

University Of Amsterdam
Faculty of Science

Master Thesis Software Engineering

Testability of Dependency injection

An attempt to find out how the testability of source code is affected when
the dependency injection principle is applied to it.

Ricardo Lindooren

Student number: 5636078

Host Organization: Venspro

Thesis Supervisor: Dr. Jurgen J. Vinju

Internship Supervisor: Drs. Johan van Vulpen

Availability: Public domain

Date: 10 September 2007

i

Preface
Dear reader, the document you are reading right now is my final thesis with which I
conclude the one year during Software Engineering master program that is offered to
students by the University of Amsterdam.

The reason to sign myself up for this master program was the fact that after two years
working fulltime as a developer I came to the conclusion that there was more to
creating a good software product than just writing the code for it. This conclusion
made me realize that in order to increase my skills and professionalism I had to
increase my awareness of the aspects that together form the complete software
engineering process.
While I’m writing this as the last part of my final thesis document I truly believe that
my awareness of the software engineering process has increased. I hope that my final
thesis document proofs this awareness to you, the reader.

For me there is no doubt this could have been a more complete document, especially
when it comes to the actual research I’ve performed to base my conclusion on. The
reason for this, is that during the available period of time that students have to work
on their final thesis research I decided to change my research subject because I
believed the research subject I started out with did not have a concrete link with the
software engineering process. I was convinced that when I continued my original
research it would result in writing a final thesis document that I could not ever be
satisfied with.
This meant I had to find a new research subject as well as a company giving me the
change to perform a new research within the limited available amount of time that
was still left.
Because of this limited available amount of time, it took a lot of hard work to
complete my final thesis document before the original deadline. And although it may
not be as complete as it might have been if I had started with my second research
subject right away, I’m still reasonably satisfied with the content that I was able to
produce.

Working on my thesis research was a true learning experience for me. It has given me
a better understanding of what scientific research actually is. It especially has given
me a lot of respect for people that dedicate themselves to collecting facts about any
research subject and sharing these with other people in the world making it possible to
learn from.

ii

Acknowledgement
At the beginning of the program all students were warned that it was going to require
a lot of work from them to successfully complete the Software Engineering master
program within one year. Looking back on this year I can confirm it really did require
a lot of work, dedication and motivation. But not only from the students! The driving
force behind the Software Engineering master program are people that are truly
dedicated to offer it in the form of a one year program and also in the best way
possible.
Therefore I would like to thank the following persons for investing their time in the
Software Engineering master program; prof.dr. Paul Klint – course: Software
Evolution, prof. dr. Hans van Vliet – course: Software Architecture, dr. Patricia
Lago – course: Software Architecture, prof. dr. Jan van Eijck – course: Software
Testing and Peter van Lith – courses: Software Construction and Software Process.
In particularly I would like to thank drs. Hans Dekkers, Msc. – course:
Requirements engineering and dr. Jurgen J. Vinju – course: Software Evolution. I
would like to thank Hans for his support to students during many of the practical lab
sessions. I would like to thank Jurgen for his support as my thesis supervisor.

The person that made it possible to finish my final thesis research, as well as writing
this document, before the original final deadline is drs. Johan van Vulpen. I would
like to thank Johan for giving me the change to do my research at Venspro after
making only one phone call to him.

Last, but certainly not least, I would like to thank my parents. Without their support I
probably would not have started with the Software Engineering master program in the
first place.

iii

Summary
Before starting with this research my hypothesis was that test automation will become
more complex when using a dependency injection (DI) solution. Suspected reasons for
this increase of complexity where that (1) the DI solution should be configured for
each test and (2) it may even be impossible to use a DI solution in a test environment
since DI solutions act as a managed environment on their own. Both of these reasons,
in my opinion, could be seen as how a DI solution can intrude a software product and
especially its test environment.

Both reasons (1) and (2) proved not to be true during this research. The cause for both
reasons not being true is that the components implemented with DI during this
research where done so with either the constructor or setter method DI strategy. This
means that dependencies can also be injected without having to make use of a DI
solution. From within a JUnit testcase it proved to be no problem injecting, for
example a mock object, as a constructor or setter argument to the component under
test without having to make use of a DI solution. No proof could be found that the DI
solutions used during this research did intrude, or dictate, the test environment.

In order to do a research focusing on how DI intrudes the software testing
environment first of all an attempt has been made to find out what the effects of using
DI are on software testability in general. Therefore, based on a literature study, a
description has been given of what software testing is in general and what makes
software testable (appendix A). As well as what dependency injection is and how it
affects a software product on component/source code level (appendix B).
The two outcomes of this literature study (what makes software testable & how DI
affects a software product) have been brought in to relation with each other (chapter
2). Bringing them both in to relation with each other resulted in the ability to make
assumptions of how DI affects the testability of software product (paragraph 2.1).
Based on these assumptions a set of metrics has been selected that could be used as a
factual representation of how DI affects software testability and especially the level of
intrusion a selected DI solution forms for the whitebox/JUnit test environment of a
software product (paragraph 2.2).

The limited scope of this research (2 components implemented with 2 DI solutions),
as well as that the extracted metrics did not really give an indication of how testability
is affected on component level, mean that the results of this research cannot be seen as
a factual representation of how the testability of software is affected when making use
of dependency injection.
Under ‘Future work’ I therefore describe a possible second research iteration that
assumingly can improve this research when it comes to collecting facts on how DI
affects software testability.

1

Index
Preface ... i

Acknowledgement ... ii

Summary ...iii

Index .. 1

1 Context and background ... 3

1.1 Motivation .. 3
1.2 Research method .. 3

2 The effects of Dependency Injection on testability .. 5

2.1 Assumptions of why and how DI effects testability .. 5

2.1.1 How DI effects a complete software product ... 5

2.1.2 How DI effects software testability .. 6

2.2 How can we make this measurable? .. 9

2.2.1 Scope definition .. 9
2.2.2 Measurement definition .. 10

3 Research results .. 13
3.1 The paper manager example .. 13
3.2 The Greetz! customer component .. 14

3.3 Overview .. 16
3.3.1 Paper manager example .. 16
3.3.2 Greetz! customer component .. 16

3.4 Validation ... 17
3.4.1 The TLOC metric .. 17
3.4.2 The McCabe Cyclomatic complexity metric .. 17

3.4.3 Needed DI configuration in testcases ... 18

3.4.4 Coverage ... 18
3.4.5 Test cases .. 18

4 Conclusion .. 20
Future work .. 21

Appendix A - Introduction to Software Testing .. 23

Why is software tested? ... 23
Why does software not behave? .. 23
When is software tested? ... 24
How is software tested? ... 25

Planning phase ... 26
Design phase .. 26
Coding phase .. 26
Testing phase ... 27

What makes software testable? .. 27
Multiple input possibilities .. 28
Source code complexity ... 28
Dependencies ... 29
Controllability & observability .. 30
Traceability of requirements .. 30
Test automation .. 30

2

Appendix B - Introduction to Dependency Injection ... 32

What are dependencies? ... 32
What are the effects of dependencies? ... 32

Rigid ... 32
Fragile .. 32
Immobile .. 32
Uncontrollable .. 33
An example .. 33

What is dependency injection? .. 34
From static factory pattern… ... 35

…To dynamic wiring ... 35
Current solutions .. 37

Types of dependency injection .. 37
Containers / Managed environments ... 39

Appendix C – The paper manager example ... 40

Technical design .. 40
The paper manager interface .. 41
The paper provider interface .. 42
The unknown paper exception ... 42

The abstract paper order ... 43
Implemented without dependency injection .. 44

PaperManagerNonDi.java .. 45
PaperManagerNonDiTest.java ... 47

Note about the Metrics tool for Eclipse ... 50

Implemented with PicoContainer dependency injection ... 52

PaperManagerPicoDi.java ... 53
PaperManagerPicoDiTest.java ... 55

PaperCompanyMock.java .. 58
Implemented with Java EE5 dependency injection ... 60

PaperManagerBean.java .. 60
PaparManagerBeanTest.java ... 63

Note about the Metrics tool for Eclipse ... 66

What about the other dependencies? .. 67

References .. 70

3

1 Context and background
Venspro is a company that creates concepts for the gift and greet branch. Their
biggest concept at the moment is Greetz!. Greetz! is an online service allowing
customers to design real greeting cards which are delivered -to the recipient(s) of the
card- by normal mail. (www.greetz.nl).

The goal of Venspro is to create a worldwide Greetz! greeting card network.
Meaning; it should be possible to print Greetz! cards in as many countries as possible.
E.g.: a card with Australian recipients created in the Netherlands by a Dutch
customer, will be printed in the nearest location of the Australian recipient. This
ultimately makes next-day-delivery possible all over the world.

To make this world-wide next-day-delivery approach feasible, a strong and well
thought trough software system is needed. Currently Venspro develops and uses Java
code which runs in Servlet-container servers to facilitate its Greetz! service in two
countries; The Netherlands and Belgium. Next to these two countries Venspro will
expands its Greetz! network to England, France and Australia very soon as well.

1.1 Motivation
One of the valuable lessons learned by Venspro over the last years is that it is vital to
have a solid software development environment and process. E.g. the Venspro
development team has invested in professionalizing their development environment
by introducing (Unit) testing combined with a Continues integration strategy.

In theory it is possible that Venspro, in the future, will have to use an Enterprise
application development approach. Meaning; instead of developing Servlet-container
based Java code, code that runs in Java application servers will have to be developed.

My research springs from the recent introduction of Java Enterprise Edition version 5.
Sun has drastically changed their model for Enterprise development, which until
version 5 was based on complex code and XML configuration files. Sun has changed
this by simplifying the way Enterprise Java Beans are coded. For example by making
use of dependency injection based on annotations. JEE5 Applications servers are
responsible for this dependency injection behavior when the code is being executed.

The goal of my research is to find out how the testability of software is affected when
implementing it with dependency injection (DI). My hypothesis is that test
automation will become more complex when using a dependency injection solution.
Suspected reasons for this increase of complexity are that (1) the dependency
injection solution should be configured for each test and (2) it may even be impossible
to use a dependency injection solution in a test environment since DI solutions act as
a managed environment on their own. Both of these reasons can be seen as how the
DI solution intrudes a software product and its test environment.

1.2 Research method
To determine how software testability is affected by dependency injection it is
important to first define what software testing is and determine what makes software
testable. Secondly it has to be defined what dependency injection exactly is and what
effects it has on the source code of a software product.

4

The outcome of these two research sub-questions have to be brought into relation with
each other, so assumptions can be made of how testability is affected by dependency
injection.
Based on these assumptions the actual research can be done; relevant dependency
injection and testability metrics can be retrieved from different software products,
implemented with and without dependency injection. The goal is to use these metrics
as facts to form a valid conclusion on how dependency injection affects software
testability.

5

2 The effects of Dependency Injection on testabilit y
In order to determine how software testability is affected by dependency injection a
literature study has been performed. The goal of this literature study was to find out
what software testing is and what makes software testable as well as to find out what
dependency injection is.

In this chapter the outcomes of this literature study; Appendix A - ‘Introduction to
Software Testing’ and Appendix B - ‘Introduction to Dependency Injection’ are
brought into relation with each other with the goal to determine how software
testability is possibly affected when applying the dependency injection principle to it.

2.1 Assumptions of why and how DI effects testability
In the chapter ‘What makes software testable?’ of appendix A, six factors that have
influence on the testability of software have been defined. These are;

• Multiple input possibilities
• Source code complexity
• Controllability & observability
• Dependencies
• Traceability of requirements
• Test automation

To determine how DI possibly can affect software testability we must try to imagine
what the effects of DI are on a software product. A loosely coupled design for
example can be seen as the goal of DI. But to realize this with DI means that it will
affect a software product in a certain way. The source code for example will most
likely be different than when another approach is used to create a loosely coupled
design (or than when choosing not to create loosely coupled components at all).

2.1.1 How DI effects a complete software product
In appendix B a description is given of what dependencies in software are. It focuses
on the negative effects of interdependency between source code components that
together form a software product. The following definition is used to define this
interdependency between source code components; Component A depends on
component B if “correct execution of B may be necessary for A to complete the task
described in its definition” [Jackson03].

The chapter ‘What is Dependency Injection’ describes how components can be
changed to break their dependencies by removing logic from a component that defines
its dependencies. With DI, this ‘which, where and how dependency logic’ [Nene05] is
not needed in a component that depends on one or more other components. But while
this logic can be removed from a component it cannot be taken away from the
software product completely. The interdependency of components has to be defined at
another place; the DI solution that is used has to be configured.

So when we look at this from the number of lines of code (that are needed to
implement the logic of a software product) viewpoint; the lines of code in a depending
component will become less, but the lines needed to configure the DI solution will
increase.

6

Figure 1: Dependency logic moved from component to DI solution configuration

DI helps creating a loosely coupled design because a component only depends on an
abstraction. The DI solution will provide (or better: inject) the correct implementation
of this abstraction to the depending component. On component level this creates a
more loosely coupled design. But on software product level a new dependency is
introduced; the software product now depends on the DI solution.

Figure 2: Complete software product depends on dependency solution

2.1.2 How DI effects software testability
The question is how the previously described effects on software product level can be
related to the factors that influence the testability of a software product? Below the
effects of using DI in a software product are related to software testability per
testability factor.

Source code complexity
If we talk about source code in general, the effect that DI has on the source code of a
software product is that depending components don’t have to contain code used for
obtaining their dependencies anymore. The source code that forms the logic of the
software product will therefore decrease.
This decrease of lines of code (LOC) cannot be seen as compressing or squeezing the
code because a part of the code is removed instead of rewritten to reduce the number
of LOC. Squeezing the code is seen as something that increases the complexity
[Kaner99] because it becomes harder to read and understand what a piece of code
exactly does. A higher number of LOC is sometimes also seen as something that
increases complexity. Especially at method level it becomes more difficult to
understand what a method exactly does if it consist out a large number of LOC
[McConnell04].

7

So based on the decreased number of lines of code (without squeezing the code) it
seems that DI helps reducing the complexity that exists in the source code that makes
up the logic of a software product.
On the other hand, the dependency logic itself is now defined at another place,
assumable outside the code that makes up the logic of the software product. This
definition, or configuration, (depending on the used DI solution) will most likely
introduce some sort of complexity.

Dependencies
The goal of DI is to loosen up dependencies; high level components will not be
depending on implementation specific lower level components. Instead they will
depend on abstractions only describing functionality. The DI solution will provide the
high level component with the correct implementation of the abstractions it depends
on.

Tests mostly focus on a specific piece of code. If this piece of code depends on
another component to complete its task then this component is required to be
available during the test as well. This is not always desired. Take for example a
component that, through another component, retrieves data from a database because
this data is needed to complete its task. This database connectivity may not be
available during tests. If the component, for its database connectivity, depends on an
abstraction instead of a specific implementation, then it becomes possible to create a
component that fakes this database connectivity and provide it to the depending
component during tests. A so called mock object makes it possible to have full control
over the behavior of the component that the component under test depends on.

For example; with full control over the data that otherwise would be retrieved from a
database it is for example more easy to test the component on what would happen
when wrong data would be returned by the database. This use of mock objects and the
control they provide during testing is often mentioned as the most important reason
why DI improves software testability. For example in [Weiskotten06].

But when dependencies are managed by a DI solution, then the software product
depends on this DI solution for its own correct behavior. It is possible that this
dependency on software product level affects how software is tested. For example;
can the DI solution be used during tests? If so, can it easily be configured? Preferably
in the setup of a test case, so that in a test it can be defined which mock objects should
be injected in the component under test. Or should the test code contain logic to create
a work around for correct and controllable DI during tests?

Controllability & observability
The ability to inject mock objects into a component under test increases both
controllability and observability. A mock object can implement an abstraction with
code developed for a specific test. The previous given database example improves
controllability. The mock object and the custom code it consist of make it much easier
to control its output (which forms the input for the component under test during its
execution).
A mock object can also help with improving observability. The mock object can also
consist out of code that, for example, logs how it is called by the component under
test that depends on it.

8

Figure 3: Mock object providing input to the method under test

Traceability of requirements
When using DI, components do not depend on specific components but rather on
abstractions. These abstractions describe the required functionality that an
implementing component should provide. So this abstraction can be seen as a contract
describing what the depending component can use and what the implementing
component should provide. These abstractions are normally defined during the design
phase of the development process and are based on the requirements for the software
product. So it can be assumed that when a component implements an abstraction
based on requirements it should take less effort to match code that is used to
implement an abstraction to the original requirements for this abstraction. Than it is to
first having to find out what the function of certain pieces of code is that do not
implement a contractual abstraction.

Test automation
The ability to automate testing when using DI has actually already been described for
the testability factor ‘dependencies’. The ability to automate tests will be based on the
level of intrusion of the DI solution. The DI solution will most likely introduce some
sort of configuration for dependency management. It is possible that this
configuration dictates how to use the components which dependencies are managed
by this DI solution. During tests it is mostly (if not always) desired to have control
over which components are injected into the component that is under test.

When it is not possible to control dependencies through the DI solution during tests it
might limit the way these components can be tested since a work around will have to
be developed. Then tests will have to contain logic that provide the correct test
dependencies themselves.

9

2.2 How can we make this measurable?
Dependency injection is a principle; it can be seen as a design pattern that can be used
to create loosely coupled components. It is a principle because it can be implemented
in more than one way. There are different types of dependency injection strategies
(constructor, setter, etc.) and there are different solutions to manage the injected
dependencies with.

It is possible that the different DI implementation strategies and DI solutions will
have a different effect on testability. Next to that; source code of different software
products is also never the same and may be affected differently when applying the DI
principle to it.

So it is difficult to generalize DI when there are multiple variations; applying DI on
different sets of source code with different types of DI strategies and solutions can
have different effects. This means that it is difficult to speak about the general effects
that dependency injection has on testability.

2.2.1 Scope definition
Due to the limited amount of time available for this thesis research, an effective scope
has to be defined. A decision has to be made about how this research can be limited
but still provide correct information.

Because there are multiple dependency injection possibilities (different sets of source
code and different DI solutions) it seems that at least two components from two
different sets of source code have to be implemented using two different dependency
injection solutions.

Figure 4: Two different sets of source code implemented with two different DI

solutions

For this research we will use two DI solutions that are somewhat situated at both ends
of the DI solution spectrum. These are PicoContainer1, a small and lightweight DI
solution, and on the other end; Java Enterprise Edition 52 which is a complete
Enterprise framework that supports DI.
The components that will be implemented using DI will be a component from a
controlled environment and a component from the more extensive Greetz! source
code base.

1 http://www.picocontainer.org
2 http://java.sun.com/javaee/

10

In total we also have recognized/defined five testability factors. Below an overview of
the assumed influences of DI on these factors has been given;

Testability factor Influence of dependency injection

Source code complexity
Less code needed in depending component
Increase of DI configuration code

Dependencies
Loosely coupled design based on abstractions gives
the possibility to use mock objects more easily
Software product depends on DI solution

Controllability &
observability

Mock objects make it possible to control the output
the component under test receives from it.

Traceability
(of requirements)

When code implements an abstraction it is easier to
link this code to the requirements which the
abstraction is based on

Test automation

Injection of mock objects gives more control over
component under test
(Configuration of) DI solution might interfere with
relative ease of testing a component

Assumed to have a positive effect on testability.
Assumed to have a negative effect on testability.

Table 1: Assumed effects of dependency injection on software testability

Supposedly the two testability factors ‘source code complexity’ and ‘test automation’
are affected most by the use of dependency injection. Therefore, and this seems most
logical, the focus will be on these two testability factors that seem most affected by
DI.

2.2.2 Measurement definition
To form a valid conclusion on how DI affects testability assumptions are not enough.
Instead of drawing a conclusion based on personal interpretation a factual
representation of how DI affects testability is needed. Testability has to be measured
in some way so that the resulting metrics can be used as facts.

Figure 5: Facts based on metrics extracted from source code instead of personal

interpretation

11

When using metrics as facts to base a conclusion on it is important to use a measuring
approach that is valid for this research. The measurements have to provide metrics
that actually give a correct insight in how DI affects testability.

Source code complexity
Source code complexity can be measured statically. Meaning; it is possible to
determine complexity without having to execute the code. Two kinds of metrics that
give an indication of the complexity of source code seem most appropriate for this
research. These are the McCabe Cyclomatic Complexity and more general the total
number of lines of code (TLOC) of a component

The tool used for retrieving these metrics is the Metrics project for Eclipse3.

Test automation
How DI affects test automation on the other hand seems something that can be
measured partly static, but can also be experienced in practice.

During this research we will try to give an indication of the intrusion that the selected
DI solution forms for automated testing. Based on agile development methods and the
testing approach used by Venspro, this intrusion of DI will be tested by integrating
(regression) tests with the help of the JUnit unit-test-framework4.

Per component we will create one testcase and one test-method for every method that
exists in the component that is tested. The goal is to create a test that executes all lines
of code and branches in the component under test. The coverage metrics will be
extracted from a test report generated by Cobertura5 after each test execution.

As for experiencing how test automation is affected in practice when using DI. The
test case should also inject a mock object into the component under test. The amount
of needed configuration (counted as lines of code, LOC) and the location of this
configuration will then be used to determine the needed effort for test automation. The
goal for this dependency configuration is to make it part of the JUnit setUp() method
that exists in a testcase class.

Compare metrics
By retrieving metrics for a component of a software product that is implemented with
and without the help of dependency injection we are able to compare these metrics
with each other. The difference should give insight in the effects of implementing the
dependency injection principle.

3 http://metrics.sourceforge.net/
4 http://www.junit.org/
5 http://cobertura.sourceforge.net/

12

Figure 6: Difference between metrics gives an indication of how DI affects testability

13

3 Research results

3.1 The paper manager example
The paper manager example is a collection of components that could be part of a real
software product. The idea behind these components is based on a dependency that
could exist in the real world. In this case this is a company that depends on another
company to supply paper that is needed during its production process.
A more complete description of this example is available in appendix C.

The paper manager example components function as a controlled environment used to
calibrate the research method. By developing code that contains pre-defined
dependencies it becomes possible to make predictions of why and how the research
method metrics, that are extracted from both DI and non-DI implementations of the
paper manager components, will differ from each other. Comparing earlier made
predictions with the actual extracted metrics can give insight in possible shortcomings
of the research method.

Without dependency injection
The PaperManagerNonDi Java class is the Non-DI implementation of the
PaperManagerInterface . This concrete class will form the base class; metrics
extracted from the DI implementing classes will be compared with the metrics that are
extracted from this class. The difference between them should give insight in the
effects of DI on component/source code level.

Up front there is little to say about expectations for this non-DI implementation other
than it should contain a reference to another concrete class. And this is true for the
PaperManagerNonDi class because it contains a reference to the concrete class
PaperCompanyA .

With dependency injection using PicoContainer
The PaperManagerPicoDi Java class implements the PaperManagerInterface
with the intention to use PicoContainer as the dependency injection solution. We will
make use of the logic already defined in the previous described
PaperManagerNonDi class. This means that the reference to PaperCompanyA will
be replaced with the class containing only a variable of the type
PaperProviderInterface (instead of PaperCompanyA).

Since PicoContainer is based on the constructor injection strategy, the constructor
signature of the PaperManagerPicoDi class will have to be extended with an
argument so it will accept an instantiation of a class that implements
PaperProviderInterface .

It was expected and found true that these changes will not cause differences for the
TLOC and McCabe complexity metrics compared with the PaperManagerNonDi
class. Because the signature of the constructor will be changed and a variable type
will be changed from the specific implementing class PaperCompanyA to the
abstraction PaperManagerInterface .

14

With dependency injection using Java EE5
It was expected that the Java EE5 implementation was going to have the least amount
of TLOC and that the McCabe complexity metric stayed the same compared to the
PaperManagerNonDi class. The reason for this expectation is that with the @EJB
annotation the field dependency injection strategy is supported. This means that only
a variable of the type PaperManagerInterface with the needed @EJB annotation
above it is needed.

But two things became obvious when implementing this component (based on the
code in PaperManagerNonDi class) in the form of a EJB (Enterprise Java Bean)
class.

The first thing was that Metrics tool didn’t show the expected difference in TLOC,
because annotations are counted as LOC as well. This was unexpected and raised the
question; should these be counted as TLOC since it is actually DI configuration code?
Since the TLOC metric is used to give insight in the source code complexity it was
decided that it should be part of the TLOC metric since we approach this metric as:
more lines means more complex source code.

The second thing that became obvious is that this field dependency injection wasn’t
testable outside an application server because the application server is responsible for
assigning the correct dependencies to variables. When the application server is not
available the dependency must be assigned to the variable from within a test. Being
private the paperProvider variable wasn’t accessible so a mock object could not be
injected. One option was to make the variable accessible by changing its modifier
from private to public . Buts since Java EE5 also allows the @EJB injection
annotation to be used for setter methods, the setter dependency injection strategy was
chosen over the field dependency injection strategy.

3.2 The Greetz! customer component
Next to the paper manager example a real life software product has been selected as
research subject with the goal to get an indication of how the testability of an already
existing software product is affected when it is re-implemented with DI. In this case
the Greetz! code base was selected and narrowed down to one component that
contains dependencies, that are considered relevant, to other components.
This is the Customer component.

It is hard to define the specific task that the Customer component has since it
functions as a data entity but also contains a lot of business logic. An example of a
part of this logic is that it contains code that is used to send email whenever the state
of a customer is changed. For sending these emails the Customer component
depends on the GreetzMailProvider component. This is also the specific
dependency that is focused on during this research. Di will be used to change the
Customer component not depending on the implementation specific
GreetzMailProvider but rather on a MailProviderInterface abstraction.

15

Without dependency injection
The original, already existing, implementation of the Customer component also
serves as the base implementation with which the metrics extracted from the other two
dependency implementation variants will be compared. Because a JUnit testcase did
not exist for the Customer class the plan was to create one aiming at the highest
possible coverage rate.

Unfortunately the Customer class has a lot more dependencies; some of these
dependencies involve settings that are retrieved from a database. Since the database
wasn’t available in the environment in which the test was going to be developed and
executed the Customer class proved to be un-testable. And because the limited
available amount of time still left for this research it wasn’t possible to develop a
complete JUnit testcase for this class.

With dependency injection using PicoContainer
While implementing the PicoContainer constructor dependency injection strategy in
the Customer component, it proved that constructor injection wasn’t the right DI
implementation strategy to be used in the Customer component (and much of the
other components in the Greetz! code base for that matter).

The reason for this is the fact that instances of the Customer class -as well as many
other Greetz! components/classes- are provided by Hibernate6. The Customer
component represents customer data that is stored in a database. Hibernate retrieves
this data and creates a new instance of the Customer class with the retrieved database
values and does this by ignoring constructors with arguments.

Therefore the setter dependency injection strategy seems a better choice. But this
means that the dependency injection should find place after instantiation.
Does this mean that components that use instances of the Customer class are
responsible for injecting the right dependency? This is certainly not desirable and it
would also cause a rippling effect of changes throughout all components that make
use of the Customer component.

Fortunately all other components that use the Customer component retrieve new
instances from the CustomerFacade component. The role of the CustomerFacade
is being the spokesperson for all other components that want to retrieve or persist an
instance of the Customer component. So the logic for injecting the correct
dependency through a setter method could become part of the CustomerFacade
without other components knowing about it.

Although constructor dependency injection is preferred, PicoContainer does support
the setter dependency injection. Unfortunately and due to the short available amount
of time it wasn’t possible to implement this strategy in a test. PicoContainer kept
throwing an UnsatisfiableDependenciesException and there was no quick
way of finding a solution for this problem (it seemed that PicoContainer wants to
manage and/or inject something into all setter methods).

6 An object relational persistence service used to persist to and retrieve data from a database.
http://www.hibernate.org/

16

But using the setter dependency injection strategy it was still possible to inject the
MailProviderInterface dependency by making a custom call to this setter
method from within the test.

With dependency injection using Java EE5
After implementing the Customer component with the setter dependency injection
strategy the component was easily configurable for Java EE5 dependency injection by
only needing to add the needed @EJB annotation above the
setMailProvider(MailProviderInterface gmp) method (as well as the
@Stateful annotation above the class itself).

In a testcase the component implementing the MailProviderInterface instance
can be injected with a call to this setter method.

3.3 Overview

3.3.1 Paper manager example
Static reference DI Pico container DI JEE5 (EJB 3.0)

Component PaperManagerNonDi.java PaperManagerPicoDi.java PaperManagerBean.java
DI type/solution None (Static reference) Constructor Setter (EJB Annotation)
TLOC 106 106 113
McCabe Class 1,25 1,25 1,23
Testcase PaperManagerNonDiTest.java PaperManagerPicoDiTest.java PaperManagerBeanTest.java
Class under test PaperManagerNonDi.java PaperManagerConstructorDi.java PaperManagerBean.java
DI type/solution None/Static reference Constructor/Pico container Setter/Custom
DI configuration location None/Static reference In testcase code (calls to Pico container) In testcase code (Custom injection in setter)
DI configuration LOC 0 5 3
TLOC 108 126 122
Junit asserts 16 22 22
Line coverage 93,0% 100,0% 100,0%
Branch coverage 83,0% 100,0% 100,0%
Automation framework Ant Ant Ant
Test framework Junit Junit Junit

T
est

S
oftw

are
product

business
logic

Table 2: Research metrics extracted from the paper manager example

3.3.2 Greetz! customer component
Static reference DI Pico container DI JEE5 (EJB 3.0)

Component Customer.java CustomerPicoDi.java CustomerBean.java
DI type/solution None (Static reference) Setter Setter (EJB Annotation)
TLOC 937 948 952
McCabe Class 1,675 1,667 1,667
Testcase CustomerTest.java CustomerPicoDiTest.java CustomerBeanTest.java
Class under test Customer.java CustomerPicoDi.java CustomerBean.java
DI type/solution None/Static reference Setter/Custom Setter/Custom
DI configuration location None/Static reference In testcase code (Custom injection in setter) In testcase code (Custom injection in setter)
DI configuration LOC 0 3 3
TLOC N/A N/A N/A
Junit asserts N/A N/A N/A
Line coverage N/A N/A N/A
Branch coverage N/A N/A N/A
Automation framework Ant Ant Ant
Test framework Junit Junit Junit

S
oftw

are

p
rodu

ct
bu

siness
logic

T
e

st

 Table 3: Research metrics extracted from Greetz! code source base

17

3.4 Validation
It is important to validate that the chosen metrics actually give a correct indication of
the source code complexity and the needed effort for creating tests (as well as
automating them).

To achieve this we fist created a controlled environment in which the research was
performed. The controlled environment in this case is the paper manager example; the
small software product developed specifically for this research (see also appendix C).
By developing such an example application it is possible to make a precise prediction
of how it will change when the dependency injection principle is applied to it. If these
predictions are confirmed by the retrieved metrics we can be more certain of the
research method validity.

3.4.1 The TLOC metric
During the implementation of the paper manager example predictions about the
TLOC metric proved not to be correct. This lead to the conclusion of how the Metrics
tool actually calculated the TLOC metric and also how important it was to keep code
formatting the same throughout the research because formatting can affect this metric.

When it comes to the meaning of the TLOC metric for this research; more lines of
code make the code harder to understand and therefore it becomes more difficult to
write a test that tests this code. It became very doubtful during this research that a
significant change in level of testability was something that could be discovered based
on differences between the TLOC metric of the non-DI and the DI implementations.
The differences are very small as you can see in the results overview.

This is because logic inside the components, that were focused on during this
research, was hardly altered when (re-) implementing them with a DI implementation
strategy. The reason for the small differences is the fact that most of the changes are
found in the import block of a class (and sometimes a small setter method is added
when the setter DI implementation strategy is used).

If implementing DI affects the testability of a component, then the TLOC metric
seems not very usable as a factual representation of this change in testability at all.
The components where not altered significantly during this research when it comes to
the total lines of code their made out of.

3.4.2 The McCabe Cyclomatic complexity metric
When it comes to the McCabe Cyclometic complexity metric it also seems that this
metric, as it was used during this research, is not usable as a fact indicating that
testability is affected by DI. The difference for this metric between the non-DI and DI
implementations is very small. The reason that the differences are so small is because
for this research the class’s average McCabe Cyclometic Complexity is used. This is
the average of the McCabe Cyclomatic complexity of all methods in a class.

Because the components where hardly altered after (re-)implementing them with DI
meant that the control flow (the possible paths) in the component was not changed.
And when measuring the average McCabe Cyclomatic complexity for a component it

18

also means that when adding a simple setter method (which scores 1 for its
Cyclomatic complexity) this average decreases while actually the number of TLOC
increases! This is conflicting with the idea behind the TLOC metric as how it is used
during this research.

If implementing DI affects the testability of a component than the McCabe
Cyclomatic complexity metric also seems not very usable as a factual representation
of how DI affects testability. This is because the control flow in the components used
during this research was not altered significantly.

3.4.3 Needed DI configuration in testcases
The amount of needed DI configuration that has to be done to manage dependencies
in tests and the location of the configuration is used to give an indication of the
needed effort for test automation and the intrusion of the dependency injection
solution in the test environment. The idea behind this is that more lines of code
increases complexity; each line can be seen as a step for solving the dependency
management problem. This is also based on [Wikipedia-Complexiteitsgraad] which is
also referred to in ‘Source code complexity’ in appendix A. When the configuration
has to be done outside the actual code of a testcase it means that this also increases
complexity and therefore the needed test effort.

The only significant difference in needed lines of configuration code can be found in
the PaperManagerPicoDiTest testcase. This is because it uses and configures the
PicoContainer to set up all needed dependencies. But still it is not a fact showing that
more effort is needed. Because it was also possible to directly create a mock object
and inject it into the component under test from within the testcase. In fact all
components implemented with DI during this research are testable from within
testcases without having to make use of a dependency solution. This can be
interpreted as the fact that the used dependency injection solutions did not intrude and
dictated the test environment during this research.

3.4.4 Coverage
The test coverage in the component under test was a metric that really did show a
significant difference for the paper manager example after implementing it with DI.
Increasing coverage was actually only possible when injecting a mock object into the
component under test (the original component was also designed with this intention).
The coverage metric shows without a doubt that DI can have a positive effect on the
testability of a component. This seems to prove the often made point in different DI
related literature that DI improves testability (mentioned in [Weiskotten06] for
example).

3.4.5 Test cases
The testcases used during this research were developed to make it possible to measure
both the ‘needed DI configuration’ and ‘coverage’ metrics. When it comes to the
coverage metric, the goal of a testcase was to get the highest value for this metric as
possible. In order to do this the code in a testcase was written so that as much lines of
code and branches within the code (the control flow) of the class under test are
executed.

19

The testcases for the paper manager example were able to completely cover all lines
but only when the component under test was re-implemented with the help of DI. This
was to be expected because the non-DI version of the component was developed to be
not fully testable because of a failing component it depends on. Therefore making use
of dependency injection in the testcases used for the paper manager example can be
seen more as a goal instead of only a meaning to improve the way the component
under test is tested. This certainly may have influenced the integrity of the testcase,
something that should not have been the case for the testcases with which the DI
implementations of the Greetz! Customer component are tested. Unfortunately no
complete testcase could be developed for the Customer component. Meaning that
more independent testcases (as compared to those from the paper manager example)
have not been used during this research. It is certainly possible that the validity of the
research and upcoming conclusions are affected by this situation.

20

4 Conclusion
My hypothesis was that test automation will become more complex when using a
dependency injection solution. Suspected reasons for this increase of complexity
where that (1) the dependency injection solution should be configured for each test
and (2) it may even be impossible to use a dependency injection solution in a test
environment since DI solutions act as managed environments on their own. Both of
these reasons in my opinion could be seen as how a DI solution can intrude (and/or
dictate) a software product and especially its test environment.

But both reasons (1) and (2) proved not to be true during this research. The cause for
both reasons not being true is that the components implemented with DI during this
research where done so with either the constructor or setter method DI strategy. This
made it possible that dependencies could also be injected without having to make use
of a DI solution. From within a JUnit testcase it proved to be no problem providing
for example a mock object as a constructor or setter argument to the component under
test, without having to make use of the DI solution that the software product in its
complete form depends on for its normal behavior.

This could have been different when the choice had been made to settle for the field
dependency injection strategy when developing components during this research that
made use of the JEE5 dependency solution (based on @EJB annotations).
While developing the first component that made use of the JEE5 field dependency
injection strategy, it became obvious that these dependencies could only be injected
with the help of a Java application server. This is what I already expected before
starting with this research and my hypothesis is for a big part based on this
assumption (see also 1.1 Motivation). But during my research I found out that the
setter injection strategy is supported as well when making use of JEE 5 @EJB
annotations. Changing from field to the setter method DI implementation strategy
made it possible to call this setter from within a testcase.

For me this is an indication that the intrusion of a DI solution, in the test environment
of a software product, is partly formed by the DI implementation strategies that are
supported by the chosen DI solution for that product. If the DI solution makes use of
either the constructor or setter method DI strategy then it is also possible to provide
the needed dependencies to the components without having to make use of the DI
solution. When glassbox testing the component with a JUnit testcase, all needed
dependencies can be injected with code in the testcase itself.

I specifically mention both glassbox testing and that the level of intrusion is ‘partly’
formed by the DI implementation strategies that are supported by the chosen DI
solution. The reason for doing so is that during this research only glassbox testing has
been used as an attempt to collect facts about how DI intrudes these kinds of tests.
Based on the metrics for the amount of configuration, as well as the location of this
configuration, that is needed to inject mock objects into the component under test.
Glassbox testing is obviously not the only way to test a component, meaning that this
research gives no indication of how DI affects or forms an intrusion for other test
strategies that are used throughout the complete test process.

21

Another outcome of this research was that choosing a DI implementation strategy for
already existing components can be dictated by how they are implemented and used
by other components. For the Greetz! Customer component it showed that constructor
dependency injection could not be implemented. The reason for this is that instances
of the Customer component are provided by the Hibernate persistence service layer
that is used throughout the Greetz! codebase. Needed dependencies therefore had to
be injected with the help of setter methods.

When it comes to the actual dependency of the Customer component that was focused
on during this research (the GreetzMailProvider component) it can be questioned
if the Customer component should have this dependency at all. The main obvious
reason for the Customer component containing this dependency is because it
functions as a data entity (storing information about a specific customer) but it also
contains a lot of general customer business logic (like sending emails when the status
of a customer changes). DI in this case can help with the Customer component not
depending on specific implementing components but not with making a clearer
separation between the concerns that exist in the Customer component. Therefore
dependency injection is something that can improve the way components are coupled
but will not fix other problems that may exist in a design or implementation of a
software product.

Future work
The limited scope of this research (2 components implemented with 2 DI solutions) as
well as the fact that the extracted metrics do not really give an indication of how
testability is affected, mean that the results of this research cannot be seen as a factual
representation of how testability of software is affected when making use of
dependency injection.

The metrics used during this research, the Total Lines Of Code (TLOC) and the
McCabe Cyclomatic Complexity, do not show significant differences between
components implemented with and without dependency injection. The reason for this
is that the testability of components is not affected by DI in such a way that it could
be measured with these metrics. Therefore the biggest question I had at the end of my
research was; what metrics could be used to measure the effects of DI on component
level?

In search for an answer on my question I came across [Bruntink03] which is the final
thesis document of Magiel Bruntink. In his thesis Magiel focuses on testability of
object-oriented Systems with a metrics-based approach. Magiel also uses metrics for
test-critical dependencies. The dependency related metrics used by him are the Fan
Out (FOUT) and the Response For Class (RFC). In his conclusion he discusses the
metrics used during his research. An excerpt from his conclusion concerning the
FOUT metric is given below:

“We showed that FOUT is a significantly better predictor of the dLOCC
metric than of the dNOTC metric (at the 95% confidence level for DocGen,
99% for Ant). Thus, the association between the fan out of a class and the size
of its test suite is significantly stronger than the association between the fan
out and the number of test cases. The fan out of a class measures the number
of other classes that the class depends on. In the actual program, these classes

22

will have been initialized before they are used. In other words, the fields of the
classes will have been set to the appropriate values before they are used.
When a class needs to be (unit) tested, however, the tester will need to take
care of the initialization of the (objects of) other classes and the class-under-
test itself. The amount of initialization required before testing can be done will
thus influence the testing effort, and by assumption, the dLOCC metric.”

I interpret this excerpt as that the FOUT metric can be a predictor of the needed test
effort, in the form of needed dependency configuration in a test case. A higher Fan
Out assumingly results in the testcase containing more lines of code.
I believe that this increase of needed test effort based on needed dependency
configuration in a testcase, is closely related to my assumption that; using a DI
solution will increase the amount of needed configuration code in (or outside) a
testcase. But my assumption proved to be wrong during this research; it was not
needed to configure a DI solution when using a JUnit testcase because mock objects
could be injected into the component under test directly from code. The thing I did not
focus on during this research where the mock objects themselves. Effort is of course
also needed to write the code for these mock objects.

Why I think it is relevant to mention the FOUT metric here is that the FOUT metric
doesn’t say anything about the nature of dependencies in terms of how components
are coupled. When using DI, components can become less tightly coupled; depending
on abstractions instead of implementations. Allowing mock objects to be injected into
components under test, which eliminates the need to configure other components on
which the component depends. These other components are not needed since they can
be replaced by mock objects. But as said; creating mock objects also requires effort.
This effort may even be more than configuring the needed component in a testcase but
improves test controllability and observability.

During a second iteration I would like to have made an attempt to introduce a more
specific metric than, but still based on, the FOUT metric. Not only giving an
indication of which other components are called by a component, but also if the called
components can be substituted with a mock object if the DI principle is applied to it.
In my opinion the nature of a dependency determines if DI can be used to loosen up
this dependency. When for example a component inside one of its method creates an
instance of a component it depends on every time the method is executed, then it is
not possible to change this dependency to an abstraction and inject an implementing
component. A dependency that for example is initialized once during construction of
the depending component is a perfect candidate for becoming less tightly coupled by
implementing a DI strategy. Based on this I would then also like to have found a
solution to analyze the specific depending code, when the proposed metric indicates
that DI can be applied to it, in order to get insight in the behavior of the mock object
that is needed to test this code. This needed behavior (or input from the mock object
during test, see also Figure 3) can possibly be based on the McCabe Cyclomatic
Complexity. The needed effort for creating a mock object with this behavior could be
measured based on making use of a mock object tool like EasyMock7. After this the
ultimate goal, in my opinion, would be to completely automate the creation of mock
objects as well as the needed transformation of objects allowing them to be injected.

7 http://www.easymock.org

23

Appendix A - Introduction to Software Testing

Why is software tested?
According to [SWEBOK04] testing is an activity performed to evaluate the quality of
a product. Based on the outcome of this activity: the identified defects and problems,
it is possible to improve the product. When testing a software product, the behavior of
the software product under test is compared with the expected behavior for this
software product.

More simply put, software testing can be seen as checking if a software product
behaves as it is supposed to do. So the most obvious explanation for the reason why
software is tested is because it can happen that software doesn’t behave as intended.

From a commercial point of view it is for any company important to develop products
that are considered by customers as good quality. A software program that is not
functioning like the customer requires it to do so will most likely not be accepted by
the customer as good quality. The goal therefore is to develop a program that behaves
like the customer requires it to behave. With the help of software testing a
development copy can be used to check if there are problems/errors that negatively
affect the intended behavior and therefore need to be fixed.

Why does software not behave?
There can be several reasons for software not behaving like intended. In my opinion
the most obvious reasons are probably mistakes made by programmers during
development.
Just like normal human beings developers can make mistakes. These mistakes are
mostly pieces of code that, unintentionally, have a negative effect on the behavior of a
program.
Often these mistakes go unnoticed during development; when executed to see if the
program runs, all seems ok. But when the actual program will be used in a production
environment these mistakes have the potential to make the program not behave like
intended. A reason for this is clearly described by Andreas Zeller;

In [Zeller05] a program execution is described as a succession of states. Initially the
program is in a sane state (hopefully) and during execution it goes trough different
states. Somewhere between two states a piece of code may be executed that causes the
program to fail (and with failure we mean: not doing what its supposed to do). But
this failure may not propagate immediately. When a malfunctioning peace of code is
executed the next state becomes infected. During execution this infection has
influence on the next states and eventually may also cause a failure in one of the next
states.

A very simple real life example of this, is when two methods use the same global
variable X. Executed independently from each other during development both
methods show the expected behavior. But when in production it can happen that the
first method may change the value of X in such a way that the second method that
uses this variable as well (in one of the next states of execution) can not behave like
intended. This truly must be seen as only a very simple example supporting the above

24

description from [ZELLER05]. It is not intended to argue if this is bad design or a
bad programming habit.

Other than unintentionally made programming mistakes in the code of a software
product it is possible that code is written based on wrong and/or incomplete
requirements. Also, if not specific enough; requirements may also be wrongly
interpreted by developers. In the case of problems with the requirements the behavior
of program will also not be equal to the actually intended behavior.

Also after implementation (when done with the initial development) the behavior of a
software product can still be influenced negatively. Unexpected behavior of external
elements (like failures in hardware and other software products for example) on which
the software product depends for its own correct behavior.

When is software tested?
Probably the best way to answer the question “how is software tested?” is by first
describing when software is tested.

Software testing is a Software Engineering knowledge area that has really matured
from just being seen as an activity to being seen as a process closely interwoven with
the complete Software Engineering process. In [SWEBOK04] this is described as;

“Testing is no longer seen as an activity which starts only after the coding
phase is complete, with the limited purpose of detecting failures. Software
testing is now seen as an activity which should encompass the whole
development and maintenance process and is itself an important part of the
actual product construction”.

This description tells us that previously software testing was mostly done at the end of
the development process (after all the code was written) and that this approach is
limited.

[Gelperin88] explains the growth of software testing over the years by describing how
the purpose of software testing has changed. Until the beginning of 1980, test models
where classified as ‘Phase models’. The word phase describes that these models are
executed/processed once (and not re-occurring) during the development of a software
product. There are two test models that make up this period of phase testing; the
demonstration model and the destruction model.

The primary goal of the demonstration model is to make sure that the software
satisfies it specification. In [Gelprin88] it is mentioned that the words ‘make sure’
where often translated as; showing it works. But due to the increase of amount,
complexity and costs of applications as well as the fact that computer systems
contained a large number of deficiencies it became clear software products needed to
be tested better before they were delivered to the customer.

After the demonstration oriented model the destruction model was introduced. The
reason for doing so was because the goal of testing shifted from demonstrating the
software behaves as intended to finding problems before releasing the software. This
model tries to overcome the fact that the demonstration model is prone to not being

25

effective in detecting errors. Because it is possible that for demonstrations test data is
used that has a low probability of causing the software not to behave like intended
(“You see, it works!”).

Around 1983 the first life cycle method was introduced; the evaluation model.
The goal of the evaluation model was to detect faults during the complete
development process. Each phase in the development process has an associated set of
products and activities. The evaluation model aimed at increasing the quality of the
tests and with that increasing the quality of the end product. Not only should the end
product be tested at the end of the development process but also the requirements and
design that lead to the actual coding of the end product.

The next step from the evaluation model is the prevention model. This test model can
be seen as a more professional version of the evaluation model. The goal of the
prevention model is not only to detect problems during the complete development
process but to also prevent problems from occurring in the first place. This is for
instance possible trough timely test planning and test design. Designing and planning
tests early on in the development process have a positive effect on the quality of
requirements/specifications and code as well. The effect of focusing on what should
be tested before starting with actual coding is that flaws in the requirements (like
ambiguity, incorrectness, inconsistency, etc.) are detected early on.

A reason (and it is probably the most obvious reason) for the increasing
professionalism of software testing can be found in [Kaner99]; problems in software
can have a big financial impact. In [Kaner99] we can read that the effects of software
errors are that they become more expensive to fix during the development process.
Correcting faulty requirements in the beginning of the development process is far less
expensive than fixing errors after the product already has been released.
Based on this reason it seems that software is best tested from early on in the
development process and also during the complete development process.

Phase models 1957 – 1978 Demonstation model

1979 – 1982 Destruction model

Life cycle models 1983 – 1987 Evaluation model

1988 – now Prevention model
Table 4: Overview of different software test models over the years

How is software tested?
Software testing isn’t cheap. To test software, a software development company has
to free up resources needed for testing. In [Christensen03] is stated that the
development of a software product is mostly driven by four parameters: resources,
time, scope and quality. In many cases the parameters resources, time and scope have
a fixed value, meaning that, to finish (or survive) a project, the parameter quality is
adjusted negatively; the quality level of the end product is lowered.

Lowering/decreasing the quality goes against the increased professionalism that
software testing has gone through the last couple of decades (see: When is software
tested?). The goal of software testing is to assure the quality of the end product. None

26

the less, in the real world resources are almost always limited. This means that to
develop a high quality end-product the available resources should be used optimal.
All development activities should be adequate, therefore a development company
should decide during its test planning which testing activities should be performed to
assure the quality (the expected behavior) of the end product.

There are many types of test activities. Each type of test has its own place in the
development process. In [Kaner99] a complete overview is given of (well known) test
types and their place in the development process. This development process is divided
in the following phases; planning, design, coding and documentation, testing/fixing
and maintenance. Although testing/fixing is mentioned as a separate phase, it clearly
focuses on how to integrate testing in all phases of development. Below a
summarization of this available information is given focusing on all phases except for
maintenance.
Being the last phase after end-product delivery to the customer the maintenance
phase is considered out of scope for this research. Someone might argue if both the
planning and design phases should to be considered out of scope as well for this
research. But considering the fact of how important testing during these phases is
(which is also described in the summarization below) a description in this document
is vital to understand the importance of testing during the complete development
process.

Planning phase
At the beginning of the development process there’s no code yet to test. At this point
it is critical to lay a solid foundation for further development. This is possible by
reviewing the contents of the requirements and functional documentation on which
actual coding is based. During these reviews the requirements are tested on the
following issues: Are these the right requirements? Are they complete? Are they
achievable/reasonable? And very important for testing during the further development
process: Are the requirements testable?

Design phase
Based on the requirements documentation the to-be-developed software product can
be designed. Gross there are two types of designs; external design and internal design.
The external design basically describes the (user) interfaces of the end product. The
internal design describes the structural design for example. The structural design can
be seen as the architecture of the application. But internal design can also describe
how data is used (data design). Designs are mostly tested on the following issues: Is
the design good? Does the design meet the requirements? Is the design complete?
And is the design possible? A common practice used to test a (part of the) design, is to
make a prototype. For example the user interface can be simulated with a paper
mockup prototype. Parts of the data design could be tested with a coded prototype. In
this way it is possible to test if a design is for example even possible in the first place.

Coding phase
The phase, during which the actual code is written based on the earlier made (and
hopefully tested) requirements and designs. Testing during development is often
revered to as glassbox or whitebox testing. The reason for this term is the fact that
developers test their code knowing the internal working of the code. Testing during
the coding phase is meant to test the structure of the code (control flow and data

27

integrity for example). By creating test-cases during coding it is possible to re-run
these tests during the entire coding/development phase. Re-running tests is referred to
as regression testing. Regression testing (and especially automation of regression
testing) benefits integration of components that together form the complete software
product. When adding a new component, executing earlier made test-cases for the
already existing components can determine if the newly added component has a
negative impact on the existing code. This is a more effective approach than adding
all components together at the end of development, because this makes it hard to find
out in which component(s) the problem(s) exist.

A strong trend in the software development process is to set the earlier mentioned
quality parameter of the end product to a fixed value and adjust the scope parameter
when the project is endangered from not being completed in time. The development
process models that use this approach are categorized under the name ‘Agile
development’. Agile development models (eXtreme Programming (XP) for example)
focusses on glassbox testing during development in the form of unit testing. Unit
testing stands for testing small parts of code; normally tests are written per method
(but not necessarily limited to only one test per method).

Testing phase
Although testing during the complete development process is important to ensure the
quality of the product there is also a phase when coding is finished. At this point it is
important to test the complete product. During this phase the behavior of the program
is tested against the expected behavior documented in the requirements
documentation. These tests normally focus on giving input and checking the
generated output without knowing about the inner workings op the software product.
This is the opposite of glassbox testing and called blackbox testing. Common tests are
stability and performance/load testing. It is common practice that these tests are
executed by persons that don’t have a developer role.

What makes software testable?
Before describing what makes software testable it is important to define testable
software or Software Testability. In [Binder94] is stated that testability is the relative
ease and expense of revealing software faults. So how harder it becomes to find
existing faults the less testable software becomes.

There are several reasons why faults/problems might still occur when a software
product has been taken into production, even though the software has been tested. In
[Whittaker00] acceptable reasons are given for this phenomenon;

In the production environment…
• …code was executed that hasn’t been tested.
• …the execution order of code statements differs from the order when tested.
• …untested input has been supplied.
• …the production environment is different from the test environment.

This short list makes it clear that these failures may go unnoticed during testing if
tests do not resemble situations that might occur in a production environment. The
difficulty with this statement is that there are often many possible situations that may
occur in a production environment.

28

Multiple input possibilities
In [Dijkstra69] an example of a multiplication mechanism is given. This example
describes the difficulty of testing if this multiplier mechanism is 100% correct. When
blackbox testing this mechanism only the output for a given input can be checked.
This means that, to be 100% sure that this mechanism behaves correctly, all possible
input has to be tested. In the described example this would take more than 10,000
years, meaning that in practice it is impossible to completely test the mechanism and
proof it is entirely correct. Dijkstra tells us that in order to be more accurate in
proofing the correctness of software, reasonable test-cases have to be defined (is it
really necessary to test all possible input?) and that we should take the structure of
the mechanism into account. Meaning; the focus of testing should not only be on the
output, but more on the individual parts of code that together provide the
functionality.

The difficulty of many input possibilities is also described in [Whittaker00]. It is
stated that testers have the task to simulate the interaction between software and its
environment. To do this, testers have to identify the interfaces of the software product
and the input possibilities per interface. An interface can be for example the User
Input interface or a more ‘underwater’ interface like the file system interface. Because
it is impractical (and mostly even impossible) to test all possible input, testers must
carefully select the input that’s used during testing.

Source code complexity
To select a finite set of input for a test it is necessary to analyze the source code that
will be tested. By analyzing the source code the person who creates a test for existing
code can get insight in the inner workings of the code. With knowledge of the inner
workings it is for example possible to determine the control-flow of the piece of code.

In software code many decision points exist. Each decision point has influence on
which code is executed next, or; the next state the software will be in. A very simple
example is an if-statement. If the evaluation for the if-statement is true, the code
within the scope of the if-statement is executed. So this simple if -statement creates
two possible paths. This means at least two tests are needed to test this code. One test
supplying true as input, and one with false as input.

public void deleteCustomer(Long customerId, boolean removeHistory)
{
 // Code to remove customer object from database go es here

If (removeHistory)
{
 // Code to remove customer history from database g oes

here
}

}

Code example 1: Code executed based on decision

This if-statement is very simple to understand, and for the given example it is also
pretty easy to figure out that at least two tests are necessary. It becomes much harder
to understand which test input is required to correctly test the structure of code when
the complexity becomes greater.

29

During this research we use the following definition of complexity based on the
“Complexiteitsgraad” [Wikipedia-Complexiteitsgraad]; the amount of steps needed to
solve a problem. More steps needed to solve a problem increased the complexity.

Complexity in source code is closely related to understandability of that source code.
The control flow of source code becomes much harder to understand when a lot of
decision points exist in the code (which decisions are taken at which point?). Nested
decisions (like if-statements) for example are harder to understand than the previous
given example of a single if-statement. So the person creating the test(s) should use a
mental-aid like a truth table to keep track of all possible input cases; more steps are
needed to solve the problem of determining the needed tests.

T. McCabe developed a complexity value indication named ‘Cyclomatic complexity’.
Simply put, this indicator stands for the amount of closed loops in source code (which
translates to the amount of decision points) + 1. It is an indication for the level of
complexity of the source code structure when it comes to the amount of needed test-
cases. A complexity level over 20 is considered complex and means that a program is
hard to test.

1-10 A simple program
11-20 A more complex program
21-50 A complex program
> 50 An untestable program

Table 5: Indication of software testability based on the cyclomatic complexity of that
software

Structural complexity in the form of Cyclometic Complexity can be measured with
static analysis. Meaning; tools can count the number of decision points without
having to execute the code.

Dependencies
When testing a specific piece of code a test normally focuses on that piece of code
alone. But in software products it is very common for components to rely on other
components. So when testing a component it is possible that other components are
executed as well during the test. This can interfere with the actual test, for example
when another component is failing. This dependency between components also affects
testing such a depending component in another way; if you want to test a component
that relies on other components you need to have these components available as well.

A tactic to overcome these influences on testing is developing loosely coupled
components. An example of loosely coupled components are components that don’t
have a direct relation with other components. This can be realized by using
interfaces/abstractions and information hiding. An interface describes the
functionality of a component that can be used by other components. The component
implementing this interface hides the actual implementation code, and by referencing
to an interface the depending component is not depending on a specific piece of code
anymore.

30

When testing a component depending on an interface implementation it becomes
easier to substitute such a component with another component. For example a
component depending on another component that is used to read values from a
database. This dependency can during testing be replaced with a component that fakes
this database interaction. Such components created for independent testing purpose
are called Mock Objects.

Controllability & observability
According to [Binder94] (software) testability has two key facets; controllability and
observability. This is actual pretty logical, because when you cannot control the input
of your test how can you tell if the output is correct? And the other way around it is
pretty much the same story; how can you tell if something works correctly if you
cannot check the output?

Normally when performing a blackbox test, input is given and the output is checked
to see if what happened between these two steps works/behaves correctly.
Controllability is the amount control over the input that can be given during the test.
Observability is the relative ease of checking the output of a piece of code.

When talking about a method, giving a certain input and checking its return value
seems pretty straight forward. And when blackbox testing this is normally the case.
But often the correct execution of a piece of code depends on other components.
When testing a piece of code that depends on other components a correct output is not
something that is always related to a certain given input (like for example a method
argument value). The interaction with other components (their behavior) can play a
big role as well. So input doesn’t necessarily consist only out of the argument value(s)
given to a method. Input can also be given by components a piece of code depends on
during its execution.

When testing a piece of code it can be tested more thoroughly if its interaction with
other components can be controlled. Something that can be very difficult because it
may be necessary to alter the behavior of such components to force a specific needed
test output (which forms the input for the depending piece of code). When altering the
behavior of such components during tests, it would be for example possible that the
piece of code under test deliberately receives incorrect input from the altered
component it depends on. This makes it possible to test the behavior of the piece of
code in a not desirable but still possible situation that might occur after it is delivered
to the customer and taken into production.

Traceability of requirements
When testing it is important to know what the expected test outcome should be. It is
meaningless to test software without knowing what to test for. When developing a test
it should be possible to trace the requirements for that specific piece of code
describing the expected behavior. Traceability therefore describes the possibility to
determine if requirements are met by the software under test.

Test automation
Testing requires an investment of resources like time and personnel which ultimately
can be translated to money, or better said: financial resources.

31

First of all tests have to be developed. And after a test has been developed it has to be
executed and the test results have to be analyzed.

Often when tests will be executed multiple times during a development process
(regression testing) a development company will make the effort to automate such
tests. Using a test framework the test code can be executed and test results can be
analyzed automatically. But in some cases it is very difficult to automate testing.
Good examples of hard to automate tests are User Interface tests. It is relatively easy
to test changes to a data-set but much more difficult to test results that are only visible
on screen.

32

Appendix B - Introduction to Dependency Injection

What are dependencies?
Earlier, in ‘What makes software testable?’ dependencies and their effects on testing
have been discussed briefly. In [Jackson03] a precise definition is given of when
software components depend on each other; Component A depends on component B if
“correct execution of B may be necessary for A to complete the task described in its
definition”

What are the effects of dependencies?
When software components depend on other components to complete their task it is
normal that in the source code of these components a reference is made to other
components. In [Nene05] this is described as; components need to know with which
other components to communicate, where to locate these components and how to
communicate with them.

Adding this ‘which, where, how dependency logic’ to a component can have a
negative effect on the source code of a software product when changes are needed to
be made. In [Martin96] an example of three negative effects of dependencies between
components, on the architecture/design of a software product, are given. These
effects; rigidity, fragility and immobility, as well as fourth one: uncontrollability are
described below:

Rigid
Component interdependency makes it harder to make changes to components. When
making changes to a component that another component is depending on it may be
hard to tell what the effects of these changes are on the depending components.
A change may have a rippling effect of needed related changes throughout depending
modules making it hard to predict the impact of the change.

Fragile
Often when a software product is build from code with poor quality, single changes to
a component may introduce new problems in depending components. Maintenance
becomes a real problem because fixing these problems often also causes new
problems in other parts of the software product. So maintenance can be compared
with a dog chasing its own tail.

Immobile
When components depend on specific other components to complete their own task it
becomes hard to re-use these components in another software product without having
to include all logic that is not needed in the new product but still is required by the
components that the re-used component is depending on. The costs of component
separation are often higher than redevelopment of the desired logic that exists in such
a single component.

33

Uncontrollable
In most software designs dependency of software components is a top-down situation.
Meaning; high level components contain the business logic of a software product and
depend on lower level modules to make this logic happen.
The problem with high level components strongly depending on lower level
components is that they often become dictated by the implementation details of the
lower level components. Changes to lower level components can force the higher
level components to change. As stated in [Martin96]; High level modules should be
forcing the low level modules to change, not the other way around.

An example
Probably the two biggest problems of dependencies in high level components are that
these high level components become immobile and are prone for changes dictated by
lower level components they are depending on. An approach to overcome these
problems is described in [Martin96], in which is stated that high level modules should
not depend on details of lower level modules. Instead they should depend on
abstractions, meaning that specific implementation logic of lower level components
should be hidden from high level components.

In practice, when focusing on the Java programming language, this abstraction (or
hiding of implementation detail) can be realized by using interfaces. An interface
describes the provided functionality (methods including their arguments/signatures
and return value). A software component (a Java class in this case) implements this
functionality without the higher level components (other depending classes) knowing
anything about the implementation details.

The interface can be seen as a contract between two components. On one hand the
high level component knows which functionality is provided by the component
implementing this interface. On the other hand the interface describes which
functionality it should provide.

The big advantage of this abstraction is that a lower level component, on which a
higher level component is depending, can be replaced by another component that also
implements the interface. This is a design approach that creates loosely coupled
components.

At one point in the code of a higher level component that depends on a lower level
component a reference has to be made to this lower level component. And with
reference we mean; code that initializes an instantiation of this lower level
component. Below a very simple Java example is given of such a lower level
component instantiation;

public class PaperManager
{
 private PaperProvider currentPaperProvider;

 public PaperManager ()
 {
 currentPaperProvider = new PaperCompanyA();
 }

34

 public void checkPaperInStock()
 {
 if (getAmountOfPaperUnitsInStock() < 100)
 {
 currentPaperProvider.orderPaper(200);
 }
 }
}

Code example 2: Instantiation of required component within a component

In the Java example above, the class PaperManager is meant to contain all high
level logic for managing the paper stock inventory of a company. This company
orders paper, needed for its production process, from paper company A. In the
example it is clear that although PaperManager depends on the abstract type
PaperProvider it still also depends on a specific implementation of
PaperProvider (which is PaperCompanyA) .

Although it is a very simple example it illustrates the dependency of a company that
can exist in the real world. Such a real world dependency can form a risk for a
business. If the company needs paper for its production process, the production
process depends on Company A. Therefore it is important for the company to be able
to switch to another paper provider when needed.

What is dependency injection?
In the previous given example it is fairly easy to change from an PaperCompanyA to
a PaperCompanyB , all that has to be changed is the instantiation line in the
constructor. But still, PaperManager keeps depending on a specific implementing
lower level component.

One way to overcome this is to use the Factory design pattern. In the Factory pattern a
component is held responsible for the correct instantiation of an implementing
component. This causes that the high level component will no longer be depending on
a specific implementation but solely on the abstract interface description. Below a
very simple Java example is given of how a Factory can be used.

public class PaperManager
{
 private PaperProvider currentPaperProvider;

 public StockInventoryManager()
 {
 currentPaperProvider =
PaperProviderFactory.getCurrentPaperProvider();
 }

 public void checkPaperInStock()
 {
 if (amountOfPaperUnitsInStock() < 100)
 {
 currentPaperProvider.orderPaper(200);
 }
 }

35

}

public class PaperProviderFactory
{
 public static PaperProvider getCurrentPaperProvide r()
 {
 return new PaperCompanyB();
 }
}

Code example 3: Obtaining a required component from a Factory

The PaperProviderFactory becomes responsible for initializing the correct paper
company. The High level PaperManager only depends on a the PaperProvider
interface and not on specific companies any more.

From static factory pattern…
So with introducing a factory pattern the PaperManager becomes more loosely
coupled from the specific paper company implementations. But this factory pattern
has its own drawbacks. Now that the PaperManager is decoupled from a specific
PaperProvider implementation it now relies on a PaperProviderFactory
component to get the currently active PaperProvider implementation. When it
comes to the which, where, how dependency logic in a component, the Factory Pattern
takes away the which and how logic from the component. Because a factory
component initializes (how) the correct (which) implementation. The component
containing the dependency keeps responsible for calling the factory; it still contains
the logic for finding the dependency (where).

Two other shortcomings (or maybe better: points for improvement) are that when
more high level components need to be decoupled from other components, the
amount of Factory objects often increase as well. In most cases these factory objects
aren’t much different from each other. Meaning that a loosely coupled design can
cause a lot of boilerplate coding. The other shortcoming is that changing to another
implementing object means that the code has to be modified. The factory component
has to be altered so that it will return the correct implementation. When the company
in the previous example changes to a new/different paper company, the source code
has to be modified and the software product needs to be redeployed.

…To dynamic wiring
Looking further than the Factory design pattern it is possible to create an even more
loosely coupled and less static design. This is where dependency injection enters the
ring.

Going back to the example used throughout this chapter, the PaperManager
component, after applying the Factory pattern, is still responsible for knowing where
to get the needed dependency; it has to call the PaperProviderFactory
component.
Another approach is to provide the PaperManager component with the needed
dependency so that it doesn’t have to retrieve it itself. For example the needed
dependency can be provided as constructor argument as the example below shows.

36

public class PaperManager
{
 private PaperProvider currentPaperProvider;

 public StockInventoryManager(PaperProvider pp)
 {
 currentPaperProvider = pp;
 }
}

Code example 4: Obtaining a required component as a constructor argument

Next to the providing the needed dependency through the constructor a setter-method
can be used as well to provide the needed PaperProvider dependency (even after
initialization of the PaperManager component).

public class PaperManager
{
 private PaperProvider currentPaperProvider;

 public StockInventoryManager(PaperProvider pp)
 {
 currentPaperProvider = pp;
 }

 public void setCurrentPaperProvider(PaperProvider pp)
 {
 currentPaperProvider = pp;
 }
}

Code example 5: Obtaining a required component as a setter method argument

Providing a component with the needed dependencies it needs to complete its tasks,
with this component only knowing what these dependencies should do (thanks to the
abstract description) and without knowing how they do it (the specific
implementation) is often referred to as ‘dependency injection’.

Another term often used to describe the same principle is ‘Inversion of Control’ (IoC).
Although in my opinion it more describes the power of loosely coupled design when it
comes to depending components no longer be in charge of the dependencies they use.
And lower level components not forcing higher level components depending on them
to change (better described in ‘What are the effects of dependencies?’). Therefore we
use the term ‘dependency injection’ (DI) throughout the rest of this document.

So dependency injection helps with removing the which, where, how dependency
logic from a component. But the true power of DI lies in the ability of automating it
with configuration based solutions.

Recalling the business in our example that relies on a specific paper company (that
provides paper needed for its production process); what if the company would switch
to another paper company? The PaperManager component should now use the
PaperCompanyB implementation of the PaperProvider interface instead of
PaperCompanyA . When using DI the PaperManager can be injected with the
correct PaperProvider implementation.

37

Current solutions
Needless to say, little helper gnomes (instead of bugs) are very rare in the software
engineering business. Or in other words; this dependency injection thing doesn’t
happen out of itself. When providing dependencies to components this logic has to be
developed or an existing DI solution can be used.

Types of dependency injection
As the examples earlier on showed, dependency injection is (for example) possible
through supplying the dependency as an argument for a constructor or a setter-
method. The different types of DI (or DI implementation strategies) are often referred
to as ‘type x’, where x is the number corresponding to a certain type of DI
implementation strategy.
Throughout different literature these DI types are often given a name that describes
the DI implementation strategy, instead of using only a number. Using names instead
of numbers is obvious much more clearer. But the problem is that sometimes these DI
types are not given the same name. For example in [Fowler04] type 1 DI is given the
name ‘Interface Injection’. And in [CodehausPico] the same type has been given the
name ‘Contextualized Dependency Lookup’. In [CodehausPico] it is also mentioned
that the ‘type x’ definitions can be seen as obsolete all together.
Throughout the rest of this document the following names for the different DI
implementations (based on [CodehausPico]) are used:

Contextualized Dependency Lookup
Also known as Type 1. The component contains logic to call another component that
provides the needed dependency. This DI implementation strategy on component
level causes the component still having a dependency to a component (or the context)
that provides the needed dependency. A possible solution is to provide this
dependency provider as an interface implementation and injecting it through a
constructor or a setter method.

public class PaperManager
{
 private PaperProvider currentPaperProvider;

 public StockInventoryManager(PaperCompanyContext pcc)
 {
 currentPaperProvider =
pcc.retrieveCurrentPaperProvider();
 }

 public StockInventoryManager(PaperProvider pp)
 {
 currentPaperProvider = pp;
 }

 public void setCurrentPaperProvider(PaperProvider pp)

{
 currentPaperProvider = pp;

}
}

Code example 6: Obtaining a required component from a provided context

Setter Dependency Injection

38

Also know as Type 2. The dependency is provided to the component as a setter-
method argument. The problem with this DI implementation strategy is that when
developing a custom DI solution (the logic that makes the injection happen) it is
possible to forget to call such a setter method. When initializing a component it is not
mandatory to call setter methods (only a call to a constructor is mandatory), meaning
that after initialization the needed dependency might never be provided. This of
course will result in the component not behaving like intended.

public class PaperManager
{
 private PaperProvider currentPaperProvider;

 public StockInventoryManager(PaperCompanyContext p cc)
 {
 currentPaperProvider =
pcc.retrieveCurrentPaperProvider();
 }

 public StockInventoryManager(PaperProvider pp)
 {
 currentPaperProvider = pp;
 }

 public void setCurrentPaperProvider(PaperProvider pp)

{
 currentPaperProvider = pp;

}
}

Code example 7: Obtaining a required component through a setter method

Constructor Dependency injection
Also known as Type 3. The dependency is provided to the component as a constructor
argument. The constructor will always have to be called when initializing a
component. This means that, if all constructors require the needed dependencies as
arguments and null-values are not allowed, the component is always provided with
the needed dependency. The problem that might exist when multiple dependencies are
required is that the signature of a constructor can become too large and beyond the
point they are still easy to read/understand.

public class PaperManager
{
 private PaperProvider currentPaperProvider;

 public StockInventoryManager(PaperProvider pp)
 {
 currentPaperProvider = pp;
 }

 public void setCurrentPaperProvider(PaperProvider pp)

{
 currentPaperProvider = pp;

}
}

Code example 8: Obtaining a required component through a constructor

39

Field Dependency injection
Also known as type 4 but is less common than type other three types. The dependency
is assigned to a field (in Java called a class member variable). No constructor
argument or specific setter method is needed to assign an instance of dependency to a
variable. The logic for this form of dependency is very complex to develop. A
managed environment that is responsible for controlled execution of code seems to be
the best option to implement this form of dependency.

Containers / Managed environments
Multiple third party Dependency Injection solutions exist. Actually they’re not always
called Dependency Injection solutions, some are called Inversion of Control
frameworks but focus on the dependency injection principle. Others provide more
functionality than just DI. On [Wikipedia-DI] a list of frameworks that support DI is
given. From this list three well known Java frameworks that support DI are described
below;

PicoContainer
PicoContainer is (and this is also one of its goals) a lightweight DI framework. The
developers of PicoContainer believe that constructor injection is the best DI
implementation approach (but setter-injection is supposedly also supported).

Spring
Spring is more than a DI solution. Spring is a complete (and very popular) J2EE
framework offering a lot of other possibilities, like Aspect Oriented Programming
(AOP) for example.

Java EE5
Java Enterprise Edition 5 is the API for Java Enterprise Applications. The previous
version of the Java Enterprise Edition, version 1.4, was considered to be very
cumbersome to implement. Especially its core components; Enterprise Java Beans
(EJB) proved to be very hard to develop and configure. As response to upcoming
frameworks like Spring, Sun tries with JEE5 to simplify EJB development for
example by supporting dependency injection.

40

Appendix C – The paper manager example
The idea behind the paper manager example is a company that uses paper during its
production process. For some products they use white paper, for others they use
brown colored paper. The company wants a solution that automatically orders paper
when the available amount in stock drops below 100 (measured in meters).

One component will be used to manage the paper, this is the PaperManager
component. When paper (white or brown) is used during the production process the
PaperManager component is notified. Its the PaperManager ’s responsibility to
order 200 meters of paper from a paper company when the amount in stock becomes
less than 100. To keep the amount of paper in stock at a sufficient level the
PaperManager depends on a PaperProvider .

Because its production process depends on paper, the company doesn’t want to
depend on only one paper company. The solution should make it possible to switch to
another paper company if this may be necessary in the future. Therefore the solution
will incorporate an abstraction of the paper ordering functionality that a paper
company provides; the PaperProviderInterface abstraction. This means the
PaperManager component will make use of a component that implements this
PaperProvider abstraction.

The question is what the PaperProvider abstraction should look like. Which
functionality should it provide or better; how can the PaperManager component
order the needed paper? The PaperManager component must be able to order brown
and white paper. It must also be possible to notify the paper company that an order
has been received.

Technical design
A generic solution is preferred; the company foresees the possibility that it will be
using other different kind of papers in the future. Therefore the decision has been
made that the PaperManager and the PaperProvider implementation will
communicate in the form of generic paper orders. These will be derived from an
abstract PaperOrder component class.

Because we focus on the PaperManager component (implementing it with and
without the dependency injection principle) we will also create an abstraction
(interface) for this component called PaperManagerInterface . This way we
create a contract so all implementations (concrete classes) implement the same desired
logic.

41

The paper manager interface
This abstraction/interface describes the functionality that a concrete implementation
class should provide, despite using dependency injection or not.

package model.papermanager;
import model.paperorder.AbstractPaperOrder;

/**
 * PaperManager is the highlevel component - interface used to manage the information
about paperflow in the company
 * A paper Manager is responsible to order paper when the amount in stock drops below
100
 * @author Ricardo Lindooren
 */
public interface PaperManagerInterface
{
 /**
 * Called by other components to inform the PaperManager how much brown paper
is used during the production process
 * @see #whitePaperUsedInProductionProcess(int)
 * @param amountOfMeters the amount of paper used
 */
 public void brownPaperUsedInProductionProcess(int amountOfMeters);

 /**
 * @see #brownPaperUsedInProductionProcess(int)
 * @param amountOfMeters the amount of paper used
 */
 public void whitePaperUsedInProductionProcess(int amountOfMeters);

 /**
 * Called by other components to inform the PaperManager ordered Paper has been
received
 * @param apo the paper order that has been received by the company
 */
 public void paperOrderReceivedFromPaperProvider(AbstractPaperO rder apo) throws
UnknownPaperOrderException;

 /**
 * Returns the number of meters of brown paper that's in stock
 * @see #getAmountOfWhitePaperInStock()
 * @return the current amount of brown paper in stock
 */
 public int getAmountOfBrownPaperInStock();

 /**
 * @see #getAmountOfBrownPaperInStock()
 * @return the current amount of white paper in stock
 */
 public int getAmountOfWhitePaperInStock();

 /**
 * Sets the amount of brown paper that's in stock
 * The purpose of this setter is to give a begin value of the amount in stock
 * @see #setAmountOfWhitePaperInStock(int)
 * @param amountOfMeters
 */
 public void setAmountOfBrownPaperInStock(int amountOfMeters);

 /**
 * @see #setAmountOfBrownPaperInStock(int)
 * @param amountOfMeters
 */
 public void setAmountOfWhitePaperInStock(int amountOfMeters);

 /**
 * Which orders have been dispatched to the paper company
 * @return a set of paper orders
 */
 public Set<AbstractPaperOrder> getPaperCurrentlyInOrder() ;
}

42

The paper provider interface
This is the abstraction the paper manager component depends on for ordering paper.

package model.paperprovider;
import java.util.Set;
import model.paperorder.AbstractPaperOrder;

/**
 * Interface describing the functionality of a paper provider
 * @author Ricardo Lindooren
 */
public interface PaperProviderInterface
{
 /**
 * Orders paper from the paper provider
 * @param apo the paper order
 */
 public void orderPaper(AbstractPaperOrder apo);

 /**
 * Checks which paper orders are being processed by the paper provider
 * @return the orders that are being processed by the paper provider
 */
 public Set<AbstractPaperOrder> checkCurrentlyProcessedPap erOrders();

 /**
 * Used to let the paper provider know which order has been received by the
paper company
 * @param apo
 */
 public void confirmReceivedPaperOrder(AbstractPaperOrder apo) throws
UnknownPaperOrderException;
}

The unknown paper exception
Should be thrown by the PaperManager and PaperProvider implementations when a
not earlier identified paper order is supplied as argument.

package model.paperorder;

public class UnknownPaperOrderException extends Exception
{
 /**
 * Generated by Eclipse
 */
 private static final long serialVersionUID = 1081125365526999630L;

 public UnknownPaperOrderException()
 {
 super();
 }

 public UnknownPaperOrderException(String message)
 {
 super(message);
 }

 public UnknownPaperOrderException(Throwable cause)
 {
 super(cause);
 }

 public UnknownPaperOrderException(String message, Throwab le cause)
 {
 super(message, cause);
 }
}

43

The abstract paper order
This is the information that defines a paper order communicated between the paper
manager and a paper company.

package model.paperorder;
import java.io.Serializable;
import java.util.Date;

/**
 * @author Ricardo Lindooren
 */
public abstract class AbstractPaperOrder implements Serializable
{
 private Long id ;

 private Date orderDate ;

 private int amount ;

 public Long getId()
 {
 return id ;
 }

 public void setId(Long id)
 {
 this. id = id;
 }

 public Date getOrderDate()
 {
 return orderDate ;
 }

 public void setOrderDate(Date orderDate)
 {
 this. orderDate = orderDate;
 }

 public int getAmount()
 {
 return amount ;
 }

 public void setAmount(int amount)
 {
 this. amount = amount;
 }
}

package model.paperorder;

public class WhitePaperOrder extends AbstractPaperOrder
{
 /**
 * Generated by Eclipse
 */
 private static final long serialVersionUID = -3966465969285239587L;
}

package model.paperorder;

public class BrownPaperOrder extends AbstractPaperOrder
{
 /**
 * Generated by Eclipse
 */
 private static final long serialVersionUID = 1582952228765022555L;
}

44

Implemented without dependency injection
Without dependency injection the PaperManagerNonDi implementation of the
PaperManager interface contains a reference to a PaperProviderInterface
implementation. In this case this is the concrete class PaperCompanyA .
PaperCompanyA class is meant to fail under all circumstances. This may sound
unusual but actually this is done to prove how hard it becomes to test a component
(PaperManagerNonDi) when a component it depends on (PaperCompanyA) is not
available during test.

The import block in a Java source file is a good indication of the dependencies of the
classes inside that source file. The PaperManagerNonDi.java class depends on 6
other classes (ignoring the classes that are part of Java language framework, like
java.util.Date etc.):

import model.papermanager.PaperManagerInterface;
import model.paperorder.AbstractPaperOrder;
import model.paperorder.BrownPaperOrder;
import model.paperorder.UnknownPaperOrderException;
import model.paperorder.WhitePaperOrder;
import model.paperprovider.impl.PaperCompanyA;

With the ‘IBM Structural Analysis for Java’ toolkit8 this can be visualized in an UML
like notation:

8 http://www.alphaworks.ibm.com/tech/sa4j

45

To make this dependency visualization more clear, the meaning of the lines between
the components have been added (beginning with *). Also, this toolkit ignores
Exception classes by default, that’s why the UnknownPaperOrderException
component is not displayed.

Below the complete code of the PaperManagerNonDi class is given.

PaperManagerNonDi.java
package model.papermanager.impl;

import java.util.Collections;
import java.util.Date;
import java.util.Set;
import java.util.SortedSet;
import java. util .TreeSet;

import model.papermanager.PaperManagerInterface;
import model.paperorder.AbstractPaperOrder;
import model.paperorder.BrownPaperOrder;
import model.paperorder.UnknownPaperOrderException;
import model.paperorder.WhitePaperOrder;
import model.paperprovider.impl.PaperCompanyA;

/**
 * An implementation of the PaperManagerInterface not making use of dependency
injection
 * @author Ricardo Lindooren
 */
public class PaperManagerNonDi implements PaperManagerInterface
{
 private PaperCompanyA paperCompanyA ;
 private int amountOfBrownPaperInStock ;
 private int amountOfWhitePaperInStock ;
 private SortedSet<AbstractPaperOrder> paperOrdered ;
 private int ORDER_WHITEPAPER_BELOW = 100;
 private int ORDER_BROWNPAPER_BELOW = 100;
 private long lastOrderId ;

 /**
 * Constructor initializing the reference to a paper company
 */
 public PaperManagerNonDi()
 {
 paperCompanyA = new PaperCompanyA();
 paperOrdered = Collections. synchronizedSortedSet(new
TreeSet<AbstractPaperOrder>());
 lastOrderId = 0;
 }

 @Override
 public void brownPaperUsedInProductionProcess(int amountOfMeters)
 {
 amountOfBrownPaperInStock -= amountOfMeters;
 checkBrownPaperInStock();
 }

 @Override
 public void whitePaperUsedInProductionProcess(int amountOfMeters)
 {
 amountOfWhitePaperInStock -= amountOfMeters;
 checkWhitePaperInStock();
 }

 @Override
 public int getAmountOfBrownPaperInStock()
 {
 return amountOfBrownPaperInStock ;
 }

 @Override
 public int getAmountOfWhitePaperInStock()
 {

46

 return amountOfWhitePaperInStock ;
 }

 @Override
 public void paperOrderReceivedFromPaperProvider(AbstractPaperO rder apo) throws
UnknownPaperOrderException
 {
 if (paperOrdered .contains(apo))
 {
 // Dispatch paper company
 paperCompanyA .confirmReceivedPaperOrder(apo);
 // Delete from local history
 paperOrdered .remove(apo);
 }
 else
 {
 throw new UnknownPaperOrderException("Order did not exist in
paper orders");
 }
 }

 @Override
 public void setAmountOfBrownPaperInStock(int amountOfMeters)
 {
 amountOfBrownPaperInStock = amountOfMeters;
 }

 @Override
 public void setAmountOfWhitePaperInStock(int amountOfMeters)
 {
 amountOfWhitePaperInStock = amountOfMeters;
 }

 @Override
 public Set<AbstractPaperOrder> getPaperCurrentlyInOrder()
 {
 return paperOrdered ;
 }

 /**
 * Checks and orders white paper when needed
 */
 private void checkWhitePaperInStock()
 {
 if (getAmountOfWhitePaperInStock() < ORDER_WHITEPAPER_BELOW)
 {
 WhitePaperOrder wpo = new WhitePaperOrder();
 wpo.setId(getNewOrderId());
 wpo.setAmount(200);
 wpo.setOrderDate(new Date(System. currentTimeMillis()));
 paperCompanyA .orderPaper(wpo);
 }
 }

 /**
 * Checks and orders brown paper when needed
 */
 private void checkBrownPaperInStock()
 {
 if (getAmountOfBrownPaperInStock() < ORDER_BROWNPAPER_BELOW)
 {
 BrownPaperOrder bpo = new BrownPaperOrder();
 bpo.setId(getNewOrderId());
 bpo.setAmount(200);
 bpo.setOrderDate(new Date(System. currentTimeMillis()));
 // Keep in local history
 paperOrdered .add(bpo);
 // Dispatch to paper company
 paperCompanyA .orderPaper(bpo);
 }
 }

 /**
 * Creates a new order Id
 * @return last order id + 1
 */

47

 private synchronized Long getNewOrderId()
 {
 return new Long(lastOrderId + 1);
 }
}

It consists of 106 total lines of code (TLOC). And the average McCabe cyclomatic
complexity is 1,25.

The JUnit testcase for this component is given below.

PaperManagerNonDiTest.java
package model.papermanager.impl;

import java.util.Iterator;

import junit.framework.TestCase;
import model.paperorder.AbstractPaperOrder;
import model.paperorder.BrownPaperOrder;
import model.paperorder.UnknownPaperOrderException;
import model.paperorder.WhitePaperOrder;

/**
 * JUnite testcase for class PaperManagerNonDi
 *
 * @see PaperManagerNonDi
 * @author Ricardo Lindooren
 */
public class PaperManagerNonDiTest extends TestCase
{
 private PaperManagerNonDi pmndiUnderTest ;

 private int brownPaperInStockToStartWith = 500;
 private int whitePaperInStockToStartWith = 500;
 private int orderBrownPaperBelow = 100;
 private int orderWhitePaperBelow = 100;
 private int brownPaperAmountThatShouldBeOrdered = 200;
 private int whitePaperAmountThatShouldBeOrdered = 200;

 @Override
 protected void setUp() throws Exception
 {
 super.setUp();
 pmndiUnderTest = new PaperManagerNonDi();

 pmndiUnderTest .setAmountOfBrownPaperInStock(brownPaperInStockToStartWith);

 pmndiUnderTest .setAmountOfWhitePaperInStock(whitePaperInStockToStartWith);
 }

 public void testBrownPaperUsedInProductionProcess()
 {
 /* Test if amount in stock decreases correctly */
 int usedAmountOfMeters = 5;
 pmndiUnderTest .brownPaperUsedInProductionProcess(usedAmountOfMete rs);
 assertEquals(brownPaperInStockToStartWith - usedAmountOfMeters,
pmndiUnderTest .getAmountOfBrownPaperInStock());

 /* Test if paper manager orders paper from paper co mpany */
 // Clear all pending orders
 pmndiUnderTest .getPaperCurrentlyInOrder().clear();

 // Use paper so that a new order has to be placed
 pmndiUnderTest .setAmountOfBrownPaperInStock(orderBrownPaperBelow);
 pmndiUnderTest .brownPaperUsedInProductionProcess(1);
 assertEquals("There should be an order" , false,
pmndiUnderTest .getPaperCurrentlyInOrder().isEmpty());

 // Check order validity
 Iterator<AbstractPaperOrder> paperOrderIterator =
pmndiUnderTest .getPaperCurrentlyInOrder().iterator();

48

 AbstractPaperOrder apo = paperOrderIterator.next();
 assertTrue(apo instanceof BrownPaperOrder);
 assertEquals(brownPaperAmountThatShouldBeOrdered , apo.getAmount());

 /* Impossible to test if PaperCompanyA has been cal led! */
 }

 public void testWhitePaperUsedInProductionProcess()
 {
 /* Test if amount in stock decreases correctly */
 int usedAmountOfMeters = 5;
 pmndiUnderTest .whitePaperUsedInProductionProcess(usedAmountOfMete rs);
 assertEquals(whitePaperInStockToStartWith - usedAmountOfMeters,
pmndiUnderTest .getAmountOfWhitePaperInStock());

 /* Test if paper manager orders paper from paper co mpany */
 // Clear all pending orders
 pmndiUnderTest .getPaperCurrentlyInOrder().clear();

 // Use paper so that a new order has to be placed
 pmndiUnderTest .setAmountOfWhitePaperInStock(orderWhitePaperBelow);
 pmndiUnderTest .whitePaperUsedInProductionProcess(1);
 assertEquals("There should be an order" , false,
pmndiUnderTest .getPaperCurrentlyInOrder().isEmpty());

 // Check order validity
 Iterator<AbstractPaperOrder> paperOrderIterator =
pmndiUnderTest .getPaperCurrentlyInOrder().iterator();
 AbstractPaperOrder apo = paperOrderIterator.next();
 assertTrue(apo instanceof WhitePaperOrder);
 assertEquals(whitePaperAmountThatShouldBeOrdered , apo.getAmount());

 /* Impossible to test if PaperCompanyA has been cal led! */
 }

 public void testGetAmountOfBrownPaperInStock()
 {
 assertEquals(brownPaperInStockToStartWith ,
pmndiUnderTest .getAmountOfBrownPaperInStock());
 }

 public void testGetAmountOfWhitePaperInStock()
 {
 assertEquals(whitePaperInStockToStartWith ,
pmndiUnderTest .getAmountOfWhitePaperInStock());
 }

 public void testPaperOrderReceivedFromPaperProvider()
 {
 WhitePaperOrder wpo = new WhitePaperOrder();
 // fake Id
 wpo.setId(new Long(324));
 wpo.setAmount(1);

 UnknownPaperOrderException upoex = null;
 try
 {
 pmndiUnderTest .paperOrderReceivedFromPaperProvider(wpo);
 }
 catch(UnknownPaperOrderException ex)
 {
 upoex = ex;
 }
 assertNotNull("Unknown order should throw an exception" , upoex);

 // Use paper so that a new order has to be placed
 pmndiUnderTest .setAmountOfBrownPaperInStock(orderBrownPaperBelow);
 pmndiUnderTest .brownPaperUsedInProductionProcess(1);
 Iterator<AbstractPaperOrder> paperOrderIterator =
pmndiUnderTest .getPaperCurrentlyInOrder().iterator();
 AbstractPaperOrder apo = paperOrderIterator.next();

 UnknownPaperOrderException upoex2 = null;
 try
 {
 pmndiUnderTest .paperOrderReceivedFromPaperProvider(apo);

49

 }
 catch(UnknownPaperOrderException ex)
 {
 upoex2 = ex;
 }

 assertNull(upoex2);

 /* Impossible to test if PaperCompanyA has been cal led! */
 }

 /**
 * Simple getter/setter test
 */
 public void testSetAmountOfBrownPaperInStock()
 {
 int testValue = 10;
 pmndiUnderTest .setAmountOfBrownPaperInStock(testValue);
 assertEquals(testValue, pmndiUnderTest .getAmountOfBrownPaperInStock());
 }

 /**
 * Simple getter/setter test
 */
 public void testSetAmountOfWhitePaperInStock()
 {
 int testValue = 20;
 pmndiUnderTest .setAmountOfWhitePaperInStock(testValue);
 assertEquals(testValue, pmndiUnderTest .getAmountOfWhitePaperInStock());
 }

 /**
 * Simple not null test on getter
 */
 public void testGetPaperCurrentlyInOrder()
 {
 assertNotNull(pmndiUnderTest .getPaperCurrentlyInOrder());
 }
}

It consist out of 108 TLOC containing 16 calls to JUnit assert methods. There are no
lines of configuration code needed to initialize the dependencies (they are all
referenced and initialized in the PaperManagerNonDi class).

According to the JUnit test report the success rate of this test is 62.50%, the reason
why it is not 100% is that all tests that test methods depending on PaperCompanyA
are failing since it is not available.

50

Figure 7: Failing tests

The Cobertura testcoverage report tells us that 93% of the lines of code and 83% of all
branches in the PaperManagerNonDi class are tested.

Figure 8: Code test coverage

This is also due to the PaperCompanyA class failing during tests.

Figure 9: Lines not executed during test(s)

The test cannot get around this failing component since it cannot be replaced with
another PaperProviderInterface implementation.

Note about the Metrics tool for Eclipse
While writing the code for the concrete PaperManagerNonDi class it became clear
that the Metrics tool for Eclipse does correctly calculate the testability metric McCabe
cyclometic complexity. For example the following method is given a value of 2 for
testability:

private void checkWhitePaperInStock()
{
 if (getAmountOfWhitePaperInStock() < ORDER_WHITEPAPER_BELOW)
 {
 WhitePaperOrder wpo = new WhitePaperOrder();

51

 wpo.setId(getNewOrderId());
 wpo.setAmount(200);
 wpo.setOrderDate(new Date(System. currentTimeMillis()));
 paperCompanyA .orderPaper(wpo);
 }
}

Which is a correct value since there are two possible paths in this method’s code
structure; the amount of paper in stock is too low or not (in the form of the if-
statement).

Another thing about the Metrics tool that actually is something good to know when
interpreting the total lines of code (TLOC) metric is that it counts statements that
continue on the next line as two lines of code, when it is actually only one statement.
This became clear after automatically formatting the code with the help of Eclipse.
Eclipse by default wraps long statements on more lines as an effort to make them
better readable. Because this can be confusing we will not make use of auto
formatting keeping each statement on not more than one line.
The example below shows how both statements, that are exactly the same and take
equal amount of effort to write, are counted differently which can make the TLOC
metric not valid if we use it as an indication of the amount of effort needed to write a
component or test.

Counted as one line of code:
paperCompanyA .confirmReceivedPaperOrder(apo);

Counted as two lines of code:
paperCompanyA .

confirmReceivedPaperOrder(apo);

52

Implemented with PicoContainer dependency injection
The dependency we will focus on when applying the dependency injection principle is
the PaperManagerInterface implementation depending on a
PaperProviderInterface implementation. We will use PicoContainer to be
responsible for managing the desired dependencies with the help of dependency
injection.

The PaperManagerPicoDi class makes it clear that it doesn’t contain a reference to
a specific PaperProviderInterface implementation. It is only aware of the
PaperProviderInterface abstraction. Which can be seen in the import block..

import model.papermanager.PaperManagerInterface;
import model.paperorder.AbstractPaperOrder;
import model.paperorder.BrownPaperOrder;
import model.paperorder.UnknownPaperOrderException;
import model.paperorder.WhitePaperOrder;
import model.paperprovider.PaperProviderInterface;

…as well as in the ‘IBM Structural Analysis for Java’ toolkit visualization:

53

The complete implementation of the PaperManagerPicoDi class is given below

PaperManagerPicoDi.java
package model.papermanager.impl;

import java.util.Collections;
import java.util.Date;
import java.util.Set;
import java.util.SortedSet;
import java.util.TreeSet;

import model.papermanager.PaperManagerInterface;
import model.paperorder.AbstractPaperOrder;
import model.paperorder.BrownPaperOrder;
import model.paperorder.UnknownPaperOrderException;
import model.paperorder.WhitePaperOrder;
import model.paperprovider.PaperProviderInterface;

/**
 * An implementation of the PaperManagerInterface making use of PicoContainer
dependency injection
 * @author Ricardo Lindooren
 */
public class PaperManagerPicoDi implements PaperManagerInterface
{
 private PaperProviderInterface paperProvider ;
 private int amountOfBrownPaperInStock ;
 private int amountOfWhitePaperInStock ;
 private SortedSet<AbstractPaperOrder> paperOrdered ;
 private int ORDER_WHITEPAPER_BELOW = 100;
 private int ORDER_BROWNPAPER_BELOW = 100;
 private long lastOrderId ;

 /**
 * Constructor initializing the reference to a paper company
 */
 public PaperManagerPicoDi(PaperProviderInterface currentP aperProvider)
 {
 paperProvider = currentPaperProvider;
 paperOrdered = Collections. synchronizedSortedSet(new
TreeSet<AbstractPaperOrder>());
 lastOrderId = 0;
 }

 @Override
 public void brownPaperUsedInProductionProcess(int amountOfMeters)
 {
 amountOfBrownPaperInStock -= amountOfMeters;
 checkBrownPaperInStock();
 }

 @Override
 public void whitePaperUsedInProductionProcess(int amountOfMeters)
 {
 amountOfWhitePaperInStock -= amountOfMeters;
 checkWhitePaperInStock();
 }

 @Override
 public int getAmountOfBrownPaperInStock()
 {
 return amountOfBrownPaperInStock ;
 }

 @Override
 public int getAmountOfWhitePaperInStock()
 {
 return amountOfWhitePaperInStock ;
 }

 @Override
 public void paperOrderReceivedFromPaperProvider(AbstractPaperO rder apo) throws
UnknownPaperOrderException
 {

54

 if (paperOrdered .contains(apo))
 {
 // Dispatch paper company
 paperProvider .confirmReceivedPaperOrder(apo);
 // Delete from local history
 paperOrdered .remove(apo);
 }
 else
 {
 throw new UnknownPaperOrderException("Order did not exist in
paper orders");
 }
 }

 @Override
 public void setAmountOfBrownPaperInStock(int amountOfMeters)
 {
 amountOfBrownPaperInStock = amountOfMeters;
 }

 @Override
 public void setAmountOfWhitePaperInStock(int amountOfMeters)
 {
 amountOfWhitePaperInStock = amountOfMeters;
 }

 @Override
 public Set<AbstractPaperOrder> getPaperCurrentlyInOrder()
 {
 return paperOrdered ;
 }

 /**
 * Checks and orders white paper when needed
 */
 private void checkWhitePaperInStock()
 {
 if (getAmountOfWhitePaperInStock() < ORDER_WHITEPAPER_BELOW)
 {
 WhitePaperOrder wpo = new WhitePaperOrder();
 wpo.setId(getNewOrderId());
 wpo.setAmount(200);
 wpo.setOrderDate(new Date(System. currentTimeMillis()));
 // Keep in local history
 paperOrdered .add(wpo);
 // Dispatch to paper company
 paperProvider .orderPaper(wpo);
 }
 }

 /**
 * Checks and orders brown paper when needed
 */
 private void checkBrownPaperInStock()
 {
 if (getAmountOfBrownPaperInStock() < ORDER_BROWNPAPER_BELOW)
 {
 BrownPaperOrder bpo = new BrownPaperOrder();
 bpo.setId(getNewOrderId());
 bpo.setAmount(200);
 bpo.setOrderDate(new Date(System. currentTimeMillis()));
 // Keep in local history
 paperOrdered .add(bpo);
 // Dispatch to paper company
 paperProvider .orderPaper(bpo);
 }
 }

 /**
 * Creates a new order Id
 * @return last order id + 1
 */
 private synchronized Long getNewOrderId()
 {
 return new Long(lastOrderId + 1);
 }

55

}

The main difference in source code between the PaperManagerNonDi.java and
PaperManagerPicoDi.java classes is that the constructor of the last now contains
an argument. This is because PicoContainer is based on the constructor dependency
injection strategy. Which means that the dependency is injected during instantiation of
the class.

The PaperManagerPicoDi implementation consists out of 106 TLOC. And the
average McCabe complexity is 1,25.

The fact that the PaperManagerInterface dependency is injectable means that we
should be able to inject a Mock implementation improving testability of this class
(compared to the testability of the PaperManagerNonDi class).
The JUnit testcase for this component is given below.

PaperManagerPicoDiTest.java
package model.papermanager.impl;

import java.util.Iterator;

import junit.framework.TestCase;
import model.paperorder.AbstractPaperOrder;
import model.paperorder.BrownPaperOrder;
import model.paperorder.UnknownPaperOrderException;
import model.paperorder.WhitePaperOrder;
import model.paperprovider.impl.PaperCompanyMock;

import org.picocontainer.MutablePicoContainer;
import org.picocontainer.defaults.DefaultPicoContainer;

/**
 * JUnite testcase for class PaperManagerNonDi
 *
 * @see PaperManagerNonDi
 * @author Ricardo Lindooren
 */
public class PaperManagerPicoDiTest extends TestCase
{
 private PaperManagerPicoDi pmpdiUnderTest ;
 private PaperCompanyMock pctm ;

 private int brownPaperInStockToStartWith = 500;
 private int whitePaperInStockToStartWith = 500;
 private int orderBrownPaperBelow = 100;
 private int orderWhitePaperBelow = 100;
 private int brownPaperAmountThatShouldBeOrdered = 200;
 private int whitePaperAmountThatShouldBeOrdered = 200;

 @Override
 protected void setUp() throws Exception
 {
 super.setUp();

 /* The PicoContainer configuration code */

 // Use the PicoContainer logic to manage the depend encies
 MutablePicoContainer picoContainer = new DefaultPicoContainer();

 // Register the used PaperCompany implementation (M OCK OBJECT)
 picoContainer.registerComponentImplementation("PaperCompany" ,
PaperCompanyMock. class);

 // Register the used PaperManager implementation
 picoContainer.registerComponentImplementation("PaperManager" ,
PaperManagerPicoDi. class);

56

 // Get the paper manager with the needed dependenci es by PicoContainer
 pmpdiUnderTest = (PaperManagerPicoDi)
picoContainer.getComponentInstance("PaperManager");

 // Get the paper company test mock
 pctm = (PaperCompanyMock)
picoContainer.getComponentInstance("PaperCompany");

 pmpdiUnderTest .setAmountOfBrownPaperInStock(brownPaperInStockToStartWith);

 pmpdiUnderTest .setAmountOfWhitePaperInStock(whitePaperInStockToStartWith);
 }

 public void testBrownPaperUsedInProductionProcess()
 {
 /* Test if amount in stock decreases correctly */
 int usedAmountOfMeters = 5;
 pmpdiUnderTest .brownPaperUsedInProductionProcess(usedAmountOfMete rs);
 assertEquals(brownPaperInStockToStartWith - usedAmountOfMeters,
pmpdiUnderTest .getAmountOfBrownPaperInStock());

 /* Test if paper manager orders paper from paper co mpany */
 // Clear all pending orders
 pmpdiUnderTest .getPaperCurrentlyInOrder().clear();

 // Use paper so that a new order has to be placed
 pmpdiUnderTest .setAmountOfBrownPaperInStock(orderBrownPaperBelow);
 pmpdiUnderTest .brownPaperUsedInProductionProcess(1);
 assertEquals("There should be an order" , false,
pmpdiUnderTest .getPaperCurrentlyInOrder().isEmpty());

 // Check order validity
 Iterator<AbstractPaperOrder> paperOrderIterator =
pmpdiUnderTest .getPaperCurrentlyInOrder().iterator();
 AbstractPaperOrder apo = paperOrderIterator.next();
 assertTrue(apo instanceof BrownPaperOrder);
 assertEquals(brownPaperAmountThatShouldBeOrdered , apo.getAmount());

 /* Possible to test if PaperCompanyA has been calle d! */
 assertFalse(pctm .checkCurrentlyProcessedPaperOrders().isEmpty());
 Iterator<AbstractPaperOrder> paperOrderIterator2 =
pctm .checkCurrentlyProcessedPaperOrders().iterator();
 AbstractPaperOrder apo2 = paperOrderIterator2.nex t();
 assertEquals(0, apo2.compareTo(apo));
 }

 public void testWhitePaperUsedInProductionProcess()
 {
 /* Test if amount in stock decreases correctly */
 int usedAmountOfMeters = 5;
 pmpdiUnderTest .whitePaperUsedInProductionProcess(usedAmountOfMete rs);
 assertEquals(whitePaperInStockToStartWith - usedAmountOfMeters,
pmpdiUnderTest .getAmountOfWhitePaperInStock());

 /* Test if paper manager orders paper from paper co mpany */
 // Clear all pending orders
 pmpdiUnderTest .getPaperCurrentlyInOrder().clear();

 // Use paper so that a new order has to be placed
 pmpdiUnderTest .setAmountOfWhitePaperInStock(orderWhitePaperBelow);
 pmpdiUnderTest .whitePaperUsedInProductionProcess(1);
 assertEquals("There should be an order" , false,
pmpdiUnderTest .getPaperCurrentlyInOrder().isEmpty());

 // Check order validity
 Iterator<AbstractPaperOrder> paperOrderIterator =
pmpdiUnderTest .getPaperCurrentlyInOrder().iterator();
 AbstractPaperOrder apo = paperOrderIterator.next();
 assertTrue(apo instanceof WhitePaperOrder);
 assertEquals(whitePaperAmountThatShouldBeOrdered , apo.getAmount());

 /* Possible to test if PaperCompanyA has been calle d! */
 assertFalse(pctm .checkCurrentlyProcessedPaperOrders().isEmpty());
 Iterator<AbstractPaperOrder> paperOrderIterator2 =
pctm .checkCurrentlyProcessedPaperOrders().iterator();

57

 AbstractPaperOrder apo2 = paperOrderIterator2.nex t();
 assertEquals(0, apo2.compareTo(apo));
 }

 public void testGetAmountOfBrownPaperInStock()
 {
 assertEquals(brownPaperInStockToStartWith ,
pmpdiUnderTest .getAmountOfBrownPaperInStock());
 }

 public void testGetAmountOfWhitePaperInStock()
 {
 assertEquals(whitePaperInStockToStartWith ,
pmpdiUnderTest .getAmountOfWhitePaperInStock());
 }

 public void testPaperOrderReceivedFromPaperProvider()
 {
 WhitePaperOrder wpo = new WhitePaperOrder();
 // fake Id
 wpo.setId(new Long(324));
 wpo.setAmount(1);

 UnknownPaperOrderException upoex = null;
 try
 {
 pmpdiUnderTest .paperOrderReceivedFromPaperProvider(wpo);
 }
 catch(UnknownPaperOrderException ex)
 {
 upoex = ex;
 }
 assertNotNull("Unknown order should throw an exception" , upoex);

 // Use paper so that a new order has to be placed
 pmpdiUnderTest .setAmountOfBrownPaperInStock(orderBrownPaperBelow);
 pmpdiUnderTest .brownPaperUsedInProductionProcess(1);
 Iterator<AbstractPaperOrder> paperOrderIterator =
pmpdiUnderTest .getPaperCurrentlyInOrder().iterator();
 AbstractPaperOrder apo = paperOrderIterator.next();

 /* Possible to test if PaperCompanyA has been calle d! */
 assertFalse(pctm .checkCurrentlyProcessedPaperOrders().isEmpty());

 UnknownPaperOrderException upoex2 = null;
 try
 {
 pmpdiUnderTest .paperOrderReceivedFromPaperProvider(apo);
 }
 catch(UnknownPaperOrderException ex)
 {
 upoex2 = ex;
 }

 assertNull(upoex2);
 assertTrue(pmpdiUnderTest .getPaperCurrentlyInOrder().isEmpty());

 /* Possible to test if PaperCompanyA has been calle d! */
 assertTrue(pctm .checkCurrentlyProcessedPaperOrders().isEmpty());
 }

 /**
 * Simple getter/setter test
 */
 public void testSetAmountOfBrownPaperInStock()
 {
 int testValue = 10;
 pmpdiUnderTest .setAmountOfBrownPaperInStock(testValue);
 assertEquals(testValue, pmpdiUnderTest .getAmountOfBrownPaperInStock());
 }

 /**
 * Simple getter/setter test
 */
 public void testSetAmountOfWhitePaperInStock()

58

 {
 int testValue = 20;
 pmpdiUnderTest .setAmountOfWhitePaperInStock(testValue);
 assertEquals(testValue, pmpdiUnderTest .getAmountOfWhitePaperInStock());
 }

 /**
 * Simple not null test on getter
 */
 public void testGetPaperCurrentlyInOrder()
 {
 assertNotNull(pmpdiUnderTest .getPaperCurrentlyInOrder());
 }
}

This testcase contains 126 TLOC. Of which 5 LOC are used to configure the
dependencies managed by PicoContainer. It also contains 22 calls to JUnit assert
methods. The reason for the difference in the amount of TLOC compared with the
PaperManagerNonDiTest JUnit testcase is that this testcase contains PicoContainer
configuration code as well as more test code (calls to JUnit assert methods) used to
test values in the PaperCompanyMock class that’s injected in
PaperManagerPicoDi during the setup before each test.

According to the JUnit test report the success rate of this test is 100%. The Cobertura
test coverage report shows that all LOC and branches are executed during the test.

Figure 10: Code test coverage

The code of the mock object used to test the behavior of PaperManagerPicoDi
class more rigorously is given below.

PaperCompanyMock.java
package model.paperprovider.impl;

import java.util.Collections;
import java.util.Set;
import java.util.SortedSet;
import java.util.TreeSet;

import model.paperorder.AbstractPaperOrder;
import model.paperorder.UnknownPaperOrderException;
import model.paperprovider.PaperProviderInterface;

public class PaperCompanyMock implements PaperProviderInterface
{
 private SortedSet<AbstractPaperOrder> paperOrdered ;

 public PaperCompanyMock()
 {
 paperOrdered = Collections. synchronizedSortedSet(new
TreeSet<AbstractPaperOrder>());
 }

 @Override
 public Set<AbstractPaperOrder> checkCurrentlyProcessedPap erOrders()
 {
 return paperOrdered ;
 }

 @Override
 public void confirmReceivedPaperOrder(AbstractPaperOrder apo)
 throws UnknownPaperOrderException
 {
 if (paperOrdered .contains(apo))

59

 {
 paperOrdered .remove(apo);
 }
 else
 {
 throw new UnknownPaperOrderException("Order did not exist in
paper orders");
 }
 }

 @Override
 public void orderPaper(AbstractPaperOrder apo)
 {
 paperOrdered .add(apo);
 }
}

60

Implemented with Java EE5 dependency injection
The Java Enterprise Edition 5 implementation is in the form of a so called Enterprise
Java Bean (EJB). In this most recent edition of their enterprise Java framework Sun’s
has attempted to make it more easy for developers to develop EJB’s. Annotations give
developers the possibility to manage dependencies instead of having to make use of
XML configuration files.

With the @EJB annotation it is possible to let a Java application server inject an
implementing bean:

@Stateless
public class PaperManagerBean implements PaperManagerInterface
{
 @EJB
 private PaperProviderInterface paperProvider ;

The @Stateless annotation indicates that the application server should manage the
life cycle of this EJB as a Stateless Session Bean. Meaning that its instantiation is not
bound to a specific client that makes use of it (a Statefull Sesion Bean on the other
hand is always bound to a single client session).

The @EJB annotation example given above proved un-testable with a JUnit testcase.
The reason for this was that a managed environment (like a Java application server) is
needed to realize this form of field dependency injection.
Fortunately the @EJB annotation also works on setter methods:

@EJB
public void setPaperProvider(PaperProviderInterface
paperProviderImplementation)
{
 paperProvider = paperProviderImplementation;
}

The complete implementation for this class is given below.

PaperManagerBean.java
package model.papermanager.impl;

import java.util.Collections;
import java.util.Date;
import java.util.Set;
import java.util.SortedSet;
import java.util.TreeSet;

import javax.ejb.EJB;
import javax.ejb.Stateless;

import model.papermanager.PaperManagerInterface;
import model.paperorder.AbstractPaperOrder;
import model.paperorder.BrownPaperOrder;
import model.paperorder.UnknownPaperOrderException;
import model.paperorder.WhitePaperOrder;
import model.paperprovider.PaperProviderInterface;

/**
 * An implementation of the PaperManagerInterface making use of EJB dependency
injection

61

 * @author Ricardo Lindooren
 */
@Stateless
public class PaperManagerBean implements PaperManagerInterface
{
 private PaperProviderInterface paperProvider ;

 private int amountOfBrownPaperInStock ;
 private int amountOfWhitePaperInStock ;
 private SortedSet<AbstractPaperOrder> paperOrdered ;
 private int ORDER_WHITEPAPER_BELOW = 100;
 private int ORDER_BROWNPAPER_BELOW = 100;
 private long lastOrderId ;

 /**
 * Non argument constructor
 */
 public PaperManagerBean()
 {
 paperOrdered = Collections. synchronizedSortedSet(new
TreeSet<AbstractPaperOrder>());
 lastOrderId = 0;
 }

 @Override
 public void brownPaperUsedInProductionProcess(int amountOfMeters)
 {
 amountOfBrownPaperInStock -= amountOfMeters;
 checkBrownPaperInStock();
 }

 @Override
 public void whitePaperUsedInProductionProcess(int amountOfMeters)
 {
 amountOfWhitePaperInStock -= amountOfMeters;
 checkWhitePaperInStock();
 }

 @Override
 public int getAmountOfBrownPaperInStock()
 {
 return amountOfBrownPaperInStock ;
 }

 @Override
 public int getAmountOfWhitePaperInStock()
 {
 return amountOfWhitePaperInStock ;
 }

 @Override
 public void paperOrderReceivedFromPaperProvider(AbstractPaperO rder apo) throws
UnknownPaperOrderException
 {
 if (paperOrdered .contains(apo))
 {
 // Dispatch paper company
 paperProvider .confirmReceivedPaperOrder(apo);
 // Delete from local history
 paperOrdered .remove(apo);
 }
 else
 {
 throw new UnknownPaperOrderException("Order did not exist in
paper orders");
 }
 }

 @Override
 public void setAmountOfBrownPaperInStock(int amountOfMeters)
 {
 amountOfBrownPaperInStock = amountOfMeters;
 }

 @Override
 public void setAmountOfWhitePaperInStock(int amountOfMeters)

62

 {
 amountOfWhitePaperInStock = amountOfMeters;
 }

 @Override
 public Set<AbstractPaperOrder> getPaperCurrentlyInOrder()
 {
 return paperOrdered ;
 }

 /**
 * Checks and orders white paper when needed
 */
 private void checkWhitePaperInStock()
 {
 if (getAmountOfWhitePaperInStock() < ORDER_WHITEPAPER_BELOW)
 {
 WhitePaperOrder wpo = new WhitePaperOrder();
 wpo.setId(getNewOrderId());
 wpo.setAmount(200);
 wpo.setOrderDate(new Date(System. currentTimeMillis()));
 // Keep in local history
 paperOrdered .add(wpo);
 // Dispatch to paper company
 paperProvider .orderPaper(wpo);
 }
 }

 /**
 * Checks and orders brown paper when needed
 */
 private void checkBrownPaperInStock()
 {
 if (getAmountOfBrownPaperInStock() < ORDER_BROWNPAPER_BELOW)
 {
 BrownPaperOrder bpo = new BrownPaperOrder();
 bpo.setId(getNewOrderId());
 bpo.setAmount(200);
 bpo.setOrderDate(new Date(System. currentTimeMillis()));
 // Keep in local history
 paperOrdered .add(bpo);
 // Dispatch to paper company
 paperProvider .orderPaper(bpo);
 }
 }

 /**
 * Creates a new order Id
 * @return last order id + 1
 */
 private synchronized Long getNewOrderId()
 {
 return new Long(lastOrderId + 1);
 }

 @EJB
 public void setPaperProvider(PaperProviderInterface
paperProviderImplementation)
 {
 paperProvider = paperProviderImplementation;
 }
}

This class source file contains 113 TLOC and the average McCabe cyclomatic
complexity is 1,23. It has only two real differences with the PaperManagerPicoDi
class. These are that it has a non-argument constructor because it doesn’t use the
constructor injection strategy (having a non-argument constructor is also mandatory
for an EJB). Instead it has an extra setter method because it uses the setter injection
strategy.

63

The setter injection makes it possible to inject the needed dependency from within a
testcase. The testcase used is given below.

PaparManagerBeanTest.java
package model.papermanager.impl;

import java.util.Iterator;

import junit.framework.TestCase;
import model.paperorder.AbstractPaperOrder;
import model.paperorder.BrownPaperOrder;
import model.paperorder.UnknownPaperOrderException;
import model.paperorder.WhitePaperOrder;
import model.paperprovider.impl.PaperCompanyMock;

/**
 * JUnite testcase for class PaperManagerBean
 *
 * @see PaperManagerNonDi
 * @author Ricardo Lindooren
 */
public class PaperManagerBeanTest extends TestCase
{
 private PaperManagerBean pmbUnderTest ;
 private PaperCompanyMock pctm ;

 private int brownPaperInStockToStartWith = 500;
 private int whitePaperInStockToStartWith = 500;
 private int orderBrownPaperBelow = 100;
 private int orderWhitePaperBelow = 100;
 private int brownPaperAmountThatShouldBeOrdered = 200;
 private int whitePaperAmountThatShouldBeOrdered = 200;

 @Override
 protected void setUp() throws Exception
 {
 super.setUp();

 pctm = new PaperCompanyMock();

 pmbUnderTest = new PaperManagerBean();
 pmbUnderTest .setPaperProvider(pctm);

 pmbUnderTest .setAmountOfBrownPaperInStock(brownPaperInStockToStartWith);

 pmbUnderTest .setAmountOfWhitePaperInStock(whitePaperInStockToStartWith);
 }

 public void testBrownPaperUsedInProductionProcess()
 {
 /* Test if amount in stock decreases correctly */
 int usedAmountOfMeters = 5;
 pmbUnderTest .brownPaperUsedInProductionProcess(usedAmountOfMete rs);
 assertEquals(brownPaperInStockToStartWith - usedAmountOfMeters,
pmbUnderTest .getAmountOfBrownPaperInStock());

 /* Test if paper manager orders paper from paper co mpany */
 // Clear all pending orders
 pmbUnderTest .getPaperCurrentlyInOrder().clear();

 // Use paper so that a new order has to be placed
 pmbUnderTest .setAmountOfBrownPaperInStock(orderBrownPaperBelow);
 pmbUnderTest .brownPaperUsedInProductionProcess(1);
 assertEquals("There should be an order" , false,
pmbUnderTest .getPaperCurrentlyInOrder().isEmpty());

 // Check order validity
 Iterator<AbstractPaperOrder> paperOrderIterator =
pmbUnderTest .getPaperCurrentlyInOrder().iterator();
 AbstractPaperOrder apo = paperOrderIterator.next();
 assertTrue(apo instanceof BrownPaperOrder);
 assertEquals(brownPaperAmountThatShouldBeOrdered , apo.getAmount());

64

 /* Possible to test if PaperCompanyA has been calle d! */
 assertFalse(pctm .checkCurrentlyProcessedPaperOrders().isEmpty());
 Iterator<AbstractPaperOrder> paperOrderIterator2 =
pctm .checkCurrentlyProcessedPaperOrders().iterator();
 AbstractPaperOrder apo2 = paperOrderIterator2.nex t();
 assertEquals(0, apo2.compareTo(apo));
 }

 public void testWhitePaperUsedInProductionProcess()
 {
 /* Test if amount in stock decreases correctly */
 int usedAmountOfMeters = 5;
 pmbUnderTest .whitePaperUsedInProductionProcess(usedAmountOfMete rs);
 assertEquals(whitePaperInStockToStartWith - usedAmountOfMeters,
pmbUnderTest .getAmountOfWhitePaperInStock());

 /* Test if paper manager orders paper from paper co mpany */
 // Clear all pending orders
 pmbUnderTest .getPaperCurrentlyInOrder().clear();

 // Use paper so that a new order has to be placed
 pmbUnderTest .setAmountOfWhitePaperInStock(orderWhitePaperBelow);
 pmbUnderTest .whitePaperUsedInProductionProcess(1);
 assertEquals("There should be an order" , false,
pmbUnderTest .getPaperCurrentlyInOrder().isEmpty());

 // Check order validity
 Iterator<AbstractPaperOrder> paperOrderIterator =
pmbUnderTest .getPaperCurrentlyInOrder().iterator();
 AbstractPaperOrder apo = paperOrderIterator.next();
 assertTrue(apo instanceof WhitePaperOrder);
 assertEquals(whitePaperAmountThatShouldBeOrdered , apo.getAmount());

 /* Possible to test if PaperCompanyA has been calle d! */
 assertFalse(pctm .checkCurrentlyProcessedPaperOrders().isEmpty());
 Iterator<AbstractPaperOrder> paperOrderIterator2 =
pctm .checkCurrentlyProcessedPaperOrders().iterator();
 AbstractPaperOrder apo2 = paperOrderIterator2.nex t();
 assertEquals(0, apo2.compareTo(apo));
 }

 public void testGetAmountOfBrownPaperInStock()
 {
 assertEquals(brownPaperInStockToStartWith ,
pmbUnderTest .getAmountOfBrownPaperInStock());
 }

 public void testGetAmountOfWhitePaperInStock()
 {
 assertEquals(whitePaperInStockToStartWith ,
pmbUnderTest .getAmountOfWhitePaperInStock());
 }

 public void testPaperOrderReceivedFromPaperProvider()
 {
 WhitePaperOrder wpo = new WhitePaperOrder();
 // fake Id
 wpo.setId(new Long(324));
 wpo.setAmount(1);

 UnknownPaperOrderException upoex = null;
 try
 {
 pmbUnderTest .paperOrderReceivedFromPaperProvider(wpo);
 }
 catch(UnknownPaperOrderException ex)
 {
 upoex = ex;
 }
 assertNotNull("Unknown order should throw an exception" , upoex);

 // Use paper so that a new order has to be placed
 pmbUnderTest .setAmountOfBrownPaperInStock(orderBrownPaperBelow);
 pmbUnderTest .brownPaperUsedInProductionProcess(1);
 Iterator<AbstractPaperOrder> paperOrderIterator =
pmbUnderTest .getPaperCurrentlyInOrder().iterator();

65

 AbstractPaperOrder apo = paperOrderIterator.next();

 /* Possible to test if PaperCompanyA has been calle d! */
 assertFalse(pctm .checkCurrentlyProcessedPaperOrders().isEmpty());

 UnknownPaperOrderException upoex2 = null;
 try
 {
 pmbUnderTest .paperOrderReceivedFromPaperProvider(apo);
 }
 catch(UnknownPaperOrderException ex)
 {
 upoex2 = ex;
 }

 assertNull(upoex2);
 assertTrue(pmbUnderTest .getPaperCurrentlyInOrder().isEmpty());

 /* Possible to test if PaperCompanyA has been calle d! */
 assertTrue(pctm .checkCurrentlyProcessedPaperOrders().isEmpty());
 }

 /**
 * Simple getter/setter test
 */
 public void testSetAmountOfBrownPaperInStock()
 {
 int testValue = 10;
 pmbUnderTest .setAmountOfBrownPaperInStock(testValue);
 assertEquals(testValue, pmbUnderTest .getAmountOfBrownPaperInStock());
 }

 /**
 * Simple getter/setter test
 */
 public void testSetAmountOfWhitePaperInStock()
 {
 int testValue = 20;
 pmbUnderTest .setAmountOfWhitePaperInStock(testValue);
 assertEquals(testValue, pmbUnderTest .getAmountOfWhitePaperInStock());
 }

 /**
 * Simple not null test on getter
 */
 public void testGetPaperCurrentlyInOrder()
 {
 assertNotNull(pmbUnderTest .getPaperCurrentlyInOrder());
 }
}

This testcase contains 122 TLOC of which 3 LOC are used to set up the
dependencies. It also contains 22 calls to JUnit assert methods and uses the same
mock object also used to test the PicoContainer implementation.
Both the JUnit and Cobertura reports indicates it also scores the same as the
PaperManagerPicoDiTest testcase; 100% success and a complete coverage of all
lines and branches:

Figure 11: Code test coverage

A note about testing an EJB class with the JUnit test framework is that by default the
@EJB annotations are not understood and thus the test fails completely. To overcome
this problem it is possible to make the needed Java EE5 libraries available. In this

66

case we used j2ee.jar and javaee.jar that are distributed with the community Sun Java
application server called GlassFish.

Note about the Metrics tool for Eclipse
The average cyclometic complexity of the PaperManagerBean class (1,23) is lower
than that of the PaperManagerPicoDi class (1,25). The reason for this that the
Metrics tool for Eclipse calculates the McCabe complexity per method so the average
is based on the amount of methods and their indication of testability. The
PaperManagerBean has one method more (the setter method used for injecting the
PaperProviderInterface implementation) with a cyclomatic complexity of 1. This
causes the difference for this metric although the logic defined in both classes doesn’t
really differ from each other.

Another thing maybe good to know when interpreting the TLOC metric is that the
Metrics tool counts annotations as a line of code. And while investigating this, I also
came to the conclusion that braces on a new line are also counted as a line of code.

So the next example is counted as 5 LOC:

@EJB
public void setPaperProvider(PaperProviderInterface
paperProviderImplementation)
{
 paperProvider = paperProviderImplementation;
}

And commenting out the annotation and placing everything on one line is counted as
one line of code (LOC = 1):

//@EJB
public void setPaperProvider(PaperProviderInterface
paperProviderImplementation){ paperProvider =
paperProviderImplementation;}

Therefore to give the LOC metric the same meaning for all java source files we use
formatting as in the ‘5 LOC’ example above. Meaning; method-signature on one line,
braces on a new line and each statement on a new line.

67

What about the other dependencies?
In the paper manager example the PaperManagerInterface implementing classes
depend on a PaperProviderInterface implementation. But the paper manager
contains more dependencies.

If we look at the concrete class PaperManagerPicoDi for example; it implements
the PaperManagerInterface with the goal to manage its
PaperProviderInterface dependency with dependency injection managed by
PicoContainer. But since it communicates in means of paper order objects with a
PaperProviderInterface implementation it also depends on the classes
AbstractPaperOrder , WhitePaperOrder and BrownPaperOrder .

Figure 12: Still existing dependencies

One might question this design right away. But for this research it was desirable to
create an example project containing different kind of dependencies, ignoring the fact
that this might result in a bad design.

The result of this design is that both PaperManagerInterface and
PaperProviderInterface implementations depend on the paper order classes. As
said; to keep communication between both implementations generic
AbstractPaperOrder objects are communicated between them both. The signature
of the PaperProviderInterface orderPaper method demonstrates this:

public void orderPaper(AbstractPaperOrder apo);

68

Instead of an abstract class that needs to be extended by another class (in this case the
WhitePaperOrder and BrownPaperOrder classes) an interface could also have
been used, for example named PaperOrderInterface . The reason for choosing the
abstract class approach is because the actual order implementation classes do not
differ from each other, so the abstract class is used to contain the shared
implementation logic.

But if an AbstractPaperOrder is communicated why does the
PaperManagerPicoDi implementation also depend on the WhitePaperOrder and
BrownPaperOrder classes? The reason is that the PaperManagerPicoDi class
contains logic for creating instances of the correct order.

Dependency injection in this case seemed unusable because the
PaperManagerPicoDi class creates new instances itself whenever they are needed.
It is interesting, as a side exploration, to find out if it is possible to eliminate these
dependencies as well.

A factory component can be used to create the correct instances of an
AbstractPaperOrder without the PaperManagerPicoDi knowing if it is an
instance of WhitePaperOrder or BrownPaperOrder . The factory could then
contain the following two methods for example;

public AbstractPaperOrder getNewBrownPaperOrder();

public AbstractPaperOrder getNewWhitePaperOrder();

Unfortunatly the PaperManagerPicoDi class then depends on this factory
component. Thinking further it also proved to be possible to create an interface for
such a factory component. A PaperManagerInterface implementation can then
be extended with a possibility to inject an implementation of the factory interface.
It then only depends on the PaperProviderInterface and the
PaperOrderFactoryInterface as well as the AbstractPaperOrder class, but
no longer on the extending classes WhitePaperOrder and BrownPaperOrder.

Unfortunately this approach cannot be used at the other end of the communication; the
PaperProviderInterface implementations still need to find out what the exact
implementing paper order class is. This could for example be done by using Java’s
instanceof :

if (apo instanceof BrownPaperOrder)
{
 // logic for processing an order for brown pape r
}
else if (apo instanceof WhitePaperOrder)
{
 // logic for processing an order for white pape r
}

So there seems no escape for a PaperProviderInterface implementation when it
comes to depending on AbstractPaperOrder extending classes. Next to that the

69

instanceof example doesn’t look very sophisticated; this solution feels more like
fixing a bad design.

Another approach to break free from the AbstractPaperOrder ,
WhitePaperOrder and BrownPaperOrder class dependencies is to not
communicate objects at all in this case. A design principle which is also promoted by
the Law of Demeter (sometimes also called ‘law of good design’ [Lieberherr88]).
In short the Law of Demeter (LoD) describes how components should communicate
with each other; this can be summarized as ‘Only talk to your immediate friends’.
Components should know as little possible of the structure of the software product.
This means that components should for example not be aware of subcomponents..

Applying the LoD on the paper manager to break with the paper order dependencies
can for example look like this when we focus on the ordering part of the
PaperProviderInterface abstraction:

public void orderBrownPaper(int meters);

public void orderWhitePaper(int meters);

instead of:

public void orderPaper(AbstractPaperOrder apo);

[Lieberherr88] gives a more thorough description of the principles of the LoD but also
the trade-offs; the possible increase in number of methods and arguments for
methods, which can result in making maintenance more difficult. In the paper
manager example this is for example possible when the company also wants to be
able to order green paper; another method is then needed in the
PaperProviderInterface abstraction; orderGreenPaper(int meters) .

A short but good and more complete example of the effects of implementing the LoD
is given in [Bock??].

70

References

[Zeller05] Andreas Zeller – Why Programs Fail

[SWEBOK04] Software Engineering Body Of Knowledge

[Gelperin88] David Gelperin et. al – The Growth of Software Testing

[Kaner99] Cem Kaner et. al – Test Types and their Place in the Software Development

Process

[Binder94] Robert V. Binder – Design for Testability

[Dijkstra69] Edsger W. Dijkstra – Notes on Structured Programming

[Jackson03] Daniel Jackson – Module Dependences in Software Design

[Nene05] Dhananjay Nene – A beginners guide to Dependency Injection

[Martin96] Robert C. Martin – The Dependency Inversion Principle

[McConnel04] Steve McConnell – Code complete (2nd Edition)

[Lieberherr88] K. Lieberherr et. al – Object-Oriented Programming: An Objective Sense of
Style

[Bock??]

David Bock – The Paperboy, The Wallet, and The Law Of Demeter

[Bruntink03]

Magiel Bruntink – Testability of Object-Oriented Systems: a Metrics-based
Approach

[Weiskotten06]

Jeremy Weiskotten – Dependency Injection & Testable Objects

[Christensen03]

Henrik Baerbak Christensen – Systematic Testing should bot be a Topic in the
Computer Science Curriculum!

[Whittaker00]

James A. Whittaker – What Is Software Testing? And Why Is It So Hard?

[Fowler04]

Martin Fowler – Inversion of Control Containers and the Dependency Injection
pattern

[Wikipedia-DI]

http://en.wikipedia.org/wiki/Dependency_injection

[Wikipedia-
Complexiteitsgraad]

http://nl.wikipedia.org/wiki/Complexiteitsgraad

[CodeHausPico] http://docs.codehaus.org/display/PICO/IoC+Types

