University Of Amsterdam
Faculty of Science

Master Thesis Software Engineering

Testability of Dependency injection

An attempt to find out how the testability of soeiiade is affected when
the dependency injection principle is applied to it

Ricardo Lindooren

¢ venspro

UNIVERSITEIT VAN AMSTERDAM

Student number: 5636078

Host Organization: Venspro

Thesis Supervisor: Dr. Jurgen J. Vinju
Internship Supervisor: Drs. Johan van Vulpen
Availability: Public domain

Date: 10 September 2007

Preface

Dear reader, the document you are reading rightisoay final thesis with which |
conclude the one year during Software Engineeriagtar program that is offered to
students by the University of Amsterdam.

The reason to sign myself up for this master pnognaas the fact that after two years
working fulltime as a developer | came to the casin that there was more to
creating a good software product than just writimg code for it. This conclusion
made me realize that in order to increase my skiitd professionalism | had to
increase my awareness of the aspects that todetinethe complete software
engineering process.

While I'm writing this as the last part of my fintllesis document | truly believe that
my awareness of the software engineering processbeeased. | hope that my final
thesis document proofs this awareness to you cidwer.

For me there is no doubt this could have been & mamplete document, especially
when it comes to the actual research I've perfortndzhse my conclusion on. The
reason for this, is that during the available pgobtime that students have to work
on their final thesis research | decided to changeesearch subject because |
believed the research subject | started out wihndit have a concrete link with the
software engineering process. | was convincedvitian | continued my original
research it would result in writing a final thediscument that | could not ever be
satisfied with.

This meant | had to find a new research subjeatedlsas a company giving me the
change to perform a new research within the limiteailable amount of time that
was still left.

Because of this limited available amount of timeépok a lot of hard work to
complete my final thesis document before the oabdeadline. And although it may
not be as complete as it might have been if | hadesl with my second research
subject right away, I'm still reasonably satisfigdh the content that | was able to
produce.

Working on my thesis research was a true learnipgrence for me. It has given me
a better understanding of what scientific reseauthally is. It especially has given
me a lot of respect for people that dedicate thérasdo collecting facts about any
research subject and sharing these with other peophe world making it possible to
learn from.

Acknowledgement

At the beginning of the program all students weeened that it was going to require
a lot of work from them to successfully complete 8oftware Engineering master
program within one year. Looking back on this yleean confirm it really did require
a lot of work, dedication and motivation. But noflyfrom the students! The driving
force behind the Software Engineering master pragaee people that are truly
dedicated to offer it in the form of a one yeargyeon and also in the best way
possible.

Therefore | would like to thank the following pensofor investing their time in the
Software Engineering master programof.dr. Paul Klint — course: Software
Evolution,prof. dr. Hansvan Vliet — course: Software Architecturdy,. Patricia

L ago — course: Software Architectuna,of. dr. Jan van Eijck — course: Software
Testing andPeter van Lith — courses: Software Construction and Softwared3sc
In particularly | would like to thanllrs. Hans Dekkers, Msc. — course:
Requirements engineering adid Jurgen J. Vinju — course: Software Evolution. |
would like to thank Hans for his support to studeshiring many of the practical lab
sessions. | would like to thank Jurgen for his swpps my thesis supervisor.

The person that made it possible to finish my fthakis research, as well as writing
this document, before the original final deadligdris. Johan van Vulpen. | would
like to thank Johan for giving me the change tardoresearch at Venspro after
making only one phone call to him.

Last, but certainly not least, | would like to tkamy par ents. Without their support |
probably would not have started with the Softwangi&eering master program in the
first place.

Summary

Before starting with this research my hypothesis thattest automation will become
more complex when using a dependency injectiong@Uition Suspected reasons for
this increase of complexity where that {i¢ DI solution should be configured for
each tesand (2)it may even be impossible to use a DI solution tesh environment
since DI solutions act as a managed environmerthem own Both of these reasons,
in my opinion, could be seen as how a DI solutian imtrude a software product and
especially its test environment.

Both reasons (1) and (2) proved not to be truenduthis research. The cause for both
reasons not being true is that the components myatéed with DI during this
research where done so with either the constractsetter method DI strategy. This
means that dependencies can also be injected witlaeing to make use of a DI
solution. From within a JUnit testcase it provedbéono problem injecting, for
example a mock object, as a constructor or seattemaent to the component under
test without having to make use of a DI solution.pMoof could be found that the DI
solutions used during this research did intrudelictate, the test environment.

In order to do a research focusing on how DI intsuthe software testing
environment first of all an attempt has been madent out what the effects of using
DI are on software testability in general. Therefdrased on a literature study, a
description has been given of what software testing general and what makes
software testable (appendix A). As well as whateshelency injection is and how it
affects a software product on component/source B (appendix B).

The two outcomes of this literature study (what esagoftware testable & how DI
affects a software product) have been brought nelagion with each other (chapter
2). Bringing them both in to relation with each @thesulted in the ability to make
assumptions of how DI affects the testability ditware product (paragraph 2.1).
Based on these assumptions a set of metrics hassbkted that could be used as a
factual representation of how DI affects softwastdbility and especially the level of
intrusion a selected DI solution forms for the wbibx/JUnit test environment of a
software product (paragraph 2.2).

The limited scope of this research (2 componenpdemented with 2 DI solutions),

as well as that the extracted metrics did notyegille an indication of how testability

is affected on component level, mean that the tesdithis research cannot be seen as
a factual representation of how the testabilitgaftware is affected when making use
of dependency injection.

Under ‘Future work’ | therefore describe a possg#eond research iteration that
assumingly can improve this research when it caimesllecting facts on how DI
affects software testability.

Index

o =] = TP UPPPPPPPUPPPPRRR [
o [0V =T o =T 0 0= o | i
SUIMIMIATY ettt e e eerne e e e e e e e et e e e et e e e et e e e et e e e e neesesneeeenn e eeenns i
10 = PP PPPPPPPPPPPPPRP 1
1 Context and backgroundooeiiieeeeeeiieeeeerr e 3
Y/ o A V7= o o PSSR 3
1.2 ReSearch Methodcouuiiiiiiiii et 3
2 The effects of Dependency Injection on testabilit..............cooeviiiiiiiiiiiiciiennn. 5
2.1 Assumptions of why and how DI effects testpili...............cccceeeiviiviiiiininnnns 5
2.1.1 How DI effects a complete software product.............cccceeeeeiiiiiiiiiiiininnns 5
2.1.2 How DI effects software testabilityccceccooeeeeeeieieiiiiiieeeeee 6.
2.2 How can we make this measurable? ... 9
2.2.1 Scope defiNitiONcoeeieiiiiiiiitceeemmcee e 9
2.2.2 Measurement definitioncooiiiiiieer i 10
S RESEAICH FESUILS ...t e e bbb e e 13
3.1 The paper manager eXample e 13
3.2 The Greetz! customer COMPONENT........cooommeeeviiiiiiiiee e e e eeeeeeeeeeeeeeeeanaees 14
B3 OVBIVIBW ..ottt ettt e e e e e e e e e e e e e e eeeeeeaaeeeeeeesnnnnes 16
3.3.1 Paper manager eXample ... ceeeeeeeee e 16
3.3.2 Greetz! customer COMPONENTcommmeeeneeeeeeeeina e eeeeeriiaaaaeeeeee 16
3.4 ValALONceiiiiiiiiiie e —————— 17
3. 4.1 The TLOC MELIC...ciii i e e i ettt e e e e e e e e e e e eeeeeas 17
3.4.2 The McCabe Cyclomatic complexity MetriC...........covvvevveevivivniiiineneenn. 17
3.4.3 Needed DI configuration in tEStCASES . errrrrrrrnniiiiieieeeeeeeeeeeeneeen 8.1
R @)V - T [PP 18
4.5 TESE CASES ...t e e e ettt e e e e et e e e e e e e tb e e e e e eenne 18
4 CONCIUSION .ttt ettt ettt e e e e e e e e e e ssrs e e e e e e e eeeaeeeas 20
FULUI® WOTK ..ttt 21
Appendix A - Introduction to Software TeStiNG «.cccc..euevieeiieieiiiiiiiieeeiiiee 23
WHhy iS SOftWAre tESTEA?veveiiie e s e e e e e e e e e e e e e e s 23
Why does software Not DENAVE?oicoeeeeeeiiiiei e 23
When IS SOftWare teSIEA?ovviiiiiiiiie e 24
HOW IS SOtWAIE tESTEUT?veeiiiiee et et s 25
g F= g gV T o] g =] P 26
DESIGN PRASE ...ttt a bbb ——————————a——_ 26
(@00 [] 0 To [o] o F= TS = 26
TESHNG PRASE ..o ettt e e e e 27
What makes software testable?oceeeeeeeeiii e 27
Multiple input POSSIDIITIESveeeiii e 28
Source Code COMPIEXILYccvvviveeeeeiietmmmmmme e e e e e e e e e e e e eeeeee s 28
DEPENUENCIES ...ttt ettt e e e e e e e e e ee e e e e e 29
Controllability & observabilityoemeeieeeeeiccrre e 30
Traceability Of reqUIrEMENTSuuueiiii e 30
TEST AUIOMALION ...t 30

Appendix B - Introduction to Dependency Injection...............ccooovvvveivvvvennnnnnnnn. 32.

What are dependenCiE©S?........uuiiii i eeeeeeeeeiire e e e e e e e e e e 32
What are the effects of dependencCies? ... 32
[| o PP TPRRPPPTP 32
Fragile . e e e 32
IMMODIIE .. 32
uncontrollable..........ooo 33
N I == 10] 0 =SSP 33
What is dependency iNJECHIONTcoo oot eee 34
From static facCtory PatterN............ouuvueiiiiiiieiee e 35
. TO AYNAMIC WIFTING et ettt e e e e e e e e e e eeeees 35
CUIENT SOIULIONS ...t e e et e e e e e aeaeeeees 37
Types of dependency INJECTION e eeeeeeeeeeeeeeeiiiiia e eeeas 37
Containers / Managed €nNVIFONMENLSo eeeernnnnnnaneeeeeeeeessmemmemmmnn. 39.
Appendix C — The paper manager eXample......ccccccceeoiieeieeeeeeeeeeeeeeeeie 40
TEChNICAl AESIGN ... s 40
The paper manager iNtEIrfaCe.............. o e eeeee s e e e e e e e e eeeeeeeeeaeee .. 41
The paper provider INTErfaceoooo oo 42
The unknown paper eXCEPLIONcovevevieeecieiee e eeee e A2
The abstract paper Order..... ..o 43
Implemented without dependency iNJECLION ... eeeiiviiieeiicee e, 44.
PaperManagerNONDILJAVA...........cooiiiiiiiceeeeeeciea e 45
PaperManagerNONDITESEJAVA........uuuuiiiiiieieeeeeeeeeeeeeeeeeere e e e e a7
Note about the Metrics tool for EClIPSecoomriiiiiiiiiiiiii e 50
Implemented with PicoContainer dependency injection.............cccevvvvvvvninennnn. 52
PaperManagerPiCODI.JAVAuuuuuuuicemmmmmiiiae e 53
PaperManagerPiCODITESt.Java.........cccovvieeeeeeeei e 55
PaperCompanyMOCK.JAVAcoooiii i 58
Implemented with Java EE5 dependency injeCtiQn eeeeeieeeeeceeieeeieeeiiiiiins 60
PaperManagerBean.jaVacoovieii oo e ettt 60
PaparManagerBeanTeSt.javauuuuuiiieeereeieeieeeeeeeeeiers e e e e e e e e 63
Note about the Metrics tool for EClIPSeccmriiiiiiiiiiiieii e 66
What about the other dependenCies?....... o eeeernniiiiiiieeeeeeeeseereeeeesssieens 07
70

R (1 (=] [ST

1 Context and background

Venspro is a company that creates concepts fagithend greet branch. Their
biggest concept at the moment is Greetz!. Grestahionline service allowing
customers to design real greeting cards which aelreeted -to the recipient(s) of the
card- by normal mailwWww.greetz.n).

The goal of Venspro is to create a worldwide Gregteeting card network.

Meaning; it should be possible to print Greetzdsan as many countries as possible.
E.g.: a card with Australian recipients createthenNetherlands by a Dutch
customer, will be printed in the nearest locatibthe Australian recipient. This
ultimately makes next-day-delivery possible all otree world.

To make this world-wide next-day-delivery approéehsible, a strong and well
thought trough software system is needed. Curréfelyspro develops and uses Java
code which runs in Servlet-container servers tdifai its Greetz! service in two
countries; The Netherlands and Belgium. Next tee¢hgo countries Venspro will
expands its Greetz! network to England, FranceAargdralia very soon as well.

1.1 Motivation

One of the valuable lessons learned by Vensprothedast years is that it is vital to
have a solid software development environment aadgss. E.g. the Venspro
development team has invested in professionalitiany development environment
by introducing (Unit) testing combined with a Contes integration strategy.

In theory it is possible that Venspro, in the fetuwill have to use an Enterprise
application development approach. Meaning; instdateveloping Servlet-container
based Java code, code that runs in Java applicsgroers will have to be developed.

My research springs from the recent introductiodafa Enterprise Edition version 5.
Sun has drastically changed their model for Eniseptevelopment, which until
version 5 was based on complex code and XML cordiipn files. Sun has changed
this by simplifying the way Enterprise Java Beamsaded. For example by making
use of dependency injection based on annotati®&ss Applications servers are
responsible for this dependency injection behawioen the code is being executed.

The goal of my research is to find out how thedlesity of software is affected when
implementing it with dependency injection (DI). Mypothesis is thaest

automation will become more complex when usingpgidgency injection solution
Suspected reasons for this increase of compleratyhat (1) the dependency
injection solution should be configured for eacét &nd (2) it may even be impossible
to use a dependency injection solution in a tegrenment since DI solutions act as
a managed environment on their own. Both of theasans can be seen as how the
DI solution intrudes a software product and it$ é&gsironment.

1.2 Research method

To determine how software testability is affectgddependency injection it is
important to first define what software testingied determine what makes software
testable. Secondly it has to be defined what degr@ndinjection exactly is and what
effects it has on the source code of a softwarduym

The outcome of these two research sub-questiorestbawe brought into relation with
each other, so assumptions can be made of hovbilégts affected by dependency
injection.

Based on these assumptions the actual researdieaone; relevant dependency
injection and testability metrics can be retrieteun different software products,
implemented with and without dependency injectibime goal is to use these metrics
as facts to form a valid conclusion on how depengémection affects software
testability.

2 The effects of Dependency Injection on testabilit vy

In order to determine how software testabilityfifeeted by dependency injection a
literature study has been performed. The goalisfliterature study was to find out
what software testing is and what makes softwatlde as well as to find out what
dependency injection is.

In this chapter the outcomes of this literaturelgiuppendix A - ‘Introduction to
Software Testing’ and Appendix B - ‘Introduction@D@pendency Injection’ are
brought into relation with each other with the gmatietermine how software
testability is possibly affected when applying tependency injection principle to it.

2.1 Assumptions of why and how DI effects testability

In the chapter ‘What makes software testable?ppeadix A, six factors that have
influence on the testability of software have bdefined. These are;

* Multiple input possibilities

* Source code complexity

« Controllability & observability

* Dependencies

» Traceability of requirements

* Test automation

To determine how DI possibly can affect softwargdbility we must try to imagine
what the effects of DI are on a software produckodsely coupled design for
example can be seen as the goal of DI. But tozedhis with DI means that it will
affect a software product in a certain way. There®weode for example will most
likely be different than when another approachsisdito create a loosely coupled
design (or than when choosing not to create loosalypled components at all).

2.1.1 How DI effects a complete software product

In appendix B a description is given of what depsruies in software are. It focuses
on the negative effects of interdependency betweence code components that
together form a software product. The followindimiéon is used to define this
interdependency between source code componentsp@m@ntA depends on
componenB if “correct execution oB may be necessary férto complete the task
described in its definition” [Jackson03].

The chapter ‘What is Dependency Injection’ des&ibew components can be
changed to break their dependencies by removing fogm a component that defines
its dependencies. With DI, this ‘which, where amdvidependency logic’ [Nene05] is
not needed in a component that depends on one rer otfter components. But while
this logic can be removed from a component it cabedaken away from the
software product completely. The interdependenayoofiponents has to be defined at
another place; the DI solution that is used hdsetoonfigured.

So when we look at this from the number of linesade (that are needed to
implement the logic of a software product) viewgpthe lines of code in a depending
component will become less, but the lines neededndigure the DI solution will
increase.

Which, where, how
dependency logic

Dependency solution

Figure 1. Dependency logic moved from componeiIteolution configuration

DI helps creating a loosely coupled design becausmponent only depends on an
abstraction. The DI solution will provide (or bettanject) the correct implementation
of this abstraction to the depending componentc@mnponent level this creates a
more loosely coupled design. But on software proteyel a new dependency is
introduced; the software product now depends orthsolution.

Dependency solution

Depends on
Figure 2: Complete software product depends onraigecy solution

2.1.2 How DI effects software testability

The question is how the previously described edfect software product level can be
related to the factors that influence the testghif a software product? Below the
effects of using DI in a software product are reditio software testability per
testability factor.

Sour ce code complexity

If we talk about source code in general, the eftieat DI has on the source code of a
software product is that depending components d@ve to contain code used for
obtaining their dependencies anymore. The sourde it forms the logic of the
software product will therefore decrease.

This decrease of lines of code (LOC) cannot be asasompressing or squeezing the
code because a part of the code is removed inefeadritten to reduce the number
of LOC. Squeezing the code is seen as somethingntraases the complexity
[Kaner99] because it becomes harder to read anerstathd what a piece of code
exactly does. A higher number of LOC is sometiniss aeen as something that
increases complexity. Especially at method levbetomes more difficult to
understand what a method exactly does if it commsist large number of LOC
[McConnell04].

So based on the decreased number of lines of eatte®(t squeezing the code) it
seems that DI helps reducing the complexity th&texn the source code that makes
up the logic of a software product.

On the other hand, the dependency logic itselbis defined at another place,
assumable outside the code that makes up thedb¢he software product. This
definition, or configuration, (depending on the digd solution) will most likely
introduce some sort of complexity.

Dependencies

The goal of Dl is to loosen up dependencies; hegiellcomponents will not be
depending on implementation specific lower levehponents. Instead they will
depend on abstractions only describing functiopalihe DI solution will provide the
high level component with the correct implementaid the abstractions it depends
on.

Tests mostly focus on a specific piece of cod#hiff piece of code depends on
another component to complete its task then tmspament is required to be
available during the test as well. This is not alsvdesired. Take for example a
component that, through another component, resieegta from a database because
this data is needed to complete its task. Thisbhda connectivity may not be
available during tests. If the component, for ésathase connectivity, depends on an
abstraction instead of a specific implementatibentit becomes possible to create a
component that fakes this database connectivitypaode it to the depending
component during tests. A so called mock objectemakpossible to have full control
over the behavior of the component that the comptoumeder test depends on.

For example; with full control over the data th#terwise would be retrieved from a
database it is for example more easy to test thgpooent on what would happen
when wrong data would be returned by the datalddss.use of mock objects and the
control they provide during testing is often men&d as the most important reason
why DI improves software testability. For exampid\Weiskotten06].

But when dependencies are managed by a DI solulien,the software product
depends on this DI solution for its own correctdogabr. It is possible that this
dependency on software product level affects hdiwsoe is tested. For example;
can the DI solution be used during tests? If sn,itaasily be configured? Preferably
in the setup of a test case, so that in a tesnitoe defined which mock objects should
be injected in the component under test. Or shth@dest code contain logic to create
a work around for correct and controllable DI dgrtests?

Controllability & observability

The ability to inject mock objects into a componentler test increases both
controllability and observability. A mock objectrcanplement an abstraction with
code developed for a specific test. The previousrgdatabase example improves
controllability. The mock object and the custom eatcconsist of make it much easier
to control its output (which forms the input foetbomponent under test during its
execution).

A mock object can also help with improving obseiirah The mock object can also
consist out of code that, for example, logs hois ¢alled by the component under
test that depends on it.

(1) Method called during test

Class under test Waock object

(2) Methaod calls
f mock object method(s)

method: method

(3) Response of
mock object method(s)

f
(4) Result

i |1yt fOT MEthO A

fp— (| 0T reSUI

Figure 3: Mock object providing input to the methaater test

Traceability of requirements

When using DI, components do not depend on spemfigponents but rather on
abstractions. These abstractions describe theresbfunctionality that an
implementing component should provide. So thisrabsbn can be seen as a contract
describing what the depending component can usevhatlthe implementing
component should provide. These abstractions@reaily defined during the design
phase of the development process and are basée& oedquirements for the software
product. So it can be assumed that when a companptements an abstraction
based on requirements it should take less effartdatch code that is used to
implement an abstraction to the original requiretador this abstraction. Than it is to
first having to find out what the function of caerntaieces of code is that do not
implement a contractual abstraction.

Test automation

The ability to automate testing when using DI hatsi@ly already been described for
the testability factor ‘dependencies’. The abitityautomate tests will be based on the
level of intrusion of the DI solution. The DI salh will most likely introduce some
sort of configuration for dependency managemers. gossible that this

configuration dictates how to use the componenistwtiependencies are managed
by this DI solution. During tests it is mostly (ibt always) desired to have control
over which components are injected into the compbtiet is under test.

When it is not possible to control dependenciesugh the DI solution during tests it
might limit the way these components can be tesiteze a work around will have to
be developed. Then tests will have to contain ltigat provide the correct test
dependencies themselves.

2.2 How can we make this measurable?

Dependency injection is a principle; it can be sagla design pattern that can be used
to create loosely coupled components. It is a ladecause it can be implemented
in more than one way. There are different typedepiendency injection strategies
(constructor, setter, etc.) and there are diffesehitions to manage the injected
dependencies with.

It is possible that the different DI implementat&tnategies and DI solutions will
have a different effect on testability. Next tottle@urce code of different software
products is also never the same and may be affddfedently when applying the DI
principle to it.

So it is difficult to generalize DI when there an@ltiple variations; applying DI on
different sets of source code with different typé®I strategies and solutions can
have different effects. This means that it is difft to speak about the general effects
that dependency injection has on testability.

2.2.1 Scope definition

Due to the limited amount of time available forstkhesis research, an effective scope
has to be defined. A decision has to be made dlmwthis research can be limited
but still provide correct information.

Because there are multiple dependency injectiosibilities (different sets of source
code and different DI solutions) it seems thatast two components from two
different sets of source code have to be implengdenseng two different dependency
injection solutions.

Software Product , | L EPendency Solution

Software Product » | Dependency Solution
B

Figure 4: Two different sets of source code impletee with two different DI
solutions

For this research we will use two DI solutions this somewhat situated at both ends
of the DI solution spectrum. These are PicoContajresmall and lightweight DI
solution, and on the other end; Java Enterprisédbds which is a complete
Enterprise framework that supports DI.

The components that will be implemented using Dl @ a component from a
controlled environment and a component from theensottensive Greetz! source
code base.

! http://www.picocontainer.org
2 http://java.sun.com/javaee/

In total we also have recognized/defined five taiity factors. Below an overview of
the assumed influences of DI on these factors bas bgiven;

Testability factor I nfluence of dependency injection

Sour ce code complexit Less code needed in depending component
piexity Increase of DI configuration code
Loosely coupled design based on abstractions gives

Dependencies the possibility to use mock objects more easily
Software product depends on DI solution

Controllability & Mock objects make it possible to control the output

observability the component under test receives from it.

When code implements an abstraction it is easier to
link this code to the requirements which the
abstraction is based on

Injection of mock objects gives more control ovef
component under test
(Configuration of) DI solution might interfere with
relative ease of testing a component

Traceability
(of requirements)

Test automation

Assumed to havepmsitive effect on testability.
Assumed to haversegative effect on testability.

Table 1: Assumed effects of dependency injectiosaitware testability

Supposedly the two testability factors ‘source coomplexity’ and ‘test automation’
are affected most by the use of dependency injecliberefore, and this seems most
logical, the focus will be on these two testabifagtors that seem most affected by
DI.

2.2.2 Measurement definition

To form a valid conclusion on how DI affects tedibassumptions are not enough.
Instead of drawing a conclusion based on persoteigretation a factual
representation of how DI affects testability is she@. Testability has to be measured
in some way so that the resulting metrics can led as facts.

% Metrics based
: interpretafion

Measurefnent

Review hased
interpretation

Software product
codelconfiy set

Figure 5: Facts based on metrics extracted fromceatode instead of personal
interpretation

10

When using metrics as facts to base a conclusionisimmportant to use a measuring
approach that is valid for this research. The messents have to provide metrics
that actually give a correct insight in how DI a&ffetestability.

Sour ce code complexity

Source code complexity can be measured statidd#pning; it is possible to
determine complexity without having to executetbde. Two kinds of metrics that
give an indication of the complexity of source cegem most appropriate for this
research. These are the McCabe Cyclomatic Complard more general the total
number of lines of code (TLOC) of a component

The tool used for retrieving these metrics is thetrids project for Eclipse

Test automation
How DI affects test automation on the other haredrsesomething that can be
measured partly static, but can also be experiemcpadactice.

During this research we will try to give an indicat of the intrusion that the selected
DI solution forms for automated testing. Based giteadevelopment methods and the
testing approach used by Venspro, this intrusioDlokill be tested by integrating
(regression) tests with the help of the JUnit test-frameworf

Per component we will create one testcase andestiarntethod for every method that
exists in the component that is tested. The gadal seate a test that executes all lines
of code and branches in the component under testcdverage metrics will be
extracted from a test report generated by Cobeérafter each test execution.

As for experiencing how test automation is affeategractice when using DI. The
test case should also inject a mock object intactibeponent under test. The amount
of needed configuration (counted as lines of cbd¥;) and the location of this
configuration will then be used to determine thedesl effort for test automation. The
goal for this dependency configuration is to makgairt of the JUnit setUp() method
that exists in a testcase class.

Compare metrics

By retrieving metrics for a component of a softwareduct that is implemented with
and without the help of dependency injection weadnle to compare these metrics
with each other. The difference should give insighhe effects of implementing the
dependency injection principle.

? http://metrics.sourceforge.net/
* http://www.junit.org/
® http://cobertura.sourceforge.net/

11

Software product

without Dependency Injection

public class A
3

PEivaER DAL x;

public Rip

r

- B

+

Jublic LAE GREX(H

etuen x;

codefconfig set

Test code
metrics

Difference:
effects of DI

Source cods (0N source code
metrics

(the same) Software product
with Dependency Injection

gublic elass A

4
peivate ink x;

pdlie R0
Source code L et
metrics - '
Public int QRER()
i SRR
Softwar . product
codelcdnfig sat
Difference:
effects of DI
_pntestability | Testcode Tests
e i metrics

Figure 6: Difference between metrics gives an iation of how DI affects testability

12

3 Research results

3.1 The paper manager example

The paper manager example is a collection of compisithat could be part of a real
software product. The idea behind these componebissed on a dependency that

could exist in the real world. In this case thisisompany that depends on another

company to supply paper that is needed during-@dyztion process.

A more complete description of this example is ke in appendix C.

The paper manager example components functiorcasteolled environment used to
calibrate the research method. By developing chdedontains pre-defined
dependencies it becomes possible to make predsctibwhy and how the research
method metrics, that are extracted from both DI oDl implementations of the
paper manager components, will differ from eaclent@omparing earlier made
predictions with the actual extracted metrics ciae gsight in possible shortcomings
of the research method.

Without dependency injection

ThePaperManagerNonDi Java class is the Non-DI implementation of the
PaperManagerinterface . This concrete class will form the base classyiocset
extracted from the DI implementing classes willcbenpared with the metrics that are
extracted from this class. The difference betwaéemtshould give insight in the
effects of DI on component/source code level.

Up front there is little to say about expectatiforsthis non-DI implementation other
than it should contain a reference to another @aalass. And this is true for the
PaperManagerNonDi class because it contains a reference to the dendess
PaperCompanyA.

With dependency injection using PicoContainer

ThePaperManagerPicoDi Java class implements tReperManagerinterface

with the intention to use PicoContainer as the ddpacy injection solution. We will
make use of the logic already defined in the previdescribed

PaperManagerNonDi class. This means that the referencedperCompanyA will
be replaced with the class containing only a véeiabthe type
PaperProviderinterface (instead oPaperCompanyA).

Since PicoContainer is based on the constructeciign strategy, the constructor
signature of th®aperManagerPicoDi class will have to be extended with an
argument so it will accept an instantiation of assl that implements
PaperProviderinterface

It was expected and found true that these chandlesotcause differences for the
TLOC and McCabe complexity metrics compared withRhperManagerNonDi
class. Because the signature of the constructbbe/ithanged and a variable type
will be changed from the specific implementing slBaperCompanyA to the
abstractiorPaperManagerinterface

13

With dependency injection using Java EE5

It was expected that the Java EE5 implementatiangeang to have the least amount
of TLOC and that the McCabe complexity metric sthifee same compared to the
PaperManagerNonDi class. The reason for this expectation is thdt thie @EJIB
annotation the field dependency injection strateggupported. This means that only
a variable of the typPaperManagerinterface with the neede@EJBannotation
above it is needed.

But two things became obvious when implementing ti@mponent (based on the
code inPaperManagerNonDi class) in the form of a EJB (Enterprise Java Bean)
class.

The first thing was that Metrics tool didn’t sholetexpected difference in TLOC,
because annotations are counted as LOC as wedl vilds unexpected and raised the
question; should these be counted as TLOC sinsadtually DI configuration code?
Since the TLOC metric is used to give insight ia #ource code complexity it was
decided that it should be part of the TLOC metimces we approach this metric as:
more lines means more complex source code.

The second thing that became obvious is that ihlid dependency injection wasn’t
testable outside an application server becausappiécation server is responsible for
assigning the correct dependencies to variablegnthre application server is not
available the dependency must be assigned to trebleafrom within a test. Being
private thepaperProvider variable wasn't accessible so a mock object coatde
injected. One option was to make the variable atbkesby changing its modifier
from private topublic . Buts since Java EES5 also allows gdEJBinjection
annotation to be used for setter methods, thersidfeendency injection strategy was
chosen over the field dependency injection strategy

3.2 The Greetz! customer component

Next to the paper manager example a real life ssétyproduct has been selected as
research subject with the goal to get an indicadiomow the testability of an already
existing software product is affected when it sm@lemented with DI. In this case
the Greetz! code base was selected and narrowed tosne component that
contains dependencies, that are considered re|ewvasther components.

This is theCustomer component.

It is hard to define the specific task that estomer component has since it
functions as a data entity but also contains aflbusiness logic. An example of a
part of this logic is that it contains code thatis®d to send email whenever the state
of a customer is changed. For sending these ethaiGustomer component
depends on th@reetzMailProvider component. This is also the specific
dependency that is focused on during this rese&iahill be used to change the
Customer component not depending on the implementapecific

GreetzMailProvider but rather on MailProviderinterface abstraction.

14

Without dependency injection

The original, already existing, implementation loé Customer component also
serves as the base implementation with which theiecaeextracted from the other two
dependency implementation variants will be compaBatause a JUnit testcase did
not exist for theCustomer class the plan was to create one aiming at theebkig
possible coverage rate.

Unfortunately theCustomer class has a lot more dependencies; some of these
dependencies involve settings that are retrieve fa database. Since the database
wasn’t available in the environment in which thsttwas going to be developed and
executed the Customer class proved to be un-testabtl because the limited
available amount of time still left for this reselait wasn’t possible to develop a
complete JUnit testcase for this class.

With dependency injection using PicoContainer

While implementing the PicoContainer constructquetedency injection strategy in
theCustomer component, it proved that constructor injection miathe right DI
implementation strategy to be used in @stomer component (and much of the
other components in the Greetz! code base fomtiadtier).

The reason for this is the fact that instancesi@Customer class -as well as many
other Greetz! components/classes- are providedilbgraat8. TheCustomer
component represents customer data that is stor@database. Hibernate retrieves
this data and creates a new instance oCtlstomer class with the retrieved database
values and does this by ignoring constructors aiguments.

Therefore the setter dependency injection strasegyns a better choice. But this
means that the dependency injection should findepédter instantiation.

Does this mean that components that use instamt¢bs ©ustomer class are
responsible for injecting the right dependencyTéicertainly not desirable and it
would also cause a rippling effect of changes thhowt all components that make
use of theCustomer component.

Fortunately all other components that useGhstomer component retrieve new
instances from th€ustomerFacade component. The role of tl&stomerFacade

is being the spokesperson for all other componbatswant to retrieve or persist an
instance of th€ustomer component. So the logic for injecting the correct
dependency through a setter method could beconefu#e CustomerFacade
without other components knowing about it.

Although constructor dependency injection is prefer PicoContainer does support
the setter dependency injection. Unfortunately @uel to the short available amount
of time it wasn’t possible to implement this stgptén a test. PicoContainer kept
throwing anUnsatisfiableDependenciesException and there was no quick
way of finding a solution for this problem (it seedithat PicoContainer wants to
manage and/or inject something into all setter oeth

® An object relational persistence service usecetsigt to and retrieve data from a database.
http://www.hibernate.org/

15

But using the setter dependency injection strateggs still possible to inject the

MailProviderinterface

method from within the test.

With dependency injection using Java EE5S
After implementing the&€ustomer component with the setter dependency injection

strategy the component was easily configurabldéa EES dependency injection by
only needing to add the need@dJBannotation above the
setMailProvider(MailProviderinterface gmp)

dependency by making a custom call to this setter

method (as well as the

@Stateful annotation above the class itself).

In a testcase the component implementingvh#Providerinterface instance

can be injected with a call to this setter method.

3.3 Overview

3.3.1 Paper manager example

Static reference DI Pico container DI JEE5 (EJB 3.0)
Component PaperManagerNonDi.java PaperManagerPicoDi.java PaperManagerBean.java [
DI type/solution None (Static reference) Constructor Setter (EJB Annotation) g & g %
TLOC 106 106 13|58 £ 5
McCabe Class 1,25 1,25 123 27 ¢°®
Testcase PaperManagerNonDiTest.java PaperManagerPicoDiTest.java PaperManagerBeanTest.java
DI type/solution None/Static reference Constructor/Pico container Setter/Custom
DI configuration location None/Static reference In testcase code (calls to Pico container) In testcase code (Custom injection in setter)
DI configuration LOC 0 5 3 4
TLOC 108 126 122 o
Junit asserts 16 22 22 -
Line coverage 93,0% 100,0% 100,0%
Branch coverage 83,0% 100,0% 100,0%
Automation framework Ant Ant Ant
Test framework Junit Junit Junit
Table 2: Research metrics extracted from the payagiager example
3.3.2 Greetz! customer component
Static reference DI Pico container DI JEE5 (EJB 3.0)

Component Customer.java CustomerPicoDi.java CustomerBean.java oo W
DI type/solution None (Static reference) Setter Setter (EJB Annotation) 9_, G. g S
TLOC 937 948 952|5 3 £ 5
McCabe Class 1,675 1,667 1667 27 °
Testcase CustomerTest.java CustomerPicoDiTest.java CustomerBeanTest.java
DI type/solution None/Static reference Setter/Custom Setter/Custom
DI configuration location None/Static reference In testcase code (Custom injection in setter)|In testcase code (Custom injection in setter)
DI configuration LOC 0 3 3 4
TLOC N/A N/A N/A 2
Junit asserts N/A N/A N/A -
Line coverage N/A N/A N/A
Branch coverage N/A N/A N/A
Automation framework Ant Ant Ant
Test framework Junit Junit Junit

Table 3: Research metrics extracted from Greeidé source base

16

3.4 Validation

It is important to validate that the chosen metactially give a correct indication of
the source code complexity and the needed effoxtrEating tests (as well as
automating them).

To achieve this we fist created a controlled emvinent in which the research was
performed. The controlled environment in this dasbe paper manager example; the
small software product developed specifically fus research (see also appendix C).
By developing such an example application it issgae to make a precise prediction
of how it will change when the dependency injectomciple is applied to it. If these
predictions are confirmed by the retrieved metwescan be more certain of the
research method validity.

3.4.1 The TLOC metric

During the implementation of the paper manager gtamredictions about the

TLOC metric proved not to be correct. This leadht® conclusion of how the Metrics
tool actually calculated the TLOC metric and alswwhmportant it was to keep code
formatting the same throughout the research bedausatting can affect this metric.

When it comes to the meaning of the TLOC metricliigs research; more lines of
code make the code harder to understand and theliefmecomes more difficult to
write a test that tests this code. It became venptful during this research that a
significant change in level of testability was sahieg that could be discovered based
on differences between the TLOC metric of the ndraidl the DI implementations.
The differences are very small as you can seecimgbults overview.

This is because logic inside the components, tleat \fiocused on during this
research, was hardly altered when (re-) implemgrthem with a DI implementation
strategy. The reason for the small differencebadact that most of the changes are
found in the import block of a class (and sometimasnall setter method is added
when the setter DI implementation strategy is used)

If implementing DI affects the testability of a cponent, then the TLOC metric
seems not very usable as a factual representdtibmsahange in testability at all.
The components where not altered significantlyryithis research when it comes to
the total lines of code their made out of.

3.4.2 The McCabe Cyclomatic complexity metric

When it comes to the McCabe Cyclometic complexigtnmu it also seems that this
metric, as it was used during this research, isisable as a fact indicating that
testability is affected by DI. The difference thrs metric between the non-DI and DI
implementations is very small. The reason thatlifferences are so small is because
for this research the class’s average McCabe Cyatior@omplexity is used. This is
the average of the McCabe Cyclomatic complexitglbmethods in a class.

Because the components where hardly altered a&tgmiplementing them with DI

meant that the control flow (the possible pathghencomponent was not changed.
And when measuring the average McCabe Cyclomatmptexity for a component it

17

also means that when adding a simple setter mgtiadh scores 1 for its
Cyclomatic complexity) this average decreases waateally the number of TLOC
increases! This is conflicting with the idea behihd TLOC metric as how it is used
during this research.

If implementing DI affects the testability of a cpoment than the McCabe
Cyclomatic complexity metric also seems not verghls as a factual representation
of how DI affects testability. This is because toatrol flow in the components used
during this research was not altered significantly.

3.4.3 Needed DI configuration in testcases

The amount of needed DI configuration that hasetddne to manage dependencies
in tests and the location of the configurationgedito give an indication of the
needed effort for test automation and the intrusibtne dependency injection
solution in the test environment. The idea behimsl is that more lines of code
increases complexity; each line can be seen apdatsolving the dependency
management problem. This is also based on [Wikg&€dimplexiteitsgraad] which is
also referred to in ‘Source code complexity’ in apgix A. When the configuration
has to be done outside the actual code of a testicasans that this also increases
complexity and therefore the needed test effort.

The only significant difference in needed linesohfiguration code can be found in
the PaperManagerPicoDiTest testcase. This is because it uses and configoees t
PicoContainer to set up all needed dependencidsstlut is not a fact showing that
more effort is needed. Because it was also possldeectly create a mock object
and inject it into the component under test frorthimi the testcase. In fact all
components implemented with DI during this researehtestable from within
testcases without having to make use of a depegdshation. This can be
interpreted as the fact that the used dependeresstion solutions did not intrude and
dictated the test environment during this research.

3.4.4 Coverage

The test coverage in the component under test wiaestréc that really did show a
significant difference for the paper manager exanafler implementing it with DI.
Increasing coverage was actually only possible whigeting a mock object into the
component under test (the original component wss @ésigned with this intention).
The coverage metric shows without a doubt thatdbl ltave a positive effect on the
testability of a component. This seems to proveoften made point in different DI
related literature that DI improves testability frtiened in [Weiskotten06] for
example).

3.4.5 Test cases

The testcases used during this research were g@ceto make it possible to measure
both the ‘needed DI configuration’ and ‘coveragestrics. When it comes to the
coverage metric, the goal of a testcase was tthgdtighest value for this metric as
possible. In order to do this the code in a testoess written so that as much lines of
code and branches within the code (the control)flofthe class under test are
executed.

18

The testcases for the paper manager example wieréoatompletely cover all lines
but only when the component under test was re-impiged with the help of DI. This
was to be expected because the non-DI versioreatdmponent was developed to be
not fully testable because of a failing componedepends on. Therefore making use
of dependency injection in the testcases usedh®paper manager example can be
seen more as a goal instead of only a meaningpoowe the way the component
under test is tested. This certainly may have erfted the integrity of the testcase,
something that should not have been the caseddeticases with which the DI
implementations of the Greetz! Customer componentested. Unfortunately no
complete testcase could be developed for the Cestoomponent. Meaning that
more independent testcases (as compared to tluredle paper manager example)
have not been used during this research. It iqicgytpossible that the validity of the
research and upcoming conclusions are affectetibituation.

19

4 Conclusion

My hypothesis was thaest automation will become more complex when wsing
dependency injection solutioBuspected reasons for this increase of complexity
where that (1}he dependency injection solution should be condididior each test
and (2)it may even be impossible to use a dependencyioresolution in a test
environment since DI solutions act as managed enwuents on their owrBoth of
these reasons in my opinion could be seen as Halsalution can intrude (and/or
dictate) a software product and especially its¢asironment.

But both reasons (1) and (2) proved not to be druréng this research. The cause for
both reasons not being true is that the componeiemented with DI during this
research where done so with either the constractsetter method DI strategy. This
made it possible that dependencies could alsojeetéd without having to make use
of a DI solution. From within a JUnit testcaseribyed to be no problem providing

for example a mock object as a constructor or isattpiment to the component under
test, without having to make use of the DI solutioat the software product in its
complete form depends on for its normal behavior.

This could have been different when the choicellesmh made to settle for the field
dependency injection strategy when developing caorapts during this research that
made use of the JEES5 dependency solution (bas@EJB annotations).

While developing the first component that madeafsbe JEES field dependency
injection strategy, it became obvious that thegeeddencies could only be injected
with the help of a Java application server. Thiglst | already expected before
starting with this research and my hypothesisiisfbig part based on this
assumption (see also 1.1 Motivation). But duringresearch | found out that the
setter injection strategy is supported as well winaking use of JEE @EJB
annotations. Changing from field to the setter rmétB| implementation strategy
made it possible to call this setter from withiteatcase.

For me this is an indication that the intrusioradd| solution, in the test environment
of a software product, is partly formed by the Bpiementation strategies that are
supported by the chosen DI solution for that prodifiche DI solution makes use of
either the constructor or setter method DI stratbgw it is also possible to provide
the needed dependencies to the components withwirighto make use of the DI
solution. When glassbox testing the component willunit testcase, all needed
dependencies can be injected with code in theasstitself.

| specifically mention both glassbox testing anak tine level of intrusion is ‘partly’
formed by the DI implementation strategies thatsangported by the chosen DI
solution. The reason for doing so is that duririg tAsearch only glassbox testing has
been used as an attempt to collect facts aboutiantrudes these kinds of tests.
Based on the metrics for the amount of configuratas well as the location of this
configuration, that is needed to inject mock olgento the component under test.
Glassbox testing is obviously not the only wayestta component, meaning that this
research gives no indication of how DI affectsamis an intrusion for other test
strategies that are used throughout the complstetecess.

20

Another outcome of this research was that choosibDd implementation strategy for
already existing components can be dictated bythey are implemented and used
by other components. For the Greetz! Customer comemtat showed that constructor
dependency injection could not be implemented. rElason for this is that instances
of the Customer component are provided by the H#tterpersistence service layer
that is used throughout the Greetz! codebase. Neggigendencies therefore had to
be injected with the help of setter methods.

When it comes to the actual dependency of the Gwsteomponent that was focused
on during this research (ti@reetzMailProvider component) it can be questioned
if the Customer component should have this deperydahall. The main obvious
reason for the Customer component containing gieddency is because it
functions as a data entity (storing information @tte specific customer) but it also
contains a lot of general customer business |diie $ending emails when the status
of a customer changes). DI in this case can hdlp twe Customer component not
depending on specific implementing components butvith making a clearer
separation between the concerns that exist in tistother component. Therefore
dependency injection is something that can imptheevay components are coupled
but will not fix other problems that may exist iasign or implementation of a
software product.

Future work

The limited scope of this research (2 componenmamented with 2 DI solutions) as
well as the fact that the extracted metrics doreally give an indication of how
testability is affected, mean that the resultshed tesearch cannot be seen as a factual
representation of how testability of software ieefed when making use of
dependency injection.

The metrics used during this research, the Tota¢4.iIOf Code (TLOC) and the
McCabe Cyclomatic Complexity, do not show signifitdifferences between
components implemented with and without dependarjegtion. The reason for this
is that the testability of components is not ai#eldby DI in such a way that it could
be measured with these metrics. Therefore the biggesstion | had at the end of my
research was; what metrics could be used to metiseiedffects of DI on component
level?

In search for an answer on my question | came agBrsintink03] which is the final
thesis document of Magiel Bruntink. In his thesiagdil focuses on testability of
object-oriented Systems with a metrics-based approMagiel also uses metrics for
test-critical dependencies. The dependency retattdcs used by him are the Fan
Out (FOUT) and the Response For Class (RFC). Iredmnslusion he discusses the
metrics used during his research. An excerpt fr@cbnclusion concerning the
FOUT metric is given below:

“We showed that FOUT is a significantly better gedr of the dLOCC

metric than of the dNOTC metric (at the 95% confatelevel for DocGen,
99% for Ant). Thus, the association between theotdrof a class and the size
of its test suite is significantly stronger thae tissociation between the fan
out and the number of test cases. The fan outlE#ss measures the number
of other classes that the class depends on. lac¢hel program, these classes

21

will have been initialized before they are usedotimer words, the fields of the
classes will have been set to the appropriate \sahefore they are used.
When a class needs to be (unit) tested, howeetetiter will need to take
care of the initialization of the (objects of) otledasses and the class-under-
test itself. The amount of initialization requirleéfore testing can be done will
thus influence the testing effort, and by assumptiee dLOCC metric.”

| interpret this excerpt as that the FOUT metric ba a predictor of the needed test
effort, in the form of needed dependency configarain a test case. A higher Fan
Out assumingly results in the testcase containiagertines of code.

| believe that this increase of needed test effased on needed dependency
configuration in a testcase, is closely relatethyoassumption that; using a DI
solution will increase the amount of needed comfigjan code in (or outside) a
testcase. But my assumption proved to be wronghgduhis research; it was not
needed to configure a DI solution when using a Utésicase because mock objects
could be injected into the component under tesiotly from code. The thing | did not
focus on during this research where the mock objihemselves. Effort is of course
also needed to write the code for these mock ahject

Why | think it is relevant to mention the FOUT mietnere is that the FOUT metric
doesn’t say anything about the nature of dependsngiterms of how components

are coupled. When using DI, components can becessetightly coupled; depending
on abstractions instead of implementations. All@wmock objects to be injected into
components under test, which eliminates the needréigure other components on
which the component depends. These other compoasnt®ot needed since they can
be replaced by mock objects. But as said; creatiogk objects also requires effort.
This effort may even be more than configuring theded component in a testcase but
improves test controllability and observability.

During a second iteration | would like to have madeattempt to introduce a more
specific metric than, but still based on, the FOWatric. Not only giving an
indication of which other components are callecalmpmponent, but also if the called
components can be substituted with a mock objebeiDI principle is applied to it.
In my opinion the nature of a dependency determin@scan be used to loosen up
this dependency. When for example a componentersi@ of its method creates an
instance of a component it depends on every timenéthod is executed, then it is
not possible to change this dependency to an alisinaand inject an implementing
component. A dependency that for example is i@ once during construction of
the depending component is a perfect candidatedooming less tightly coupled by
implementing a DI strategy. Based on this | wollent also like to have found a
solution to analyze the specific depending codesmthe proposed metric indicates
that DI can be applied to it, in order to get itgim the behavior of the mock object
that is needed to test this code. This needed mh@v input from the mock object
during testsee also Figure)3can possibly be based on the McCabe Cyclomatic
Complexity. The needed effort for creating a mobjeot with this behavior could be
measured based on making use of a mock objeclitedtasyMocK. After this the
ultimate goal, in my opinion, would be to complgtalitomate the creation of mock
objects as well as the needed transformation @&oatdpllowing them to be injected.

" http://www.easymock.org

22

Appendix A - Introduction to Software Testing

Why is software tested?

According to [SWEBOKO4] testing is an activity pemined to evaluate the quality of
a product. Based on the outcome of this activitg:itlentified defects and problems,
it is possible to improve the product. When testargpftwareproduct, the behavior of
the software product under test is compared withettpected behavior for this
software product.

More simply put, software testing can be seeahegking if a software product
behaves as it is supposed to 8o the most obvious explanation for the reason wh
software is tested Isecause it can happen that software doesn’t behavetended

From a commercial point of view it is for any comgamportant to develop products
that are considered by customers as good qualispftware program that is not
functioning like the customer requires it to dongth most likely not be accepted by
the customer as good quality. The goal therefote develop a program that behaves
like the customer requires it to behave. With talplof software testing a
development copy can be used to check if therpratdems/errors that negatively
affect the intended behavior and therefore nedxkthixed.

Why does software not behave?

There can be several reasons for software not b@hlke intended. In my opinion
the most obvious reasons are probably mistakes mageogrammers during
development.

Just like normal human beings developers can magiakes. These mistakes are
mostly pieces of code that, unintentionally, haveegative effect on the behavior of a
program.

Often these mistakes go unnoticed during developnadren executed to see if the
program runs, all seems ok. But when the actuajnara will be used in a production
environment these mistakes have the potential teerttee program not behave like
intended. A reason for this is clearly describeddbgreas Zeller;

In [Zeller05] a program execution is described asi@ession of states. Initially the
program is in a sane state (hopefully) and durkegeation it goes trough different
states. Somewhere between two states a piece efneay be executed that causes the
program to fail (and with failure we mean: not dpwmhat its supposed to do). But

this failure may not propagate immediately. Whenadfunctioning peace of code is
executed the next state becomes infected. Duriagutdon this infection has

influence on the next states and eventually may @sise a failure in one of the next
states.

A very simple real life example of this, is whertmethods use the same global
variableX. Executed independently from each other duringetigament both
methods show the expected behavior. But when idymtton it can happen that the
first method may change the valueXoin such a way that the second method that
uses this variable as well (in one of the nexestaf execution) can not behave like
intended. This truly must be seen as only a very simple elasypporting the above

23

description from [ZELLEROY]. It is not intendedamue if this is bad design or a
bad programming habit.

Other than unintentionally made programming missakethe code of a software
product it is possible that code is written basedvoong and/or incomplete
requirements. Also, if not specific enough; reguieats may also be wrongly
interpreted by developers. In the case of problettisthe requirements the behavior
of program will also not be equal to the actuatiyended behavior.

Also after implementation (when done with the aditlevelopment) the behavior of a
software product can still be influenced negativélgexpected behavior of external
elements (like failures in hardware and other safeaproducts for example) on which
the software product depends for its own correbthior.

When is software tested?

Probably the best way to answer the questimw'is software tested?s by first
describingwhen software is tested

Software testing is a Software Engineering knowedigea that has really matured
from just being seen @ activityto being seen asprocess closely interwoven with
the complete Software Engineering procésgSWEBOKO4] this is described as;

“Testing is no longer seen as an activity whichrtstanly after the coding
phase is complete, with the limited purpose ofdetg failures. Software
testing is now seen as an activity which shouldempass the whole
development and maintenance process and is itsethportant part of the
actual product construction”.

This description tells us that previously softwasting was mostly done at the end of
the development process (after all the code wasanjiand that this approach is
limited.

[Gelperin88] explains the growth of software tegtover the years by describing how
the purpose of software testing has changed. tibeginning of 1980, test models
where classified as ‘Phase models’. The wardsedescribes that these models are
executed/processed once (and not re-occurringhgltine development of a software
product. There are two test models that make wophiiod of phase testing; the
demonstration model and the destruction model.

The primary goal of thdemonstratiormodel is tomake sure that the software
satisfies it specificatiarin [Gelprin88] it is mentioned that the words feasure’
where often translated ashowing it worksBut due to the increase of amount,
complexity and costs of applications as well asféoethat computer systems
contained a large number of deficiencies it becelear software products needed to
be tested better before they were delivered tatisetomer.

After the demonstration oriented model thesstructionmodel was introduced. The
reason for doing so was because the goal of teshifiggd from demonstrating the
software behaves as intended to finding problenf@é®eeleasing the software. This
model tries to overcome the fact that the demotigtranodel is prone to not being

24

effective in detecting errors. Because it is pdsdiat for demonstrations test data is
used that has a low probability of causing theveafé not to behave like intended
(“You see, it works!”).

Around 1983 the first life cycle method was introdd; the evaluation model.

The goal of theevaluationmodel was to detect faults during the complete
development process. Each phase in the developnacgss has an associated set of
products and activities. The evaluation model aiaigdcreasing the quality of the
tests and with that increasing the quality of thd product. Not only should the end
product be tested at the end of the developmewepsobut also the requirements and
design that lead to the actual coding of the eodyct.

The next step from the evaluation model is the gméen model. This test model can
be seen as a more professional version of the avatumodel. The goal of the
prevention modak not only to detect problems during the comptiteelopment
process but to also prevent problems from occuiririge first place. This is for
instance possible trough timely test planning @&t design. Designing and planning
tests early on in the development process haveitiygoeffect on the quality of
requirements/specifications and code as well. Tleeteof focusing on what should
be tested before starting with actual coding i$ filasvs in the requirements (like
ambiguity, incorrectness, inconsistency, etc.)dmtected early on.

A reason (and it is probably the most obvious reafar the increasing
professionalism of software testing can be founKemer99]; problems in software
can have a big financial impadn [Kaner99] we can read that the effects ofwgafe
errors are that they become more expensive tauiisng the development process.
Correcting faulty requirements in the beginninghe development process is far less
expensive than fixing errors after the productadsehas been released.

Based on this reason it seems that software isé&sstd from early on in the
development process and also during the completel@@ment process.

Phase models 1957 — 1978 Demonstation model

1979 — 1982 Destruction model
Life cyclemodels 1983 — 1987 Evaluation model

1988 — now Prevention model
Table 4: Overview of different software test modaler the years

How is software tested?

Software testing isn’t cheap. To test softwarefansare development company has
to free up resources needed for testing. In [Gimstn03] is stated that the
development of a software product is mostly drilsgriour parameters: resources,
time, scope and quality. In many cases the parasegsources, time and scope have
a fixed value, meaning that, to finish (or surviag)roject, the parameter quality is
adjusted negativelyhe quality level of the end product is lowered

Lowering/decreasing the quality goes against theeawsed professionalism that
software testing has gone through the last coupliecades (see: When is software
tested?). The goal of software testing is to asteaeuality of the end product. None

25

the less, in the real world resources are almes\ad limited. This means that to
develop a high quality end-product the availabsoueces should be used optimal.
All development activities should be adequate,dftge a development company
should decide during its test planning which tegtutivities should be performed to
assure the quality (the expected behavior) of titepgoduct.

There are many types of test activities. Each tffgest has its own place in the
development process. In [Kaner99] a complete oeearvs given of (well known) test
types and their place in the development procdss. development process is divided
in the following phases; planning, design, coding documentation, testing/fixing
and maintenance. Although testing/fixing is mendidas a separate phase, it clearly
focuses on how to integrate testing in all phase®wvelopment. Below a
summarization of this available information is giecusing on all phases except for
maintenance.

Being the last phase after end-product delivertheocustomer the maintenance
phase is considered out of scope for this reseé&Bomeone might argue if both the
planning and design phases should to be considauedf scope as well for this
research. But considering the fact of how importasting during these phases is
(which is also described in the summarization bglawescription in this document
is vital to understand the importance of testingimily the complete development
process.

Planning phase

At the beginning of the development process thare’sode yet to test. At this point
it is critical to lay a solid foundation for furthdevelopment. This is possible by
reviewing the contents of the requirements andtfanal documentation on which
actual coding is based. During these reviews theirements are tested on the
following issues: Are these the right requireme®ts? they complete? Are they
achievable/reasonable? And very important forgstiuring the further development
processAre the requirements testable?

Design phase

Based on the requirements documentation the toeleloped software product can
be designed. Gross there are two types of desegutesinal design and internal design.
The external design basically describes the (usenjfaces of the end product. The
internal design describes the structural desigefample. The structural design can
be seen as the architecture of the applicationiretnal design can also describe
how data is used (data design). Designs are miestigd on the following issues: Is
the design goodRoes the design meet the requirememgsthe design complete?

And is the design possible? A common practice tseest a (part of the) design, is to
make a prototype. For example the user interfanédeasimulated with a paper
mockup prototype. Parts of the data design couligsted with a coded prototype. In
this way it is possible to test if a design iséaample even possible in the first place.

Coding phase

The phase, during which the actual code is writi@sed on the earlier made (and
hopefully tested) requirements and designs. Teshimong development is often
revered to as glassbox or whitebox testing. Thear#or this term is the fact that
developers test their code knowing the internalkimgy of the code. Testing during
the coding phase is meant to test the structutieeofode (control flow and data

26

integrity for example). By creating test-cases mgiicoding it is possible to re-run
these tests during the entire coding/developmeasg@hRe-running tests is referred to
as regression testing. Regression testing (anctiedlyeautomation of regression
testing) benefits integration of components thgetber form the complete software
product. When adding a new component, executingearade test-cases for the
already existing components can determine if tvdynadded component has a
negative impact on the existing code. This is aen@dfective approach than adding
all components together at the end of developniEtause this makes it hard to find
out in which component(s) the problem(s) exist.

A strong trend in the software development protets set the earlier mentioned
quality parameter of the end product to a fixedueahnd adjust the scope parameter
when the project is endangered from not being cetaglin time. The development
process models that use this approach are categimder the name ‘Agile
development'. Agile development models (eXtremgrBnoaming (XP) for example)
focusses on glassbox testing during developmeheiform of unit testing. Unit
testing stands for testing small parts of code;nmalty tests are written per method
(but not necessarily limited to only one test pethnod).

Testing phase

Although testing during the complete developmentpss is important to ensure the
guality of the product there is also a phase wiluehng is finished. At this point it is
important to test the complete product. During phhase the behavior of the program
is tested against the expected behavior documémtbe requirements
documentation. These tests normally focus on giinpgt and checking the
generated output without knowing about the innerkimgs op the software product.
This is the opposite of glassbox testing and cdlladkbox testing. Common tests are
stability and performance/load testing. It is conmnpoactice that these tests are
executed by persons that don’t have a developer rol

What makes software testable?

Before describing what makes software testabkeimportant to define testable
software orSoftware Testabilityin [Binder94] is statethat testability is the relative
ease and expense of revealing software fa8lbishow harder it becomes to find
existing faults the less testable software becomes.

There are several reasons why faults/problems rsighbccur when a software
product has been taken into production, even tholglsoftware has been tested. In
[Whittaker00] acceptable reasons are given forghisnomenon;

In the production environment...

* ...code was executed that hasn’t been tested.

» ...the execution order of code statements diffemnftioe order when tested.

e ...untested input has been supplied.

» ...the production environment is different from tleettenvironment.

This short list makes it clear that these failuresy go unnoticed during testing if
tests do not resemble situations that might oatarproduction environment. The
difficulty with this statement is that there aréensf many possible situations that may
occur in a production environment.

27

Multiple input possibilities

In [Dijkstra69] an example of a multiplication mectism is given. This example
describes the difficulty of testing if this multipi mechanism is 100% correct. When
blackbox testing this mechanism only the outputafgiven input can be checked.
This means that, to be 100% sure that this mecmabéhaves correctly, all possible
input has to be tested. In the described examentbuld take more than 10,000
years, meaning that in practice it is impossibledmpletely test the mechanism and
proof it is entirely correct. Dijkstra tells us tha order to be more accurate in
proofing the correctness of software, reasonalsked@ses have to be definesli{
really necessary to test all possible inguad that we should take the structure of
the mechanism into account. Meaning; the focugstirig should not only be on the
output, but more on the individual parts of codat together provide the
functionality.

The difficulty of many input possibilities is alsiescribed in [WhittakerQQ]. It is

stated that testers have the task to simulatentbesiction between software and its
environment. To do this, testers have to idenhfyinterfaces of the software product
and the input possibilities per interface. An ifaee can be for example the User
Input interface or a more ‘underwater’ interfadeelthe file system interface. Because
it is impractical (and mostly even impossible)édsttall possible input, testers must
carefully select the input that's used during tegsti

Source code complexity

To select a finite set of input for a test it isessary to analyze the source code that
will be tested. By analyzing the source code thrsgewho creates a test for existing
code can get insight in the inner workings of tbdec With knowledge of the inner

workings it is for example possible to determine tlontrol-flow of the piece of code.

In software code many decision points exist. Eaatision point has influence on
which code is executed next, or; the next statesdiftevare will be in. A very simple
example is an if-statement. If the evaluationthar if-statement is true, the code
within the scope of the if-statement is executexdtts simple if -statement creates
two possible paths. This means at least two testeeeded to test this code. One test
supplying true as input, and one with false astinpu

public void deleteCustomer(Long customerld, boolean renoveH st ory)
/I Code to remove customer object from database go es here
If (removeHi story)

/I Code to remove customer history from database g oes
here

Code example 1. Code executed based on decision

This if-statement is very simple to understand, fandhe given example it is also
pretty easy to figure out that at least two testsnecessary. It becomes much harder
to understand which test input is required to adlydest the structure of code when
the complexity becomes greater.

28

During this research we use the following defimtmf complexity based on the
“Complexiteitsgraad” [Wikipedia-Complexiteitsgraattje amount of steps needed to
solve a problemMore steps needed to solve a problem increasedaimplexity.

Complexity in source code is closely related toarsthndability of that source code.
The control flow of source code becomes much haaenderstand when a lot of
decision points exist in the codshich decisions are taken at which pointested
decisions (like if-statements) for example are batd understand than the previous
given example of a single if-statement. So thegerseating the test(s) should use a
mental-aid like a truth table to keep track ofpalksible input cases; more steps are
needed to solve the problem of determining the eeéeists.

T. McCabe developed a complexity value indicatiamed ‘Cyclomatic complexity’.
Simply put, this indicator stands for the amountloted loops in source code (which
translates to the amount of decision points) + ik &n indication for the level of
complexity of the source code structure when it esto the amount of needed test-
cases. A complexity level over 20 is considered glesnand means that a program is
hard to test.

1-10 A simple program
11-20 A more complex program
21-50 A complex program
> 50 An untestable program
Table 5: Indication of software testability basedtlee cyclomatic complexity of that
software

Structural complexity in the form of Cyclometic Cplexity can be measured with
static analysis. Meaning; tools can count the nurobédecision points without
having to execute the code.

Dependencies

When testing a specific piece of code a test ndyniatuses on that piece of code
alone. But in software products it is very commondomponents to rely on other
components. So when testing a component it is plestiat other components are
executed as well during the test. This can interfeith the actual test, for example
when another component is failing. This dependdistween components also affects
testing such a depending component in another iivggu want to test a component
that relies on other components you need to haasetbomponents available as well.

A tactic to overcome these influences on testirdeieloping loosely coupled
components. An example of loosely coupled companarg components that don’t
have a direct relation with other components. This be realized by using
interfaces/abstractions and information hiding.idterface describes the
functionality of a component that can be used neotomponents. The component
implementing this interface hides the actual immatation code, and by referencing
to an interface the depending component is notriipg on a specific piece of code
anymore.

29

When testing a component depending on an interfapkementation it becomes
easier to substitute such a component with anath@ponent. For example a
component depending on another component thae tosread values from a
database. This dependency can during testing becespwith a component that fakes
this database interaction. Such components créat@adependent testing purpose
are called Mock Objects.

Controllability & observability

According to [Binder94] (software) testability hago key facets; controllability and
observability. This is actual pretty logichlecause when you cannot control the input
of your test how can you tell if the output is emt? And the other way around it is
pretty much the same stotypw can you tell if something works correctly itiyo
cannot check the output

Normally when performing a blackbox test, inpugiigen and the output is checked
to see if what happened between these two stegsiehaves correctly.
Controllability is the amount control over the inpliat can be given during the test.
Observability is the relative ease of checkingdb#put of a piece of code.

When talking about a method, giving a certain ignud checking its return value
seems pretty straight forward. And when blackbating this is normally the case.
But often the correct execution of a piece of cddpends on other components.
When testing a piece of code that depends on otreponents a correct output is not
something that is always related to a certain giment (like for example a method
argument value). The interaction with other commps€their behavior) can play a

big role as well. So input doesn’t necessarily estranly out of the argument value(s)
given to a method. Input can also be given by campts a piece of code depends on
during its execution.

When testing a piece of code it can be tested mhor@ughly if its interaction with
other components can be controlled. Somethingctmabe very difficult because it
may be necessary to alter the behavior of such oaers to force a specific needed
test output (which forms the input for the depegdirece of code). When altering the
behavior of such components during tests, it wéaa@dor example possible that the
piece of code under test deliberately receivesrrecbinput from the altered
component it depends on. This makes it possibiestothe behavior of the piece of
code in a not desirable but still possible situatimat might occur after it is delivered
to the customer and taken into production.

Traceability of requirements

When testing it is important to know what the expddest outcome should be. It is
meaningless to test software without knowing wbéaest for. When developing a test
it should be possible to trace the requirementshatr specific piece of code
describing the expected behavior. Traceabilitydfee describes the possibility to
determine if requirements are met by the softwadeutest.

Test automation

Testing requires an investment of resources like tand personnel which ultimately
can be translated to money, or better said: firdmesources.

30

First of all tests have to be developed. And atarst has been developed it has to be
executed and the test results have to be analyzed.

Often when tests will be executed multiple timegryia development process
(regression testing) a development company will erthle effort to automate such
tests. Using a test framework the test code caxbeuted and test results can be
analyzed automatically. But in some cases it iy déficult to automate testing.
Good examples of hard to automate tests are Utafdnoe tests. It is relatively easy
to test changes to a data-set but much more diftetest results that are only visible

on screen.

31

Appendix B - Introduction to Dependency Injection

What are dependencies?

Earlier, in ‘What makes software testable?’ depenas and their effects on testing
have been discussed briefly. In [Jackson03] a peedefinition is given of when
software components depend on each other; Compéragpiends on componeBif
“correct execution oB may be necessary férto complete the task described in its
definition”

What are the effects of dependencies?

When software components depend on other compotweotsnplete their task it is
normal that in the source code of these comporeerdgference is made to other
components. In [Nene05] this is described as; corapts need to know witlrhich
other components to communicatgdhereto locate these components dmivto
communicate with them.

Adding this wWhich, where, howlependency logidto a component can have a
negative effect on the source code of a softwawdymt when changes are needed to
be made. In [Martin96] an example of three negativects of dependencies between
components, on the architecture/design of a softywewduct, are given. These
effects; rigidity, fragility and immobility, as wiehs fourth one: uncontrollability are
described below:

Rigid

Component interdependency makes it harder to miadkeges to components. When
making changes to a component that another compadepending on it may be
hard to tell what the effects of these change®arhe depending components.

A change may have a rippling effect of needed edlahanges throughout depending
modules making it hard to predict the impact of¢hange.

Fragile

Often when a software product is build from codéhwpioor quality, single changes to
a component may introduce new problems in depenzbngponents. Maintenance
becomes a real problem because fixing these prabbdi@n also causes new
problems in other parts of the software productramntenance can be compared
with a dog chasing its own tail.

Immobile

When components depend on specific other compot@tsmplete their own task it
becomes hard to re-use these components in arsatherare product without having
to include all logic that is not needed in the maeduct but still is required by the
components that the re-used component is dependinghe costs of component
separation are often higher than redevelopmeriteofiesired logic that exists in such
a single component.

32

Uncontrollable

In most software designs dependency of softwarepoments is a top-down situation.
Meaning; high level components contain the busitegs of a software product and
depend on lower level modules to make this logjzplea.

The problem with high level components stronglyeteping on lower level
components is that they often become dictated &yntiplementation details of the
lower level components. Changes to lower level camepts can force the higher
level components to change. As stated in [MartinBiégh level modules should be
forcing the low level modules to change, not theeotwvay around

An example

Probably the two biggest problems of dependenaidésgh level components are that
these high level components become immobile angraree for changes dictated by
lower level components they are depending on. Amagrh to overcome these
problems is described in [Martin96], in which iatsd thahigh level modules should
not depend on details of lower level modulastead they should depend on
abstractions, meaning that specifigplementation logic of lower level components
should be hidden from high level components

In practice, when focusing on the Java programr@nguage, this abstraction (or
hiding of implementation detail) can be realizedulsing interfaces. An interface
describes the provided functionality (methods idolg their arguments/signatures
and return value). A software component (a Javssdlathis case) implements this
functionality without the higher level componentshier depending classes) knowing
anything about the implementation details.

The interface can be seen as a contract betweeodmponents. On one hand the
high level component knows which functionality r@yided by the component
implementing this interface. On the other handitierface describes which
functionality it should provide.

The big advantage of this abstraction is that aldevel component, on which a
higher level component is depending, can be regdlageanother component that also
implements the interface. This is a design apprélaahcreatetosely coupled
components.

At one point in the code of a higher level compdribat depends on a lower level
component a reference has to be made to this lewercomponent. And with
reference we mean; code that initializes an ingtaon of this lower level
component. Below a very simple Java example isrgofesuch a lower level
component instantiation;

public class PaperManager

{

private PaperProvider currentPaperProvider;

public PaperManager ()
{

}

current Paper Provi der = new Paper ConpanyA() ;

33

public void checkPaperinStock()

{
if (getAmountOfPaperUnitsinStock() < 100)

{
}

currentPaperProvider.orderPaper(200);

}

Code example 2: Instantiation of required compometiitin a component

In the Java example above, the cleaperManager is meant to contain all high
level logic for managing the paper stock inventoia company. This company
orders paper, needed for its production process) fraper company A. In the
example it is clear that althouglaperManager depends on the abstract type
PaperProvider it still also depends on a specific implementatibn
PaperProvider (which isPaperCompanyA) .

Although it is a very simple example it illustratbée dependency of a company that
can exist in the real world. Such a real world aelemcy can form a risk for a
business. If the company needs paper for its ptamuprocess, the production
process depends on Company A. Therefore it is itapbfor the company to be able
to switch to another paper provider when needed.

What is dependency injection?

In the previous given example it is fairly easghange from afaperCompanyA to
aPaperCompanyB, all that has to be changed is the instantiaiimaih the
constructor. But stillPaperManager keeps depending on a specific implementing
lower level component.

One way to overcome this is to use the Factorygagsattern. In the Factory pattern a
component is held responsible for the correct migtion of an implementing
component. This causes that the high level compomdéimo longer be depending on
a specific implementation but solely on the abstiraterface description. Below a
very simple Java example is given of how a Facatarybe used.

public class PaperManager

{
private PaperProvider currentPaperProvider;

public StockinventoryManager()

{
current Paper Provi der =
Paper Pr ovi der Fact ory. get Cur r ent Paper Provi der () ;

}
public void checkPaperIinStock()
{
if (amountOfPaperUnitsinStock() < 100)
{
currentPaperProvider.orderPaper(200);
}
}

34

}

public class PaperProviderFactory

{

public static PaperProvider getCurrentPaperProvide r()

{
}

return new PaperCompanyB();

Code example 3: Obtaining a required component fdvactory

The PaperProviderFactory becomes responsible for initializing the corresgpér
company. The High level PaperManager only dependsthe PaperProvider
interface and not on specific companies any more.

From static factory pattern...

So with introducing a factory pattern tReperManager becomes more loosely
coupled from the specific paper company implemeriat But this factory pattern
has its own drawbacks. Now that thegperManager is decoupled from a specific
PaperProvider implementation it now relies onRaperProviderFactory
component to get the currently act®aperProvider implementation When it
comes to thevhich, where, howlependency logim a componenthe Factory Pattern
takes away the which and how logic from the comptbrigecause a factory
component initializeshipw) the correctwWhich) implementation. The component
containing the dependency keeps responsible fongdhe factory; it still contains
the logic for finding the dependenaylfere.

Two other shortcomings (or maybe better: pointsarfgegrovement) are that when
more high level components need to be decoupled &ther components, the
amount of Factory objects often increase as weblnbst cases these factory objects
aren’t much different from each other. Meaning thédosely coupled design can
cause a lot of boilerplate coding. The other sloniag is that changing to another
implementing object means that the code has todmifimd. The factory component
has to be altered so that it will return the carreplementation. When the company
in the previous example changes to a new/diffgpaper company, the source code
has to be modified and the software product neztie redeployed.

...To dynamic wiring

Looking further than the Factory design pattelis pjossible to create an even more
loosely coupled and less static design. This isresdependency injection enters the
ring.

Going back to the example used throughout thistenatnePaperManager
component, after applying the Factory patterntilisresponsible for knowing where
to get the needed dependency; it has to calPéperProviderFactory

component.

Another approach is to provide tReaperManager component with the needed
dependency so that it doesn’t have to retrievisélfi For example the needed
dependency can be provided as constructor arguasehe example below shows.

35

public class PaperManager
{
private PaperProvider currentPaperProvider;
publ i c Stockl nvent or yManager (Paper Provi der pp)
{
current Paper Provi der = pp;
}
}

Code example 4: Obtaining a required componentcasistructor argument

Next to the providing the needed dependency throligltonstructor a setter-method
can be used as well to provide the neelmekrProvider dependency (even after
initialization of thePaperManager component).

public class PaperManager
{
private PaperProvider currentPaperProvider;
public StockinventoryManager(PaperProvider pp)
{
currentPaperProvider = pp;
}
public voi d set Current Paper Provi der (Paper Provi der pp)
{
current Paper Provi der = pp;
}
}

Code example 5: Obtaining a required componentsa$tar method argument

Providing a component with the needed dependeitiaieeds to complete its tasks,
with this component only knowing what these depecas should do (thanks to the
abstract description) and without knowing how tldeyit (the specific
implementation) is often referred to @aependency injection’

Another term often used to describe the same pimcs ‘Inversion of Control’ (10C).
Although in my opinion it more describes the powfdoosely coupled design when it
comes to depending components no longer be in el@frthe dependencies they use.
And lower level components not forcing higher leaghponents depending on them
to change (better described in ‘What are the e$fettdependencies?’). Therefore we
use the term ‘dependency injection’ (DI) throughting rest of this document.

So dependency injection helps with removingwliech, where, howlependency
logic from a component. But the true power of DI liesha ability of automating it
with configuration based solutions.

Recalling the business in our example that relirea specific paper company (that
provides paper needed for its production procedsat if the company would switch
to another paper company? TiaperManager component should now use the
PaperCompanyB implementation of th@aperProvider interface instead of
PaperCompanyA . When using DI th®aperManager can be injected with the
correctPaperProvider implementation.

36

Current solutions

Needless to say, little helper gnomes (insteadugEpare very rare in the software
engineering business. Or in other words; this déeeay injection thing doesn’t
happen out of itself. When providing dependenaesomponents this logic has to be
developed or an existing DI solution can be used.

Types of dependency injection

As the examples earlier on showed, dependencytiofeis (for example) possible
through supplying the dependency as an argumeiat donstructor or a setter-
method. The different types of DI (or DI implemetida strategies) are often referred
to as ‘type x’, where x is the number correspondng certain type of DI
implementation strategy.

Throughout different literature these DI types @ften given a name that describes
the DI implementation strategy, instead of usinty @number. Using names instead
of numbers is obvious much more clearer. But tloblem is that sometimes these DI
types are not given the same name. For exampkeoiwlgrO4] type 1 Dl is given the
name ‘Interface Injection’. And in [CodehausPidm¢ same type has been given the
name ‘Contextualized Dependency Lookup’. In [Codetfaco] it is also mentioned
that the ‘type x’ definitions can be seen as oliscddl together.

Throughout the rest of this document the followiragnes for the different DI
implementations (based on [CodehausPico]) are used:

Contextualized Dependency L ookup

Also known asType 1 The component contains logic to call another coment that
provides the needed dependency. This DI implemientatrategy on component
level causes the component still having a dependiena component (or the context)
that provides the needed dependency. A possihlgiaolis to provide this
dependency provider as an interface implementatinshinjecting it through a
constructor or a setter method.

public class PaperManager

{

private PaperProvider currentPaperProvider;
public Stockl nvent oryManager (Paper ConpanyCont ext pcc)

{
current Paper Provi der =
pcc.retrieveCurrent Paper Provi der () ;

}

public StockinventoryManager(PaperProvider pp)
{

}

public void setCurrentPaperProvider(PaperProvider pp)

{
}

currentPaperProvider = pp;

currentPaperProvider = pp;

Code example 6: Obtaining a required component si@rovided context
Setter Dependency I njection

37

Also know asType 2 The dependency is provided to the componentsaster-
method argument. The problem with this DI implenatioh strategy is that when
developing a custom DI solution (the logic that esmkhe injection happen) it is
possible to forget to call such a setter methodelMhitializing a component it is not
mandatory to call setter methods (only a call tm@astructor is mandatory), meaning
that after initialization the needed dependencyhiinggver be provided. This of
course will result in the component not behavikg intended.

public class PaperManager

{

private PaperProvider currentPaperProvider;
public StockinventoryManager(PaperCompanyContext p cc)

{
currentPaperProvider =
pcc.retrieveCurrentPaperProvider();

}

public StockinventoryManager(PaperProvider pp)
{

}

public voi d set Current Paper Provi der (Paper Provi der pp)
{

}

currentPaperProvider = pp;

current Paper Provi der = pp;

Code example 7: Obtaining a required componenttiit@a setter method

Constructor Dependency injection

Also known asType 3 The dependency is provided to the componentcamstructor
argument. The constructor will always have to Heedavhen initializing a
component. This means that, if all constructorsirecthe needed dependencies as
arguments and null-values are not allowed, the corapt is always provided with

the needed dependency. The problem that might wkish multiple dependencies are
required is that the signature of a constructorlmrome too large and beyond the
point they are still easy to read/understand.

public class PaperManager

{

private PaperProvider currentPaperProvider;

public Stockl nvent oryManager (Paper Provi der pp)

{
current Paper Provi der = pp;
}
public void setCurrentPaperProvider(PaperProvider pp)

{
}

currentPaperProvider = pp;

Code example 8: Obtaining a required componentutir@ constructor

38

Field Dependency injection

Also known agype 4but is less common than type other three types.dependency
is assigned to a field (in Java called a class negwdériable). No constructor
argument or specific setter method is needed igraas instance of dependency to a
variable. The logic for this form of dependencyésy complex to develop. A
managed environment that is responsible for cdetta@xecution of code seems to be
the best option to implement this form of depengenc

Containers / Managed environments

Multiple third party Dependency Injection solutiomsist. Actually they're not always
called Dependency Injection solutions, some arnedahversion of Control
frameworks but focus on the dependency injectiamcpple. Others provide more
functionality than just DI. On [Wikipedia-DI] a li®f frameworks that support DI is
given. From this list three well known Java framekgathat support DI are described
below;

PicoContainer

PicoContainer is (and this is also one of its goalsghtweight DI framework. The
developers of PicoContainer believe that construgjection is the best DI
implementation approach (but setter-injection igpmsedly also supported).

Spring

Spring is more than a DI solution. Spring is a ctatg(and very popular) J2EE
framework offering a lot of other possibilitiekdi Aspect Oriented Programming
(AOP) for example.

Java EES5

Java Enterprise Edition 5 is the API for Java Eprise Applications. The previous
version of the Java Enterprise Edition, version Was considered to be very
cumbersome to implement. Especially its core corepts) Enterprise Java Beans
(EJB) proved to be very hard to develop and conéigAs response to upcoming
frameworks like Spring, Sun tries with JEES to difgdEJB development for
example by supporting dependency injection.

39

Appendix C — The paper manager example

The idea behind the paper manager example is aamyripat uses paper during its
production process. For some products they useevplaper, for others they use
brown colored paper. The company wants a soluhahdutomatically orders paper
when the available amount in stock drops below (b@€asured in meters).

One component will be used to manage the paperisiinePaperManager
component. When paper (white or brown) is usednguthie production process the
PaperManager component is notified. Its tif@aperManager ’s responsibility to
order 200 meters of paper from a paper company Wieeamount in stock becomes
less than 100. To keep the amount of paper in sibaksufficient level the
PaperManager depends on BaperProvider

Because its production process depends on paperpthpany doesn’t want to
depend on only one paper company. The solutionldhmake it possible to switch to
another paper company if this may be necessahgeifuture. Therefore the solution
will incorporate an abstraction of the paper ontlgfunctionality that a paper
company provides; theaperProviderinterface abstraction. This means the
PaperManager component will make use of a component that implets this
PaperProvider abstraction.

The question is what theaperProvider ~ abstraction should look like. Which
functionality should it provide or better; how cdue PaperManager component

order the needed paper? THreperManager component must be able to order brown
and white paper. It must also be possible to noti€/paper company that an order
has been received.

Technical design

A generic solution is preferred; the company foessihe possibility that it will be
using other different kind of papers in the futuraerefore the decision has been
made that th®aperManager and thePaperProvider implementation will
communicate in the form of generic paper ordergséhwill be derived from an
abstracPaperOrder component class.

Because we focus on tRaperManager component (implementing it with and
without the dependency injection principle) we wilbo create an abstraction
(interface) for this component call®dperManagerinterface . This way we

create a contract so all implementations (cona@letgses) implement the same desired
logic.

40

The paper manager interface

This abstraction/interface describes the functibn#iat a concrete implementation
class should provide, despite using dependencgtiajeor not.

package model.papermanager;
i mport model.paperorder.AbstractPaperOrder;

/**

* PaperManager is the highlevel component - interface used to manage the information
about paperflow in the company

* A paper Manager is responsible to order paper when the amount in stock drops below
100

* @ut hor Ricardo Lindooren

*

public interface PaperManagerinterface

{

/**

* Called by other components to inform the PaperManager how much brown paper
is used during the production process

* @ee #whitePaperUsedInProductionProcess(int)

* @ar am amountOfMeters the amount of paper used

*

publ i ¢ voi d brownPaperUsedinProductionProcess(i nt amountOfMeters);

/**
* @ee #brownPaperUsedInProductionProcess(int)
* @ar am amountOfMeters the amount of paper used
*
/
publ i c voi d whitePaperUsedinProductionProcess(i nt amountOfMeters);

/**

* Called by other components to inform the PaperManager ordered Paper has been
received

* @aram apo the paper order that has been received by the company

*

publ i ¢ voi d paperOrderReceivedFromPaperProvider(AbstractPaperO rder apo) t hr ows
UnknownPaperOrderException;

/**

* Returns the number of meters of brown paper that's in stock
* @ee #getAmountOfWhitePaperinStock()

* @eturn the current amount of brown paper in stock

*

publ i c i nt getAmountOfBrownPaperinStock();

/**
* @ee #getAmountOfBrownPaperinStock()
* @eturn the current amount of white paper in stock
*
/
public int getAmountOfWhitePaperinStock();

/**

* Sets the amount of brown paper that's in stock

* The purpose of this setter is to give a begin value of the amount in stock
* @ee #setAmountOfWhitePaperlnStock(int)

* @ar am amountOfMeters

*

publ i c voi d setAmountOfBrownPaperinStock(i nt amountOfMeters);

/**
* @ee #setAmountOfBrownPaperinStock(int)
* @ar am amountOfMeters
*
/
publ i c voi d setAmountOfWhitePaperinStock(i nt amountOfMeters);

/**

* Which orders have been dispatched to the paper company
* @eturn a set of paper orders

*

publ i ¢ Set<AbstractPaperOrder> getPaperCurrentlylnOrder() ;

41

The paper provider interface
This is the abstraction the paper manager compateg@nds on for ordering paper.

package model.paperprovider;
i nport java.util.Set;
i mport model.paperorder.AbstractPaperOrder;

/**
* Interface describing the functionality of a paper provider
* Ricardo Lindooren

*
public interface PaperProviderinterface

{
/**
* Orders paper from the paper provider
* apo the paper order

*
publ i c voi d orderPaper(AbstractPaperOrder apo);

/**

* Checks which paper orders are being processed by the paper provider
* the orders that are being processed by the paper provider
*

publ i ¢ Set<AbstractPaperOrder> checkCurrentlyProcessedPap erOrders();

/**

* Used to let the paper provider know which order has been received by the
paper company

apo
*
publ i c voi d confirmReceivedPaperOrder(AbstractPaperOrder apo) t hr ows
UnknownPaperOrderException;

}

The unknown paper exception

Should be thrown by the PaperManager and Paped&iovnplementations when a
not earlier identified paper order is supplied iEgiment.

package model.paperorder;

publ i c cl ass UnknownPaperOrderException ext ends Exception

{

Vi

* Generated by Eclipse
*
private static final |ong serial VersionU D=1081125365526999630L;

publ i ¢ UnknownPaperOrderException()

{
super ();
}
publ i ¢ UnknownPaperOrderException(String message)
{
super (message);
}
publ i ¢ UnknownPaperOrderException(Throwable cause)
{
super (cause);
}
publ i ¢ UnknownPaperOrderException(String message, Throwab le cause)
{
super (message, cause);
}

42

The abstract paper order

This is the information that defines a paper om®nmunicated between the paper
manager and a paper company.

package model.paperorder;
i mport java.io.Serializable;
i nport java.util.Date;

/**
* Ricardo Lindooren
*/
public abstract class AbstractPaperOrder i mpl enent s Serializable
{
privatelong id;
private Date orderDate ;
private int amount;
publ i ¢ Long getld()
{
return id ;
}
publ i c voi d setld(Long id)
this.id =id;
}
publ i ¢ Date getOrderDate()
{
return orderDate ;
}
publ i c voi d setOrderDate(Date orderDate)
thi s. orderDate = orderDate;
}
public int getAmount()
{
return amount;
}
public voi d setAmount(i nt amount)
t hi s. amount = amount;
}
}

package model.paperorder;

public cl ass WhitePaperOrder ext ends AbstractPaperOrder

{
/**
* Generated by Eclipse
*
private static final |ong serial VersionU D=-3966465969285239587L;
}

package model.paperorder;

public cl ass BrownPaperOrder ext ends AbstractPaperOrder

{
/**
* Generated by Eclipse
*
private static final |ong serial VersionU D= 1582952228765022555L;
}

43

Implemented without dependency injection

Without dependency injection tiRaperManagerNonDi implementation of the
PaperManager interface contains a reference tBaperProviderinterface
implementation. In this case this is the concréassPaperCompanyA .
PaperCompanyA class is meant to fail under all circumstancess iy sound
unusual but actually this is done to prove how hiabg&comes to test a component
(PaperManagerNonDi) when a component it depends &agerCompanyA) is not
available during test.

The import block in a Java source file is a goatidation of the dependencies of the
classes inside that source file. TheperManagerNonDi.java class depends on 6
other classes (ignoring the classes that are paeva language framework, like
java.util.Date etc.):

i mport model.papermanager.PaperManagerinterface;

i mport model.paperorder.AbstractPaperOrder;

i mport model.paperorder.BrownPaperOrder;

i mport model.paperorder.UnknownPaperOrderException;
i mport model.paperorder.WhitePaperOrder;

import model.paperprovider.impl.PaperCompanyA;

With the ‘IBM Structural Analysis for Java’ toolRithis can be visualized in an UML
like notation:

BbstractPaper Order
7
’ J.-' "uses AbstractFaperCirder

Faper Managerinterfac ..]

: !

‘Fx g
. e !
"implements L ki

Paperianagerinteface ™.
R |"I

"econtains PaperCompanyd

H . 1

Paper Manager Mon i Paper Compamnyl
P B

ol h

- 4

."..' Illl

“"ealls WhitePaperQrder %
. 1 "ealls BrownPaperCrder
Whiite Faper Order "'-,
4

ll..

1

ErownPaper Order

8 http://www.alphaworks.ibm.com/tech/sa4j

44

To make this dependency visualization more cléar meaning of the lines between
the components have been added (beginning withlgh, this toolkit ignores
Exception classes by default, that's why tim&nownPaperOrderException

component is not displayed.

Below the complete code of tiraperManagerNonDi class is given.

PaperManagerNonDi.java

package model.papermanager.impl;
i nport java.util.Collections;
i nport java.util.Date;
i mport java.util.Set;
i mport java.util.SortedSet;
i nport java. util .TreeSet;
i mport model.papermanager.PaperManagerinterface;
i mport model.paperorder.AbstractPaperOrder;
i mport model.paperorder.BrownPaperOrder;
i nport model.paperorder.UnknownPaperOrderException;
i npor t model.paperorder.WhitePaperOrder;
i mport model.paperprovider.impl.PaperCompanyA;
/**
* An implementation of the PaperManagerinterface not making use of dependency
injection
* Ricardo Lindooren
*
publ i c cl ass PaperManagerNonDi i npl enent s PaperManagerinterface
{
privat e PaperCompanyA paperCompanyA ;
private int amountOfBrownPaperinStock ;
private int amountOfWhitePaperinStock ;
privat e SortedSet<AbstractPaperOrder> paperOrdered
private int ORDER_WHITEPAPER_BELGWOO;
private int ORDER_BROWNPAPER_BEIQMO;
private | ong lastOrderld ;
/**
* Constructor initializing the reference to a paper company
*
publ i ¢ PaperManagerNonDi()
paperCompanyA = new PaperCompanyA();
paperOrdered = Collections. synchroni zedSor t edSet (new
TreeSet<AbstractPaperOrder>());
lastOrderld =0;
}
@Override
publ i c voi d brownPaperUsedInProductionProcess(i nt amountOfMeters)
{
amountOfBrownPaperInStock -= amountOfMeters;
checkBrownPaperInStock();
}
@Override
publ i c voi d whitePaperUsedinProductionProcess(i nt amountOfMeters)
{
amountOfWhitePaperInStock -= amountOfMeters;
checkWhitePaperIinStock();
}
@Override
public int getAmountOfBrownPaperinStock()
{
return amountOfBrownPaperinStock
}
@Override
publ i c int getAmountOfWhitePaperinStock()
{

45

ret urn amountOfWhitePaperinStock

}

@Override

publ i c voi d paperOrderReceivedFromPaperProvider(AbstractPaperO rder apo) t hr ows
UnknownPaperOrderException

i f (paperOrdered .contains(apo))

{
/I Dispatch paper company
paperCompanyA .confirmReceivedPaperOrder(apo);
/I Delete from local history
paperOrdered .remove(apo);
}
el se
{
t hr ow new UnknownPaperOrderException("Order did not exist in
paper orders");
}
}
@Override
publ i c voi d setAmountOfBrownPaperInStock(i nt amountOfMeters)
{
amountOfBrownPaperinStock = amountOfMeters;
}
@Override
publ i c voi d setAmountOfWhitePaperinStock(i nt amountOfMeters)
{
amountOfWhitePaperIinStock = amountOfMeters;
}
@Override
publ i ¢ Set<AbstractPaperOrder> getPaperCurrentlylnOrder()
{
return paperOrdered
}
/**

* Checks and orders white paper when needed
*
private voi d checkWhitePaperinStock()

i f (getAmountOfWhitePaperinStock() < ORDER_WHITEPAPER_BELPW
{
WhitePaperOrder wpo = new WhitePaperOrder();
wpo.setld(getNewOrderld());
wpo.setAmount(200);
wpo.setOrderDate(new Date(System. currentTi neM | |i s()));
paperCompanyA .orderPaper(wpo);
}
}
/**

* Checks and orders brown paper when needed
*/
private voi d checkBrownPaperinStock()

i f (getAmountOfBrownPaperinStock() < ORDER_BROWNPAPER_BEJ.OW
BrownPaperOrder bpo = new BrownPaperOrder();
bpo.setld(getNewOrderld());
bpo.setAmount(200);
bpo.setOrderDate(new Date(System. current Ti neM I i s()));

/I Keep in local history
paperOrdered .add(bpo);

/I Dispatch to paper company
paperCompanyA .orderPaper(bpo);

}
}
/*k
* Creates a new order Id
* last order id + 1

*

46

private synchroni zed Long getNewOrderld()

{
}

return newlLong(lastOrderld +1);

It consists of 106 total lines of code (TLOC). Aith@ average McCabe cyclomatic
complexity is 1,25.

The JUnit testcase for this component is givenwelo

PaperManagerNonDiTest.java

package model.papermanager.impl;
i nport java.util.lterator;

i mport junit.framework.TestCase;

i npor t model.paperorder.AbstractPaperOrder;

i npor t model.paperorder.BrownPaperOrder;

i mport model.paperorder.UnknownPaperOrderException;
i mport model.paperorder.WhitePaperOrder;

Vi

* JUnite testcase for class PaperManagerNonDi

*

* PaperManagerNonDi

* Ricardo Lindooren

*

public cl ass PaperManagerNonDiTest ext ends TestCase

{
pri vat e PaperManagerNonDi pmndiUnderTest ;
private int brownPaperinStockToStartWith =500;
private int whitePaperinStockToStartWith =500;
private int orderBrownPaperBelow =100;
private int orderWhitePaperBelow =100;
private int brownPaperAmountThatShouldBeOrdered =200;
private int whitePaperAmountThatShouldBeOrdered = 200;
@Override
prot ect ed voi d setUp() t hr ows Exception
{
super .setUp();
pmndiUnderTest = newPaperManagerNonDi();
pmndiUnderTest .setAmountOfBrownPaperinStock(brownPaperinStockToStartWith);
pmndiUnderTest .setAmountOfWhitePaperinStock(whitePaperinStockToStartWith);
}
publ i c voi d testBrownPaperUsedInProductionProcess()
{

/* Test if amount in stock decreases correctly */

i nt usedAmountOfMeters = 5;

pmndiUnderTest .brownPaperUsedInProductionProcess(usedAmountOfMete rs);

assert Equal s(brownPaperinStockToStartWith - usedAmountOfMeters,
pmndiUnderTest .getAmountOfBrownPaperinStock());

/* Test if paper manager orders paper from paper co mpany */
/I Clear all pending orders
pmndiUnderTest .getPaperCurrentlylnOrder().clear();

/I Use paper so that a new order has to be placed

pmndiUnderTest .setAmountOfBrownPaperInStock(orderBrownPaperBelow);
pmndiUnderTest .brownPaperUsedInProductionProcess(1);
assert Equal s("There should be an order" , false,

pmndiUnderTest .getPaperCurrentlylnOrder().isEmpty());

/I Check order validity
Iterator<AbstractPaperOrder> paperOrderlterator =
pmndiUnderTest .getPaperCurrentlylnOrder().iterator();

47

AbstractPaperOrder apo = paperOrderlterator.next();
assert True(apo i nstanceof BrownPaperOrder);

assert Equal s(brownPaperAmountThatShouldBeOrdered , apo.getAmount());
/* Impossible to test if PaperCompanyA has been cal led! */

}

publ i c voi d testWhitePaperUsedinProductionProcess()

{

/* Test if amount in stock decreases correctly */

i nt usedAmountOfMeters = 5;

pmndiUnderTest .whitePaperUsedinProductionProcess(usedAmountOfMete

asser t Equal s(whitePaperIinStockToStartWith - usedAmountOfMeters,
pmndiUnderTest .getAmountOfWhitePaperinStock());

/* Test if paper manager orders paper from paper co mpany */
/I Clear all pending orders
pmndiUnderTest .getPaperCurrentlylnOrder().clear();

/I Use paper so that a new order has to be placed

pmndiUnderTest .setAmountOfWhitePaperinStock(orderWhitePaperBelow
pmndiUnderTest .whitePaperUsedInProductionProcess(1);
assert Equal s("There should be an order" , false,

pmndiUnderTest .getPaperCurrentlylnOrder().isEmpty());

/I Check order validity
Iterator<AbstractPaperOrder> paperOrderlterator =
pmndiUnderTest .getPaperCurrentlylnOrder().iterator();
AbstractPaperOrder apo = paperOrderlterator.next();
assert True(apo i nstanceof WhitePaperOrder);

assert Equal s(whitePaperAmountThatShouldBeOrdered , apo.getAmount());
/* Impossible to test if PaperCompanyA has been cal led! */

}

publ i c voi d testGetAmountOfBrownPaperinStock()

{

assert Equal s(brownPaperInStockToStartWith ,
pmndiUnderTest .getAmountOfBrownPaperinStock());

}
publ i c voi d testGetAmountOfWhitePaperinStock()

{
assert Equal s(whitePaperinStockToStartWith ,
pmndiUnderTest .getAmountOfWhitePaperinStock());

}
publ i c voi d testPaperOrderReceivedFromPaperProvider()
{
WhitePaperOrder wpo = new WhitePaperOrder();
/I fake Id

wpo.setld(new Long(324));
wpo.setAmount(1);

UnknownPaperOrderException upoex = nul | ;

try
{ . . .

pmndiUnderTest .paperOrderReceivedFromPaperProvider(wpo);

}

cat ch(UnknownPaperOrderException ex)
{

upoex = ex;

}

assert Not Nul | ("Unknown order should throw an exception” , upoex);

/I Use paper so that a new order has to be placed
pmndiUnderTest .setAmountOfBrownPaperinStock(orderBrownPaperBelow
pmndiUnderTest .brownPaperUsedInProductionProcess(1);
Iterator<AbstractPaperOrder> paperOrderlterator =

pmndiUnderTest .getPaperCurrentlylnOrder().iterator();

AbstractPaperOrder apo = paperOrderlterator.next();
UnknownPaperOrderException upoex2 = nul | ;

try
{

pmndiUnderTest .paperOrderReceivedFromPaperProvider(apo);

rs);

48

cat ch(UnknownPaperOrderException ex)

{
}

assert Nul | (upoex2);

upoex2 = ex;

/* Impossible to test if PaperCompanyA has been cal led! */

}
Vi

* Simple getter/setter test
*/
publ i c voi d testSetAmountOfBrownPaperinStock()

{
i nt testValue = 10;
pmndiUnderTest .setAmountOfBrownPaperInStock(testValue);
assert Equal s(testValue, pmndiUnderTest .getAmountOfBrownPaperinStock());
}
/**
* Simple getter/setter test

*/
publ i c voi d testSetAmountOfwWhitePaperinStock()

{

i nt testValue = 20;

pmndiUnderTest .setAmountOfWhitePaperinStock(testValue);

assert Equal s(testValue, pmndiUnderTest .getAmountOfWhitePaperinStock());
}

/**

* Simple not null test on getter

*/

publ i c voi d testGetPaperCurrentlylnOrder()
{

}

assert Not Nul | (pmndiUnderTest .getPaperCurrentlylnOrder());

It consist out of 108 TLOC containing 16 calls tnit assert methods. There are no

lines of configuration code needed to initialize ttependencies (they are all

referenced and initialized in theaperManagerNonDi class).

According to the JUnit test report the successahthis test is 62.50%, the reason

why it is not 100% is that all tests that test mehdepending oRaperCompanyA

are failing since it is not available.

49

Class model.papermanager.impl.PaperManagerMonDiTest

Name Tests Errors Failures Time(s) Time Stamp Host
PaperManagerNonDiTest 8 3 o 0.750 2007-08-20T18:55:26 RICARDO-XP
Tests

Name Status Type Time(s
testBrownPaperUsedInProductionProcess Error PaperCompanyA not available! 0.234

jam.lang g not Lablet

at model idex impl 2 Jem)

at model Lampl. Janml2d)

at model ampl i i Jeum:d)

at model LamplL Test. Test . janm:s0)
testWhitePaperUsedInProductionProcess Error PaperCompanyA not available! 0.000

jmm.lang nat Table!

at model Lampl 2 Jemi2E)

at model mpl i i Jeum:104)

at model LamplL Javm:51)

at model ampl iTest 1 i iTest jmm:75)
testGetAmountOfBrownPaperlnStock Success 0,000
testGetamountofwhitePaperinStock Success 0,000
testPaperOrderReceivedFromPaperProvider Error PaperCompanyA not available! 0.000

jmm.lang BmtimeEuseprion: PaperCompangf not mmdlshle!

at model Lampl 2 Jemi2E)

at model mpl i Jaum:124)

at model LamplL Janmrdd)

ar

model Lmpl Test. 2. Tezt jam:ll?)
testSetamountCfBrownPaperInStock Success 0.000
testSetamountOfihitePaperInStock Success 0.000
testGetPaperCurrentlyInCrder Success 0,000

Properties »

Figure 7: Failing tests

The Cobertura testcoverage report tells us that 8B#te lines of code and 83% of all
branches in theaperManagerNonDi class are tested.

Classes in this File Line Coverage Branch Coverage Complexity
PapertanagertionDi sz [INEEETN 5= [INSTEN 0

Figure 8: Code test coverage

This is also due to theaperCompanyA class failing during tests.

66 @0verride

67 public woid paperOrderBeceivedFromPaperProvider (AbstractPaperOrder apo) throws UnknowmPaperOrderException
65 {

69 1 if (paperOrdered.contains(apo))

70 {

71 S Dispatch paper compainy

72 .0 paperCompany . confirmBeceivedPaperOrder{apo) ;

73 S Delete from local history

74 0 paperOrdered. remove (apo) ;

75 }

76 elze

77 {

78 1 throw new UnknownPaperOrderException("0rder did not exist in paper orders");
79 }

g0 0 H

Figure 9: Lines not executed during test(s)

The test cannot get around this failing componartesit cannot be replaced with
anotherPaperProviderinterface implementation.

Note about the Metrics tool for Eclipse

While writing the code for the concre®aperManagerNonDi class it became clear
that the Metrics tool for Eclipse does correctlicatate the testability metric McCabe
cyclometic complexity. For example the following timed is given a value of 2 for
testability:

private voi d checkWhitePaperinStock()

i f (getAmountOfWhitePaperinStock() < ORDER_WH TEPAPER _BELOW

{
WhitePaperOrder wpo = new WhitePaperOrder();

50

wpo.setld(getNewOrderld());

wpo.setAmount(200);

wpo.setOrderDate(new Date(System. currentTi neM | li s());
paperCompanyA .orderPaper(wpo);

}

Which is a correct value since there are two pésgaths in this method’s code
structure; the amount of paper in stock is too ¢towot (in the form of the if-
statement).

Another thing about the Metrics tool that actuadlyyomething good to know when
interpreting the total lines of code (TLOC) meisdhat it counts statements that
continue on the next line as two lines of code, mités actually only one statement.
This became clear after automatically formatting ¢bde with the help of Eclipse.
Eclipse by default wraps long statements on moeslas an effort to make them
better readable. Because this can be confusingilveatmake use of auto
formatting keeping each statement on not more tmanline.

The example below shows how both statements, thabactly the same and take
equal amount of effort to write, are counted défaty which can make the TLOC
metric not valid if we use it as an indication loé tamount of effort needed to write a
component or test.

Counted as one line of code:
| paperCompanyA .confirmReceivedPaperOrder(apo);

Counted as two lines of code:
paperCompanyA .
confirmReceivedPaperOrder(apo);

51

Implemented with PicoContainer dependency injection

The dependency we will focus on when applying tigethdency injection principle is
the PaperManagerinterface implementation depending on a
PaperProviderinterface implementation. We will use PicoContainer to be
responsible for managing the desired dependendibsive help of dependency
injection.

ThePaperManagerPicoDi class makes it clear that it doesn’t contain arezfce to
a specificPaperProviderinterface implementation. It is only aware of the
PaperProviderinterface abstraction. Which can be seen in the import block

i mport model.papermanager.PaperManagerinterface;

i mport model.paperorder.AbstractPaperOrder;

i mport model.paperorder.BrownPaperOrder;

i mport model.paperorder.UnknownPaperOrderException;

i mport model.paperorder.WhitePaperOrder;

i nport nodel . paper provi der . Paper Provi der | nterface;

...as well as in the ‘IBM Structural Analysis for d&voolkit visualization:

AbstractPaperOrder
A
!
/ ‘uses AbstractPaperOrder
O /
PaperiManagerinterfac... b3
W /
e

~ f
‘implements PaperManagerinterface b

*uses PaperProviderinterface

PaperProviderinterfal..

PaperManagerPicolA

Fa

. *calls WhitePaperOrder
WhitePaperOrder
*calls BrownPaperOrder

\I

BrownPaperOrder

52

The complete implementation of tRaperManagerPicoDi

PaperManagerPicoDi.java

class is given below

package model.papermanager.impl;

i nport java.util.Collections;
i nport java.util.Date;

i mport java.util.Set;

i mport java.util.SortedSet;
i nport java.util. TreeSet;

i mport model.papermanager.PaperManagerinterface;

i mport model.paperorder.AbstractPaperOrder;

i npor t model.paperorder.BrownPaperOrder;

i npor t model.paperorder.UnknownPaperOrderException;
i mport model.paperorder.WhitePaperOrder;

i mport model.paperprovider.PaperProviderinterface;

Vi

* An implementation of the PaperManagerinterface making use of PicoContainer

dependency injection
* Ricardo Lindooren
*
publ i c cl ass PaperManagerPicoDi i mpl enent s PaperManagerinterface
{
pri vat e PaperProviderlnterface paperProvider
private int amountOfBrownPaperinStock ;
private int amountOfWhitePaperinStock
pri vat e SortedSet<AbstractPaperOrder> paperOrdered
private int ORDER_WHITEPAPER_BELGWOO;
private int ORDER_BROWNPAPER_BEIQMO;
private |ong lastOrderld ;

/**
* Constructor initializing the reference to a paper company
*
publ i ¢ PaperManagerPicoDi(PaperProviderlnterface currentP aperProvider)
{
paperProvider = currentPaperProvider;
paperOrdered = Collections. synchroni zedSor t edSet (new
TreeSet<AbstractPaperOrder>());
lastOrderld =0;
}
@Override
publ i c voi d brownPaperUsedInProductionProcess(i nt amountOfMeters)
{
amountOfBrownPaperInStock -= amountOfMeters;
checkBrownPaperinStock();
}
@Override
publ i c voi d whitePaperUsedInProductionProcess(i nt amountOfMeters)
{
amountOfWhitePaperinStock -= amountOfMeters;
checkWhitePaperIinStock();
}
@Override
public int getAmountOfBrownPaperinStock()
{
ret urn amountOfBrownPaperinStock
}
@Override
public int getAmountOfWhitePaperinStock()
{
ret urn amountOfWhitePaperinStock ;
}
@Override
publ i ¢ voi d paperOrderReceivedFromPaperProvider(AbstractPaperO rder apo)

UnknownPaperOrderException

{

t hr ows

53

i f (paperOrdered .contains(apo))

{
/I Dispatch paper company
paperProvider .confirmReceivedPaperOrder(apo);
/I Delete from local history
paperOrdered .remove(apo);
}
el se
{ . . .
t hr ow new UnknownPaperOrderException("Order did not exist in
paper orders");
}
}
@Override
publ i c voi d setAmountOfBrownPaperinStock(i nt amountOfMeters)
{
amountOfBrownPaperInStock = amountOfMeters;
}
@Override
publ i c voi d setAmountOfWhitePaperinStock(i nt amountOfMeters)
{
amountOfWhitePaperInStock = amountOfMeters;
}
@Override
publ i ¢ Set<AbstractPaperOrder> getPaperCurrentlylnOrder()
{
return paperOrdered
}
/**

* Checks and orders white paper when needed
*
private voi d checkWhitePaperinStock()

i f (getAmountOfWhitePaperinStock() < ORDER_WHITEPAPER_BELPW

WhitePaperOrder wpo = new WhitePaperOrder();
wpo.setld(getNewOrderld());
wpo.setAmount(200);
wpo.setOrderDate(new Date(System. current Ti neM I i s()));
/I Keep in local history
paperOrdered .add(wpo);
/I Dispatch to paper company
paperProvider .orderPaper(wpo);

}

/**

* Checks and orders brown paper when needed
*/

private voi d checkBrownPaperinStock()

i f (getAmountOfBrownPaperinStock() < ORDER_BROWNPAPER_BEJ.OW
{
BrownPaperOrder bpo = new BrownPaperOrder();
bpo.setld(getNewOrderld());
bpo.setAmount(200);
bpo.setOrderDate(new Date(System. current Ti neM I i s()));
/I Keep in local history
paperOrdered .add(bpo);
/I Dispatch to paper company
paperProvider .orderPaper(bpo);

}
/*k
* Creates a new order Id
* @eturn last order id + 1
*/
private synchroni zed Long getNewOrderld()

return newlLong(lastOrderld +1);

54

[} |

The main difference in source code betweerPtdymerManagerNonDi.java and
PaperManagerPicoDi.java classes is that the constructor of the last navtatons
an argument. This is because PicoContainer is b@s#te constructor dependency
injection strategy. Which means that the dependeniryected during instantiation of
the class.

ThePaperManagerPicoDi implementation consists out of 106 TLOC. And the
average McCabe complexity is 1,25.

The fact that th€@aperManagerinterface dependency is injectable means that we
should be able to inject a Mock implementation ioyimg testability of this class
(compared to the testability of tRaperManagerNonDi class).

The JUnit testcase for this component is givenwelo

PaperManagerPicoDiTest.java

package model.papermanager.impl;

i mport java.util.lterator;

i nport junit.framework.TestCase;

i nport model.paperorder.AbstractPaperOrder;

i mport model.paperorder.BrownPaperOrder;

i mport model.paperorder.UnknownPaperOrderException;
i npor t model.paperorder.WhitePaperOrder;

i npor t model.paperprovider.impl.PaperCompanyMock;

i mport org.picocontainer.MutablePicoContainer;
i nport org.picocontainer.defaults.DefaultPicoContainer;

Vi

* JUnite testcase for class PaperManagerNonDi

*

* PaperManagerNonDi

* Ricardo Lindooren

*
publ i c cl ass PaperManagerPicoDiTest ext ends TestCase
{

pri vat e PaperManagerPicoDi pmpdiUnderTest
privat e PaperCompanyMock pctm;

private int brownPaperinStockToStartWith = 500;
private int whitePaperinStockToStartWith =500;
private int orderBrownPaperBelow = 100;

private int orderWhitePaperBelow =100;

private int brownPaperAmountThatShouldBeOrdered = 200;
private int whitePaperAmountThatShouldBeOrdered = 200;
@Override

protected voidsetUp() throws Exception

{

super .setUp();

/* The PicoContainer configuration code */

/I Use the PicoContainer logic to manage the depend encies
MutablePicoContainer picoContainer = new DefaultPicoContainer();

/I Register the used PaperCompany implementation (M OCK OBJECT)
picoContainer.registerComponentimplementation("PaperCompany" ,

PaperCompanyMock. cl ass);

/I Register the used PaperManager implementation
picoContainer.registerComponentimplementation("PaperManager"
PaperManagerPicoDi. cl ass);

55

pmpdiUnderTest = (PaperManagerPicoDi)
picoContainer.getComponentinstance("PaperManager");

/I Get the paper company test mock
pctm = (PaperCompanyMock)

picoContainer.getComponentinstance("PaperCompany");
pmpdiUnderTest .setAmountOfBrownPaperInStock(brownPaperinStockToStartWith
pmpdiUnderTest .setAmountOfWhitePaperinStock(whitePaperInStockToStartWith

publ i c voi d testBrownPaperUsedInProductionProcess()
{
/* Test if amount in stock decreases correctly */
i nt usedAmountOfMeters = 5;
pmpdiUnderTest .brownPaperUsedinProductionProcess(usedAmountOfMete
assert Equal s(brownPaperInStockToStartWith - usedAmountOfMeters,
pmpdiUnderTest .getAmountOfBrownPaperinStock());

/* Test if paper manager orders paper from paper co mpany */
/I Clear all pending orders

pmpdiUnderTest .getPaperCurrentlylnOrder().clear();

/I Use paper so that a new order has to be placed

pmpdiUnderTest .setAmountOfBrownPaperInStock(orderBrownPaperBelow
pmpdiUnderTest .brownPaperUsedinProductionProcess(1);

assert Equal s("There should be an order" , false,

pmpdiUnderTest .getPaperCurrentlylnOrder().isEmpty());

/I Check order validity

Iterator<AbstractPaperOrder> paperOrderlterator =

pmpdiUnderTest .getPaperCurrentlylnOrder().iterator();

AbstractPaperOrder apo = paperOrderlterator.next();
assert True(apo i nstanceof BrownPaperOrder);

/* Possible to test if PaperCompanyA has been calle dr#/
assert Fal se(pctm .checkCurrentlyProcessedPaperOrders(). |sEmpty())

Iterator<AbstractPaperOrder> paperOrderlterator2

pctm .checkCurrentlyProcessedPaperOrders().iterator();

AbstractPaperOrder apo2 = paperOrderlterator2.nex t();
assert Equal s(0, apo2.compareTo(apo));

}

publ i c voi d testWhitePaperUsedinProductionProcess()
{
/* Test if amount in stock decreases correctly */
i nt usedAmountOfMeters = 5;
pmpdiUnderTest .whitePaperUsedInProductionProcess(usedAmountOfMete
assert Equal s(whitePaperinStockToStartWith - usedAmountOfMeters,
pmpdiUnderTest .getAmountOfWhitePaperinStock());

/* Test if paper manager orders paper from paper co mpany */
/I Clear all pending orders

pmpdiUnderTest .getPaperCurrentlylnOrder().clear();

/I Use paper so that a new order has to be placed

pmpdiUnderTest .setAmountOfWhitePaperinStock(orderWhitePaperBelow
pmpdiUnderTest .whitePaperUsedinProductionProcess(1);

assert Equal s("There should be an order" , false,

pmpdiUnderTest .getPaperCurrentlylnOrder().isEmpty());

/I Check order validity
Iterator<AbstractPaperOrder> paperOrderlterator =
pmpdiUnderTest .getPaperCurrentlylnOrder().iterator();
AbstractPaperOrder apo = paperOrderlterator.next();
assert True(apo i nstanceof WhitePaperOrder);
assert Equal s(whitePaperAmountThatShouldBeOrdered , apo.getAmount());

/* Possible to test if PaperCompanyA has been calle dr#/
assert Fal se(pctm .checkCurrentlyProcessedPaperOrders(). |sEmpty())
Iterator<AbstractPaperOrder> paperOrderlterator2 =
pctm .checkCurrentlyProcessedPaperOrders().iterator();

assert Equal s(brownPaperAmountThatShouldBeOrdered , apo.getAmount());

/I Get the paper manager with the needed dependenci es by PicoContainer

rs);

rs);

56

AbstractPaperOrder apo2 = paperOrderlterator2.nex t();
assert Equal s(0, apo2.compareTo(apo));

}

publ i c voi d testGetAmountOfBrownPaperinStock()

{
assert Equal s(brownPaperinStockToStartWith ,
pmpdiUnderTest .getAmountOfBrownPaperinStock());

publ i c voi d testGetAmountOfWhitePaperInStock()

{
asser t Equal s(whitePaperIinStockToStartWith ,
pmpdiUnderTest .getAmountOfWhitePaperinStock());

publ i c voi d testPaperOrderReceivedFromPaperProvider()

{
WhitePaperOrder wpo = new WhitePaperOrder();

/I fake Id
wpo.setld(new Long(324));
wpo.setAmount(1);

UnknownPaperOrderException upoex = nul | ;
try

pmpdiUnderTest .paperOrderReceivedFromPaperProvider(wpo);

{

} :

cat ch(UnknownPaperOrderException ex)

{
upoex = ex;

}

assert Not Nul | ("Unknown order should throw an exception” , upoex);

/I Use paper so that a new order has to be placed
pmpdiUnderTest .setAmountOfBrownPaperInStock(orderBrownPaperBelow);
pmpdiUnderTest .brownPaperUsedinProductionProcess(1);
Iterator<AbstractPaperOrder> paperOrderlterator =

pmpdiUnderTest .getPaperCurrentlylnOrder().iterator();
AbstractPaperOrder apo = paperOrderlterator.next();

/* Possible to test if PaperCompanyA has been calle dr/
assert Fal se(pctm .checkCurrentlyProcessedPaperOrders().isSEmpty());
UnknownPaperOrderException upoex2 = nul | ;
try
pmpdiUnderTest .paperOrderReceivedFromPaperProvider(apo);

{

}

cat ch(UnknownPaperOrderException ex)

{
upoex2 = ex;

}

assert Nul | (upoex2);
assert True(pmpdiUnderTest .getPaperCurrentlylnOrder().isEmpty());

/* Possible to test if PaperCompanyA has been calle dr*/
assert Tr ue(pctm .checkCurrentlyProcessedPaperOrders().isEmpty());
}
/**
* Simple getter/setter test

*
/
publ i c voi d testSetAmountOfBrownPaperinStock()

{
i nt testValue = 10;
pmpdiUnderTest .setAmountOfBrownPaperInStock(testValue);
assert Equal s(testValue, pmpdiUnderTest .getAmountOfBrownPaperinStock());
}
/**
* Simple getter/setter test

*/
publ i c voi d testSetAmountOfWhitePaperlnStock()

57

i nt testValue = 20;
pmpdiUnderTest .setAmountOfWhitePaperinStock(testValue);
assert Equal s(testValue, pmpdiUnderTest .getAmountOfWhitePaperinStock());

/**

* Simple not null test on getter

*/

publ i c voi d testGetPaperCurrentlylnOrder()
{

}

assert Not Nul | (pmpdiUnderTest .getPaperCurrentlylnOrder());

This testcase contains 126 TLOC. Of which 5 LOCumed to configure the
dependencies managed by PicoContainer. It als@aicen22 calls to JUnit assert
methods. The reason for the difference in the amolUhLOC compared with the
PaperManagerNonDiTest JUnit testcase is that this testcase containgd@ictainer
configuration code as well as more test code (tallBJnit assert methods) used to
test values in theaperCompanyMock class that’s injected in

PaperManagerPicoDi during the setup before each test.

According to the JUnit test report the successahthis test is 100%. The Cobertura
test coverage report shows that all LOC and bramahe executed during the test.

Classes in this Package Line Coverage Branch Coverage Complexity
PaperManagerPicoli 1003 [EZEEN 1003 [INEEN 0

Figure 10: Code test coverage

The code of the mock object used to test the behaviPaperManagerPicoDi
class more rigorously is given below.

PaperCompanyMock.java

package model.paperprovider.impl;

i mport java.util.Collections;
i mport java.util.Set;

i mport java.util.SortedSet;
i mport java.util.TreeSet;

i mport model.paperorder.AbstractPaperOrder;
i mport model.paperorder.UnknownPaperOrderException;
i npor t model.paperprovider.PaperProviderinterface;

public cl ass PaperCompanyMock i npl ement s PaperProviderinterface

{
pri vat e SortedSet<AbstractPaperOrder> paperOrdered

publ i ¢ PaperCompanyMock()

{
paperOrdered = Collections. synchroni zedSor t edSet (new
TreeSet<AbstractPaperOrder>());
}

@Override
publ i ¢ Set<AbstractPaperOrder> checkCurrentlyProcessedPap erOrders()

{

}

@Override
publ i ¢ voi d confirmReceivedPaperOrder(AbstractPaperOrder apo)
t hr ows UnknownPaperOrderException

return paperOrdered

i f (paperOrdered .contains(apo))

58

paperOrdered .remove(apo);

el se
{ .
t hr ow new UnknownPaperOrderException(
paper orders");

}
}
@Override
publ i c voi d orderPaper(AbstractPaperOrder apo)
{

paperOrdered .add(apo);

"Order did not exist in

59

Implemented with Java EE5 dependency injection

The Java Enterprise Edition 5 implementation iheform of a so called Enterprise
Java Bean (EJB). In this most recent edition off theterprise Java framework Sun’s
has attempted to make it more easy for developets\telop EJB’s. Annotations give
developers the possibility to manage dependenegtsad of having to make use of
XML configuration files.

With the @EJBannotation it is possible to let a Java applicatierver inject an
implementing bean:

@Stateless

public cl ass PaperManagerBean i npl enment s PaperManagerinterface
@EJB
pri vat e PaperProviderinterface paperProvider ;

The @Stateless annotation indicates that the application serlieutd manage the
life cycle of this EJB as a Stateless Session Bdaaning that its instantiation is not
bound to a specific client that makes use of Bi@tefull Sesion Bean on the other
hand is always bound to a single client session).

The @EJBannotation example given above proved un-testaibhea JUnit testcase.
The reason for this was that a managed environfhkata Java application server) is
needed to realize this form of field dependencgatipn.

Fortunately the@EJBannotation also works on setter methods:

@EJB
publ i ¢ voi d setPaperProvider(PaperProviderinterface
paperProviderImplementation)

{

paperProvider = paperProviderimplementation;

The complete implementation for this class is gikelow.

PaperManagerBean.java

package model.papermanager.impl;

i mport java.util.Collections;
i mport java.util.Date;

i mport java.util.Set;

i mport java.util.SortedSet;
i mport java.util.TreeSet;

i mport javax.ejb.EJB;
i mport javax.ejb.Stateless;

i npor t model.papermanager.PaperManagerinterface;

i mport model.paperorder.AbstractPaperOrder;

i mport model.paperorder.BrownPaperOrder;

i nport model.paperorder.UnknownPaperOrderException;
i npor t model.paperorder.WhitePaperOrder;

i mport model.paperprovider.PaperProviderinterface;

Vi

* An implementation of the PaperManagerinterface making use of EJB dependency
injection

60

* Ricardo Lindooren
*/

@Stateless
public cl ass PaperManagerBean i npl ement s PaperManagerinterface
{

pri vat e PaperProviderinterface paperProvider

private int amountOfBrownPaperinStock

private int amountOfWhitePaperinStock

pri vat e SortedSet<AbstractPaperOrder> paperOrdered ;
private int ORDER_WHITEPAPER_BELGWOO;

private int ORDER_BROWNPAPER_BEIQMD;

private | ong lastOrderld

/**
* Non argument constructor
*
/

publ i ¢ PaperManagerBean()

{
paperOrdered = Collections. synchroni zedSor t edSet (new
TreeSet<AbstractPaperOrder>());
lastOrderld =0;
}
@Override
publ i ¢ voi d brownPaperUsedInProductionProcess(i nt amountOfMeters)
{
amountOfBrownPaperInStock -= amountOfMeters;
checkBrownPaperinStock();
}
@Override
publ i c voi d whitePaperUsedInProductionProcess(i nt amountOfMeters)
{
amountOfWhitePaperIinStock -= amountOfMeters;
checkWhitePaperIinStock();
}
@Override
public int getAmountOfBrownPaperinStock()
{
ret urn amountOfBrownPaperinStock
}
@Override
public int getAmountOfWhitePaperinStock()
{
ret urn amountOfWhitePaperinStock ;
}
@Override
publi c voi d paperOrderReceivedFromPaperProvider(AbstractPaperO rder apo)

UnknownPaperOrderException
i f (paperOrdered .contains(apo))

/I Dispatch paper company

paperProvider .confirmReceivedPaperOrder(apo);
/I Delete from local history

paperOrdered .remove(apo);

}
el se
{ . . .
t hr ow new UnknownPaperOrderException("Order did not exist in
paper orders");
}
}
@Override
publ i c voi d setAmountOfBrownPaperinStock(i nt amountOfMeters)
{
amountOfBrownPaperInStock = amountOfMeters;
}
@Override
publ i c voi d setAmountOfWhitePaperinStock(i nt amountOfMeters)

t hr ows

61

{

amountOfWhitePaperIinStock = amountOfMeters;
}
@Override
publ i ¢ Set<AbstractPaperOrder> getPaperCurrentlylnOrder()
{

return paperOrdered
}
/**

* Checks and orders white paper when needed
*
private voi d checkWhitePaperinStock()

i f (getAmountOfWhitePaperInStock() < ORDER_WHITEPAPER_BELPW
{
WhitePaperOrder wpo = new WhitePaperOrder();
wpo.setld(getNewOrderld());
wpo.setAmount(200);
wpo.setOrderDate(new Date(System. currentTi neM | |i s()));
/I Keep in local history
paperOrdered .add(wpo);
/I Dispatch to paper company
paperProvider .orderPaper(wpo);

}

/**
* Checks and orders brown paper when needed
*

private voi d checkBrownPaperinStock()

i f (getAmountOfBrownPaperinStock() < ORDER_BROWNPAPER_BE}] OW

BrownPaperOrder bpo = new BrownPaperOrder();
bpo.setld(getNewOrderld());
bpo.setAmount(200);
bpo.setOrderDate(new Date(System. current Ti neM I i s()));
/I Keep in local history
paperOrdered .add(bpo);
/I Dispatch to paper company
paperProvider .orderPaper(bpo);

}
}
/**
* Creates a new order Id
* last order id + 1

*
private synchroni zed Long getNewOrderld()

return newLlLong(lastOrderld +1);

}

@EJB

publ i ¢ voi d setPaperProvider(PaperProviderinterface
paperProviderimplementation)

paperProvider = paperProviderimplementation;

This class source file contains 113 TLOC and thexaxye McCabe cyclomatic
complexity is 1,23. It has only two real differesceith thePaperManagerPicoDi
class. These are that it has a non-argument catstioecause it doesn’t use the
constructor injection strategy (having a non-arganoenstructor is also mandatory
for an EJB). Instead it has an extra setter melfsmause it uses the setter injection
strategy.

62

The setter injection makes it possible to injeetnieeded dependency from within a
testcase. The testcase used is given below.

PaparManagerBeanTest.java

package model.papermanager.impl;
i mport java.util.lterator;

i nport junit.framework.TestCase;

i nport model.paperorder.AbstractPaperOrder;

i mport model.paperorder.BrownPaperOrder;

i mport model.paperorder.UnknownPaperOrderException;
i npor t model.paperorder.WhitePaperOrder;

i npor t model.paperprovider.impl.PaperCompanyMock;

Vi

* JUnite testcase for class PaperManagerBean

*

* PaperManagerNonDi

* Ricardo Lindooren

*

public cl ass PaperManagerBeanTest ext ends TestCase

{
privat e PaperManagerBean = pmbUnderTest ;
privat e PaperCompanyMock pctm;

private int brownPaperinStockToStartWith = 500;
private int whitePaperinStockToStartWith =500;
private int orderBrownPaperBelow = 100;

private int orderWhitePaperBelow =100;

private int brownPaperAmountThatShouldBeOrdered = 200;
private int whitePaperAmountThatShouldBeOrdered = 200;
@Override

protected voidsetUp() throws Exception

{

super .setUp();
pctm = new PaperCompanyMock();

pmbUnderTest = new PaperManagerBean();
pmbUnderTest .setPaperProvider(pctm);

pmbUnderTest .setAmountOfBrownPaperinStock(brownPaperinStockToStartWith);
pmbUnderTest .setAmountOfWhitePaperinStock(whitePaperinStockToStartWith);
}

publ i c voi d testBrownPaperUsedInProductionProcess()

{

/* Test if amount in stock decreases correctly */

i nt usedAmountOfMeters = 5;

pmbUnderTest .brownPaperUsedInProductionProcess(usedAmountOfMete rs);

assert Equal s(brownPaperinStockToStartWith - usedAmountOfMeters,
pmbUnderTest .getAmountOfBrownPaperinStock());

/* Test if paper manager orders paper from paper co mpany */
/I Clear all pending orders
pmbUnderTest .getPaperCurrentlylnOrder().clear();

/I Use paper so that a new order has to be placed

pmbUnderTest .setAmountOfBrownPaperInStock(orderBrownPaperBelow);
pmbUnderTest .brownPaperUsedInProductionProcess(1);
assert Equal s("There should be an order" , false,

pmbUnderTest .getPaperCurrentlylnOrder().isEmpty());

/I Check order validity
Iterator<AbstractPaperOrder> paperOrderlterator =
pmbUnderTest .getPaperCurrentlylnOrder().iterator();

AbstractPaperOrder apo = paperOrderlterator.next();
assert True(apo i nstanceof BrownPaperOrder);
assert Equal s(brownPaperAmountThatShouldBeOrdered , apo.getAmount());

63

/* Possible to test if PaperCompanyA has been calle dr*/
assert Fal se(pctm .checkCurrentlyProcessedPaperOrders(). |sEmpty())
Iterator<AbstractPaperOrder> paperOrderlterator2 =
pctm .checkCurrentlyProcessedPaperOrders().iterator();
AbstractPaperOrder apo2 = paperOrderlterator2.nex t();
assert Equal s(0, apo2.compareTo(apo));

}

publ i c voi d testWhitePaperUsedinProductionProcess()
{
/* Test if amount in stock decreases correctly */
i nt usedAmountOfMeters = 5;
pmbUnderTest .whitePaperUsedInProductionProcess(usedAmountOfMete
assert Equal s(whitePaperinStockToStartWith - usedAmountOfMeters,
pmbUnderTest .getAmountOfWhitePaperinStock());

/* Test if paper manager orders paper from paper co mpany */
/I Clear all pending orders
pmbUnderTest .getPaperCurrentlylnOrder().clear();

/I Use paper so that a new order has to be placed

pmbUnderTest .setAmountOfWhitePaperinStock(orderWhitePaperBelow);
pmbUnderTest .whitePaperUsedInProductionProcess(1);
assert Equal s("There should be an order" , false,

pmbUnderTest .getPaperCurrentlylnOrder().isEmpty());

/I Check order validity
Iterator<AbstractPaperOrder> paperOrderlterator =
pmbUnderTest .getPaperCurrentlylnOrder().iterator();

AbstractPaperOrder apo = paperOrderlterator.next();
assert True(apo i nstanceof WhitePaperOrder);
assert Equal s(whitePaperAmountThatShouldBeOrdered , apo.getAmount());
/* Possible to test if PaperCompanyA has been calle dr*/

assert Fal se(pctm .checkCurrentlyProcessedPaperOrders(). |sEmpty())
Iterator<AbstractPaperOrder> paperOrderlterator2 =
pctm .checkCurrentlyProcessedPaperOrders().iterator();
AbstractPaperOrder apo2 = paperOrderlterator2.nex t();
assert Equal s(0, apo2.compareTo(apo));

}

publ i c voi d testGetAmountOfBrownPaperinStock()

{
assert Equal s(brownPaperinStockToStartWith ,
pmbUnderTest .getAmountOfBrownPaperinStock());
}

publ i c voi d testGetAmountOfWhitePaperInStock()

{
asser t Equal s(whitePaperIinStockToStartWith ,
pmbUnderTest .getAmountOfWhitePaperinStock());

publ i c voi d testPaperOrderReceivedFromPaperProvider()
{
WhitePaperOrder wpo = new WhitePaperOrder();
/I fake Id
wpo.setld(new Long(324));
wpo.setAmount(1);

UnknownPaperOrderException upoex = nul | ;
try

pmbUnderTest .paperOrderReceivedFromPaperProvider(wpo);

{

} :

cat ch(UnknownPaperOrderException ex)

{
upoex = ex;

}

assert Not Nul | ("Unknown order should throw an exception” , upoex);

/I Use paper so that a new order has to be placed
pmbUnderTest .setAmountOfBrownPaperlnStock(orderBrownPaperBelow);
pmbUnderTest .brownPaperUsedInProductionProcess(1);
Iterator<AbstractPaperOrder> paperOrderlterator =

pmbUnderTest .getPaperCurrentlylnOrder().iterator();

rs);

64

AbstractPaperOrder apo = paperOrderlterator.next();
/* Possible to test if PaperCompanyA has been calle dr#/
assert Fal se(pctm .checkCurrentlyProcessedPaperOrders().isEmpty());
UnknownPaperOrderException upoex2 = nul | ;
try
pmbUnderTest .paperOrderReceivedFromPaperProvider(apo);

{

} :

cat ch(UnknownPaperOrderException ex)

{
upoex2 = ex;

}

assert Nul | (upoex2);
assert True(pmbUnderTest .getPaperCurrentlylnOrder().isEmpty());

/* Possible to test if PaperCompanyA has been calle dr*/
assert Tr ue(pctm .checkCurrentlyProcessedPaperOrders().isEmpty());
}
/**
* Simple getter/setter test

*
publ i c voi d testSetAmountOfBrownPaperinStock()

{
i nt testValue = 10;
pmbUnderTest .setAmountOfBrownPaperinStock(testValue);
assert Equal s(testValue, pmbUnderTest .getAmountOfBrownPaperinStock());
}
/**
* Simple getter/setter test

*
publ i c voi d testSetAmountOfWhitePaperinStock()

{

i nt testValue = 20;

pmbUnderTest .setAmountOfWhitePaperinStock(testValue);

assert Equal s(testValue, pmbUnderTest .getAmountOfWhitePaperinStock());
}
/**

* Simple not null test on getter

*/
publ i c voi d testGetPaperCurrentlylnOrder()
{

}

assert Not Nul | (pmbUnderTest .getPaperCurrentlylnOrder());

This testcase contains 122 TLOC of which 3 LOCumed to set up the
dependencies. It also contains 22 calls to JUs#rasnethods and uses the same
mock object also used to test the PicoContainetementation.

Both the JUnit and Cobertura reports indicatetsit acores the same as the
PaperManagerPicoDiTest testcase; 100% success and a complete coveradje of
lines and branches:

Classes in this Package Line Coverage Branch Coverage Complexity
PaperManagerBean 100+ [NESAEE 1o0%: [INEEN il

Figure 11: Code test coverage

A note about testing an EJB class with the JUsitftramework is that by default the
@EJBannotations are not understood and thus thedisicbmpletely. To overcome
this problem it is possible to make the needed E&libraries available. In this

65

case we used j2ee.jar and javaee.jar that arébdistd with the community Sun Java
application server called GlassFish.

Note about the Metrics tool for Eclipse

The average cyclometic complexity of theperManagerBean class (1,23) is lower
than that of th@aperManagerPicoDi class (1,25). The reason for this that the
Metrics tool for Eclipse calculates the McCabe ctaxipy per method so the average
is based on the amount of methods and their indicaff testability. The
PaperManagerBean has one method more (the setter method used tating the
PaperProviderinterface implementation) with a cyclomatic complexity ofThis
causes the difference for this metric althoughldigec defined in both classes doesn’t
really differ from each other.

Another thing maybe good to know when interpretimg TLOC metric is that the
Metrics tool counts annotations as a line of cddel while investigating this, 1 also
came to the conclusion that braces on a new l@@lao counted as a line of code.

So the next example is counted as 5 LOC:

@EJB
publ i ¢ voi d setPaperProvider(PaperProviderinterface
paperProviderImplementation)

{
}

paperProvider = paperProviderimplementation;

And commenting out the annotation and placing etarg on one line is counted as
one line of code (LOC = 1):

/I@EJB

publ i ¢ voi d setPaperProvider(PaperProviderinterface
paperProviderimplementation){ paperProvider =
paperProviderimplementation;}

Therefore to give the LOC metric the same mearon@ll java source files we use
formatting as in the ‘5 LOC’ example above. Meanimgthod-signature on one line,
braces on a new line and each statement on a new i

66

What about the other dependencies?

In the paper manager example BaperManagerinterface implementing classes
depend on &aperProviderinterface implementation. But the paper manager
contains more dependencies.

If we look at the concrete claBaperManagerPicoDi for example; it implements
the PaperManagerinterface with the goal to manage its

PaperProviderinterface dependency with dependency injection managed by
PicoContainer. But since it communicates in medmmper order objects with a
PaperProviderinterface implementation it also depends on the classes

AbstractPaperOrder , WhitePaperOrder andBrownPaperOrder

AbstractPaperOrder
7

PaperManagerinterfac... 7

~ ‘uses PaperProviderinterface

PaperManagerPicoDi PaperProviderinterfa...

‘calls WhitePaperOrder

| Jpa——
\

WhitePaperOrder

*calls BrownPaperOrder

\I

BrownPaperQOrder

Figure 12: Still existing dependencies

One might question this design right away. Buttfas research it was desirable to
create an example project containing different lohdependencies, ignoring the fact
that this might result in a bad design.

The result of this design is that bdthperManagerinterface and
PaperProviderinterface implementations depend on the paper order cladses.
said; to keep communication between both implentiems generic
AbstractPaperOrder objects are communicated between them both. Tmaire
of thePaperProviderinterface orderPaper method demonstrates this:

\ publ i ¢ voi d orderPaper(AbstractPaperOrder apo); |

67

Instead of an abstract class that needs to bededdry another class (in this case the
WhitePaperOrder andBrownPaperOrder classes) an interface could also have
been used, for example nanteaberOrderinterface . The reason for choosing the
abstract class approach is because the actualiorglEmentation classes do not
differ from each other, so the abstract class eslie contain the shared
implementation logic.

But if anAbstractPaperOrder is communicated why does the
PaperManagerPicoDi implementation also depend on ikitePaperOrder and
BrownPaperOrder classes? The reason is thatPlaperManagerPicoDi class
contains logic for creating instances of the cdroeder.

Dependency injection in this case seemed unus&iskzuise the
PaperManagerPicoDi class creates new instances itself whenever tleegeseded.
It is interesting, as a side exploration, to find b it is possible to eliminate these
dependencies as well.

A factory component can be used to create the cianstances of an
AbstractPaperOrder without thePaperManagerPicoDi knowing if it is an
instance ofWhitePaperOrder or BrownPaperOrder . The factory could then
contain the following two methods for example;

public AbstractPaperOrder getNewBrownPaperOrder();

public AbstractPaperOrder getNewWhitePaperOrder();

Unfortunatly thePaperManagerPicoDi class then depends on this factory
component. Thinking further it also proved to begible to create an interface for
such a factory component.PaperManagerinterface implementation can then
be extended with a possibility to inject an implentation of the factory interface.

It then only depends on tiRaperProviderinterface and the
PaperOrderFactoryInterface as well as thabstractPaperOrder class, but
no longer on the extending clas$esitePaperOrder andBrownPaperOrder.

Unfortunately this approach cannot be used at tiher@nd of the communication; the
PaperProviderinterface implementations still need to find out what tha&x
implementing paper order class is. This could f@meple be done by using Java’s
instanceof

if (apo instanceof BrownPaperOrder)
/l'logic for processing an order for brown pape r
else if (apo instanceof WhitePaperOrder)

/'logic for processing an order for white pape r

}

So there seems no escape f@aperProviderinterface implementation when it
comes to depending &bstractPaperOrder extending classes. Next to that the

68

instanceof example doesn’t look very sophisticated; this solufeels more like
fixing a bad design.

Another approach to break free from tisstractPaperOrder ,

WhitePaperOrder andBrownPaperOrder class dependencies is to not
communicate objects at all in this case. A desigmncpple which is also promoted by
the Law of Demeter (sometimes also called ‘lawaddydesign’ [Lieberherr88]).

In short the Law of Demeter (LoD) describes how ponents should communicate
with each other; this can be summarized as ‘Onkyttayour immediate friends’.
Components should know as little possible of thecstire of the software product.
This means that components should for example @aiNare of subcomponents..

Applying the LoD on the paper manager to break withpaper order dependencies
can for example look like this when we focus ondhdering part of the

PaperProviderinterface abstraction:
publi c voi d orderBrownPaper(i nt meters);
publ i c voi d orderWhitePaper(i nt meters);
instead of:

publ i c voi d orderPaper(AbstractPaperOrder apo); |

[Lieberherr88] gives a more thorough descriptiothef principles of the LoD but also
the trade-offs; the possible increase in numbenethods and arguments for
methods, which can result in making maintenanceerddficult. In the paper
manager example this is for example possible whercdmpany also wants to be
able to order green paper; another method is teeded in the

PaperProviderinterface abstraction;orderGreenPaper(int meters)

A short but good and more complete example of tfeets of implementing the LoD
is given in [Bock??].

69

References

[ZellerO5] Andreas Zeller — Why Programs Fail

[SWEBOKO04] Software Engineering Body Of Knowledge

[Gelperin88] David Gelperin et. al — The Growth of Software Tregpt

[Kaner99] Cem Kaner et. al — Test Types and their PlacedrSibftware Development
Process

[Binder94] Robert V. Binder — Design for Testability

[Dijkstra69] Edsger W. Dijkstra — Notes on Structured Prograngmin

[Jackson03] Daniel Jackson — Module Dependences in Softwarégbes

[Nene05] Dhananjay Nene — A beginners guide to Dependerjegtion

[Martin96] Robert C. Martin — The Dependency Inversion Prilecip

[McConnel04] Steve McConnell — Code complet¥ gition)

[Lieberherrg8] K. Lieberherr et. al — Object-OriedtProgramming: An Objective Sense of
Style

[Bock??] David Bock — The Paperboy, The Wallet, and The IGivibemeter

[Bruntink03] Magiel Bruntink — Testability of Object-Oriented Sgms: a Metrics-based
Approach

[Weiskotten06] Jeremy Weiskotten — Dependency Injection & Test&igects

[Christensen03] Henrik Baerbak Christensen — Systematic Testinglshoot be a Topic in the
Computer Science Curriculum!

[Whittaker00] James A. Whittaker — What Is Software Testing? Wy Is It So Hard?

[Fowler04] Martin Fowler — Inversion of Control Containers ahd Dependency Injection
pattern

[Wikipedia-DlI] http://en.wikipedia.org/wiki/Dependency_injection

[Wikipedia- http://nl.wikipedia.org/wiki/Complexiteitsgraad

Complexiteitsgraad]

[CodeHausPico] http://docs.codehaus.org/display/PICO/IoC+Types

70

