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Summary  
 
Rscript is a small scripting language based on relational calculus. Its main purpose is to analyze and query source code from 
software. In this thesis we will give an answer to the following two research questions: 

I. How can Rscript comprehensions be optimized? 

II. What are the effects of the optimizations? 

We will investigate two methods which can be used to optimize Rscript comprehensions. Comprehensions are constructions 
used for iterating over one or more sets or relations, while matching one or more of their elements to a boolean-valued 
expression. 

The first method considers several algebraic optimization techniques we found in the literature on comprehensions. These 
are: Qualifier Interchange, Filter Hiding, Product Elimination, Common Subexpression Elimination and Index Introduction. 
Next we discuss optimization techniques which are used for optimizing relational databases, and can be used to optimize 
Rscript. These are: Commuting Selections – Cartesian Product, Commuting Selections – set-difference, Commuting 
Selections – union, Semantic Query Caching – subsumption, Semantic Query Caching – overlap and Peephole 
Optimization. For each of the techniques mentioned above it is discussed which transformations they perform, how the 
technique realizes a performance increase, which problems occur when applying them to Rscript and some examples of use 
in Rscript. 
In order to determine the most efficient algebraic optimization technique, we evaluated the techniques by 1) performing 
measurements on them by using test cases, 2) checking the probability that the optimization can be applied to a Rscript file 
and 3) interpreting what the literature claims about them. Finally we concluded that the optimization techniques Qualifier 
Interchange and Filter Hiding are the most efficient. 
 
The second method is based on the optimization of the set operators by using other data structures for set representation. 
The current implementation of Rscript uses a Linear data structure to perform set operations. In order to optimize this, we  
investigate several data structures, such as: Hash Table, Binary Search Tree, Red-Black Tree, Binomial Tree and Judy 
Arrays. For each of the data structures we obtained their theoretical performance. For the two theoretically best performing 
data structures, Hash Table and Red-Black Tree, we performed several measurements on their operators. 
The results of these measurements show us that the Red-Black Tree is the best performing data structure. 
 
Finally we give an advice on which method to use best for optimizing Rscript comprehensions. We advice not to focus on 
algebraic optimization techniques to optimize the Rscript comprehensions, because the applicability of these optimizations 
is very low and an answer about the performance increase is hard to give. We do advice to change the current data structure 
and thereby improving the performance of the entire comprehension. 
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In the first chapter we give a description of the problem that this thesis tries to solve and we introduce our research 
questions. The second chapter gives some background information about the problem. In the third chapter we discuss our 
research plan, which is divided into four iterations. In the fourth and fifth chapter we discuss several algebraic optimization 
techniques. In the sixth chapter we evaluate these algebraic optimization techniques and perform measurements on them, 
also several possible implementation methods are discussed and one of them is chosen to implement a prototype. The 
seventh chapter discusses several data structures and performs several measurements on them. The eighth chapter we 
present the results of the project and give an answer to the research questions. In chapter nine, the final chapter, we evaluate 
the entire project. 
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1. Problem Description 
Rscript is a small scripting language based on relational calculus. Its main purpose is to analyze and query source code from 
software. Relevant information from the source code, in the form of relations, has to be extracted first. This can be done 
with, for example, ASF+SDF. Subsequently Rscript can use these relations to derive additional information from the 
software like, for example, the procedures which call each other directly, but also indirectly (with Transitive closure1). 
When discussing Rscript, henceforth will be referred to Rscript version 0.3. 

1.1. The problem 
Rscript is mainly used at the CWI, VU and the HvA. Recently it became apparent that the performance of Rscript has 
become a problem. When Rscript is performing thorough analysis on software applications, the performance of the 
relational calculations becomes a problem, especially on larger applications. The time needed for these analyses to 
complete, has to be in proportion with the extra amount of information that is retrieved. However this is not always the case 
and therefore this is a problem for the application of Rscript. When Rscript will become more efficient its application can be 
expanded. And this is what we want to achieve. 

The performance issue described above is not solely caused by the computational power of Rscript, but also by the syntax 
used to formulate the analyses. When complex situations have to be calculated, their performance can only be maintained 
when the use of expensive operators like, for example, the Cartesian product2, is limited. Since Rscript is not a very large 
language, and its syntax is fairly limited, the entire analysis will profit from the optimization of even one of the operators.  

It turns out that, performance wise, most of the execution time is spent in calculating comprehensions. Therefore the 
emphasis of this thesis will be on optimizing comprehensions. In order to optimize them, research will be conducted in the 
relevant literature about which techniques are available for optimizing comprehensions. A prototype will be created to test 
the relevant optimizations. 

The results of this research can be used to determine which optimizations are available and how to further optimize Rscript. 
The research is also interesting for other companies and software developers who work with a language which uses 
comprehensions. 
 
This results in the following two research questions for this thesis: 

I. How can Rscript comprehensions be optimized? 

II. What are the effects of the optimizations? 

1.2. Sub questions 
In order to be able to answer the research questions, several sub questions have to be answered first. 
For the first research question, the following questions are raised: 

 I.1  Has there already been conducted some research in the literature about the optimization of   
   comprehensions in general? And if so, which techniques are used? In what way is an optimization  
   performed? Is the optimization applicable to Rscript? How does the optimization work in Rscript? 

 I.2  Is it possible to apply the techniques used for the optimization of relational database queries to Rscript  
   comprehensions? If this is not the case, why not? 

 I.3  Which data structures exist for set representation? In what way do they perform better than the current  
   data structure of Rscript? 

For the second research question, the following questions are raised: 

 II.1  To what extent do the techniques really perform an optimization of the comprehensions? 

 II.2  Which of the optimization techniques is considered the most efficient one? 

Finally, we raise the questions: 

                                                 
1 http://en.wikipedia.org/wiki/Transitive_closure - the tuple <a,c> if <a,b> and <b,c> exists within the relation 
2 http://en.wikipedia.org/wiki/Cartesian_product - AxB is {<1,2>,<3,4>} if A is {1,2} and B is {3,4} 
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 II.3  How can the optimization process be automated? 

 II.4  How to determine the effect of using another data structure for set representation? 

1.3. Objectives 
In order for this project to be successful, the following objectives have been raised: 
 

• A better understanding of how comprehensions can be transformed into a more efficient form. 
• A better understanding of different data structures and their performance. 
• Detailed knowledge of several algebraic optimization techniques. 
• An overview of the efficiency of the algebraic optimization techniques. 
• To produce a working prototype which (semi-)automatically applies optimization techniques to Rscript files. 
• To produce a prototype which can compare the efficiency of different data structures. 
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2. Background and Context  
In this chapter several important issues are discussed. First we briefly consider the relevant literature which focuses on 
optimization techniques, data structures and the evaluation of optimizations. Afterwards the notation of the comprehensions 
of Rscript is discussed and some assumptions are made about the environment in which the optimization techniques will be 
evaluated. 

2.1. Relevant literature 
Here we briefly discuss the relevant literature that we have found. 

2.1.1 Optimization techniques 
In the literature the following three types of areas in which optimizations can be used to optimize Rscript are found. 

1) Comprehension optimization. 

In the literature on optimization techniques that are specifically focused on comprehensions, several algebraic 
transformations are identified which state that they perform an optimization. For example: Qualifier Interchange[1,2,5] 
enables the possibility to switch qualifiers within a comprehension. By placing less expensive qualifiers as foremost as 
possible in the comprehension, the more expensive qualifiers will need to be evaluated fewer times and hereby increasing 
the performance. This approach appears to be a promising technique, which will certainly need some more detailed 
investigation. Another algebraic optimization is called Common Subexpression Elimination[1,11] and states that 
expressions which are used multiple times, should be calculated once and subsequently the result should be reused. In larger 
applications the possibility of expressions being used multiple times, is more than present. Therefore this optimization 
technique is also worth some further investigation. This will be done in the first iteration (see §3.1.1). 
Other algebraic optimizations found are Product Elimination[1], Filter Hiding[1,5], Evaluating Options[1,4] and Index 
Introduction[1,2]. Each of these techniques will be studied and documented in detail in this thesis. 

2) Relational Database optimization 

It is well known that comprehensions show a great similarity with the operation of queries in relational databases. The 
possibility exists that the techniques which are used for optimizing relational queries, can be adapted in order to optimize 
Rscript comprehensions. Several interesting relational database optimization techniques are found and will be discussed, 
such as Commuting Selections[6], Semantic Query Caching[8,10] and Peephole optimization[12]. This will also be done in 
the first iteration. The optimization power of these techniques is based on different methods. Some techniques are replacing 
expensive operators with less-expensive operators, others are creating indices in order to speed-up the retrieval process. 

Whenever a certain optimization technique, whether algebraic or not, uses a specific function, method or operator in order 
to perform its optimization, the question is whether it is possible to express this function in Rscript. The possibility exists 
that Rscript will fall short on this part. Some of these optimization techniques will be discussed, although they cannot be 
applied to Rscript in its present state. However in the future, when Rscript will be expanded, there might be a possibility 
that these functions can be expressed. 

3) Data structures 

The current implementation of Rscript uses a Linear set implementation. Several data structures have been found in the 
literature which can be used to represent a set as used in Rscript and to optimize the current implementation. We have 
identified the following: Hash Tables[15], Binary Search Tree[15], Red-Black Tree[15] , Binomial Heap[15] and Judy 
Arrays[16,17,18]. Each of these techniques will be investigated and their performance will be discussed. 

2.1.2 Evaluation of optimizations 
The following information about measurements, performance gain and comparisons will be used to answer the second 
research question (II) and the first (II.1) and second (II.2) sub questions. 

Every optimization technique that is suitable for Rscript, whether algebraic or based on techniques used in relational 
databases, has to be tested in order to determine to what extent the technique does perform an optimization. To determine 
the extent of the optimization, a measurement of the execution time will be conducted as done in [8,11]. This measurement 
will done on test scripts which will be specifically designed for each of the techniques found. This will be done in the 
second iteration (see §3.1.2). 
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2.2. Comprehension notation 
Comprehensions are constructions for iterating over one or more sets or relations while matching one or more of their 
elements to a boolean-valued expression. The form and notation of the comprehensions are discussed here, in order to 
describe the transformations of the optimization techniques in the subsequent sections. Comprehensions take the following 
form: 
 
 { E1, ... , Em | Q1, ... , Qn } 
  
The return values of the comprehension are specified by E1, ... , Em. The qualifiers Q1, ... , Qn within the 
comprehension can be divided in generators (G) and filters (F). Generators take the form: 
 
 p : e 
 
Where p introduces one or more new variables of different types (e.g.: int, str) and e is a collection (e.g.: set, rel) which is 
enumerated and its results are assigned to the variables. If e is a set then p introduces a variable and when e is a relation, a 
tuple of variables is introduced. 
Filters are boolean-valued expressions that specify the conditions which the variables of the generators must satisfy in order 
to be included in the result. 
 
Comprehensions show a lot of similarities with (SQL) queries in Relational Databases. Example: 
 
SQL:   SELECT v1 ,..., vn FROM R WHERE P1 AND ... Pn 

 
and the corresponding comprehension: 
 
Comprehension: { v1 ,..., vn | v1 ,..., vn : R , P1 ,..., Pn } 
 
A more thorough introduction into comprehensions and Rscript in general can be found in [3]. 

2.3. Assumptions 
When researching algebraic optimization techniques, several assumptions have to be made about the environment in which 
they will be evaluated. This is necessary in order for some techniques to be able to work. 
 
The comprehensions will be evaluated using caching[1]. This states that when an expression is calculated for the first time, 
it is read from (slower) secondary storage and the expression has to be calculated. Afterwards, when the expression is 
needed again, the result of the expression can be directly read from (faster) primary storage and it does not have to be 
calculated again.  
 
For some optimization techniques, such as Qualifier Interchange, the principle of bag equality[1,5] has to apply. Bag 
equality states that the order of tuples in a bag is not significant. So two collections are bag equal if they contain the same 
elements, although possibly in a different order. Rscript only has the collections set and relation. Since the definition of a 
set already states that the order of the elements is non-significant and in Rscript a relation uses the same implementation as 
a set[3,7], this principle already applies. Therefore it will be no problem for the principle of bag equality to apply in Rscript.
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3. Research Plan  
In this chapter, the plan for answering the research questions is discussed.  

3.1. Iterations 
In order to answer the research questions, the project is separated into four iterations. In each of the iterations an attempt 
will be made to answer one or more of the raised sub questions.  

3.1.1. Iteration 1 
As briefly mentioned in chapter 2, the first iteration of this project consists of a research in the literature of finding 
optimizations techniques. Not only will we discuss the optimization techniques especially designed for comprehensions, but 
also the techniques that are used for optimizing relational databases. An attempt will be made to answer sub questions I.1 
and I.2. 

Several optimization techniques will be studied and for each of these technique the following important issues will be 
addressed:  

• Transformation rules.  
Each of the algebraic optimization techniques consist of one or more transformations from the original form to a 
more efficient form. These transformations and their rules are discussed in this issue. 

• (possible) Performance gain. 
We will discuss whether the use of the optimization technique increases the performance and what the 
improvement will be. 

• Possible problems when applying the technique to Rscript. 
We will discuss whether the optimization technique is suitable for applying on Rscript and what the eventual  
problems are when doing so. 

• Examples of use. 
Some examples will be given of how the optimization technique is expressed in Rscript. 

3.1.2. Iteration 2 
The second iteration tries to answer the sub questions II.1 and II.2. 

The performance increase of the optimizations is determined by applying each of the optimizations separately to a test file. 
In order to make sure that every optimization technique is fully tested, a unique test case is created for each optimization. 
Afterwards an overview will be constructed of the performance of each separate optimization and when possible, of several 
optimizations used together. Eventually a comparison will be made between the performance of the original execution and 
the optimized execution.  
 
In order to determine which optimization technique is considered the most efficient, several factors will be taken into 
account, like 1) the extent of the optimization improvement, 2) the possibility that an optimization can be applied to a 
Rscript file and 3) what the literature tells us about this optimization. Finally a ranking of optimizations will be given. 

Eventually we conclude which techniques will be best suited for implementation in the prototype. 

3.1.3. Iteration 3 
The third iteration is meant for developing a small prototype application which enables us to automatically apply 
optimization techniques to Rscript files. The result can be used to validate the result obtained by manually applying the 
techniques to Rscript files. This answers sub question II.3. 

First of all, a small study will be conducted in order to determine the best way to construct a prototype. There are several 
possible methods of implementing the automation of optimizing Rscript comprehensions. Three methods will be introduced 
here: 

• Standalone application. 
This application is a standalone Java program that, given a Rscript file, performs the optimizations and returns an 
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optimized Rscript file.  

• Extending Rscript in ASF+SDF. 
The current Rscript implementation in ASF+SDF will be extended in order to automatically apply the optimization 
techniques.  

• Complete re-creation of Rscript. 
The last method is based on creating an entire new version of Rscript in Java, which automatically applies the 
optimization techniques. 

From the results of this research a conclusion will be drawn about which method to choose. Afterwards, the prototype will 
be constructed according to the chosen method. Before the optimization transformations are implemented, a pseudocode 
algorithm of each optimization will be created first. Finally, when the application is functional, it will be applied to the same 
test cases as used in the second iteration. A comparison can then be made between the optimization of the manual results 
and the automated results.  

3.1.4. Iteration 4 
The fourth and last iteration will be used to investigate different data structures and to create another prototype which will 
enable us to compare the efficiency of different data structures. This answers sub question I.3 and II.4. 

First the operations of Rscript which are most frequently used on the current data structure will be determined. Subsequently 
several data structures which we found in the literature will be discussed and their performance of the operations will be 
determined. 
After the discussion we will determine the best candidate data structure for Rscript, which will be used in the prototype to 
be developed. This prototype will enable us to compare the running time of different data structures. We shall import an 
implementation of the best candidate and create a default Java version for comparison. 
 
In order to determine the efficiency of the candidate data structure, we shall use an existing Rscript file and extract its 
operations on the data structure. These operations will be used as a test case in the prototype and the results of the 
comparison will be discussed.
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4. Comprehension optimization techniques 
In this chapter several optimization techniques are discussed. These techniques are specifically used for the optimization of 
comprehensions (in general). This chapter answers sub question I.1. 

For each technique several important points are discussed: transformation rules, performance gain and suitability for 
Rscript.  

Several techniques which are found in the literature (as mentioned in the background chapter), like: memoising[2] and 
Evaluating Options[1,4] are not discussed here. This is because their power for optimization is based only on constructions 
that are not possible in Rscript. The following techniques are discussed here: Qualifier Interchange, Filter Hiding, Product 
Elimination, Common Subexpression Elimination and Index Introduction. 

4.1. Qualifier Interchange 
Qualifier Interchange [1,2,5] is an algebraic optimization technique based on the possibility to swap any two qualifiers 
inside a comprehension. It is also referred as Selection Promotion[6]. 
When Qualifier Interchange is applied to a comprehension containing two or more generators which each iterate over 
different relations, the order of the generators within the comprehension will also be influenced by the size of these 
relations. The relations should be ordered in ascending order of their size. This is because when the smaller relation is in 
front, the larger relation can be processed as a whole. 
 
Transformation rules 

Here the transformations of Qualifier Interchange are explained. 
 
Condition: f2 does not use variables which are declared in f1. 

qi/1 { v | q0 , q1 , f1 , f2 }   ==  { v | q0 , q1, f2 , f1 } 

The above transformation states that the position of two filters (f1 and f2) within the comprehension can be swapped. This 
transformation is only possible if the stated conditions are met. Here the only condition is that the second filter (f2) does not 
use variables which are declared in the first filter (f1), because otherwise the second filter will use non existing variables 
and the comprehension will be incorrect. This transformation has to be used in several situations:  

• The second filter uses less variables than the first filter does. This filter is less-expensive to compute, and therefore 
it will decrease the intermediate result. 

• If the second filter is expected to decrease the size of the intermediate result more than that the first filter can.  
 
Example: 
C1 { a | <int a, int b> : AB , <int c, int d> : CD , b == c , d == 99 } 
The above example shows a comprehension with two filters at the end. On this comprehension qi/1 can be applied and 
will be transformed into C2: 
C2 { a | <int a, int b> : AB , <int c, int d> : CD , d == 99 , b == c } 
Above we show that the filters b == c and d == 99 are swapped. Now the comprehension will be more efficient 
because the filter d == 99 will decrease the intermediate result more than b == c. 
 
Condition: (p2:e2) does not use variables declared by p1.  

qi/2 { v | q0 , p1 : e1 , p2 : e2 , q1 } ==  { v | q0 , p2 : e2 , p1 : e1 , q1 } 

The second transformation states that the position of two generators ( p1 : e1 and p2 : e2 ) within the comprehension 
can be swapped. This is only possible if the second generator (p2 : e2) does not uses variables declared by the variables of 
the first generator ( p1 ), because otherwise the second generator will use non existing variables. This transformation is 
useful in combination with one of the other transformations of Qualifier Interchange, in order to decrease the size of the 
intermediate result as early as possible. 
 
Example: 
We continue the result of the previous example (C2) because it contains a generator followed by another generator. On this 
comprehension, qi/2 can be applied and will be transformed into C3: 
C3 { a | <int c, int d> : CD , <int a, int b> : AB , d == 99 , b == c } 
Here we show that the generators AB and CD are swapped. On itself this has no performance gain, however the current form 
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is useful for other transformations to be able to be applicable. 
 
Condition: f1 does not use variables declared by p1. 

qi/3 { v | q0 , p1 : e1 , f1 , q1 } == { v | q0 , f1 , p1 : e1 , q1 } 

The last transformation states that a generator (p1 : e1) and a filter( f1) can be swapped. This is only possible if the filter 
does not use variables which are declared in the variables of the generator (p1 ), because otherwise the filter will use non 
existing variables. This transformation is useful to decrease the size of the intermediate result as early as possible. 
 
Example: 
Here we will continue with the previous example C3. Since there is a generator followed by a filter, this comprehension can 
be transformed using qi/3, resulting in: 
C4 { a | <int c, int d> : CD , d == 99 , <int a, int b> : AB , b == c } 
This shows that the generator AB and the filter d == 99 are swapped. This will make the comprehension more efficient 
because the generator CD and the filter d == 99 will decrease the intermediate result and thereby resulting in less 
enumerations of the generator AB. 
 
Performance gain 

The performance gain of Qualifier Interchange is based on switching places of qualifiers (filters/generators) within the 
comprehension in order to decrease the size of the intermediate result. By placing filters as foremost as possible, they 
restrict the relation by discarding elements which do not apply and therefore the succeeding generators and filters will be 
used less. The performance gain is different for each comprehension since not every switch of qualifiers ensures an equal 
performance increase. 

Suitability 
The technique Qualifier Interchange is perfectly suited for optimizing the comprehensions in Rscript. The transformations 
are easy to apply to comprehensions. However, before transforming a comprehension using one of the above 
transformations, information has to be gathered for each of the qualifiers about where their used variables are declared. This 
information is necessary to determine whether a transformation can be applied or not. 

4.2. Filter Hiding 
Filter hiding [1,5] brings a generator with its accompanying filters outside the original comprehension and places them 
inside a new expression. By doing so, it transforms the comprehension into a more suitable form. Most of the time the new 
form is clearer and more intuitive than the original. By placing a part of the comprehension outside the comprehension, 
there is an increased possibility that other optimization techniques can be applied, such as Common Subexpression 
Elimination.  
 
Transformation rules 

Here the transformations of Filter Hiding are explained. 
 
Condition: fe is only using variables declared in p or outside the comprehension 

fh/1 { v | q0 , p : e , fe , q1 } == { v | q0 , p’ : e’ , q1 } 
        where 
        e’ = { p’ | p : e , fe } 

The above transformation states that a generator (p : e) and a filter (fe) can be brought outside the comprehension into a 
new expression(e’). The generator is adapted to iterate over this new expression. This transformation is possible if the filter 
is only using variables which are declared in the variables of the generator (p)or to variables which are declared outside the 
comprehension. The variables of the generator which are not used anymore in the rest of the original comprehension (q1), 
can be removed from the return variables of the new expression (p’). This transformation has to be used whenever possible 
since the new form will enable other transformations to be applicable. 
 
Example: 
C1 { s1 | < int s1, int grade > : grades , grade < 5.5 , < int s2, int times > : 
 absence , s1 == s2 , times < 2 } 
The above example shows a comprehension that contains a generator (grades) and a filter (grade) which is only using 
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variables declared in this generator. On this comprehension fh/1 can be applied and will be transformed into C2: 
C2 { s1 | < int s1, int grade > : lowGrades , < int s2, int times > : absence , 
 s1 == s2 , times < 2 } 
where rel[int,int] lowGrades = { <s1, grade> | < int s1, int grade > : grades , 
 grade < 5.5 } 
Here we show that the generator grades and the filter grade < 5.5 are brought outside the original comprehension 
and inside a newly created comprehension called lowGrades. Note that on C2 the transformation fh/1 can be applied 
again, resulting in C3: 
C3 { s1 | <int s1, int grade> : lowGrades , < int s2, int times > : lowAbsence , 
 s1 == s2 } 
where rel[int,int] lowAbsence = { <s2, times > | < int s2, int times > : absence , 
 times < 2 } 
Here we show that the generator absence and the filter times < 2 are brought outside the original comprehension and 
inside the created comprehension called lowAbsence. The comprehension lowGrades is not shown here, but is the 
same as shown in C2. 
Note that the variable grade and times are not used anymore in C2 and C3 and therefore they could be removed. Before 
this is done, there has to be sure that no other qualifier uses these variables. In this example no other qualifier uses these 
variables and therefore resulting in: 
C4 { s1 | int s1 : lowGrades , int s2 : lowAbsence , s1 == s2 } 
where set[int] lowGrades = { s1 | < int s1, int grade > : grades , grade < 5.5 } 
where set[int] lowAbsence = { s2 | < int s2, int times > : absence , times < 2 } 
In C4 we show that grade and times are removed from the return values of the newly created comprehensions and also 
of the variables in the original comprehension. 
 
Condition: p contains variables which are not used in the comprehension 

fh/2 { v | q0 , p : e , q1 }  == { v | q0 , p’ : e’ , q1 } 
        where 
        e’ = { p’ | p : e } 

The second transformation states that a generator (p : e) can be brought outside the comprehension into a new expression 
(e’). If p declares variables which are not used in the rest of the original comprehension (q1), they can be removed from the 
return variables of the new expression (p’). This transformation has also be used whenever possible. 
 
Example: 
C5 { a | < int a, int b > : AB , < int c, int d > : CD , a == c , d > 5 } 
The above example shows a generator (AB) from which only one of the two variables is used (a). Therefore this 
comprehension can be transformed using fh/2, resulting in C6: 
C6 { a | int a : onlyA , < int c, int d > : CD , a == c , d > 5 } 
Where set[int] onlyA { a | <int a , int b> : AB } 
Above we show that the generator AB has been brought outside into a new comprehension. Since variable b is not used in 
the original comprehension, it is removed from the return values of onlyA.  
 
Performance gain 
The performance gain of Filter Hiding is based on placing one or more qualifiers outside the original comprehension into a 
new comprehension. This ensures that this new comprehension is cached before it is used in the original comprehension. 
However, the literature claims that this technique does not really performs an optimization, but by transforming the 
comprehension using one of the transformations of Filter Hiding it increases the possibility for other optimizations, such as 
Common Subexpression Elimination, to be effective.  

Suitability 
Filter Hiding can be applied very well to the comprehensions in Rscript since it does not use any techniques that are not 
supported by Rscript. However before transforming, information has to be gathered about where the variables used in all of 
the qualifiers are declared. 

4.3. Product Elimination 
Product Elimination [1] will transform a Cartesian product into a natural join. If the Cartesian product is followed by a 
equality test between two relations, the result of the natural join is a set of all the combination of tuples that are equal on 
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their common attribute. The natural join from two relations with arity3 a and b, will construct a new relation of arity a + b – 
1:one of their common attributes will be deleted. 
If the Cartesian product is followed by a equality test between one relation and a value, it can be transformed into a 
comprehension. 
 
Transformation rules 
Here the transformations of Product Elimination are explained. 
 
Condition: The form is a Cartesian product followed by an equality between variables. 

pe/1  { v | q0 , <a,b> : AxB , ai == bj , q1 } 
     == { v[ai/bj] | q0 , ab : AB , q1[ai/bj] } 
     where 
     AB = jmergeij (sorti A ) (sortj B) 

The above transformation states that the Cartesian product (AxB) followed by an equality between variables (ai == bj) 
can be transformed into a natural join. The natural join is computed as follows: first the relations which are joined are sorted 
on their common attribute, where i and j indicate the position of their common attribute inside the relation. Afterwards a 
sort-merge function is called (jmergeij) as described in [1]. This will return a new set containing A and B joined together. 
Since the equality (ai == bj) is removed bj is no longer available. Therefore, wherever bj is used it has to be changed into 
ai because they are equal. This is notated like[ai/bj]. 
 
Example: 
C1 rel[int,int] ABCDc = { <a,c> | < <int a, int b>,<int c, int d> > :   
 ABxCD , b == c } 
The above comprehension shows a Cartesian product (ABxCD) and an equality filter (b == c). Therefore, this 
comprehension can be transformed using pe/1, resulting in C2: 
C2 rel[int,int] CDc = { <a,d> | < int a, int b, int d > : ABCD } 
where rel[int,int,int] ABCD = jmerge21 (sort2 AB) (sort1 CD ) 
The jmerge21 function will merge the relations AB and CD on their common attribute, which are b and c (b == c). This 
will return a relation with all of the elements combined from AB and CD, with one of their common attributes removed (c). 
Since c is removed and it is equal to b, wherever c is used it has to be replaced by b. This is shown by changing the return 
values into <a,d>. 
 
Condition: The form is a Cartesian product followed by an equality test. 

pe/2  { v1 | q0 , <a,b> : AxB , b == v2 , q1 } 
     == { v1 | q0 , <a,b> : AB , q1 } 
    where 
    AB = { <a, b> | int b : B , b == v2 , int a : A } 

The second transformation states that a Cartesian product (AxB) followed by an equality test between one of the result 
values of the product against a hard coded value(b == v2), can be transformed into a comprehension. This transformation 
is useful because it will reduce the intermediate result and thereby improving the performance. 
 
Example: 
C3 rel[int,int] NM28 = { <n,m> | <int n, int m> : N x M , m == 28} 
The above example shows a Cartesian product (N x M) and a equality test (m == 28). Therefore this example will be 
transformed using pe/2 into C4: 
 
C4 rel[int, int] NM28 = { <n,m> | <int n, int m> : NM } 
Where rel[int,int] NM = { <n,m> | int m : M, m == 28, int n : N }  
This shows that the Cartesian product is replaced by a comprehension. Now the efficiency will be increased because the 
generator N will be enumerated fewer times. 
 
Performance gain 
Product Elimination transforms the Cartesian product into a natural join. Since a natural join can be calculated in a more 
efficient way than a Cartesian product, an optimization is realized. The degree of optimization depends on the size of the 

                                                 
3 http://en.wikipedia.org/wiki/Arity - the number of domains within the relation 
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relations that are joined.  
 
Suitability 
Rscript does not have a (built in) sort functionality and also the jmerge function has to be implemented manually. 
Therefore pe/1 is not suitable for Rscript. When this functionality becomes available, either built in or created manually, it 
can be applied. However, pe/2 can be applied to Rscript comprehension and is very suitable for optimizing them. 

4.4. Common Subexpression Elimination 
Common Subexpression Elimination[1,11] is an optimization technique based on removing duplicate expressions within a 
file. The advantage is that once an expression has been calculated, the next time it is needed it does not have to be calculated 
again but the result can be obtained directly from primary storage (cache).  

 
Transformation rules 
Here the transformations of Common Subexpression Elimination are explained. 
 
Condition: Two or more equal expressions are present inside the Rscript file. 

cs/1  
 { v | q0, ... , q1 }  
  { v | q0, ... , q1 } }  ==  

 
{ v | q0, ... , q1 } 

This transformation states that the duplicate comprehension can be eliminated, and the original can be re-used. This 
transformation has to be used whenever possible since it will ensure that expressions will not be calculated more than once. 
 
Example: 
C1 { c | <int c, int d> : CD , d == 99 } 
C2 { c | <int c, int d> : CD , d == 99 } 
The examples above shows two exactly the same comprehensions. This example will be transformed using cs/1, resulting 
in: 
C3 { c | <int c, int d> : CD , d == 99 } 
By using Common Subexpression Elimination one of the duplicate relations is removed and the original comprehension 
(C1) is used. 
Note that when two expressions are not exactly the same but they do share common qualifiers that cs/1 cannot be applied. 
However, by using Filter Hiding to place these common qualifiers outside of the expressions into their own expression, the 
transformation cs/1 can be applied. 
 
Performance gain 
Common Subexpression Elimination makes sure that every unique expression is calculated only once. So when the 
expression is used again, the already calculated result can be reused. The probability that two or more exactly the same 
expressions exist inside an file increases as the size of the application grows. Especially after a transformation of Filter 
Hiding has been applied, when each generator with its filters is placed in a separate expression, the odds will increase that a 
match will occur. The obtained performance gain depends on the number of times a comprehension is reused and the time 
needed to calculate the expression. 

Suitability 
Common Subexpression Elimination can be used very well to optimize Rscript. However before applying Common 
Subexpression Elimination to two or more comprehensions, there has to be determined whether they are identical or not. 

4.5. Index Introduction 
Index Introduction[1,2] is based on creating an index over a relation. Once the index has been created, every time there is a 
comprehension that iterates over this relation, the index can be used instead. 
A disadvantage of Index Introduction is that it can only be used with the comparison operator ‘==’ and not with ranges (like 
<,≤, ≥ or > ) since an index cannot work with ranges. 
The creation of the index and the implementation of how the index should be used falls outside the scope of this project. 
 
Transformation rules 



12 

Here the transformations of Index Introduction are explained. 
 
Condition: An index over relation e is available. 

ii/1 { e | q0 , p : e , p == v , q1 } == { e | q0 , p : indexev , q1 } 

This transformation shows that an index is used over the relation (e). After the transformation, this index can be used to get 
the values (p) of this relation . 
 
Example: 
C1 { a | <int c, int d> : CD , d == 99 , <int a, int b> : AB , b == c } 
The above transformation shows that in C1 the relation CD is enumerated in order to match the filter d == 99. After 
applying ii/1 an index is created to retrieve all the tuples from CD which satisfy the filter d == 99, result: 
C2 { a | <int c, int d> : indexCD99 , <int a, int b> : AB , b == c } 
 
Performance gain 
With index introduction a performance gain is obtained since the use of an index is a lot faster than enumerating over a 
relation. If a relation is being enumerated lots of times, then the costs of creating an index can be regained. The eventual 
performance gain depends on the number of times the index is used and the amount of time needed for creation of the index.  
 
Suitability 
Rscript does not have the ability to use or create real indices. There is the possibility that a relation can be created in such a 
way that it can act like a index. This will not have the (direct access) advantages of a real index, although this is an 
implementation issue. Therefore this technique is currently not suitable for application on Rscript. When the index 
functionality is included in Rscript, it can be applicable. 

4.6. Conclusion 
There has been done quite some research about optimization techniques which are especially designed for optimizing 
comprehensions in general. None of them is designed to optimize comprehensions specifically for Rscript, but only for 
comprehensions in general. Not all of these techniques are suitable for application on the comprehensions of Rscript, 
partially because of the limited functionality of Rscript. An overview of each of the techniques and their suitability is given 
in the table below. 

# Optimization technique Suitable 
1 Qualifier Interchange yes 

2 Filter Hiding yes 

3 Product Elimination partially 

4 Common Subexpression Elimination yes 

5 Index Introduction No/future 

Table 1  – Suitability overview for Comprehension optimization techniques. 

We have shown that the power of each optimization is based on different methods: Qualifier Interchange, Filter Hiding and 
Common Subexpression Elimination are based on algebraic transformations in order to obtain a more efficient 
comprehension. Other techniques are based on creating and using an index over a relation (Index Introduction) or are 
removing expensive operators by cheaper ones (Product Elimination). For each of the techniques, an example has been 
given of how these techniques can be applied to Rscript and what their potential performance increase can be. However, the 
practical performance increase still has to be determined. This will be done in chapter 6. 
 

The next chapter will describe several techniques that are used to optimize Relational Databases and can be applied to 
Rscript.
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5. Database optimization techniques 
In this chapter several optimization techniques which are originally used for optimizing relational databases, are discussed. 
Here, an answer is given to the sub question I.2. 

For each technique several important points are discussed: transformation rules, performance gain and suitability for 
Rscript.  

Several techniques found in the literature (as mentioned in the background chapter), such as: Copy Optimization[13] and 
Code Motion[13] are not discussed here since their power for optimization is based only on constructions that are not 
possible in Rscript. The following techniques are discussed: Commuting Selections, Semantic Query Caching and Peephole 
Optimization. 

5.1. Commuting Selections 
Commuting Selections [6] is based on performing selection as early as possible. Hereby the intermediate result is smaller 
and the operation between the relations is calculated in less time. It can be applied to several operators, such as Cartesian 
Product, Union and Set Difference. 
 
Transformation rules 
Here the transformations of Commuting Selections are explained. 
 
Condition:  The form is a selection over a set difference of two relations. 

co/1  f1( R1 \ R2 )  ==  f1( R1 ) \ f1( R2 ) 

The above transformations shows that the selection(f1) over a set difference between two relations is changed into 
performing this selection on both of the relations before performing the set difference. However when the selection is only 
using variables which are declared in one relation, for example R1, then the selection only has to be applied to this relation. 
This transformation is useful because by performing selections earlier, the amount of intermediate results will decrease and 
thereby increasing the performance. 
 
Example: 
C1 { result | int result : ( AB \ CD )[-,3] } 
This example shows that the selection is performed over the result of the set difference. After applying co/1 the 
comprehension is transformed into C2: 
C2 { result | int result : ( AB[-,3] \ CD[-,3] ) } 
Here the selection has been performed first over each of the relations, afterwards the set difference is calculated. This will 
ensure that the comprehension will be calculated more efficiently. 
 
Condition: The form is a selection over a union of two relations. 

co/2  f1( R1 union R2 )  ==  f1( R1 ) union f1( R2 ) 

This transformation shows that the selection(f1) over a union between two relations is changed into performing this 
selection on both of the relations before performing the union. However when the selection is only used to select over one 
relation, for example R1, then the selection only has to be applied to this relation. 
 
Example: 
C3 { result | int result : ( AB union CD )[-,3] } 
This example shows that the selection is performed over the result of the union. After applying co/2 the comprehension is 
transformed into C4: 
C4 { result | int result : ( AB[-,3] union CD[-,3] ) } 
Here the selection has been performed first of all over the relations, afterwards the union is calculated. By first performing 
the selection, the intermediate result is decreased and the union operator can be performed more efficient. 
 
Condition: The form is a selection over a Cartesian product of two relations. 

co/3  f1( R1 x R2 )  ==  f1( R1 ) x f1( R2 ) 

The last transformation is based on performing a selection not over the result of the Cartesian product, but on each relation 
individually. However when the selection is only used to select over one relation, for example R1, then it only has to be 
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applied to this relation. 
Example: 
C5 { <n,m> | <int n, int m> : N x M , m > 28} 
Here the selection is performed over the result of the Cartesian product. After applying co/3 the comprehension is 
transformed into C6: 
C6 { <n,m> | set[int] M28 <- { m | int m : M , m > 28 }, <int n, int m> : N x 
 M28 } 
Here a new collection is introduced (M28) in order to perform the selection over M. Afterwards the Cartesian product is 
performed.  
 
Performance gain 
The performance gain of Commuting Selections depends on the size of the relations and the type of operation that is 
performed. When applying one of the transformations the intermediate result becomes smaller because the selections are 
performed first on each of the relations. Afterwards the more expensive operations, such as: set difference, union and 
Cartesian product, is applied to the (smaller) intermediate result and thereby decreasing the amount of time needed to 
calculate the final result. 
 
Suitability 
Although these transformation rules are not specifically designed for comprehensions, but for specific operators (union, set 
difference and Cartesian product) they can be used very well for Rscript. Since these operators can be present as a qualifier 
within a comprehension, the performance of the comprehension as a whole will increase when the transformation is applied.  

5.2. Semantic Query Caching 
Semantic Query Caching (SQC) [8,10] is based on saving one (or multiple) part(s) of query processes by using the cached 
results of previous queries instead. By re-using the cached result, the amount of time needed for processing the query, is 
reduced. This optimization is partially the same as Common Subexpression Elimination. The difference is that the origin of 
this technique lies in the relational database world and that other methods of re-use are possible. 
There are four possible situations that a result can be re-used: 

• Nothing in common 
The result contains nothing. Example: x == 4 has nothing in common with x == 5. In this situation the 
technique cannot be applied. 

• Identical 
The result contains everything. Example: x > 5 is identical with x > 5. This is the same as Common 
Subexpression Elimination and is therefore not discussed here. 

• Subsumption 
The result contains everything and even more than necessary. Example: x > 5 subsumes x > 10. This is also 
referred as a subset. 

• Overlap 
To a certain degree the result overlaps with the necessary information. Example: x > 10 overlaps x < 20. This 
is also referred as an intersection. 

 
Originally SQC is designed for the use in a client/server environment. Here the cached result(s) can be stored client side and 
this saves client-server connectivity. To identify what information is cached, a semantic description is used. 
 
Transformation rules 
Here the transformations of Semantic Query Caching are explained. 
 
Condition: p:e and f1 subsumes p:e f2. 

sqc/1  
 e1 = { v | p : e , f1 }
  
 e2 = { v | p : e , f2 } 

}
  
== 

 
e1 = { v | p : e , f1 } 
e2 = { v | p : e1 , f2 } 

This transformation applies to the subsumption situation and states that when two almost identical comprehensions the 
generator (e) and its filter (f1)  of the first expression (e1) subsumes the generator (e) a its filter (f2) of the second 
expression (e2), the generator of the second comprehension can be changed to enumerate over the first comprehension. 



15 

 
Example: 
C1 rel[int,int] CDsmaller99 = { <c,d> | <int c, int d> : CD , d < 99 } 
C2 rel[int,int] CDsmaller55 = { <c,d> | <int c, int d> : CD , d < 55 } 
Here we show that in the examples C1 and C2 the same relation CD is iterated, only that the filters differ. Since d < 99 
subsumes d < 55,  sqc/1 can be applied, result: 
C3 rel[int,int] CDsmaller99 = { <c,d> | <int c, int d> : CD , d < 99 } 
C4 rel[int,int] CDsmaller55 = { <c,d> | <int c, int d> : CDsmaller99 , d < 55 } 
 
Condition: p:e and f1 overlaps p:e f2. 

sqc/2  
 e1 = { v | p : e , f1 } 
 e2 = { v | p : e , f2 } }

  
== 

 
e1 = { v | p : e , f1 } 
e2 = { v

*1 | p : e1 , f2 , p’ : e , f1

*2 } 

The last transformation applies to the overlap situation and states that when two almost identical comprehensions the 
generator (e) and its filter (f1) of the first expression (e1) overlaps the generator (e) and its filter (f2) of the second  
expression (e2), the second comprehension can be transformed. Several changes are made by the transformation: 
The generator is changed to enumerate the first expression with its current filter (f2). Next a second generator is added 
which enumerates over the original expression (e) and stores its variables with different names (p’). On this generator, the 
inverse of the filter of the first expression is added(f1

*2) while using the different names. Finally the return value(v*1) is 
changed in order to include the variables with the different names. 
 
Example: 
C5 rel[int,int] CDsmaller55 = { <c,d> | <int c, int d> : CD , d < 55 } 
C6 rel[int,int] CDlarger30 = { <c,d> | <int c, int d> : CD , d > 30 } 
Here we show that in C5 and C6 the same relation CD is iterated, only the filters are different. Since d < 55 overlaps d > 
30 the transformation sqc/2 can be applied, resulting in: 
C7 rel[int,int] CDsmaller55 = { <c,d> | <int c, int d> : CD , d < 55 } 
C8 rel[int,int] CDlarger30 = { <c,d>,<c2,d2> | <int c, int d> : CDsmaller55 , d 
> 30 , <int c2, int d2> : CD , d >= 55 , d > 30 } 
In the example above we see that the filter d < 55 is changed into d >= 55, also the return value is changed in order to 
include all of the results. 
 
Performance gain 
The performance gain of this optimization depends on the number of parts that can be re-used and the extent of the 
similarity between the part and the re-usable query. When an expression subsumes another expression, this expression can 
be re-used. Its performance gain lies in the fact that this expression probably has less values to iterate and it is already in 
cache. When an expression overlaps, its performance gain lies in the fact that a part of the result is already in the cache. 
 
Suitability 
Semantic Query Caching is suitable for Rscript, since it is based on a transformation with no new operators. However it will 
be difficult to determine whether a query is (remotely) similar to another one. Since Rscript does not have the possibility to 
store semantic information about a relation, the identification has to be done otherwise. 

5.3. Peephole Optimization 
Peephole optimization [12] is a method which optimizes by inspecting the code of a file to identify and modify inefficient 
sequences of instructions. Its origin does not only lie inside the relational database world, but also in the optimization of 
compilers. 
 
Transformation rules 
Here the transformations of Peephole Optimization are explained. 
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Condition: - 

po/1  
 e1 = e2  
 { e | q0 , p : e1 , q1 ... qn } }

  
== 

 
{ e | q0 , p : e2 , q1 ... qn } 

This transformation is based on the elimination of an extra variable (e1). However when this transformation is applied, the 
variable (e1) has to be changed to its value (e2) everywhere in the entire Rscript file. This technique is also referred to as 
constant propagation. 
 
Example: 
C1 rel[str,str] closure = calls+ 
 set[str] calledTotal = closure[ top(calls) ] 
Here we show that in C1 the variable closure is used to identify calls+. Therefore the transformation po/1 can be 
applied, result: 
C2 set[str] calledTotal = calls+[ top(calls) ] 
The example above shows that the variable closure is removed. 
 
Condition: The expression is a collection of hardcoded values. 

po/2 e1 = int1 * int2  == e1 = int12 

The second transformation is based on calculating hardcoded values once, instead of every time the script is executed.  
 
Example: 
C3 int result = ( 50 / 2 ) * 4 
Here we show that in C3 the several hard coded values are present, therefore po/2 can be applied, result: 
C4 int result = 100 
This shows that the hard coded values have been calculated into one value. 
 
Performance gain 
The performance gain of Peephole optimization is based on limiting the amount of variables and a form of pre-processing. 
Since the creation of variables is not an expensive operation, the performance gain will be fairly limited. Also the 
improvement of preprocessing variables will not be very impressive. 
Although the performance gain is not very high, this optimization can be useful when it is automated. While writing the 
code, there is not any need anymore to limit the use of variables and of calculations between hardcoded values: the 
optimization will improve this. 
 
Suitability 
Peephole optimization can be used for optimizing Rscript. It is fairly easy to apply these optimizations, although the impact 
is very limited. Also it is not improving the readability of the file, since every variable that is used for increasing the 
readability is removed. Note that it is not wise to use Peephole optimization together with Filter Hiding, since Filter Hiding 
creates extra variables and Peephole will remove them and thereby canceling the optimization gain caused by Filter Hiding. 

5.4. Conclusion 
We have only found three optimization techniques which are designed for optimizing relational database queries and which 
are suitable for application to the comprehensions of Rscript. An overview of these optimization techniques is given in the 
table below. 

# Optimization technique Suitable 
1 Commuting Selections yes 

2 Semantic Query Caching yes 

3 Peephole Optimization yes 

Table 2 – Suitability overview of database optimization techniques 

We have shown that the techniques in the table above can be used to optimize Rscript comprehensions, since their power to 
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optimize is based on using operators or performing transformations that are available in Rscript. If this is not the case, the 
technique cannot be used in Rscript.  
The performance increase Commuting Selections lies in an algebraic transformation into a more efficient form. Other 
optimizations, like Semantic Query Caching, are based on re-using the result of previous calculated queries. Peephole 
Optimization is based on pre-processing files. 

In the next chapter each of the optimization techniques discussed in the current and the previous chapter will be evaluated. 
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6. Evaluation of the optimizations studied 
In the previous chapters, several optimization techniques have been considered. This chapter answers the sub questions II.1 
and II.2. 

In this chapter we evaluate each of the algebraic optimizations discussed above. First the efficiency of each of the algebraic 
optimization techniques will be determined. Next the prototype for automatically applying optimization techniques to 
Rscript shall be discussed. Also the method of validating the efficiency of the two most efficient determined optimization 
techniques, shall be discussed. 

6.1. Efficiency of the algebraic optimization techniques 
Several criteria are selected in order to determine which optimization is considered the most efficient. Each of these criteria 
will be discussed separately. The following criteria are selected: 

1. To what extent does the technique perform an optimization? 
2. What is the possibility that a technique can be applied to a Rscript file? 
3. What does the relevant literature say about the performance of the optimization? 

 
In the following section, each of the algebraic optimizations will be tested against these criteria. The information needed for 
the first criteria will be obtained by determining the difference in execution time between a non-optimized and a optimized 
test script. In order to obtain the information needed by the second criteria, a practical test will be conducted to determine 
the number of times each of the optimization techniques can be used. For the third criteria the relevant literature will be 
used. 

6.1.1 Evaluation of testcases 
For each of the optimizations, a unique test case has been created4. Each of the test cases will be executed before – and after 
the optimization. In order to measure the effect of the optimization, the execution time is measured in milliseconds(ms). 

A program has been created, named runRscript, which enables us to successively run Rscript files multiple times whilst 
measuring the average execution time. In order to get a representative average value of the execution time, each test case is 
executed 20 times. In the table below the results of the measurements are shown. First the not-optimized execution time of 
the test script is given, next the execution time of the optimized test script. Next the difference between the execution times 
of these two executions is given. Finally the performance gain of the optimized script is given in percentages. 

Optimization technique Not-
optimized 

Optimized Difference  Performance 
increase 

Qualifier Interchange 17746 ms 13526 ms 4220 ms 31.2 % 

Filter Hiding 17807 ms 13547 ms 4260 ms 31.5 % 

Qualifier Interchange + Filter Hiding 17807 ms 13570 ms 4237 ms 31.2 % 

Common Subexpression Elimination  13493 ms 13482 ms 11 ms 0.1 % 

Commuting Selections - set-difference 20632 ms 13454 ms 7178 ms 53.4 % 

Commuting Selections - union 14285 ms 13531 ms 754 ms 5.6 % 

Commuting Selections – Cartesian product 7603 ms 4867 ms 2736 ms 56.2 % 

Product Elimination – pe/2 5094 ms 274 ms 4820 ms 1759,1 % 

Semantic Query Caching - subsumption 14072 ms 13624 ms 448 ms 3.3 % 

Semantic Query Caching - overlap 14618 ms 14348 ms 270 ms 1,9% 

Peephole optimization – po/1 17807 ms 50635 ms -32828 ms -64,8 % 

Peephole optimization – po/2 179 ms 174 ms 5 ms 2,9 % 

Table 3 - Optimization measurements. 5 

                                                 
4 The test cases are documented in Appendix A. 
5 The test scripts are executed on a Athlon 64, 3500 MHz, 1GB RAM on Fedora v4. 
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For every optimization technique discussed in chapter four and five, the table above shows the extent of which they perform 
an optimization and thereby answering sub question II.1.  
Although each optimization has only been applied to a test file instead of being applied to an existing application, it gives a 
good indication of the extent of optimization that each technique performs. 

Some of the techniques are capable of working together with other techniques, especially Filter Hiding is a good example. 
By doing so, the performance gain might be increased even more. In the measurements above, Filter Hiding is combined 
with Qualifier Interchange. A bit disappointing is that the measurements show that their combined result does not perform 
better than they do separately. The question arises whether this disappointing result was obtained because the test case used 
was not designed very well for the combined optimizations or that the techniques really do not perform better combined, as 
they do separately. This will have to be investigated in future work, because the time available is not sufficient to do this 
here. 

6.1.2. Occurrences of optimizations 
In order to determine the probability that an optimization can indeed be applied to a Rscript file, several Rscript files are 
checked whether optimization techniques can be applied. During the Master Program, a group of students of the course 
Software Evolution has done several exercises with Rscript and these results will be used here. In order to determine the 
probability that an optimization technique can be applied, all of the students files will be scanned manually. Every time that 
a technique could be applied, it is notated. We have obtained thirteen different sets (=78 files) of answers for all of the 
exercises, and they will all be checked. 

The original exercise consists of twelve assignments. We have selected six of these assignments to check for the possible 
application of optimization techniques.  

Exercise 
number 

Qualifier 
Interchange 

Filter 
Hiding 

Common 
Subexpression 

Elimination 

Commuting 
Selections

 

Product 
Elimination

Semantic 
Query 

Caching 

Peephole 
Optimization

1 0 0 0 0 0 0 * 

5 1 1 0 0 0 1 * 

6 0 0 0 0 0 0 * 

8 1 2 0 0 0 2 * 

11 2 2 0 0 0 2 * 

12 5 3 0 0 0 3 * 

Total 9 8 0 0 0 8 * 

Table 4 – Occurrences of optimization techniques in student files 

*Peephole Optimization is found, although only Po/1 is found and therefore the exact amount of occurrence is hard to 
determine. 

We can see that only Qualifier Interchange, Filter Hiding and Semantic Query Caching can be applied several times. 
Common Subexpression Elimination, Commuting Selection and Product Elimination could not be applied at all. The 
outcome is rather disappointing, we expected that the optimization techniques could have been applied more often. The 
question arises whether the student files used, are suitable to determine the amount of times an optimization can be applied. 
In order to get a better view, we checked another Rscript file created by a colleague. This file is used in the process of 
determining dead code within software systems and is considerable larger than the student files: 500 LOC.  

Rscript 
file 

Qualifier 
Interchange 

Filter 
Hiding 

Common 
Subexpression 

Elimination 

Commuting 
Selections

 

Product 
Elimination

Semantic 
Query 

Caching 

Peephole 
Optimization

Dead code 
file 

4 8 0 0 0 8 - 

Table 5 – Occurrences of optimization techniques in dead code Rscript file. 

As we see in the table above only Qualifier Interchange, Filter Hiding and Semantic Query Caching are found to be 
applicable. These results are not very different from the results obtained by checking the student files.  
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After checking almost eighty different code fragments we must conclude that the algebraic optimization techniques cannot 
be applied very often. Only Qualifier Interchange, Filter Hiding and Semantic Query Caching are found to be applicable 
several times.  

6.1.3. Performance discussed in literature  
In the literature several statements are made about the performance of the optimizations. In [1,2,6] is claimed that Qualifier 
Interchange is the most important algebraic improvement. In [6] is stated that if a Cartesian Product is actually used as a 
join, it should be transformed into one, this is what Product Elimination does. Together with Common Subexpression 
Elimination, also discussed in [6], these two optimization techniques are mentioned as very well performing. Negative 
statements are also found: in [1] it is claimed that Filter Hiding does not improve the efficiency at all. We have found no 
claims about the performance of the techniques Commuting Selections and Peephole Optimization. 

6.1.4. Conclusion 
Several findings have bee made while evaluating the optimizations. First of all, the execution time of the performed 
optimization techniques are very divergent: some techniques barely perform an optimization, such as: Common 
Subexpression Elimination, Commuting Selections – union, Semantic Query Caching and Peephole Optimization – po/2. 
Peephole Optimization – po/1 even showed a negative influence on the performance.  Other techniques performed very 
well: Qualifier Interchange, Filter Hiding, Commuting Selections – set-difference, - Cartesian product and Produce 
Elimination. In this respect Produce Elimination realized the largest increase in performance. 

While considering the possibility that an optimization technique can be applied to a Rscript file, the results were rather 
disappointing. Only Qualifier Interchange, Filter Hiding, Semantic Query Caching and Peephole Optimization were found 
to be applicable several times, from which Qualifier Interchange could be applied most often in the student files. The other 
optimizations could not be applied at all.  

The relevant literature claimed Qualifier Interchange to be the most efficient, second best performing are Product 
Elimination and Common Subexpression Elimination. Remarkably, Filter Hiding was said to not be efficient at all: 
however, our own measurements proved otherwise.  

In order to determine which optimization technique can be considered the most efficient for us, all the three factors (the 
evaluation, the possibility of appliance and the statements made in the literature) are taken into account. When doing so, we 
can conclude that Qualifier Interchange is the most efficient optimization. Its performance is not measured as the highest of 
all the optimizations, although it is one of the best performing. It is determined to have the greatest possibility to be applied 
to a Rscript file. Also the literature claims it is the most important algebraic improvement. The next most efficient 
optimization is Filter Hiding. Although this optimization is considered by the literature as not improving, the evaluation of 
its test case shows otherwise and it is determined to be second best applicable. Product Elimination performed the best in 
the measurements but was not found to be applicable at all, therefore it is ranked third. 

6.2. Automation Prototype 
In the previous section, all of the optimizations that are suitable for Rscript have been evaluated and the two most efficient 
optimization techniques have been identified.  
In this section the development of the automation prototype will be discussed. First the implementation method that will be 
used to create the prototype will be determined. Subsequently, the two most efficient optimizations are implemented. 

As determined earlier, the optimization techniques that are considered the most efficient are Qualifier Interchange and Filter 
Hiding. For these optimization techniques, a pseudocode description of the techniques algorithm will be given first. Next it 
will be added to the prototype. 

6.2.1. Implementation method 
This paragraph will discuss several possible implementation methods for the automation prototype which were mentioned 
before (see §3.1.3). Eventually we will determine which method to use further along.  

Before discussing the methods, we declare that the main target of this prototype is to prove that an automatic application of 
optimization techniques is possible and to allow us to optimize the test case Rscript files. 

When discussing each of the methods, several issues are addressed: 1) how each of the methods works and of what tasks it 
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consists, 2) advantages and disadvantages, 3) personal experience with the programming environment and 4) since the time 
available is limited, the chosen method will have to be able to be constructed in little time. 

Extending Rscript in ASF+SDF 

This method is based on extending the current implementation of Rscript in order to apply the optimizations. This will be 
done in ASF+SDF[7]. The advantages of this method are that 1) the syntax definition of Rscript is already available and that 
2) a parser for the Rscript files is already available. Although the information needed for each transformation can be 
obtained reasonably easy, our personal experience and knowledge of ASF+SDF is limited to such a degree that the time 
needed to obtain this information will be very high. Therefore this method will be hard to realize in the time available. 

Complete re-creation of Rscript 
With this method, Rscript will be completely recreated in Java. Several key components will have to be created, such as a 
parser and a relational calculus library. The usage of this method will have several disadvantages: 1) The syntax definition 
of Rscript is not available and has to be constructed, 2) a parser will have to be created in order to process a Rscript file and 
3) because this method will require a lot of work, the amount of time needed for implementing this method will be very 
high. An advantage is that the information needed for applying transformations will be easily to obtain since the structure 
will be perfectly adapted to do so. 

Standalone application 
This method contains of creating a standalone Java application in which Rscript files can be formulated and subsequently be 
optimized. This method has two disadvantages: 1) The syntax definition of Rscript is not available outside Rscript, this will 
have to be implemented and inserted into the application and 2) a Rscript parser will not be included, the Rscript files will 
have to be inserted manually into the application. The implementation of a parser is a reasonably time consuming activity 
and falls outside the scope of this project, therefore it is discarded. 
An advantage of this method is that the information that is necessary for applying transformations, is easy to obtain. 

My experience and knowledge of Java is reasonably high, therefore the time needed to use this method for implementing a 
prototype is limited which is an advantage here. 

Conclusion 
After discussing each of the proposed methods for implementing a prototype, a decision has to be made about which 
method shall be used here. 

Although the method to extent Rscript in ASF+SDF has the most advantages in comparison with the other methods, it will 
take too much time to implement this method because of our limited knowledge of ASF+SDF. The complete re-creation of 
Rscript in Java will be too time-consuming for the main target of the prototype. Therefore the method of a standalone Java 
application for optimizing Rscript will be used to develop the prototype. 

6.2.2. Prototype framework 
The main purpose of the framework of the prototype is to validate the results which were obtained by performing the 
optimization techniques manually to the test cases. Therefore the main target of the prototype is to automatically perform 
optimizations on a Rscript file and return the optimized file. First we determine what the prototype should be able to do and 
what it will not have to do: 

Should be able to Will not have to do 

• Manually input Rscript files 
• Express most of the Rscript syntax 
• Perform automatic optimizations 
• Combine optimization techniques 
• Produce an optimized Rscript file 

• Parse Rscript files 
• Execute Rscript files 
• Completely contain the Rscript syntax 

Table 6 – Overview possibilities of prototype. 

Secondly the prototype is created. While creating the framework of the prototype, the implementation of Rscript in 
ASF+SDF is used as the main reference. The architecture of the prototype is discussed in appendix C. 

6.2.3. Pseudocode algorithms 
For both of the optimization techniques that will be implemented into the framework, a pseudocode algorithm is 
constructed. The goal of these pseudocode algorithms is 1) to identify the information that is necessary in order to perform 
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the optimization, 2) to simplify the implementation of these optimization techniques and finally 3) explaining the 
optimizations for future use by the CWI.  

Filter Hiding 
In order to create a working algorithm for Filter Hiding, we have to determine when a generator or a filter can be placed 
outside of a comprehension. In order to obtain this information, the following situations have been identified in which 
generators and filters can occur: 

(1) A generator uses one or more variables which are declared inside the comprehension. 

(2) A generator uses one or more variables which are declared outside the comprehension 

(3) A generator uses one or more variables which are declared inside and outside the comprehension 

(4) A generator uses no variables 

(5) A filter uses variables which are declared in one generator 

(6) A filter uses variables which are declared in more generators 

The generators from situation 2 and 4 are candidates for Filter Hiding because the generator should not be dependent of 
anything within the comprehension, since it will be placed outside the comprehension. The filter from situation 5 is also a 
candidate for Filter Hiding because the filter should not be dependent of multiple generators. The rest of the candidates are 
not suitable for Filter Hiding. 

The pseudocode for the Filter Hiding algorithm is given below.  

foreach ( comprehension c ) { 
 
  //all declaration variable in the entire comprehension 
  collection declVarsInComprehension 
 
  foreach ( qualifier in comprehension c ) {  
    determine variables which are used in the qualifier (used vars) 
    determine variables which are declared in the qualifier (decl vars) 
    add decl vars to declVarsInComprehension 
  } 
 
  //get all generators who match situations 2 and 4 
  collection candidateGenerators 
  foreach ( generator g in comprehension c) 
    if( g.usedVars == 0 ) { add g to candidateGenerators } //situation 2 
    elseif( all g.usedVars notIn declVarsInComprehension ) { //situation 4 
      add g to candidateGenerators  
    }  
    else {} //rest of the situations 
  } 
 
  //iterate over all the candidateGenerators and add the filters who match situations 5 and 8. 
  foreach( generator g in candidateGenerators ) { 
   
    //a collection of generator g and the filters which shall be applied to Filter Hiding 
    collection gFilters  
  
    foreach( filter f in comprehension c) {  
      //all declaration variables in the entire comprehension who are used by filter f 
      declVarsInComprehensionUsedByF = f.usedVars inter declVarsInComprehension 
   
      if( #declVarsInComprehensionUsedByF != 0 ) { 
        //if the variables used by filter f from inside the comprehension 
        //are all in the declaration variables of generator g, add it to the collection 
        if( all declVarsInComprehensionUsedByF in g.declVars ) { //situation 5 
          add filter f to gFilters 
        }   
      }   
    } 
   
    if( #gFilters > 0 ) {  // fh/1 
      apply fh/1 on the generator g with the filter collection gFilters )  
    } else { // fh/2 
      apply fh/2 on the generator g 
    } 
  } 
} 
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We will now discuss the algorithm. The main target of the algorithm is for each of the comprehensions to select the 
generators, with or without filters, which can be applied to fh/1 and fh/2.  
There is iterated over each comprehension individually. First of all it is determined for each of the qualifiers in the 
comprehension which variables they use and which they declare. All of the declaration variables are stored in the collection 
declVarsInComprehension. Subsequently there is iterated over all of the generators of the comprehensions, in order 
to obtain the generators which are a candidate for Filter Hiding. If the generator matches situation 2 or 4 it is added to the 
collection candidateGenerators. These generators can already be applied to fh/2, however we have to check first 
for each of the generators whether there are filters who only use variables which are declared in the generator. If this is the 
case situation 5 is matched, and the filter can be brought outside. At the end of the algorithm, we check whether there 
are filters who can be brought outside, if this is the case then the transformation fh/1 can be applied, else fh/2 can be 
applied. 

This algorithm can be expanded in such a way that it is also possible to bring out groups of generators with their filters. 
However because of the limited time, this possibility is discarded here. 

Qualifier Interchange 
Before creating an algorithm for Qualifier Interchange, we have to realize that there is no algorithm of Qualifier Interchange 
that can transform every comprehension into the optimal form. The transformations of Qualifier Interchange describe 
several possibilities to swap: two filters(qi/1), two generators(qi/2) and a generator with a filter(qi/3). These can be 
abstracted to the swapping of any two qualifiers. This abstract view is used in this algorithm.  
Since there are too many possibilities to determine the order of the qualifiers within the comprehension, we will choose one 
of the following options: 

(1) To re-arrange the qualifiers in ascending order of the amount of their used variables 

(2) To re-arrange the qualifiers in order to ensure that they are situated as close as possible to the qualifier which 
declares its used variables. 

(3) A combination of (1) and (2).  

In this algorithm option 3 is used because we suspect that this option will probably give the best results because 1) the 
evaluation of a qualifier with less variables is cheaper than a qualifier with more variables and 2) when a qualifier only uses 
variables which are declared outside the comprehension, these variables are already cached and therefore they are cheaper 
to evaluate. In this algorithm only filters will be checked on these points and the generators who declare their used variables 
are added when the filter is added. 

In order to obtain the order of the qualifiers, first we have to determine where the used variables of a qualifier can be 
declared. Two cases can be identified: 1) outside the comprehension, which can also be in the arguments of the variable 
which contains the comprehension and 2) within of the comprehension itself. 

The pseudocode algorithm for Qualifier Interchange is given below.  
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foreach ( comprehension c ) { 
   
  //all declaration variable in the entire comprehension 
  collection declVarsInComprehension 
 
  foreach ( qualifier in comprehension c ) {  
    determine variables which are used in the qualifier (used vars) 
    determine variables which are declared in the qualifier (decl vars) 
    add decl vars to declVarsInComprehension 
  } 
   
  //new comprehension based on comprehension c (same return values) 
  Comprehension newC 
  
  // the number of generators in the comprehension c 
  int generatorsInComprehension 
 
  for ( nr = 0 to generatorsInComprehension ) { 
    foreach( filter f in comprehension c ) { 
      
      // all the used variables of filter f. 
      collection usedVarsF 
      // all the generators of c who declare one or more of the variables in usedVarsF 
      collection generatorsF 
       
      // add the filters (+ the generators who declare its used variables) to the new 
      // comprehension, in order of the amount of generators its variables are declared in. 
      if( #generatorsF == nr ) {       // option 1 
        foreach( generator g in generatorsF ) { 
          add generator g to comprehension newC 
        } 
        add filter f to comprehension newC 
      }    
 
      // add the filter to the new comprehension if the variables used  
      // by the filters are declared outside the comprehension 
      if( usedVarsF not in declVarsInComprehension ) {                 // option 2 
        add filter f to comprehension newC 
      } 
       
      // add the filters whose used variables are declared in more than nr generators, 
      // but these generators are already placed inside of the new comprehension 
      foreach( filter f2 in the comprehension c ) {    // option 3 
     
        // all the used variables of filter f2. 
        collection usedVarsF2 
        // all the generators of c who declare on or more of the variables in usedVarsF2 
        collection generatorsF2 
 
        if( comprehension newC contains all the generators in generatorsF2 ) { 
          add filter f2 to comprehension newC 
        } 
      } 
    } 
  } 
  replace comprehension c with comprehension newC 
} 

 

The main target of the algorithm is to order the qualifiers within a comprehension in the way described above, for each 
comprehension.  

The algorithm iterates over every comprehension. First of all it is determined for each of the qualifiers in the comprehension 
which variables they use and which they declare. All of the declaration variables are stored in the collection 
declVarsInComprehension. Then a new comprehension is created in which the optimized order of filters will be 
constructed. All of the filters are iterated nr times, where nr is the number of generators within the comprehension. This is 
done to determine when a filter can be added to the new comprehension: when the variables used by a filter are declared in 
nr generators from within the comprehension, its generators and the filter are added to the new comprehension (option 
1). When a generator or filter is added to the new comprehension, it is checked if it is not already present. When the used 



25 

variables of the filter are not declared in the comprehension, the filter can be added to the new comprehension (option 
2). Subsequently another loop is started where it is checked for every filter whether the generators which declares their used 
variables are already placed inside the new comprehension. If this is the case, then the filter is added (option 3). 
Eventually the original comprehension is replaced with the newly constructed one. 

Note that it is not sufficient to arrange the filters in ascending order of the amount of generators in which their used 
variables are declared. We will explain this with an example: when there is a comprehension with three generator each with 
one filter and a fourth filter who uses variables which are declared in two generators. The fourth filter will be placed at the 
end of the comprehension if the filters are solely arranged by the amount of generators in which their used variables are 
declared. When the above algorithm is used, the filter will be placed directly after the generators who declares its used 
variables.   

6.2.4. Implementation details 
The prototype developed is created in Java and consists of 102 classes with a total of 5000 LOC. The Rscript language 
definition is expressed in 73 classes. The optimization algorithms are expressed in 8 classes. The rest of the classes are used 
for testing purposes, test case Rscript files and unit tests. 
A total of twelve days has been used to develop the prototype. 

6.3. Evaluation of automation prototype 
The algorithms created for the optimization techniques have been added to the prototype. Afterwards the test cases of Filter 
Hiding and Qualifier Interchange have been inserted manually into the prototype and subsequently each optimization has 
been applied automatically. 
It is expected that, to a large extent, the results will be the same as the ones obtained by applying the optimizations manually 
to these test cases. 
Each of the test cases will be executed before – and after the optimization and this will be repeated 20 times. The results are 
shown in the table below. 

 
Optimization technique Not-optimized optimized Difference Performance 

increase 
Qualifier Interchange 17965 ms 13803 ms 4162 ms 30,2% 

Filter Hiding 17965 ms 13879 ms 4086 ms 29,4 % 

Qualifier Interchange + Filter Hiding 17965 ms 13911 ms 4054 ms 29,1 % 

Table 7 - Measurements test cases after optimization with the automation prototype.6 
 
When we compare the results above with the results of optimizing test cases manually in table 3 (see §6.1.1), we can see a 
great similarity in the way each of the optimization techniques performs. When comparing the outcome of the test cases 
after applying them to the prototype, we can see that this is almost identical to the test cases after manually optimization. 
The only difference is that for the Filter Hiding and Qualifier Interchange + Filter Hiding test cases, the prototype does not 
remove the unused qualifiers in the comprehension which is taken outside of the original comprehension. However, this was 
expected since the algorithm for Filter Hiding did not include this removal. 

6.4. Validation 
In order to determine that the prototype does not only work on the test scripts but also on ‘real’ existing Rscript files, the 
student files used earlier will be inserted into the prototype. The results from this optimization are also used to validate the 
extent of the performance increase of Qualifier Interchange and Filter Hiding (and both together). Since these optimization 
techniques were only found applicable to exercises five, eleven and twelve (see §6.1.2), these exercises are used. 
 

 

 

                                                 
6 The test scripts are executed on a Athlon 64, 3500 MHz, 1GB RAM on Fedora v4. 
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Exercise number  
Measurements 

5 11 12 
Not Optimized 402 ms 392 ms 409 ms 

Qualifier Interchange + Filter Hiding 380 ms 386 ms 389 ms 

Difference 22 ms 6 ms 20 ms 

Performance increase 5,8 % 1,6% 5,1 % 

Table 8 - Measurements of student files after optimization with prototype.7 
 
We can see that a performance increase is achieved by using the automation prototype on the student files. However, the 
performance increases are not nearly as high as the optimization results of the test cases, either manually or automatically. 
The performance increase of these optimization techniques depends on the situation on which they can be applied, therefore  
the question arises whether these student files are not suited very well for the optimization techniques used or that the  
optimization techniques are not as powerful as the test cases showed? Since almost every case where these optimization 
techniques can be applied is unique, each situation is different and its performance will also be different every time. We 
suspect that the constructions within these student files are just not that suitable for application of these optimization 
techniques. Further, we suspect that the performance increase of Qualifier Interchange and Filter Hiding will almost never 
be higher in regular Rscript files than the increase we observed with the test cases, since these situations were ideal. 

6.5. Conclusion 
In this chapter several algebraic optimization techniques are evaluated. First we have determined the efficiency of each of 
the optimization techniques by looking at their performance increase, their occurrences of application in several Rscript files 
and their performance increase claimed by the relevant literature. We concluded that Qualifier Interchange and Filter Hiding 
are the two most efficient techniques. 

In order to create a prototype to automatically apply optimization techniques to Rscript files, there has been determined 
which method to use for creating the prototype. Earlier we selected three different methods, from which we selected the 
standalone application to be the method to be used here. Next the automation prototype has been created and implemented 
according to the proposed architecture and all of the requirements which were stated earlier are fulfilled. The algorithms of 
Qualifier Interchange and Filter Hiding have been thoroughly discussed and are also added to the prototype. Although these 
techniques are not very complicated, the construction of a pseudocode algorithm was. A lot of information is needed about 
dependencies from each qualifier to every other qualifier, in order to correctly apply the transformation techniques. In the 
future, these algorithms can be used to optimize similar situations. 
Although the optimizations can now be applied automatically, the Rscript files still have to be inserted manually into the 
prototype. In order to make the prototype better applicable in the future, it might be desirable to extend it with a parser in 
order to automate this process. 

The test cases have been inserted into the prototype and have subsequently been executed. The results are shown in table 7 
(see §6.3). These results show a great similarity to the results obtained by the manual application of optimization techniques 
to the test scripts. Therefore we concluded that for the test cases, the prototype does its work properly.  

In order to validate the extent of the optimization of the techniques, the student files, which where also used earlier, have 
been inserted into the prototype. The obtained results are disappointing: the optimized files only perform a maximum of five 
percent better than the original files, while the test cases showed an increase of thirty percent. Not every file is equally 
suited for the application of these optimization techniques and in order to give a better validation, other Rscript files will 
have to be optimized using the prototype and subsequently be evaluated.  

The next chapter describes several optimization techniques in order to achieve set optimization and determines their effect. 

                                                 
7 The test scripts are executed on a Athlon 64, 3500 MHz, 1GB RAM on Fedora v4. 
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7. Set Optimization 
In this chapter an answer is given to the sub questions I.3 and II.4. 

First several data structures which can be used for set representation are discussed. Afterwards we will discuss the 
development of a prototype which enables us to determine the effect of using other data structures. 
Eventually several measurements will be performed on this prototype and an advice is given about which data structure to 
use in order to maximize the performance gain. 

7.1. Data Structures 
When in the current implementation of Rscript a collection of values is stored, a set implementation is used in order to 
create this collection. When a set with, for example, integers is stored it will have the following (Linear) data representation: 

Set[int] = i1 … in 

 
When a new integer is added to a set, first it will be determined whether this (integer) value is already present within this 
set, which is achieved by using the Rscript operator in. If the value is not present, it is added in front of the other values 
from the set. So before adding, a lookup is required which is in total done in O(n) time. 

Almost all of the Rscript functionality that depends on the data structure of a set, can be implemented using one or more of 
the following operations: insert, delete, search, maximum, minimum and union. Therefore the emphasis will be on data 
structures who perform these operations efficiently, such as: Hash Tables, Binary Search Tree, Red-Black Trees, Binomial 
Heap, and Judy Arrays. 

7.1.1 Hash Tables 
With hashing[14,15] elements are stored inside a hash table at a certain position. The location of an element inside this table 
is determined by a hashing function which delivers an almost unique key. With this key, the element can be retrieved from 
the table in constant time O(1), independent of the size of the table. There are two conditions to this hashing function. The 
first condition is that for a given element it always delivers the exact same key. The second condition is that this key can be 
interpreted as a natural number in order to perform a lookup in the table. 

When constructing a hash table, an array is created of a certain size. The question of how large the (hash table) array should 
be can be answered in different ways[14]: 1) If the data set is of known size and a perfect hashing function can be used, then 
we make the table the same size as the data set, 2) if a perfect hashing function is not available or practical but the size of 
the data set is known, as a rule the table is made 150 percent of the size of the data set and 3) If we do not know the size of 
the data set, dynamic resizing can be used. Dynamic resizing of a hash table is based on creating a new hash table and 
inserting all of the elements of the original table into the new table and subsequently removing the original table. To decide 
when to resize a hash table, the load factor is introduced. The load factor is the percentage of how many elements in the 
table are filled in comparison to its size. A hash table can have a load factor of 0.7 – 0.8 and still perform well8. Java uses a 
load factor of 0.75. 

The hashing function is said to be a perfect hashing function when it maps each element to an unique position inside the 
table. However when the function is not perfect, collisions may occur. A collision occurs when the hashing function of two 
different elements delivers an identical key. Two techniques are most commonly used to handle collisions: chaining and 
open addressing. With chaining all the elements in the hash table that have the same key are put in a linked list(either 
singly- or doubly-linked). Inserting elements takes O(1), deletion can also be done in O(1) when doubly-linked lists are 
used. Searching an element is dependent of the length of the linked-list, however when we assume simple uniform 
hashing9[15] it takes O( 1 + load factor ) which can be rewritten to O(1), see [15].  
With open addressing all the elements are stored in the hash table itself and collisions are avoided by determining another 
open position in the hash table to place the element in. This open position is discovered by probing the hash table. Three 
techniques are commonly used to probe the table: linear probing, quadratic probing and double hashing. The main problem 
with open addressing is the deletion of elements. When an element is deleted, the position it occupied in the hash table has 
to be specially marked as deleted since the search algorithms have to stop probing when an empty slot is found. For this 
reason, chaining is used more commonly as a collision handler than open addressing. 

                                                 
8 http://en.wikipedia.org/wiki/Hash_table - a hash table can contain about 70%–80% as many elements as it does table slots and still perform well. 
9 The assumption or goal that items are equally likely to hash to any value 
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The main problem with hashing is to find a uniform hashing function that will lower the risk that a collision will occur by 
distributing the keys over the table as dispersed as possible. Also the percentage of used elements within the reserved array 
can be very low and thereby making it space inefficient. 

7.1.2 Binary Search Tree 
A Binary Search Tree(BST)[15] is represented as a binary tree, therefore each node in the tree has two child nodes: left and 
right. Each node also knows who its parent is. The BST must satisfy the binary-search-tree properties[15] which states that 
for each node n, every node in its left-subtree is smaller or equal to n and that every node in its right-subtree is larger or 
equal to n. Note that the BST does not have to be balanced in order to operate. 
The operations insert and delete cause the representation to change and then it has to be modified. By doing so, it must 
continue to satisfy the BST-properties. Searching and inserting elements into the BST can be done in O(h) where h is the 
height of the tree. However the deletion of an element is a bit more complex operation. When deleting element e, there are 
three cases that can occur: 1) If e has no children, the parent of e must be modified to replace its child e with no child. 2) If e 
has one child, e is removed by creating a new connection between its parent and its child. 3) If e has two children, we have 
to obtain the successor of e, called s, which has no child and replace e with s. In this case the successor (the left-most child 
of the right subtree) can also be the predecessor (the right-most child of the left subtree). When deleting an element, this 
element has to be found first and depending on the situation also the successor has to be found. However, all these actions 
can be done in O(h) and therefore the deletion of an element can also be done in O(h). 
 
It is clear is that all the discussed operators can be done in O(h). However, since the BST does not have to be balanced, its 
worse case representation is in a way that the height is equal to the number of elements. In this case the operations on BST 
are done in linear time. The lack of guarantee that the tree is balanced is considered the main disadvantage of BSTs. 

7.1.3 Red-Black Trees 
A Red-Black Tree (RBT)[15] is a form of a BST where the nodes are colored red or black and the entire tree is balanced. 
For each node that has only one or none children the missing nodes are added which are called leaves. The RBT must 
satisfy the red-black-properties: 1) every node is red or black, 2) the root is black, 3) every leaf is black, 4) if a node is red, 
then both its children are black and 5) every path from a node to a descendant leaf contains the same number of black nodes, 
this is called black-height. 
Stated in [15] is that the height of the RBT is at most: log2 (n+1), where n is the amount of internal nodes. Since the RBT is 
a form of a BST, the operations search and mix/max can be performed in O(h), where h is the height of the tree. Hereby can 
be concluded that these operation can be performed on a RBT in O(log n). 
When inserting or deleting elements, the structure of the tree will change and therefore it has to be balanced. This can be 
done by rotating the subtrees. There are two rotations possible: left rotation and right rotation10. These rotations can be 
performed in constant time O(1). After the rotation it has to be checked whether the RBT still satisfies the red-black-
properties, this can be done in O(log n) time[15].  

All the operations on an RBT can be performed in O(log n). A disadvantage of RBT is that a lot of extra steps are necessary 
in order to keep the tree balanced. However according to the literature, when they are done properly, they do not influence 
the performance of the RBT. 

7.1.4 Binomial Heap 
A Binomial Heap(BH)[15] is a collection of Binomial Trees (BTs). The BT B0 contains one node, the BT Bk consists of two 
BTs with one Bk-1 and one Bk-2 that are linked together: the root of the one (k-1) is the leftmost child of the root of the other 
(k-2)[15]. The BT must satisfy the binomial-trees-properties[15] for a BT Bk: 1) there are 2k nodes, 2) the tree is of height k, 
3) there are exactly 

 nodes at depth i for i = 0, 1, ... k and 4) the root has degree k, which is greater than that of any other node. If the 
children of the root are numbered (i) from left to right by k-1, k-2, ... , 0, the child i is the root of a subtree Bi. Example: 

                                                 
10 http://en.wikipedia.org/wiki/Tree_rotation - changes the structure without interfering with the order of the elements. 
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0 1 2 3 4

Figure 1 – Binomial Heap construction example. 

In the figure above, we show several BHs of different degrees. Its shown that a BH of depth 3 consists of a BH of depth 2, a 
BH of depth 1 and of 0.  
A BH must satisfy the binomial-heap-properties[15]: 1) Each BT in a BH is heap-ordered: the key of a node is greater or 
equal to the key of its parent and 2) there is at most one BT in a BH whose root has a given degree. Most of the operations 
can be done by using the operation union. The union of two BHs can be done very efficient if they are of equal depth k: the 
united BH becomes of depth k+1 with its root the minimum of both BHs. The other BH can be directly attached to the new 
BH, this is also shown in figure 1. Merging BHs with different depths can also be done efficient, in O(log n). The main 
disadvantage of BHs is that the search of an element takes O(n).  

7.1.5. Judy Arrays 
Judy[16] has been brought to our attention with the question whether it can be used as a data structure for Rscript. Judy is a 
library for C that can be used to replace different types of data structures. The reason that it is taken along in this 
investigation is that it claims to be faster than tree-form data structures and even faster than hashing. This would mean that 
it should be able to perform operations in O(1) time or better. It supports the following operations[16,18]: insert, delete, 
find, find first/last, find previous/next and count. A disadvantage of Judy is that it does not support all of the operations 
needed for Rscript, especially the absence of the operator Union makes the usability a problem. 
The Judy Array uses a Digital Tree (trie) as the underlying data structure. An advantage of tries is that the memory 
necessary is much less than with other tree structures or hashing. 
In the relevant literature, we found a paper that compares the performance of Judy against Hash Tables[17]. This paper has 
several important findings and we will discuss a few here: First of all it shows and confirms our earlier findings that Judy is 
far more space efficient than hashing. Further along, it states that Judy is specifically aimed at situations where a very large 
data structure is necessary (1 million entries or more) or for strictly sequential data. For smaller data structures and non-
sequential data, it is shown that a hash table is faster. The measurements performed in this paper points out that Judy is not 
optimized for insertions and deletions: hash tables are fare more efficient in these operations.  
The manual of Judy [18] shows by performing measurements, that Judy is faster than hash tables. However, in this paper the 
hash tables are implemented with a fixed-size hash table with external chaining, which does not uses the full performance 
gain of hashing. In [17] new measurements are done with a more efficient hash table algorithm and this shows that hash 
tables are, in most situations, faster. A final note of the author of [17] is that there are not very much ways to optimize Judy 
however there is a lot of room to improve hash tables. 

7.1.6. Conclusion 
We have discussed several data structures which can be used to represent a set as used in Rscript. Below, an overview is 
given of their theoretical performance with respect to the most important operators. If the performance of an operator is 
unknown, this is indicated with a question mark. If the operation cannot be performed, this is indicated with an x. 
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Technique Insert Delete Search Max Min Union Remarks 
Hash Table O(1)*2 O(1)*1 O(1)*2 O(n) O(n) ? *1: When double-linked lists are 

used. 
*2: Simple uniform hashing is 
assumed 

Binary Search Tree O(h) O(h) O(h) O(h) O(h) ? h: height of the tree 

Red-Black Tree O(log n) O(log n) O(log n) O(log n) O(log n) ?  

Binomial Heap O(log n) O(log n) O(n) ? O(log n) O(log n)  

Judy Arrays * * * ? ? x *: Claims to be faster than Hash 
tables, no specific data available. 

Table 9  – Theoretical performance of basic operations on data structures  

Several things can be observed from the table above. First of all, the performance of the Union operator is not discussed in 
the literature concerning Hash Table, Binary Search Tree and Red-Black Tree. For Judy Arrays, the Union operator is not 
supported at all. Only for Binomial Heaps, the performance of Union is known. Therefore we cannot compare these data 
structures on base of their performance of the Union operator. 
When looking at the operators Insert, Delete and Search, we can compare the different data structures and we see that the 
Hash Table performs the best and the Red-Black Tree data structure performs second-best. The Red-Black Tree is the best 
with respect to the Min and Max operators. The Judy Array data structure claims to be faster than Hash Tables. However, 
the research in [17] proved otherwise.  

Overall we can conclude that theoretically the Hash Table is the best performing data structure for the discussed operators, 
although its performance for Union is unknown. Second best is the Red-Black tree. In order to determine which data 
structure will have to be used by Rscript to get the best performance, these data structures will be tested in detail. 

7.2. Prototype 
A data structure prototype will be developed in order to determine the effect of using other data structures for set 
representation (sub question II.4). It will be implemented in Java and contains three data structures: 1) a linear 
implementation based on the ASF+SDF set-implementation of Rscript, 2) the data structure which is theoretically 
determined to be the best performing: a Hash Table and 3) the theoretically second best performing data structure: a Red-
Black Tree. 

The main purpose of this prototype is to measure the time needed for basic operations on data structures. This will enable us 
to compare the performance of different data structures. The prototype cannot apply entire Rscript files onto the data 
structure(s), but the set-operations of the Rscript files will first have to be extracted manually from these files and 
subsequently they can be inserted into the prototype. This process is not automated because of the limited time available . 

The architecture of the data structure prototype is described in appendix D. 

In order to validate the correct working of each of the implementations, we created several test cases for each operator. This 
ensures us that when an operation is executed on any of the tested data structure, it is performed correctly.  

7.2.1. Implementation details 
The prototype is developed in Java and consists of 17 classes with a total of 2200 LOC. The data structures are expressed in 
7 classes. The measurements on operators are expressed in 5 classes. The rest of the classes are used for testing purposes. 
A total of eight days has been used to develop the prototype. 

7.3. Results 
In order to determine the performance of each of the three data structures in the prototype, an existing Rscript file is used to 
approach reality. We have received a file called TestSpeed.Rscript11 from a colleague, which is originally used to test the 
speed of Rscript. In order to use this file with the prototype, the operations performed on a set within this file have been 
extracted (manually). Subsequently, these operations are inserted into the prototype. Finally, each of the data structures has 
                                                 
11 The content of the file TestSpeed.rscript is placed in Appendix E. 
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been used in order to perform these operations. The measurements are repeated 20 times in order to get a representative 
value12. The following table shows the results. 

Data structure Time 
Linear implementation 32 ms 

Java Hashtable implementation 20 ms 

Red-Black Tree implementation 14 ms 

Table 10 – Measurements of data structures while executing TestSpeed.Rscript 

The measurements above give an impression of how each of the data structures performs while executing the set operations 
of a specific Rscript file. We can see that the Linear data structure performs the worst. Interestingly, the theoretically best 
performing data structure Hash Table is performing worse than the Red-Black Tree. Since these measurements are specific 
for the tested file, we cannot give an advice based on these measurements only. In order to get a better understanding of 
how each of the data structures performs, we will look at the performance of each of the operators: Insert, Min/Max, Union 
and In(search) separately. These measurements are discussed below. 
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# Elements Linear RBT Hash 
500 14 5 8

1000 37 9 15

1500 83 10 10

2000 139 12 13

2500 221 16 12

…  

30000 24187 193 194 

Figure 2 – Performance of the Insert operator, times are in milliseconds 

The figure above shows the time needed for inserting elements into each of the data structures. A lower graph indicates that 
the data structure can execute the insert operator faster. We can see clearly that the Linear data structure performs the worst, 
since its graph is the highest. Curiously, the results of the Hash Table and the Red-Black Tree are almost similar, which is 
different from their theoretical performance as showed in table 9, in which the Hash Table is superior. Our first thought as 
to why the Hash Table does not perform better than the Red-Black Tree here, was that the hash function performed poorly. 
However when we adapted our hashing function to perform better, the results were still similar. As yet, we have no 
explanation for this similarity. Therefore we have to conclude that for the Insert operator, both the Hash Table and the Red-
Black Tree are equally fast performing. 

                                                 
12 The measurements are executed on a Athlon 64, 3500 MHz, 1GB RAM on Fedora v4. 
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# Elements Linear RBT Hash 
500 8 5 22

1000 34 3 51

1500 65 11 108

2000 120 9 193

2500 185 16 303

…  

30000 20928 157 47861 

Figure 3 – Performance of the Min operator, times are in milliseconds 

The figure above shows the time needed to execute the Min operator over a collection of different sizes. A lower graph 
stands for a better performance. We can see that the Hash Table has the worst performance, this is because in order to 
determine the minimal element, it has to iterate over all its table slots and for each table slot it has to check the entire linked 
list. Second best performing is the Linear data structure, which also has to iterate over each element. We can see that the 
performance difference between the Hash Table and the Linear data structure is getting larger when the number of elements 
are increasing. This is caused by the hashing-function, which does not disperse the elements very well throughout the table 
and then the table slots get more and more filled when the number of elements increases: this lowers the performance.   
The best performing data structure for the Min operator is the Red-Black Tree, which is also claimed by the literature (see 
table 9). Because the Red-Black Tree is ordered, this operator can be executed very fast. 
We have also looked at the Max operator: its results are similar to the Min operator – the Red-Black Tree performs best. 
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# Elements Linear RBT Hash 
500 24 2 5

1000 93 2 3

1500 206 3 4

2000 348 5 7

2500 516 6 5

…  

30000 33384 65 44 

 Figure 4 – Performance of the Union operator, times are in milliseconds 

In the figure above, the performance of a Union of two data structures each of a certain size is shown. We can see that the 
Union of two Linear data structures is very expensive. We restricted the visibility of the Linear data structure graph in figure 
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4 to 3000 elements, because otherwise the diagram would be distorted. However in the table next to the graph we can see 
that with 30000 elements, the time necessary for the Linear algorithm to perform a Union is more than 30 seconds. 
We can see that the performances of the Red-Black Tree and the Hash Table are very close to each other. However, the 
Hash Table performs slightly better for this Union operator. The current Red-Black Tree implementation of the Union 
operator does not use the fact that the Red-Black Tree is ordered. Therefore, there is still room for improving the Red-Black 
Tree. 

In operator 
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# Elements Linear RBT Hash 
500 24 3 0

1000 78 7 6

1500 165 8 8

2000 296 8 7

2500 437 15 19

…  

30000 43248 178 169 

Figure 5 – Performance of the In operator, times are in milliseconds 

In the figure above, the performance of an In operation executed within data structures of a certain size is shown. Here we 
can also see that the Linear data structure is performing the worst. The performances of the Red-Black Tree and the Hash 
Table are very similar for this operator. This is different from what the literature claims. The use of a more efficient hashing 
function did not produce better results for the Hash table. 

7.4. Conclusion 
In this chapter, we discussed several data structures which can be used to replace the current (Linear) data structure used by 
Rscript. For each data structure we studied their theoretical performance for the operators Insert, Delete, Search, Max, Min 
and Union in the literature. On the base of this theoretical performance we concluded that the Hash Table and the Red-Black 
Tree are the best performing. 

In order to determine the practical performances of the Hash Table and the Red-Black tree, we created a prototype which 
enabled us to perform measurements on these data structures. To compare these data structures we inserted a Linear data 
structure into this prototype. First we obtained the set operations from a Rscript file called Testspeed.rscript and inserted 
these operations into the prototype. Subsequently, we executed these operations for each of the data structures. Next we 
executed each of the operators separately for different sizes of data sets and determined which of the data structures 
performed the best for each operator. 

We summarize the results of these measurements in the table below. 
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Part Best performing data structure 
Testspeed.rscript RBT 

Insert operator RBT / Hash table 

Min operator RBT 

Union operator Hash table 

In operator RBT / Hash table 

Table 11 – Best performing data structures. 

In the table above we can see that the Red-Black Tree (RBT) is the best performing data structure for every measured part, 
except for the Union operator. However, as discussed in §7.3 the performance difference between the Hash Table and the 
Red-Black Tree is very small. We can see that the Linear data structure which is currently used, does not perform best in 
any of the tested parts. This already indicates that either one of the two tested data structures already performs better. 
However, we can conclude that to maximize the optimization increase of the way Rscript handles its set operations, the best 
data structure to use is the Red-Black Tree.  

The next chapter will discuss the results obtained by this thesis.
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8. Results 

This chapter presents the results obtained by this research project and related them to the research questions raised in 
chapter 1. 

8.1. Research Questions 
In this paragraph we will give an answer to the main raised research questions. 
 

I. How can Rscript comprehensions be optimized? 

Rscript can be optimized in two ways: 1) algebraic transformations and 2) to use a different data structure for set 
representation. 

1) We have discussed several algebraic optimization techniques, which were found in the relevant literature. Some of these 
techniques are based on techniques used for optimizing relational database queries, others are based on optimizing 
comprehensions in general. Each of the techniques performs one or more transformations in order to change the original 
comprehension into a semantically equivalent and more efficient form. The content and purpose of these transformations are 
different for each of the optimization techniques and have been discussed in chapter four and five.  
While discussing each of the techniques, we have determined whether the techniques are suitable or not for applying to 
Rscript. Most of the discussed techniques are found to be applicable, such as: Qualifier Interchange, Filter Hiding, Common 
Subexpression Elimination, Commuting Selections, Semantic Query Caching, Product Elimination and Peephole 
Optimization. Other techniques are found to be not applicable, such as: Index Introduction. The reason that these techniques 
are not applicable lies in their use of operators which are not supported by Rscript. 
 

2) Rscript currently uses a Linear data structure in order to store sets, and consequently the operations on this data structure 
are also done in linear time. By improving the calculation time necessary for these operations, the over-all time of 
comprehensions can be improved. Therefore we investigated several data structures which could be used by Rscript, in 
order to increase the performance of set operations, such as: Hash Tables, Binary Search Tree, Red-Black Trees, Binomial 
Heap, and Judy Arrays.  

 

II. What are the effects of the optimizations? 

We answer this question for 1) algebraic optimizations and for 2) data structures. 
 
1) In order to determine the effect of the algebraic optimization techniques, a test case in the form of a Rscript file has been 
created for each of these techniques. The effect of the optimization has been measured by determining the calculation time 
of the test case with - and without an optimization.  
As shown in table 3 (see §6.1.1) the results are diverse. Some optimization techniques are causing a substantial increase, 
such as Qualifier Interchange, Filter Hiding, Commuting Selections – set difference, Commuting Selections – Cartesian 
product and Product Elimination. Other techniques barely perform an optimization, such as: Common Subexpression 
Elimination, Commuting Selections – union, Semantic Query Caching and Peephole Optimization – po/2. 
It was remarkable that although the literature describes Filter Hiding as a techniques which does not perform an 
optimization, our results show otherwise. The opposite was also found: literature describes Common Subexpression 
Elimination as a noticeable technique, however our results show almost no increase at all. 
In order to validate these results, we have performed the two most efficiently determined optimization techniques (Qualifier 
Interchange and Filter Hiding ) on three different Rscript files. In order to do so, we have created a prototype application 
which enabled us to automate the optimization process for these optimization techniques. First, we used this prototype to 
optimize the earlier created test cases: the results obtained were similar to the manual results. Next we used the prototype on 
the three Rscript files. Although a performance increase is seen, the results are disappointing: the increase does not match 
the increase obtained by optimizing the test cases. We concluded that the performance gain is different for each situation in 
which the optimizations occur. 

 

2) In order to determine the effect of using other data structures to store sets, the relevant literature has been studied to 
determine which data structure has the best performance. An overview of the theoretical performance of several operations 
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for each of the data structures has been created in table 9 (see §7.1.6). We concluded that the data structures Hash Table and 
Red-Black Tree theoretically performed the best. 

To determine the practical performance of these data structures, a prototype application has been developed which enabled 
us to measure the running time of different data structures while performing several operations. We used the operations that 
were extracted from an existing Rscript file and inserted them into the application. For comparison a Linear data structure 
has been added to the application. The results are shown in table 10 (see §7.3) and we saw that both the Hash Table and the 
Red-Black Tree performed better than the Linear data structure. Since these measurements only show the performance of 
the used Rscript file, we also determined the performance for each of the operators separately (see §7.3). This showed us 
that the Insert and In operator was performed equally fast by both the Hash Table and the Red-Black Tree. The Min/Max 
operator could be performed faster by the Red-Black Tree and the Union operator could be performed faster by the Hash 
Table. Finally, we concluded that to optimize the way Rscript handles its set operations, the best data structure to use is the 
Red-Black Tree. 

8.2. Validation 
To validate the results obtained by applying the algebraic optimization techniques manually to the test cases, the same test 
cases have been applied to the automation prototype. Since this prototype can only optimize for two techniques (Qualifier 
Interchange and Filter Hiding), not all of the techniques have been validated. However, the results for these two techniques 
after applying them to the prototype, are similar to the results obtained manually. 
Another validation phase has been done by optimizing the student files with the prototype. The purpose was to check how 
real Rscript applications would react when they are optimized. Subsequently, the performance increase of these files has 
been determined before and after optimization. The results were disappointing. The observed performance increase of the 
student files did not show any similarity with the increase we observed by optimizing the test cases.  
 
In order to validate the measurements obtained by performing operations on data structures, we made sure that when an 
operation is performed on a data structure, it is performed correctly. This is done by creating unit tests for each of the 
operators. 

8.3. General Conclusion 
Taken together the answers to research questions I and II, we can say that the best way to optimize the Rscript 
comprehensions is not to algebraically transform the comprehension into a more efficient form, but to change the 
underlying data structure. According to the results of this thesis, a transformation of a comprehension will not always 
guarantee a performance increase. Also the performance gain is unique for every situation. However, when a better 
performing data structure is used the performance of the entire comprehension will benefit. 
The most efficient algebraic optimization techniques are Qualifier Interchange and Filter Hiding. These techniques also 
have the biggest possibility to be applicable. Theoretically the data structure Hash Table is the best performing. However, 
our own measurements showed that the data structure which operators are performing best is a Red-Black Tree. 

8.4. Future Work 
Although a clear answer has been given to our main research questions, a number of points have not been addressed yet and 
remain to be studied in future work. We will briefly summarize these points here. 

Automation Prototype 

• The automation prototype in this thesis is created only to automate the optimization of the test cases and is not very 
well suited to optimize other Rscript files. Someone with enough experience of ASF+SDF should use the 
optimization techniques and pseudocode algorithms which are discussed in this thesis, in order to change the 
ASF+SDF implementation of Rscript to automatically apply these optimizations. Although the best performance 
increase is not realized by algebraically optimizing a comprehensions, the performance does improve. 

Questions raised by our results 

• To fully determine which technique is considered the most efficient, we considered three criteria (see § 6.1). 
However, a fourth criterium should be considered also. A general concern for every optimization technique is that 
the optimization phase is not free: it takes time to perform the necessary (transformation) steps. The fourth 
criterium should be looking at the time that is needed for this optimization phase. Although this criterium is not 
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used here because the optimizations are done manually, it actually should be used in order to determine which 
optimization technique can be considered the most efficient. However, we do not suspect that by using this fourth 
criterium that the results will be altered significantly. 

• We have measured the performance increase of all of the discussed optimization techniques (see § 6.1.1). Also the 
optimization techniques Qualifier Interchange and Filter hiding have been tested together. It showed us that their 
combined result does not perform better than each of the techniques does separately. A question which is yet 
unanswered is whether this is caused by using a bad test case, or that the techniques really do not perform better 
when they are combined? 

• When validating the results obtained by optimizing the test cases, we used the automation prototype to optimize 
several existing Rscript files: the student files (see § 6.4). However, the optimization of the student files did not 
realized the a performance increase similar to what we observer with the test cases. We have been unable to 
answer the question whether this is because of bad Rscript files or that is this caused by other factors? 

Data Structure 

• We have determined which data structure has to be used in order to achieve the largest performance increase. With 
this information, Rscript can be adapted in order to use this data structure. When this has been realized, there has to 
be determined if the different data structure really does performs better.
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9. Evaluation 
In this chapter will be discussed how the project went and if the results were satisfying. Also will be discussed how this 
project could have been performed in a better way. 
 
Results 
We have identified several algebraic optimization techniques which can be used to optimize Rscript comprehensions (see 
chapter 4 and 5). Each of the techniques has been discussed and for those which are found to be applicable to Rscript, a test 
case has been created. The results of these test cases are, to a large extent, in agreement to what we expected. Some 
techniques were expected to be performing better, such as Common Subexpression Elimination. Other techniques 
performed better than we thought at first, such as Qualifier Interchange.  
Several student files have been scanned in order to check how often optimization techniques could be applied. This is 
shown in table 4 and 5 (see §6.1.2). The applicability was rather disappointing. Only three optimization techniques were 
found to be applicable: Qualifier Interchange, Filter Hiding and Semantic Query Caching. We would have expected that 
more optimization techniques would be found to be applicable. 
We also identified several data structures which can be used to replace the current data structure for set representation (see 
chapter 7). After measuring the performance of several important operators (insert, min/max, union and in) for each of the 
data structures, we concluded that overall the use of Red-Black Tree will give the best performance (see 7.4).  
Overall we concluded that the best way to optimize Rscript comprehensions is not to apply algebraic optimization 
techniques, but to change Rscript to use another data structure. 
 
What went wrong/Problems encountered 
Nothing really went ‘wrong’, although we did expect to find more algebraic optimization techniques which could be 
studied. Also, it took too much time to narrow down the exact target of this project. This should have been done earlier, in 
the literature study, in which case we would have more time during the project which we could spend on realizing the 
targets raised.  
 
Usability 
The results of this thesis can be used by the CWI in several ways. The automation prototype can be used to optimize Rscript 
files, although it probably has to be extended with a parser first in order to be useful. When CWI chooses not to continue 
with this prototype, the identified optimization techniques can be implemented in the current ASF+SDF implementation of 
Rscript. In this case the produced pseudo code algorithms can be reused. 
The data structure prototype can be used in the future to compare other data structures. And the data structure which 
showed, according to our measurements, the largest increase in performance can be used with Rscript.  
 
The project in retrospect 
When starting the project, it became apparent that the path that we chose beforehand, to fully create a Java version of 
Rscript which could apply optimization techniques automatically, could not be realized. Therefore the projects has been 
slightly altered several times and finally converted into the current form. 

When looking back at the entire project several things could have been done better. We mention a few: 
• The data structures described in the chapter of Set Optimization should have been investigated earlier in the 

project. Since changing the data structure can optimize Rscript completely, it is very interesting to study this in 
more detail. We would have liked to see this optimization technique implemented, however the time available was 
not enough. 

• The automation prototype has been developed in Java. It would probably have been more useful to CWI if it was 
implemented in ASF+SDF. Although our experience in this language is fairly limited and it would have taken us 
longer to implement it, this would have been a better choice.
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Appendix A – Test Cases 
Here all of the testcases are documented. Since the relations AB and CD and the set N and M are used in multiple test 
scripts, they are not repeated every time but only documented once.  
 
rel[int,int] AB = { <1,2> , T2, ... T1000 }  where T = Tuple<int,int> 
rel[int,int] CD = { <5,6> , T2, ... T1000 } 

 
set[int] N = { 1 , I1 , ... I200 }   where I = int 
set[int] N = { 5 , I1 , ... I200 } 

 
Qualifier Interchange – not optimized 
set[int] result = { A | <int A, int B> : AB, <int C, int D> : CD, B == C, D == 23 
} 

 
Qualifier Interchange – optimized manually 
set[int] result = { A | <int C, int D> : CD, D == 23, <int A, int B> : AB , B == C 
} 

 
Qualifier Interchange – optimized automatically 
yield result 
set[ int ] result = { A | < int C , int D > : CD , D == 23 , < int A , int B > : 
AB , B == C } 

 
Filter Hiding – not optimized 
set[int] result = { A | <int A, int B> : AB, <int C, int D> : CD, B == C , D == 23 
} 

 
Filter Hiding – optimized manually 
set[int] CD23 = { C | <int C, int D> : CD, D == 23 } 
set[int] result = { A | <int A, int B> : AB , int C : CD23, B == C } 

 
Filter Hiding – optimized automatically 
yield result 
rel[ int , int ] FH1 = { < C , D > | < int C , int D > : CD , D == 23 } 
set[ int ] result = { A | < int A , int B > : AB , < int C , int D > : FH1 , B == 
C } 

 
Qualifier Interchange and Filter Hiding – not optimized 
set[int] result = { A | <int A, int B> : AB, <int C, int D> : CD, B == C, D == 23 
} 

 
Qualifier Interchange and Filter Hiding – optimized manually 
set[int] CD23 = { C | <int C, int D> : CD, D == 23 } 
set[int] result = { A | int C : CD23, <int A, int B> : AB, B == C } 
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Qualifier Interchange and Filter Hiding – optimized automatically 
yield result 
rel[ int , int ] FH1 = { < C , D > | < int C , int D > : CD , D == 23 } 
set[ int ] result = { A | < int A , int B > : AB , < int C , int D > : FH1 , B == 
C } 

 
Common Subexpression Elimination – not optimized 
set[int] selD-one = { D | <int C, int D> : CD, D == 23 } 
set[int] resOne = { A | int C : selD-one, <int A, int B> : AB , B == C } 
 
set[int] selD-two = { D | <int C, int D> : CD, D == 23 } 
set[int] resTwo = { A | int C : selD-two, <int A, int B> : AB , B != C } 

 
Common Subexpression Elimination – optimized 
set[int] selD = { D | <int C, int D> : CD, D == 23 } 
set[int] resOne = { A | int C : selD, <int A, int B> : AB , B == C } 
 
set[int] resTwo = { A | int C : selD, <int A, int B> : AB , B != C } 

 
Commuting Selections – set-difference – not optimized 
set[int] result = { result | int result : ( AB \ CD )[-,3] } 

 
Commuting Selections – set-difference – optimized 
set[int] result = { result | int result : ( AB[-,3] \ CD[-,3] ) } 

 
Commuting Selections – union – not optimized 
set[int] result = { r | int r : ( AB union CD )[-,3] } 

 
Commuting Selections – union – optimized 
set[int] result = { r | int r : AB[-,3] union CD[-,3] } 

 
Commuting Selections – Cartesian Product – not optimized 
rel[int,int] result = { <n,m> | <int n, int m> : N x M , m > 28} 

 
Commuting Selections – Cartesian Product – optimized 
rel[int,int] result = { <n,m> | set[int] M28 <- { m | int m : M , m > 28 }, <int 
n, int m> : N x M28 } 

 
Semantic Query Caching – subsumption – not optimized 
set[int] CD25 = { C | <int C, int D> : CD, D <= 25 } 
set[int] oldResult = { A | <int A, int B> : AB , int C : CD25, B == C } 
 
set[int] CD15 = { C | <int C, int D> : CD, D <= 15 } 
set[int] result = { A | <int A, int B> : AB , int C : CD15, B == C } 
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Semantic Query Caching – subsumption – optimized 
set[int] CD25 = { D | <int C, int D> : CD, D <= 25 } 
set[int] CD15 = { D | int D : CD25, D <= 15 } 
 
set[int] oldResult = { A | <int A, int B> : AB , int D : CD25, B == D } 
set[int] result = { A | <int A, int B> : AB , int D : CD15, B == D } 

 
Semantic Query Caching – overlap – not optimized 
set[int] CD25 = { C | <int C, int D> : CD, D <= 25 } 
set[int] oldResult = { A | <int A, int B> : AB , int C : CD25, B == C } 
 
set[int] CD15 = { C | <int C, int D> : CD, D > 15 } 
set[int] result = { A | <int A, int B> : AB , int C : CD15, B == C } 

 
Semantic Query Caching – overlap – optimized 
set[int] CD25 = { D | <int C, int D> : CD, D <= 25 } 
set[int] CD15 = { D,D2 | int D : CD25, D > 15, <int C, int D2> : CD, D2 > 25 } 
 
set[int] oldResult = { A | <int A, int B> : AB , int D : CD25, B == D } 
set[int] result = { A | <int A, int B> : AB , int D : CD15, B == D } 

 
Peephole Optimization – po/1 – not optimized 
int result = 5 * 10 * 20 * 30 * 40 * 50 

 
Peephole Optimization – po/1 – optimized 
int result = 60000000 

 
Peephole Optimization – po/2 – not optimized 
set[int] result = { A | <int A, int B> : AB , <int C, int D> : CD, B == C, D == 23 
} 

 
Peephole Optimization – po/2 – optimized 
set[int] result = { A | <int A, int B> : { <1,2> , T2, ... T1000 } , <int C, int D> 
: { <5,6> , T2, ... T1000 }, B == C, D == 23 } 
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Appendix B – Student Files 
Here the student files are documented, both the not optimized file and the file which is produced by the prototype.  
 
Question 5 – not optimized 
yield Q5 
 
rel[str,str] calls = { <"R", "A">, <"R", "B">, <"A", "D">, <"B", "A">, <"B", "D">, 
<"B", "E">, <"C", "F">, <"C", "G">, <"D", "L">, <"E", "H">, <"F", "I">, <"G", 
"I">, <"G", "J">, <"H", "K">, <"H", "E">, <"I", "K">, <"K", "I">, <"L", "H"> } 
 
set[str] Q2 = top(calls) 
rel[str, str] Q4 = calls+ 
 
 
set[str] indirectCalls(str X, rel[str,str] R1, rel[str,str] R2) = { Z | <str Y, 
str Z> : R1, <Y, Z> notin R2, X == Y } 
 
rel[str,set[str]] Q5 = {<X, indirectCalls(X, Q4, calls)> | str X : Q2 } 

 
Question 5 – optimized automatically 
yield Q5 
 
rel[str,str] calls = { <"R", "A">, <"R", "B">, <"A", "D">, <"B", "A">, <"B", "D">, 
<"B", "E">, <"C", "F">, <"C", "G">, <"D", "L">, <"E", "H">, <"F", "I">, <"G", 
"I">, <"G", "J">, <"H", "K">, <"H", "E">, <"I", "K">, <"K", "I">, <"L", "H"> } 
 
set[str] Q2 = top(calls) 
rel[str, str] Q4 = calls+ 
 
 
set[str] indirectCalls(str X, rel[str,str] R1, rel[str,str] R2) = { Z | <str Y, 
str Z> : R1, X == Y, <Y, Z> notin R2 } 
 
rel[str,set[str]] Q5 = {<X, indirectCalls(X, Q4, calls)> | str X : Q2 } 

 
Question 11 – not optimized 
yield DegenerateIn 
 
rel[str,str] Closure = INHERITANCE+ 
rel[str,set[str]] NonTransitive = {<PARENT, INHERITANCE[PARENT]> | str PARENT : 
domain(INHERITANCE)} 
rel[str,set[str]] Transitive = {<PARENT, Closure[PARENT]> | str PARENT : 
domain(Closure)} 
 
rel[str,str, set[str]] DegenerateIn =  
{<PARENT,CHILD,SETOFPARENT inter SETOFCHILD> |  
str PARENT : domain(NonTransitive),  
str CHILD : domain(Transitive), 
set[str] SETOFPARENT : NonTransitive[PARENT],  
set[str] SETOFCHILD : Transitive[CHILD],  
CHILD in SETOFPARENT,  
PARENT != CHILD,  
SETOFPARENT inter SETOFCHILD != { } } 
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Question 11 – optimized automatically 
yield DegenerateIn 
 
rel[str,str] INHERITANCE 
 
rel[str,str] Closure = INHERITANCE+ 
rel[str,set[str]] NonTransitive = {<PARENT, INHERITANCE[PARENT]> | str PARENT : 
domain(INHERITANCE)} 
rel[str,set[str]] Transitive = {<PARENT, Closure[PARENT]> | str PARENT : 
domain(Closure)} 
 
rel[str,str, set[str]] DegenerateIn =  
{<PARENT,CHILD,SETOFPARENT inter SETOFCHILD> |  
str PARENT : domain(NonTransitive),  
str CHILD : domain(Transitive), 
PARENT != CHILD, 
set[str] SETOFPARENT : NonTransitive[PARENT],  
CHILD in SETOFPARENT,  
set[str] SETOFCHILD : Transitive[CHILD],  
SETOFPARENT inter SETOFCHILD != { } } 

 
Question 12 – not optimized 
Yield Clones 
 
rel[str,set[str]] InherSet = {<PARENT, INHERITANCE[PARENT]> | str PARENT : 
domain(INHERITANCE)} 
 
rel[str, str] InherGelijk = {<X,Y> |  
str X : domain(InherSet),  
str Y : domain(InherSet),  
set[str] TEMPSETX : InherSet[X],  
set[str] TEMPSETY : InherSet[Y],  
X != Y,  
TEMPSETX == TEMPSETY} 
 
rel[str,set[str]] ContainSet = {<PARENT, CONTAINMENT[PARENT]> | str PARENT : 
domain(CONTAINMENT), PARENT in domain(InherGelijk)} 
 
rel[str,str] Clones = {<X,Y> |  
str X : domain(ContainSet),  
str Y : domain(ContainSet),  
set[str] TEMPSETX : ContainSet[X], 
set[str] TEMPSETY : ContainSet[Y], 
X != Y, 
TEMPSETX == TEMPSETY} 
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Question 12 – optimized automatically 
 
yield Clones 
 
rel[str,set[str]] InherSet = {<PARENT, INHERITANCE[PARENT]> | str PARENT : 
domain(INHERITANCE)} 
 
rel[str, str] InherGelijk = {<X,Y> |  
str X : domain(InherSet),  
str Y : domain(InherSet),  
X != Y,  
set[str] TEMPSETX : InherSet[X],  
set[str] TEMPSETY : InherSet[Y],  
TEMPSETX == TEMPSETY} 
 
rel[str,set[str]] ContainSet = {<PARENT, CONTAINMENT[PARENT]> | str PARENT : 
domain(CONTAINMENT), PARENT in domain(InherGelijk)} 
 
rel[str,str] Clones = {<X,Y> |  
str X : domain(ContainSet),  
str Y : domain(ContainSet),  
X != Y, 
set[str] TEMPSETX : ContainSet[X], 
set[str] TEMPSETY : ContainSet[Y], 
TEMPSETX == TEMPSETY} 
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Appendix C – Automation Prototype Architecture 
Here the architecture of the prototype used for automatic application of optimizations is given. 
 

AbstractValue
int
bool
str
comprehension
...

AbstractType
type boolean
type int
.. .

Syntax

Rscript file

Abstract Optimization
Filter Hiding
Qualifier Interchange

Optimized Rscript file

Other
yield
.. .

 
 
The architecture of the prototype consists of four separate areas with each their own properties. Each of the areas will be 
discussed here: 
 
The Syntax area consists of the language definition of Rscript, represented in Java. It consists of three main types: 
AbstractValue, AbstractType and Other.  
Within AbstractValue all of the different values that exist in Rscript are placed. Examples are: int number = 5, str 
name= “Jaap” but also comprehensions, transitive close operators, Cartesian product, etc. 
Situated within AbstractType are all the different types that Rscript contains. Examples are: bool, int, set, rel, etc. 
In Other is the left over functionality of Rscript situated, such as yield. 
The following syntax is implemented into the prototype: 

AbstractValue AbstractType Not implemented 

Roundbrackets, bool, int, str, tuple, set, rel, carrier exclusion, 
domain exclusion, range exclusion, reach exclusion, carrier 
restriction, domain restriction, range restriction, reach restriction, 
complement, identity, inverse, powerset0, powerset1, carrier, 
domain, range, bottom, top, filename, first, second, divide, min, 
multiply, plus, and, implies, or, equal, greater, greater equal, not 
equal, smaller, smaller equal, diff, inter, union, in, not in, 
cartesian product, composition, transitive closure, reflexitive 
transitive closure, not, nr of elements  

Boolean, int, 
rel, set, string, 
tuple, user 
types. 

Equations, Asserts, locations 

 
The Rscript file area is basically the Rscript file that has to be optimized. It has to be expressed manually in the syntax 
described above.  
 
The (Abstract)Optimization area contains all the optimizations. Currently there are two optimizations implemented, but it 
can be expanded in order to support more optimization techniques. Each of the optimizations uses the Java version of the 
syntax definition of Rscript and performs its transformations to change the Rscript itself.  
 
The Optimized Rscript file area shows the optimized Rscript file. 
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Appendix D – Data Structure Prototype  
Here the architecture of the prototype used for measuring different data structures is given. 
 
 

Test Files

insert
union
find
in
not in
min
max
size

Datastructure Interface

Operation

Operation

Operation

...

Linear

Java Hashtable

Red-Black Tree

 
 
The above architecture shows three different sections. On the left there is a collection of operations within a test file. These 
operations have to be extracted manually from an existing Rscript file. In the center, the data structure interface is shown. 
This interface identifies the operations which are possible to perform on each of the data structures which are situated on the 
right. Each of these data structures uses the data structure interface. 
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Appendix E – TestSpeed.rscript 
 
rel[str,str] CALL = { 656 tuples } 
bag [int] B1 = { 48 different integers, repeated 5 times } 
 
bag[int] B2 = {50,49,48,47,46,45,44,43,42,41,40,39,38,37,36,35,34,33,32,31,30, 
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,42,43,44,45,46,47,48,49,50} 
 
bag[int] do(bag[int] P1, bag[int] P2)  =  
  { X |  
    bag[int] X1 <- P1 union P2,  
    bag[int] X2 <- P1 inter P2,  
    bag[int] X3 <- P1 \ P2,  
    P1 >= P2,  
           43 in P2, 
           120 in P1, 
    <"AbstractFigure_2788", "Geom_3544"> in CALL, 
           int X <- 1 
  } 
 
bag [int] nrange =  
{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,
31,32,33,34,35,36,37,38,39,40} 
 
rel[str,str] clos = CALL+ 
 
bag[int] work = {N | int N : nrange , int M : nrange, bag[int] Z <- do(B1, B2)} 

 
 
 


