
University of Amsterdam
Faculty of Science

Master Thesis Software Engineering

Interaction with 3D VTK widgets

A quantitative study on the influence of 2DOF and 6DOF
input devices on user performance

René Wiegers

Host Organization:
Center for Mathematics and Computer Science (CWI)

Thesis Supervisor: Prof. Dr. Jan van Eijck
Internship Supervisor: Prof. Dr. Robert van Liere
Availability: Unclassified
Date: 11 August 2006





Preface

This thesis describes the graduation project of René Wiegers, which concludes the Master pro-
gram Software Engineering at the University of Amsterdam. The graduation project has been
performed at the Center for Mathematics and Computer Science (CWI) located in Amsterdam,
Netherlands.
CWI, founded in 1946, is the national research institute for mathematics and computer science
in the Netherlands. CWI performs frontier research in mathematics and computer science and
transfers new knowledge in these fields to society in general and trade and industry in particular.
CWI comprises several domain specific research groups. The research described in this docu-
ment will be conducted by order of the research group ”Visualization and Virtual Reality”. This
group studies those mechanisms that support the development of visualization techniques at the
systems and user levels. These techniques include those found in virtual reality, multi-dimension
visualization and information visualization.

Acknowledgments
Several people contributed to the successful completion of the project and this resulting thesis.
I would therefore like to express my sincere appreciation for the help and motivating words I
received during the last few months. First of all, I would like to thank my supervisors Robert
van Liere and Jan van Eijck for their excellent support and guidance during the project. Fur-
thermore, I would like to express my appreciation to Chris Kruszynski for kindly assisting me
with the design and implementation of the VTK software. I would also like to thank Arjen van
Rhijn and Ferdi Smit for their pointers regarding the experimental setup and result analysis.
Finally, I would like to thank my fellow student Maarten Pater for reviewing my thesis.

René Wiegers
Amsterdam, August 2006

iii





Summary

3D graphics software like VTK is increasingly used in the scientific community in order to make
the information behind enormous amounts of data more accessible. For interaction with the data,
VTK provides 3D widgets, which are 3D objects that live in the same coordinate space as the
3D objects they manipulate. These widgets are manipulated by 2D input devices like standard
PC mice, which traditionally have been designed with 2D interaction in mind. These devices can
only move in the (x,y) plane and therefore only have two degrees of freedom (DOF) available for
interaction. 3D input devices however, are especially designed for 3D interaction and have six
DOF available for interaction. Three degrees describe their position and three degrees describe
their orientation in 3D space. One of the main questions in 3D graphics systems is therefore
related to the effectiveness of 3D interaction. In order to determine the pros and cons of using
3D input devices for the manipulation of 3D VTK widgets, a user experiment was conducted to
investigate the following main research question:
What is the influence of the number of degrees of freedom of input devices on overall task
completion time and overall task accuracy when manipulating 3D VTK widgets?
We hypothesized that the overall task completion time and the overall task accuracy will be
improved when an input device with more degrees of freedom is used to manipulate the widgets.
In order to determine the source of any differences in task completion time and task accuracy
between 2DOF input and 6DOF input, we also investigated the following sub-question:
Is there a significant difference between 2DOF input and 6DOF input regarding both the average
time spent on respectively translation, rotation and scaling, and the average accuracy by which
each of these are performed?
We hypothesized that for widget rotation and translation, 6DOF input is more accurate and
faster than 2DOF input. For widget scaling, we hypothesized that 2DOF input is more accurate
and faster than 6DOF input.
For the experiment, subjects had to perform a docking task, requiring translation, rotation
and scaling of a source object by manipulating a 3D widget, in order to match the position,
orientation and size of a similarly shaped target object. Subjects performed the docking task
both with 2D and 3D input. Both quantitative and qualitative results were recorded. The
results confirm that overall task accuracy and overall task completion time are improved when
3D input is used to manipulate the widget. Inspection of the individual results for translation,
rotation and scaling shows that average rotation time is improved when 3D input is used, without
loss of accuracy. Regarding translation, 2D input turned out to be faster, while 3D input was
more accurate. Regarding scaling, there was no significant difference between 2D and 3D input.
Finally, on basis of the results, a combination of 2D and 3D input is suggested for widget
manipulation, where translation and rotation are performed by the 3D input device and scaling
by the 2D input device.

v





Contents

Preface iii

Summary v

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 3D Widgets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Research goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Extending VTK 5
2.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 General design strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.2 libvtkTracker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.3 libvtkTrackerInteractorFactory . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.4 libvtk3DInteractionWidgets . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.1 State of the software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.2 Software process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 The experiment 13
3.1 Test environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Task description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4.1 Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.6.1 Manipulation time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.6.2 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.6.3 Subjective Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

vii



3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.7.1 Task completion time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.7.2 Task accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.7.3 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.7.4 Relation to previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Conclusion and future work 27

Bibliography 29



Chapter 1

Introduction

The research project ‘A quantitative study on the influence of 2DOF and 6DOF input devices
on user performance’, described in this work, is based on [15], which argues the need for a multi
modal interface for the visualization library VTK. Goal of our research is determining the pros
and cons of using 2D vs 3D input devices when manipulating 3D widgets in VTK.

1.1 Background

Today’s computers generate enormous amounts of data. To make the information behind those
data more accessible, visualization software can be used. Visualization software transforms the
data into pictures, which can then be interactively transformed and explored in order to get
insight into the information. An example of visualization software is the Visualization Toolkit
(VTK) [12]. VTK is an open source, freely available software library for 3D computer graphics,
image processing, and visualization, that is widely used for scientific visualization [15]. Currently,
VTK is emerging as a standard in the scientific community for the visualization of scientific data
and will therefore be the selected graphics library for this research.

1.1.1 3D Widgets

VTK defines all interaction in terms of ’3D widgets’ (e.g. point widget for point selection,
plane widget for setting cutting planes, etc) [3]. A widget can be defined as an encapsulation of
geometry and behavior used to control or display information about application objects [3]. 3D
widgets are three dimensional objects that live in the same coordinate space as the 3D objects
they manipulate, thereby simplifying interaction with 3D objects by making the interaction
more intuitive by providing fast semantic feedback.
Figure 1.1 illustrates the concept of a 3D widget: The user wants to perform a certain task, say
positioning an object. Therefore, he or she uses an input device to manipulate the 3D widget
that is represented in the virtual world by its geometry. The widget responds to the input by a
predefined behavior and produces output data describing the manipulation. In turn, the output
the widget produces is used by the object to respond accordingly.
Figure 1.2 represent an example of a widget that can be used to position or orient an object
the widget is bound to. This widget comprises several ’handles’, represented by the vertical and
horizontal blue bars. These bars can be used to translate(position) or rotate the widget, thereby
translating or rotating the object.
After this short introduction into visualization and 3D widgets, the next section will discuss the
problem definition.

1



2 Introduction

Figure 1.1: Concept of a widget Figure 1.2: 3D Widget, adopted from [3]

1.2 Problem Definition

One of the major questions in 3D graphics systems is related to the effectiveness of 3D interaction.
Interaction devices are characterized by their degrees of freedom (DOF), describing the possible
interaction space. Because of the fact that 2D input devices1 like standard PC mice are bound
to the (x,y) plane, they only have two degrees of freedom available for interaction (figure 1.3).
This means that two operations are required to manipulate three variables. Take for example the
positioning of a point in 3D space, this would require two sequential actions: first a translation
in the (x,y) plane, followed by a translation in the z direction. One commonly used design
for mapping three variables (x,y,z) onto a mouse, allows two of the variables (x,y) to be input
simultaneously in normal operation mode and the third (z) to be controlled through a mode
change button that temporarily turns the mouse into a one-dimensional slider [7].
On the contrary, 3D input devices2 have 6DOF. These describe translation of the device along
any of the perpendicular axes (x,y,z), as well as rotation of the device around any of those axes
(figure 1.4)

Figure 1.3: 2DOF interaction space Figure 1.4: 6DOF interaction space

Thus, compared to 2D devices, 3D devices can potentially represent a broader range of input
values simultaneously, requiring less sequential actions. For example, positioning of a point in
3D space would only require one atomic action with a 6DOF device.

1In this work 2DOF input is also referred to as 2D input.
2In this work, 6DOF input is also referred to as 3D input.



3

On one hand, a 3D device seems to be very natural and intuitive to use in a 3D environment
[9]. On the other hand, 2D devices are very easy to use.
To determine the effectiveness of 3D interaction, several experiments have been performed.

In [15], an experiment is conducted to prove the need for a multi modal interface for interaction
with 3D applications. In the experiment, 6DOF input devices were used for picking and rotation.
Manipulation of the visualization was provided by the use of 3D widgets. The results of the
study indicate that direct 3D interaction with the application was much easier than interaction
in 2D. Our research is a follow up of this study. Where this work describes global techniques for
improving 3D interaction in VTK, our work represents a formal study comparing 2D and 3D
input devices when manipulating VTK widgets.
In [2], a user experiment is conducted, comparing the user performance of a standard mouse
interface with unimanual and bimanual versions of an interface that use 6DOF clastic rate-
control devices for object and camera control in a 3D object docking task. They found that for
novice users, the mouse interface performed better than either of the 6DOF interfaces. They
noted that novice users found the 6DOF interfaces difficult to adjust to. However, expert users
were more comfortable controlling the 6DOF interface. They found that the bimanual interface
was most beneficial when the task was complex and required many epistemic actions.
In [6] a formal user experiment is conducted, comparing 3D input interfaces to a standard
mouse interface. The experiment requires the subjects to manipulate a source object so that its
orientation matches the orientation of a similarly shaped target object. The 3D input devices can
rotate the object directly using absolute orientation, where the object matches the orientation
of the input device. The mouse interface uses a virtual sphere and arcball to rotate the object.
They found that for the orientation matching task, task completion time was shorter when a
3D input device was used, without any statistically detectable loss of accuracy.
In [7] it is suggested that selecting an appropriate input device for an interactive task requires
looking at the perceptual structure of the task, the device and the interrelationship between the
perceptual structure of the task and the control properties of the device. This structure can
either be integral, showing Euclidean movement (i.e. diagonal movement) or separable, show-
ing a city block pattern (i.e. movement is constrained along one dimension at a time). They
hypothesize that user task performance is improved when the perceptual structure of the task
matches the control structure of the device. An experiment was conducted, in which subjects
performed two tasks with different perceptual structures, using two input devices with corre-
spondingly different control structures, a three-dimensional tracker and a mouse. The integral
task required changing the x,y location and size of a cube. The separable task required changing
the x,y location and color of the cube. Both speed and accuracy were recorded. The results
supported the hypothesis, showing that the mouse interface performed better in the separable
task and that the tracker performed better in the integral task.

Since interaction with 3D widgets in VTK by means of 6DOF input devices is still an open
research topic, this will be the subject of the research.



4 Introduction

1.3 Research

In order to determine the impact of using 6DOF input devices for the manipulation of 3D widgets
on user performance, an experiment will be conducted which compares 2DOF and 6DOF input
devices for the manipulation of 3D VTK widgets.
The next section will describe the research goal and our hypotheses, followed by a description
of the approach that has been taken.

1.3.1 Research goals

This study was conceived to investigate the following question:

• What is the influence of the number of degrees of freedom of input devices on overall task
completion time and overall task accuracy when manipulating 3D VTK widgets?

Hypothesis H1: It is hypothesized that the overall task completion time and the overall task
accuracy will be improved when an input device with more degrees of freedom is used for widget
manipulation.
In order to determine the source of any differences in task completion time and task accuracy
between 2DOF input and 6DOF input, we will investigate the influence of the basic geometric
transformations underlying 3D interaction (translation, rotation and scaling) on these variables.
Therefore, the following sub-question will be investigated:

• Is there a significant difference between 2DOF input and 6DOF input regarding both the av-
erage time spent on respectively translation, rotation and scaling, and the average accuracy
by which each of these are performed?

Hypothesis H2: It is hypothesized that for widget rotation and translation, 6DOF input is
more accurate and faster than 2DOF input. For widget scaling, it is hypothesized that 2DOF
input is more accurate and faster than 6DOF input.
To find an answer to these questions, a formal user study comparing interactive tasks in VTK
is conducted.
The next section will briefly describe the approach that has been taken during the project.

1.3.2 Approach

In order to get familiar with the problem background and context, a literature study was con-
ducted at the start of the project.
The literature study focused on three main areas, namely Human Computer Interaction (HCI),
3D Widgets and user experiments involving input devices. The results of the literature study
formed the basis for the remainder of the project.
After the literature study, the VTK toolkit was extended with support for 3D input devices.
Based on the requirements and literature study, a design was made, which was thereafter im-
plemented. Parallel to the VTK implementation, the experimental setup was designed, so that
the application that was used during the experiment could be developed right after completion
of the VTK implementation.
When construction of the application for the experiment was completed, the user experiment
was conducted. Finally, the results of the experiment were analyzed.
The remainder of this document will describe these steps and their results in detail.



Chapter 2

Extending VTK

This chapter will describe how the VTK toolkit was extended with support for 3D input devices.
To provide the new functionality, the VTK C++ class hierarchy was extended with new classes.
The next section lists the requirements that formed the basis for the architecture and design of
the new software, followed by a discussion of the resulting architecture and design.

2.1 Requirements

1. The implementation should be upwards compatible with future versions of
VTK
Migration to a new release of VTK should be possible without modification of the VTK
source code.

2. The design should allow multiple tracker implementations
The source code will be shared with the VTK community, so that other parties may
implement their specific tracking system. Therefore, the design should not be specifically
targeted towards the CWI tracking system.

3. The design should allow multiple 3D input device implementations
Since there is a large variety of 3D input devices. The design should not be specifically
targeted towards the CWI input devices, so that support for other 3D input devices can
be easily implemented.

4. Technical aspects should be hidden from the user
Technical aspects of Virtual Reality systems (support for input devices like trackers and
pedals), should be hidden from the user.

The following sections will discuss how the resulting architecture and design satisfy these re-
quirements.

5



6 Extending VTK

2.2 Architecture

Since the implementation should be upwards compatible with future versions of VTK, modifying
the VTK source code was not an option. Modifying existing VTK classes would make the
implementation heavily susceptible to future changes to those classes. Therefore, the strategy
was chosen to add new functionality to VTK by subclassing existing VTK classes. Although
subclassing would make the implementation less susceptible to future changes to the VTK code,
a possible drawback of using derived classes could be code duplication: private member data or
methods that are inaccessible for derived classes and that therefore have to be reimplemented in
the derived classes. However, since the design of VTK itself is also based on subclassing, most of
the functionality of the superclass can be used by the derived class (i.e., most of the attributes
and methods in VTK classes are declared as either public or protected), so this was not an issue
and therefore considered the best alternative.
Figure 2.1 illustrates the integration of the VTK extension libraries with the standard VTK
architecture [13]. The extension consists of C++ class libraries that are build on top of the
standard VTK C++ core libraries. This implies that the extension code is not woven with the
VTK code, making the code less susceptible to future changes to VTK.
The next section will discuss the design of the extension libraries in more detail.

Figure 2.1: Integration with VTK architecture



7

2.3 Design

Several strategies were followed during the design and several trade offs were made in order to
satisfy the requirements. These will be discussed in the following section, followed by a detailed
discussion of the design.

2.3.1 General design strategies

As described above, the design should be flexible, so that multiple tracker implementations
and 3D input devices can be used. To meet these requirements, abstract classes were used as
strategy.

Abstract classes

As said, there are several types of trackers and 3D input devices, which all have their own
characteristics. The consequence of these differences, is that it is not feasible to represent the
various trackers or 3D input devices by one implementation.
However, the devices can be grouped on semantic level: The provided functionality is (nearly)
identical, it only varies in the way it is implemented. To provide flexibility by supporting
multiple tracker and 3D input device implementations, the design decision was made to define
abstract base classes for both the trackers and 3D input devices. These abstract classes define
(and partially implement) a device interface. General device characteristics are implemented in
the abstract base class to avoid code duplication.
Device implementations deriving from the abstract class however, are forced to implement those
methods that implement device-specific characteristics.
So, by providing an interface, any tracker and 3D input device may be used, as long as the
implementation conforms to the interface.

Object factories

The decision was made to construct an object factory for the integration of the new code with
the existing VTK code. Object factories allow an object to be replaced by the implementation
of a specified object at runtime and can therefore be used to add the new functionality to VTK
without modification of existing VTK code: instead of loading a standard VTK class, a new
class can be loaded that is part of the new functionality.
Detailed design of the extension libraries is reflected in figure 2.2. The following sections will
discuss the design rational of the libraries and the functionality they provide.

2.3.2 libvtkTracker

As can be seen from figure 2.2, libvtkTracker provides most of the functionality. It provides
support for tracker event handling, support for 3D input devices and abstraction of 3D input
device events. It also contains the object that is responsible for the integration of the new code
with the standard VTK code by replacing its event loop.

Abstraction of Tracker

There are many tracking devices. To localize knowledge of the tracker used, the abstract base
class vtkTracker has been defined, which must be derived by specific tracker implementations.
These derived classes define how tracker events are received (e.g. through sockets or read from a



8 Extending VTK

Figure 2.2: Extension Libraries

file on the file system) and how the received tracker data can be encapsulated into the appropriate
vtk3DEvent (to be described shortly).

Abstraction of input devices

There are many variations of 3D input devices, ranging from commercially available 3D input
devices, to custom made 3D input devices, like the ones used in the conducted experiment. All
these input devices have their unique characteristics, like provided functionality or shape. To
offer flexibility in the choice of 3D input device, two interfaces were defined, one for the behavior
of the 3D input device and one for the visual representation of the input device. The advantage
of separating the behavior from the appearance of the 3D input device, is that changes in the
appearance are localized, so that these can be changed without knowing anything about the
type of 3D input device the visual appearance is applied to. Furthermore, several devices can
share the same appearance by setting the representation, so that code duplication is reduced to
a minimum.



9

The two classes that make up the device abstraction are vtk3DInputDevice, which describes the
behavioral part, and vtk3DInputDeviceRepresentation, which describes the device appearance.
Currently, two device types have been defined. A 3D input device can either be an orientation
device, used for widget rotation, or a selection device, used for general widget manipulation.

Abstraction of 3D input device events

For event dispatching, VTK follows the command/observer paradigm. When a VTK object is
interested in receiving a specific event from an object, it can denote this interest by registering
itself with the object that is responsible for invoking the event, along with a callback routine that
handles the event. When the object of interest invokes the event, it calls the callback routine of
each of the objects that have registered for the event. In turn, these callback functions dispatch
the event to the appropriate methods for further handling. What makes these callback functions
interesting for our tracker event implementation, is the fact that they are able to receive arbitrary
objects, along with the event information.
This allows us to construct an object that encapsulates the technical details of tracker events,
which can be sent along with the event. The advantage of this approach, is that the build-
in VTK event dispatching mechanism can be used for event dispatching of 3D input device
events. Therefore, the design decision was made to encapsulate all 3D input device event related
information into a vtk3DEvent object.
For each 3D input device, the vtk3DEvent object provides a description of the device type (i.e.
selection or orientation device), its current position, its current orientation, button state (i.e.
pressed or not pressed), and several other attributes that are accessible to widget implementa-
tions. Figure 2.3 illustrates how these vtk3DEvent objects flow from source to destination:

1. Data is received from the tracker by a vtkTracker object.

2. The vtkTracker object encapsulates the data into a vtk3DEvent object and dispatches it
to the vtk3DInputDevice objects.

3. The vtk3DInputDevice that belongs to the device that generated the event, appends addi-
tional attributes to the vtk3DEvent object, like a copy of its previous position and orien-
tation. The vtk3DInputDevice objects then informs its vtk3DInputDeviceRepresentation
object to update its visual representation on the screen accordingly.

4. Finally, the modified vtk3DEvent is then sent back to the vtkTracker object, which for-
wards the event to the vtkXTrackerInteractor (5) (see section 2.3.3), which in turn forwards
the event to the widgets (6).

Figure 2.3: Event flow



10 Extending VTK

2.3.3 libvtkTrackerInteractorFactory

The libvtkTrackerInteractorFactory library contains the factory that is responsible for the run-
time replacement of the vtkXRenderWindowInteractor object by the vtkXTrackerInteractor
object (which is part of the vtkTracker library). vtkXRenderWindowInteractor is an X Windows
specific VTK class and is responsible for the translation of X Windows specific events (like
mouse/keyboard events) to VTK Events. In turn, vtkXRenderWindowInteractor forwards these
VTK events to vtkInteractorObserver objects (like widgets), which observe these events.
In order to be able to receive tracker events, vtkXRenderWindowInteractor is replaced by
vtkXTrackerInteractor, which is a subclass. vtkXTrackerInteractor overrides the event loop
of vtkXRenderWindowInteractor and checks for both X specific events and for tracker events.

2.3.4 libvtk3DInteractionWidgets

libvtk3DInteractionWidgets contains 3D widgets that support 3D input devices. Currently, the
library only contains the vtk3DBoxWidget, which is a standard vtkBoxWidget which has been
extended with support for 3D interaction.
The vtkBoxWidget defines a region of interest that is represented by an arbitrarily oriented
hexa- hedron with interior face angles of 90 degrees. The object creates seven handles that
can be selected and manipulated. The first six correspond to the six faces and can be used for
scaling, the seventh is in the center of the hexahedron and can be used for translation. Figures
2.4-2.7 illustrate the functionality the vtkBoxWidget provides. Figure 2.4 shows the state of the
cone before widget manipulation. Figures 2.5-2.7 show the cone after positioning, rotation and
scaling respectively.

Figure 2.4: BoxWidget Figure 2.5: Positioning

Figure 2.6: Rotation Figure 2.7: Scaling

The handles of the vtk3DBoxWidget can be manipulated by a selection device. The orientation
of the vtk3DBoxWidget can be controlled by an orientation device. As long as a (predefined)
button is pressed on the orientation device, the orientation of the widget will be identical to
that of the orientation device.



11

To address the difficulties that users have with point location in 3D [15], the widget highlights the
cursor of the corresponding 3D input device when it is within selection range. For the selection
device, the cursor is highlighted when it is near one of the handles of the widget (figures 2.8 and
2.9). For the orientation device, the cursor is highlighted when it is within a certain distance of
the widget (figures 2.10 and 2.11).

Figure 2.8: No selection possible Figure 2.9: Selection possible

Figure 2.10: No selection possible Figure 2.11: Selection possible



12 Extending VTK

2.4 Evaluation

A great deal of the project was spent on design and implementation of both the new VTK
libraries and the application that was needed for the experiment. Therefore, this section will
discuss the state of the software at the end of the project and the software process that was
followed during the project.

2.4.1 State of the software

Since it is the intention that the code will eventually be shared with the VTK community, great
care was taken to follow the VTK standards with respect to coding style and documentation.
To give an impression of the size of both the code and documentation, the extension libraries
comprise about 1653 effective lines of code (eLOC), measuring all lines that are not comments,
blanks or standalone braces or parenthesis. In addition, the header files contain about 438 lines
of documentation, which is used to automatically generate extensive browsable class documen-
tation. In addition to the extension libraries, the code of the application that was constructed
for the experiment comprises about 688 eLOC.
The current state of the software provides rudimentary support for 3D input devices for VTK and
allows 3rd parties to extend it with their own tracker and input device specific implementations.
However, despite the fact that great care was taken during construction of the software to insure
its quality, the software still needs extensive quality checking before proposing to incorporate the
code into the standard VTK code by its maintainers. Due to time considerations, the software
was tested only sufficiently enough to assure its suitability for the experiment.

2.4.2 Software process

At the start of the project, an attempt was made to construct the entire architecture and design
of the software to serve as basis for the construction of the software. However, it proved to be
rather complex and overwhelming to conceive the entire architecture and design at the beginning
of the project.
Therefore the decision was made to adopt an approach that was more incremental in nature.
Functionality was added to the software step by step. At the beginning of each increment, a
design was made for the new functionality. When necessary, adjustments were made to the old
design in order to incorporate the new functionality.
The advantage of this approach for this particular project, was that the project could be divided
into sub-problems. During each increment, the focus lay on the problem at hand, making it a lot
easier to handle. This led amongst others to greater productivity and helped to achieve project
success.



Chapter 3

The experiment

3.1 Test environment

As tracking environment, the Personal Space Station (PSS) was used [10]. The PSS is a near-
field virtual environment, where all interactive 3D tasks are realized directly with the hands or
by using task specific graspable input devices. The PSS consists of a mirror in which stereoscopic
images are reflected. The user reaches under the mirror to interact with the virtual world. The
PSS uses optical tracking for interaction. Retro-reflective markers under infra-red (IR) lighting
conditions are used to track objects located under the mirror. The graphics engine is a standard
PC equipped with an ATI FireGL3 graphics board and a high resolution 22 inch Iiyma CRT
monitor. The display resolution is set at 1280x1024 @ 120 Hz. The tracking engine is a PC
equipped with two Leutron Vision PictPort H4D dual channel frame grabbers and two Leutron
Vision LV-7500 progressive scan CCD-camera’s. The cameras operate at a frequency of 60 Hz.

Figure 3.1: The Personal Space Station, adopted from [11]

13



14 The experiment

3.2 Task description

For the experiment, subjects performed a 3D docking task, using stereoscopic vision. Given a
source object, the docking task requires the subject to match the orientation, size and position
of a similarly shaped target object. Object docking is an established task, allowing us to relate
the results to previous work. Furthermore, it allows us to separately study translation, rotation
and scaling performance [4]. In the setting of this experiment, subjects had to manipulate a 3D
widget in order to accomplish the docking task.
As docking object, a tetrahedron was used (see figure 3.3). Each vertex of the tetrahedron
was uniquely identified by its color. The docking objects could be distinguished by the color of
the lines connecting the vertices. These were blue for the source object and red for the target
object. For the scaling, translation and rotation of the source object, a modified version of the
vtkBoxWidget with support for 3D input was used (see section 2.3.4).
In order to compare 2DOF input against 6DOF input, subjects performed the docking task with
a standard 3-button PC mouse and with two 3D devices respectively.
The experimental setup for 2D input is depicted in figure 3.2. The docking task with 2D input is
depicted in figure 3.3. To scale the widget in a particular direction, subjects had to manipulate
one of the handles located at the sides of the widget. To position the widget in the (x,y) plane, the
handle located at the middle of the widget had to be manipulated. Handle manipulation starts
when the cursor is located over a handle and the left mouse button is pressed. By moving the
mouse in a particular direction, the handle is manipulated. Manipulation ends when the mouse
button is released. To position the widget in the z direction, a mode switch was required. The
mode switch turned the mouse into a one dimensional slider, allowing the subject to translate
the widget along the z axis. To perform the translation, the cursor had to be located within
the boundaries of the widget. By pressing the right mouse button and moving the mouse up or
down, the widget was translated along the z axis. Finally, rotation was performed by moving
the mouse while holding the left mouse button when the cursor was within the boundaries of
the widget.

Figure 3.2: 2DOF input setup Figure 3.3: Docking with 2DOF input



15

For the docking with 6DOF input, a cube (figure 3.4) and a thimble (figure 3.5) input device
were used. These devices could be used simultaneously. The cube was used for widget rotation
and the thimble was used for translation and scaling. Participants held the cube in their non-
dominant hand and slit the thimble over one of the fingers of their dominant hand. For the
6DOF setup, two foot pedals served as input device buttons.

Figure 3.4: Cube 3D input device Figure 3.5: Thimble 3D input device

Rotation was possible when the cursor of the cube was within a certain distance of the widget.
Rotation starts when the left pedal is pressed. When rotating, the widget takes the absolute
orientation of the input device. Rotations ends when the left pedal is released. For translation
and scaling, the cursor of the thimble had to be within a certain distance of the handles.
Manipulation starts when the right pedal is pressed and ends when the right pedal is released.
In contrast to the mouse interface, no mode switch was required for translation by a (x,y,z)
vector.
The experimental setup for 6DOF input is depicted in figure 3.6. The docking task with 6DOF
input is depicted in figure 3.7.

Figure 3.6: 6DOF input setup Figure 3.7: Docking with 6DOF input

3.3 Participants

Eight unpaid volunteers participated as test subjects during the experiment. All participants
were required to be male and right handed. Furthermore, since unexperienced mouse users
are hard to find, participants were required to be both experienced mouse users as well as
experienced PSS users.



16 The experiment

3.4 Procedure

The docking task consisted of a series of twelve trials for each interaction mode (i.e. 2DOF
input vs 6DOF input) , resulting in a total of twenty four trials per subject. To counterbalance
any learning effect, half of the subjects started the experiment with the 2DOF input device,
and the other half of the subjects started the experiment with the 6DOF input. All subjects
matched the same sequence of randomly generated target position, orientation and scale, thereby
counterbalancing these variables for all users and input devices.
Before beginning the trials, the subjects received verbal instructions and a short demonstration
regarding the task and interface. Before each trial series, subjects were given four training
sessions to get familiar with the task and interface.
During the training session, subjects were encouraged to ask questions about the task or inter-
face. During the trials however, the subjects performed the task unaccompanied.
The subjects were instructed that precision and speed were of equal importance and they were
not given any feedback regarding proximity during the docking procedure. The subjects were
not given any direction as to what was fast or accurate enough, so the precise definition of
accuracy and speed was left to their own judgment. When satisfied with the docking, subjects
pressed the spacebar to advance to the next trial.
After each session, participants completed a short questionnaire that interviewed the user about
his impressions of the suitability of the input device for the particular task. This questionnaire
also served as a short brake to minimize fatigue. At the end of the experiment, candidates were
asked to indicate their preferred device for the docking tasks.

3.4.1 Logging

During each trial series, a main log file was kept that for each of the twelve trials recorded the
duration of the docking task and the accuracy by which the docking task had been performed.
How these metrics were defined is stated in the next paragraph.
Furthermore, a separate log file was kept for each interaction device during each trial series.
Each time a button/pedal was pressed, the log file recorded in what way the subject was manip-
ulating the widget (i.e. translation, rotation or scaling), along with the time the manipulation
started/ended and the total duration of that particular manipulation.
These log files were used for analysis after the experiment was conducted. The main log file
was the primary source for the analysis. The device specific log files were used to explain and
underpin the results that analysis of the main log produced.

3.5 Performance Metrics

There were two performance metrics defined: task completion time and task accuracy.
For each trial, the task completion time was measured. For each trial series, these task comple-
tion times were averaged. Differences in task completion time between series belonging to the
same docking task (i.e. 2DOF vs 6DOF input) would indicate that a subject could dock the
object faster with one of the two input devices.
Task completion time was defined as the time between the moment the widget was manipulated
for the first time and the moment the widget was manipulated for the last time before the
subject pressed the spacebar to indicate satisfactory docking.
For each trial, the task accuracy was measured. For each trial series, these task accuracies were
averaged. Differences in task accuracy between series belonging to the same docking task would



17

indicate that a subject could dock the object with more precision using one of the two devices.
Task accuracy was defined by three metrics. The first describes the positioning accuracy, the
second describes the orientation error and the third describes the scaling error. The positioning
accuracy is defined as the ratio between the initial distance between the source and target object
and the distance between the two objects at the last moment the widget was manipulated before
the subject pressed the spacebar to indicate satisfactory docking. Distance was defined as the
total Euclidean distance across all three dimensions of the stimulus space, ranging from the
center of the source object to the center of the target object.
The orientation error was defined as the shortest arc rotation between the orientation of the
source object and the orientation of the target object, at the last moment the widget was
manipulated before the subject pressed the spacebar to indicate satisfactory docking.
The scaling error was defined as the ratio between the x, y, z scale of the target object and the
x, y, z scale of the source object respectively, at the last moment the widget was manipulated
before the subject pressed the spacebar to indicate satisfactory docking.

3.6 Results

Eight candidates participated. All candidates were male and right-handed. All candidates had
prior experience with the PSS and with the mouse. Three candidates reported their PSS expe-
rience level to be ’very experienced’ and three candidates reported it to be ’experienced’. Three
candidates reported their mouse experience level to be ’very experienced’ and three candidates
reported it to be ’experienced’.
It should be noted that the results of only six candidates were used for analysis. In one case the
candidate only participated in the PSS experiment and not in the mouse experiment, causing
the comparison between the two interfaces to become unbalanced. In the other case the candi-
date produced results that on inspection proved to be unrepresentative and that were therefore
removed from the dataset.
An analysis of variance (ANOVA) was ran on the data. ANOVA is a statistical procedure,
testing the null hypotheses that group means do not differ. The procedure returns a p-value,
indicating the probability that the two sample means do not differ. The lower the p-value,
the higher the probability that the two means differ. During analysis of the results, a p-value
of 0.05 or less was chosen as statistically significant. This means that in that case there can
be concluded with 95% confidence that the means do differ. ANOVA also returns an F value,
indicating the ratio between the difference between groups and the difference within groups. A
large F indicates that there is more difference between groups than there is within groups, which
supports the hypothesis that the means do differ. So, the higher the F value, the lower the p
value.
As quick overview, the results of the experiment are depicted in table 3.1 and table 3.2. Table
3.1 shows the average task completion time and average task accuracy for both 2D and 3D input.
Table 3.2 shows for each input device the average time that was spent on translation, rotation
ans scaling during the tasks. We discuss the results in detail in the following sections.



18 The experiment

µ σ M F p
2D input

Task completion time (s) 89.5702 28.06 94.5359 5.63 <0.03
Translation accuracy (%) 99.0256 0.2502 99.0819 19.9 0.0002
Rotation offset (degrees) 4.7245 2.9358 4.1247 1.94 >0.17
Scaling offset x (%) 4.1719 3.6002 3.6373 0.11 >0.74
Scaling offset y (%) 7.6791 9.6548 2.977 0.32 >0.57
Scaling offset z (%) 8.9332 10.835 5.2042 0.82 >0.37
3D input

Task completion time (s) 65.2648 21.7288 61.0613 5.63 <0.03
Translation accuracy (%) 99.44 0.2023 99.4637 19.9 0.0002
Rotation offset (degrees) 3.4395 1.2691 3.0885 1.94 >0.17
Scaling offset (x) (%) 3.6028 4.6512 2.9785 0.11 >0.74
Scaling offset (y) (%) 5.6235 8.025 1.697 0.32 >0.57
Scaling offset (z) (%) 5.4665 7.6817 3.1881 0.82 >0.37

µ = mean, σ = standard deviation, M = median

Table 3.1: Average task completion time and average task accuracy

µ σ M F p
2D input

Translation time (s) 15.9521 3.1885 15.8216 6.32 <0.02
Rotation time (s) 38.3306 18.3437 35.0087 7.94 0.01
Scaling time (s) 10.8261 4.4168 11.8825 0.82 0.375
3D input

Translation time (s) 20.0906 4.7281 20.1582 6.32 <0.02
Rotation time (s) 21.9634 8.2615 21.8083 7.94 0.01
Scaling time (s) 8.7362 6.6643 9.1223 0.82 0.375
µ = mean, σ = standard deviation, M = median

Table 3.2: Average manipulation time for translation, rotation and scaling

3.6.1 Manipulation time

Figure 3.8 shows a box and whisker plot of the average docking duration. The box shows the
middle 50% of the data, ranging from the 25th to the 75th percentile of the data set. The red
bar indicates the median value of the data set. The horizontal bars at the end of the vertical
lines indicate the extend of the data values. Possible outlyers are indicated with a cross. The
notches in the box plot represent a robust estimate of the uncertainty about the medians for
box-to-box comparison. Boxes whose notches do not overlap indicate that the medians of the
two groups differ at the 5% significance level [14] [16].
The results of the ANOVA indicate that the docking task was performed significantly faster
with the 3D input devices, F1,22=5.63, p<0.03 (figure 3.8).



19

Figure 3.8: average docking duration

Figures 3.9-3.11 show the average time that subjects spent on positioning, rotation and scaling.

Translation time

An ANOVA for the average translation time reveals that the mouse is significantly faster,
F1,22=6.32, p<0.02 (figure 3.9).

Rotation time

An ANOVA for the average rotation time reveals that 3D input is significantly faster, F1,22=7.94,
p=0.01 (figure 3.10).

Figure 3.9: average translation time Figure 3.10: average rotation time



20 The experiment

Scaling time

An ANOVA for the average scaling time reveals no significant difference between the input
devices, F1,22=0.82, p=0,375 (figure 3.11).

Figure 3.11: average scaling time

3.6.2 Accuracy

The accuracy of the docking task consists of positioning, orientation and scaling accuracy.

Positioning

Figure 3.12 shows a box and whisker plot of the positioning accuracy.
The results of the ANOVA indicate that the positioning accuracy of the docking task was
significantly higher with the 3D input devices, F1,22=19.9, p=0.0002

Orientation

Figure 3.13 shows a box and whisker plot of the orientation error.
The results of the ANOVA indicate that there was no significant effect for the number of degrees
of freedom on orientation accuracy, F1,22=1.94, p>0.17.

Figure 3.12: average positioning accuracy Figure 3.13: average orientation error



21

Scaling

Figures 3.14 - 3.16 show box and whisker plots for the scaling error in respectively the x, y and
z direction. The figures suggest that there is no significant effect for the number of degrees of
freedom on scaling accuracy. For the x direction, performing an ANOVA resulted in p>0.74 and
F1,22=0.11. For the y direction, performing an ANOVA resulted in p>0.57= and F1,22=0.32,
and finally performing an ANOVA for the z direction resulted in p>0.37 and F1,22=0.82.

Figure 3.14: average scaling offset in x di-
rection

Figure 3.15: average scaling offset in y di-
rection

Figure 3.16: average scaling offset in z direction



22 The experiment

3.6.3 Subjective Ratings

Figure 3.17 shows the ratings subjects gave on a 1 to 5 scale to input device comfort, input
device suitability for positioning, rotation and resizing of the widget and to overall input device
suitability for performing the docking task. The worst possible score is represented by a rating
of 1, the best possible score is represented by a rating of 5.

Figure 3.17: Input device ratings

Input device comfort

The figure shows that subjects found the mouse more comfortable during the experiment. Most
subjects stated that using 3D input, their arms got fatigued after a while because they had to
stretch too far and because their arm couldn’t rest comfortably. This was not an issue with
the mouse. Furthermore, some subjects indicated that they had to maintain a high level of
concentration using the 3D input devices. When asking for clarification, subjects stated that
sometimes they knew how they wanted to manipulate the widget, but didn’t always know how to
accomplish this using the 3D input devices. Some subjects indicated that they found it difficult
to use four input devices simultaneously (i.e. two 3D input devices and a pedal for each input
device). In general, using 3D input devices, subjects had to pay more attention to the input
devices during the trails than was the case with the mouse.

Positioning

Figure 3.17 shows that the 3D input device scored slightly better than the mouse when it
comes to widget positioning. Most subjects found the 3D input device reasonably suitable for
positioning, though some subjects found it laborious that they had to position and rotate with
separate devices. They’d rather seen a combination of positioning and rotation in the cube
input device. Half of the subjects found the mouse suitable to very suitable for positioning. The
other half found the mouse reasonably suitable to less suitable for positioning. When asking for
clarification, these subjects indicated that they found it easy to position the widget in the (x,y)



23

plane, but harder when they also had to position the widget in the z direction. They found
positioning in the z direction more intuitive using 3D input. One candidate indicated that the
positioning functionality of the widget could not always be selected because it was occluded by
an other part of the widget, this was no problem with 3D input.

Rotation

When it comes to rotation, figure 3.17 clearly indicates that 3D input is preferred to the mouse.
Many subjects indicated that they found the way the widget rotates to be very unintuitive
when the mouse is used as input device. They found it hard to tell how the widget was rotating
and therefore how to accomplish the rotation they wanted to perform. As one subjects put
it: ”most of the time, I was just guessing”. Subjects indicated that they missed the axis of
rotation perpendicular to the screen. They found it confusing and very frustrating that they
first had to rotate the widget by 90 degrees to be able to rotate about this axis. On the contrary,
subjects were very positive when it comes to rotation with the 3D device. Most subjects found
the rotation with the 3D device to be very intuitive, since the widget takes the same orientation
as the 3D input device. However, some subjects indicated that they would prefer that the
widget takes a relative orientation and not the absolute orientation of the input device. They
indicated that they sometimes performed a rotation that was undone the next time they used
the orientation device. This was because they hadn’t paid any attention to the orientation of
the device while using the selection device. Some users indicated they found it unintuitive that
the widget first had to be selected by the 3D orientation device when performing a rotation.
They would prefer to see a coupling between the selection device and the orientation device to
be able to use the selection device to indicate the widget that has to change its orientation.

Resizing

Figure 3.17 suggests that the mouse performed slightly better for resizing. In general, subjects
found the mouse reasonably suitable for resizing the widget. Subjects found 3D input also
reasonably suitable for resizing. However, some subjects indicated that when using 3D input,
they sometimes found it hard to locate the handles of the widget. They did not have this
problem when they used the mouse to manipulate the handles.

Overall

The overall rating of the 3D input devices is considerably higher than the overall mouse rating.
The intuitive and easy way in which the widget could be rotated was one of the most appreciated
properties of 3D input. Some subjects indicated that it was harder to manipulate the handles
of the widget when using 3D input. When using a mouse, subjects only needed to position
the mouse over the handle to select it. When using 3D input, the z coordinate of the handle
also had to be taken into account. Furthermore, subjects disliked the fact that more (physical)
actions were required for simple tasks using 3D input. Some subjects indicated that they felt
less accurate using 3D input. They attribute this to the shaking of their hands influencing the
positioning or rotation.
Most subjects indicated that the unintuitive way the widget rotated played a big role in their
mouse rating. As discussed earlier, they found rotation to be very unintuitive and frustrating.
Some subjects noted that they got fatigued during the mouse trials because they had to concen-
trate on rotation. One subject felt that accuracy was feasible using the mouse, but very time
consuming. However, most subjects did find the mouse suitable for resizing and to some extend,
for positioning. Overall, most subjects preferred 3D input for the docking task.



24 The experiment

3.7 Discussion

3.7.1 Task completion time

Figure 3.8 shows that the average duration of the docking task is shorter when performed with
3D input, which suggests that 3D input devices are preferable to 2D input when task completion
time is an issue. When looking for the source of difference in task completion time, we initially
only saw a significant difference in favor of the mouse when it came to average translation time.
Average rotation and scaling time showed no significant difference between 2D and 3D input.
This was very peculiar, since average task completion time was in favor of 3D input. Inspection
of the log files revealed however, that in the case of 3D input, some of the subjects pressed the
rotation pedal when they were not actually rotating, causing very long rotation times. This
may be explained by the fact that the widget took the absolute orientation of the input device.
Several subject stated that they found this very annoying, since the prior widget orientation
was lost when performing a new rotation and no attention was given to the device orientation
between two successive rotations. Therefore, some subjects kept the pedal of the orientation
device pressed for the duration of the trial in order to prevent this from happening. Since these
rotation times caused a distorted view of the average rotation time, they were considered as
outliers and therefore removed from the dataset. The average rotation times for the adjusted
dataset are depicted in figure 3.10. The figure clearly shows that the average rotation time
is shorter for 3D input, which conforms to the observations made during inspection of the
questionnaires. This suggests that for rotation, 3D input devices are preferable to 2D input
when task completion time is an issue.
Figure 3.9 shows a significant difference in average translation time in favor of 2D input, sug-
gesting that 2D input is preferable for translation, when task completion time is an issue.
Figure 3.11 shows no significant difference between 2D and 3D input for average scaling time.
This corresponds reasonably well with the results of the subjects’ preferred input device for
scaling, which showed only a marginal difference in favor of 2D input.
These differences is average manipulation times for positioning, rotation and scaling can be
better explained in light of the respective accuracies that were achieved, which will be the
subject of the next section.

3.7.2 Task accuracy

Positioning

Figure 3.12 shows that there is a significant difference between 2D input and 3D input regarding
positioning accuracy. This suggests that 3D input devices are preferable when positioning accu-
racy is an issue. Figure 3.9 reveals that subjects spent more time on translation with 3D input
than they did with 2D input. Subjects indicated that they found positioning easier with 3D
input. A possible explanation could therefore be that they tried harder to position the object
with 3D input, which resulted in a longer positioning time and in a higher accuracy.

Rotation

Figure 3.13 shows that there is no significant difference regarding accuracy, when rotation is
performed with a 2D input device or 3D input device. This suggests that both devices will
perform equally well when accuracy is an issue. However, figure 3.10 shows that the average
time spent on rotation was shorter in favor of 3D input. This suggests that for rotation, 3D
input is as precise as 2D input, but requires less manipulation time.



25

Scaling

Figures 3.14-3.16 show that there is no significant difference regarding accuracy, when scaling
is performed with a 2D input device or 3D input device. This suggests that both devices will
perform equally well when accuracy is an issue. Figure 3.11 shows that the average time spent
on the actual scaling does not differ between the two devices. However, it should be noted that
subjects indicated that the handles of the widget were easier to locate using 2D input.

3.7.3 Observations

Results of the experiment indicate that there is room for improvement regarding the way the
widget is manipulated. This holds for the mouse interface, as well as for the 6DOF interface.
Is is obvious that the way the widget rotates can be improved when manipulated by the mouse.
Using the mouse, subjects spent a lot of time rotating the widget during the trials. A more
intuitive rotation may provide better results for the mouse interface, regarding the rotation
accuracy, as well as the mean trial time.
Regarding 3D input, interaction may be improved by decreasing the number of actions required
to perform a simple handling. Some subjects indicated that they found it confusing to have two
devices in their hand and two pedals at their feet. Removal of one of the pedals or different
device function bindings may reduce interaction complexity.
Furthermore, overall docking performance may be improved by letting the software auto-dock
the object when the source object is within a certain range of the target object. This holds for
both 2D input as well as for 3D input.

3.7.4 Relation to previous work

Comparing to the work of Cline [2], our results show less improvement in average task completion
time when using 3D input. Since our experimental setup allowed for bimanual 3D input, we
use the bimanual results of Cline as basis for the comparison. The complex docking task of
Cline, requiring translation and rotation of a cube, showed an improvement of approximately
41% in favor of 3D bimanual input. Compared to 2D input, our results show an improvement
of approximately 27% when performing the docking task with 3D input. Comparison of both
average manipulation time and accuracy for translation and rotation is not possible, since Cline
reported these results to be erratic and inconclusive.
Comparing to the work of Hinckley et al [6], our results show more improvement in average
rotation time when 3D input is used for rotation. Hinckley et al reported that 3D devices were
up to 36% faster compared to 2D input. Our results show an even greater improvement of 45%
in average rotation time in favor of 3D input. Furthermore, as was reported by Hinckley et al,
there was no detectable loss in accuracy when using 3D input for rotation.





Chapter 4

Conclusion and future work

We studied the influence of the number of degrees of freedom of interaction devices on task
completion time and task accuracy when manipulating 3D VTK widgets. We performed a user
experiment where subjects had to perform a docking task, requiring translation, rotation and
scaling of a source object by manipulation of a 3D widget, in order to match the position,
orientation and size of a similarly shaped target object. Subjects performed the experiment
with both 2DOF input and 6DOF input.
We hypothesized that the overall task completion time and the overall task accuracy would be
improved when an input device with more degrees of freedom is used for widget manipulation.
Furthermore, we hypothesized that for widget rotation and translation, 6DOF input is more
accurate and faster than 2DOF input. For widget scaling, we hypothesized that 2DOF input is
more accurate and faster than 6DOF input.
The results show that the overall task completion time and the overall task accuracy are improved
when 3D input devices are used to manipulate the widget. This rejects the null hypothesis and
supports our hypothesis H1.
For our hypothesis H2 we can not provide a conclusive answer. For rotation, 3D input was
significantly faster compared to 2D input, however there was no significant difference regard-
ing rotation accuracy between 2D and 3D input. For translation, 3D input was significantly
more accurate, while 2D input was significantly faster. Finally, for scaling the results show no
significant difference regarding manipulation time and accuracy between 2D and 3D input.
Based on the current results, we propose a combination of 2DOF input and 6DOF input for VTK
3D widget manipulation. We believe that widget translation and rotation should be combined
into one 6DOF input device, since the results clearly indicate that 3D input is superior to
2D input regarding widget rotation time and translation accuracy. For widget scaling, we
recommend 2D input, since subjects indicated that it is easier to locate the widget handles, has
a higher comfort level and is less tiring.
This work presents findings of a first exploratory study. Since the software developed during our
project is reusable, additional studies can be performed relatively quickly and may therefore be
considered to give more conclusive results. For future studies, we suggest improving the mouse
interface, since rotation was clearly very cumbersome. Rotation could be made more intuitive
by rotating about two fixed axes (x,y) and by providing a modifier key on the keyboard for
rotation about a fixed z axis. Furthermore, it may be interesting to consider a trackball as
alternative to the three button mouse, where the ball may be used for rotation. Finally, for the
6DOF interface it may be considered to have the widget follow the relative orientation of the
input device, instead of the absolute orientation in the current situation, since this proved to be
very confusing.

27





Bibliography

[1] Boritz, J., and Booth, K. S. A study of interactive 3D point location in a computer simulated virtual
environment. In VRST ’97: Proceedings of the ACM symposium on Virtual reality software and technology
(New York, NY, USA, 1997), ACM Press, pp. 181–187.

[2] Cline, M. Higher degree-of-freedom bimanual user interfaces for 3-D computer graphics. In Proceedings of
Human Interface Technologies (2000), pp. 41–46.

[3] Conner, B. D., Snibbe, S. S., Herndon, K. P., Robbins, D. C., Zeleznik, R. C., and van Dam, A.
Three-dimensional widgets. In SI3D ’92: Proceedings of the 1992 symposium on Interactive 3D graphics
(New York, NY, USA, 1992), ACM Press, pp. 183–188.

[4] Froehlich, B., Hochstrate, J., Skuk, V., and Huckauf, A. The globefish and the globemouse: two
new six degree of freedom input devices for graphics applications. In CHI ’06: Proceedings of the SIGCHI
conference on Human Factors in computing systems (New York, NY, USA, 2006), ACM Press, pp. 191–199.

[5] Herndon, K. P., and Meyer, T. 3D widgets for exploratory scientific visualization. In UIST ’94: Pro-
ceedings of the 7th annual ACM symposium on User interface software and technology (New York, NY, USA,
1994), ACM Press, pp. 69–70.

[6] Hinckley, K., Tullio, J., Pausch, R., Proffitt, D., and Kassell, N. Usability analysis of 3D rotation
techniques. In UIST ’97: Proceedings of the 10th annual ACM symposium on User interface software and
technology (New York, NY, USA, 1997), ACM Press, pp. 1–10.

[7] Jacob, R. J. K., Sibert, L. E., McFarlane, D. C., and M. Preston Mullen, J. Integrality and
separability of input devices. ACM Trans. Comput.-Hum. Interact. 1, 1 (1994), 3–26.

[8] Kosara, R., Healey, C. G., Interrante, V., Laidlaw, D. H., and Ware, C. User studies: Why, how,
and when? IEEE Comput. Graph. Appl. 23, 4 (2003), 20–25.

[9] Martens, J.-B., Qi, W., Aliakseyeu, D., Kok, A. J. F., and van Liere, R. Experiencing 3D interactions
in Virtual Reality and Augmented Reality. In EUSAI ’04: Proceedings of the 2nd European Union symposium
on Ambient intelligence (New York, NY, USA, 2004), ACM Press, pp. 25–28.

[10] Mulder, J., and van Liere, R. The Personal Space Station: Bringing interaction within reach. In
Proceedings of VRIC (2002), pp. 73–81.

[11] Personal Space Technologies.
http://www.personalspacetechnologies.com.

[12] Schroeder, W., Martin, K., and Lorensen, B. The Visualisation ToolKit. Kitware, 2002. ISBN
1-930934-07-6.

[13] Schroeder, W. J., Martin, K. M., and Lorensen, W. E. The design and implementation of an object-
oriented toolkit for 3D graphics and visualization. In VIS ’96: Proceedings of the 7th conference on Visual-
ization ’96 (Los Alamitos, CA, USA, 1996), IEEE Computer Society Press, pp. 93–100.

[14] The Mathworks.
http://www.mathworks.com/access/helpdesk/help/toolbox/stats/boxplot.html.

[15] van Liere, R., and Kok, A. J. A multimodal Virtual Reality interface for VTK. ICMI’05 Workshop on
Multimodal Interaction for the Visualization and Exploration of Scientific Data (October 2005).

[16] van Rhijn, A. Spatial input device structure and bimanual object manipulation in virtual environments.
Submitted for VRST 2006 (May 2006).

[17] Wang, Y., MacKenzie, C. L., Summers, V. A., and Booth, K. S. The structure of object transportation
and orientation in human-computer interaction. In CHI ’98: Proceedings of the SIGCHI conference on
Human factors in computing systems (New York, NY, USA, 1998), ACM Press/Addison-Wesley Publishing
Co., pp. 312–319.

[18] Ware, C., and Jessome, D. R. Using the bat: a six dimensional mouse for object placement. In Proceedings
on Graphics interface ’88 (Toronto, Ont., Canada, Canada, 1988), Canadian Information Processing Society,
pp. 119–124.

29


