
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Framework comparison method 
 

Comparing two frameworks based on technical domains, 
focussing on customisability and modifiability 

 
 
 
 
 
 

Anton Gerdessen, 13 August 2007 
Master course software engineering 

 
 
 
 

Thesis Supervisor: Dr. J. Vinju 
First internship Supervisor: Ir. Onno de Groote 

Second Internship Supervisor Mark Mastop MsC 
Company: Everest bv 

Availability: Public 
 
 
 
 

Everest BV 
 

 
 
 

University of Amsterdam (UvA) 
 

 



Anton Gerdessen, Master thesis                                                                                                              Page 2 of 78 

Abstract 
More and more frameworks emerge each year. Yet the question why they emerge is never answered, are the older ones 
no longer sufficient, or are the newer ones ‘better’? Even the question what a framework is exactly, has never been 
answered. With this wide field of frameworks and no clear definition, how can a framework be picked over another 
framework? How can be determined which is more suitable? 
 
Everest has its applications build upon the Sun Blueprints framework. Everest uses an older version of this Blueprints 
framework. This older version has a very clear separation of the business, data and presentation layer. The newer version 
of the Blueprints framework follows a different methodology, claiming to focus more of the ease of development. The 
Spring framework is another framework also claiming the same ease of development. The question that Everest has is, 
would changing to Spring be possible and in what advantages or disadvantages would this result compared to the old 
situation. 
 
This question is motivated by the observation that Blueprints itself is moving towards the same methodology as Spring. 
The Spring framework has gone through a tremendous growth in the last few years. Is this by pure chance or are the 
underlying principles sound and should a change of framework be applied for Everest’s applications. 
 
There are no methods available to determine which frameworks would be best in the given context; there are no real 
methodologies for framework comparison at all. In order to solve this problem, we first need to define what a framework 
is exactly. Following this definition, we can select criteria on which to compare the frameworks. This approach is based 
upon abstraction, comparing a framework as whole is far to complex; by selecting criteria and comparing these criteria 
individually we reduce the complexity. We propose a theoretical framework model for a framework and base our criteria 
and comparison on this model. 
 
We will define these criteria as domains and infer the domains of a framework and their different types. We will make a 
distinction between the purpose of a framework, the vertical domain, and the way this purpose is achieved by covering 
horizontal domains. 
 
The method first proposes a theoretical model that gives us the criteria for a framework in general. This model has been 
composed by examining the literature available for frameworks and extracting terms related to frameworks and filtering 
these until we can construct a theoretical model. Following we can use these terms as criteria and iterate through these 
and compare each criteria separately. In this research we will focus on customisability and modifiability, this because 
Everest indicated that these are the two criteria they find most important since they are dealing with applications which 
often change and these changes need to be applied rapidly. 
 
Customisability and modifiability will be the two criteria on which we will focus; these criteria will be evaluated by using 
feature description diagrams. This has been done because both customisability and modifiability are changes in the 
features or the features behaviour. We will define the difference between customisability and modifiability and propose a 
method for comparison based primarily upon feature description diagrams. The diagrams will be complemented with 
metrics extracted from the source code for each framework. 
 
The results indicate that the Spring framework holds a higher customisability compared to Spring. However, Blueprints 
holds a slightly higher modifiability than Spring. This indicates a slight advantage for Spring for the current comparison. 
Nevertheless, in order to completely evaluate both frameworks, more domains need to be compared. 
 
The contribution of this research is threefold; we provide a theoretical model for frameworks in general. Secondly, we 
provide a method for comparing frameworks based upon this theoretical model. Thirdly, we propose a method for 
comparing customisability and modifiability based upon features diagrams and metrics. 
 
We state that if the change of framework is made, a clear set of features will need to be defined which are allowed to be 
used and which are not. This due to the fact that Blueprints is more a framework of limitations and thus limiting 
complexity. Spring however is a framework of possibilities. 

 



Anton Gerdessen, Master thesis                                                                                                              Page 3 of 78 

Acknowledgements 
This thesis is the result of my graduation project for the title of Master of Science at the university of 
Amsterdam. 
 
This thesis has been shaped by the influence of several people. First my university supervisor, Jurgen Vinju, who was 
always available for questions or discussion about the thesis. Secondly, Everest, who offered me the opportunity to 
perform this research.  
Also the supervisor at Everest itself, Onno de Groote and Mark Mastop, who provided me with suggestions and insight 
in the more practical issues for this thesis. 



Anton Gerdessen, Master thesis                                                                                                              Page 4 of 78 

List of  contents 
1 INTRODUCTION ....................................................................................................................................................8 

1.1 CONTEXT...............................................................................................................................................................8 
1.2 EVEREST‘S INTEREST..............................................................................................................................................8 
1.3 SCOPE ....................................................................................................................................................................8 
1.4 RESEARCH QUESTION ............................................................................................................................................9 

1.4.1 Literature questions .............................................................................................................................................9 
1.5 CONTRIBUTION....................................................................................................................................................10 
1.6 RESEARCH INFLUENCES .......................................................................................................................................10 
1.7 SUMMARY.............................................................................................................................................................10 

2 FRAMEWORKS ......................................................................................................................................................11 
2.1 FRAMEWORK PURPOSE .........................................................................................................................................11 
2.2 FRAMEWORK DEFINITION ....................................................................................................................................11 
2.3 FRAMEWORK COMPARISON OPTIONS....................................................................................................................12 
2.4 TERMS RELATED TO FRAMEWORKS.......................................................................................................................12 

2.4.1 General purpose language (GPL) .........................................................................................................................13 
2.4.2 (Design) pattern ................................................................................................................................................13 
2.4.3 Components .....................................................................................................................................................13 
2.4.4 Library ...........................................................................................................................................................14 
2.4.5 Domain specific languages ...................................................................................................................................14 
2.4.6 Application......................................................................................................................................................14 
2.4.7 Software architecture ..........................................................................................................................................14 
2.4.8 Framework ......................................................................................................................................................14 
2.4.9 Product family ..................................................................................................................................................15 

2.5 SUMMARY.............................................................................................................................................................15 
3 DOMAINS AND ABSTRACTIONS......................................................................................................................16 

3.1 DOMAIN PURPOSE ................................................................................................................................................16 
3.1.1 Vertical versus horizontal ...................................................................................................................................16 
3.1.2 Technical, non technical, vertical and horizontal .......................................................................................................16 

3.2 WHAT IS A DOMAIN ..............................................................................................................................................17 
3.3 ABSTRACTIONS AND DOMAINS .............................................................................................................................17 
3.4 SUMMARY.............................................................................................................................................................17 

4 TECHNICAL DOMAINS ......................................................................................................................................18 
4.1 FEATURES ............................................................................................................................................................18 

4.1.1 Feature binding time ..........................................................................................................................................18 
4.1.2 Customisability and modifiability defined................................................................................................................19 

4.2 CUSTOMISABILITY ................................................................................................................................................19 
4.2.1 Application customisation versus framework customization.........................................................................................19 
4.2.2 Customisability defined .......................................................................................................................................20 
4.3.3 Subtypes of features ............................................................................................................................................20 
4.3.4 Abstraction types...............................................................................................................................................21 

4.3 MODIFIABILITY ....................................................................................................................................................22 
4.4 SUMMARY.............................................................................................................................................................23 

5 THEORETICAL FRAMEWORK MODEL .........................................................................................................24 
5.1 VERTICAL DOMAIN OF A FRAMEWORK .................................................................................................................24 
5.2 TECHNICAL DOMAINS OF A FRAMEWORK .............................................................................................................24 

5.2.1 Technical domains versus characteristics / properties .................................................................................................24 
5.3 INITIAL LIST .........................................................................................................................................................24 
5.4 GROUPING OF DOMAINS ......................................................................................................................................25 
5.5 FILTERING OF ELEMENTS.....................................................................................................................................25 
5.6 TECHNICAL DOMAINS OF A FRAMEWORK .............................................................................................................26 



Anton Gerdessen, Master thesis                                                                                                              Page 5 of 78 

5.7 SUMMARY.............................................................................................................................................................27 
6 RESEARCH METHOD .........................................................................................................................................28 

6.1 RESEARCH METHOD DEMANDS ............................................................................................................................28 
6.2 RESEARCH COHESION ...........................................................................................................................................28 

6.2.1 Research questions recap......................................................................................................................................28 
6.2.1.1 Research question 2 ..................................................................................................................................................28 
6.2.1.2 Research question 3 ..................................................................................................................................................28 
6.2.1.3 Research question 4 ..................................................................................................................................................29 
6.2.1.4 Research question 5 ..................................................................................................................................................29 
6.2.1.5 Research question 1 ..................................................................................................................................................29 

6.3 RESEARCH STEPS ..................................................................................................................................................29 
6.4 TECHNICAL DOMAINS RESEARCH .........................................................................................................................30 

6.4.1 Comparison groups ............................................................................................................................................30 
6.4.2 Comparison domains..........................................................................................................................................30 

6.5 CUSTOMISABILITY ................................................................................................................................................30 
6.5.1 Research method................................................................................................................................................30 
6.5.2 Validation.......................................................................................................................................................33 

6.5.2.1 Method validation .....................................................................................................................................................33 
6.5.2.2 Result validation........................................................................................................................................................34 

6.6 MODIFIABILITY ....................................................................................................................................................34 
6.6.1 Research method................................................................................................................................................34 
6.6.2 Validation.......................................................................................................................................................35 

6.6.2.1 Method validation .....................................................................................................................................................35 
6.2.2.2 Result validation........................................................................................................................................................36 

7 CASE STUDY ..........................................................................................................................................................37 
7.1 FRAMEWORKS INTRODUCTION.............................................................................................................................37 

7.1.1 Sun Blueprints..................................................................................................................................................37 
7.1.2 Spring .............................................................................................................................................................37 
7.1.3 Comparing apples and oranges .............................................................................................................................37 
7.1.4 Versions..........................................................................................................................................................37 

7.2 IS THE CHANGE OF FRAMEWORK POSSIBLE...........................................................................................................38 
7.3 HORIZONTAL DOMAIN ITERATIONS .....................................................................................................................38 

7.3.1. Extracted facts customisability.............................................................................................................................38 
7.3.2.1 Validation .................................................................................................................................................................42 

7.3.2 Extracted facts modifiability ................................................................................................................................43 
7.3.2.1 Validation .................................................................................................................................................................44 

8 CASE STUDY ANALYSIS ......................................................................................................................................46 
8.1 CUSTOMISABILITY ................................................................................................................................................46 

8.1.1 Analysis..........................................................................................................................................................46 
8.1.2 Validation.......................................................................................................................................................46 

8.2 MODIFIABILITY ....................................................................................................................................................47 
8.2.1 Analysis..........................................................................................................................................................47 
8.2.2 Validation.......................................................................................................................................................47 

9 CONCLUSION .......................................................................................................................................................49 
9.1 OVERALL CONCLUSION ........................................................................................................................................49 
9.2 CUSTOMISABILITY ................................................................................................................................................49 

9.2.1 Conclusion .......................................................................................................................................................49 
9.2.2 Discussion .......................................................................................................................................................49 

9.3 MODIFIABILITY ....................................................................................................................................................50 
9.3.1 Conclusion .......................................................................................................................................................50 
9.3.2 Discussion .......................................................................................................................................................50 

9.4 FEATURE WORK ...................................................................................................................................................51 
10 RESEARCH EVALUATION ...............................................................................................................................52 



Anton Gerdessen, Master thesis                                                                                                              Page 6 of 78 

10.1 METHOD EVALUATION ......................................................................................................................................52 
10.1.1 Research questions ...........................................................................................................................................52 

10.1.1.1 Literate questions ....................................................................................................................................................52 
10.1.2 Evaluation.....................................................................................................................................................52 

10.2 APPLICATION OF THE METHOD ..........................................................................................................................52 
10.3 RECOMMENDATION ...........................................................................................................................................53 

REFERENCES ..........................................................................................................................................................54 
PAPERS: .....................................................................................................................................................................54 
BOOKS:......................................................................................................................................................................56 
ONLINE ARTICLES: ....................................................................................................................................................57 

ADDENDUM A: FRAMEWORK TECHNICAL DOMAIN RECOGNITION ..................................................58 
ADDENDUM B: SPRING FEATURE DIAGRAM ................................................................................................61 
ADDENDUM C: BLUEPRINTS FEATURE DIAGRAM .....................................................................................62 
ADDENDUM D: SPRING CUSTOMISABILITY METRICS...............................................................................63 
ADDENDUM E: BLUEPRINTS CUSTOMISABILITY METRICS ....................................................................67 
ADDENDUM F: SPRING FEATURE ANALYSIS ................................................................................................68 
ADDENDUM G: BLUEPRINTS FEATURE ANALYSIS.....................................................................................70 
ADDENDUM H: SPRING FEATURE STEP ANALYSIS ....................................................................................71 
ADDENDUM I: BLUEPRINTS FEATURE STEP ANALYSIS ...........................................................................74 
ADDENDUM J: SPRING MODIFIABILITY METRICS......................................................................................75 
ADDENDUM K: BLUEPRINTS MODIFIABILITY METRICS .........................................................................78 
 



Anton Gerdessen, Master thesis                                                                                                              Page 7 of 78 

Figure index 
 
Figure 1: Research approach............................................................................................................................................................. 10 
Figure 2: Generity versus functionality ........................................................................................................................................... 13 
Figure 3: Binding timeline................................................................................................................................................................. 18 
Figure 4: Steps for customisation per feature type ........................................................................................................................ 21 
Figure 5: Initial characteristics of a framework.............................................................................................................................. 25 
Figure 6: Grouped characteristics of a framework ........................................................................................................................ 25 
Figure 7: Filtered horizontal domains of a framework ................................................................................................................. 26 
Figure 8: Horizontal domain list of a framework .......................................................................................................................... 27 
Figure 9: Framework domains.......................................................................................................................................................... 28 
Figure 10: Research steps.................................................................................................................................................................. 29 
Figure 11: Prioritised domains for the case study.......................................................................................................................... 38 
Figure 12: Abstraction layer types Spring ....................................................................................................................................... 41 
Figure 13: Abstraction layer types Blueprints................................................................................................................................. 41 
Figure 14: Summary of what can be customised ........................................................................................................................... 41 
Figure 15: Summary ease of change ................................................................................................................................................ 42 
Figure 16: Customisation validation sample................................................................................................................................... 42 
Figure 17: What can be modified..................................................................................................................................................... 43 
Figure 18: Modularity metrics........................................................................................................................................................... 43 
Figure 19: Complexity metrics.......................................................................................................................................................... 44 
Figure 20: Impact of change ............................................................................................................................................................. 44 
Figure 21: Modifiability validation sample...................................................................................................................................... 44 
Figure 22: Customisability validation summary ............................................................................................................................. 46 
Figure 23: Modifiability validation summary .................................................................................................................................. 48 

 

 



Anton Gerdessen, Master thesis                                                                                                              Page 8 of 78 

1 Introduction 
This section introduces the background of this thesis. The context and basic concepts involved will be explained. In 
addition, we will define the scope of this research project and identify the research questions. We will also discuss why 
this research is important and how it contributes to the field of software engineering. Finally, we will display the fields 
that influence this research project and the derived research method. 

1.1 Context 
There have been a great number of changes in the field of software engineering, yet the design and implementation of 
complex systems remains expensive and time consuming. Much of this effort rests in rediscovering of basic components 
and concepts at the core of all applications. Application frameworks, hereafter simply referred to as frameworks, are a 
technique designed to remove the rediscovering aspect. 
 
The question what a framework exactly is has never been answered. With this wide field of frameworks and no clear 
definition, how can a framework be picked over another framework? How can be determined which is more suitable? 
 
Frameworks are often defined as reuse technique; they provide the basis implementation for an application. This is done 
by providing a base skeleton code that implements basic component and concepts so they do not need to be reinvented 
each time. The already implemented areas are called frozen spots [Mar00], the framework kernel in essence. The points 
were a framework could be extended to fit the specific needs for applications are called hot spots [Mar00]. These hot spots 
are also called hooks [Fro97]. A framework on its own is not a working application. 
 
Currently there are a large number of frameworks available. Frameworks are often directly related to object-oriented 
applications, although frameworks are not restricted to object-oriented programming [Fay99]. Frameworks are often 
intended for a specific programming language, this is a direct result of these frozen spots. Frozen spots are parts of the 
framework that are already implemented in a language. The choice of framework therefore directly relates to the language 
of the application. For some languages, there are a number of different frameworks available. Yet little to no effort has 
been put into comparing these frameworks. 
 
Most frameworks are directed at a specific application domain. This is a result of a frameworks purpose; preventing the 
rediscovery of basic concepts. These basic concepts and aspects are domain related and only valid within that specific 
domain. For this reason frameworks are mainly categorised for their purpose, in [Fay97] frameworks are categorized into 
three categories: 

• Enterprise frameworks mainly used for enterprise applications, much broader then the next two. 
• System infrastructure frameworks, mainly used for internal applications. 
• Middleware infrastructure frameworks, mainly used for distributed applications. 

 
Little effort has been put into comparing frameworks on a conceptual level. One type of comparison can be found in 
[Pri06]. This comparison is based at the architectural level, not on a conceptual level. Architecture is what a system 
should do, not what it does. We want to focus on what a framework does and not what it should. This leaves the 
question, how can frameworks be compared on a conceptual level?  

1.2 Everest‘s interest 
Everest is a company which target branch is the financial and banking sector. Currently they offer a service that can 
quickly accommodate changes and support large quantity of concurrent users. These two aspects are important for the 
target branch that has a high rate of change and a large number of concurrent users. For example, new types of insurance 
policies are brought on the marked frequently. Everest’s product can quickly incorporate these changes, this way the time 
to market is a lower. The current product is based upon Sun Blueprints [Blr07]. In the last several years, the Spring 
framework [Spr07] has gained popularity and has been incorporated in a large number of products. This combined with 
the direction that Blueprints is also moving more towards the ideas incorporated in Spring, resulted in the question if a 
change of framework for Everest is desirable. 

1.3 Scope 
In order to compare frameworks, several aspects need to be taken into consideration. These aspects can roughly be 
divided into two groups: 
 



Anton Gerdessen, Master thesis                                                                                                              Page 9 of 78 

• Technical aspects 
• Non-technical aspects (composite aspects) 

Technical aspects are aspects like scalability, customisability, etc. Aspects that can be directly related to source code. The 
second group are the non-technical aspects; these are aspects like the learning curve required for a developer to use the 
framework, the evolution of the framework, etc. These are aspects that can be related to one or more technical aspects as 
well as documentation and architectural description etc. 
For example, maintainability is a non-technical aspect influenced by, modifiability, duplication of code, the level of 
abstraction used, the documentation etc. 
 
This thesis will focus on the technical aspects of frameworks. However, this research can be used as input for reasoning 
about non-technical aspects since they highly related to technical aspects, for example the maintainability aspect 
mentioned before. 

1.4 Research Question 
Everest requires a method to determine if their application can be converted from Sun Blueprints framework to the 
Spring framework. By converted we mean preserving its features, what features are exactly will be defined later in this 
thesis. Moreover, what positive and negative effects will this have on the application itself.  The question which of the 
two frameworks is better in general is not the primary concern right now. The question that follows is: 
 
RQ-1 ‘Can application X conform framework A be converted to framework B” 
 
Sub questions that arise from the main question are: 

• RQ-2 “Does application type for both frameworks overlap” 
• RQ-3 “How to determine which criteria to use for comparing the frameworks” 

o RQ-4 “In which advantages and disadvantages will this conversion result” 
 RQ-5 “Is the change of framework desirable” 

 
The last question can only be answered by combining the technical analysis that this research delivers and a non-technical 
analysis that this research does not deliver. This leads to the conclusion that the last research question is partially outside 
the scope of this research. 
 
This does however leave some additional questions, especially in for the criteria selection, which can either be answered 
by the literature available, or at least be given a direction by the literature. These questions will be discussed in the next 
section. 

1.4.1 Literature questions 
In order to answer the questions mentioned in the previous section, some information is needed from the literature. 
The first question that we need to answer is what are frameworks exactly? Is there a precise definition we can work with, 
this brings us to the first literature question. 
 
LQ-1 “What is the definition of a framework in the software engineering context?” 
 
Once we have a definition of a framework, we need a basis on which to compare frameworks on a conceptual level. 
Frameworks by itself are a complex structure of many complex factors; we need a way to reduce this complexity. In other 
words, we need an abstraction from a framework. In order to do this we need to make an assumption. 
 
AS-1 “A framework can be divided into smaller parts, we can then compare these individual parts separately.” 
 
Now that we made this assumption, we have to classify these individual parts. In [Cza00] and [Sim95], a classification is 
made for frameworks divided into smaller parts called domains. These domains are divided into two groups, vertical and 
horizontal domains. Where a vertical domain is the domain for which the framework is intended. Horizontal domains are 
the domains that the framework has to address in order to cover the vertical domain. 
For example if a framework is designed to control robots in an automobile factory, robot control for an automobile 
factory is it vertical domain. Horizontal domains can be controlling the robot, reading the specifications for the 
automobile etc. From the previous information, we can infer our secondary literature question: 
 
LQ-2 “Can we create a framework abstraction based upon horizontal domains?” 
 



Anton Gerdessen, Master thesis                                                                                                              Page 10 of 78 

A question in extend of this one is: 
 
LQ-3 “Can be describe these horizontal domains” 
 
Once we have the answer to these questions, we have a basis for comparing frameworks. 

1.5 Contribution 
The contribution of this thesis is threefold. First, this thesis will provide a conceptual model of frameworks in general. 
Secondly, with the theoretical model, we can provide a method for comparison. Later in this thesis, we will identify 
several horizontal domains; these domains will be prioritized by Everest. The result can be seen in figure 11. We will 
compare two of these domains, customisability and modifiability; we will propose a method for comparison based on 
features and feature diagrams, which is the third contribution. 

1.6 Research influences 
Figure 1 shows how the research is structured. It shows which literature was used and how they are all related. 

Literature
frameworks

Literature
abstractions

Literature
domains

Framework
comparison

method

Case study
Blueprints vs

Spring

Case study
analysis

Conclusion

Evaluation

Key

Ch.2 Ch.3Ch.3

Ch.6

Ch.7

Ch.8

Ch.9

Ch.10

Ch.X

= Activity

= Input for

= Discussed in
chapter X

Literature
modifiabilty

Ch.4
Literature

customisabilty

Ch.4

Customisability
comparison

method

Ch.6 Modifiabilty
comparison

method

Ch.6

Literature

Research method

Case study facts

Case study analysis

Case study conclusion

Research evaluation

Theoretical
framework

model

Ch.5
Model

 
Figure 1: Research approach 
 
Figure 1 is not consistent with the order in which the actual research has been performed. We decided that it was best to 
group al the literature in one place for easier reading. We started with chapter one to three. Following we created a crude 
model and research method, which are chapter four and six. We than continued to prioritize the domains, which is 
chapter seven. Once this was done we went performed chapter four. This resulted in a refinement of chapter five and six. 
After that we completed the rest of the research according to the chapter numbers, chapter seven and further. 

1.7 Summary 
In this chapter, we gave an introduction on frameworks. Moreover, we identified why this research is important for 
Everest, which is currently investigating a change of framework. We also identified the scope of the research; we will 
focus on technical aspects. We identified the research questions (RQ 1-5) and the literature questions (LQ 1-3). In 
addition, we presented the roadmap displayed in figure 1 for this research. 
 



Anton Gerdessen, Master thesis                                                                                                              Page 11 of 78 

2 Frameworks 
This chapter discusses frameworks in general. We will start with the question why to use frameworks at all, what is the 
purpose of doing so. After discussing the purpose of frameworks, we will define what a framework is. The next section 
will list possible options on how frameworks can be compared. The last section will explain what a framework is 
composed of and how it relates to terms like components and domain specific languages. 

2.1 Framework purpose 
To the question why frameworks emerged, a number of answers are presented in the literature. [Joh97a] states: 
“Frameworks are an object oriented reuse technique”.  
Another purpose mentioned in [Fay97] is: 
“Frameworks are a promising technology for reifying proven software designs and implementations in order to reduce the cost and improve the 
quality of software.” 
This purpose also holds the reusable aspect. The purpose used in [Fro00] is: 
“Frameworks enable developers to rapidly produce new applications.” 
The reason for this rapid production is not mentioned in this paper. In light of the other purposes mentioned, we can 
assume this is by reusability. 
 
The next question is, what reuse is exactly, in [Kru92] reuse is defined as: 
“Software reuse is the process of creating software systems from existing software rather than building software systems from scratch.” 
 
We can now conclude that the most important purpose of frameworks is the reuse of design and/or code. 
The reason for reuse varies. Other minor arguments are to improve quality, or to rapidly produce new software. 
 
 

The most important purpose of frameworks is the reuse of design and/or code. 
 

2.2 Framework definition 
In the literature, a large number of definitions are available for frameworks. A definition used in [Joh97a] is: 
“A framework is a reusable design for all or parts of a system that is represented by a set of abstract classes and they way their instances 
interacts.”  
This definition reflects the overall purpose of frameworks, the reusability component.  
Another definition also given in [Joh97a] is: 
“A framework is the skeleton of an application that can be customised by an application developer.”  
This definition reveals another aspect of frameworks, apparently a framework is not a product by itself it is only a 
skeleton. A definition given in [Fay00] is: 
“Frameworks are specialized for a narrow range of applications; each model of interaction if domain-specific, e.g. designed to solve a narrow set 
of problems.” 
This definition states that frameworks are domain specific, implicitly a conclusion can be drawn that not every 
framework is applicable to every domain.  In [Fay02] another definition is given: 
“A set of related functions is the set that defines the area of expertise or competencies of the framework.” 
This definition states that a framework holds a set of related functions; this amplifies the earlier statement that a 
framework is domain specific. The definition used in [Joh98] is: 
“A software framework is a reusable design for a software system (or subsystem). This is expressed as a set of abstract classes and the way their 
instances collaborate for a specific type”.  
This definition holds aspects mentioned in earlier definitions, reusable design, specific domain but it also adds 
implementation design specific elements like abstract classes. Another definition found in [Joh97a] is: 
“A framework is a larger-scale design that describes how a program is decomposed into a set of interacting objects.”  
This definition also mentions interaction. 
 
These definitions lead to the definition that will be used in this thesis: 
“A framework is a reusable skeleton for applications, targeting a specific domain, covering certain key areas and the interaction between them 
within that specific domain.” 
 
 
  



Anton Gerdessen, Master thesis                                                                                                              Page 12 of 78 

This definition is stronger then the definitions given before because it holds all the criteria specified before: 
• reusable 
• domain specific 
• skeleton of an application 
• various coverage per framework 
• interaction 

 
The definition does not cover the abstract classes mentioned in an earlier definition. That is because this is an 
implementation detail. It also suggests that all frameworks are object-oriented based since abstract classes originate in the 
object-oriented corner, which is incorrect [Fay99]. 
 
 
A framework is a reusable skeleton for applications, targeting a specific domain, covering certain key areas and 

the interaction between them within that specific domain. 
 

2.3 Framework comparison options 
In the literature, very little guidelines are given for comparing frameworks; some comparison is done based upon the 
architectural design of the framework itself [Pri06]. This however does not compare the implementation of the 
framework. Architecture is how a system should be composed, but often not how it is composed in reality. Thus, it is not 
valid as a comparison option since we want facts about what a framework does, not what a framework should do. 
 
We feel a generative approach could be used. Instead of comparing the frameworks to each other, we want to compare 
how well framework A compares to framework B on specific criteria. This leaves the question on what criteria will we 
compare these frameworks. We can now return to our definition “A framework is a reusable skeleton for applications, targeting a 
specific domain, covering certain key areas and the interaction between them within that specific domain.” This definition defines “certain 
key areas”. If we can define these areas, we can compare the frameworks on those areas. 
 
The idea of dividing into smaller areas evolved from a number of observed facts. In the paper [Fay00b] a list of 
characteristics is given for enterprise application frameworks, these characteristics include scalability, platform 
independency and extendibility. This gives an indication there is a set of criteria that all enterprise application frameworks 
cover. This paper however, focuses solely on enterprise application.  
Combining the previous facts with the vertical and horizontal domains mentioned in [Cza00] and [Sin95]. These stated 
that a framework covers a specific vertical domain by implementing several horizontal domains. This results in the idea 
that if we can find these horizontal domains we can base the comparison on them. 
 
This leaves one problem however, not all frameworks cover all horizontal domains, only those required to cover the 
vertical domain. In [Alp03] the philosophy behind what humans see as abstractions is explained. A conclusion here is 
that flying is directly connected to the abstraction bird, although only 90% of the birds can actually fly. Which gives some 
leverage to create a framework abstraction where not all areas are covered by all frameworks. 
In essence, if we have a list of areas covered by framework A and a list for areas covered by framework B, we can 
compare the frameworks by comparing the implementation of the covered areas individually.  
 
 
A criterion for abstraction is valid, as long as it encompasses 90% or more of the subjects under the abstraction. 
 

2.4 Terms related to frameworks 
A question that remains is what constitutes these frameworks? The literature for this subject is rather scarce.  
In [Joh97a] the statement is given that frameworks are components combined with patterns.  This view is consolidated 
by [Joh97b], which is by the same author; this paper relates components and patterns to frameworks. In [Rup96] a 
statement is given that frameworks are patterns in general. 
From all this we can at least conclude that patterns and components are related to frameworks. The question remains 
related how. The following figure displays several factors mentioned in the literature related to frameworks. 
This view is based upon functionality compared to generic or specific. Each term will be defined and its position in the 
figure explained.  



Anton Gerdessen, Master thesis                                                                                                              Page 13 of 78 

G
en

er
ic

 S
pe

ci
fic

Functionality

1

2

4

5

6

7

Key

1: General purpose language (GPL)
2: (Design) pattern
3: Component
4: Library
5: Domain specific language (DSL)
6: Application
7: Software architecture
8: Framework
9: Product family

8

9

3

 
Figure 2: Generity versus functionality 

2.4.1 General purpose language (GPL) 
There is no real definition of general purpose languages, often the term “not related to a specific domain” is used, although 
this is no definition. General purpose languages are languages like assembler, Java and C Sharp. General purpose 
languages are generic; they have little restriction on the field they can be used. They can be used from embedded system 
to enterprise web applications. They offer little functionality, the only functionality offered, is normally high-level 
function to communicate with the underlying hardware. This is the reason why general purpose languages are positioned 
high in the generic scale and low on the functionality scale. 

2.4.2 (Design) pattern 
In [Fay99] a design pattern is defined as: 
“A pattern is an essay which describes a problem to be solved, a solution, and the context in which the solution works.” 
A similar definition is given in [Bas03]. Examples of design patterns are the factory pattern and the model view controller 
(MVC) pattern. These patterns offer a generic solution to solve a specific problem. However, a design pattern does not 
dictate the precise implementation. This is the reason a design pattern still scores reasonable high on the generic scale. By 
providing the generic solution, they offer some functionality, thus score higher then a general purpose language for 
functionality.  

2.4.3 Components 
In [Cza00] components are defined as: 
“Building blocks from which different software systems can be composed.” 
These building blocks come in the form of code and thus are more specific than design patterns. They offer limited 
functionality for a specific task. Thus, components score higher than patterns on the functionality scale. However, they 
are less generic because they come in the form of code. Therefore, they score less on the generic scale than design 
patterns. 



Anton Gerdessen, Master thesis                                                                                                              Page 14 of 78 

2.4.4 Library 
A library is defined in [Cza00] as:  
“Library’s package general and domain specific reusable abstractions together with the code supporting it.” 
This definition gives us some insight in where to place libraries. Libraries supply code, which means they become more 
specific and offer more functionality at the same time. Library’s can be seen as a collection of components. This results in 
libraries being placed below components on the generity scale; by combining several components, the resulting library is 
more specific. For the functionality scale, it is placed between components and domain specific languages. This is 
because one library is not near a fully functional application; it does however offer a more functionality then a single 
component. A domain specific language will offer all or most functionality required to create an application, a single 
library is however not enough to create an entire application. 

2.4.5 Domain specific languages 
In [Mer05] a domain specific language is defined as: 
“Domain specific languages are languages tailored to a specific domain” 
This definition is short, but it does give us a lot of information on where to place domain specific languages. 
A domain specific language is tailored for a specific domain, so it becomes a lot more specific. However it is not a 
working application by itself, it is the language in which to create the application. For this reason domain specific 
language are placed between library and application on the generity scale. For example, a graphical library to draw graphs 
can be used in several applications spreading several domains, but a domain specific language is just for one domain. 
Domain specific languages offer all functionality to create an application; however, programming in this domain specific 
language is required to make it a fully functional application. For this reason, we place domain specific languages between 
application and library. 

2.4.6 Application 
An application is normally the product of a software development project. It offers specific functionality required for the 
needs of a specific customer. It can offer a little configurability to tailor the application, but in essence, it is completely 
specific. This is the reason to place applications very low on the generic scale and very high on the functionality scale. 
 
Until now, all elements have been represented with a dot, architecture, product family and framework are represented 
with a rectangle. The reason for this is that they are open definitions and each architecture can differ in functionality and 
generic properties. The same reasoning applies to frameworks and product families. Although the same could be said for 
the other five terms, no application offers the same functionality as the next, they represent as much smaller field then 
the terms, frameworks, product family and architecture. 

2.4.7 Software architecture 
When discussing software architectures we define software architectures [Bas03] as: 
“The software architecture of a program or computing system is the structure pr structures of the system, which comprise the software elements, 
the externally visible properties of those elements, and the relationships among them.” 
This definition gives us some insight in where to place architectures. Software architecture by itself is not a working 
application, it is however for a specific application, for this reason it is not generic and rather specific. It is less specific 
then a domain specific language because it will have properties for non-functional requirements (performance, security 
etc) and not for functional requirements that a domain specific language does have. It does offer more functionality than 
a component, a component often offers functionality for a specific functional requirements while software architecture 
offers multiple non-functional requirements. For this reason, software architecture is placed between components and 
library on the functionality scale. A software architecture is for just one application, thus it is even less generic that a 
domain specific language and placed between a domain specific language and an application on the generity scale. 

2.4.8 Framework 
The next piece of the puzzle, are frameworks themselves. Frameworks are more generic then domain specific languages 
because a domain specific language might target data entry applications or banking applications. A framework however is 
more like to target enterprise applications or embedded applications and is on a higher level than a domain specific 
language and it is not near as generic as a pattern.  For this reason, it is placed higher on the generic scale than domain 
specific languages. On the functionality scale, it is placed close to domain specific languages. If offers all the functionality 
to implement an application but still there is a need to write code to create a specific application. This is the same for a 
domain specific language. For this reason, it is placed on the same range as domain specific languages. 



Anton Gerdessen, Master thesis                                                                                                              Page 15 of 78 

2.4.9 Product family 
Product families or software product lines are defined in [Cle02] as: 
“A set of software-intensive systems sharing a common, managed set of features that satisfy the specific needs of a particular market segment or 
mission and are developed from a common set of core assets in a prescribed way.” 
Product families can be seen as applications that are not yet completed; they need to be configured before it is a final 
application. Nevertheless, it does contain all the functionality required for an application or even more applications. For 
that reason product families are placed along the same line as applications in terms of functionality. They are less specific 
then software architecture, because software architecture is only for one application. Product families are targeting a 
specific domain however, for example a product line of mobiles phones. For this reason product families have been 
places at the same line as domain specific languages on the generic scale.  

2.5 Summary 
This chapter discussed why we would want to use a framework in the first place. The purpose of frameworks was 
identified as the re-use of existing design and/or code. In addition, the answer to LQ-1 was provided: “A framework is a 
reusable skeleton for applications, targeting a specific domain, covering certain key areas and the interaction between them within that specific 
domain.” In extend of the definition we discussed that frameworks cover a vertical domain (purpose) by covering key 
areas. These areas give us a starting point for comparison since if several frameworks are designed specifically for a 
vertical domain; those frameworks will all need to cover the same areas. Additionally, we positioned frameworks within 
the context of terms like architecture, applications, library’s, etc. The result is displayed in figure 2. 



Anton Gerdessen, Master thesis                                                                                                              Page 16 of 78 

3 Domains and abstractions 
This chapter will focus on the smaller distinct areas mentioned in the framework literature. We will classify these areas as 
domains. First, we will discuss why to use domains at all and define the type of different domains. Secondly, we describe 
what a domain is. Next, we will describe the relation between domains and abstractions. 

3.1 Domain purpose 
We have identified that if we can divide the framework into smaller more manageable areas we can compare these areas 
individually. This is where domains come into play. The reason to use domains (and abstractions) is to reduce 
complexity. By dividing a problem into sub problems (domains), the complexity is reduced. Domains allow us to place 
certain characteristics within a boundary; this boundary is called a domain. We can then reason about the domains 
themselves without going directly to the details of the specific characteristics. One problem with domains and abstraction 
in general is that you are removing the details. A popular saying goes “The devil is in the details”. This is a thought to keep in 
mind while using domains and abstractions. 

3.1.1 Vertical versus horizontal 
Two types of domains are normally related to frameworks, vertical and horizontal. These definitions are explained in 
[Cza00] and [Sim95]. For the remainder of this thesis, we will use the following definitions. 
“A vertical domain is a domain for which the framework is intended”.  
For example if a framework is designed to control robots in an automobile factory, that is it vertical domain.  
“In order to cover a vertical domain a number of horizontal domains will need to be covered”. 
These horizontal domains can be domains like loading the controlling the robot, reading the specifications for the 
automobile etc.  

3.1.2 Technical, non technical, vertical and horizontal 
We have mentioned four types of domains in the context of frameworks now. We can place them as follows:  

• Vertical 
o Technical / Horizontal 

 
• Non-technical (composite, emerging) 

 
A vertical domain is the domain for which a framework is intended, an example is data entry applications. Covering this 
domain is done by covering several technical (synonym: horizontal) domains like persistence, modifiability and 
performance. Technical domains are concrete and explicit. 
By covering these domains, we influence several non-technical domains, as example we can use maintainability. 
Maintainability is non-technical; it is however, influenced by technical domains like modifiability and separation of 
concern. There are others factors like documentation and architecture that influence maintainability as well. 
In essence, we can say that by covering the technical / horizontal domains, non-technical domains are influenced. 
Thus, non-technical domains can also be classified as emergent or implicit. 
 
We use this classification to be able to reason about a frameworks purpose (vertical domain) independent from its 
implementation (horizontal domain). Also by separating non-technical, we reduce to complexity and focus on the aspects 
we can answer directly. Since non-technical domains, are composite and we could need to examine other aspects like 
documentation and architecture. These domains are very different and are outside the scope of this research. 
 
 

A vertical domain is the domain for which the framework is intended. 
 
 
 
 
Horizontal domains are the domains that need to be implemented in order to cover a specific vertical domain.  

 

 



Anton Gerdessen, Master thesis                                                                                                              Page 17 of 78 

3.2 What is a domain 
With domains in the context of software engineering, terms like domain engineering and domain specific languages 
surface quickly, although we want a more general description of a domain. In the context of domain specific languages, a 
domain is often a synonym for application oriented, task-specific, problem-oriented or specialized [Mer05]. This however does not 
bring us closer to a more general description of what a domain is. In [Bjr01] the following definition is given:  
“A domain is the universe of some specific application.”  
This definition and characteristics give the following elements for domains: 

• Targeting a specific delimited area 
• Task specific or problem specific or specialized 

 
Another definition found in [Cza00] is: 
“A domain is an area of knowledge or activity characterized by a set of concepts and terminology understood by practitioners in that area.” 
In this definition, we again find the specific area. Additionally we can derive these characteristic: 

• Terminology understood by practitioners in that area 
• A (limited) set 

 
This leads us to the following definition of a domain: 
“A domain is an area of knowledge for a specific problem or task characterized by a limited set of concepts and terminology.” 
In this definition, we can find the following characteristics: 

• Specialized 
• Task or problem specific 
• Terminology for a specific domain 
• A limited set 

 
 
A domain is an area of knowledge for a specific problem or task characterized by a limited set of concepts and 

terminology. 
 

3.3 Abstractions and domains 
In one of the earlier chapters, abstractions were also identified as an influence to this research. However, no specific 
information has been provided for abstractions until this point. The reason for this is that abstractions and domains are 
tightly coupled. By identifying a domain within an overall structure, an abstraction is made. 
A definition used for abstractions [Sai01] is: 
“Abstraction, intended as the ability to dismiss irrelevant details and focus on the relevant information only” 
A key aspect of abstraction is not mentioned however. In [Kno90] this aspect is mentioned:  
“Problem solving uses abstractions to reduce the complexity of search by dividing up a problem into smaller sub problems.” 
This is exactly the reason to use abstractions and domains this research project. By reducing the complexity by dividing 
the framework into multiple smaller domains, the complexity is reduced. 
 
 

Abstraction is a tool for solving a problem, not a goal by itself. 
 

3.4 Summary 
In this chapter we described why to use domains, the reason to use them is to reduce the complexity of the problem and 
divide it into parts that are more manageable. Furthermore, we gave the definition of a domain, which is “a domain is an 
area of knowledge for a specific problem or task characterized by a limited set of concepts and terminology.” We also discussed the relation 
between abstractions and domains. By creating an abstraction for a problem, you are already dividing the problem into 
smaller areas, domains. 



Anton Gerdessen, Master thesis                                                                                                              Page 18 of 78 

4 Technical domains 
This chapter will discuss the literature for the domains we will compare. For this thesis, we will research modifiability and 
customisability. These two domains were given the highest priority by Everest, see figure 11. The reasoning behind the 
high priority for these two domains is discussed in section 7.3. We will first discuss features, which are the basis for both 
domains. Following we will discuss customisability and modifiability.  

4.1 Features 
Modifiability and customisability are two concepts closely related. First, we will explain what we see as customisability 
and what we see as modifiability. We see both concepts as changes in the features of the application. Where we define 
feature [Cza00] as: 
“A property of a domain concept, which is relevant to some domain stakeholder and is used to discriminate between concept instances.” 
In [Bat05] features are defined as: 
“A feature is an increment in program functionality.” 
Another definition found in [Eis01] is: 
“A feature is a realized (functional as well as non-functional) requirement.” 
This is rather vague, but does add non-functional requirements to features. 
 
From these definitions, we can infer the following characteristics: 

• Relevant to a stakeholder 
• Realised functional and non-functional requirements 

 
From these characteristics, we can define features as: 
”Features are realized requirements, functional and non-functional, relevant to a stakeholder.” 
 
From these characteristics, we can conclude that features describe the entire system. Any change in the code or 
configuration will result in a change in the features. Therefore, any modification or customization will be visible by a 
change in features or their behaviour. 
 
 

Features are realized requirements, functional and non-functional, relevant to a stakeholder. 
 

4.1.1 Feature binding time 
Both customisability and modifiability are visible by changes in the features or their behaviour, but how do we separate 
the two. The difference is the point in time at which the change of feature is bound. By bound, we mean how do we 
make the actual change happen, can we do this after the product is released by changing some configuration parameter? 
Alternatively, does the source code need to be changed in order to encompass the change?  This shows similarities with 
the definition of timeline variability [Dol03]: 
“Certain features can be bound at several stages of the life-cycle.” 
From this definition, we can derive the difference between modifiability and customisability. The following figure 
displays what stages we define as modifiability and what stages we define as customisability. 
 

 
Figure 3: Binding timeline 
 
The field of modifiability only holds source code. Where source code is changes to the general programming language 
code itself. Customisability holds build time, installation time, start-up time and the running code. With build time, we 
mean build parameters if a tool like Apache Ant [Apa07] is used. With installation time, we mean parameters that are 
given during installation; this can be the users name and initials for a word processor to system information for an 
operating system. With start-up time, we mean the time when the application is started. For example in the Apache 
HTTP server [Aph07], configuration files can be changed to configure which modules to load etc. Changes here can 
range from setting GUI parameters like the default background colour to loading new modules for the application. 



Anton Gerdessen, Master thesis                                                                                                              Page 19 of 78 

More bound times can be named like deploy time, link time etc, but for the difference between modifiability and 
customisability these times have no influence. 
 
We can see that there is some overlap between modifiability and customisability. This is something which cannot be 
avoided. Another way to look at customisability and modifiability is the following. Modifiability can be seen as changing 
the implementation of a specific functionality (features) in the code, this can even be interface changes. This view 
strengthen are view that modifiability is changes in source code. Customisability can than be seen extending upon the 
already present functionality, these wont be interface changes. This is where we see the overlapping area because these 
changes can also be caused by source code changes. 
 
For the remainder of this thesis however, we will hold to the definition that modifiability are changes in source code and 
customisability changes without changing source code.  
 
 
The difference between customisability and modifiability is the point in time at which the change of feature is 

bound. 
 

4.1.2 Customisability and modifiability defined 
From the previous, we can derive that customisability is: 
Customisability is changing features or the behaviour of features without changing the source code. 
 
While modifiability is: 
Modifiability is changing features or the behaviour of features by changing the source code. 

4.2 Customisability 
The following section will discuss the literature used to form the method to compare the customisability domains.  

4.2.1 Application customisation versus framework customization 
We emphasise that there is a difference between customising the framework and customising the resulting application. A 
customization to the resulting application can be the creation of a new template and using this in the applications, the 
application is changed in terms of feature behaviour, and the look has changed for example. However, this is not 
customization of the framework. A customization of the framework would for example be a change in the elements 
the template engine handles. A new element or a change in elements, this is framework customization. 
Another example is setting the transaction start point with declarative AOP for example; this is customizing the 
application, not a customization of the framework. A customization of the framework would be the type of 
transaction management used. 
 
From the two examples above, we could infer that framework customization is done without any visual effect on the 
resulting application. This is valid for customization in the data and model layer, but this clear separation fades at the 
view level. For example adding support for more tags to the template engine could result in a change in the look of the 
application. 
 
We make this distinction because we want to compare the frameworks customisability and not the resulting applications 
customisability. If we do not make this distinction, we do not answer the research question but a total different question, 
the question of customisability of the resulting application. The confusion here is caused because the framework itself is 
not a runnable but changes are always made while the framework is being used together with custom code which makeup 
the resulting application. 
This indicates that every resulting application build by the same framework can still exhibit different customisability; this 
is caused by the custom code for each individual application. However, we are interested in the base customisability of 
the framework. 



Anton Gerdessen, Master thesis                                                                                                              Page 20 of 78 

4.2.2 Customisability defined 
From the feature binding time section, we can now use the definition: 
Customisability is changing features or the behaviour of features without changing the source code. 
However, very little literature is available for customisability in a technical context. A recurring paper on the subject is 
[Pin93]. The focus however, is financial. The paper focuses on when is it financial healthy to add customisability in a 
product. This topic is of no interest for us now. We have an existing product and want to evaluate how customisable it is, 
not if adding this customisability was financial sound. The do however state that customisability is added by creating 
variations. In [Jia03] an index is proposed to measure if a customization is financial sound, this part is again of no interest 
to us. The paper also identifies two aspects of customisability, which are of interest: 

• What can be customised 
• How easy can it be customised 

 
For what can be customised, we need a way to record customization options, again [Jia03] supplies us with an option, 
and they list customization with variation. This results in a link to product families [Bas03]. 
In [Gur01] variability is defined as: 
“Variability is the ability to change or customise a system.” 
This leads to the definition of a variation point [Jac97]: 
“A Variation point identifies one or more locations at which the variation will occur.” 
This is inline with our definition of customisability. In [Jac97], the link between abstractions and variation is also made. 
However, no distinction between abstraction types is made in [Gur01], two types of abstraction points are identified: 

• Open abstraction points, new features can be added. 
• Closed abstraction points, no new features can be added. 

4.3.3 Subtypes of features 
Besides the general types we mentioned earlier, mandatory and optional, there are three more subtypes of features. 
Mandatory and optional describe how and if the feature is present in the product, while these sub types define, what the 
feature is composed of and how it can be used. 
These types used are: 

• Composite 
• Atomic 
• Alternate variant 

 
Composite features: 
In [Deu02] composite features are defined as: 
“Features that are defined in terms of other features are composite features.” 
This indicates that a composite features value comes from it children. We can conclude that for composite features, we 
determine the value by evaluating its children. 
 
Atomic features: 
In [Deu02] composite features are defined as: 
“Atomic features are features which cannot be further subdivided in other features.” 
For atomic features, we have to make a distinction between mandatory and optional features. Optional features require 
and additional step which is how do we enable this feature. After that step, we can treat all atomic feature the same and 
the question lies in the customisability of the feature. 
 
Alternate variants: 
In [Bat05] alternates are defined as: 
“Only one feature can be selected of this group.” 
Alternate variants are sub features of a feature of which only one can be selected. The question of customisability with 
alternate variants lies in how we can enable the variants. 
 
We can record this information in feature diagrams [Bat05]. 
 
 
 
 
 



Anton Gerdessen, Master thesis                                                                                                              Page 21 of 78 

This results in the following diagram: 

Feature type

Composite or
atomic

Mandatory Optional

Has alternates

Composite

Determine the steps to
enable an alternate

Yes

Determine if the
feature can be

customized and which
steps to do so

Atomic
Determine the steps to

enable the  feature

Goto next feature

No

= Decision

 = Action

= Result

Key:

Composite or
atomic

Atomic

Composite

 
Figure 4: Steps for customisation per feature type 
 
If we take the definition for customisability, again we can conclude: 
Customisability is changing features or the behaviour of features without changing the source code. 

• Change of feature -> Alternate variants, or optional features 
• Change in behaviour -> Customizing features. 

4.3.4 Abstraction types 
The question remains, how can we identify open and closed abstractions. This can be done based upon if the 
applications architects designed the application in such a way that new features can be added. Abstraction creates a layer 
between the features and the rest of the applications. As mentioned in [Lin02]: 
“Providing more stability than using the components directly; often enabling different implementations of the same functionality.”  
Since both frameworks are build on the Java general purpose language, abstractions layers can be identified by a set of 
abstract classes and/or interfaces with an optional base implementation. 
Adding just the layer is only half the task; the children also need to use this layer instead of directly communicating with 
the rest of the application. The question remains, how we can measure this. From the previous, we can identify two 
characteristics: 

• An abstraction layer. 
• All underlying children should use this abstraction layer to communicate with the rest of the application. 

 
We now have basic characteristics to look for but still no method to measure this. How do we measure this abstraction 
layer? As mentioned before this abstraction is commonly achieved by interfaces and abstract classes. Secondly if it is an 
abstraction layer it should have low dependencies, you cannot be abstract and rely on many other packages. In addition, 
the creation the abstraction layer is only half of the journey; each variant also has to use the abstraction layer to access the 
rest of the software instead of communication directly. We now have some characteristics we can measure: 

• Abstraction level (ratio of interfaces/abstract classes to implementation) 
• Each child should use the abstraction layer (depend on abstraction layer) 

 
Because not all classes in the abstraction layer will be declared abstract. Some classes will have a base implementation. 
Because the abstraction layer is in essence the glue between the variant and the rest of the software, the classes in the 
abstraction layer should exhibit the following behaviour, which we identified in the previous section. 

• A low efferent coupling 
• On average a low ncss per method 
• On average a high JavaDoc per method 



Anton Gerdessen, Master thesis                                                                                                              Page 22 of 78 

Where ncss [Jnc07] is: 
“None comment source statements.” 
Where efferent coupling is [Rei02]: 
“The number of classes from other packages that the classes within the package depend upon.” 
 
This leaves the question of the ease of customisation. Ease is an open term, what is easy for person A can be hard for 
person B and visa versa. For this reason, we will have to identify criteria on which to determine the ease. Terms used in 
combination with configuration languages are “configuration model, satisfying the requirements and valid” [Soi99] and relates this 
to the tools to support this. 

• Tools support for the underlying language, validity, completeness. 
 
In [Leo00] another aspect is mentioned, centralising the configuration. 

• Number of different places to edit the configuration (centralized or not) 
 
We however feel an important criterion is missing here, which is: 

• The time (or steps) it takes to customise something 
 
Therefore, these three will be the criteria for comparison.  

4.3 Modifiability 
For modifiability, we can reuse and build upon the literature for customisability; however, there are distinct differences 
that we will discuss. 
Mapping the initial criteria for customisability on modifiability, we get: 

• What can be modified? 
• How easy can it be modified? 

 
From the feature binding time section, we can now use the definition: 
Modifiability is changing features or the behaviour of features by changing the source code. 
 
Following this definition, we can be divide modifiability into two groups 

• Adding/removing features  
• Modifying the behaviour of features 

 
For what feature can be added and removed, we can use abstraction points in the code. Points that we identified in the 
customisation section. In particular, we are looking for open abstractions. Points in the code that are intended to be 
extended. 
 
This leaves us with the last group, modifying the behaviour of features. In order to modify a feature, we first need to find 
it, which gives us the first indication of how we can make modifiability measurable: 

• Finding the feature 
 
Finding a feature can be translated to the modularity of the code. If the code is modular, we will be able to find the 
location of a specific feature faster than with code that is not modular. In [Loh84] this is confirmed. Which leaves us with 
the question, how can be measure modularity. For this, we can use [Rei02], which defines a number of criteria: 

• Afferent coupling 
• Efferent coupling 
• Abstractness 
• Instability 

 
Where efferent coupling [Jde07] is: 
“The number of classes from other packages that the classes within the package depend upon.” 
Efferent coupling [Jde07] is: 
“The number of classes from other packages that depend on the classes within the package”. 
Abstractness [Jde07]  is: 
“The abstractness of a package is defined as the ratio of abstract classes / interfaces to the total number of classes.” 
And instability [Jde07]: 
“The instability of a package is defined as the ratio of efferent coupling to total coupling.” 
These are all measurable criteria. 



Anton Gerdessen, Master thesis                                                                                                              Page 23 of 78 

 
Once we have located the feature, the next step is to understand the code. This brings us to understandability of the 
code. Understandability is defined as follows in [Mcc04]: 
“The ease of with which you cam comprehend a system at both the system-organizational and detailed-statement levels. Understandability also 
has to do with the coherence of the system at a more general level than readability does.” 
In addition, readability is defined as: 
The ease with which you cam read and understand the source code of a system, especially at the detailed-statement level.” 
From this, we can infer some characteristics that the system should have: 

• Coding standard, coherence of the system, which include naming conventions 
• Low complexity, understand the source code 

 
Coding standard cannot be measured, but we can examine a sample group for each application and determine if a coding 
standard was used. 
Complexity however can be measured. For this, we will use the McCabe complexity [Mcc76] or often called the 
cyclomatic complexity. Although this method is sometimes criticized [Wey88] and alternatives are available, dataflow, 
lines of code, Hallstead’s computer science etc. cyclomatic complexity is the de facto standard. 
 
The concept of code understandability is an entire field on its own. Including several human interpretable factors, for our 
current research we pick the measurable and the most important aspects according to [Mcc04]. This is the complexity. 

4.4 Summary 
In this chapter, we discussed the two domains we will research, customisability and modifiability. We provided the basis 
that we will use for both comparisons, which are features. We defined features as “features are realized requirements, functional 
and non-functional, relevant to a stakeholder.” Additionally we described the different between customisability and modifiability 
as “the difference between customisability and modifiability is the point in time at which the change of feature is bound.” 
Which lead to the definition for customisability as “Customisability is changing features or the behaviour of features without changing 
the source code.” And the definition for modifiability as “Modifiability is changing features or the behaviour of features by changing the 
source code.” Moreover, we made the concepts related to customisability and modifiability measurable.  
 
 



Anton Gerdessen, Master thesis                                                                                                              Page 24 of 78 

5 Theoretical framework model 
In this chapter, we will introduce a framework model; we will describe how this model came to be. 

5.1 Vertical domain of a framework 
As mentioned before the vertical domains of a framework is the application type for which the framework is intended. 
Application type can for example be data entry, in this application type the focus will mainly be on how the data is 
entered and how it is stored, which can be classified as the technical domains. Another type can be online banking 
applications, for this type the focus will be more on security and concurrent users as well as the data storage. These can 
again be classified as the technical domains of the application type. 
 
This tells us that the vertical domain depends on the technical/horizontal domains of the framework. For this reason the 
focus is on the technical domains 

5.2 Technical domains of a framework 
In order to divide a framework into separate domains the following approach has been used. During the initial literature 
study terms have been collected which are related to frameworks. 
These terms were chosen on the following criteria: 

• They were related to framework characteristics / properties 
• They were mentioned in more than two separate articles 
• Both articles were from different authors 

5.2.1 Technical domains versus characteristics / properties 
We state that technical domains and characteristics are equal. We do this on the basis that when we start designing a 
system we will want the system to exhibit certain properties (requirements). However, it is not always true that the 
resulting software will meet these requirements. We intended the system to handle all payments automatically, but it does 
not do that. However, it does have certain characteristics; it handles the payment until a signature is required.  
This is distinction. Requirements are what we want the system to do. While characteristics are, what the system 
actually does. Thus, characteristics / properties are equal to the technical domains because the system exhibits this and 
this can be found in the source code. 
In essence, requirements, non-technical requirements and architecture are what you want the system to do. 
Characteristics are what the system actually does. 
Thus, we want characteristics and not the others; we want what the system does and use that for comparison. 

5.3 Initial list 
The initial list after this process in no particular order is:  
Term Reference 
Authentication [Fay99] [Blu07] [Spr07] [Wes04] 
Authorization [Fay99] [Blu07] [Spr07] [Wes04] 
Availability [Pri06] [Fay99] [Spr07] 
Complexity [Fro97] [Fay99] [Blu07] [Spr07] [Mar00] [Joh97a] [Bak06] [Wes04] 
Configuration [Pri06] [Fay99] [Blu07] [Spr07] [Mar00] [Bak06] [Cas05] 
Connection pooling [Blu07] [Spr07] 
Customisability [Joh97b] [Fro97] [Fay99] [Spr07] [Mar00] [Fro00] [Joh97a] 
Dependencies [Fro97] [Fay99] [Blu07] [Spr07] [Mar00] [Bak06] 
Distributed [Fay97] [Fay99] [Blu07] [Spr07] [Zar04] 
Error/Exception handling [Blu07] [Spr07] [Wes04] 
Extendibility [Fay97] [Fro97] [Fay99] [Blu07] [Spr07] [Mar00] [Joh97a] [Bak06] 
Fault tolerance [Fay99] [Blu07] [Spr07] [Bak06] 
Flexibility [Pri06] [Fay97] [Fay99] [Bak06] 
Internationalization [Pri06] [Blu07] [Spr07] [Bak06] 
Interoperability [Fay97] [Fay99] [Cas05] 
Logging [Pri06] [Fay99] [Blu07] [Spr07] [Wes04] 
Modifiability [Fay97] [Fay99] [Blu07] [Spr07] [Fro00] 
Modularity [Fay97] [Fay99] [Blu07] [Spr07] [Zar04] 



Anton Gerdessen, Master thesis                                                                                                              Page 25 of 78 

Openness [Fay97] [Fay99] [Fro00] [Zar04] 
Performance [Fay97] [Pri06] [Fay99] [Blu07] [Spr07] [Zar04] 
Persistency [Pri06] [Fay99] [Blu07] [Spr07] 
Portability [Pri06] [Fay99] [Spr07] 
Reliability [Fay97] [Fay99] [Blu07] [Spr07] 
Scalability [Pri06] [Fay99] [Blu07] [Spr07] [Zar04] 
Security [Pri06] [Fay99] [Blu07] [Spr07] 
Separation of concern [Fro97] [Fay99] [Mar00] [Bak06] [Wes04] [Cas05] 
Session handling [Fay99] [Blu07] [Spr07] 
Skeleton implementation [Fro97] [Fay99] [Mar00] [Bak06] [Zar04] [Bos97] 
Tailorability [Fay99] [Wes04] 
Testability [Pri06] [Fay99] [Spr07] [Bak06] [Wes04] [Bos97] 
Transaction management [Blu07] [Spr07] [Zar04] 
Transparency [Fay99] [Zar04] [Wes04] 
Unit testing [Pri06] [Spr07] 
Figure 5: Initial characteristics of a framework 
 
Note that for terms that already had several references, no extra ones were collected. At first glance, this list has several 
elements that overlap, for example security and authentication. Absolutely no pre selection has been made here. In 
addition, it has elements that are not at the same ‘level’. For example, authentication and authorization can be seen as 
‘children’ of security. Therefore, this list is only the start of the process; the next step is to group these elements to 
identify hierarchies and overlap. 

5.4 Grouping of domains 
In this section, we will group the related elements. This has been done based on several criteria: 

• Context of the element in the literature 
• Definitions of the element 

 
All elements related will be in the same row, no ordering within rows will be done. 
Scalability Distributed Transaction 

management 
  

Persistency     
Security Authentication Authorization Logging  
Error/Exception handling Reliability Availability Fault tolerance  
Customisability Configuration Tailorability   
Openness Interoperability Transparency   
Skeleton implementation     
Performance Connection pooling Session handling   
Separation of concern Complexity Modularity Dependencies  
Modifiability Flexibility Extendibility Portability Internationalization
Testability Unit testing    
Figure 6: Grouped characteristics of a framework 
 
The next step is the filtering of the elements.  

5.5 Filtering of elements 
This section will filter the remaining element. The rationale can be found in Addendum A. This has been done in the 
following way: 

• Removal of duplicates or synonyms (Strikethrough) 
• Identifying the ‘top’ level, horizontal domains (Bold, first column) 
• Invalid terms (Underlined and strikethrough) 

 
 
 
 
 



Anton Gerdessen, Master thesis                                                                                                              Page 26 of 78 

Horizontal domain Possible implementations 
Scalability Distributed Transaction management   
Persistency     
Security Authentication Authorization Logging  
Availability Reliability Error/Exception handling Fault tolerance  
Customisability Configuration Tailorability   
Interoperability Openness Transparency   
Skeleton implementation     
Performance Connection pooling Session handling   
Separation of concern Complexity Modularity Dependencies  
Modifiability Flexibility Extendibility Portability Internationalization 
Testability Unit testing    
Figure 7: Filtered horizontal domains of a framework 
 
The next section will describe the domain and discuss the reasoning behind it. It will also discuss why certain elements 
have been removed. 

5.6 Technical domains of a framework 
This section will list the technical domains of a framework inferred and list the description for each domain.  
The reasoning behind each technical domain can be found in Addendum A. that will also discuss the reasoning behind 
the decision to call it a framework domain. Only the top levels are important and can be recognized as a domain. For 
example in the security row, authentication is one option to make systems more secure; it is not the only option. For this 
reason, filling columns besides the most left one is not important for this research. 
 
For several of these domains the abstraction guidelines in [Alp03] are used. The 90% rule applies here. Not all domains 
described here are valid for all frameworks. Nevertheless, if a great portion of frameworks exhibit a certain domain; they 
are part of the model. See the example of birds and flying in [Alp03]. 
Skeleton implementation has been removed because this is an implementation of the base architecture, this base 
architecture should encompass all framework domains. Therefore, by comparing all the technical domains in a 
framework we already compare the skeleton implementation implicitly.  
 
At first glance, these domains appear to overlap with non-functional requirements or quality attributes. However, 
architecture is in essence an abstraction of the software so it is only natural they should surface when creating and 
abstraction of a framework that is also software. If a software system has characteristics attached to it, its only natural the 
architecture (abstraction from the system) also has characteristics attached to it. 
The key difference is that these domains will be compared on implementation level, not on an architectural level. None 
the less, it looks like frameworks try to make the implicit attributes more explicit. 
 
 

Frameworks try to make non-functional attributes more explicit. 
 
 
 
 
 



Anton Gerdessen, Master thesis                                                                                                              Page 27 of 78 

 
Horizontal domain Description 
Scalability [A-1] Scalability is the ability of a computer application or product to continue to function well as it (or its 

context) is changed in size or volume. Typically, the rescaling is to a larger size or volume. 
Persistency [A-2] Persistency refers to the characteristic of data that outlives the execution of the program that created it. 
Security [A-3] Security is the measure of the system’s ability to resist unauthorized usage while still providing its 

service to legitimate users. 
Availability [A-4] Availability is the probability that the system is operating at a specified time. 
Customisability [A-5] The ability and ease for software to be changed by the user. 
Interoperability [A-6] The ability of systems, units, or forces to provide services to and accept services from other systems, units 

or forces and to use the services so exchanged to enable them to operate effectively together. 
Performance [A-7] Performance is the degree to which a software system or component meets its objectives for timeliness. 

Thus, performance is any characteristic of a software product that you could, in principle, measure by 
sitting at the computer with a stopwatch in your hand. 
 

Separation of concerns [A-8] Separation of concerns is s the process of breaking a program into distinct features that overlap in 
functionality as little as possible. A concern is any piece of interest or focus in a program. Typically, 
concerns are synonymous with features or behaviours. 

Modifiability [A-9] Maintainability is the capability of the software product to be modified. Modifications may include 
corrections, improvements or adaptations of the software to change the environment, and in requirements 
and function specification 

Testability [A-10] The likelihood that the software will expose a failure under testing, if it is faulty and the degree to 
which it is easy to fulfil a given test coverage.” 

Figure 8: Horizontal domain list of a framework 

5.7 Summary 
This chapter introduce a framework model on which we will base our comparison. The 10 technical domains are 
introduced which along with their definition which can be found in figure 7. 
This answers LQ-2 and LQ-3. We also explained the reasoning behind the theoretical model. 



Anton Gerdessen, Master thesis                                                                                                              Page 28 of 78 

6 Research method 
This chapter will identify the cohesion of the research questions, secondly we will describe the research method for 
comparing frameworks. In addition, we will describe the method for comparing the customisability and modifiability 
domain. 

6.1 Research method demands 
For the research method to be useful in the first place we will impose some constraints. 

• Repeatable, the method must be repeatable by a different executor and yield the same result 
• Time demand, the method should be executed in one month, in order to allow it to be useful in any industrial 

setting 
• Validation, the method should provide a validation for the result, in order to provide a sound conclusion 

6.2 research cohesion 
This section will describe the cohesion of the individual research questions, how they will lead to an answer. 

6.2.1 Research questions recap 
The research questions are: 
RQ-1 ‘Can application X conform framework A be converted to framework B” 
 
Sub questions that arise from the main question are: 

• RQ-2 “Does application type for both frameworks overlap” 
• RQ-3 “How to determine which criteria to use for comparing the frameworks” 

o RQ-4 “In which advantages and disadvantages will this conversion result” 
 RQ-5 “Is the change of Framework desirable” 

 
As can be seen from the indentation, RQ-2 serves as input for RQ-3, RQ-3 as input for RQ-4 etc. 

6.2.1.1 Research question 2 
RQ-2 can be answered by comparing the vertical domain of framework A with the vertical domain of framework B. 
Basically this is the application type for which the framework was intended. This type can often be found in the 
frameworks documentation.  
As mentioned earlier, only when the application overlap is a comparison feasible. If this condition is not true, work will 
be done which will be pointless. If this is not the case, RQ-1 can be answered with No. 
The overlap will never be 100%, this can be compared to the architecture of any software application. There are always 
tradeoffs between certain aspects. Again we can use the 90% abstraction guideline.  
This question is crucial because if this one is answered with a no, proceeding is pointless, since if the application types do 
not overlap, the horizontal domains will not overlap either. Thus, we have no common horizontal domains and we 
cannot compare anything. 

6.2.1.2 Research question 3 
For RQ-3, we can use the framework domains identified in LQ-2, which are displayed in figure 7. 

S
ca

la
bi

lit
y

Av
ai

la
bi

lit
y

P
er

si
st

en
cy

S
ec

ur
ity

C
us

to
m

is
ab

ilit
y

In
te

ro
pe

ra
bi

lit
y

Pe
rfo

rm
an

ce

Se
pa

ra
tio

n 
of

 c
on

ce
rn

s

M
od

ifi
ab

ilit
y

Abstract framework in technical domains

Te
st

ab
ilit

y

 
Figure 9: Framework domains 
 



Anton Gerdessen, Master thesis                                                                                                              Page 29 of 78 

First, we have to identify which domains are important for application X. This can be done by using the high-level 
requirements for application X. These high-level requirements can be documented or they can be obtained from the 
applications creator and/or architects etc. 
The next step is to prioritize these domains, since there are not that many framework domains; a number from on to ten 
for each domain will suffice. Once this list is created, a separate minor research project can be conducted for each of 
these domains.  

6.2.1.3 Research question 4 
The results of these small research projects will be analysed and a comparison can be made how well framework A 
covers a given domain versus framework B. Since each domain will be analysed separately, the analysis will results in 
coverage for each domain. The positive and negative effects are the advantages and disadvantages mentioned in RQ-4. 
Important factor here is that this is an iterative process for each framework domain. This, because by prioritizing and 
iterating we ensure the most important domains are covered first. 

6.2.1.4 Research question 5 
As mentioned in chapter 1, RQ-5 is influences by non-technical factors as well. In order to answered the question if the 
change of framework is desirable we will take the results for all framework domains from both framework and compare 
them. This will allow us to answer RQ-5 from a technical perspective. In order to get a definitive answer the none-
technical aspects need to be added to the equation. This is however outside the scope of the current research and 
therefore we only partially answer RQ-5. 

6.2.1.5 Research question 1 
With all data gathered in the RQ 2-5, we can give a final verdict on if an application X can be converted from framework 
A to framework B. In this verdict, we can mention the results from RQ2-5. RQ-1 can be seen as the conclusion for 
RQ2-5. 

6.3 Research steps 
The following figure displays how each RQ relates: 
 

RQ-4

Research questions:

RQ-1: Can application X conform framework A be converted to framework B

RQ-2: Does the application type for both frameworks overlap

RQ-3: How to determine which criteria to use for comparing the frameworks

RQ-4: In which advantages and disadvantages will this conversion result

RQ-5: Is the change of Framework desirable

RQ-2

RQ-1

No

Yes

RQ-5

= Decision

= Activity

= Final verdict

= Input for

RQ-3

 
Figure 10: Research steps 



Anton Gerdessen, Master thesis                                                                                                              Page 30 of 78 

6.4 Technical domains research 
This section will discuss how each of the technical domains will be compared and in which groups we can split these 
comparisons. 

6.4.1 Comparison groups 
First, we will divide the horizontal domains into two groups for comparison: 

• Dynamic 
• Static 

 
The difference between these two groups is that the dynamic group will be mainly compared by experiments and 
prototypes. The static group will be compared by a number of techniques like metrics, DSL comparison etc. 
It is entirely possible that a domain in the dynamic group also has a static component and visa versa, but the emphasis 
will be on the group in which it has been categorized. 
 
Under dynamic, we can position the following the domains: 

• Scalability 
• Availability 
• Performance 

 
Under static, we can position the domains: 

• Persistency 
• Security 
• Customisability 
• Interoperability 
• Separation of concerns 
• Modifiability 
• Testability 

6.4.2 Comparison domains 
For all the technical domains that will be compared dynamically, one addition note applies. Most of these frameworks 
C#, J2EE, run on a specific type of application server or a specific plug-in (.net runtime environment, EJB container etc). 
These applications servers or plug-ins themselves also effect the availability (for example auto restart on error), scalability 
(clustering) and performance (load balancing). Moreover, since a framework itself is not a runnable application, a 
prototype will have to be made and this prototype will run on an application or plug-in. In addition, this application 
server or plug-in will in turn run on a specific OS. In essence your testing the combination of framework, with 
application server / plug-in and the underlying OS with dynamic comparison. This important factor should not 
be overlooked. 
 
In the above example we used the most extremes we could find. Since C# is highly dependant on the underlying OS 
since it almost exclusively runs on Windows platforms. For C# we could say we are testing the framework + OS. This is 
different for J2EE, J2EE strives to be platform independent. This results that by testing J2EE frameworks, you are 
mainly testing the framework + application server. 

6.5 Customisability 
This section will describe the research method we will use to compare customisation. 

6.5.1 Research method 
From the customisation literature combined with the theoretical framework model, we can now propose a method for 
comparison that can be divided in several steps. Step 1 through 4 will measure what can be customised; step 5 will 
measure the ease of change. 
 
 
 
 



Anton Gerdessen, Master thesis                                                                                                              Page 31 of 78 

Step 1, feature extraction 
Determine the features and their types in both frameworks. 
This will be done based on the feature diagram. Most likely, these are not available and will be extracted from the 
architecture and documentation.  
 
We need to make one enhancement to feature diagrams for our purpose. Mandatory features are defined as features that 
are required to get a working application. In terms of frameworks, we need to expand this a little. There are features 
which are not required to get a working application but they are always present. 
For example, the feature in Spring for dynamic language support. This is always available; however, you do not need to 
use dynamic languages at all. 
Therefore, for the context of frameworks we redefine the definition of mandatory features: 
Mandatory features are features that are always present and cannot be removed. 
 
For completeness, we will also define optional features as: 
Optional features are feature we have to be enabled to be used, but are not required. 
 
Step 2, abstraction types 
This step will identify open and closed abstractions points. We use the composite features here and not just alternate 
variants because composite features hold the alternate variants and any feature composed of children. These two groups 
can have an abstraction layer. For example with remoting, this is not an alternate variant, but it is very likely all these 
types of remoting will use a similar way of communication with the rest of the application. Thus, an abstraction layer 
could be present. This however, is not a rule, for example enterprise utilities, although they are grouped together, it is 
unlikely that they will all communicate in a similar matter.  
 
This step is not directly related to customisability, but it is a natural step, a top down approach. It will also provide a form 
of validation for the first step. By examining the package structure deeper, we can determine if we missed and features 
and if there are features in the diagram which do not belong their since they cannot be found in the code and libraries.  
 
The last step is tools, which enable us to collect this data. For this we can used JDepend [Jde07]. One note on the use of 
JDepend, it also measures standard libraries. This is not what we want so we excluded the following packages from 
analysis: 

• Standard libraries (Java.*, javax.*, sun.*, sun.com.*) 
• Tests (vary per framework) 
• Logging (org.apache.commons.logging) 

 
For measuring the base implementation, we used a second tool JavaNcss [Jnc07]. This tool allows us to measure the ncss 
(none commenting source statements), JavaDoc statements, methods and classes per package.  
 
All these metrics use the package as parent, which means we have to pinpoint each feature to a specific package or sub 
packages; this will be listed together with the features. 
 
Note that not all features will be present in the source code listing presented, the features missing are libraries supplied 
with the framework in non-source code format. We did verify that these libraries are present, as mentioned before if the 
feature is not present in the source code or in the libraries, it does not exist. 
 
Step 3, customisation identification 
Now that we have identified the features, we can determine what can be customised. 
Important here is that we are going to answer the question: 
What (feature / components) can be customised in the framework? 
Not the question: 
To what degree can each individual component be customised? 
There is a huge difference between these two questions. The first one can be answered by a ‘yes’ or ‘no’, the second 
cannot be answered like that. Due to the scope of this research, we will limit ourselves to the first question.  
 
We will now make a forward reference to the next step in which we will determine how many steps we need to do in 
order to use a feature. Because step 5, ease of change, has overlap with this step, we will conduct step 5 first. Once 
we complete step 5 we can identify if any of the steps taken in the process are customisability steps, and if they are we 
can add a ‘yes’ to the feature.  



Anton Gerdessen, Master thesis                                                                                                              Page 32 of 78 

We also need to identify if the customization is added by the framework or if it facilitates this customization by, for 
example, providing a way to provide parameters to the feature, or if the feature already had this customization option by 
default. If the feature already has this customization option, it does not count towards the customisability of the 
framework. This can also be taken from step 5, the comment ‘[C]’ is added if the feature had this customization by 
default. 
 
In addition, we separate the types of features into groups: 

• All features 
• Skipped features 
• Optional features 
• Features with alternate variants 

 
This has been done so that we have a clearer picture about all the aspects of customization. These categories are based 
upon figure 4. We also add another distinction for these groups, if the customization is achieved solely by customization 
(pure) or if it is a mix (mixed) between customization and source code. For this, we add a weight column. In the first case 
we set a 1 for the weight factor, in the second case we set a 0,5. 
 
If multiple options are possible to customise a features, we will check if there is a customization option which is pure 
customization first, if this is possible we set a ‘1’ to the weight factor, if not we add a ‘0,5’ for a mixed. 
 
Step 4, tool support 
Tools support is important for configuration files, errors are easily made in manually editing configuration files. 
In the step, we will count the number of tools available and list these tools combined with the number of configuration 
files it can manipulate. 
 
Step 5, ease of change 
The next step is identifying for each feature what steps need to be taken in order to change or enable the feature. This 
way we will measure the ease of change. Since most steps are a mix of customisation and modification, separating the 
two here is not possible. Hence, we will measure the ease of change. The way we measure this is straightforward. 
Suppose we want to enable or change feature X, what do we need to do? Which steps would we need to take? In 
addition, what type of steps? Are there multiple ways of achieving the change? 
We use two step types: 

• Source code step, creating or editing one file in the general programming language. 
• Configuration step, creating or editing one configuration file. 

 
We will record the following information: 

• Feature, the feature name 
• Step category, enabling or changing the feature 
• Step number, how many steps do we need to go trough, are there multiple ways to reach the same goal? 
• Step description, what did we do this step 
• Step type, source code or configuration 

 
These prototypes do not have to be fully functional programs, as long as they enable us to answer our question what 
needs to be done in order to select or use the feature. If the feature, for example, is Hibernate, we only need to determine 
what we need to do in order to use this type of object relation mapping, we do not need to write and entire application to 
test the mapping itself. 
 
For determining if a feature already had this possibility for change, we use the documentation of the feature. If the 
change is mentioned there; it was already present and the framework does not add any value. 
 
Note that we do not measure step in time, this is because the length it will take person X to complete a step can differ 
greatly from the time it takes person Y to complete a step. The number of steps for each person stays the same however. 



Anton Gerdessen, Master thesis                                                                                                              Page 33 of 78 

6.5.2 Validation 
Validation can be split into two sections, result validation and method validation, we will discuss method validation first. 
Scenarios were used to validate both the method and the result. Three scenario’s where chosen which were applicable to 
both frameworks. This number was chosen based on the available time in relation to statistical chance. Also we used 
scenario’s because metrics and diagrams are all theoretical, performing the customisation itself far more practical. If both 
theoretical and practical suggest the same result we can offer a far more sound conclusion. 

6.5.2.1 Method validation 
For each step in the research method we will list the assumptions made and the performed validation for the step. 
 
Step 1, feature extraction 
A large part of the result depends on the validity of the feature diagram. If a feature was not located it will not be counted 
for any of the remaining steps at all. The feature diagram was validated in the form of an interview. For Spring the 
interviewee were the creators of Spring, interface 21. For blueprints the interviewee were the employee of Everest which 
have considerable experience with Blueprints. 
 
The feature diagram was given and the following questions were asked: 

• Are any features missing 
• Are any features present which should not be 
• Are the features in the correct tree (child/parent order) 
• Are the features types marked correctly 

 
Assumptions made in this phase were: 

• All features present will be listed in the documentation 
• If a feature exists, it will be visible in either the source code or libraries. 

 
We cannot offer much validation for the first assumption, we state that if a feature is present it will be listed in the 
documentation. If this is not the case the features will not be used since the application developer cannot find it. 
This validation was performed in step 2, abstraction types, where we examined the code deeper and identified if all 
features which we extracted from documentation were in fact present in the code or libraries. 
 
Following these interviews minor corrections were made to the feature diagram until both parties agreed on the validity. 
 
Step 2, abstraction types 
Several assumptions were made in this step, these assumptions were: 

• Each package can be pinpointed to a single feature 
• Abstractness, method to NCSS, method to doc and efferent coupling determine the abstraction type 

 
That each package can be pinpointed to a single feature is suggested by the package structure of point frameworks, 
however we cannot offer and validation for this. This is also one of the discussion points mentioned later in this thesis. 
The use of specifically these metrics originates in the literature, which can be seen as the validation for using these 
metrics 
 
Step 3, customisation identification 
The following assumptions were made in this step: 

• If a customisation is possible it will be mentioned in the documentation 
• If a customisation is possible, but it was already possible without the framework (for integrated features like 

Freemarker, Velocity, etc) in this care the features documentation will list this 
• The feature type dictates how to identify the customisation 

 
The first assumption was made specifically due to the time constraints. Although the literature suggests it to be true. 
Some feature will be customisable while the documentation does not list it, there is nothing we can do about that. 
The second assumption followed during the fact collection for this step, almost every feature was customisable, we than 
realised most of those features were integrated products. The customisability of these integrated products does not count 
towards to customisability of the framework, this is in the same order as customisability for the final product does not 
count for the customisability of the framework. 



Anton Gerdessen, Master thesis                                                                                                              Page 34 of 78 

The last assumption is again supported by the literature for customisability. 
 
Step 4, tool support 
Assumptions made in this step were: 

• Tools provide a faster way of customising than by hand. 
 
This assumption is supported by the literature. 
 
Step 5, ease of change 
The following assumptions were made: 

• The ease of change depends on the number of steps to achieve the change 
• The complex single step counts for less than two simple steps 

 
The number of steps will be validates by actually performing the customisation for the three scenario’s. The results 
confirm our assumption, the more steps it takes the more time is required, see figure 16. 
The same can be said for the second assumption, each time if the number of steps was higher the time required went up. 
No single step scenario was found which took longer than any two step scenario. Although this a weak validation of this 
assumption, due to the small sample group, we can offer no better validation at this time. 

6.5.2.2 Result validation 
We selected a sample group applicable to both frameworks. This sample group consist of framework customisation, and 
not application customisation.  
We did use an application as basis for the comparison; this application was the pet store. This since the pet store was 
available for both Spring and Blueprints. We used the following customizations, which all have at least one customization 
step according to addendum H and I, note that we only use this data to select the scenario’s, we do not use it in any other 
way for validation. 

• 1, Logging all incoming requests to the command line, framework requests cycle 
• 2, Redirect all 404 errors to an error page, frameworks request cycle 
• 3, After entering the password wrong 3 types, alert an administrator (via email), framework security  

 
We recorded the following information for validation: 

• Lines of code changes 
• Minutes taken to complete 
• Steps taken to complete 

 
This is the first time we touch the time aspect; we tried to avoid this because it varies greatly depending on the person 
doing the experiment. All customisation were done by the author of the thesis, to which both frameworks are new, 
although he has two years of J2EE experience. All times are excluding tests and deploy times, just the time spend on the 
customisation. 

6.6 Modifiability 
This section will describe the research method we will use to compare modifiability. 

6.6.1 Research method 
From the modifiability literature combined with the theoretical framework model, we can now propose a method for 
comparison that can be divided in several steps. Step 1 through 4 will measure what can be customised; step 5 will 
measure the ease of modifiability. 
 
Step 1, extension points 
Determine which extension points the system has, for this we can reuse the data from step two in customization. 
These points identify if features were intended to be added there. For removing features, the abstraction layer will make 
removing easier, since the feature only communicates with the abstraction layer. If no abstraction later is present, 
removing a feature will result in changes spreading more locations than with the use of an abstraction layer. 



Anton Gerdessen, Master thesis                                                                                                              Page 35 of 78 

Step 2, finding features 
In the context of finding the feature, we want data about the modularity of the system, for this, we gather data about the 
following characteristics: 

• Afferent coupling 
• Efferent coupling 
• Abstractness 
• Instability 

All these characteristics can be measured with JDepend [Jde07] and the same extracted fact file was used which we 
extracted for customisation, we only applied a different XSLT to extract the required data. 
 
Step 3, understanding features 
In the context of understanding the feature, determine the following: 

• Is a coding standard used and visible within the code, take a sample group for this. 
• Determine the code complexity by using the cyclomatic complexity metric. 

 
The coding standard step will have to be done manual, for the cyclomatic complexity, we used Cobertura [Cob07]. 
 
Step 4, feature dependencies 
Once we have located the feature and understand it, we have to perform one additional step before we can modify the 
feature. In the context of the impact of a chance we need to identify dependencies, we can determine this from the data 
for step two; we can use the efferent coupling, which are the dependencies outside the package.  

• Impact of the modification 
 
For this, we can use a metric we mentioned earlier, the efferent coupling, but this time we will not evaluate other 
properties, we are only interested in the number of dependencies, in other words the efferent coupling. 
 
Step 5, ease of change 
This leaves us with the last question, the ease of modifiability. For this, we can reuse the section for the ease in 
customisability, step 5. Since we ignored the step type in that part of customizability, we already measured the easy of 
modification/customisation combined, the ease of change. 

6.6.2 Validation 
Validation can be split into two sections, result validation and method validation, we will discuss method validation first. 
Scenarios were used to validate both the method and the result. Three scenario’s where chosen which were applicable to 
both frameworks. This number was chosen based on the available time in relation to statistical chance. Also we used 
scenario’s because metrics and diagrams are all theoretical, performing the modification itself far more practical. If both 
theoretical and practical suggest the same result we can offer a far more sound conclusion. 

6.6.2.1 Method validation 
For each step in the research method we will list the assumptions made and the performed validation for the step. 
The validation data used van be found in figure 21, as well as the performed steps. 
 
Step 1, extension points 
This step has been discussed in step 2, abstraction types for customisation. 
 
Step 2, finding features 
The following 3 steps all focus on changing the feature, first we have to find it, than we need to understand it and finally 
we need to understand what impact the change will have. The assumption here was: 

• The following metrics determine the modularity of a system (abstractness, instability, where instability is the 
ration between CE/CA) 

• The modularity of a system determines how easy it is to find a feature 
 
Literature offers validation for the both assumption as can be found in the literature for modifiability. 
 
Step 3, understanding features 
For understanding we made the following assumption 

• A feature is harder to change if it is harder to understand (more complex) 



Anton Gerdessen, Master thesis                                                                                                              Page 36 of 78 

 
We can validate the assumptions for the last three steps with our validation data. 
Scenario one took 5 minutes per step for both frameworks. The complexity for blueprints was 1 
(com.sun.j2ee.blueprints.encodingfilter.web) and for Spring this was 1,59(org,springframework,web,filter) 
 
The second adjustment took 10 minutes per step for Spring 15 per step for Blueprints. Thus we should expect the 
complexity to be higher. For blueprints the complexity was 2,63 (com.sun.j2ee.blueprints.waf.controller.web) for Spring 
it was 2,08 (org,springframework,transaction,support). This supports the assumption. 
 
The last scenario took 15 minutes per step for both frameworks, we expect around the same complexity as with scenario 
two. The complexity calculations are a bit different here because the are the averages of the steps. For Blueprints this was 
2,4 ( 3,64 + 1,29 / 2 ), for Spring 2,0 (1 + 1,70 + 3,2 / 4), which is inline with what we expected. 
 
Step 4, feature dependencies 
For dependencies we made the following dependencies 

• The more dependencies a feature has, the more impact a change will have 
 
This assumption can be validated by the literature which suggests the same. 
 
Step 5, ease of change 
This step has been discussed in step 5, ease of change for customisation. 

6.2.2.2 Result validation 
For the result validation, we will use a similar approach as the one used to validate customisability. We will select a 
sample group of three scenarios for modification. According to our data, Blueprints does not offer extension points to 
remove or add new features. Thus, we are limited to changing the current functionality. Again, we will use the pet store 
application and basis. 
 
The selection of the group was rather hard, but eventually we used the following scenarios, which all have at least one 
modifiability step according to addendum H and I, again this data has only been used to create the scenario’s no other 
data has been used from these addenda. 

• 1, Setting the response encoding to UTF-8, front controller 
• 2, Extend transactions, log all transactions, data layer separation (Transaction / business controller) 
• 3, Display a different interface depending on the logged in user role, page flow 

 
We recorded the following information for these tests 

• Lines of code changes 
• Minutes taken to complete 
• Steps taken to complete 



Anton Gerdessen, Master thesis                                                                                                              Page 37 of 78 

7 Case Study 
This chapter will give a brief introduction of both frameworks used in this case study and determine if they both are 
frameworks by the definition given in chapter two. Next, we will prioritize the technical domains and discuss 
customisability and modifiability. 

7.1 Frameworks introduction 
This section will briefly cover the two frameworks under comparison. We will discuss if they even fall under the category 
framework or not. 

7.1.1 Sun Blueprints 
Sun Blueprints does not have framework in its name . According to [Blue07] it is reusable code and patterns combined 
with best practices; however, it does exhibit the characteristics mentioned in the framework description. Sun Blueprints 
was created because developing J2EE applications was hard; there was no starting point. Sun Blueprints was the first to 
offer guidelines in the process of J2EE application creation. The definition was “A framework is a reusable skeleton for 
applications, targeting a specific domain, covering certain key areas and the interaction between them within that specific domain.” 
From the information on [Blue07], the following characterises can be retrieved: 

• Aimed at enterprise applications => domain 
• Reusable patterns and code => reuse 
• Covering key areas with code and patterns => covering key area’s, interaction 

 
This leads to the conclusion that Sun Blueprints is a framework. 

7.1.2 Spring 
Spring is a much younger then Blueprints. The motivation behind Spring is that development for J2EE applications 
should be a lot easier. The Spring framework has framework in its name. The question is, is this valid? From the websites 
[Spr07] and [Tss07], the following characteristics have been retrieved: 

• Aimed at business logic applications => domain 
• Reusable => reuse 
• base architecture => interaction, skeleton 

 
Thus, Spring is a framework. 

7.1.3 Comparing apples and oranges 
Are these two frameworks even comparable? Spring is a J2EE framework while Blueprints is more of a set of guidelines 
for developing J2EE applications. Although as determined in the previous two sections, they are both frameworks.  
Both frameworks build a ‘layer’ on top of the J2EE specification, although the layer that Spring builds is ‘thinker’ than 
the Blueprints layer. Blueprints still uses some aspects of J2EE without adding any layer, while Spring allows this (using 
EJB beans), but recommends the usage of the provided abstraction layer.  
We do not evaluate the J2EE component in Spring, so we must also not evaluate the J2EE component in Blueprints.  

7.1.4 Versions 
For Sun Blueprints the following versions were used: 

• Java EE 1.3 
• Pet store demo 1.3.1.02  

 
For Spring the following versions were used: 

• Spring framework 2.0.4 (The base framework, extra plug-in modules are not evaluated) 
• Spring reference manual 2.0 



Anton Gerdessen, Master thesis                                                                                                              Page 38 of 78 

7.2 Is the change of framework possible 
As mentioned in chapter 6, the first question is if both frameworks cover the same vertical domain and are applicable to 
the current application. To answer this question, we can use the documentation for both frameworks. 
From the Spring reference manual [Rsp07] the following domain can be derived: 
“Java applications (a loose term that runs the gamut from constrained applets to full-fledged n-tier server-side enterprise applications)” 
Sun Blueprints follows the J2EE specifications, under the documentation [Fbl07] for these J2EE specifications we find:  
“A set of coordinated specifications and practices that together enable solutions for developing, deploying, and managing multi-tier server-centric 
java applications.” 
Just from the definitions, we can infer the following characteristics: 

• Java based 
• Multi tier(n –tier) applications 
• Client/server 
• Scalable (fully fledged/server centric) 
• Based upon the J2EE specifications 

 
These hold for both definitions, so we can answer yes to RQ-2. Both frameworks cover the same application type. Thus, 
we can now continue with the next step and analyse the frameworks in more detail. 

7.3 Horizontal domain iterations 
Next, we prioritized the domains, this in order to ensure the most important aspects are covered first. For the 
prioritizing, we asked one of the application creators to prioritize the technical domain list. As mentioned before Everest 
creates applications that are focussed at the banking and insurance sector. These sectors are liable to rapid and frequent 
changes as well as large quantities of users. For these reasons, domains related to change are high on the list. The 
horizontal domains on a scale from one to ten are rated as following: 
 
Technical domain Priority 
Customisability 1
Modifiability 2
Scalability 3
Security 4
Performance 5
Persistency 6
Testability 7
Separation of concerns 8
Availability 9
Interoperability 10
Figure 11: Prioritised domains for the case study 
 
This gave us an order in which to compare the domains. Iteration has been chosen to ensure the most important 
domains are compared first. 

7.3.1. Extracted facts customisability 
This section will list the extracted facts for both frameworks. 
 
Step 1, feature extraction 
The feature diagram for Spring can be found in addendum B, the diagram for Blueprints in addendum C. The execution 
method for both frameworks slightly differ, this will be shortly discussed below. 
 
Step 1, Spring, feature extraction 
The Spring diagram has initially been composed by using the reference manual [Rsp07]. After its initial creation, we asked 
the creators of the Spring framework to provide some feedback, which was given and resulted in several communications 
back and forth and several changes to the diagram. Next, the packages structure of the framework has been analyzed to 
confirm that all features in the diagram are actually present in the source code or included libraries. The diagram evolved 
during the first two steps, after that it remained relatively the same. 
 
 



Anton Gerdessen, Master thesis                                                                                                              Page 39 of 78 

Step 1, Blueprints, feature extraction 
For Blueprints, the process was different. There is no skeleton source code available for Blueprints. Blueprints comes in 
the form of patterns and guidelines. These guidelines and patterns can be found in the book [Kas02], which is also 
available online at [Blr07]. However, the skeleton code is not distributed separately. There is a sample application 
available, that was created by the engineers of Blueprints and follows their guidelines. Blueprints also relies heavily on the 
J2EE specifications [J2E07]. Blueprints can be seen as an extension to the J2EE specifications, which means that in the 
feature diagram features from both J2EE in general and Blueprints will be displayed. However, only the features that 
Blueprints add count for Blueprints. If we would add the features from J2EE, we would be comparing J2EE + 
Blueprints, not just Blueprints. The features are displayed however, to leave no gaps in the features, since some rely on 
base code from J2EE. Spring does this as well, but created layers above each J2EE feature so no J2EE feature are visible. 
The initial version was created by examining the reference guide at [Blr07] and several other online resources. After this, 
the diagram was discussed with employees within Everest who have experience with the pet store application. 
Furthermore, the diagram has been further refined in the second step when the package structure of the demo 
application was examined in detail. 
 
Note that we do not claim completeness for correctness for the features listed as features from J2EE. These features are 
nearly added to provide a more cohesive picture.  
 
Step 2, abstraction types 
From most of the package names, the feature was directly derivable. For example, org.framework.aop.aspectj, the resulting 
feature is aspectJ under AOP support in the tree. For other packages the JavaDoc and reference guide have been used. 
The packages to supply to the tools have been based upon relevance, mainly samples and tests have been left out. These 
do not influence frameworks features. 
 
The packages used for Spring are: 

• /aspectJ/src  
• /dist  
• /lib  
• /src  
• /target  
• /tiger/src  

 
The packages for Blueprints are: 

• /src/waf  
• /src/components/encodingfilter  
• /src/components/mailer  
• /src/components/servicelocator  
• /src/components/signon  
• /src/components/uidgen 

 
This list has been composed by taking the reusable component from both frameworks. For Spring we only had to 
remove tests and mock code. For Blueprints we consulted the employees of Everest to clarify which packages where 
reusable code and which belonged exclusively to the pet store application. 
 
These metrics were gathered using the following parameters on the tools: 
javancss.Main -recursive -gui –all PATH 
jdepend.xmlui.JDepend -file jdepend.xml PATH 
Where path are the packages mentioned above. 
The sources need to be compiled as well, make sure that only the given path is compiled to avoid tests and mock code in 
the packages, which could change the metrics considerably. 
 
JavaNcss has a save function to store the package information, which is all displayed. On the xml file, an XLST [Xsl07] 
transformation has been used to filter the data. 
 
The data for Spring can be found in addendum D, the data for Blueprints are in addendum E. 
 
From the data in Addendum C, we can now determine the types of abstraction layers for each composite feature are. We 
can do this by using the table and performing the following steps:. 



Anton Gerdessen, Master thesis                                                                                                              Page 40 of 78 

Determine which packages have the ‘top’ feature as feature in the table column. 
From these packages filter the packages that exhibit the following criteria discussed in the research method: 

• Abstractness (‘A’) is higher than average 
 
Alternatively, the package exhibits the following characteristics 

• Methods to NCSS is lower than average 
• Method to JavaDoc is higher than average 
• Package CE is lower than average 

 
From observation of the package structure of Spring, we can conclude that the support package appears almost 
consistently trough the code that hints us that this package name could be an indication of an abstraction layer. 
In addition, the root package often holds the exceptions for the entire package, which also hints to an abstraction layer. 
 
An exempt is made for the following packages: 

• Annotation packages, these packages often fit the criteria, but this is because of the nature annotations, no 
concrete classes. 

• EJB packages, EJB works by defining two interface classes and 1 implementation class, which makes the 
package two third abstract by default, EJB packages are only counted if they are 100% abstract. 

 
Next, we take the children below the current feature and determine if they use the abstraction layer. 
If they do we have an open abstraction, if they do not it is closed. By using we mean does the ‘top’ package or packages 
use (depend upon) the identified abstraction packages. For this, we can use the report generated by JDepend.  
 
We will discuss this here completely for the AOP package tree, for the other packages only the results are listed. 
The packages listed as AOP are: 

• aop 
o aop.config 
o aop.support 

 aop.support.annotation 
 
The packages left after the filter: 

• aop 
o aop.support 

 
The features ‘below’ AOP are: 

• AspectJ 
• Spring/proxy AOP 

 
We can now take the ‘top’ packages for these features below AOP, which are: 

• aop.aspectj 
• aop.framework 
• aop.scope 
• aop.target 

 
All these packages depend on the identified abstraction packages. 
We can now conclude that AOP has an open abstraction because it exhibits both characteristics mentioned before: 

• Abstraction layer 
• All children communicate through the abstraction layer (depend upon) 

 
For the remaining features, we only list the results. 
Features Open/closed Comment 
AOP support Open  
Proxy/Spring AOP Closed No abstraction layer could be identified. 
Bean factory Closed There is an abstraction layer, but not all children depend on it. 
Application context Closed No abstraction layer could be identified. 
Spring container Open  
DAO Open  



Anton Gerdessen, Master thesis                                                                                                              Page 41 of 78 

ORM Closed There is an abstraction layer, but Ibatis does not use it, the other do. 
Remoting Open  
Scheduling Open  
Dynamic language support Open  
Transaction management Closed There is an abstraction layer, but Ibatis does not sure it the others do. 
Content generator Closed No abstraction layer could be identified. 
View abstraction Closed There is an abstraction layer, but content generator does not use it the 

other do. 
MVC controller Closed No abstraction layer could be identified. 
Spring MWC Open  
Excel Open Abstraction in 1 package, implementation in libraries. 
Enterprise utilities Closed The individual features are present and scattered, but no abstraction 

layer can be identified anywhere. 
Configuration Closed Only the features for loading the type of configurations are present, no 

abstraction layer can be found. 
JTA Closed No code package found, included as a library 
Resource files Closed No code package found, most likely hidden in a utility class, which 

indicates no abstraction layer. 
Figure 12: Abstraction layer types Spring 
 
The abstraction layer for Blueprints are: 
Composite feature Open/closed Comment 
MVC controller Closed No abstraction layer could be identified. 
Security Closed No abstraction layer could be identified, no common code for security, 

only implementation 
Enterprise utilities Closed No abstraction layer could be identified. 
Web container Closed No abstraction layer could be identified, no common code for web 

container 
View abstraction Closed No abstraction layer could be identified, no common code for web 

container 
Template engine Closed No abstraction layer could be identified. 
Figure 13: Abstraction layer types Blueprints 
 
Step 3, customisation identification 
The results for Spring per feature can be found in addendum F, the results for Blueprints in addendum G. 
Note that a distinction is made between a features that were customisable by default, and features to which the 
framework adds customisability. We are interested in the last category since these add value to customisability of the 
framework. 
Framework Spring Blueprints 
Number of total features 74 21 
Number of mandatory composite non alternate variant features (Skipped) 10 8 
Number of features candidate for customisability (figure 11) 64 13 
Number of features customisable 15 4 
Number of features customisable due to framework 11 4  
Number of features pure customisable 11 0 
Number of features mixed customisable 0 4 
Number of optional features 25 3 
Number of optional features which can be enabled per customisability 24 2 
Number of optional features which can be enabled pure customisable 24 2 
Number of optional features which can be  enabled mixed customisable 0 0 
Number of alternate variants 7 1 
Number of alternate variants which can be enabled by customization 7 1 
Number of alternate variants which can be enabled by pure customisable 7 1 
Number of alternate variants which can be enabled by mixed customisable 0 0 
Figure 14: Summary of what can be customised 
 
 
 



Anton Gerdessen, Master thesis                                                                                                              Page 42 of 78 

Step 4, tool support 
Both frameworks of no tools support for editing configuration files. 
 
Step 5, ease of change 
The results for Spring per feature can be found in addendum H, the results for Blueprints in addendum I. 
The step type can hold two values: 

• Enable the feature 
• Change the feature 

 
Framework Spring Blueprints 
Number of configuration points 15 5 
Number of enables paths 33 3 
Average enable step length 1,06 1 
Number of change paths 35 9 
Average change step length 1,14 1,56 
Figure 15: Summary ease of change 
 
Note that we no longer use the step type in these figures. We are no longer interested in if the steps are source code or 
configuration related. We are only interested in the step required to enable or change a features in general. We already 
identified these features as either pure customization or a mix of customization and source code before, this is no longer 
relevant for the ease of since all steps have to be performed. 
 
The averages are calculated by divided the total step length of all enable paths and divide them by the total number of 
enable paths. The same applies to the customization average. Where changing is considered anything with step type 
changing, thus ignoring the difference between customisation and modification. Essentially, we are determining the easy 
of change. We use this approach because due to the use of mixed steps, it becomes very hard to separate the two. Since 
the two terms are so related, we decided to leave them coupled and determine the easy of customization / modifiability. 

7.3.2.1 Validation 
The Following data has been collected for validation: 
 Spring Blueprints Comment 
1 Lines of new code 5 1  
 Source code lines 0 1  
 Non source code lines 5 0  
1 Time taken in minutes 5 10 In Spring this could be achieved via advice at the bean 

configuration xml, for blueprints this was an extra line of 
code in the request processor 

1 Steps 1 1  
2 Lines of new code 4 5  
 Source code lines 0 1  
 Non source code lines 4 4  
2 Time taken in minutes 5 45 Blueprints required changes in two locations, web.xml 

and the templateServlet, the latter was hard to locate. 
Spring only required changes in the web.xml 

2 Steps 1 2 Excluding the creation of the error page itself 
3 Lines of new code 5 15 Excluding the mail sending code 
 Source code lines 5 15  
 Non source code lines 0 0  
3 Time taken in minutes 15 45 Locating the security concepts in both frameworks was 

relatively easy (SignonFilter, SignonAction)  
3 Steps 1 2 For Blueprints, a subclass had to be created, because if 

we changed the code directly we would break the 
separation of concerns principle. In Spring, the singon 
class was purely for that purpose and could be changed 

Figure 16: Customisation validation sample 



Anton Gerdessen, Master thesis                                                                                                              Page 43 of 78 

7.3.2 Extracted facts modifiability 
This section will list the extracted facts for modifiability. 
 
Step 1, extension points: 
Recapping the data collected in step two for customizations 
 Spring Blueprints 
Composite features 20 6 
Number of closed 12 6 
Number of open 8 0 
Figure 17: What can be modified 
 
Step 2, finding features: 
We extracted the following data 
 Spring Blueprints 
Average abstractness 0,29 0,24 
Average afferent coupling 5,83 1,75 
Average efferent coupling 7,12 1,54 
Average instability 0,69 0,44 
Figure 18: Modularity metrics 
 
The complete results for these metrics can be found in addendum J for Spring and in addendum K for Blueprints. 
Side note here is that only the packages should be compiled for Spring that we listed as the path 5.3.1.3 step 2. This 
because Spring uses different directories for samples, tests etc, but when compiled they end up in the same directories as 
the source and thus adding classes to the source which we are not interested in. 
 
Another problem is that JDepend works on the class files, while Cobertura works on the class files and source files, 
minor discrepancies can occur while merging the results that have to be resolved by hand. These discrepancies can be 
counting empty directories, missing source code files, only class files available etc. However, these can be resolved by 
comparing the extracted package structures and file counts for both tools. 
 
Step 3, understanding features 
For the coding standard, we used a sample group of four files for each application. We determined of these files used a 
noticeable naming and coding standard. 
Files were selected at random, but rejected if they did not exhibit the following criteria: 

• At least ten lines of non comment code 
• The file should be in the ‘main’ package structure (org.springframework / sun.j2ee.blueprints ) 

 
The files used for Spring were: 

• Beanfactory (package org.springframework.beans.factory) 
• IncorrectResultSizeDataAccessException (package org.springframework.dao) 
• OpenSessionInViewInterceptor  (package org.springframework.orm.hibernate.support) 
• WebUtils (package org.springframework.web.util) 

 
The files used for Blueprints were 

• URLMappingsXmlDAO (package com.sun.j2ee.blueprints.waf.controller.web) 
• I18nUtil (package com.sun.j2ee.blueprints.waf.util) 
• EncodingFilter (package com.sun.j2ee.blueprints.encodingfilter.web) 
• ServiceLocator (package com.sun.j2ee.blueprints.servicelocator.web) 

 
For both frameworks the result was the same; both frameworks appears to have had naming and coding conventions. 
We used the following commands for complexity: 
cobertura-instrument.bat  --destination d:\tmp PATH 
cobertura-report.bat --basedire PATH --destination d:\tmp --format xml 
Again and XSLT has been used to filter only the relevant data. 
 
 



Anton Gerdessen, Master thesis                                                                                                              Page 44 of 78 

 
We extracted the following data for complexity 
 Spring Blueprints 
Average cyclomatic complexity 1,82 2,09 
Maximum cyclomatic complexity 6 5,25 
Minimum cyclomatic complexity 0 1 
Coding /naming standard used Yes Yes 
Figure 19: Complexity metrics 
 
The complete results for the complexity metrics for Spring and Blueprints can be found in respectively addendum J and 
K 
 
Step 4, feature dependencies 
We extracted the following data for the impact of a change 
 Spring Blueprints 
Maximum efferent coupling 30 11 
Minimum efferent coupling 0 0 
Average efferent coupling 7,12 1,54 
Packages below average efferent coupling 120 19 
Packages above average efferent coupling 70 9 
Figure 20: Impact of change 
 
The complete data for the dependencies upon a certain package from outside the package is called efferent coupling and 
is listed in addendum J and K. 
 
Step 5, ease of change 
As mentioned before, a combined ease of customization and modifiability has been performed, the result can be found in 
figure 15. 

7.3.2.1 Validation 
The Following data has been collected for validation: 
 Spring Blueprints Comment 
1 Lines of new code 1 1  
 Source code lines 1 1  
 Non source code lines 0 0  
1 Time taken in minutes 5 5 Encoding filter class in Blueprints and Spring 
1 Steps 1 1  
2 Lines of new code 2 4 Default requestprocessor for Blueprints, class 

declaration, default process request, call to log at 
beginning and end, all steps 1 line. For Spring the 2 lines 
were added the Transaction manager 

 Source code lines 2 2  
 Non source code lines 0 0  
2 Time taken in minutes 10 15  
2 Steps 1 1 Excluding the log code itself, only the call to the log 

functionality is counted. 
3 Lines of new code 14 + 6* 7 + ~3* Excluding the interface pages themselves (1) Spring, (2) 

Blueprints  
 Source code lines 13 + 1* 7  
 Non source code lines 1 + 5* ~3*  
3 Time taken in minutes 90 45 Adding this with Spring took considerable longer, the 

number of files to change and to locate them took long 
3 Steps 6 3  
Figure 21: Modifiability validation sample 
 
 
 
 



Anton Gerdessen, Master thesis                                                                                                              Page 45 of 78 

 (1)  
• 2 lines in the AccountDOA class (getter/setter definition) 
• 2 lines to fill the attribute in SqlMapAccountDao class 
o 5 lines to make a of action mapping with setter and getter for user in the action mapping super class 
o 4 lines to overwrite findforward with the requested URL retrieval and adding the user role to it, in the action 

mapping super class 
• 1* line per ActionMapping to extend the new super class in each existing action mapping class 
• One line to define the attribute in account xml 
o One line per jsp page to include the user from the session in the struts config xml 
o Four lines per jsp page in the struts config xml 

 
Open bullets indicate that the two actions are in the same file, hence the six total for Spring. 
 
(2) 

• Five lines for the userEJB class (getter/setter + attribute) 
• Two lines for adding the user to the screen retrieval. In the template servlet class 
• ~3* per screen definition in the screen definition xml. (depends on the number of elements in the template we 

used top, bottom, content frame) 



Anton Gerdessen, Master thesis                                                                                                              Page 46 of 78 

8 Case study analysis 
Now that we gathered all the facts, we can analyze and interpret them. We will start with customizability followed by 
modifiability. 

8.1 Customisability 
This section will analyze and interpret the results for customisability. 

8.1.1 Analysis 
We can now compare the extracted facts for both frameworks and analyse the results, we will do this step by step. 
Afterwards we will discuss the validation. 
 
Step 1, feature extraction 
When we look at the features diagrams for both frameworks, we can make a number of observations: 

• Spring offers more features than Blueprints (64 to 13) 
• Spring offers more choice in alternate variation (7 to 1) 
• Spring offers more optional features than Blueprints (24 to 2) 

 
Step 2, abstraction types 
This step does not offer us much in terms of customisability, the reason this step was executed was to determine variants 
and their type. This step was also used as validation for the features inferred in step 1. Observations for this step are: 

• Spring offers more open abstractions (8 to 0) 
 
Step 3, customisation identification 
In the third step, we determined if a feature achieved its customisability due to the framework or with help of the 
frameworks. We also identified if the customisability was pure or if it was a mix of customisability and source code. 
Observations in this step are: 

• Blueprints offers a higher rate of features that are customisable (31% to 23%) 
• Spring offers a higher pure customization rate (100% to 0%) 
• The rate of optional features that can be enabled by pure customization is equal (100% to 100%) 
• The rate of alternate variants that can be enabled by pure customization is equal (100% to 100%) 

 
Step 4, tool support 
In this step we examined the easy of change, observations for this step are: 

• Spring offers more configuration points (15 to 4) 
• Blueprints offers a marginally lower enable step length (1 to 1,06) 
• Spring offers a lower step length for customization (1,14 to 1,56) 
• The configuration point versus feature relation is equal (1 to 1) 

 
Step 5, ease of change 
In step five, we determined the tools which the framework offers to assist with customisability and configuration, 
observations we can make in this step is: 

• Both frameworks offer no tools to assist with configuration (0 to 0) 

8.1.2 Validation 
This section will discuss the validation of the performed research. 
 
The result for the scenarios is: 
Total Spring Blueprints 
Lines of new code 14 21 
 Source code lines 5 17 
 Non source code lines 9 4 
Time taken in minutes 25 100 
Steps 3 5 
Figure 22: Customisability validation summary 
 



Anton Gerdessen, Master thesis                                                                                                              Page 47 of 78 

These results confirm our data, since Spring performs better on average in all three criteria for this sample group. Less 
lines of code, more non-source code lines, less time taken and fewer steps performed. Additionally it shows that changes 
in Blueprints are more often source code changes than changes in Spring. Spring could accommodate two out of three 
changes without editing source code, while Blueprints could do that for none. 
 
Why are the steps and/or number of steps different from those mentioned in appendix H and I? This is because they list 
steps to customize the component; it is possible that the specific customisations we picked do not map 100% to the 
customisation that can be done by performing these steps. 

8.2 Modifiability 
This section will analyze and interpret the results for modifiability. 

8.2.1 Analysis 
We can now compare the extracted facts for both frameworks and analyse the results, we will do this step by step. 
Afterwards we will discuss the validation. 
 
Step 1 extension points 
In this step, we identified the points in the code that are open to new features or the removal of features. As mentioned 
before, Spring offers far more features; it is not surprising that there are more open variants in Spring than in Blueprints: 

• Spring offers more open abstractions than Blueprints (8 to 0) 
 
What is awkward is that ratio of open composite features versus closed: 

• Spring offers a far better ratio of open versus closed composite features (45% to 0%) 
 
Step 2, finding features 
In this step, we gathered information about the modularity of both frameworks, the following facts can be observed: 

• Spring offers a slightly higher abstractness ratio, which could indicate that Spring follows the rule of 
‘programming to an interface’ better than Blueprints (0,29 to 0,24) 

• Blueprints offer a far lower average afferent coupling than Spring (1,75 to 5,83) 
• Blueprints offers a far lower average efferent coupling than Spring (1,54 to 7,12) 
• Blueprints offers a lower average instability than Spring (0,69 to 0,44) 

 
Step 3, understanding features 
This step gathered information about the understandability of the framework, primarily the readability and the following 
of naming and coding conventions. The following data was extracted: 

• Both frameworks appear to use and follow a naming and coding standard 
• Spring offers a lower cyclomatic complexity than Blueprints (1,82 to 2,09) 
• Blueprints has a lower maximum cyclomatic complexity than Spring (5,25 to 6) 

 
Step 4, feature dependencies 
In this step, we gathered information about the impact of a change and the following data was extracted: 

• Blueprints offers a much lower average efferent coupling (1,54 to 7,12) 
• Blueprints offers a far lower maximum efferent coupling than Spring (11 to 30) 
• Blueprints offers a slightly lower percentage of packages above the average efferent coupling than Spring (32% 

to 37%) 
 
Step 5 ease of change 
This step was performed in the customisation phase and we will recap the data that is relevant to modifiability. 

• Blueprints offers a marginally lower enable step length (1 to 1,06) 
• Spring offers a low step length for customization (1,14 to 1,56) 

8.2.2 Validation 
The validation of step one and five have been discussed in the customisation section and will not be repeated here. 
 
The results for the scenarios are: 
 



Anton Gerdessen, Master thesis                                                                                                              Page 48 of 78 

Total Spring Blueprints 
Lines of new code 23 13 
 Source code lines 17 10 
 Non source code lines 6 3 
Time taken in minutes 105 65 
Steps 8 5 
Figure 23: Modifiability validation summary 
 
These results are inline with what we expected. One scenario had equal results, another favoured Spring slightly and the 
last highly favoured Blueprints. Overall blueprints performs better on the modifiability scenario’s 
 
The last results can be explained due to the centralised nature of Blueprints, single points of control principle is very 
important for Blueprints. 



Anton Gerdessen, Master thesis                                                                                                              Page 49 of 78 

9 Conclusion 
This section will conclude from the previous analysis. First, we provide the overall conclusion, following the conclusions 
for customisability and modifiability. The last section contains feature work. 

9.1 Overall conclusion 
The overall conclusions can only be drawn for the two compared domains. In order to provide an overall conclusion, 
more horizontal domains will need to be compared. We can offer a partial conclusion after comparing these two 
domains. Overall Spring performs slightly better than Blueprints. This because customisability was given a higher priority 
than modifiability and Spring offer a higher customisability while blueprints offers a slightly higher modifiability. 

9.2 Customisability 
In this section, we will discuss what we can conclude from the previous sections. We will also discuss the research in 
customization in general, what blank spots did we leave and what feature work could be done in this area. 

9.2.1 Conclusion 
From the previous sections, we can conclude that Spring offers a higher customisability than Blueprints. We base this 
conclusion on the fact that Spring offers far more features to begin with. In addition, Spring offers more options in terms 
of alternate variants and optional features while blueprints consist of mainly mandatory features. Thirdly, Spring offers a 
more centralized customisability; the number of steps that needs to be taken in order to customise a feature is much 
lower than with Blueprints.  
 
Blueprints has a lower number of configuration points. However, if we hold the number of configuration points versus 
the number of customisable features / optional features in general, Spring yields a more centralized result. Blueprints 
offers a higher customisability when comparing the total number of feature to the number of features that can be 
customised. Nevertheless, most of this Blueprints customisability is mixed, while most Spring customisability is pure. 
 
Therefore, our conclusion is that of these two frameworks, Spring offers a better customisability than Blueprints for the 
versions mentioned in chapter 7. 
 
 

Spring offers a better customisability than Blueprints. 
 

9.2.2 Discussion 
This section will discuss a few (intentionally) gaps in our current research. 
 
A subject of concern is trying to pinpoint a feature to a package or library in the code. This is a bit short sighted, it is 
possible that features span across multiple packages not in the same package tree. There is also a possibly than one 
package holds several features. We only limit a package to one feature. The reason we chose this approach is that we 
found it worked rather well in practise to pinpoint a single feature to a single package. This could be due to the design of 
the current frameworks under examination. 
 
Another concern is the measurement if a feature is customisable. We defined this that if a feature had a customise step, it 
is customisable. We never measure the degree in which this feature is customisable. For example if we take a random 
spreadsheet product and the only part that can be customised is the title of the spreadsheet, our method calls this 
customisable. That we cannot customise the data, layout, column, colours, etc, is not taken into account. The reason we 
chose this approach is our scope, we want to be able to answer several domains and not just the domain of 
customisability. The domain of customisability alone is enough to create an entire thesis about, but this thesis is about 
comparing frameworks and not just customisability. Secondly we also feel that we are answering the question how 
customisable is the feature and not the framework itself, although the features customisability does add to the 
frameworks customisability. 
 
A third concern is the rule that all variants should use the abstraction layer. If there are twenty variants and nineteen use 
the abstraction layer and one does not, we call the variant closed. This rule can be seen as strict, but we believe that 
allowing even one variant not to use the abstraction layer break the abstraction all together. 



Anton Gerdessen, Master thesis                                                                                                              Page 50 of 78 

 
A large concern the basis behind what is source code and what is not. Throughout this thesis, we consider source code to 
be the code written in the general programming language of the framework. In this case Java code. The question can be 
raised if this is valid, are the xml files associated with the framework source code as well?  
 
Another concern is that we did not factor in documentation in any way. There are several reasons for this, measuring the 
documentation and how long it takes for someone to find it, is different for each person, the measurement we have given 
are all static measurements and do not vary no matter who takes them. For documentation, this is different, so this has 
been left outside the scope. However, for determining what has to be done to customise a component we used the 
documentation. 
 
A concern that can be raised is in step four, we also determined if a component can be changed by modifying the source 
code. In theory, any component can be customized by changing the source code. Why are only a few listed? 
For this, we used the reference guides as oracle. If the reference guide mentioned options to change to component by 
changing source code, we added the option. The underlying principle is that the reference guide has been created by the 
frameworks creators, if they intended this point in the framework to be changed, they will mention this in the reference 
guide, if they did not intend the framework to be changed there, they will not mention it.  
 
Last concern that can be raised is the appearance of doubles in the feature diagram, for example, toplink in the Spring 
diagram. The reason for this is that the feature is used in a different perspective and therefore we found it justified to 
mention the feature twice. It is entirely possible to use this feature at only one part in the framework and not use it the 
second time. The feature is used in a different context and therefore we mentioned it twice.  

9.3 Modifiability 
In this section, we will discuss what we can conclude from the previous sections. We will also discuss the research in 
modifiability in general, what blank spots did we leave and what feature work could be done in this area. 

9.3.1 Conclusion 
From the previous sections, we can conclude that the complexity of Blueprints and Spring is almost equal. However, the 
coupling both, efferent and afferent is much lower for Blueprints. This also results in a lower instability for Blueprints. 
However, Spring offers points in the code where new functionality can be added, and Blueprints does not. The 
complexity is near equal. In addition, adding functionality will most likely be done by the frameworks developers, and not 
by the application developer. Because if many changes have to be made in functionality, it is far more likely, a different 
framework will be chosen. Small changes in functionality of the existing features are far more likely to done by 
application developers.  
 
Therefore, our conclusion is that of these two frameworks, Blueprints offers a slightly better modifiability than Spring for 
the versions mentioned in chapter 7. 
 
 

Blueprints offers a slightly better modifiability than Spring. 
 

9.3.2 Discussion 
This section will discuss a few (intentionally) gaps in our current research. 
 
A concern is that we left the human aspects of understandability out of scope. We can count control structures and 
observe the coding style, but the effect of these on the understandability can differ from person to person. This aspect of 
understandability can most likely only be tested with the use of a sample group who grades the understandability of 
several files of both frameworks. Due to our scoping and this being only one of the factors, we decided not to investigate 
this further. 
 
Another concern is the potential overlap of modifiability with separation of concerns and testing. Modularity is also an 
important component of separation of concerns. The last part of assessing the impact of a change is testing the change 
and sees if the application still passes the tests. This overlap is something that will always remain; we cannot eliminate 
this.  
 



Anton Gerdessen, Master thesis                                                                                                              Page 51 of 78 

9.4 Feature work 
Although all of the topics mentioned under discussion can be seen as feature work, we highlight four which we find most 
important. 
 
The most obvious feature works is the completion of the other domains, the other horizontal domains could be 
compared in order to formulate a stronger conclusion. 
 
One option for further work could be the longer study of readability we mentioned in the discussion section. A group of 
people could judge the understandability of a selection of the frameworks code and determine the understandability more 
accurately.  
 
Another option is examining the impact of change more accurately. We identified the dependencies as the main factor in 
the impact of a change. We feel this is the right approach, although other factors like the architecture, contract 
documentation etc could be examined. 
 
We mentioned the concern about if a feature is customable in the previous section, a way to improve on the current 
method would be to take this step further. Not just answer the question if a feature is customisable but also in what 
degree. A possibly option for this would be to measure all which sub-features can be customised and which sub-features 
cannot be customised. Based on those factors a more precise measurement can be given per feature instead of a ‘yes’ and 
‘no’ answer. 
 
 
 
 
 
 



Anton Gerdessen, Master thesis                                                                                                              Page 52 of 78 

10 Research evaluation 
This section will reflect on the performed research. In addition, we will provide a recommendation to Everest in the 
context of a framework choice. 

10.1 Method evaluation 
This section will reflect upon the performed research. We will discuss if we answered the research question and what 
problems we did not solve. 

10.1.1 Research questions 
Recapping the research questions 
 
RQ-1 ‘Can application X conform framework A be converted to framework B” 
 
Sub questions that arise from the main question are: 

• RQ-2 “Does the application type for both frameworks overlap?” 
• RQ-3 “How to determine which criteria to use for comparing the frameworks” 

o RQ-4 “In which advantages and disadvantages will this conversion result” 
 RQ-5 “Is the change of framework desirable” 

 
We answered RQ-2 with yes. We answered RQ-3 by creating a theoretical framework model in chapter 5. 
We can only answer RQ-4 and RQ-5 partially. Due to the fact that we only compared two out of ten horizontal 
domains. In order to provide a more sound comparison more horizontal domains need to be compared.  
This also results in a partial answer for RQ-1. 

10.1.1.1 Literate questions 
We answered all three literature questions. LQ-1 in chapter 2, LQ-2 and LQ-3 in chapter 5. 

10.1.2 Evaluation 
Overall, the research advanced quite rapidly. None the less, we are displeased with the fact that we could only compare 
two horizontal domains. Thus offering a partial conclusion instead of complete. This is our greatest disappointment. 
 
In more detail, the creation of a theoretical framework model was a good idea, although the overlap between the 
individual domains makes it very hard to compare them independently. This expressed itself in the two horizontal 
domains we compared; the easy of change could not be split into customisability and modifiability. 
 
The separation of frameworks in horizontal domains was a good idea for reducing the complexity, although this also 
increased the total work considerably. 

10.2 Application of the method 
In this section we will reflect upon the method demands. We stated that the method must be: 

• Repeatable 
• Time demand 
• Validation 

 
Due to the input for most phases being source code, documentation or metrics based upon them, the results are 
repeatable. On the other hand however, we have the lab tests, which depend upon the executor. A different person could 
use a different solution to achieve the same results for the lab tests which could influence the results. Overall we can call 
this method repeatable. 
On the subject of time demand however, we initially expected to be able to iterate through more domains. This was not 
the case. We spend nearly five weeks on two domains, which indicates that in an industrial setting, this method is not 
near complete. For a sound conclusion more than two domains will need to be examined and the time required is simply 
to much. 
The validation aspect is reasonable covered, we listed the assumptions made for each domain in their respective sections 
for each step. We also listed if and how we validated these assumptions. 



Anton Gerdessen, Master thesis                                                                                                              Page 53 of 78 

10.3 Recommendation 
We can offer a recommendation based upon our research for Everest. Based upon these two horizontal domains we can 
conclude that a change to Spring is better in the context of these two domains. This however is from a pure technical 
content. We cannot answer the question if it is feasible in terms of manpower to rewrite the code to Spring. 
 
If the change to Spring is made, we can make the recommendation to set strict guidelines for the usage of features. 
Spring offers many features, each extra feature providing a potential risk is maintenance. While Blueprints sets a very 
narrow possibility field, thus limiting possibilities, but also limiting maintainability problems because there are less 
components interacting with each other.  
If the change of framework were made, it would be beneficial to set a strict list of features which can be used and which 
cannot be used. What the content of this set would be is a very different question that is outside the scope of this 
research. 
Although after the thesis and interviews with Everest employees, the feeling remains that blueprints restrictive view is the 
best option, which suggests this method is no complete yet.  
 
 



Anton Gerdessen, Master thesis                                                                                                              Page 54 of 78 

References 
This section will list all resources used in the thesis. Three sections are defined: 

• Papers, articles published on scientific platforms or thesis papers 
• Books, Published books 
• Online articles, articles from the Internet 

All references use the same pattern for naming, the first three letters of the primary authors last name, and followed by 
the last two digits the reference was published. If this results in the same name being used twice, a letter suffix will be 
used. All references are alphabetically sorted.  
For Wikipedia references a ‘W’ is used and the first two letters of the articles name followed by ‘07’. Wikipedia references 
are normally not considered scientific; however, they do represent the opinion of a large group of people.   

Papers: 
[Alp03] SR Alpert - Abstraction in Concept Map and Coupled Outline Knowledge Representations. - Journal of 
Interactive Learning Research - 2003 - questia.com 
 
[Bac90] R Bache, M Mullerburg - Measures of testability as a basis for quality assurance - Software Engineering Journal, 
1990 - ieeexplore.ieee.org 
 
[Bat05] D Batory - Feature Models, Grammars, and Propositional Formulas - 2005 - hwswworld.com 
 
[Bak06] Paul Bakker – Framework productivity measurement method – master thesis - 2006 – University of Amsterdam 
 
[Bar75] Barlow Proschan - Statistical theory of reliability and life testing: Probability models – 1975 - Research supported 
by the Boeing Co., U.S. Air Force, and U. S. Navy; New York, Holt 
 
[Bjr01] D Bjrner - Domain Engineering, A Prerequisite for Requirements Engineering Principles and Techniques - 2001 - 
imm.dtu.dk  
 
[Bos97] J Bosch, P Molin, M Mattsson, P Bengtsson – Object-Oriented Frameworks-Problems & Experiences - 1997 - 
citeseer.ist.psu.edu 
 
[Cah98] V.J. Cahill, P.A. Nixon, F.A. Rabhi - Object Models for Distributed or Persistent Programming - 1998 - Trinity 
College, University of Dubli 
 
[Cas05] David Plans Casal – Advanced software development for web applications – 2005 – Luminas internet 
applications 
 
[Cle97] PC Clements - Coming attractions in software architecture  - Parallel and Distributed Real-Time Systems - 1997 
ieeexplore.ieee.org 
 
[Cle02] P Clements, L Northrop  – Software product lines: practices and patterns - 2002 -  Addison-Wesley 
 
[Det01] R Deters - Scalability and information agents - ACM SIGAPP Applied Computing Review - 2001 - 
portal.acm.org 
 
[Deu02] A van Deursen, P Klint –Domain - Specific Language Design Requires Feature Descriptions - 2002 - cwi.nl 
 
[Dij76] E. W. Dijkstra – A discipline of programming – Prentice hall Englewood cliffs – 1976 - New York  
 
[Dod98] Joint Chiefs of Staff. - Department of Defence Dictionary of Military and Associated Terms, as amended 
through December 7, 1998 – 1998 - (Joint Publication 1-02). 
 
[Dol03] E Dolstra, G Florijn, M de Jonge, E Visser - Capturing timeline variability with transparent configuration 
environments - International Workshop on Software Variability Management, 2003 - archive.cs.uu.nl 
 
[Du01] X Du, J Jiao, MM Tseng - Architecture of Product Family: Fundamentals and Methodology - Concurrent 
Engineering - 2001 - cer.sagepub.com 
 



Anton Gerdessen, Master thesis                                                                                                              Page 55 of 78 

[Eis01] T Eisenbarth, R Koschke, D Simon - Feature-Driven Program Understanding Using Concept Analysis of 
Execution Traces – 2001 - doi.ieeecs.org 
 
[Fay97] ME Fayad - Object-oriented application frameworks - DC Schmidt - Communications of the ACM - 1997 - 
csa.com 
 
[Fay00a] ME Fayad - Introduction to the Computing Surveys’ Electronic Symposium on Object - Oriented  application 
frameworks - ACM Computing Surveys (CSUR) - 2000 - portal.acm.org  
 
[Fay00b] ME Fayad, DS Hamu, D Brugali - Enterprise frameworks characteristics, criteria, and challenges - 
Communications of the ACM - 2000 - portal.acm.org 
 
[Fay02] H. Mili, M. Fayad, D. Brugali, D. Hamu, D. Dori - Enterprise Frameworks: issues and research 
Directions - Software Practice & Experience Volume 32 - Issue 8 (July 2002) Pages 801-831  
 
[Fro00] G Froehlich, HJ Hoover, PG Sorenson - Choosing an object-oriented domain framework - ACM Computing 
Surveys (CSUR) - 2000 - portal.acm.org 
 
[Fro97] G Froehlich, HJ Hoover, L Liu, P Sorenson - Hooking into object-oriented application frameworks - 
Proceedings of the 19th international conference on Software engineering - 1997 - portal.acm.org 
 
[Gur01] J van Gurp, J Bosch, M Svahnberg - On the Notion of Variability in Software Product Lines - Proceedings of 
the Working IEEE/IFIP Conference on Software engineering – 2001 - doi.ieeecs.org 
 
[Guy91] Neil K. Guy – Community networks: building real communities in virtual space - Thesis - Simon Frazer 
University 
 
[Guz06] T Guzewich, M Kent, A Pfeifer, K Shank - Software Architecture Case Study Ruby on Rails - 2006 - 
kyleshank.com 
 
[Iso00] ISO/IEC 2000. Information technology-software product quality - Part 1: Quality model. ISO/IEC FDIS 9126-
1:2000(E). 
 
[Jia03] J Jiao, MM Tseng - Customisability Index Based on Information Content - Annals of the CIRP - 2003 - 
v4web.hmg.inpg. 
 
[Joh97a] RE Johnson – Frameworks = (components+ patterns) - Communications of the ACM - 1997 - portal.acm.org 
 
[Joh97b] RE Johnson - Components, frameworks, patterns - ACM SIGSOFT Software Engineering Notes - 1997 - 
portal.acm.org 
 
[Joh98] RE Johnson, B Foote - Designing Reusable Classes - Journal of Object-Oriented Programming, 1988 - 
laputan.org 
 
[Joh05] R Johnson - J2EE development frameworks - Computer - 2005 - ieeexplore.ieee.org 
 
[Kno90] CA Knoblock - Learning abstraction hierarchies for problem solving - Proceedings of the Eighth National 
Conference on Artificial intelligence - 1990 - isi.edu 
 
[Kru92] CW Krueger - Software reuse - ACM Computing Surveys (CSUR) - 1992 - portal.acm.org 
 
[Lin02] F van der Linden - Software product families in Europe: the Esaps & Cafe projects  -  IEEE - 2002 - 
ieeexplore.ieee.org 
 
[Loh84] JB Lohse, SH Zweben - Experimental evaluation of software design principles: an investigation into the effect of 
module coupling on system modifiability - Journal of Systems and Software - 1984 - portal.acm.org 
 
[Mar00] Marcus Eduardo markiewicz, Carlos J.P. Lucena – Object oriented framework development – 2000 - 
portal.acm.org 
 



Anton Gerdessen, Master thesis                                                                                                              Page 56 of 78 

[Mer05] M Mernik, AM Sloane - When and how to develop domain-specific languages - ACM Computing Surveys 
(CSUR) - 2005 - portal.acm.org 
 
[Mcc76] TJ McCabe – A complexity measure - Proceedings of the 2nd international conference on Software engineering 
- 1976 - portal.acm.org 
 
[Oss00] H Ossher, P Tarr - Multi-Dimensional Separation of Concerns and The Hyperspace Approach 
- 2000 - research.ibm.com 
 
[Pin93] Pine BJ - Mass Customization: The New Frontier in Business Competition – 1993 - Hardvard business school 
press  
 
[Pri06] Tim Prijn – Framework software quality analysis - Master thesis - 2006 - University of Amsterdam. 
 
[Ras01] A Rashid - A Hybrid Approach to Separation of Concerns: The Story of SADES - 2001 - comp.lancs.ac.uk 
 
[Rei02] R Reißing – Towards a Model for Object-Oriented Design Measurement - university of Stuttgart - 2002 - worte-
projekt.d 
 
[Rup96] A Rüping - Framework Patterns - Proceedings of the European Conference on Pattern Languages - 1996  - 
cs.wustl.edu 
 
[Sai01] L Saitta, JD Zucker – A model of abstraction in visual perception - Applied Artificial Intelligence - 2001 - 
ingentaconnect.com 
 
[Sim95] MA Simos - Organization domain modelling (ODM): formalizing the core domain modelling life cycle - 
Proceedings of the 1995 Symposium on Software reusability - 1995 - portal.acm.org 
 
[Soi99] T Soininen, I Niemelä - Developing a Declarative Rule Language for Applications in Product Configuration 
 - Proceedings of the First International Workshop on Practical aspects of declarative languages - 1999 - portal.acm.org 
 
[Smi03] CU Smith, LG Williams - Software performance engineering - UML for real: design of embedded real-time - 
2003 - portal.acm.org 
 
[Sun05] XH Sun, Y Chen, M Wu - Scalability of Heterogeneous Computing – 2005 -doi.ieeecomputersociety.org 
 
[Voa95] JM Voas, KW Miller - Software testability: the new verification - Software, IEEE, 1995 - ieeexplore.ieee.org 
 
[Wes04] Time Westkamper – Architectural models of J2EE web tier frameworks - Master thesis - 2004 – University of 
Tampere 
 
[Wey88] EJ Weyuker - Evaluating software complexity measures  - IEEE Transactions on Software Engineering, 1988 - 
doi.ieeecomputersociety.org 
 
[Zar04] Apostolos Zarras – A comparison framework for middleware infrastructure – University of loannina – 2004 – 
http://www.jot.fm 

Books: 
[Bas03] L Bass, P Clements, R Kazman - Software Architecture in Practice, second edition - 2003 - Addison Wesley  
 
[Cza00] K Czarnecki, UW Eisenecker - Generative programming: methods, tools, and applications - 2000 - ACM 
Press/Addison-Wesley Publishing Co. New York, NY, USA 
 
[Fay99] Mohamed E. Fayad, Douglas C. Schmidt, Ralph E. Johnson - Building Application Frameworks: Object-
Oriented Foundations of Framework Design – 1999- Wiley computer publishing 
 
[Jac97] Jacobson, Griss, Jonsson - Software Reuse: Architecture Process and Organization for Business Success - 1997 - 
Addison Wesley Longman 
 



Anton Gerdessen, Master thesis                                                                                                              Page 57 of 78 

[Kas02] N Kassem, N Kassem, E Team - Designing Enterprise Applications: Java 2 Platform 
 - 2002 - Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA 
 
[Mcc77] JA McCall, PK Richards, GF Walters - Factors in Software Quality - 1977 – NTIS 
 
[Mcc04] S McConnell - Code complete second edition - 2004 - bookpool.com 
 
[Leo00] A Leon - A Guide to Software Configuration Management – 2000 - Artech House Computing Library - 
ercb.com 

Online articles: 
[Apa07] http://ant.apache.org/ 
 
[Aph07] http://httpd.apache.org/ 
 
[BlC07] http://www.sun.com/blueprints/0905/819-4148.pdf 
 
[Blr07] http://java.sun.com/blueprints/guidelines/designing_enterprise_applications_2e/titlepage.html 
 
[Blu07] http://java.sun.com/blueprints/enterprise/index.html 
 
[Cob07] http://cobertura.sourceforge.net/ 
 
[Cor07] http://www.omg.org/gettingstarted/corbafaq.htm 
 
[Fbl07] http://java.sun.com/javaee/overview/faq/j2ee.jsp 
 
[JCo07] http://www.theserverside.com/news/thread.tss?thread_id=15228 
 
[Jde07] http://www.clarkware.com/software/JDepend.html 
 
[Jnc07] http://www.kclee.de/clemens/java/javancss/ 
 
[J2E07] http://java.sun.com/j2ee/j2ee-1_3-fr-spec.pdf  
 
[Pcm07] http://www.pcmag.com/encyclopedia_term/0,2542,t=customisability&i=40596,00.asp 
 
[Spc07] http://developers.sun.com/learning/javaoneonline/2005/coreenterprise/TS-7695.pdf 
 
[Spr07] http://www.springframework.org/ 
 
[Tss07] http://www.theserverside.com/tt/articles/article.tss?l=SpringFramework 
 
[Rsp07] http://static.springframework.org/spring/docs/2.0.x/reference/index.html 
 
[Wmv07] http://en.wikipedia.org/wiki/Model-view-controller 
 
[Xsl07] http://www.w3.org/TR/xslt 
 
 
 



Anton Gerdessen, Master thesis                                                                                                              Page 58 of 78 

Addendum A: Framework technical domain recognition 
This addendum describes how the definitions for the framework technical domains were formed. 
 
A-1 Scalability 
A definition found in the book [Bas03] for scalability is: 
“The system should support variations in load without human intervention.”  
Another definition found [Det01] is: 
“Scalability is the ability of a computer application or product to continue to function well as it (or its context) is changed in size or volume. 
Typically, the rescaling is to a larger size or volume.” 
Distribution can be defined as: 
“A digital information system dispersed over multiple computers and not centralized at a single location.” [Guy91] 
From this, we can derive that distribution is an implementation of scalability, by distributing the workload over several 
machines, the workload is divided over multiple machines and more data can be processed than by using a single 
machine. Transaction management is vital to using distributed computing and can be seen as a basis requirement for 
distributed computing. Scalability is also mentioned as one of the characteristics for enterprise applications in [Fay00b]. 
For these reasons, scalability is the technical domain. 
 
A-2 Persistency 
In [Cah98] the following definition is used for persistency: 
“Persistency refers to the characteristic of data that outlives the execution of the program that created it.” 
This description captures the most important characteristic, but another characteristic to identify persistency as a 
framework domain is the layer it creates between the data storage and the application logic itself. Persistency is related to 
performance, the type of persistence can have a great impact on the performance. However, persistency covers far more 
than just performance. In addition, the type of mapping used to change from the internal application structure to data 
storage is of great importance for persistence. For these reasons, persistency is the technical domain. 
 
A-3 Security 
The definition given for security in [Bas03] is the following: 
“Security is the measure of the system’s ability to resist unauthorized usage while still providing its service to legitimate users”. 
This definition directly lists some of the implementations for security, authentication due to providing service to 
legitimate users. The same applies to authorization; deny non-legit users total access and grant legit users access. 
Also with increasingly larger application which support different types of users and the grow in Internet applications, 
security has become an increasing important topic. Another element that can help the security domain is logging. By 
logging all interactions, a security breach can be detected earlier or can be traced back to the problem later on. 
For these reasons, security is the technical domain.  
 
A-4 Availability 
Availability is often expressed a percentage. This percentage is the correlation between the uptime and the downtime of a 
particular system. A definition in [Bar75] for availability is: 
“Availability is the probability that the system is operating at a specified time t.”  
A term that is a synonym of availability is reliability. Two factors that influence the availability are error/exception 
handling and fault tolerance. If the system is designed with error/exception handling, it will be able to recover from 
minor errors automatically and therefore have a higher availability. Fault tolerance refers to, for example, the number of 
input faults the system is able to recover from. Both factors are implementations of availability, this is the reason 
availability itself is the technical domain. 



Anton Gerdessen, Master thesis                                                                                                              Page 59 of 78 

 
A-5 Customisability 
A definition for customisability is: 
“Customisability is the characterized by the easy of a change rather than the extent of a change.” [Jia03] 
Customisability is defined in [Pcm07] as the following: 
“The ability for software to be changed by the user or programmer.” 
However we feel that the last part is not right ‘or programmer’ should be removed, since modifying by a programmer is 
part of the modifiability. De definition we use for customisability is: 
“The ability and ease for software to be changed by the user.” 
In the context of frameworks, the user is the developer of the application with the framework. Not to be confused with 
the end user of the application. The application that was created by the developer with the framework. In the context of 
frameworks, the user is the developers and the frameworks the software. The term tailorability is not widely used but is 
considered a synonym of customisability. On possible implementation of customisability is configuration. Application 
variables can be altered via configuration. This however is only on side of customisability; the options for customization 
must also be present in the code. For the reasons mentioned customisability the technical domain. 
 
A-6 Interoperability 
Interoperability is defined in [Dod98] as: 
“The ability of systems, units, or forces to provide services to and accept services from other systems, units or forces and to use the services so 
exchanged to enable them to operate effectively together.” 
On of the techniques to accomplish interoperability is openness, of which transparency is a synonym. They both describe 
programming to interfaces where these interfaces are public knowledge. Another concept to achieve interoperability is 
using common object request broker architecture [Cor07]. This list of concepts and techniques in order to achieve 
interoperability supports that interoperability is the technical domain. 
 
A-7 Performance 
Performance is a term widely used in the field of software engineering, yet no standardized definition is available. Two 
definitions found in the literature are: 
“Performance is largely a function of the frequency and nature of inter-component communication, in addition to the performance characteristics 
of the components themselves, and hence can be predicted by studying the architecture of a system.” [Cle97]  
“Performance is the degree to which a software system or component meets its objectives for timeliness. Thus, performance is any characteristic of 
a software product that you could, in principle, measure by sitting at the computer with a stopwatch in your hand.” [Smi03] 
None of these definitions mentions hardware related issues. This is acceptable in the context of this research, since 
hardware upgrades is covered by scalability. The two terms mentioned in the same row connection pooling and session 
handling are two implementation which have a large impact on performance, but these are not the only ones, caching for 
example is another issue. For these reasons, performance is the technical domain. 
 
A-8 Separation of concerns 
One of the most important principles of software engineering is separation of concerns. This principle was already 
acknowledged in 1976 by [Dij76]. The number of concrete definitions for separation of concerns is very low, despite the 
fact that the principle is very old. In [Oss00] separation of concerns is defined as: 
“Separation of concerns refers to the ability to identify, encapsulate, and manipulate only those parts of software that are relevant to a particular 
concept.” 
Another definition in [Ras01] is: 
“The separation of concerns principle proposes encapsulating cross-cutting features into separate entities in order to localize changes to these 
cross-cutting features and deal with one important issue at a time.” [Ras01] 
Where crosscutting features are features like logging and security. Features which ‘cross’ more then a single concern or 
component. From these definitions, we can infer that reducing complexity, increase modularity and reducing 
dependencies are all means by which separation of concerns can be achieved. For this reasons, separation of concerns is 
the technical domain. 
 



Anton Gerdessen, Master thesis                                                                                                              Page 60 of 78 

A-9 Modifiability 
The definitions for modifiability, sometimes called maintainability, differ greatly. A definition found in [Guz06] is: 
“Existing components in the system should be able to easily facilitate the incorporation of changes.” 
Another definition found in the ISO standard [Iso00] is: 
“Maintainability is the capability of the software product to be modified. Modifications may include corrections, improvements or adaptations of 
the software to change the environment, and in requirements and function specifications.” 
Flexibility, modifiability and maintainability are considered synonyms. However, in [Mcc77] there is an exception to this 
rule: 
“Maintainability is the effort required to locate and fix and error in an operational program.” 
“Flexibility is the effort required to modify an operational program.” 
For this thesis we will consider them synonyms, this is the reason flexibility has been removed. Extendibility is a part of 
modifiability that can be derived from the second definition, “… Modifications may include improvements  ...” 
Portability is a platform modification and can be derived from the second definition, “…adaptations of the software to change 
the environment …” 
Internationalization can be seen as modifying the program to support more languages and is therefore covered by 
modifiability. For the reasons outlined here, modifiability is the technical domain. 
 
A-10 Testability 
Testability is often defined as: 
“The likelihood, possibly measured statistically, that the software will expose a failure under testing, if it is faulty.” [Voa95] 
This is however only one side of the medallion, the other side is less used, but important none the less: 
“The degree to which it is easy for software to fulfil a given test coverage criterion.” [Bac90] 
Software testing is an important factor in quality insurance. Unit testing is only one of the possible tests that can be used 
to test a software product, others are integration tests, communications tests etc. For this reason, unit tests are a form of 
testing and testability itself is the technical domain. 



     Anton Gerdessen, Master thesis                                                                                                                                                                                                             Page 61 of 78  

 

Addendum B: Spring feature diagram 

AOP support

Spring MVC

MVC controller

Enterprise
utilities

Spring
Framework(1)

Transaction
managment

DAO

ORM

Hibernate JDOToplink

JDBC
Abstraction

Velocity

JTA

Proxy/Spring
AOP

JDBC Hibernate

remoting Bean factory

Spring
container

Interceptor
AOP

Themes

Inversion of
control

JMX QuartzJMS JavaMail

JPA

JSP JSF

Jakarta StrutsTapestry

Freemarker Tiles

Application
context

Internationaliza
tion AspectJ

JDK Timer

Spring Portlet
MVC

View
abstraction Scheduling

iBatis

Content
generator

Jasper Excel

Databinding Validation

Configuration

Deployment
descriptors Resource files

Spring
Framework(2)

JNDI

JExcel PIO

Itext

JDORMIBurlapJAX RPC Hessian HTTP Invoker JMS

Dynamic language
support

Baenshell Groovy JRuby

Autoproxy

Container
managed

Lifecycle
management Toplink

XSLT

EJB
Abstraction

Spring
Framework(3)

Key:

= Optional feature

= Manditory feature

= Alternative

Java class Text file

JSF

JCA

 



     Anton Gerdessen, Master thesis                                                                                                                                                                                                             Page 62 of 78  

 

 

Addendum C: Blueprints feature diagram 
Sun

Blueprints(1)

Configuration

Deployment
descriptors

MVC Controller

View
abstraction

XML screensJSP

Enterprise
utilities

Mailer

DAO

ORM

EJB

Servlets

JNDIJMS

EJB Container

Web container

Transaction
managment

JTA

Security

Jaas

JAF

Signon servlet

Sun
Blueprints(2)

Application
context

Remoting

RMI Java IDL

State
managment

URl rewriting Cookie

Template
engines

JSP

Persistance
type

Container
managed Bean managed

Container
managed Bean managed

Declarative

Life cycle
management

Key:

= Optional feature

= Manditory feature

= Alternative

= J2EE feature

Business
controller

Screen
controllerFront controller

JaxP Encoding filter

EJB actions

Service locator

Single Point of
Entry

DAO factory



Anton Gerdessen, Master thesis                                                                                                                                                                            Page 63 of 78 

Addendum D: Spring customisability metrics 
 
  JavaNCSS   Jdepend       

P# Class Method NCSS Javadoc   Abstractness Concrete Abstract Ce   Package Feature 

1 23 43 124 57  0,74 7 20 4   org.springframework.aop AOP 
2 22 177 1330 99  0,22 42 12 18   org.springframework.aop.aspectj AspectJ 
3 15 88 740 70  0,16 31 6 15   org.springframework.aop.aspectj.annotation AspectJ 
4 2 10 125 6  0,00 13 0 9   org.springframework.aop.aspectj.autoproxy AspectJ 
7 16 70 640 39  0,12 15 2 17   org.springframework.aop.config AOP 
8 23 185 1428 165  0,21 44 12 14   org.springframework.aop.framework Proxy/Spring AOP 
9 12 30 197 26  0,25 9 3 7   org.springframework.aop.framework.adapter Proxy/Spring AOP 

10 7 49 316 45  0,27 11 4 15   org.springframework.aop.framework.autoproxy Autoproxy 
11 3 9 77 7  0,33 2 1 6   org.springframework.aop.framework.autoproxy.target Autoproxy 
12 11 54 367 57  0,18 14 3 8   org.springframework.aop.interceptor Interceptor 
13 3 11 70 8  0,33 2 1 6   org.springframework.aop.scope Proxy/Spring AOP 
14 30 189 997 144  0,40 24 16 7   org.springframework.aop.support AOP 
15 3 10 58 9  0,00 3 0 3   org.springframework.aop.support.annotation AOP 
16 14 100 375 78  0,43 8 6 9   org.springframework.aop.target Proxy/Spring AOP 
17 3 16 64 13  0,67 1 2 3   org.springframework.aop.target.dynamic Proxy/Spring AOP 
18 33 239 1716 209  0,34 31 16 6   org.springframework.beans Bean factory 
19 1 1 19 2  1,00 0 1 2   org.springframework.beans.annotation Bean factory 
20 25 84 320 109  0,39 20 13 4   org.springframework.beans.factory Lifecycle management / IOC 
21 4 13 132 16  0,33 4 2 6   org.springframework.beans.factory.access Lifecycle management / IOC 
22 3 11 90 9  0,50 3 3 6   org.springframework.beans.factory.annotation Lifecycle management / IOC 
23 2 17 165 1  0,67 1 2 4   org.springframework.beans.factory.aspectj Lifecycle management / IOC 
24 38 278 1465 241  0,36 29 16 7   org.springframework.beans.factory.config Lifecycle management / IOC 
25 1 7 29 8  0,33 2 1 3   org.springframework.beans.factory.generic Lifecycle management / IOC 
26 22 100 344 85  0,29 17 7 6   org.springframework.beans.factory.parsing Configuration 
27 33 449 3206 329  0,27 32 12 8   org.springframework.beans.factory.support Lifecycle management / IOC 
28 4 13 76 16  0,50 2 2 3   org.springframework.beans.factory.wiring Configuration 
29 27 167 1591 148  0,30 39 17 12   org.springframework.beans.factory.xml Configuration 
30 20 82 561 71  0,00 20 0 3   org.springframework.beans.propertyeditors Bean factory 
31 8 69 326 71  0,20 8 2 6   org.springframework.beans.support Bean factory 
32 2 27 140 19  0,00 2 0 6   org.springframework.cache.ehcache Caching(Noreference to this found anywhere)
33 15 35 88 50  0,72 5 13 5   org.springframework.context Application context 
34 4 15 95 17  0,00 4 0 8   org.springframework.context.access Application context 
35 7 21 98 19  0,25 6 2 6   org.springframework.context.event Application context 
36 3 10 44 12  0,67 1 2 1   org.springframework.context.i18n Internationalisation 
37 18 219 1291 176  0,19 22 5 13   org.springframework.context.support Application context 
38 25 147 1204 169  0,49 19 18 5   org.springframework.core Spring container 
39 2 4 42 5  0,67 1 2 1   org.springframework.core.annotation Spring container 
40 10 38 182 30  0,46 7 6 2   org.springframework.core.enums Spring container 
41 13 89 340 97  0,31 9 4 1   org.springframework.core.io Spring container 
42 8 50 411 56  0,50 4 4 3   org.springframework.core.io.support Spring container 
43 6 43 178 28  0,50 3 3 2   org.springframework.core.style Spring container 
44 6 15 73 22  0,18 9 2 2   org.springframework.core.task Spring container 
45 19 39 127 58  0,11 17 2 1   org.springframework.dao DAO 
46 2 10 68 5  0,00 2 0 12   org.springframework.dao.annotation DAO 
47 5 23 142 23  0,60 2 3 5   org.springframework.dao.support DAO 
48 7 43 260 38  0,29 5 2 8   org.springframework.ejb.access EJB abstraction 
49 5 6 46 5  0,20 4 1 8   org.springframework.ejb.config EJB abstraction 
50 7 20 96 27  0,88 1 7 5   org.springframework.ejb.support EJB abstraction 
51 1 2 8 3  0,00 1 0 0   org.springframework.instrument AOP 



Anton Gerdessen, Master thesis                                                                                                                                                                            Page 64 of 78 

52 9 46 248 39  0,10 9 1 3   org.springframework.instrument.classloading AOP 
53 2 8 39 4  0,00 2 0 3   org.springframework.instrument.classloading.glassfish AOP 
54 2 9 46 5  0,00 2 0 3   org.springframework.instrument.classloading.oc4j AOP 
55 1 8 61 4  0,00 1 0 2   org.springframework.instrument.classloading.tomcat AOP 
56 5 5 30 10  0,00 5 0 1   org.springframework.jca.cci JCA 
57 8 57 380 40  0,07 13 1 5   org.springframework.jca.cci.connection JCA 
58 6 36 188 34  0,62 3 5 4   org.springframework.jca.cci.core JCA 
59 2 19 60 12  0,50 1 1 5   org.springframework.jca.cci.core.support JCA 
60 4 22 92 25  0,50 3 3 4   org.springframework.jca.cci.object JCA 
61 3 21 90 14  0,00 3 0 3   org.springframework.jca.support JCA 
62 3 29 193 18  0,00 4 0 3   org.springframework.jca.work JCA 
63 8 24 94 31  0,00 8 0 1   org.springframework.jdbc JDBC abstraction 
64 35 248 1364 222  0,39 31 20 10   org.springframework.jdbc.core JDBC abstraction 
65 9 92 390 73  0,44 5 4 8   org.springframework.jdbc.core.namedparam JDBC abstraction 
66 4 23 60 16  0,50 2 2 3   org.springframework.jdbc.core.simple JDBC abstraction 
67 7 38 200 42  0,62 3 5 9   org.springframework.jdbc.core.support JDBC abstraction 
68 17 142 948 133  0,26 17 6 6   org.springframework.jdbc.datasource JDBC abstraction 
69 8 29 156 28  0,22 7 2 9   org.springframework.jdbc.datasource.lookup JDBC abstraction 
70 11 137 571 151  0,57 6 8 7   org.springframework.jdbc.object JDBC abstraction 
71 13 84 654 70  0,33 10 5 10   org.springframework.jdbc.support JDBC abstraction 
72 8 41 217 37  0,38 5 3 4   org.springframework.jdbc.support.incrementer JDBC abstraction 
73 8 45 335 35  0,24 16 5 5   org.springframework.jdbc.support.lob JDBC abstraction 
74 9 57 277 52  0,22 7 2 4   org.springframework.jdbc.support.nativejdbc JDBC abstraction 
75 4 135 372 123  0,50 2 2 1   org.springframework.jdbc.support.rowset JDBC abstraction 
76 14 20 78 19  0,07 14 1 1   org.springframework.jms JMS 
77 13 123 855 99  0,16 21 4 5   org.springframework.jms.connection JMS 
78 7 102 417 85  0,26 14 5 7   org.springframework.jms.core JMS 
79 1 7 27 7  1,00 0 1 2   org.springframework.jms.core.support JMS 
80 8 135 927 138  0,21 15 4 12   org.springframework.jms.listener JMS 
81 3 33 195 36  0,40 6 4 6   org.springframework.jms.listener.adapter JMS 
82 7 47 280 56  0,19 13 3 7   org.springframework.jms.listener.serversession JMS 
83 3 29 172 23  0,00 3 0 11   org.springframework.jms.remoting JMS 
84 2 21 145 22  1,00 0 2 4   org.springframework.jms.support JMS 
85 4 15 106 19  0,25 3 1 2   org.springframework.jms.support.converter JMS 
86 6 20 115 23  0,43 4 3 4   org.springframework.jms.support.destination JMS 
87 2 4 13 6  0,00 2 0 1   org.springframework.jmx JMX 
88 5 25 215 26  0,00 6 0 7   org.springframework.jmx.access JMX 
89 7 68 433 72  0,23 10 3 11   org.springframework.jmx.export JMX 
90 1 5 136 1  0,88 1 7 4   org.springframework.jmx.export.annotation JMX 
91 10 85 517 81  0,58 5 7 8   org.springframework.jmx.export.assembler JMX 
92 10 53 209 30  0,20 8 2 5   org.springframework.jmx.export.metadata JMX 
93 5 10 89 15  0,40 3 2 7   org.springframework.jmx.export.naming JMX 
94 4 7 44 11  0,50 2 2 2   org.springframework.jmx.export.notification JMX 
95 9 72 479 61  0,08 12 1 7   org.springframework.jmx.support JMX 
96 10 49 281 49  0,20 12 3 6   org.springframework.jndi JNDI 
97 8 58 229 27  0,38 5 3 2   org.springframework.mail JavaMial 
98 1 3 44 2  0,00 1 0 2   org.springframework.mail.cos JavaMial 
99 8 129 622 87  0,22 7 2 4   org.springframework.mail.javamail JavaMial 

100 1 6 11 7  1,00 0 1 0   org.springframework.metadata Databinding 
101 1 6 18 1  0,00 2 0 7   org.springframework.metadata.commons Databinding 
103 2 18 58 20  0,00 2 0 1   org.springframework.orm ORM 
104 18 278 1599 189  0,08 48 4 23   org.springframework.orm.hibernate Hibernate 
105 8 66 364 51  0,25 6 2 12   org.springframework.orm.hibernate.support Hibernate 
106 22 346 2026 250  0,07 63 5 30   org.springframework.orm.hibernate3 hHibernate 
107 1 6 28 5  0,00 1 0 3   org.springframework.orm.hibernate3.annotation Hibernate 
108 10 73 400 59  0,20 8 2 19   org.springframework.orm.hibernate3.support Hibernate 
109 4 68 269 47  0,13 13 2 14   org.springframework.orm.ibatis Ibatis 



Anton Gerdessen, Master thesis                                                                                                                                                                            Page 65 of 78 

110 5 30 148 25  0,33 4 2 6   org.springframework.orm.ibatis.support Ibatis 
111 17 176 976 139  0,09 48 5 12   org.springframework.orm.jdo JDO 
112 3 21 120 19  0,33 2 1 9   org.springframework.orm.jdo.support JDO 
113 25 168 1172 128  0,32 32 15 15   org.springframework.orm.jpa JPA 
115 7 69 431 36  0,29 5 2 10   org.springframework.orm.jpa.persistenceunit JPA 
116 5 40 377 30  0,12 7 1 14   org.springframework.orm.jpa.support JPA 
117 8 36 292 22  0,08 11 1 11   org.springframework.orm.jpa.vendor JPA 
118 21 196 950 150  0,16 41 8 22   org.springframework.orm.toplink Toplink 
119 4 26 182 24  0,25 3 1 7   org.springframework.orm.toplink.support Toplink 
120 4 6 21 10  0,00 4 0 1   org.springframework.remoting Remoting 
121 9 44 315 33  0,11 8 1 14   org.springframework.remoting.caucho Hessian / Burlap 
122 8 66 320 64  0,38 5 3 12   org.springframework.remoting.httpinvoker HHTP invoker 
123 6 79 399 76  0,33 4 2 13   org.springframework.remoting.jaxrpc JAX 
124 1 10 71 10  0,00 1 0 4   org.springframework.remoting.jaxrpc.support JAX 
125 12 100 729 94  0,18 14 3 11   org.springframework.remoting.rmi RMI 
126 14 54 274 60  0,57 6 8 6   org.springframework.remoting.support Remoting 
127 3 4 14 7  0,67 1 2 2   org.springframework.scheduling Scheduling 
128 5 57 233 55  0,00 5 0 5   org.springframework.scheduling.backportconcurrent Scheduling 
129 5 46 191 41  0,00 5 0 8   org.springframework.scheduling.commonj Common J 
130 5 57 233 55  0,00 5 0 4   org.springframework.scheduling.concurrent Scheduling 
131 15 113 739 90  0,15 17 3 20   org.springframework.scheduling.quartz Quartz 
132 1 5 25 1  0,00 1 0 3   org.springframework.scheduling.support Scheduling 
133 5 44 169 39  0,00 5 0 5   org.springframework.scheduling.timer JDK timer 
134 3 9 20 12  0,80 2 8 3   org.springframework.scripting Dynamic language support 
135 2 14 130 11  0,20 4 1 6   org.springframework.scripting.bsh Beanshell 
136 2 6 78 6  0,00 2 0 7   org.springframework.scripting.config Dynamic language support 
137 2 11 76 9  0,50 1 1 5   org.springframework.scripting.groovy Groovy 
138 2 13 151 11  0,62 3 5 10   org.springframework.scripting.jruby Jruby 
139 4 30 269 22  0,00 5 0 16   org.springframework.scripting.support Dynamic language support 
140 0 0 8 0  1,00 0 1 0   org.springframework.stereotype DAO 
141 17 42 133 58  0,25 15 5 2   org.springframework.transaction Transaction management 
142 3 12 90 7  0,25 3 1 2   org.springframework.transaction.annotation Transaction management 
143 6 30 153 4  0,50 1 1 4   org.springframework.transaction.aspectj Delcarative AOP 
144 4 9 137 5  0,00 5 0 11   org.springframework.transaction.config Transaction management 
145 19 113 794 95  0,17 25 5 12   org.springframework.transaction.interceptor Delcarative AOP 
146 10 92 692 64  0,00 10 0 6   org.springframework.transaction.jta JTA 
147 17 163 832 159  0,68 6 13 4   org.springframework.transaction.support Transaction management 
148 1 7 31 8  0,00 1 0 2   org.springframework.ui Content generator 
149 3 5 12 8  1,00 0 3 1   org.springframework.ui.context Content generator 
150 4 13 108 10  0,25 3 1 3   org.springframework.ui.context.support Content generator 
151 4 29 179 25  0,25 3 1 7   org.springframework.ui.freemarker Freemaker 
152 1 11 74 12  0,33 2 1 3   org.springframework.ui.jasperreports Jasper 
153 5 28 234 23  0,20 4 1 13   org.springframework.ui.velocity Velocity 
154 26 338 2446 324  0,57 18 24 3   org.springframework.util Utilities, not a feature 
155 5 37 166 25  0,00 5 0 1   org.springframework.util.comparator Utilities, not a feature 
156 4 21 129 18  0,25 3 1 3   org.springframework.util.xml Utilities, not a feature 
157 18 217 748 148  0,47 10 9 3   org.springframework.validation Validation 
158 3 5 23 8  0,33 2 1 0   org.springframework.web View abstraction 
159 10 122 530 99  0,28 13 5 5   org.springframework.web.bind View abstraction 
160 7 25 166 31  0,40 6 4 7   org.springframework.web.context View abstraction 
161 11 63 290 49  0,50 6 6 7   org.springframework.web.context.request View abstraction 
162 19 115 593 90  0,16 16 3 17   org.springframework.web.context.support View abstraction 
163 9 48 281 53  0,30 7 3 10   org.springframework.web.filter View abstraction 
164 6 31 173 34  0,25 6 2 4   org.springframework.web.jsf JSF 
165 5 19 44 23  0,60 2 3 1   org.springframework.web.multipart Multipart resolver 
166 3 34 230 26  0,25 3 1 9   org.springframework.web.multipart.commons Multipart resolver 
167 2 21 173 16  0,00 3 0 7   org.springframework.web.multipart.cos Multipart resolver 



Anton Gerdessen, Master thesis                                                                                                                                                                            Page 66 of 78 

168 5 21 142 15  0,20 4 1 5   org.springframework.web.multipart.support Multipart resolver 
169 10 102 741 113  0,25 21 7 20   org.springframework.web.portlet Spring portlet MVC 
170 5 43 256 47  0,15 11 2 5   org.springframework.web.portlet.bind Spring portlet MVC 
171 15 100 508 66  0,35 11 6 13   org.springframework.web.portlet.context Spring portlet MVC 
172 14 92 523 86  0,25 12 4 10   org.springframework.web.portlet.handler Spring portlet MVC 
173 4 22 107 15  0,50 2 2 7   org.springframework.web.portlet.multipart Spring portlet MVC 
174 11 178 851 172  0,46 7 6 9   org.springframework.web.portlet.mvc Spring portlet MVC 
175 3 59 227 22  0,33 2 1 2   org.springframework.web.portlet.util Spring portlet MVC 
176 17 130 893 145  0,32 25 12 28   org.springframework.web.servlet MVC controller 
177 11 74 435 66  0,25 9 3 12   org.springframework.web.servlet.handler MVC controller 
178 4 21 99 15  0,17 5 1 9   org.springframework.web.servlet.handler.metadata MVC controller 
179 6 17 118 14  0,17 5 1 6   org.springframework.web.servlet.i18n MVC controller 
180 17 176 769 180  0,42 11 8 10   org.springframework.web.servlet.mvc Spring MVC 
181 7 52 347 56  0,29 5 2 9   org.springframework.web.servlet.mvc.multiaction Spring MVC 
182 1 8 66 9  0,00 1 0 8   org.springframework.web.servlet.mvc.support Spring MVC 
183 2 8 32 9  0,50 1 1 2   org.springframework.web.servlet.mvc.throwaway Spring MVC 
184 6 92 480 96  0,50 3 3 13   org.springframework.web.servlet.support MVC controller 
185 10 56 367 51  0,20 8 2 6   org.springframework.web.servlet.tags MVC controller 
186 22 238 1175 231  0,22 21 6 8   org.springframework.web.servlet.tags.form MVC controller 
187 5 13 81 10  0,20 4 1 4   org.springframework.web.servlet.theme Themes 
188 14 133 691 127  0,27 11 4 13   org.springframework.web.servlet.view Content generator 
189 3 20 138 22  1,00 0 3 10   org.springframework.web.servlet.view.document Excel 
190 4 25 140 29  0,20 4 1 12   org.springframework.web.servlet.view.freemarker Freemaker 
191 9 65 436 61  0,22 7 2 13   org.springframework.web.servlet.view.jasperreports Jasper 
192 4 24 141 25  0,25 3 1 12   org.springframework.web.servlet.view.tiles Tiles 
193 7 53 306 56  0,10 9 1 19   org.springframework.web.servlet.view.velocity Velocity 
194 4 60 382 53  0,50 2 2 8   org.springframework.web.servlet.view.xslt XSLT 
195 13 98 581 103  0,31 11 5 15   org.springframework.web.struts Struts 
196 16 97 862 94  0,25 18 6 4   org.springframework.web.util MVC controller 

Total 1648 12026 70815 10528     1695 671         

Avg. 8,58 62,64 368,83 54,83   0,30 8,83 3,49 7,08       

             

Class averages            

Methods 7,49          

NCSS 43,59          

Javadoc 6,35          

Method averages            

NCSS 5,82          

Javadoc 0,85          

             
  



Anton Gerdessen, Master thesis                                                                                                                                                                            Page 67 of 78 

Addendum E: Blueprints customisability metrics 
 

  JavaNCSS   Jdepend       

P# Classes Methods NCSS Javadocs   Abstracness Concrete Abstract Ce   Package Feature 

1 1 3 25 0   0,00 1 0 0   com.sun.j2ee.blueprints.encodingfilter.web Encodingfilter 
2 4 30 192 5   0,00 4 0 3   com.sun.j2ee.blueprints.mailer.ejb Mailer 
3 1 2 5 3   0,00 1 0 0   com.sun.j2ee.blueprints.mailer.exceptions Mailer 
4 1 1 4 1   0,00 1 0 0   com.sun.j2ee.blueprints.mailer.util Mailer 
5 1 6 23 6   0,00 1 0 0   com.sun.j2ee.blueprints.servicelocator Servicelocator 
6 1 11 104 11   0,00 1 0 1   com.sun.j2ee.blueprints.servicelocator.ejb Servicelocator 
7 1 12 144 11   0,00 1 0 1   com.sun.j2ee.blueprints.servicelocator.web Servicelocator 
8 3 10 44 5   0,67 1 2 1   com.sun.j2ee.blueprints.signon.ejb Singon servlet 
9 3 21 51 2   1,00 0 3 0   com.sun.j2ee.blueprints.signon.user.ejb Singon servlet 

10 4 22 308 2   0,00 4 0 3   com.sun.j2ee.blueprints.signon.web Singon servlet 
11 3 17 37 0   1,00 0 3 0   com.sun.j2ee.blueprints.uidgen.counter.ejb Utility 
12 3 9 40 1   0,67 1 2 1   com.sun.j2ee.blueprints.uidgen.ejb Utility 
13 4 15 81 6   0,50 2 2 2   com.sun.j2ee.blueprints.waf.controller.ejb Business controller 
14 2 7 18 0   1,00 0 2 2   com.sun.j2ee.blueprints.waf.controller.ejb.action Business controller 
15 1 1 12 0   0,00 1 0 4   com.sun.j2ee.blueprints.waf.controller.ejb.action.actions Business controller 
16 9 52 517 21   0,22 7 2 11   com.sun.j2ee.blueprints.waf.controller.web Front controller 
17 3 9 26 3   0,67 1 2 1   com.sun.j2ee.blueprints.waf.controller.web.action Front controller 
18 1 1 26 1   0,00 1 0 4   com.sun.j2ee.blueprints.waf.controller.web.action.actions Front controller 
19 4 17 113 7   0,25 3 1 1   com.sun.j2ee.blueprints.waf.controller.web.flow Flow controller 
20 1 3 38 1   0,00 1 0 2   com.sun.j2ee.blueprints.waf.controller.web.flow.handlers Flow controller 
21 1 1 19 1   0,00 1 0 0   com.sun.j2ee.blueprints.waf.controller.web.util Flow controller 
22 5 11 29 9   0,60 2 3 0   com.sun.j2ee.blueprints.waf.event EJB actions 
23 1 3 12 1   0,00 1 0 1   com.sun.j2ee.blueprints.waf.event.impl EJB actions 
24 2 4 14 1   0,00 2 0 0   com.sun.j2ee.blueprints.waf.exceptions MVC controller 
25 2 9 114 4   0,00 2 0 1   com.sun.j2ee.blueprints.waf.util MVC controller 
26 12 52 470 12   0,00 13 0 1   com.sun.j2ee.blueprints.waf.view.taglibs.smart Template engine 
27 5 36 437 2   0,00 5 0 2   com.sun.j2ee.blueprints.waf.view.template Template engine 
28 1 4 39 2   0,00 1 0 1   com.sun.j2ee.blueprints.waf.view.template.tags Template engine 

Total 80 369 2942 118     59 22         
Avg. 2,86 13,18 105,07 4,21   0,24 2,11 0,79 1,54       

             

Class averages            

Methods 4,61          
NCSS 36,8          
Javadoc 1,48          

Method averages            

NCSS 7,98          
Javadoc 0,32          

             
 



Anton Gerdessen, Master thesis                                                                                                              Page 68 of 78 

Addendum F: Spring feature analysis 
 

F# Feature Comment Customziable? Framework 
adds value 

Weight Alternate variant 
enabled by 

Customization? 

Weight Optional enabled by 
customization? 

Weight 

1 Dynamic language support [S]               
2 Beanshell [O] No         Yes 1,0
3 Groovy [O] No         Yes 1,0
4 JRuby [O] No         Yes 1,0

5 Configuration [V] No     Yes 1,0     
6 Desployment descriptors   No             
7 Resource File [V] No     Yes 1,0     
8 Text file   No             
9 Java class   No             

10 MVC controller [V] No     Yes 1,0     
11 JSF   Yes No           
12 Spring MVC   No             
13 Themes [O] Yes Yes 1,0     Yes 1,0
14 Tapestry   No             
15 Struts   No             
16 Spring porlet MVC   No             

17 DAO [S]               
18 ORM [V] No     Yes 1,0     
19 JPA   No             
20 Toplink   Yes Yes 1,0         
21 Ibatis   Yes Yes 1,0         
22 Hibernate   Yes Yes 1,0         
23 JDO   Yes Yes 1,0         
24 JDBC Abstraction   No             

25 Application Context [S]               
26 Internationalization [O] No         Yes 1,0
27 Remoting [S] No             
28 JAX RPC [O] No         Yes 1,0
29 Burlap [O] Yes Yes 1,0     Yes 1,0
30 RMI [O] No         Yes 1,0
31 Hessian [O] No         Yes 1,0
32 HTTP Invoker [O] No         Yes 1,0
33 JMS [O] No         Yes 1,0
34 Databinding   No             
35 Validation [O] No         No   

36 Spring container [S]               
37 Bean factory [S]               
38 Lifecycle management   No             
39 Inversion of control   No             
40 EJB Abstraction [O] No         Yes 1,0
41 Transaction managment [V] No     Yes 1,0     
42 Interceptor AOP   Yes Yes 1,0         
43 JDBC   No             
44 Hibernate   No             
45 JTA   No             
46 Container managed   No             
47 JDO   No             
48 Toplink   No             

49 AOP support [V] No     Yes 1,0     
50 AspectJ   No             
51 Proxy/Spring AOP [S]               
52 Autoproxy   No             

53 Enterprise utilities [S]               
54 JCA [O] No         Yes 1,0
55 JMS [O] No         Yes 1,0
56 JavaMail [O] No         Yes 1,0
57 JMX [O] Yes Yes 1,0     Yes 1,0
58 JNDI   No             

59 View abstraction [V] No     Yes 1,0     
60 JSP   No             
61 JSF   Yes No           
62 Content generator [S]               
63 Freemarker [O] Yes Yes 1,0     Yes 1,0
64 Velocity [O] Yes Yes 1,0     Yes 1,0
65 Jasper [O] No         Yes 1,0



Anton Gerdessen, Master thesis                                                                                                              Page 69 of 78 

66 Excel   No             
67 Jexcel [O] Yes No       Yes 1,0
68 PIO   No             
69 iText   Yes No           
70 XSLT [O] Yes Yes 1,0     Yes 1,0

71 Tiles [O] No         Yes 1,0

72 Scheduling [S]               
73 Quartz [O] No         Yes 1,0
74 JDK Timer [O] No         Yes 1,0

Number of Yes   15 11   7   24   

          

 Key Meaning      

 [S] Skipped, see step diagram      
 [V] Variant      

 [O] Optional      

          

 



Anton Gerdessen, Master thesis                                                                                                              Page 70 of 78 

Addendum G: Blueprints feature analysis 
 

F# Feature Comment Customziable? Framework 
adds value 

Weight Alternate variant 
enabled by 

Customization? 

Weight Optional enabled by 
customization? 

Weight 

1 MVC controller [S]          
2 Front Controller   No        
3 Business controller   Yes Yes 0,5      
4 Screen controller   No        

5 EJB Container [S]          
6 DAO factory [O] No      Yes 1,0
7 Single point of entry [S] No       

8 EJB Actions   No        

9 Security [O] No   Yes 1,0 Yes 1,0
10 Signon Servlet   Yes Yes 0,5      

11 Enterprise utilities [S]          
12 Mailer   Yes Yes 1,0      
13 JaxP   No        
14 JNDI [S]          

15 Service locator   No        

16 Web container [S]         
17 Encoding filter   Yes Yes 0,5      
18 View abstraction [S]          
19 XML screens   No        
20 Template engine [S]          
21 JSP [O] No      No 

Number of Yes   4 4 1  2

          

 Key Meaning      

 [S] Skipped, see step diagram      
 [V] Variant      

 [O] Optional      

          



Anton Gerdessen, Master thesis                                                                                                              Page 71 of 78 

Addendum H: Spring feature step analysis 
 
         

 F# Feature Step type n# steps Step description Step type Config point Comment

 1 Dynamic language support           [S] 
 2 Beanshell             
     Enable 1 Set the bean type to beanshell in the application context file Configuration 1   
 3 Groovy         1   
     Enable 1 Set the bean type to beanshell  in the application context file Configuration 1   
     Changing 1 Creating callback methods in the bean Source code 1   
 4 JRuby             
     Enable 1 Set the bean type to beanshell in the application context file Configuration 1   

 5 Configuration             
     Enable 1 Set the configuration type in the application context file Configurarion 1   
 6 Desployment descriptors           [1][D] 
 7 Resource File           [1] 
     Enable 1 By placing the resource file in the root directory Configurarion 2   
 8 Java class           [1] 
 9 Text file           [1] 

 10 MVC controller             
     Enable 1 Configuring the to use MVC the application context file Configuration 1   
 11 JSF             
     Changing 1 Filling parameters in the application context xml file Configuration 15 [C] 
     Changing 1 Creating custom face lifeycle classes Source code     
 12 Spring MVC             
     Changing 2 Creating an abstract controller Source code     
         Extending the abtstract controller and overriding handlerequest Source code     
 13 Themes             
     Enable 1 Setting the new theme in the application context Configuration 1   
     Changing 1 Setting pramaters in the theme file Configuration 3   
 14 Tapestry             
 15 Struts             
     Changing 1 Writing custom controllers Source code   [C] 
 16 Spring porlet MVC             
     Changing 2 Creating an abstract controller Source code     
         Extending the abtstract controller and overriding handlerequest Source code     

 17 DAO           [S] 
 18 ORM             
     Enable 1 Enabling the type of mapping in the application context file Configuration 1   
 18 JPA             
     Changing 1 Modifying the bean code Source code   [C] 
 20 Toplink             
     Changing 1 Setting parameters in the toplink xml file Configuration 4   
     Changing 1 Modifying the bean code Source code   [C] 
 21 Ibatis             
     Changing 1 Setting parameters in the sqlmap xml file Configuration 5   
     Changing 1 Setting parameters in the individual baen xml files Configuration 6   
     Changing 1 Modifying the bean code Source code   [C] 
 22 Hibernate             
     Changing 1 Setting parameters in the application context file Configuration 1   
     Changing 1 Setting parameters in the Hibernate xml file Configuration 7   
     Changing 1 Modifying the bean code Source code   [C] 
 23 JDO             
     Changing 1 Filling parameters in the application context xml file Configuration 1   
     Changing 1 Modifying the bean code Source code     
 24 JDBC Abstraction             
     Changing 1 Modifying the SQl query in the code Source code   [C] 

 25 Application Context           [S] 
 26 Internationalization             
     Enable 1 By placing the resource file in the root directory Configuration 2   
 27 Remoting           [S] 
 28 JAX RPC             
     Enable 1 Enabling the type of remoting trough the application context file Configuration 1   
     Changing 1 Writing a custom handler to process messages Source code   [C] 
 29 Burlap             
     Enable 1 Enabling the type of remoting trough the application context file Configuration 1   
     Changing 1 Setting parameters in the remoting xml file Configuration 8   
 30 RMI             
     Enable 1 Enabling the type of remoting trough the application context file Configuration 1   
 31 Hessian             
     Enable 1 Enabling the type of remoting trough the application context file Configuration 1   



Anton Gerdessen, Master thesis                                                                                                              Page 72 of 78 

 32 HTTP Invoker             
     Enable 1 Enabling the type of remoting trough the application context file Configuration 1   
 33 JMS             
     Enable 2 By adding a message queue in the application context file Configuration 1   
         By enabling the message queue in the application server Configuration 9   
 34 Databinding             
 35 Validation             
     Enable 1 Enabling by writing custom validator classes for beans Source code     
     Changing 1 Modifying the validator java classes Source code     

 36 Spring container           [S] 
 37 Bean factory           [S] 
 38 Lifecycle management             
     Changing 3 Writing a custom bean post processor Source code     
        Writing callbacks in the java bean class Source code     
         Enabling the callbacks in the application context for a bean Source code     
 39 Inversion of control             
 40 EJB Abstraction             
     Enable 1 Enabling EJB in the application context for a bean Configuration 1   
     Changing 1 Writing custom bean code Source code   [C] 
 41 Transaction managment             
     Enable 1 Enabling a tranction type on the application context file Configuration 1   
 42 Interceptor AOP             
     Changing 2 Adding advice in the application context Configuration 1   
         Setting parameters in the application context for advice Configuration     
 43 JDBC             
 44 Hibernate             
 45 JTA           [2] 
 46 Container managed           [2] 
 47 JDO             
 48 Toplink           [2] 

 49 AOP support             
     Enable 1 Enabling the AOP type in application context Configuration 1   
 50 AspectJ             
     Enable 1 Adding advice to the bean declaration in the application context Configuration 1   
 51 Proxy/Spring AOP           [S] 
 52 Autoproxy           [D] 

 53 Enterprise utilities           [S] 
 54 JCA             
     Enable 1 Enabling JCA in the application context file Configuration 1   
 55 JMS             
     Enable 2 By adding a message queue in the application context file Configuration 1   
         By enabling the message queue in the application server Configuration 9   
 56 JavaMail             
     Enable 1 Enabling a mail sender bean in the application context file Configuration 1   
     Changing 1 Writing a custom mailsender Source code   [C] 
 57 JMX             
     Enable 1 Enabling JMX on a specific bean in the application context file Configuration 1   
     Changing 1 Filling parameters per bean for JMX Configuration     
 58 JNDI             

 59 View abstraction             
     Enable 1 Enabling a view mapping in the application context file Configuration 1   
 60 JSP             
 61 JSF             
     Changing 1 Filling parameters in the application context xml file Configuration 15 [C] 
     Changing 1 Creating custom face lifeycle classes Source code     
 62 Content generator           [S] 
 63 Freemarker            
     Enable 1 Enabling the bean in the application context Configuration 1   
     Changing 1 Parameters application context Configuration 1   
 64 Velocity             
     Enable 1 Enabling the bean in the application context Configuration 1   
     Changing 1 Setting the properties in the velocity properties file Configuration 10   
 65 Jasper             
     Enable 1 Enabling the baen in the application context Configuration 1   
 66 Excel             
 67 Jexcel             
     Enable 1 Enabling the baen in the application context Configuration 1   
     Changing 1 Setting the properties in the JExcel properties file Configuration 12 [C] 
 68 PIO             
 69 iText             
     Changing 1 Setting the properties in the iText properties file Configuration 13 [C] 
 70 XSLT             
     Enable 1 Enabling the baen in the application context Configuration 1   
     Changing 1 Setting the properties in the XSLT file Configuration 14   
 71 Tiles             



Anton Gerdessen, Master thesis                                                                                                              Page 73 of 78 

     Enable 1 Enabling the baen in the application context Configuration 1   

 72 Scheduling             
 73 Quartz             
     Enable 1 Enabling the beans in the application context Configuration 1   
     Changing 1 Modifying the doIt() method code Source code   [C] 
 74 JDK Timer             
     Enable 1 Enabling the bean in the application context Configuration 1   

  

 
 
 
       

  Configuration point Configuration point name    

  1 Application context    
  2 Root    
  3 Theme properties files    
  4 Toplink xml    
  5 Sql map xml    
  6 Beanname xml    
  7 Hibernate xml    
  8 Remoting.xml    
  9 Server context(on the app server!)    
  10 Velocity properties file    
  11 Template files    
  12 JExcel properties file    
  13 Itest properties file    
  14 XSLT file    
  15 Faces config file    

         

  Key Key meaning    

  [C]  COTS product, already has this customization option    
  [D]  Default    
  [S]  Skipped, see step diagram    

  

[1]  Why are there no configuration possibilities here? Because we can not change the way these files 
are USED, we can not customize the process, the parameters in the deployment descriptors 
customize others parts of the framework 

   

  [2]  Relies on AOP declerative transaction management    

         
  



Anton Gerdessen, Master thesis                                                                                                              Page 74 of 78 

Addendum I: Blueprints feature step analysis 
 

        

F# Feature Step type n# steps Step description Step type 
Config 
point Comment 

1 MVC controller           [S] 
2 Front Controller             
3 Business controller             

    Changing 2 Writing a custom request processor Source code     
        Configuraing the request processor in the web xml file Configuration 1   

4 Flow controller             
    Changing 2 Subclassing the ScreenFlowManager class Source code     
        Changing the type of ScreenFlowManager in the MainServlet Source code     

5 EJB Container           [S] 
6 DAO factory             

    Enable 1 Creating xml files per EJB baen Configuration 5   
7 Single point of entry           [S] 
8 EJB Actions             

    Changing 1 Modifying the eventsupport code Source code     

9 Security             
    Enable 1 Enabling the type security type in the web.xml Configuration 1   
10 Signon Servlet             
    Changing 1 Changing the parameters in the signon-config xml file Configuration 3   
    Changing 2 Subclassing the Signon servlet class Source code     
       Enabling the new signon servlet class in the web xml Configuration 1   

11 Enterprise utilities           [S] 
12 Mailer             
    Changing 2 Subclassing the mail class Source code     
       Enabling the new mailer servlet class in the ejb-jar xml Configuration 2   
    Changing 1 Filling parameters in the j2ee ri xml file Configuration 4   
13 JaxP             
14 JNDI           [S] 
15 Service locator             
16 Web container           [S] 
17 Encoding filter             
    Changing 2 Subclassing the encoding servlet class Source code     
        Enabling the new encoding servlet class in the web xml Configuration 1   

18 View abstraction           [S] 
19 XML screens             
20 Template engine          [S] 
21 JSP             
    Enable 1 Modifying jps pages to use the template files Source code     
    Changing 1 Wrtiting jsp template files Source code     

        

 Configuration point Configuration point name    

 1 Web xml file    
 2 EJB-jar xml    
 3 Signon-config xml file    
 4 sun-j2ee-ri xml file    
 5 DAO xml file per bean    

        

 Key Key meaning    

 [S]  Skipped, see step diagram    

 



Anton Gerdessen, Master thesis                                                                                                              Page 75 of 78 

Addendum J: Spring modifiability metrics 
 

  Jdepend   Cobertura     

P# A Ca Ce I   CC   Package 

1 0,74 16 4 0,20   1,02   org,springframework,aop 
2 0,22 3 18 0,86   2,46   org,springframework,aop,aspectj 
3 0,16 0 15 1,00   1,75   org,springframework,aop,aspectj,annotation 
4 0,00 2 9 0,82   2,67   org,springframework,aop,aspectj,autoproxy 
5 0,12 1 17 0,94   2,10   org,springframework,aop,config 
6 0,21 20 14 0,41   2,34   org,springframework,aop,framework 
7 0,25 3 7 0,70   2,03   org,springframework,aop,framework,adapter 
8 0,27 3 15 0,83   2,10   org,springframework,aop,framework,autoproxy 
9 0,33 1 6 0,86   2,56   org,springframework,aop,framework,autoproxy,target 

10 0,18 2 8 0,80   1,79   org,springframework,aop,interceptor 
11 0,33 2 6 0,75   2,00   org,springframework,aop,scope 
12 0,40 22 7 0,24   1,60   org,springframework,aop,support 
13 0,00 1 3 0,75   0,00   org,springframework,aop,support,annotation 
14 0,43 6 9 0,60   1,32   org,springframework,aop,target 
15 0,67 1 3 0,75   1,38   org,springframework,aop,target,dynamic 
16 0,34 66 6 0,08   2,77   org,springframework,beans 
17 1,00 1 2 0,67   0,00   org,springframework,beans,annotation 
18 0,39 97 4 0,04   1,35   org,springframework,beans,factory 
19 0,33 3 6 0,67   2,60   org,springframework,beans,factory,access 
20 0,50 1 6 0,86   1,67   org,springframework,beans,factory,annotation 
21 0,36 33 7 0,17   1,93   org,springframework,beans,factory,config 
22 0,33 0 3 1,00   0,00   org,springframework,beans,factory,generic 
23 0,29 2 6 0,75   1,12   org,springframework,beans,factory,parsing 
24 0,27 16 8 0,33   2,58   org,springframework,beans,factory,support 
25 0,50 2 3 0,60   2,08   org,springframework,beans,factory,wiring 
26 0,30 10 12 0,55   2,64   org,springframework,beans,factory,xml 
27 0,00 6 3 0,33   2,23   org,springframework,beans,propertyeditors 
28 0,20 4 6 0,60   1,64   org,springframework,beans,support 
29 0,00 0 6 1,00   1,56   org,springframework,cache,ehcache 
30 0,72 33 5 0,13   1,00   org,springframework,context 
31 0,00 2 8 0,80   1,93   org,springframework,context,access 
32 0,25 3 6 0,67   1,50   org,springframework,context,event 
33 0,67 5 1 0,17   1,20   org,springframework,context,i18n 
34 0,19 12 13 0,52   2,00   org,springframework,context,support 
35 0,49 67 5 0,07   2,43   org,springframework,core 
36 0,67 4 1 0,20   6,00   org,springframework,core,annotation 
37 0,46 2 2 0,50   1,49   org,springframework,core,enums 
38 0,31 38 1 0,03   1,42   org,springframework,core,io 
39 0,50 21 3 0,12   2,48   org,springframework,core,io,support 
40 0,50 0 2 1,00   1,37   org,springframework,core,style 
41 0,18 9 2 0,18   1,05   org,springframework,core,task 
42 0,11 27 1 0,04   1,00   org,springframework,dao 
43 0,00 0 12 1,00   0,00   org,springframework,dao,annotation 
44 0,60 16 5 0,24   2,70   org,springframework,dao,support 
45 0,29 1 8 0,89   2,86   org,springframework,ejb,access 
46 0,20 0 8 1,00   1,40   org,springframework,ejb,config 
47 0,88 0 5 1,00   1,23   org,springframework,ejb,support 
48 0,00 1 0 0,00   1,00   org,springframework,instrument 
49 0,10 5 3 0,38   1,47   org,springframework,instrument,classloading 
50 0,00 0 3 1,00   1,83   org,springframework,instrument,classloading,glassfish 
51 0,00 0 3 1,00   1,00   org,springframework,instrument,classloading,oc4j 
52 0,00 0 2 1,00   0,00   org,springframework,instrument,classloading,tomcat 
53 0,00 3 1 0,25   1,00   org,springframework,jca,cci 
54 0,07 2 5 0,71   2,19   org,springframework,jca,cci,connection 
55 0,62 2 4 0,67   2,03   org,springframework,jca,cci,core 
56 0,50 1 5 0,83   1,11   org,springframework,jca,cci,core,support 
57 0,50 0 4 1,00   1,40   org,springframework,jca,cci,object 
58 0,00 0 3 1,00   1,38   org,springframework,jca,support 
59 0,00 0 3 1,00   1,97   org,springframework,jca,work 
60 0,00 7 1 0,12   1,00   org,springframework,jdbc 
61 0,39 4 10 0,71   1,69   org,springframework,jdbc,core 
62 0,44 1 8 0,89   1,43   org,springframework,jdbc,core,namedparam 
63 0,50 0 3 1,00   1,00   org,springframework,jdbc,core,simple 
64 0,62 2 9 0,82   1,54   org,springframework,jdbc,core,support 
65 0,26 14 6 0,30   2,26   org,springframework,jdbc,datasource 
66 0,22 2 9 0,82   2,03   org,springframework,jdbc,datasource,lookup 
67 0,57 0 7 1,00   1,51   org,springframework,jdbc,object 
68 0,33 10 10 0,50   2,88   org,springframework,jdbc,support 
69 0,38 0 4 1,00   1,63   org,springframework,jdbc,support,incrementer 



Anton Gerdessen, Master thesis                                                                                                              Page 76 of 78 

70 0,24 7 5 0,42   1,65   org,springframework,jdbc,support,lob 
71 0,22 2 4 0,67   1,82   org,springframework,jdbc,support,nativejdbc 
72 0,50 2 1 0,33   2,44   org,springframework,jdbc,support,rowset 
73 0,07 7 1 0,12   1,20   org,springframework,jms 
74 0,16 3 5 0,62   2,17   org,springframework,jms,connection 
75 0,26 1 7 0,88   1,43   org,springframework,jms,core 
76 1,00 0 2 1,00   1,57   org,springframework,jms,core,support 
77 0,21 3 12 0,80   2,26   org,springframework,jms,listener 
78 0,40 0 6 1,00   2,00   org,springframework,jms,listener,adapter 
79 0,19 0 7 1,00   1,35   org,springframework,jms,listener,serversession 
80 0,00 0 11 1,00   2,03   org,springframework,jms,remoting 
81 1,00 6 4 0,40   3,19   org,springframework,jms,support 
82 0,25 2 2 0,50   2,67   org,springframework,jms,support,converter 
83 0,43 4 4 0,50   1,75   org,springframework,jms,support,destination 
84 0,00 5 1 0,17   1,00   org,springframework,jmx 
85 0,00 0 7 1,00   2,86   org,springframework,jmx,access 
86 0,23 0 11 1,00   2,05   org,springframework,jmx,export 
87 0,88 0 4 1,00   3,80   org,springframework,jmx,export,annotation 
88 0,58 1 8 0,89   2,15   org,springframework,jmx,export,assembler 
89 0,20 3 5 0,62   1,64   org,springframework,jmx,export,metadata 
90 0,40 1 7 0,88   2,10   org,springframework,jmx,export,naming 
91 0,50 1 2 0,67   1,57   org,springframework,jmx,export,notification 
92 0,08 4 7 0,64   2,16   org,springframework,jmx,support 
93 0,20 10 6 0,38   2,04   org,springframework,jndi 
94 0,38 2 2 0,50   1,43   org,springframework,mail 
95 0,00 0 2 1,00   5,67   org,springframework,mail,cos 
96 0,22 0 4 1,00   1,62   org,springframework,mail,javamail 
97 1,00 3 0 0,00   1,00   org,springframework,metadata 
98 0,00 0 7 1,00   1,00   org,springframework,metadata,commons 
99 0,00 5 1 0,17   1,22   org,springframework,orm 

100 0,08 1 23 0,96   2,05   org,springframework,orm,hibernate 
101 0,25 0 12 1,00   1,61   org,springframework,orm,hibernate,support 
102 0,07 2 30 0,94   2,06   org,springframework,orm,hibernate3 
103 0,00 0 3 1,00   2,00   org,springframework,orm,hibernate3,annotation 
104 0,20 0 19 1,00   1,59   org,springframework,orm,hibernate3,support 
105 0,13 1 14 0,93   1,42   org,springframework,orm,ibatis 
106 0,33 0 6 1,00   1,55   org,springframework,orm,ibatis,support 
107 0,09 1 12 0,92   1,66   org,springframework,orm,jdo 
108 0,33 0 9 1,00   1,38   org,springframework,orm,jdo,support 
109 0,32 2 15 0,88   2,36   org,springframework,orm,jpa 
110 0,29 1 10 0,91   1,86   org,springframework,orm,jpa,persistenceunit 
111 0,12 0 14 1,00   1,82   org,springframework,orm,jpa,support 
112 0,08 0 11 1,00   1,00   org,springframework,orm,jpa,vendor 
113 0,16 1 22 0,96   1,68   org,springframework,orm,toplink 
114 0,25 0 7 1,00   2,77   org,springframework,orm,toplink,support 
115 0,00 6 1 0,14   1,00   org,springframework,remoting 
116 0,11 0 14 1,00   2,27   org,springframework,remoting,caucho 
117 0,38 0 12 1,00   1,55   org,springframework,remoting,httpinvoker 
118 0,33 1 13 0,93   2,00   org,springframework,remoting,jaxrpc 
119 0,00 0 4 1,00   1,80   org,springframework,remoting,jaxrpc,support 
120 0,18 3 11 0,79   3,00   org,springframework,remoting,rmi 
121 0,57 4 6 0,60   1,85   org,springframework,remoting,support 
122 0,67 7 2 0,22   1,00   org,springframework,scheduling 
123 0,00 0 5 1,00   1,30   org,springframework,scheduling,backportconcurrent 
124 0,00 0 8 1,00   1,41   org,springframework,scheduling,commonj 
125 0,00 0 4 1,00   1,30   org,springframework,scheduling,concurrent 
126 0,15 0 20 1,00   2,18   org,springframework,scheduling,quartz 
127 0,00 1 3 0,75   1,40   org,springframework,scheduling,support 
128 0,00 1 5 0,83   1,23   org,springframework,scheduling,timer 
129 0,80 4 3 0,43   1,00   org,springframework,scripting 
130 0,20 0 6 1,00   3,17   org,springframework,scripting,bsh 
131 0,00 0 7 1,00   3,17   org,springframework,scripting,config 
132 0,50 0 5 1,00   2,45   org,springframework,scripting,groovy 
133 0,62 0 10 1,00   2,76   org,springframework,scripting,jruby 
134 0,00 1 16 0,94   2,30   org,springframework,scripting,support 
135 1,00 1 0 0,00   0,00   org,springframework,stereotype 
136 0,25 17 2 0,11   1,14   org,springframework,transaction 
137 0,25 2 2 0,50   0,00   org,springframework,transaction,annotation 
138 0,00 0 11 1,00   2,89   org,springframework,transaction,config 
139 0,17 4 12 0,75   2,17   org,springframework,transaction,interceptor 
140 0,00 2 6 0,75   2,95   org,springframework,transaction,jta 
141 0,68 21 4 0,16   2,08   org,springframework,transaction,support 
142 0,00 7 2 0,22   1,71   org,springframework,ui 
143 1,00 5 1 0,17   1,00   org,springframework,ui,context 
144 0,25 3 3 0,50   2,31   org,springframework,ui,context,support 
145 0,25 1 7 0,88   2,00   org,springframework,ui,freemarker 
146 0,33 1 3 0,75   1,82   org,springframework,ui,jasperreports 



Anton Gerdessen, Master thesis                                                                                                              Page 77 of 78 

147 0,20 1 13 0,93   2,89   org,springframework,ui,velocity 
148 0,57 137 3 0,02   3,13   org,springframework,util 
149 0,00 1 1 0,50   1,89   org,springframework,util,comparator 
150 0,25 7 3 0,30   2,24   org,springframework,util,xml 
151 0,47 9 3 0,25   1,37   org,springframework,validation 
152 0,33 7 0 0,00   1,00   org,springframework,web 
153 0,28 6 5 0,45   1,71   org,springframework,web,bind 
154 0,40 18 7 0,28   2,04   org,springframework,web,context 
155 0,50 11 7 0,39   1,56   org,springframework,web,context,request 
156 0,16 15 17 0,53   1,57   org,springframework,web,context,support 
157 0,30 5 10 0,67   1,59   org,springframework,web,filter 
158 0,25 0 4 1,00   1,87   org,springframework,web,jsf 
159 0,60 7 1 0,12   1,00   org,springframework,web,multipart 
160 0,25 1 9 0,90   2,32   org,springframework,web,multipart,commons 
161 0,00 0 7 1,00   2,07   org,springframework,web,multipart,cos 
162 0,20 3 5 0,62   1,81   org,springframework,web,multipart,support 
163 0,25 2 20 0,91   2,54   org,springframework,web,portlet 
164 0,15 2 5 0,71   1,82   org,springframework,web,portlet,bind 
165 0,35 4 13 0,76   1,69   org,springframework,web,portlet,context 
166 0,25 2 10 0,83   1,71   org,springframework,web,portlet,handler 
167 0,50 2 7 0,78   1,55   org,springframework,web,portlet,multipart 
168 0,46 1 9 0,90   1,94   org,springframework,web,portlet,mvc 
169 0,33 4 2 0,33   1,49   org,springframework,web,portlet,util 
170 0,32 11 28 0,72   2,40   org,springframework,web,servlet 
171 0,25 5 12 0,71   1,92   org,springframework,web,servlet,handler 
172 0,17 0 9 1,00   1,83   org,springframework,web,servlet,handler,metadata 
173 0,17 1 6 0,86   1,94   org,springframework,web,servlet,i18n 
174 0,42 4 10 0,71   1,67   org,springframework,web,servlet,mvc 
175 0,29 1 9 0,90   2,62   org,springframework,web,servlet,mvc,multiaction 
176 0,00 0 8 1,00   2,75   org,springframework,web,servlet,mvc,support 
177 0,50 1 2 0,67   1,00   org,springframework,web,servlet,mvc,throwaway 
178 0,50 13 13 0,50   1,76   org,springframework,web,servlet,support 
179 0,20 1 6 0,86   2,07   org,springframework,web,servlet,tags 
180 0,22 0 8 1,00   1,52   org,springframework,web,servlet,tags,form 
181 0,20 1 4 0,80   1,69   org,springframework,web,servlet,theme 
182 0,27 7 13 0,65   1,73   org,springframework,web,servlet,view 
183 1,00 0 10 1,00   1,30   org,springframework,web,servlet,view,document 
184 0,20 0 12 1,00   1,43   org,springframework,web,servlet,view,freemarker 
185 0,22 0 13 1,00   2,48   org,springframework,web,servlet,view,jasperreports 
186 0,25 0 12 1,00   1,75   org,springframework,web,servlet,view,tiles 
187 0,10 0 19 1,00   1,77   org,springframework,web,servlet,view,velocity 
188 0,50 0 8 1,00   2,13   org,springframework,web,servlet,view,xslt 
189 0,31 0 15 1,00   1,71   org,springframework,web,struts 
190 0,25 26 4 0,13   2,72   org,springframework,web,util 

Avg 0,29 5,83 7,12 0,69   1,82     
Max 1,00 137 30 1,00   6,00     
Min 0,00 0 0 0,00   0,00     
Bavg 112 147 120 77   103     
Aavg 78 43 70 113   87     

         

Key Meaning      

A Abstractness      

Ca Afferent coupling      

Ce Efferent coupling      

I Instabilty      

CC Cyclomatic complexity      

Bavg Below/equal average      

Aavg Above average      

         

 



Anton Gerdessen, Master thesis                                                                                                              Page 78 of 78 

Addendum K: Blueprints modifiability metrics 
 

  Jdepend   Cobertura     

P# A Ca Ce I   CC   Package 

1 0,00 0 0 0,00   1,00   com.sun.j2ee.blueprints.encodingfilter.web 
2 0,00 0 3 1,00   1,80   com.sun.j2ee.blueprints.mailer.ejb 
3 0,00 1 0 0,00   1,00   com.sun.j2ee.blueprints.mailer.exceptions 
4 0,00 0 0 0,00   1,00   com.sun.j2ee.blueprints.mailer.util 
5 0,00 5 0 0,00   1,67   com.sun.j2ee.blueprints.servicelocator 
6 0,00 2 1 0,33   5,00   com.sun.j2ee.blueprints.servicelocator.ejb 
7 0,00 2 1 0,33   5,25   com.sun.j2ee.blueprints.servicelocator.web 
8 0,67 1 1 0,50   1,40   com.sun.j2ee.blueprints.signon.ejb 
9 1,00 2 0 0,00   1,29   com.sun.j2ee.blueprints.signon.user.ejb 

10 0,00 0 3 1,00   3,73   com.sun.j2ee.blueprints.signon.web 
11 1,00 1 0 0,00   1,00   com.sun.j2ee.blueprints.uidgen.counter.ejb 
12 0,67 0 1 1,00   1,67   com.sun.j2ee.blueprints.uidgen.ejb 
13 0,50 5 2 0,29   1,27   com.sun.j2ee.blueprints.waf.controller.ejb 
14 1,00 3 2 0,40   1,00   com.sun.j2ee.blueprints.waf.controller.ejb.action 
15 0,00 0 4 1,00   1,00   com.sun.j2ee.blueprints.waf.controller.ejb.action.actions 
16 0,22 2 11 0,85   2,63   com.sun.j2ee.blueprints.waf.controller.web 
17 0,67 4 1 0,20   1,00   com.sun.j2ee.blueprints.waf.controller.web.action 
18 0,00 0 4 1,00   4,00   com.sun.j2ee.blueprints.waf.controller.web.action.actions 
19 0,25 3 1 0,25   1,83   com.sun.j2ee.blueprints.waf.controller.web.flow 
20 0,00 0 2 1,00   3,00   com.sun.j2ee.blueprints.waf.controller.web.flow.handlers 
21 0,00 1 0 0,00   1,00   com.sun.j2ee.blueprints.waf.controller.web.util 
22 0,60 10 0 0,00   1,00   com.sun.j2ee.blueprints.waf.event 
23 0,00 3 1 0,25   1,00   com.sun.j2ee.blueprints.waf.event.impl 
24 0,00 1 0 0,00   1,00   com.sun.j2ee.blueprints.waf.exceptions 
25 0,00 2 1 0,33   4,00   com.sun.j2ee.blueprints.waf.util 
26 0,00 0 1 1,00   1,98   com.sun.j2ee.blueprints.waf.view.taglibs.smart 
27 0,00 1 2 0,67   3,64   com.sun.j2ee.blueprints.waf.view.template 
28 0,00 0 1 1,00   3,25   com.sun.j2ee.blueprints.waf.view.template.tags 

Avg 0,24 1,75 1,54 0,44   2,09     
Max 1,00 10 11 1,00   5,25     
Min 0,00 0 0 0,00   1,00     
Bavg 19 16 19 17   19     
Aavg 9 12 9 11   9     

         

Key Meaning      

A Abstractness      
Ca Afferent coupling      
Ce Efferent coupling      
I Instabilty      
CC Cyclomatic complexity      
Bavg Below/equal average      

Aavg Above average      

         
 
 


