
The effect of Ajax on performance
and usability in web environments

Y.D.C.N. op ’t Roodt, BICT

Date of acceptance: August 31st, 2006

One Year Master Course Software Engineering

Thesis Supervisor: Dr. Jurgen Vinju
Internship Supervisor: Ir. Koen Kam

Company or Institute: Hyves (Startphone Limited)

Availability: public domain

Universiteit van Amsterdam,
Hogeschool van Amsterdam,

Vrije Universiteit

 2

 3

This page intentionally left blank

 4

Table of contents

1 Foreword ... 6
2 Motivation ... 7

2.1 Tasks and sources.. 7
2.2 Research question ... 9

3 Research method ... 10
3.1 On implementation... 11

4 Background and context of Ajax .. 12
4.1 Background... 12
4.2 Rich Internet Applications .. 12
4.3 JavaScript.. 13
4.4 The XMLHttpRequest object ... 13
4.5 Content manipulation ... 14
4.6 Caveat emptor .. 14
4.7 Bookmaking and the back button .. 14
4.8 Page footprint.. 15
4.9 Browser wars... 15

5 Framework requirements ... 17
5.1 Defining a framework.. 17
5.2 High level code abstraction ... 17
5.3 Non restricting licensing model ... 18
5.4 Documentation ... 18
5.5 Back-end independence... 18
5.6 Broad level of browser compatibility.. 19
5.7 Framework preselection .. 19

5.7.1 Grade A frameworks .. 20
5.7.2 Preselection conclusion ... 23

6 Selecting the framework... 25
6.1 Selection requirements .. 25
6.2 Dojo Toolkit.. 26
6.3 Prototype (with Script.aculo.us) ... 28
6.4 Yahoo! User Interface Library... 30
6.5 Table overview of the frameworks ... 32
6.6 Analysis... 32
6.7 Conclusion .. 33

7 The effect on network traffic .. 34
7.1 Method ... 34
7.2 Results .. 34

 5

7.3 Analysis... 35
7.4 Conclusion .. 35

8 The effect on server load .. 36
8.1 Method ... 36
8.2 Results .. 37
8.3 Analysis... 37
8.4 Conclusion .. 38

9 The effect on usability .. 39
9.1 Method ... 39
9.2 Results .. 42
9.3 Analysis... 43
9.4 Conclusion .. 44

10 Conclusion and final thoughts .. 45
11 Future work ... 47

11.1 Testing Ajax.. 47
11.2 The future of Ajax... 47

12 Bibliography .. 48
13 Appendices .. 52

13.1 Appendix A: Classic, Ajax and Comet application models............... 52
13.2 Appendix B: Prototype’s object extension .. 54
13.3 Appendix C: Classic versus Ajax application model......................... 55

14 Glossary ... 56

 6

1 Foreword

First of all I would like to thank Dr. Jurgen Vinju for his support during the last year,
during the writing of this thesis and his excellent insights. Furthermore I would like to
thank Hans Dekkers, Jan van Eijck and Paul Klint for making this master course
possible. Thanks also go out to Eric Smalley for correcting my English.

I have been a user of the Internet for more than 10 years now and have seen all the
browsers, languages, protocols come and go. The dotcom bubble and all the Internet
start-ups that came with it fascinate me. Currently a new ‘bubble’ that goes by the
name of Web 2.0 is emerging on the Internet. One of the key factors in Web 2.0 is the
use of Ajax. So why not combine my personal interest with research?

 7

2 Motivation
In the last 10 years, the Internet has tremendously gained in popularity. In the same
time, the application model of websites has changed. At first the web pages were very
static, followed by dynamic web pages, database driven websites and online stores.
Many technologies have contributed to this development, server side languages (Java,
PHP, ASP), open source databases (MySQL, PostgresQL) and client technologies
(JavaScript, Flash, Java). Most of these technologies made it possible to unlock vast
amounts of information to the user, but the application model stayed largely the same.

Currently a new change is taking place, offering better usability and productivity to
end-users. Ajax is the new use of existing browser technologies that makes a new kind
of application model possible. Ajax is already widely being used on websites, although
most of them are smaller, but nonetheless important. They are the websites that drive
the technology rush on the Internet. It cannot be said yet that Ajax is proven
technology but it is already used for varying reasons. Ajax will be discussed in detail in
chapter 4.

2.1 Tasks and sources
The goal of the research is to determine the effect of using Ajax, in terms of usability
and performance, in a very large web environment. Cross browser compatibility and
integration into existing code are very important. The emphasis lies with Ajax
frameworks and not with other Rich Internet Application (RIA) frameworks such as
Adobe Flex and OpenLaszlo. Although RIA applications can be made with an Ajax
framework they have a different philosophy. A part of the research covers the
availability of Ajax frameworks and assessing their qualities based on predefined
criteria.

The case study concerns Hyves, The Netherlands’ largest social networking website
(http://www.hyves.nl). Provided here is some data to get an impression of size: over 2
million unique users, over 12 million photos and videos, 10 million page views per day
and more than 180 web, database and storage servers. The website has an enormous
load, partly because of the amount of page views and partly because of the highly
dynamic nature of the pages. Any saving in load on such a scale is very valuable,
therefore the effect of using Ajax in general will be measured. Finally, another point of
interest is improvement in usability of websites when using Ajax. The better the
usability the more time users will spend on your web site and the more pages they will
view, which is good form a commercial point of view. The theory is that both usability
and server and network load can be improved by using Ajax and that there is a relation
between the two.

 8

An introduction to Ajax is given by [6], describing the history, and using [17] to
explain the principles of Ajax. JavaScript is an important factor in Ajax frameworks
and applications. All important JavaScript knowledge and information about the
browser wars and the current state are discussed in [2]. Information on performance
related to content manipulation is provided by [3] with performance benchmarks in
[10]. An important reason to implement an Ajax framework is to improve the user
experience. [1] Describes the difference between sovereign and transient applications
(see section 4.2) and the direction that Ajax applications are headed in. Sources [16]
and [21] discuss the user expectations regarding response times in software applications
and the effect that different response times have on the way users react. These sources
also support the expected results of the positive effect that Ajax has on usability.

The implementation requirements are mostly determined by Hyves. Because
JavaScript is such an important factor in Ajax applications, an Ajax framework will be
selected to intelligently deal with JavaScript and its shortcomings. A framework is
software that takes care of low level implementation details and aids developers to write
software at a higher abstraction level. A more complete definition of a framework and
the available Ajax frameworks will be discussed in chapter 5.
JavaScript is notorious for it’s debugging and testing. Although I have found [8] as a
unit-testing framework, this will remain as future work. Event handling in JavaScript is
mostly done in an obtrusive way and is considered unwanted from a developers view.
Some frameworks introduce Aspect Oriented Programming like solutions to event
handling, see [19]. Using event observers the event handling can be separated from the
HTML code. Design patterns for Ajax are described in [1] and [4], as standard work
on design patterns [5] will be used. Licensing and continuity of the product will be
assessed on a rather subjective basis.

Some browser functionality will be broken when creating Ajax applications. The issues
and their possible solutions are discussed in [9]. Another concern is browser
compatibility and the ongoing implementation of incompatible browser models. [7]
Gives some insight in the current situation.

The frameworks possibly useful in the case study will be discussed from section 5.7
onward. The most promising frameworks for the case study will be evaluated using [4],
[18] and [20] in chapter 6. Application prototypes will have to be developed for Hyves
using an Ajax framework. This will concern improvements of existing functionalities, in
order to make a comparison between the two versions. During development best
practices will be extracted from leading websites that use Ajax (Flickr, GMail,
del.icio.us).

The research will deliver quantitive and qualitative results. The quantitive results
regard the savings in server load and network bandwidth. The qualitative results regard
the usability tests [16] and will provide information on usability and experience
improvement. Also, the quality of the code written with a framework is important. The

 9

final conclusion will determine whether it is worth implementing an Ajax framework
into an existing website in terms of usability and server load.

2.2 Research question
The study will research the effects of Ajax in terms of performance and usability in web
applications. How and why are performance and usability related in web applications?
This main question can be subdivided into four questions:

• Which Ajax framework suits the case study?
• How will Ajax affect network traffic?
• How will Ajax affect server load?
• Will Ajax offer better usability and productivity?

Choosing an Ajax framework is very important. There are many frameworks available,
but not all of them are suitable or just don’t provide enough functionality. The network
traffic and server load are important to measure in order to see how it will affect the
scalability of your application. Better usability will keep users on your website longer
and, which is good for commercial reasons.

These questions will be answered in:

• Selecting the framework (chapter 6)
• The effect on network traffic (chapter 7)
• The effect on server load (chapter 8)
• The effect on usability (chapter 9)

 10

3 Research method
To be able to test the effects of using Ajax in a large web environment, an Ajax
framework will be implemented into the Hyves website, http://www.hyves.nl. Hyves is
The Netherlands’ largest social networking site with over 2 million unique users, over
12 million photos and videos, 10 million page views per day and more than 180 web,
database and storage servers and counting. While the quantitive effects of Ajax will go
unnoticed in a small web environment, with a website as large as Hyves’ the effects will
be clearly visible. Because of the scale and it’s highly dynamic and modular pages it is
clearly a good test case. The website is constantly experiencing very heavy loads.
Reducing the load and network traffic will help in further scaling the website. Results
can be found in chapters 7 and 8.

Please note: due to the sensitive nature of this information, the description of the
“page” is very abstract. But in order to get an impression of what we are dealing with
here is some information about the specific page.

The page that was modified to use the Ajax application model is one of the most
frequently requested pages of the website. The page contains user placed content,
along with meta information like comments, number of views and for example. Almost
all content is dynamically generated. When requesting another page of the same type,
roughly one third of the page content has to be updated to create a new page. The
other two thirds remain the same, like on most pages on the website. In general the
findings in this research apply to web pages similar characteristics and are regarded as
typical pages. This means that a variable portion of the page can be updated in order
to present new content or a new page.

The modified page was deployed in a live situation and observed for one month. This
page is often requested in sequences, only changing a small portion of the page. With
the modification, only an incremental part of the page is retrieved using Ajax and is
inserted into the existing page. The first page requested in a sequence will be almost
identical to the unmodified page and the advantages will be seen in the incremental
updates. Because of this incremental update, we will likely see a reduced load on the
server and a reduced amount of network traffic. The results will be measured for two
periods of one month each, one month with the unmodified page, one month with the
modified page.

In the evaluation the research questions will be answered. Which framework is suitable
for the case study? The effect of Ajax on performance is split in two. What is the effect
on server load and what is the effect on network traffic? Finally, what is the effect of
Ajax on usability?

After choosing a suitable framework it will be implemented in the website. Aiding

 11

developers in writing JavaScript more efficiently is one thing but more interesting are
the quantitive and qualitative results. For quantitive results I have measured the
amount of network bandwidth required for a non-Ajax and an Ajax page. Also the
server time saved by only requesting incremental (or delta) page updates was measured.
Last but not least, how do users react to Ajax enabled web applications? The
application model is different from traditional web applications and users might be
unaware of the working of the controls. It is expected that users generally complete
their tasks faster and more efficient but will they instantly learn how to use them and
become more productive right away?

3.1 On implementation
The implementation of an Ajax framework requires modifications on the client and
server side. The modifications on the client are the most obvious, while the server side
modifications largely depend on the underlying architecture. The client will require
custom JavaScript functions to post data to the server or request data from the server
and update the user interface accordingly instead of requesting a whole new page. This
will cause a slight overhead due to the extra code on the client.

An Ajax request is just like any other HTTP request, but is performed from JavaScript.
As far as the server is concerned it is just another GET or POST operation and will be
handled accordingly. Most requests enter the server through the main index script,
which then executes the desired script as defined by the request parameters. Because of
this, requests for Ajax and non-Ajax pages can co-exist on the server and could be
changed at the flick of a switch. Because of this independence the test cases for Ajax
and non-Ajax are well isolated and have no effect on each other.

 12

4 Background and context of Ajax
Ajax is the key technology is this thesis and therefore it is essential to know what it is,
how it is used and what the caveats are.

4.1 Background
In the last year to year and a half, the name Ajax has started to appear on the Internet
more and more. It is often wrongly said to be the same as web 2.0, although it is true
that most of the web 2.0 companies and websites make heavy use of Ajax. Ajax itself is
not a new technology but rather a combined use of existing technologies, you might
call it a design pattern. Ajax is an acronym for Asynchronous JavaScript And XML.
The name describes quite well what it is and does. Ajax uses JavaScript to make
asynchronous request to a (web)server with XML as mark-up for the data being
received. Instead of XML, plain text can also be used. The key element in Ajax is the
arguably misnamed XMLHttpRequest (XHR) JavaScript object, which introduces the
ability to do server requests from JavaScript. Essentially this has been possible in
Microsoft’s Internet Explorer 5 browser since 1998 when Microsoft started using it in
the web-version of their Outlook mail client [23]. The XMLHttpRequest object thanks
its existence to Microsoft, but was later natively implemented in Mozilla’s, Apple’s and
other browsers. So why is it that while Ajax has been possible for the last eight years it
was so little known? Until recently the name Ajax was only associated with Greek gods,
soccer teams and household cleaning liquids but not with software technology. The
name was thought up and popularized by Jesse James Garrett of Adaptive Path [6] in
the beginning of 2005 and has been spreading like fire ever since. It seems like it
needed a simple name to describe the strategy, much like design patterns.

4.2 Rich Internet Applications
Web pages have had an interaction model that was defining for the Internet. You see a
page, click a link and wait for the next page to load. It is a rather static interaction
model and the user workflow is interrupted all the time, with every new request. The
industry has been speculating for years that, in time, web based applications would be
favoured above the desktop applications as we know them. Attempts have been made
but nothing really took off, maybe because the available technology was not mature
yet, maybe because the Internet penetration was too low. Whatever the reason, we are
now at the start of a new type of website. There is a shift going on. Websites are
becoming more like desktop applications, moving from transient to sovereign
applications. In [1] usability expert Alan Cooper is quoted on the two usage modes.
Transient applications might be used every day but only for a short period, where
sovereign applications require the user’s attention for several hours at a time. The
common name for these types of applications is Rich Internet Applications (or RIA).

 13

Rich Internet Applications can be created in many different ways using different
technologies. Flash, Java Applets and Ajax are all legitimate technologies for Rich
Internet Applications [17], each with their own advantages and disadvantages. The key
point of Rich Internet Applications is creating a much better, more intuitive, user
experience and having users get more work done in less time.

4.3 JavaScript
JavaScript has acquired a rather disputable reputation over the years. From the end-
users’ perspective, JavaScript accounted for annoying pop-ups, disabling right-clicking
to prevent saving images from your website and creating downright stupid features.
From the developers’ perspective, JavaScript has had its security issues, suffered from
incompatible browser DOMs (Document Object Model, a tree-like object-oriented
representation of a web page) and lacked integrated development environments and
debugging tools. Many consider JavaScript to be too “simple” while in fact it’s a rather
powerful scripting language and even the most popular programming language on the
web. The success of JavaScript lies in the fact that it has relatively low barriers for use.
No compiler is needed, and scripts can be run in any browser with little editing. At the
inception of JavaScript in 1995, the main target audience of JavaScript were the
thousands of web developers who had no substantial programming background but
needed some way of creating more interactivity in their websites. In ten years time,
most, but definitely not all, browser incompatibilities have been solved resulting in
more and more web pages using JavaScript for useful things.
JavaScript is an interpreted, loosely typed, object-oriented programming language that
is mainly used on web pages and runs in the browser. It can also be incorporated into
other environments like XSLT parsers or as a scripting language in varying
frameworks.

4.4 The XMLHttpRequest object
This little known object of the JavaScript standard library plays a key role in Ajax. The
object makes it possible to do asynchronous HTTP requests to the server, within the
same domain. From the initiation of the request the object will report the state of the
object, the so-called readystate, through a call-back function. This information can be
used to track the progress of the request until it has completed. The response of the
request can either be XML or plain text, additionally the plain text can be JSON.
JSON stands for JavaScript Object Notation, which is a literal representation of
JavaScript functions and objects that can be evaluated at run-time. This is because
JavaScript is an interpreted language. The choice in data carriers offers great flexibility
to both server and client side developers. The XMLHttpRequest object was introduced
by Microsoft in 1998 as an ActiveX component, but was later implemented natively in
most other browsers and as of April 5th 2006 it is a draft standard specification of the
W3C. In the upcoming Internet Explorer 7, there will be a native implementation next

 14

to the existing ActiveX component. Most would agree that it’s a welcome addition to
the JavaScript language allowing much more interactivity among other benefits.

4.5 Content manipulation
Ajax allows server requests without completely reloading the web page, and in order to
be of any use, the requests response should be returned to the end user in some way.
Visible feedback is an important requirement for Rich Internet Applications, indicating
that something happening by for instance showing the newly added content or
removing some content. Frequently used types of visual feedback are highlighting,
movement of elements or animated indicators like hourglasses and progress bars. Every
web page is internally represented by a Document Object Model (DOM) which
essentially is a tree-like structure that can be accessed through a JavaScript interface. In
modern browsers, almost any object of the DOM can be accessed and changed: styling,
browse history, images, elements, form data and so on. Ajax applications are different
from traditional web applications because some application logic is moved to the client
and therefore the manipulation of the page elements is essential.

4.6 Caveat emptor
Ajax has quite some impact on the traditional application model of web applications.
Certainly Ajax has a very positive side but there are some setbacks that come with the
introduction of this new application model. I will discuss the issues a developer should
be aware of and provide solutions where needed.

4.7 Bookmaking and the back button
Browsers were initially not developed for the kind of applications made possible with
Ajax. People have become accustomed to their browser and the Internet and are
expecting certain behaviour from the browser. One very important feature is the ability
to set bookmarks to later return to the exact same page. Browsers keep bookmarks as
URLs, because they should be portable to another computer, user or time. As noted by
[9], when changing the web page with Ajax and DOM manipulation, the URL stays
the same but the content doesn’t. If you would bookmark a page that was modified
using a content manipulation technique, returning to that page at another time will not
result in the same page. This essentially renders your bookmarks useless, the same goes
for passing on the URL to someone else by mail or instant messaging.
The type of solution suggested by [9] is the most widely used technique to maintain
bookmarkability. When content is changed in a web page, a “#” mark is added to the
URL in the address bar followed by one or more unique identifiers. When the URL of
the page is transferred and the page is reopened, the client side script will have to check
for the “#” mark and then reconstruct the page from these unique identifiers. This
technique works in the most popular browsers, but not in all browsers like [9] suggests.

 15

Some browsers will force a page reload when adding the “#” mark. The “#” mark is
normally used for scrolling to an in-page anchor. But when the anchor is not available
nothing noticeable for the user will happen and thus information can be stored after
the “#” mark.
Another important feature in browsers is the browser history, a chronological track
record of pages you have visited. Users expect to return to the previous page, or page
state, when pressing the back button. Then pressing the forward button should bring
you to the original page you were viewing. Most browsers update their history when
adding the “#” mark and thus allowing easy navigation. However, not all browsers
implement the history the same way and so browser specific workarounds are needed.
A common solution is to use a hidden iFrame in the page and force the page history
there, without changing the actual page.

4.8 Page footprint
As with all web applications, a great deal of the program code is executed by the client.
Because of this, code has to be transferred to the client. Depending on the framework
the size of the code varies between a few kilobytes and a few megabytes. When network
bandwidth is critical, there are techniques to decrease the amount of data to be
transferred. Most web servers support the gzip content encoding method. When the
client does so too, there is an opportunity for significant size reduction equivalent to
compressing data with the gzip command found on most Unix-like operating systems.
Alternatively or additionally, a more aggressive approach is to remove all formatting
characters (spaces, tabs and new lines) or even shortening function and variable names
in order to reduce size. The drawback is that the code becomes much less readable and
thus harder to debug in a live situation. Of course the original code will be maintained,
but will have to be compacted before every deploy.
Saving some bandwidth is good, so gzipping the content will suffice.

4.9 Browser wars
The term “browser war” can be interpreted in different ways. Often it refers to the
quickly changing market shares held by the respective browsers. In a way this is
important as to make decisions about which browsers to support. From a technical
point of view the “browser war” can be interpreted as the incompatibility of different
implementations of certain browser features. Some years ago, the differences between
browsers were huge, making full cross-browser applications out of reach for most
developers and often it was chosen to only support certain browsers. A key requirement
for the success of Ajax is browser compatibility. Browser compatibility has become
better in recent years because of the standardization of implementations. There are still
differences in implementations though, but most of them can easily be coded around.
Frameworks usually take care of browser incompatibilities. If you are going to push the

 16

limits of rich Internet applications and cross browser compatibility, be prepared for
obstacles you might not be able to overcome. When choosing a framework, determine
which browsers you want to support and choose accordingly. For the case study, the
widest support possible is needed because of the enormous amount of visitors and
many different clients.

 17

5 Framework requirements
To make a good judgement on which Ajax framework, if any, is suitable to be
incorporated in a very large website you need requirements. What is the framework
expected to offer and what are the needs for this specific case study? In the case study
an Ajax framework will be implemented in the Hyves website. An existing page in the
website will be modified so that it takes advantage of the Ajax application model. The
effect on server time required to process a page and the amount of data transferred will
be studied for traditional pages and Ajax enabled pages.
Chapters 5.2 to 5.6 each describe a framework requirement.

5.1 Defining a framework
The word “framework” requires some explanation. Ajax by itself is not a framework it
is a design pattern. A framework in software development can be defined as a support
structure consisting of support programs and code libraries, used to build new software.
Frameworks are designed to facilitate software development, allowing software
developers to spend more time on the software requirements rather than dealing with
the low level details to get a system working. In literature frameworks are defined in
many ways such as a reusable and extendable set of objects for related functions. Or a
set of related functions that define the area of expertise or competencies of the
framework [14]. When looking at Ajax it makes sense to use a framework. Classes and
functions for making Ajax requests, manipulating DOMs and visual indicators are all
related in the context of rich Internet applications. This is exactly what the reviewed
frameworks are. In general they offer a high level of code abstraction and let you focus
on what you really want to accomplish instead of handling all sorts of trivial operations.
Common complaints against frameworks are that they set you back with too much
code that could make your system unnecessarily slow or complex. Programmers will
also have to invest in actually learning the framework. This is a trade-off however and
many software developers will agree that generally using a framework will make you
more productive.
Although not all the reviewed “frameworks” call themselves frameworks, looking at the
definitions of a framework they fall into this category and will be referenced as such.

5.2 High level code abstraction
Performing an Ajax request seems like a rather simple thing to do but in fact it requires
rather complicated code for different browsers. As it is an asynchronous request you
will have to check incoming data for a readystate (see chapter 4.4) and perform the
appropriate action. The chosen Ajax framework should provide a high level of
abstraction for performing Ajax requests. As mentioned earlier, client side content
manipulation is essential for the Ajax application model and therefore the framework

 18

should also provide other high level abstractions to simplify common routines and lift
cross browser issues off the developer’s shoulder.

5.3 Non restricting licensing model
Ajax/JavaScript frameworks are available under many different licenses, from
expensive commercial licenses to open source licenses with very few restrictions. The
company in the case study is a start-up where money matters. Some of the more
extensive frameworks carry per server or even per CPU licenses, which would be very
expensive for more than 70 web servers and double the amount of CPU’s! For that
reason the focus will lie on freely available frameworks, although commercial
frameworks are not excluded.
From a developers point of view the licensing model also has impact on the ability to
modify source code and indirectly the continuity of the product. When choosing third
party software there is a risk of lack in continuity. With commercial products this may
be a problem as the providing company might discontinue a product and might not
open up the sources. Free or open source products are different in the way that you can
only depend on them to a certain extent. The sources are mostly open but the
development roadmap can be very erratic. The licensing model is of importance when
the creator or company that made the framework might become defunct. In order to
guarantee the continuity of the product, the licensing model should allow for
modification when needed. In general, the more flexible the license the better.

5.4 Documentation
The quality of documentation is important, as is community support. Commercial
products are likely to be shipped with adequate documentation, but the quality of
documentation of open source products varies widely if there is any documentation at
all. Quite often the product is developed while the documentation is lagging. We
require either decent documentation from the creator or sufficient support from the
community, like forums and third party documentation.

5.5 Back-end independence
The available frameworks differ strongly in what they are trying to achieve and what
they have to offer. Some are only Ajax/JavaScript frameworks that focus only on the
client side while others offer end-to-end solutions including a fully integrated
development environment. The Hyves website is a very large commercial website with
around 500.000 lines of code. When adding new Ajax functionality to the website the
existing backend will have to be used, as rewriting the back-end would have too much
impact on all the developers and would require a long feature freeze. Developing a new
backend for use with a framework will call all other development to a screaming halt,
which is simply unacceptable from a commercial perspective. The chosen framework

 19

has to be back-end independent, making most end-to-end frameworks unsuitable
solutions.

5.6 Broad level of browser compatibility
With a large scale website like Hyves comes a wide variety of browsers that visit the
website. When using an Ajax framework you don’t want to worry about cross browser
issues, this is something the framework should take care of for you. It is nearly
impossible to fully support all browsers but luckily most of them can be categorized by
their rendering engine. Below is an overview of the most important browsers that visit
Hyves. The overview also includes browser versions and their respective rendering
engines. Other browsers than the ones mentioned, that use one of the above rendering
engines, are likely to have no problems.

Browser name Rendering engine Should be supported
Microsoft Internet
Explorer 5.5
Microsoft Internet
Explorer 6.0
Microsoft Internet
Explorer 7.0

Trident/MSHTML Yes

Mozilla FireFox 1.0.x
Mozilla FireFox 1.5.x

Gecko Yes

Apple Safari 1.x
Apple Safari 2.x

WebCore Yes

Opera 7.x
Opera 8.x
Opera 9.x

Presto Yes

The browsers mentioned above account for 99.9 percent (literally) of all browsers that
visit the website, supporting these browsers is sufficient.

5.7 Framework preselection
Since the inception of the name Ajax, many frameworks have rapidly become
available. Even in the last few months, new frameworks were released that I could not
include in the evaluation. It is not possible to evaluate all frameworks in the limited
amount of time. Using the criteria mentioned earlier, a subset of frameworks will have
to be made. An important criterion is the cross browser compatibility. In [22] a grading
system for Ajax frameworks is explained and also a vast amount of frameworks are
rated. This is also a good starting point for determining which frameworks to select.
Obviously there are even more frameworks available, but these are mostly unfinished
or very small and unknown products. The rating system categorizes frameworks in five

 20

categories (from A to E), ranging from the broadest level of browser compatibility to
the least browser compatibility. We focus on grade A Ajax frameworks as Internet
Explorer 6+, FireFox 1.0+ and Safari 1.2+, Opera and other DOM-compliant
browsers are supported. They also best represent the browsers that visit the Hyves
website. Please note that Ajax frameworks are constantly being re-evaluated and may
move from one category to another. At the time of writing the following frameworks
fell into the grade A category:

• Dojo Toolkit
• Echo 2
• JavaScript/Ajax Toolbox
• jQuery
• Moo.fx
• Prototype
• Rico
• Sardalya
• Script.aculo.us
• Tacos
• TurboWidgets
• TwinHelix
• Wicket
• Yahoo! User Interface Library

As this is a preselection phase, the frameworks will not be discussed in depth. All the
framework information here is gathered from their respective web sites, documentation
and demonstrations.
I will walk through these frameworks. For any of the licenses mentioned below, please
visit http://opensource.org/ for the most recent version of the complete license texts.

5.7.1 Grade A frameworks
Dojo Toolkit
The Dojo Toolkit is a well-featured JavaScript Toolkit that provides many
functionalities for creating rich internet applications. Some effects and many controls
are available as well as a lot of advanced features. The framework footprint is rather
large but supports a lazy loading mechanism. It is available through either an
Academic Free License or BSD license. There is a roadmap for the coming years and
they have substantial backup from the industry, IBM and Sun Microsystems for
example. It is a very advanced framework and looks very promising. Not all controls
work on all browsers though.

Echo 2

 21

This framework is an end-to-end solution, which is available under the Mozilla Public
License or alternatively LGPL. Your web applications are written in Java and the
framework generates your web application. This construction will not fit into an
existing environment, although it is an interesting option to consider when building
from scratch and your chosen programming language is Java.

JavaScript/Ajax Toolbox
A library that simplifies frequently used controls in web pages, it has limited Ajax
capabilities. The library does not require a specific back-end to work. In general this
library is too limited.

jQuery
This library is not really a new creation but more of a custom implementation of
different libraries, most notably Prototype, Moo.fx and Script.aculo.us. Its
implementation and configurability is very limited. On the positive side, the library has
a small footprint.

Moo.fx
Moo.fx is an effects library written on top of Prototype. It’s a very small library with
limited functionality but is promoted as such and is very easy to use in existing
environments. It’s available under the MIT license.

Prototype
The name of this framework can be confusing as the property in JavaScript to extend
object classes is also called prototype. Prototype takes away all cross browser
annoyances in JavaScript and also extends existing objects with “missing” and very
useful methods. It was originally developed as the client side counterpart to Ruby On
Rails, but does not require it. Although documentation from the authors is virtually
non-existent, the community provides plenty of documentation, tutorials and examples.
The framework is available under the MIT license and has a limited footprint. It can
easily be integrated into an existing environment, but a little care has to be taken
because of possible conflicts with existing JavaScript code.

Rico
Rico offers JavaScript effects and controls written on top of Prototype. It’s an easy to
use library and easy to integrate into existing applications if you use Prototype. It was
developed initially for Sabre Airline Solutions, but is now available for free under the
Apache 2.0 license.

Sardalya

 22

The Sardalya library is inspired by the Prototype library. It has not been tested on the
Macintosh platform, it is hardly used and requires a license fee (be it a small one). The
documentation is messy and it doesn’t have anything to offer over other frameworks.

Script.aculo.us
Script.aculo.us is a controls and effects library written on top of Prototype, that is very
configurable and fully cross browser. Not that many controls are provided though. The
ones that are provided are very useful (drag and drop, slider, auto completion). The
effects are very well thought out and provide excellent visual feedback for Ajax
applications. The documentation is of good quality and many examples are provided.
The library is becoming very popular among web developers and new controls and
effects are being contributed. The library was developed for the commercial Fluxiom
project, a web based digital asset manager, but most of it is now freely available under
the MIT license. The library adds a fair amount of data to be downloaded, but offers
the ability to retrieve only certain parts to save bandwidth.

Tacos
While most other frameworks are client based, Tacos is a back-end framework and is
written in Java. For the client side it relies on other frameworks like Dojo, Prototype
and Script.aculo.us. The documentation is still under development, the framework is
available under the Apache Software License.

TurboWidgets
Like the name suggests, this framework offers widgets. The implementation is well
done and relies on the Dojo Toolkit. The license however is restricting and requires a
license fee.

TwinHelix
TwinHelix offers controls that have been around for ages, like menus, pop-ups and tool
tips. TwinHelix is a collection of independent controls that each require a fee if you
intend to use them.

Wicket
This is another Java based framework, publicly available under the Apache 2.0
License. It is a fully featured WYSIWYG framework for designing Ajax applications,
requiring no HTML or JavaScript skills and offering full cross browser compatibility.

Yahoo! User Interface Library
This library was only recently released, under the BSD license. It has a full set of
features such as animation effects, widgets and Ajax functions. The documentation and
examples are of good quality and so is the code itself. Yahoo! is dedicated to this
project and is actively developing.

 23

5.7.2 Preselection conclusion
Although there might be frameworks available that have better features or more
complete support, they do not offer enough cross browser compatibility for me to
consider them. More and more frameworks are becoming available making it even
harder to make a decision.

First of all, all frameworks that are not truly cross browser were not even considered in
this evaluation. Frameworks that rely on a particular back technology or that are back
end only are ruled out. Frameworks that are closed source implementations or require
license fees are the next ones to be excluded from further evaluation. The overall
design of the framework is a final criterion on which the frameworks will be
preselected.

An interesting observation is that quite a few of these grade A frameworks
(Script.aculo.us, Rico, Wicket, Taco, Moo.fx, jQuery) are built on top of or inspired by
Prototype. Why is this? The following reasons come to mind. Prototype has been
around for almost a year and was one of the first Ajax frameworks available, it was
popularized by the Ruby on Rails framework that uses Prototype as its client side
counterpart and last but not least because it is very well written and thought out. The
Dojo Toolkit also looks very promising and has a very good roadmap and industry
support, but the framework footprint is quite large. The Yahoo! User Interface Library
(YUI) is very new but offers great functionality and documentation. Yahoo! made this
library available under an open source license. Prototype, Dojo and YUI are the only
frameworks suitable for use in the case study and will be discussed in depth in chapter
6. Script.aculo.us will be evaluated together with Prototype, instead of Moo.fx and
Rico, because of the very tight integration with Prototype and because it is very well
designed.

 24

Table 1: framework usability
 Back-end

independent
Open source
/ no license
required

Overall
design

Conclusion
usability in
case study

Dojo Toolkit + + ++ +
Prototype + + ++ +
Script.aculo.us + + ++ +
Rico + + + +
Yahoo! User Interface
Library

+ + ++ +

Moo.fx + + + +/-
JavaScript/Ajax
Toolbox

+ + - +/-

jQuery + + - +/-
Sardalya + - - -
TurboWidgets + - + -
TwinHelix + - - -
Echo 2 - + + -
Tacos - + + -
Wicket - + + -

 25

6 Selecting the framework
The three frameworks (Dojo Toolkit, Prototype and Yahoo! User Interface Library)
that where pre-selected in chapter 5.7.2 will be assessed based on the selection
requirements as described in chapter 6.1.

6.1 Selection requirements
Some requirements are more important than others when selecting a framework for
this case study. Some apply to frameworks in general, others apply more specifically to
this case study. The requirements can be divided into two groups: functional and non-
functional requirements.

For the functional requirements we will not be looking at the ability to perform Ajax
requests, because they all do. This was a requirement to be evaluated in chapter 5.7.1.

The functional requirements are:

• Useful visual effects
• Widgets (user controls) for greater efficiency
• Good event handling abstraction

The visual effects play a key role in Ajax applications as they actively keep the user
informed of what is happening. Without these visual indicators the user is left in limbo
on the current status of the application. The purpose and usefulness of these effects
weighs heaviest.

Advanced user controls (widgets) are often associated with Ajax. These widgets can be
anything from drag-and-drop to sliders and from in-place-editing to auto-completing
text fields. It can be a complex and tedious task to write good cross-browser versions of
these controls yourself. Useful and cross-browser widgets are important in selecting a
framework.

The more advanced your Ajax application becomes, the more complex it will become
to write good code for event handling. Instead of coding all events inline, a more AOP
style approach is preferred. Most Ajax framework projects have correctly identified this
area that needs attention and have thought up solutions to make event handling more
manageable in complex applications.

The non-functional requirements are:

• Effective use of the possibilities of JavaScript
• Good ease of use for developers

 26

• Good documentation and examples
• Flexible licensing

As the three selected frameworks are client side only, they are written entirely in
JavaScript. As JavaScript is an interpreted language it offers great possibilities and
more flexibility to your programming style. Do the frameworks take advantage of the
possibilities of JavaScript?

As noted earlier an arguable drawback of using a framework is that developers will
actually have to spend time to learn to program in the framework. In order to
minimize the overhead that is created by introducing a framework, the ease of use is of
importance. Does the coding style resemble another well-known framework or
language? Isn’t the framework over engineered? These questions will help to determine
how quickly developers will adapt to the framework.

With many open source projects the documentation is still incomplete. But the
documentation should help developers learn to use the framework more quickly. When
it comes to debugging errors in your code or maybe the frameworks code, if you have
no documentation it feels more like black box testing. Having documentation available
will give far better results. The availability of the documentation is needed for possible
future debugging and currently for assisting the developers.

All of the selected frameworks are open source. The licensing model of a framework
matters when it comes to continuity. With the high paced development on the Internet
it is not unlikely that every now and then standards will be broken and the framework
might possibly not function the way it was designed anymore. Usually the creators of
the framework will fix the framework. If the framework might become obsolete or
abandoned it is essential that you have the right to make modifications to the
framework in order to fix it yourself.

The requirements for the frameworks were evaluated by reading documentation,
checking forums for user experiences and by writing prototypes to get simple tasks
done.

6.2 Dojo Toolkit
The Dojo Foundation is a non-profit organization that currently hosts two projects, the
Dojo Toolkit being one of them. It is getting support by major companies in the
industry like IBM, AOL, OpenLaszlo and most recently Sun Microsystems. In essence
the Dojo Toolkit is a dynamic HTML (DHTML) toolkit with Ajax support written in
JavaScript. As with most JavaScript frameworks it aims to simplify development in
JavaScript by solving browser incompatibilities with a new layer of abstraction.
Although it’s only at version 0.3.1 and still has many bugs to be fixed and features to be

 27

implemented, it offers a great amount of functionality. The event system, I/O APIs,
widgets and generic language enhancements are only a few of them. The toolkit is not
required to run in a browser environment but can run in most JavaScript engines.

JavaScript
The Dojo Toolkit offers a Java like package system, which requires you to
specifically include packages to be able to use certain functions. While you
could write JavaScript in a non-object oriented way, the Dojo Toolkit is all
object oriented and offers a very high level of code abstraction.

Event-handling
The Dojo event system uses an aspect oriented programming (AOP) approach
to event handling. [19] describes the practices of AOP. When using a likewise
approach for event handling, one can isolate the events added to objects
without changing the objects themselves. This is a very good solution to the
problem of event handling.

Visual effects
The visual effects are most valuable as an indicator that something has
changed or needs attention, though Dojo focuses mostly on animation
(movement). In general this is useful but when you look at existing web
applications that use Ajax, this kind of animation is rarely used. Of course it is
possible to write your own visual effects and that’s where Dojo comes in handy
because custom effects are very configurable but will require some effort. Very
useful out of the box effects are not provided though.

Widgets
The toolkit offers many user controls that are difficult to implement without a
toolkit. While trying out the different controls, quite a lot of them came out
differently in different browsers or simply didn’t work at all. This is probably a
work in progress, but it seems the focus lies on sheer quantity of widgets instead
of true cross browser compatibility for now. When using a framework you
don’t want to worry about widgets not being compatible with all browsers!

Ease of use
Because of the great amount of functionalities that Dojo offers it will require
some time to become proficient at it and the unfinished state of the
documentation makes it more difficult to get started. The Dojo Toolkit is very
well structured though.

Documentation

 28

Documentation [20] is largely in the works. This means that there is no
complete reference guide or that documentation for some parts might be
unavailable. There is a very large repository of example code, which might be
used to see how things work. Most of these examples are rather limited though
and should be used with care.

Licensing
The Dojo Toolkit has a dual licensing system, it is either available under the
BSD license or the preferred Academic Free License v2.1. The BSD license
should be applied when the Dojo Toolkit is being used in software products
that fall under the (L)GPL. Both licenses are incredibly permissive and give you
royalty free rights to use or modify the original work. For the full license texts,
see http://opensource.org/licenses/.

6.3 Prototype (with Script.aculo.us)
Prototype was developed to ease the development of highly interactive web pages and
rub out browser incompatibilities. It is also the client-side part of the very popular
Ruby on Rails web development framework, but it also works independently or with
any server-side software. It is an object oriented JavaScript library that offers easy Ajax
requests and many useful functions for content manipulation.

JavaScript
A criticized [12] aspect of Prototype is that it extends many standard
JavaScript objects with additional methods using the prototype property, hence
the name Prototype for the library. This may cause conflicts with existing code
that also extends the standard objects with equally named properties or
methods. As described in [12], Prototype also breaks the standard behaviour
for the Object type that is often used as an associative array in JavaScript.
Code that relies on “for(var i in object){...}” control structures may have issues
when using prototype. Not all is bad though, for these control structures can be
rewritten with very little effort. So why accept this discomfort? Prototype adds
many methods to existing objects and arrays which makes writing JavaScript
code a lot more comfortable. These additional methods are inspired by the
Ruby programming language. Prototype also offers object inheritance and
functions for easy access to document elements. It is a very inspired work of
art.

Event-handling
There a two approaches to event handling in Prototype, one is by adding event
observers to certain elements on the page. This is comparable to the Dojo
system, although the Dojo system is far more powerful. By using the additional

 29

“Behaviour” library, a Prototype related project, it is possible to create rules
based on CSS selectors. CSS is more than only styling of elements, it offers a
very smart and extensive mechanism for selecting elements in your document
tree. With Behaviour you have an unobtrusive way of adding events to
elements on your page, selected by CSS rules.

Visual effects
The Prototype library doesn’t provide visual effects on its own, which is why
most often it is used in combination with Script.aculo.us. Script.aculo.us is built
on top of Prototype and its syntax seamlessly blends with Prototype’s. It offers
the so very important visual indicators for when page content is updated.
Highlighting and the appearing and fading of elements are very useful effects
for drawing attention and showing the user what is happening. The effects
system is very configurable and has a queuing mechanism for chaining effects.
It is very easy to add effects and will generally provoke a “Wow!” reaction from
the user.

Widgets
There are not a lot of controls in Script.aculo.us, but the ones that are
provided are very useful and are difficult to implement otherwise. The key
widgets are drag-and-drop support, sortables (creating sortable lists of nearly
any collection of elements), sliders and auto-completing text fields. More
controls are being added every now and then.

Ease of use
Prototype is very easy to use, even if you haven’t written in Ruby before, and
Script.aculo.us follows suit. All that needs to be done is include the required
JavaScript libraries and everything is at the tip of your fingers. It’s very
intuitive and has a clean syntax.

Documentation
Documentation from the developer of Prototype is almost non-existent, but
because of the enormous popularity of Prototype there are dozens of websites
explaining its functions and providing samples. Some go in depth on certain
features, while others provide complete function references. Most of them are
collected at http://www.prototypedoc.com.

Licensing
The MIT license under which Prototype and Script.aculo.us are licensed is
arguably one of the most flexible license types and gives the right to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the

 30

software. For the full license text, see http://opensource.org/licenses/mit-
license.php.

6.4 Yahoo! User Interface Library
The Yahoo! User Interface Library is relatively new and was not available at the initial
selection process for possible candidates. The library looks very promising and could
provide many developers with very high quality code to enrich their internet
applications.

JavaScript
As in any programming language, using global variables is considered to be a
bad practice. There is a chance you will be overwriting that variable when you
write more code, and thus breaking your existing code. Chances increase when
using more JavaScript. This is why all of the features are accessible through a
single YAHOO global variable, which is very unlikely to be overwritten. The
library is fully object oriented, and has a Java like package system.

Event-handling
The YUI facilitates event handling in a few ways. It has a flexible method for
attaching event handlers to one or more elements, it provides browser
abstraction for the event object and automatic listener cleanup just to name a
few. The event part of the YUI is very well implemented.

Visual effects
The effects that are provided by the YUI are very basic effects: movement,
resizing and opacity. Of course this allows for the creation of custom effects
but, like the Dojo Toolkit, it doesn’t provide useful effects by default. More
thought should have been put into the effects library to make it more valuable.

Widgets
The amount of user controls is decent, the library offers auto completion,
calendar, slider and tree views. The controls are very well implemented and
work on all major browsers.

Ease of use
Depending on which features you will be implementing you will have to
include extra JavaScript files for each additional feature you will be using.
Because of its well-engineered nature and Java like setup most developers will
have little trouble using it.

 31

Documentation
Yahoo! provides extensive documentation of the user interface library, API
references, cheat sheets and examples are all provided.

Licensing
The BSD license is a very flexible license and is equivalent to the MIT license
except for the fact that it includes a no-endorsement clause. This prohibits you
from using the name of the organization or its contributors to promote
products derived from the original product.

 32

6.5 Table overview of the frameworks

 Dojo Prototype YUI
License AFL or BSD MIT BSD
Footprint 232Kb bootstrap

(max 2Mb)
56Kb + 132Kb for
Script.aculo.us

Depends on used
libraries (max
1,3Mb)

Development
roadmap

Yes No No

Documentation Incomplete No, good third
party
documentation
available

Yes

Bookmarking Limited No No
Effects Limited usefulness Yes (with

script.aculo.us)
Limited usefulness

Object extending No Yes* No
Cross browser Yes (except some

widgets)
Yes Yes

Ease of use Good Very Good Good
Widgets/Controls Yes (many) Yes (few) Yes (few)
Community
adoption

Very limited Very high Very limited

* This creates a risk as existing code might break, see Appendix B for a solution.

6.6 Analysis
Eventually all three of these frameworks will do the job just fine, but still one has to be
chosen for implementation so I will give a rationale for my decision. Looking at the
sheer footprint of the frameworks, Prototype clearly is the best option as it will take the
least time to be downloaded. In the case study, however, static JavaScript files are
served separately and once download are cached on the client. The broadband
penetration in the Netherlands is also very high and the additional data of client scripts
will require little time to download. Prototype is the easiest to integrate into an
application, you don’t have to think about what files to include in order to access
certain functions. Dojo offers a lot of functionality and is a functional overkill for this
particular case study, which require more time and effort from the developers who
would be using it. Dojo and YUI will not break existing code as everything is written in
its own namespace. Prototype can break existing code but workarounds are available
and it will not really be an issue as long as you know how to write your code.

 33

Bookmarking and history support is only partially supported in Dojo, so custom
solutions will have to be written anyhow. In terms of visual effects, Script.aculo.us is
clearly the winner. Everything you need to give your application more appeal and
visual feedback is at your fingertips, where the other frameworks only offer limited
usefulness. All frameworks are of similar quality when it comes to widgets and easy of
use, although Dojo is a bit more complex and it’s widgets do not work on all browsers.
The YUI library is very new and therefore Prototype is favoured. Last but not least,
Prototype and Script.aculo.us are being used in many websites already and has an
overwhelming support from the community. These websites are the frontrunners in the
Web 2.0 movement

6.7 Conclusion
We will be using Prototype together with Script.aculo.us as the framework of choice.
The good third party documentation, very useful effects and controls, community
adoption and high easy of use are the main reasons for this decision.

Since Prototype was chosen tests were executed to check where existing code in the
Hyves website would break due to the extending of objects. This came down to only
two pieces of code that could easily be fixed as described in appendix B. All new
JavaScript code extensively uses the Prototype framework, freeing developers from
quite some cross browser issues.

This concludes the first research question “Which Ajax framework suits the case
study?”. Next the effect on network traffic will be researched.

 34

7 The effect on network traffic
An important use of Ajax is to enable incremental updates to the web page. When
requesting a new page only certain parts will have to be updated. Depending on the
type of page and the amount of data needed to be updated, it should be possible to
reduce the amount of network traffic generated. This assumption was tested in the
Hyves website.

7.1 Method
To get quantitive results on the effects of Ajax on network traffic, a web page in the site
was modified in order to update contents using the Prototype framework. A similar
approach is described in [13]. JavaScript functions were written in order to request
only parts of the page and updating the current content instead of requesting an entire
new page.

Using the OneStat web analytics tool used by Hyves, the amount of page views
generated are compared over two periods of one month each. This analytics provides
information like when and how often a certain page is requested, the amount of
(unique) users and the client used by the user. Due to the sensitive nature of this
information the page description is very abstract, see chapter 3 for more information
about the page.

In the original set-up a page is always served as a whole. Every new item to be viewed
is a complete round-trip to the server, returning the whole page. Even though much
information on the page stays the same it is still being fetched from the server. Using
Ajax it is possible to update only certain parts of the page, so called delta or
incremental updates. The first page always contains the complete content and even a
little overhead for the extra JavaScript needed for Ajax. Consequent views require only
a partial update that include just the changes. With delta updates the absolute amount
of data to be transferred can indeed be reduced significantly as we will see.

7.2 Results
The original page only consists of one page, while the Ajax version has one base page
and a delta update page. The results are taken from two consecutive months.

 35

Page # Views Average
size

Total
Kilobytes

Page # Views Average
size

Total
Kilobytes

Base 3,970,490 275Kb 1,091,884,750 Base 799,544 275Kb 219,874,600
 Delta 4,293,439 98Kb 420,757,022
 Total 1,091,884,750 Total 640,631,622
Figure 1: number of page requests and the amount of data generated

Serving the normal page in the old situation produces 1100 Gigabytes of data in this
particular period, while in the new situation only 640 Gigabytes need to be transferred.
A saving of about 450 Gigabytes, or 41.3 percent. In addition to the reduced network
bandwidth, the effective number of page views for this page has increased by over a
million. The difference in number of unique visitors over these monthly periods was
less than 1 percent, so this can only mean that unique visitors viewed more pages of this
particular type.

7.3 Analysis
As we have seen, significant amounts of data can be saved by using incremental
updates. Although these results will vary strongly depending on the amount of content
to be updated, the figures above are a good representation of a typical use of Ajax for
delta updates. In the future more modifications can and will be made to other pages on
the website in order to save even more network bandwidth.
Something more interesting however is the reason why there are over a million more
page views in the Ajax situation. It cannot be explained by the 1 percent difference in
unique visitors. Is it because of the increased usability and reduced latency introduced
by Ajax? And how can these extra million pages be served while the servers are already
dealing with very high loads? The next chapter will give insight in the server load of the
Ajax and non-Ajax situations.

7.4 Conclusion
For a certain single page it can be expected that using Ajax an average X% of network
traffic can be saved, where X is the percentage of page content that remains the same
when updating the page. This means that 100% - X% of page content needs to be
transferred over the network, where in traditional web pages all 100% needed to be
transferred. A saving of 100% is not possible, because this would mean that no page
content needs to be updated and performing a request would be useless. This
conclusion applies to web pages that match the characteristics mentioned in chapter 3.

Even when the number of requests increase in the Ajax situation there is still a
significant absolute saving of network traffic.

 36

8 The effect on server load
In addition to the reduced amount of data that has to be transferred when using Ajax,
it is also interesting to see how much time the server needs to actually prepare the data
before it is being sent to the client. Server load is purely a factor on the server whereas
the amount of network traffic impacts the server network connection, the user’s
Internet connection and the costs that network traffic might generate.

The incremental updates have a reduced complexity compared to the original pages
and should therefore take less time to process. The measurements were taken from the
same pages as described in the previous chapter.

8.1 Method
For the measurements of the non-Ajax page, 10 series of 4 unique pages were
requested entirely. The server measures the time needed to process the page. The timer
is started at the moment the script (of the requested page) starts executing and stops
when nothing more has to be done.
For the measurements of the Ajax page, again 10 series of requests were done. The first
request is a complete page, similar to a page in the non-Ajax version. The consecutive
requests are delta updates to the current page. These delta updates only contain certain
elements that need to be replaced in the current page in order to create a new page
with new content. As we have seen, these delta updates contain far less data than a
complete page.

The execution time reflects the difference in system time (also called wall-clock time or
real-world time) between start and end, not the actual processor time to execute a
script. In multitasking environments this can have a negative effect on the time to
complete a script as other processes might require time from the processor. All testing
however was done on an isolated machine used only for running these performance
tests. As multiple series of runs were done, any other processes that might have affected
the results would be clearly visible.

For the database a development server was used, which is shared between developers.
When many developers would actively be using the database at the same time this
could affect the time to complete a script. This is not bias but actually better represents
a real-world situation. This would also affect both non-Ajax and Ajax situations.

 37

8.2 Results
Figure 2 shows the average time for the server to process a page in both Ajax and non-
Ajax situations as collected from the test runs. The maximum and minimum times
were removed from the results to get a better representation of the average. The
numbers 1 to 4 represent consecutive requests that were always performed in order.

Figure 2: difference in processing time

As we can see, the initial page requires slightly more time to be processed because of
the overhead of the extra Ajax code. Compared to the consecutive requests however,
this is really insignificant. The reduced complexity of the delta updates requires far less
time to be processed. For this specific page it shows that the delta updates require
about one third of the time to process when compared to the first request. The results
from web analytics tool used by Hyves in Figure 1 show that there are far more delta
updates being requested at a 5.37 to 1 ratio. This represents a very significant saving in
server processing time and future modifications to other pages will further improve
savings. The long processing times of the pages are due to their highly dynamic nature.

8.3 Analysis
By using incremental updates for your web pages you can achieve significant savings on
server load. However, this strongly depends on how dynamic your pages are. It speaks
for itself that a page with 80 percent dynamically generated content of which 50
percent is incrementally updated offers more advantage than a page with also 80

 38

percent dynamically generated content of which 90 percent is incrementally updated.
In the case study roughly only one third of the page is changed with an incremental
update, explaining the strongly reduced server time required. See chapter 3 for more
information on the specific page. It is easy to imagine that less complex page updates
will result in even greater improvements.

8.4 Conclusion
Even though you will need to add extra code in order to enable the use of Ajax, this
code is executed on the client and causes no overhead on the server. Consecutive page
requests after the first one offer a significant reduction in load on the server. Again, this
conclusion can be applied to pages with characteristics similar to those mentioned in
chapter 3. To get exact numbers on how much load can be saved you would need to
measure the complexity of all parts of a page. Then you know which parts will need to
be updated and how their complexity measures compared to other parts of the page,
that do not need to be updated. This is a very tedious task and does not contribute to
this conclusion in general terms as it is different for every page. The order of
magnitude is far more interesting.

 39

9 The effect on usability
Maybe the single most important effect of using Ajax is the improvement of usability.
According to Jakob Nielsen [15], usability is defined by five quality components:
learnability, efficiency, memorability, errors and satisfaction. In this study all these
components are measured except for memorability as all tests were done in one session.
Memorability is how easily users become proficient in an application after a period of
not using the application.

The efficiency of web pages can be improved in different ways. With Ajax you will
mainly be focussing on the availability of user controls (widgets) for more intuitive use
of the application and reduced server response latency, which translates into better
overall responsiveness.

9.1 Method
To test the effects of improved usability, I have made two versions of a sample
application and conducted tests as described in [16]. It suggests what measurements to
take, how many users you need, how to prepare the users and how to avoid possible
bias.

The application lets you make simple to-do lists, from now on it will be called
“Listmaker”. A number of tasks were predefined for the user to carry out. The users
were asked to make a to-do list with 10 items prior to the actual test in order to reduce
possible bias for one of the applications. These were the tasks:

• Enter all 10 items on your to-do list;
• Put the last item in the list first;
• Move item 4 to position 8;
• Move item 5 to position 2;
• Change the text of 3 items in the list;
• Remove 3 items from the list.

The following measurements were taken during and after the tests:

• Total time to completion;
• The number of user errors;
• The number of times the users expressed clear frustration;
• The preferred version of the application.

 40

Figure 3: Ajax version of Listmaker

Figure 4: non-Ajax version of Listmaker

 41

Two groups of five test persons where asked to complete both the task list in both
applications. One group started with the non-Ajax version, the other group started
with the Ajax version. After the completion of both tasks, the subjects were asked to
perform the tasks in the Ajax version of Listmaker one more time. This was done to see
if they could perform tasks more efficiently now that they had learned how to use this
new kind of web application that uses Ajax. People are generally familiar with how
websites work but Ajax is something else. Before actually starting the tests, users were
briefed with the following:

• The tests will remain anonymous;
• During the test, it is not allowed to ask questions;
• Questions may be asked and answered afterwards;
• Carry out the tasks exactly as instructed;
• Take your time;
• Stay focused and turn off your phone.

With the Ajax version of the Listmaker, users are expected to complete their tasks in
less time due to the fact that their workflow isn’t interrupted when adding or changing
data. In fact, the user perceived latency is almost non-existent as data is being sent to
the server behind the scenes while the user interface might be updated instantly. This
near instant response time is very desirable, as Nielsen describes [16]. Response times
longer than 10 seconds require progress indicators and generally cause users to lose
their attention. In traditional web applications the user perceived latency depends on
several factors: server throughput, the server’s connection, the Internet, the user’s
connection and the speed of the browser. With Ajax you effectively only have to deal
with the browser speed. In [21] it is said that it is likely that users make more errors
when response times are long, so this is a possible time saver.

Furthermore the controls are expected to be more intuitive, as it supports drag-and-
drop and in-place-edit capabilities, further improving the productiveness. Drag-and-
drop is the ability to grab an element and drop it somewhere else, which is perfect for
the reordering task in the test. In-place-edit lets you change text values at their current
position. The non-Ajax version of the Listmaker does not have any of the advantages
mentioned above and thus is likely to require more time in order to complete the tasks.

The non-Ajax version of the application creates round trips to a server and therefore
an artificial load (on both network and processing time) is created on the server to
better represent a real world environment. This load was present for both versions of
the application. If no artificial load had been created the server would have performed
optimal. The user perceived latency of the non-Ajax application would then be very
low, similar to the Ajax version of the application. This means the user activity would
hardly be interrupted. See appendix A for a visual representation of the difference
between user activity in Ajax and non-Ajax application models.

 42

Optimal server performance is not a good representation of a real world example as
you are not likely to be the only one using the server.

9.2 Results
Most of the expectations were actually met after conducting the usability tests. Some
observations were not anticipated beforehand, but could have been expected.
Experienced users (mostly having a technical background and being regular users of
the Internet) for example proved to make no or hardly any errors and would carry out
the tasks without any trouble. This was true for both types of the application. Less
experienced users (who occasionally use the Internet) proved to make more errors, but
very evenly spread between the two versions of the applications. With these users the
recovery time between errors was far greater with the Ajax version of the application,
resulting in a longer time to complete all the tasks. The recovery time between errors
with the non-Ajax version of the application was shorter, probably because users are
more familiar with this kind of application and the available (limited) user controls.

First TTC1 Errors Frust. TTC2 Errors Frust. Pref. Rep. Ratio
2 105 1 0 180 0 0 1 - 1.71
1 249 2 1 234 3 1 1 116 0.940
1 268 2 1 247 2 1 1 161 0.922
2 213 1 1 377 1 1 1 133 1.77
2 113 0 0 200 2 1 1 - 1.77
1 170 0 0 273 2 1 1 - 1.61
2 134 1 0 199 1 1 1 - 1.49
2 128 0 0 212 0 0 1 - 1.66
1 165 1 0 274 2 1 1 - 1.66
1 230 2 1 244 2 1 1 175 1.06
Figure 5: measurements from usability study

First Which version of the application was used first, 1 being Ajax, 2 being

non-Ajax.
TTC1 Total time to completion in seconds of the tasks for version 1.
TTC2 Total time to completion in seconds of the tasks for version 2.
Errors Number of errors (mistakes) made by the user. This can be clicking on

the wrong elements without anything happening or using controls the
wrong way.

Frust. Times the user expressed his or her frustration with the application.
Pref. The preferred version of the application.
Rep. Total time in seconds to complete version 1 afterwards, in a repeated

try.
Ratio How many times faster the tasks completed in version 1 compared to

version 2, in the initial run.
Figure 6: legend for usability study measurements

 43

To rule out a possible advantage of knowing how the application works after one
version of the application half of the users performed the tasks with the Ajax version
first while the other half started with the non-Ajax version. After completing the tasks
with both versions of the application the users were asked which version they preferred
and why. Although initially some users actually needed more time to complete the tasks
in the Ajax version, all users preferred the Ajax version of the application. When asked
why they preferred it, it came down to the high responsiveness and the advanced
controls (drag-and-drop, in place editing) of the application. Some users claimed to be
more familiar with drag-and-drop although they could not name a single website that
used it. They intuitively performed the operations they recognized from regular
desktop applications.

Users that suffered from the long recovery time in the Ajax version were afterwards
asked to perform the tasks again now that they knew how it worked. They would then
perform the tasks somewhere between one and a half to and three times faster with the
Ajax version. Users that did not suffer from errors or quickly recovered from them
performed the tasks one and a half to two times faster with the Ajax version.

9.3 Analysis
The preliminary conclusion is that Ajax really does help create a better user experience
as all users preferred the Ajax version and in terms of productivity it offers a significant
improvement. But is it realistic to draw this conclusion? Wasn’t just the responsiveness
of the server measured instead of the effects of Ajax?

Of course the responsiveness of the server plays a part in performing the tasks but this
is one of the key factors of using Ajax. By using Ajax you can actually decouple the user
interface from the server, making the responsiveness of the server far less important for
the performance of the application. Everything that needs to be sent to the server is
done from JavaScript and doesn’t interrupt the workflow. A user can continue to do his
or her task while the results might come in later. With a non-Ajax application the user
will have to wait for the server until the new page appears. The server response will
affect the total time to complete the tasks but in fact these results are realistic and better
represent a real world situation for comparing.

Recovery times from errors were not recorded. It would be interesting to see if the
same users would recover more quickly from errors in another test session. But as I did
not test the memorability of the applications, the recovery times were only an
interesting observation.

 44

9.4 Conclusion
Ajax does indeed increase the usability because of two things. One is the higher
responsiveness of the application, which is made largely independent of server
performance. The other thing is the more advanced user controls that provide better
learnability and efficiency. The results show that all of the 4 quality components that
were measured have improved compared to the non-Ajax version of the application,
but most significant is the improvement in efficiency.

One might argue that using a larger group of test subjects would affect the results. I
chose to follow Jakob Nielsen’s suggestion of using 5 subjects for qualitative testing (5
for both versions of the application tested first). With more test subjects you might find
only marginally more problems, errors and different times to complete the tasks. The
results of testing with more than 5 subjects don’t justify the investment in time or
money you make.

 45

10 Conclusion and final thoughts
So let’s recapitulate, what are the effects on performance and usability? The effect on
performance was measured in two ways: network traffic and server load. Chapter 7
shows that using Ajax for incremental page updates can lead to very significant savings
in network traffic, depending on the amount of page content that needs to be updated.
The server load is also reduced because of the reduced complexity of the incremental
updates. This is shown in chapter 8. The absolute savings in server load increase as
more pages of the same type are being requested in sequence, as shown in Figure 2.
Finally the effect on usability is examined in chapter 9. All test users said they preferred
the Ajax version of the Listmaker application above the non-Ajax version. The main
reasons for their preference were the advanced user controls made available through
Prototype and the very fast response times of the application. The users could complete
their tasks more quickly and thus became more productive.

At first the title of this thesis might seem a little unorthodox: “The effect of Ajax on
performance and usability in web environments”. Why research the effect of
performance and usability, what have they got to do with each other? There is a
relation between the two, which I will explain using the data collected earlier.

The number of page views increased when Ajax was used, this would automatically
mean more load on the servers. They were not introduced because of the use of Ajax,
but because users simply requested more pages. The servers are already under heavy
load, so where does the extra capacity come from? The results on the server load
indicate that significantly less time is required to process the incremental updates,
allowing for more pages to be served. Why were there more page views anyway? It
might just be the increased usability of the Ajax pages. Users feel more comfortable,
explore more and thus request more pages (updates). Both the better response times of
Ajax pages and the advanced user controls available contribute to this increase.

We can start from another perspective as well. If we would say that Ajax improves the
usability, can we prove it? Yes, looking at the number of pages requested users do more
in the same time. This is an increase in efficiency and productivity. The savings in
server load compensate for the extra requests being generated to keep things in
balance.

 46

Figure 7: Ajax / usability diagram

Figure 7 illustrates this nearly circular behaviour, although it’s very hard to connect all
the lines correctly. We have seen that Ajax has positive effects on server load, network
traffic and user controls. The lower server load and less network traffic directly affect
the latency and indirectly has a positive effects on the usability. The advanced user
controls directly affect the usability. This improved usability leads to more page
requests and updates. More requests would traditionally lead to more load on the
server and more network traffic, but since we’re using Ajax these are heavily reduced.
This last part is where the diagram might lead to wrong conclusions. It should not
suggest that your server load and network traffic keep reducing because you generate
more requests.

It’s almost like an ecosystem where everything is related, if one thing changes other
things change too to compensate. In a real ecosystem, the system only works in a large
enough environment, not in an ant-farm. The same goes for websites. In a small
website it probably doesn’t really matter if you have generated a bit more data or
server load. In very large web environments every request is done millions of times so it
is important to keep the system in balance.

 47

11 Future work
11.1 Testing Ajax
An important aspect of programming is writing tests for your software. For developers
one of the most important forms of testing is unit testing. When testing Ajax
applications you are not only testing the software but also the implementation of the
JavaScript environment. The testability of Ajax applications is not one of the topics
covered in this thesis but it should get more attention in general. For a typical
application you should test the remote server, the functional aspects, visual aspects and
the JavaScript engine. One testing framework probably can’t do it all. Currently there
are a few promising options to do functional testing. One is Ghost Train, from the
developer of Script.aculo.us. It is a sort of macro recorder, to check application
functions. Although there is only a very early alpha release that works only under
FireFox it seems like a very convenient solution to functional testing. Another is a port
of JUnit to JavaScript, which allows for unit testing in JavaScript, called JsUnit [8].

11.2 The future of Ajax
Ajax is changing the web as we see and use it, but on the web technologies come and
go. Although Ajax is only at the beginning of its up rise, it is likely that it will be
surpassed in the future. Because of the short living HTTP request nature of browsers
and web servers everything is done in a kind of polling based fashion. There is nothing
wrong with this but it sets limitations to the types of applications that can be realised
and their efficiency. The next big thing on the web could be a technology dubbed
“Comet”. Comet uses long living HTTP connections that are initialized by the client
but are kept alive. Because of this, the server can easily push data to a client. On the
other hand this poses a real threat to server scalability as connections are kept alive.
Currently Comet is only available for those who want to use bleeding edge technology,
as not many web servers currently support pushing. Also certain modifications or
libraries have to be added to the web server. The latest version of the Apache HTTP
Server (2.2) does support Comet and the Dojo Toolkit also offers some support already.
For a comparison of the Ajax and Comet application models, see Appendix A.

 48

12 Bibliography

[1] Dave Crane, Eric Pascarello, Darren James, “Ajax in Action”, Manning Press, January,

2006.

One of the first books on Ajax, recommended by many developers. It focuses on the
software architecture and design patterns, like in other programming languages, for
creating Ajax applications in the web browser. JavaScript doesn’t natively support
programming principles like for example information hiding and inheritance. The book
gives solutions on how to face these problems.

[2] David Flanagan, “JavaScript: The Definitive Guide, 4th Edition”, O’Reilly Media, Inc,

December, 2001.

This is the standard work on JavaScript, JavaScript as implemented in the different
browsers to be more specific. When reading this book it becomes more obvious that
JavaScript is in fact a real programming language and not a seriously flawed one.

[3] Thomas Fuchs, “Audible Ajax Episode 12: Thomas Fuchs of Script.aculo.us”,

ajaxian.com, January, 2006.
http://media.ajaxian.com/podcasts/audibleajax-show-12-interview-ThomasFuchs.mp3

In this podcast Thomas Fuchs, the developer of Script.aculo.us, describes the different
ways of content manipulation and data transfer (JSON, XML, HTML) with Ajax. He
comments on performance of different ways of content manipulation and the future of
Script.aculo.us. Script.aculo.us was originally developed for use in a commercial product
but is now available as open source software.

[4] Thomas Fuchs, “script.aculo.us”, http://script.aculo.us, January, 2006.

All information on the effects and controls of Script.aculo.us comes from this website. It
has documentation and examples.

[5] Erich Gamma, Richard Helm, Ralph Johnson, John Vissides, “Design Patterns: Elements

of Reusable Object-Oriented Software”, Pearson Professional Education, 1995.

A well-known standard work on design patterns, used as a reference for developing
JavaScript applications.

[6] Jesse James Garrett, “Ajax: A New Approach to Web Applications”, Adaptivepath.com,

February, 2005.
http://www.adaptivepath.com/publications/essays/archives/000385.php

Jesse James Garrett is the person who first coined the name Ajax and caused the rapid
growth in popularity and press attention of Ajax. This article discusses the workings of
Ajax as opposed to the traditional web model and its inception.

 49

[7] Danny Goodman, “Object Detection”, O’Reilly, October, 2001,

http://www.oreillynet.com/pub/a/javascript/synd/2001/10/23/ob_detect.html

To ensure cross browser compatibility you need to know what browser your script is
running in and what features are supported. The easiest way to achieve this is to check for
the browser name and version, but this is not fool proof. Object detection is a different
approach to check for the actual existence of features. This method has a better potential
for surviving when new browsers or versions of browser are released.

[8] Edward Hieatt, Robert Mee, “Going Faster: Testing The Web Application”, IEEE

Software Engineering Journal, pp. 60-65, March/April, 2002.

 In the development of software for the desktop, testing is a structural part of the process

while in web development testing has less priority, especially on the client side. This
article discusses both client and server side testing for web applications. For client side
testing of JavaScript JsUnit is being suggested. JsUnit is a port of JUnit to JavaScript,
Edward Hieatt is one of the authors of JsUnit.

[9] Laurens Holst, “Bookmarks and the back button in AJAX applications”, Backbase.com,

August, 2005.
 http://www.backbase.com/go/dev/tech/002_bookmarks.php

In traditional websites every page has a unique URL, but in Ajax applications at least a
part of the page will be generated by the client, without changing the URL. This poses a
problem for bookmarking a page and navigating with the back button. This article
discusses these issues and provides solutions for the Backbase framework. These solutions
can be translated to other frameworks in order to keep the bookmarking ability and the
correct functioning of the back button.

[10] Peter-Paul Koch, “Benchmark - W3C DOM vs. innerHTML”,

http://www.quirksmode.org, Augustus, 2005. As seen on February 10th, 2006.
http://www.quirksmode.org/index.html?/dom/innerhtml.html

This article has benchmarks on different ways of content manipulation. The most
important are manipulations through the W3C DOM and the innerHTML property.
Directly setting the innerHTML property with prepared HTML is the fastest way of
manipulating data, according to these benchmarks.

[11] Steve McConnell, “Code Complete: A Practical Handbook of Software Construction”,

Microsoft Press, 2004.

A practical work on software development that covers many aspects like testing, design
patterns, code standards and maintenance.

[12] James Mc Parlane, “Why I Don't Use The prototype.js JavaScript Library”,

http://blog.metawrap.com/blog/CommentView,guid,42b961d5-b539-4d9a-b1e0-
108e546ae3e6.aspx, December 29th, 2005.

 50

 Comments on why extending the standard JavaScript objects is bad. By understanding

the impact of using Prototype, one can make a better judgement how it will affect existing
code.

[13] Christopher L. Merrill, “Performance Impacts of AJAX Development: Using AJAX to

Improve the Bandwidth Performance of Web Applications”, Web Performance Inc., 15
January, 2006.

 This article describes the possible savings of network bandwidth with Ajax applications

and how this can be realized. The modifications in the case study are based on the
findings in this article.

[14] H. Mili, M. Fayad, D. Brugali, D. Hamu, D. Dori, “Enterprise Frameworks: issues

and research directions”, Software—Practice & Experience Volume 32 , Issue 8, July
2002, Pages 801-831

[15] Jakob Nielsen, “Usability 101: Introduction to Usability”,

http://www.useit.com/alertbox/20030825.html, August 25th, 2003

 As the title suggests, it provides a quick and brief introduction to what usability is.

[16] Jakob Nielsen, “Usability Engineering, Chapter 5: Usability Heuristics & Chapter 6:

Usability Testing”, Morgan Kaufmann, San Francisco, 1994.

 Chapter 5 describes the common rules on response times of applications and what the

users’ expectations are. When the amount of time before a response is expected to be very
high or varies strongly, the importance of visual indicators or progress bars is stressed.
Chapter 6 describes the testing and usability of applications, how tests should be
conducted, what should be measured during the test and what test-subjects should be
used.

[17] Linda Dailey Paulson. "Building Rich Web Applications with Ajax", Computer (IEEE

Computer Society), vol. 38, no. 10, pp. 14-17, October, 2005.

This essay discusses the technologies used for Ajax and suggests alternatives for creating
rich internet applications. She also provides certain pro and con arguments on using
Ajax.

[18] Sergio Pereira, “Developer Notes for prototype.js”, February, 2006.
 http://www.sergiopereira.com/articles/prototype.js.html

The original documentation of Prototype is virtually non-existent and therefore third
party documentation is essential. Sergio Pereira has made a very extensive reference on
Prototype that is very valuable and is widely seen as the starting point for any developer
starting with Prototype.

 51

[19] Gary Pollice, “A look at aspect-oriented programming”, Worcester Polytechnic Institute,
February 2004.

 http://www-128.ibm.com/developerworks/rational/library/2782.html

The ‘best practice’ in JavaScript to add event handlers to elements is to do this in a non-
obtrusive way. This is very much like aspect oriented programming and most Ajax
frameworks have a similar solution. This article describes AOP for Java but the principles
are applicable to event handling in JavaScript.

[20] Alex Russell, “Dojo documentation”, Dojo: the browser toolkit, January, 2006.

http://dojotoolkit.org/docs/

This is the official website of the Dojo Toolkit. It offers a roadmap, examples and some
documentation. There is not so much information on Dojo apart from this website.

[21] Ben Schneiderman, “Response Time and Display Rate in Human Performance with

Computers”, Department of Computer Science, University of Maryland, College Park,
September, 1984.

This researches the effect of varying response times on the reaction of users when dealing
with human computer interaction. Response times of less than one second are desirable
and productivity tends to increase with lower response times. With very short or very long
response times, users tend to make wrong decisions. Ajax certainly has an effect on
response times and therefore you must know what the effect is on the user.

[22] Leland Scott, “Ajax/DHTML Library Scorecard: !How Cross Platform Are They?”,

http://www.musingsfrommars.org/2006/03/ajax-dhtml-library-scorecard.html, March
4th 2006.

 This website keeps track of most Ajax frameworks in a broad sense. It also grades them

based on browser compatibility. Frameworks are graded from A (most compatible) to E
(least compatible), and is frequently updated.

[23] Aaron Swartz, “A Brief History of Ajax”, http://www.aaronsw.com/weblog/ajaxhistory,

December 22nd 2005.

 This article describes the history of Ajax, beginning with the implementation of the

ActiveX component in Internet Explorer 5.

[24] Lauren Wood, “Programming the web: The W3C Dom Specification”, IEEE Computer

Society, January, 1999.

Every web page is represented by a document object model (DOM) and can be accessed
through JavaScript. When writing Ajax application you will have to deal with
manipulation of the DOM. This article describes the history of the DOM and how to
perform modifications to it from JavaScript.

 52

13 Appendices
13.1 Appendix A: Classic, Ajax and Comet

application models

Figure 8: Classic versus Ajax application model

 53

Figure 9: Ajax versus Comet application model

 54

13.2 Appendix B: Prototype’s object extension
Prototype extends the standard JavaScript objects, which may cause existing code to break. Below
is an example.

First, we initialize some variables:

var sourceArray = [];
sourceArray.push(0);
sourceArray.push(1);
sourceArray.push(2);
var listOfElements = "";

The pass condition of the listOfElements variable is:
listOfElements = “0 1 2 “

The “for(i in object)” control structure:
for(var arrayElement in sourceArray){

listOfElements += arrayElement + " ";
}

Results in:
listOfElements = “each all any collect detect findAll grep include
inject invoke max min partition pluck reject sortBy toArray zip inspect
map find select member entries _reverse _each clear first last compact
flatten without indexOf shift 0 1 2 “

The alternative:
for(var i = 0; i < sourceArray.length; i++){

listOfElements += sourceArray[i] + " ";
}

Results in:
listOfElements = “0 1 2 “

So with a simple rewrite of the control structure you can use Prototype without any trouble, this
was also the case with the case study.

 55

13.3 Appendix C: Classic versus Ajax application
model

 56

14 Glossary

AOP

Aspect Oriented Programming. An approach to solve cross cutting concerns in software
development.

CSS
Cascading Style Sheet. A selecting and styling language mostly used to define layout and
style of web pages.

DOM
Document Object Model, a tree like object oriented representation of web pages as
interpreted by the browser. The DOM allows for developers to interact with the web
pages and make client side modifications.

RIA
 Rich Internet Application, a fully featured software package that runs in a browser.
Web 2.0

A paradigm shift on the Internet where the focus moves towards Ajax, democracy and
user centeredness. See http://www.paulgraham.com/web20.html

Widget
A basic building block for creating user interfaces. Often used to reference user controls
such as buttons, check and radio buttons, drop down lists and sliders.

