbol either.

6.3.2 Precise

The halting procedure uses exactly the not-parsed su�x of the input string, no
more no less.

6.3.3 Succinct

The halting procedure just identi�es the not-parsed su�x of the input string
and designates it as not parsed. No additional information is added.

6.3.4 Readable

In the Meta-Environment, after putting the cursor somewhere inside it, the not
parsed part will be shaded yellow and named not-parsed. Also in the visualisa-
tion of the parse tree the not parsed su�x is clearly recognizable by a special
node.

6.3.5 E�ciency

The halting procedure puts no additional strain on parsing error free sentences.
The handling time is linear with the length of the not parsed su�x of the input
sentence. However this time will always be less than the time needed for parsing
when no error would have been encountered.

6.3.6 Flexibility

The halting procedure cannot be adapted in any way.

50

6.4 Conclusion

The halting procedure provides for an elegant way to halt parsing. It makes it
possible to always create a partial tree for the not consumed part of the input
sentence. It can therefore be used as a back up for other, correcting or non
correcting error recovery schemes. In this sense it can be viewed of as the panic
mode recovery for SGLR. Unlike panic mode recovery in LR(k) the halting
procedure has no dependencies on any parts of the grammar. However it does
not try to put much structure into the not parsed su�x either.

6.5 Summary

This chapter described the most basic way of error recovery that can be com-
bined with returning a parse tree that re�ects the whole of the input sentence,
although this will be an erroneous parse tree. It boils down to halting the parse
process after inserting the not parsed su�x of the input sentence into the parse
tree. It does not try to make any corrections, nor does it supply any grammar
de�ned structure for this su�x.

The next chapter describes a, also non-correcting, recovery scheme that does
transform the not parsed su�x into a structure that is de�ned by the grammar.

51

52

Chapter 7

Continuing after an error as a

substring parser

7.1 Current implementation and

proposed improvement.

[REKERS1991] describes a derivation from the GLR algorithm for parsing sub-
strings. It uses the same parse table and follows greatly the main GLR algo-
rithm. This algorithm can be used to recognize if a sentence is a valid substring
of the language at hand, and produce a parse tree if so.

The substring parse algorithm o�ers an opportunity to process the not parsed
su�x into a structure de�ned by the grammar. Just like like the structure it
would get when it was a su�x from a correct sentence of the language.

The next sections describe how Rekers' algorithm can be adapted to do that.

It is possible that the error token cannot be a pre�x for a valid substring of the
language. If that is the case substring parsing should start with the �rst token
that is a pre�x for a valid substring of the language. Also substring parsing
should not start with layout characters, because usually layout characters will
form a pre�x for every substring of the language and therefore they won't limit
the number of possible continuations. Also chances are that the �rst non lay-
out character does not form a pre�x for a valid substring of the language. In
this sense layout characters should not be read as the usual row of tab, space,
newline, etc, but as layout characters like they are de�ned by the grammar.

Two facts diminish the usefulness of this method: 1) subsequent errors may be
concealed and 2) the amount of possibilities can easily explode.

Concealed errors As already mentioned by [RICHTER1985], with a non cor-
recting error recovery method an error can mask subsequent errors. For
instance if exp)) { contains two errors: the opening parenthesis after if
is missing and the expression either lacks an opening parenthesis or has a
closing parenthesis too many. Because there exists a valid pre�x, exp)) {

will be accepted as a valid substring, where if (exp)) { will produce an
error on the second closing parenthesis.

53

In SGLR an error is only detected when there are no nodes in GSS to
shift the current token to. Substring parsing starts o� with an active
stack for every possible shift action of the error token. This can introduce
active stacks that accept almost every token repeatedly, and thereby mask
all possible errors. For instance existence of multiple line comments can
conceal all errors until an end-of-comment sign is found. Or the string
literal conceals all errors until the end of the line.

A possible solution to this problem is to exclude certain productions from
being a not completed result from substring parsing. A not completed
result from substring parsing is illustrated by the following example: The
substring �(exp)� will be interpreted by the production rule "(" exp

")" -> exp. Also the substrings �exp)� and �)� will be interpreted by
the same rule, but those interpretations will not be complete, because
one respectively two parts of the left hand side of the production rule are
missing.

A (simpli�ed) production rule for comments is: "/*" [\0-\41\43-\255]∗

"*/" -> comment. If such a production is not allowed to be a not complete
result from substring parsing, then also in substrings a comment could only
start with a start-of-comment sign. This can be achieved by annotation
of the productions concerned.

Information explosion Any pre�x from the string starting with the error to-
ken could be a valid su�x for a number of productions. Substring parsing
�nds all those possible interpretations. This increases the number of trees
in the parse forest. Most of these trees won't be �ltered out, but will
appear in the parse tree as ambiguities.

A way to prune this parse forest is to prefer the tree with the lowest level of
incompleteness. The level of incompleteness could be determined by anno-
tating the not completed results from substring parsing with the number
of parts in the left hand side they are missing. In the above example one
and two for substrings starting with �exp)� and �)� respectively. These
results are nodes in the resulting parse tree. The total of the annotations
for a given (sub) tree amounts to the level of incompleteness.

Another issue is that substring parsing will be more time consuming then or-
dinary parsing, especially at the beginning of the substring. [REKERS1991]
This is caused by the necessity to try multiple interpretations, adding an active
stack for each of them. As Rekers calls it, substring parsing needs some time to
get on its way. If there exists multiple errors close together, then total parsing
time may grow disproportional. Therefore the number of errors found should
be limited to a prede�ned maximum.

7.2 Algorithm

According to Rekers' algorithm, an active stack must be created in GSS for each
possible shift action for the �rst token of the substring. For our purpose this
will be the error token.

54

define SUBSTRINGSTARTSTATE := -3

initialiseSubstring(){

IntegerSet shiftGotos:= lookupShiftGotos(currentToken)
while (shiftGotos == {} or currentToken ∈ LayoutCharacters)

and currentToken != eos do

StackNode newStack := new stacknode with state ERRORGOTOSTATE

create edge from newStack to target holding "currentToken"

numberOfShifts++
currentToken:= next token from input string

target := newStack
shiftGotos:= lookupShiftGotos(currentToken)

reduceNotParsed(target, numberOfShifts)

shiftQueue:= {}

StackNode substringStartnode:= new StackNode with state SUBSTRINGSTARTSTATE

for each Integer gotoState ∈ shiftGotos do

shiftQueue := shiftQueue ∪ {〈substringStartnode, gotoState〉}
}

IntegerSet lookupShiftGotos(Token token){
retrieve from the parse table a set that contains the gotoState

for every shift action tokencan induce irrespective of the parser

state.

}

reduceNotParsed() see figure 7.1

Figure 7.1: Pseudo code for initialising GSS at the start of substring parsing

55

handleNotCompleteProduction(Production prod, ReductionPath path){

annotate prod with length of path - intended length of path

IntegerSet gotos := lookupAllGotos(prod)

For each Integer gotoState ∈ gotos do

StackNode newStack := new StackNode with state gotoState
kids := the trees of the edges that form path
reducer(head of path, newStack, kids, prod)

}

IntegerSet lookupAllGotos(Production prod){
retrieve from the parse table a set that contains all

gotoStates for prod irrespective of the parser state.

}

reducer() see figure 3.2

Figure 7.2: Pseudo code for handleNotComplete(). This function is called each
time the head of the path is the substring startnode.

This is done by creating a node, the substring startnode, which will function as
the bottom of the stack. Instead of the normal startstate, this node will hold an
auxiliary substring start state. This new bottom of the stack will be the target
for all shift actions induced by the error token. Or more precisely the �rst token
from the unparsed su�x that is not a layout character and that can induce shift
actions. For this purpose the substring startnode is added to the shift queue
once for each possible shift action of the error token. Normal parsing can then
be resumed, with special care for reduce actions that try to reduce on to or
beyond the substring startnode.

When, while substring parsing, a reduce action has a length that would re-
quire a target node that lies before the substring startnode then for this in-
terpretation of the substring a completion is needed. Parsing could be re-
sumed, as described by Rekers, by using the substring startnode as a target
for all possible goto's for the given reduce action. Rekers suggests providing
a possible completion. I suggest leaving it to the user how the part before
the error could provide a completion. And only mark the production as not-
complete.http://www.windguru.cz/int/index.php?sc=48299

If a reduce action has the substring startnode as its target node then no com-
pletion is needed, but the goto could not be determined, because the proper
target state is not known. Therefore in this case also all possible goto's should
be used.

[REKERS1991] suggests a method for completion of a substring when end-of-
string is reached without an accepting state. For this purpose this could just be
handled as another error.

7.2.1 Implementation

The existing functions are altered such that they can handle substring parsing
also. This mainly boils down to a check whether the target node for reductions

56

parsed1 not-parsed

result

N

N

D

D

1 3

N

N

D

D

4 +2 +

S

S

rorre

production nodes

auxiliary nodes

nodes marked not-completed

Figure 7.3: Result tree for the sentence �42+error+13� after proceeding with
substring parsing

57

holds the special substring start state. That is where the main di�erence with
the common parse process is. Also the information about the reduction path is
augmented with the number of steps that could not be ful�lled.

As with the partial tree, no alterations are made to UPTR. Instead of special
nodes for not-completed productions, extra ordinary production nodes are in-
serted that designate the tree they hold as not-completed and indicate the level
of incompleteness.

Leaving pruning of the parse forest, by means of prefer lowest level of incom-
pleteness, entirely to the �lter process, proved to be to time consuming. Some
measures are taken to reduce the tension on the �ltering process.

Firstly, a tree is not added to the ambiguity table when its level of incomplete-
ness is higher then the corresponding tree in GSS.

Secondly, not-completed production nodes propagate their level of incomplete-
ness to their parents. This makes it possible to compare the levels of two trees
without a complete search of the trees.

No provisions exist to read trees in the ambiguity table during parsing. There-
fore, to be able to correctly determine the level of incompleteness for a new tree,
it is essential that there exist no trees in the ambiguity table with a lower level
than the corresponding tree in GSS. This means that an edge of GSS is replaced
with another edge if necessary.

No trees are removed from the ambiguity table during parsing. Those trees
already in the ambiguity table with an higher level of incompleteness than the
tree in GSS are dealt with by the �lter process.

In section 7.1 it is suggested to annotate certain productions such that it be-
comes impossible that they form incomplete productions for substrings. This is
not implemented. The intended behaviour is simulated by the following process.
Substring parsing starts with looking up all shift actions for the �rst token of the
substring. Instead of using all those shift actions, actions that are also triggered
by a layout character, are excluded. Layout characters are those characters that
appear in the left hand side of productions that have as their right hand side
a symbol annotated as layout. These exclusions have the e�ect that language
constructions that accept also layout characters, like comments or string literals
are excluded.

7.3 Analysis

This section evaluates the quality of this non-correcting error recovery by means
of substring parsing. It does this on the basis of the same list of requirements as
for the partial tree described in chapter 7.1. But with substring parsing there
is one extra issue that has to be taken into account, namely its in�uence on the
error reporting techniques from the previous chapters.

Discussions in those chapters assumed that the parsed pre�x was parsed with
the original SGLR algorithm. When the parsed pre�x is parsed with the sub-
string parse algorithm then handling time or result for the three error reporting
techniques may di�er.

Substring parsing starts with a surplus of stack nodes in GSS, each representing
a possible pre�x completion for the substring. As parsing progresses the number

58

of these possibilities gradually decreases, but boost up each time a reduction
onto or beyond the substring startnode is made. When, while substring parsing,
an error is encountered, then these extra stack nodes in�uence reporting of the
error. This in�uence is greater when an error is encountered rather quickly after
starting substring parsing. This shows in two ways.

The GSS parser state could be altered such that the message can not be trans-
lated as it would be while normal parsing. An example for this is shown in
�gure 8.4. Secondly, computing time for both the partial tree as the expected
symbol list starts of with set A (see �gure 3.3) and could therefore be increased
considerably as the extra stack nodes are also present in this set. An example
for this is shown in table 8.2 with parsing the C example with all options on.

7.3.1 Correct

Let x, y, and z be strings of non-terminals of a grammar G. If from a string
xyz y is accepted as a substring of a language L de�ned by G. In other words
substring parsing starts with the �rst token of y and halts after the last token
of y, either with an error or with an accepting stack. Then in such a case it is
certain that there exists x and z also substrings of L, such that xyz is a sentence
of L.

In this sense substring parsing is correct, an accepted substring is always a
substring from some sentence of the language.

It is not certain however that x′y is a pre�x for some sentence of L, when x′

extended with some pre�x from y is a pre�x for some sentence of L. This
means that possibly an error gets concealed, and it looks like substring parsing
incorrectly accepted y as a substring. This is a known issue with non corrective
error recovery schemes[RICHTER1985].

It is also not certain that when substring parsing of y halts with an error, no x′

exists such that x′yz is a sentence of the language. This means that a spurious
error can be introduced, in that case an error is detected that is not really there.

7.3.2 Precise

The structure generated by substring parsing is based on the whole of the sub-
string starting with the error token. No measures are taken to communicate
which part of the input string does not contribute to the error.

7.3.3 Succinct

As with the partial tree from chapter 3, substring parsing cannot give the ul-
timate structure for the substring starting with the error token. The most
useful interpretation will show where and how the intended interpretation de-
viates from the found interpretation(s). The number of possible interpretations
determines how the most useful interpretation is blurred by the less useful inter-
pretations. The number of possibilities can even be disproportional; therefore it
is necessary to limit them. The proposed method for this limitation, preferring
the interpretation with the lowest level of incompleteness, does not guarantee
that the most useful interpretation will not be removed.

59

7.3.4 Source-based

The result of substring parsing is entirely based on the grammar and the input
sentence.

7.3.5 Unbiased

The method, to prefer the least level of incompleteness while substring parsing,
emphasizes the part to the right of the error token.

7.3.6 Readable

The analysis for the readability of the partial tree in chapter 3 applies just as
much to the results of substring parsing. The Meta-Environment has various
ways to show the structure of a parsed sentence, such as highlighting, pretty
printing, showing the right-hand-side of a selected production, and visualisation
of the parse tree. Except from pretty printing, these can all be used for erroneous
parse trees.

However multiple interpretations introduced by substring parsing are shown as
ambiguities in the resulting parse tree.

Unfortunately, the Meta-Environment o�ers no easy way for discovering di�er-
ences between two or more interpretations of (a part of) the parsed sentence.

7.3.7 E�ciency

Substring parsing does not strain normal parsing of error free sentences.

Substring parsing depends on the length of the remaining input string. The
extra time will mostly be used at the beginning of the substring. If multiple
errors exist close together, then total parsing time can grow disproportional.
Therefore a maximum is set for the number of errors found.

7.3.8 Flexibility

For this non-correcting recovery method the amount of errors found before pars-
ing halts, could be used to �ne tune the behaviour.

7.4 Conclusion

This non-correcting recovery strategy, which uses substring parsing following
the algorithm devised by [REKERS1991], works well for some grammars. But
it is useless for grammars with productions that accept almost any character like
string literals or comments. To overcome this inadequacy certain productions
need to be annotated such that they can not be used as an incomplete production
while substring parsing. This means alterations to the grammar. Although the
heuristic chosen for the implementation, exclusion of certain productions based
on layout characters, might o�er a reasonable alternative.

60

Also, the choice to prefer interpretations based on the level of incompleteness is
arbitrary; as it is not certain that the interpretation with the lowest level will
be the most informative.

Substring parsing as a means of non-correcting error recovering has as it main
advantage that it gives an interpretation of the part of the input sentence to the
right of the error. This is of course as useful as the interpretation of the part to
the left. However it can strain parsing time of erroneous sentences considerably.

7.5 Summary

This chapter presented a non-correcting error recovery strategy. This strategy
gives an interpretation for the part of the input sentence to the right of the error.
For that purpose an adaptation of the substring parsing algorithm described by
[REKERS1991] is used. The adaptations include that no attempts are made to
provide extensions to the left or the right of the substring.

Furthermore the number of possible interpretations is limited by preferring inter-
pretations that need the least grammar constructs, terminals or non-terminals
from the left of the error.

Also certain productions are excluded from appearing in the structure for the
substring when they need certain terminals or non-terminals from the left of the
error.

This chapter concludes the descriptions of proposed strategies for error reporting
and error recovery. Next chapter describes how these strategies work together.
Next chapter also presents some practical examples.

61

62

Chapter 8

Experimental results

This chapter describes the results of the implementation of the techniques de-
scribed in the previous chapters. The �rst section provides some performance
and quantity measurements about the implementation.

The second section gives some practical examples in the form of screenshots
of the Meta-Environment. They explain how the Meta-Environment uses the
newly derived information to inform the user.

Most of this thesis assumes that the �ve proposed methods for error handling
are separated processes. But of course it is intended that they work together.
Also they in�uence each other. Especially substring parsing, used for the non-
correcting recovery technique, may in�uence the others considerably.

All techniques have been implemented together. When an error is encountered,
�rstly the lists of expected characters and symbols are created, and then a mes-
sage is composed consisting of those lists and the GSS parser state. Thirdly
a partial tree is created. After that, parsing commences with either the halt-
ing procedure or substring parsing. The choice for one technique or the other
depends on whether the number of errors found has reached the pre de�ned
maximum.

Finally all intermediate results like partial trees or not parsed parts are joined
together to one �nal erroneous parse tree. This tree is erroneous, because it
does not comply with the structure de�ned by the grammar. However this tree
can be used to visualize the structure of the parsed parts of the input sentence.

8.1 Measurements

8.1.1 Performance

Next sections indicate parsing times for both syntax error free input sentences
and input sentences containing syntax errors. These times should not be viewed
as absolute, because they will be greatly dependent of the hardware that is used.
All measurements were done on a machine with the following speci�cations:

Processor: Intel (R) Pentium (R) mobile M 1.73 GHz

Memory: 1.5 GB

Operating system: Ubuntu 7.04

63

current SGLR new SGLR
�le size reference partialtree + parserstate1 + substring1

LOC kB sec. sec. sec sec %

ATerm.java 7823 232 2.22 2.55 2.54 2.52 14
SDF10 4054 130 1.01 1.12 1.13 1.13 12
SDF100 40504 1300 9.74 11.27 11.18 11.16 15
SDF300 121502 3901 29.57 33.60 33.74 33.77 13
SDF500 202501 6498 49.26 56.00 56.37 55.93 14
SDF600 243000 7803 59.45 67.39 67.89 67.47 14
SDF1000 404998 13005 99 113.04 113.08 112.07 14
SDF1500 607495 19507 149.28 169.53 170.04 168.95 14

1 this technique in addition to the technique in the previous column

Table 8.1: parsing time for large error-free sentences. Column % gives additional
parsing time as a percentage of the reference time

8.1.1.1 Error free parsing

To be able to check the performance of (di�erent versions of) SGLR, Rob
Economopoulos has composed a set of very large input sentences. A concate-
nation into one �le of the ATerm java implementation and a series of concate-
nations of the SDF de�nitions. These are used to measure how much parsing
time increases due to new error handling routines. Table 8.1 shows the result of
these measurements. Column % shows additional parsing time as a percentage
of the reference time. Times are measured by means of the Linux time utility.

Computing the list of selected symbols does not require additional measures
above those for the partial tree. Time for the GSS parser state is measured with
both partial tree and parser state active, time for substring parsing includes all
other approaches. As a reference parsing times for the current implementation
of SGLR are used.

Main conclusion from table 8.1 is that keeping the parser state and preparations
for substring parsing does not seem to add much overhead.

Most extra time is caused by measures to make partial tree creation possi-
ble. This is probably due to the changed implementation of GSS with build-in
garbage collection.

Probably the execution time of this new implementation can be optimized. A
rough remedy would be to separate the code for error handling from the nor-
mal parsing code completely. That way error handling routines cannot put
additional time strains on error free parsing, at the cost of duplicating code.

8.1.1.2 Error handling

Table 8.2 shows some measurements done while parsing the examples from sec-
tion 8.2. These are total parsing times measured with the Linux time utility.
These are rather short time intervals, and they should not be viewed as absolute.
In fact these �gures re�ect an average of several measurements.

Although these measurements do not cover everything possible, some trends
could be derived from them.

64

halting substring
-exp1 +exp2 -exp1 +exp2

error-free 0.028 0.028 0.028 0.028
all n/a n/a 0.048 0.058

pico example �rst 0.028 0.028 0.36 0.038
second 0.032 0.044 0.38 0.044
third 0.028 0.044 0.36 0.044

error-free 0.108 0.108 0.108 0.108
all n/a n/a 1.564 5.396

C example �rst 0.104 0.120 0.188 0.204
second 0.109 0.125 0.280 0.324

1 computing of expected symbols excluded
2 computing of expected symbols included

Table 8.2: Errorhandling, parsing times in seconds

8.1.2 Lines of code

To the original 4300 lines of C code which formed SGLR, 1200 were added to
implement the error handling routines discussed in this thesis. The original
error handling routine was made up of 20 lines of code.

The implementation of SGLR is modularized. The main modules are: parser,
gss, parseTable, and parseForest. Module parseForest processes the parse for-
est, which is produced by module parser into a parse tree. Actually when an
accepting state is reached, GSS won't hold a forest, but a tree with exactly the
input string as its leaves. Whenever an attempt is made to connect two nodes
of GSS with a second edge, then instead of inserting this edge in GSS, the tree
represented by the new edge is stored in the ambiguity table. The �lter process
retrieves all trees from the ambiguity table, and either discards them or inserts
them in the parse tree.

Table 8.3 shows the division of lines of code over these modules.

module current implementation added new implementation

sglr 906 134 1040
sglr/parser 4?14 632 1046
sglr/gss 612 359 971
sglr/parseForest 1189 5 1194
sglr/parseTable 892 136 1028
sglr/utils 287 34 321

Table 8.3: physical lines of C code in SGLR (counted with SLOCCOUNT by
David A. Wheeler)

65

8.2 Examples

This section contains some screen shots of the Meta-Environment. They illus-
trate how the information, which is revealed by means of the methods discussed
in this thesis, can be used to help the user to discover the nature of the syntax
errors he made.

Figure 8.1: Example of a small program written in the Pico example language.
It contains three syntax errors. It is shown after parsing with the current version
of SGLR.

66

Figure 8.2: The same Pico program as �gure 8.1, but shown after parsing with
the improved version of SGLR. Four instead of three syntax errors are found.
Recovery from the �rst error introduces a spurious error.

67

F
ig
u
re
8.
3:

V
is
u
al
iz
at
io
n
of
th
e
p
ar
se
tr
ee

as
p
ro
d
u
ce
d
fo
r
th
e
se
n
te
n
ce

�1
2+

er
ro
r+

42
�
w
it
h
th
e
S
u
m
ex
am

p
le
gr
am

m
ar

d
es
cr
ib
ed

in
se
ct
io
n

2.
1.

F
ir
st
p
ar
t
of
th
e
re
su
lt
tr
ee

is
d
er
iv
ed

b
y
n
or
m
al
p
ar
si
n
g,
se
co
n
d
p
ar
t
ca
n
n
ot

b
e
in
te
rp
re
te
te
d
,
an
d
th
ir
d
p
ar
t
is
d
er
iv
ed

b
y
su
b
st
ri
n
g

p
ar
si
n
g.

68

Figure 8.4: C fragment containing two syntax errors. Among other things this
shows that the list of expected symbols can grow considerably, here 41 and 40
respectively. And that substring parsing may obscure the parser state when
errors are close together. Next �gures show trees of the interpretations directly
before, in between and directly after the errors.

69

Figure 8.5: tree showing the two possible interpretations for �f� in the fragment
of �gure 8.4

70

Figure 8.6: trees for �@ = d� in the fragment of �gure 8.4

71

Figure 8.7: Tree for �bc = 3; }� in the fragment of �gure 8.4, not showing
layout. It shows two possible interpretations that are found by substring parsing
(chapter 7). Both options needed four non-terminals to their left-hand-side to
complete, and therefore they are both shown. Orange coloured diamond-shaped
nodes indicate special inserted ambiguity nodes. This tree has been scaled to
�t on the page. In the Meta-Environment, those trees are both scalable and
scrollable.

72

Chapter 9

Conclusions and future work

9.1 Conclusions

This thesis has introduced �ve techniques to improve the error reports of the
SGLR parsing algorithm. The improvements aim to help the user in �nding
a repair such that the erroneous input sentence becomes acceptable for the
grammar, and that it re�ects the interpretation that the user intended.

To be able to asses the proposed improvements for their usefulness, a list of
requirements has been made up. This list has been put together by requirements
from literature about compilers and LR parsers. A technique that scores well
for all those requirements will be a useful one. This is not the case for any of
the proposed techniques, but that does not mean that they are useless. The list
of requirements helps to identify the weak and strong points of each technique.
Table 9.1 summarizes the results of these analyses for each technique.

A starting point for this thesis was that the error handling should not depend on
speci�c production rules of the grammar. None of the proposed techniques do
rely on such productions. However a grammar can contain production rules that
make substring parsing useless, therefore substring parsing is not fully grammar
independent.

For the language speci�c error messages a grammar speci�c table is needed.
This table is used to translate parser states into messages. Such a table is not a
part of the grammar, but an addition to the grammar. It is doubtful whether the
improvements in readability compensate for the extra e�orts needed to create
such a table.

A weakness with all techniques is that they are biased on either the pre�x
ending at the point of error detection or on the su�x starting at the point of
error detection. This makes them less useful in situations where the error in the
intended interpretation gets concealed by other possible interpretations. This is
typical for SGLR, which continues parsing until no more possible interpretations
are left.

The only technique that o�ers a solution in those situations is the partial tree
created with the omniscient algorithm. But this algorithm is neither succinct
nor e�cient enough to be a feasible solution.

73

Partial tree Expected Language speci�c Halting Substring
symbol list messages parsing

Correct ++ + � ++ +
Precise + + � ++ +
Succinct +1 + ++ + �
Source-based ++ ++ ++ n/a ++
Unbiased � � � � � n/a �
Readable + + ++ + +
Polite n/a + + n/a n/a
E�ciency +1 + + + �
Flexibility + + ++ + +

Key: ++ very high; + high; + intermediate; � low; � � very low;
1For the omniscient version of the algorithm, as described in section 3.2.2, this will be � �

Table 9.1: Summary of the analyses of the error handling techniques

In my opinion three of the �ve proposed techniques are good enough to be used
by the Meta-Environment. These are the partial tree combined with the halting
procedure and the list of expected symbols.

The list of expected symbols might o�er possible solutions for users whom have
little experience with the language. Its only disadvantage is a slightly increased
error handling time.

The partial tree will in many cases reveal the structure of the input sentence
up until the point of error detection. I think this will be much help in �nding a
repair for the error.

To commence parsing with substring parsing is only feasible when the user can
adjust the maximum number of errors found. If this number is set to one, then
substring parsing will be never invoked.

Lots of work will have to be done to arrive at a proper implementation for
translating the parser state into messages. Presenting the parser state to the user
without translation is useless. I can think of other more useful improvements
to the Meta-Environment.

9.2 Future work

Three directions can be distinguished for future work on error handling of SGLR
parsers: improvements to error detecting, error reporting, and error recovering.

9.2.1 Detecting

A problem with all techniques discussed in this thesis is that they don't work
well when errors get concealed by other interpretations. Many substrings of a
language will have more than one possible interpretation. It depends on the
context which interpretation is chosen. If a user sees that an interpretation is
chosen that was not the interpretation he intended, then mostly the user will
know how to change the context to get the desired interpretation.

74

It is more di�cult when an interpretation exists that is applicable for almost
every substring of the language. In that case an error against the intended inter-
pretation will get concealed, but also the context of the intended interpretation
will get concealed. In that case the found interpretations in the partial tree
won't o�er much help in �nding a repair for the error.

As a theoretical example, let [\0-\9\11-\36\38-\255]∗ "%%" -> comment be
a production rule from some grammar. In that case any line that cannot be
interpretated by other production rules of the grammar and does not end with
%% will cause an error. However, the partial tree that gets created at that
point will only show the characterclass [\0-\9\11-\36\38-\255]∗ as a possible
interpretation for that line. With that all other possible interpretations, which
might have been tried during parsing get concealed.

Unfortunately the algebraic speci�cation formalism (ASF), which the Meta-
Environment uses for code analysis and code transformations, is a language
whose grammar contains such constructs. The basis of the grammar with which
a certain ASF-module will be parsed, is the grammar for the language on which
the analyses are done. These problems for ASF are caused by the same language
constructs that causes the problems with concealed errors while substring pars-
ing. Probably there is no solution for this without alterations to the grammar.

9.2.2 Reporting

It is inevitable that erroneous result trees contain multiple interpretations for
the consumed part of the input sentence. These are shown as ambiguities in the
Meta-Environment. Enabling quick comparisons, pinpointing the di�erences,
of these ambiguities would mean a big improvement. Not only for end users
debugging a program, but also for language developers trying to disambiguate
their grammar.

9.2.3 Recovering

A way to improve the recovering scheme for grammars that allow substring
parsing (if necessary with annotated productions), is to complete the not com-
pleted productions with (sub) trees from the parse stacks from before the point
of error. This will probably mean that creation of a partial tree as proposed in
this thesis will have to wait until the rest of the input sentence is parsed. This
partial tree would then be created from the stacks not used by the substring
parser.

The partial tree would then re�ect a su�x from the parsed part of the input
sentence instead of the whole parsed part. The pre�x of the parsed part will be
re�ected by the resulting parse tree from substring parsing. From this resulting
tree, some sub tree(s) might still be missing.

We then have two trees, and from that, it should be possible to compose mes-
sages like: �found this tree, with at its root <non-terminalA>, for substring
"error", but expected a tree with root <non-terminalB> in that place�.

I do not know whether an algorithm to do this will be both time and memory
e�cient enough to be useful, but I do know that all necessary information is
there.

75

Bibliography

[AHO1972] Aho, A. V., and Peterson, T. G, 1972. A minimum dis-
tance error-correcting parser for context free languages.
Siam J. Comput. 1, 4 (Dec.), p305�312.

[ALLOY] Alloy Homepage, Retrieved August, 2007, from:
http://alloy.mit.edu

[BERGSTRA1994] Bergstra, J.A., P. Klint. 1994, The Discrete Time Tool-
Bus. Technical Report P9502, Programming Research
Group, University of Amsterdam.

[BRAND2000] Brand, M.G.J. van den, H.A. de Jong, P. Klint, and P.A.
Olivier, 2000. "E�cient Annotated Terms." Software �
Practice & Experience 30, p259�291.

[BRAVENBOER2006] Bravenboer, M., E. Tanter, and E. Visser, 2006. Declara-
tive, formal, and extensible syntax de�nition for aspectJ.
In Proceedings of the 21st Annual ACM SIGPLAN Con-
ference on Object-Oriented Programming Systems, Lan-
guages, and Applications (Portland, Oregon, USA, Oc-
tober 22 - 26). OOPSLA '06. ACM Press, New York,
NY, p209�228

[DAIN1994] Dain, J. A. 1994. A practical minimum distance method
for syntax error handling. Comput. Lang. 20, 4 (Nov.),
239-252.

[DEREMER1971] DeRemer, F. L., 1971. Simple LR(k) grammars. Com-
mun. ACM 14, 7 (July), 453-460.

[DEGANO1995] Degano, P., and C. Priami, 1995. Comparison of syntac-
tic error handling in LR parsers. Software-Practice and
Experience, 25(6) (June) p657�679.

[FTAT] Formele Talen en Automatentheorie / [cursusteam: F.J.
Wester et. al.]. �Heerlen: Open Universiteit Nederland,
1990.

[GRAHAM1975] Graham, S. L. and Rhodes, S. P. 1975. Practical syntac-
tic error recovery. Commun. ACM 18, 11 (Nov.), p639�
650.

76

[HEERING1989] Heering, J., P.R. Hendriks, P. Klint, P., and J. Rekers,
1989. The syntax de�nition formalism SDF�reference
manual�. SIGPLAN Not. 24, 11 (Nov.), p43�75.

[HORNING1974] Horning, J., 1974. What the compiler should tell the
user. In Compiler Construction: an Advanced Course.
Springer-Verlag, Berlin, Germany, p525�548.

[JEFFERY2003] Je�ery, C. L., 2003. Generating LR syntax error mes-
sages from examples. ACM Trans. Program. Lang. Syst.
25, 5 (Sept.), p631�640.

[METAWS] The Meta-Environment webhome, Retrieved May, 2007,
from: http://Meta-Environment.org

[REKERS1991] Rekers, J., and W. Koorn, 1991. Substring parsing for
arbitrary context-free grammars, ACM SIGPLAN No-
tices, volume 26, No. 5 (May), p59�66.

[REKERS1992] Rekers, J., 1992. Parser Generation for Interactive En-
vironments . Ph.D. thesis, University of Amsterdam.

[RICHTER1985] Richter, H., 1985. Noncorrecting syntax error recovery.
ACM Trans. Program. Lang. Syst. 7, 3 (July), p478�489.

[SIPPU1983] Sippu, S., and E. Soisalon-Soininen, 1983. A Syntax-
Error-Handling Technique and Its Experimental Analy-
sis. ACM Trans. Program. Lang. Syst. 5, 4 (Oct.), p656�
679.

[TOMITA1987] Tomita, M., 1987, An e�cient augmented-context-free
parsing algorithm, Computational Linguistics, v.13 n.1-
2 (January-June), p.31�46.

[VISSER1997] Visser, E., 1997. Scannerless generalized-LR parsing,
Technical Report P9707, Programming Research Group,
University of Amsterdam.

[YANG2000] Yang, J., G. Michaelson, P. Trinder, and J. B. Wells,
2000. Improved type error reporting. In M. Mohnen and
P. Koopman, editors, IFL'00: Proceedings of the 12th
International Workshop on Implementation of Func-
tional Languages, volume 2011 of LNCS (Sept.), p71�86.
RWTH Aachen, Springer Verlag.

77

	Introduction
	Improved error handling for SGLR
	Structure of this thesis

	Background and related work
	Parsing
	Error handling
	Summary

	Structure of consumed part
	0pt plus 7cmCurrent implementation and proposed improvement.
	Algorithms
	Analysis
	Conclusion
	Summary

	Expected symbols
	0pt plus 7cmCurrent implementation and proposed improvement.
	Algorithm
	Analysis
	Conclusion
	Summary

	Language specific error messages
	0pt plus 7cmCurrent implementation and proposed improvement.
	Algorithm
	Analysis
	Conclusion
	Summary

	Halting after an error
	0pt plus 7cmCurrent implementation and proposed improvement.
	Algorithm
	Analysis
	Conclusion
	Summary

	Continuing after an error as a substring parser
	0pt plus 7cmCurrent implementation and proposed improvement.
	Algorithm
	Analysis
	Conclusion
	Summary

	Experimental results
	Measurements
	Examples

	Conclusions and future work
	Conclusions
	Future work

