
 
 
 

Software Metrics as Benchmarks for Source Code 
Quality of Software Systems  

 
 
 

Julien Rentrop 
August 31, 2006 

 
 
 

One Year Master Course Software Engineering 
Thesis Supervisor: Dr. Jurgen Vinju 

Internship Supervisor: Drs. Patrick Duin 
Company or Institute: Software Improvement Group 

Availability: Public 
 
 
 

Universiteit van Amsterdam, 
Hogeschool van Amsterdam, 

Vrije Universiteit 



 2 

Contents 

SUMMARY 4 

PREFACE 5 

1 INTRODUCTION 6 

1.1 Background 6 

1.2 Definitions 6 

1.3 Research questions and outline 7 

1.4 Disclaimer 7 

2 BACKGROUND AND CONTEXT 8 

3 SELECTING SOFTWARE METRICS 10 

3.1 Selection criteria 10 

3.2 Evaluation of software metrics 10 

3.3 Conclusion 14 

4 BENCHMARKS 15 

4.1 Representing software metrics in benchmarks 15 

4.2 Validation approach 17 

4.3 Conclusion 19 

5 BENCHMARK DATA COLLECTOR 20 

5.1 Functionality 20 

5.2 Design 20 

5.3 Summary 23 



 3 

6 CASE STUDY 24 

6.1 Participants 24 

6.2 Judgments by assessors 24 

6.3 Benchmarks 25 

7 CONCLUSION 31 

APPENDIX A: MEASUREMENT GUIDELINES 32 

BIBLIOGRAPHY 33 
 



 4 

Summary  

 



 5 

Preface  
 
This project has been conducted at the Software Improvement Group, to whom I am 
grateful for providing me an interesting environment to work in. I would like to thank 
my coaches drs. Patrick Duin and dr. Jurgen Vinju for their suggestions and 
motivation during this internship. Furthermore I would like to thank dr. Harro 
Stokman and dr. Tobias Kuipers for their support and valuable ideas.  
 
For reviewing earlier versions of this thesis I would like to thank Tim Prijn. 
 
Finally I would like to thank my parents and my brother Michel for their support. 



 6 

1 Introduction 

1.1 Background 
The Software Improvement Group (SIG) is a company that is specialized in the 
analysis of large software systems. Based on these analyses a range of services and 
products are offered to their clients. An example is the automatic generation of 
documentation for legacy systems. The generated documentation helps software 
developers of the client in understanding the source code of the legacy systems. 
Another example is performing software risk assessments. A software risk 
assessment assesses the technical quality of a software system. It is based on 
measurements of the source code and on interviews of the stakeholders involved in 
the project. The results of these measurements are interpreted by the experts of the 
SIG, which leads to the identification of problems and possible solutions to overcome 
the identified problems. These are reported to their clients. 
 
There are multiple questions that a client can have when they ask the SIG to 
perform an assessment. The question might be as broad as wanting to know whether 
the software system is maintainable in the future or as specific as wanting to know 
whether it is easy to implement a change in the length of bank numbers in their 
system. A question often asked by clients is: is the quality of my software system 
comparable to other software systems? Knowing the answer of this question helps 
the client to decide whether they should improve their current software development 
practices or sustain their current practices. 

1.2 Definitions 
The term software metrics is used as a collective term to describe a wide range of 
activities concerning measurements in software engineering [Fenton 99]. In this 
thesis the use of it is restricted to the following classic definition: 
 
Definition: A software metric measures properties of source code. 
 
With this definition we exclude metrics that can be gathered in a software project 
that are not based on source code.  
The goal of this study is to use metrics to compare the quality of a software system 
against the quality of a set of other software systems. We use benchmarking as a 
method for comparison. A benchmark is defined as follows: 
 
Definition: A benchmark is a comparison of an organization’s or product’s 
performance against its peers. 
 
In this study the entity that is benchmarked are software systems. To be more 
precise the source code of software systems. The term performance is a generic term 
that is used as an indicator of goodness [Sim 03]. The advantage of benchmarking is 
that it helps organizations to overcome blindness towards other approaches that are 
more fit then currently employed.  



 7 

1.3 Research questions and outline 
The main research question is defined as follows:  
Is benchmarking based on software metrics a good method to determine the 
maintainability of the source code of software systems? 
 
Software risk assessments, such as performed by the SIG, evaluate software 
systems that are in or will enter the maintenance phase. The major goal of these 
assessments is to determine whether the system is understandable and therefore 
able to keep its business value in a changing environment. This study’s proposed 
benchmarks for source code quality can be used as a tool that helps assessors in 
determining the maintainability of a system.  
 
This main question is divided in several sub questions: 
 
• Which software metrics can indicate the quality of a software system’s source 

code? 
To answer this question we will investigate software metrics that are introduced 
in literature. Selection criteria are defined to evaluate the metrics. The results are 
described in chapter 3. 
  

• How to represent software metrics in a benchmark? 
There are different ways to represent benchmarks. In chapter 4 we define a set 
of representations and discuss the advantages and disadvantages of each.  

 
• How to design a tool that gathers measurement data to create the benchmarks? 

The SIG has developed a toolset to automatically measure the source code for 
different programming languages. A contribution of this study is the development 
of the Benchmark Data Collector tool that extends SIG’s toolset to enable 
benchmarking. 
 

• How to validate the results of the proposed benchmarks? 
In chapter 4 we investigate methods for the validation in literature and propose a 
new method that can be used to validate the proposed benchmarks in this study. 
In chapter 6 we apply and validate the proposed benchmarks to 11 industrial 
used software systems written in the Java programming language. 
 

In chapter 7 the answer to the main research question is given. 

1.4 Disclaimer 
This document contains software measurement values of real life software systems. 
As part of a confidentiality agreement the names of these software systems and the 
companies who created them are altered to make them anonymous. 
 



 8 

2 Background and Context 
 
Measurement is needed because it helps in understanding a particular entity or 
attribute. Even when it’s not clear how to measure a certain attribute, the act of 
proposing and discussing about it helps in creating a better understanding [Fenton 
97]. The promise of software metrics is to help managers and engineers in decision 
making based on facts. 
 
The topic of software metrics can be divided in two parts: 
• Product metrics: Measures that quantify attributes of a software system (the 

product). Examples of attributes that can be measured are the size, complexity 
and the amount of reuse. 

• Process metrics: Measures of the process of creating a software product. 
Examples of attributes that can be measured are the amount of time spent, 
defects found and the stability of the requirements. 

 
Current literature of benchmarking is mainly focused on process metrics. One of the 
main contributors to benchmarking software processes is Caspers Jones. His book 
includes benchmark studies on the use of best practices, productivity rates and 
defect rates within different organization types [Jones 00].  
 
This study is focused on benchmarking the maintainability of the source code of 
software systems. The metrics used are derived from the source code. Many 
software metrics have been proposed that can measure properties of the source 
code. A comprehensive overview of these metrics is provided by the Software 
Engineering Institute [SEI].  
 
Most of the literature about software metrics on the source code is within one 
system. In contrast, in this study metrics are used to compare at the system level. 
No literature was found that used the benchmark terminology to compare software 
systems on source code metrics. However, we did find some studies that are closely 
related: 
• The NASA has built a repository of various metrics for both procedural and object 

oriented programming languages [NASA-1]. Another repository of metrics 
created by the NASA also includes metrics about errors and requirements [NASA-
2]. Researchers of the NASA disseminated many of their results based on their 
studies on software metrics. However, they did not provide insight into how the 
repository of metrics for different software systems can be compared against 
each other. 

• A study in which open source projects are compared against each other and one 
originally closed source system against its open source successor [Samoladas 
04]. The Maintainability Index [Coleman 94] metric was measured in time (for 
each successive version) to detect whether the system’s source code quality is 
improving or deteriorating. 

• Literature that proposes a new method or tool, often also contains a section in 
which the proposed tool is applied to a set of systems. An example is the 
proposal of a tool for detecting duplicated code independent of the programming 
language [Ducasse 99]. In this work the tool is applied to a set of software 
systems and the results are informally compared against each other.  

 



 9 

We expect there are several reasons why no benchmark using source code metrics 
have been proposed in literature yet. First, it can be hard to measure quality of the 
source code. Second, it can be hard to obtain the source code of software systems to 
analyze.  



 10 

3 Selecting software metrics 
 
In this chapter the answer to the question “Which software metrics can indicate the 
quality of a software system’s source code?” will be given. 
 
To answer this question we will investigate software metrics that are introduced in 
literature. In the first section we define selection criteria to enable a selection. In the 
second section describe the individual software metrics and determine whether they 
match the selection criteria. This chapter concludes with answering the question 
mentioned above. 

3.1 Selection criteria 
The following selection criteria have been defined in cooperation with the SIG: 
• The software metric must be easily explainable to clients. The benchmarks that 

are based on the selected software metrics will be presented to clients of the 
SIG. The clients do not have in-depth knowledge of software metrics. It’s 
therefore necessary that the rationale behind the metrics can be easily explained. 

• The software metric must be applicable to many programming languages. Our 
intent is to enable the creation of benchmarks for different programming 
languages. We first want to explore general metrics that are applicable to all 
programming languages instead of metrics that are limited to only a limited set 
of programming languages. We do however explicitly not demand that a metric in 
programming language X should be comparable to that same metric in 
programming language Y.  

• The software metric must be automatically calculable from the source code. It 
must not be necessary to compile and execute the code, because this might not 
be practically possible because not all external dependencies are available so it’s 
not possible to create an environment to run and measure it in. 

• The software metric must have a strong basis in literature. A strong basis in 
literature will ensure that the applicability of the software metric is known.  

3.2 Evaluation of software metrics 

3.2.1 Lines of Code 

Since the start of software engineering engineers have been counting the lines of 
code they wrote. Counting lines is used for estimating the amount of maintenance 
required and it can be used to normalize other software metrics [Rosenberg 97].  
 
In the early days when assembly programming languages were used the notion of a 
line of code was simple. However when third generation programming languages 
were introduced the notion of a line of code became harder. Third generation 
programming languages have programming constructs for structured control flow. 
For example the begin (‘{‘) and end (‘}’) tokens of blocks in the C programming 
language. To standardize the counting the Software Engineering Institute has 
published a set of recommendations [Park 92]. Broadly two different counting 
methods exist: Physical Lines of Code and Logical Lines of Code.  

3.2.1.1 Evaluation 

TODO 
 



 11 

3.2.2 McCabe’s Cyclomatic Complexity 

In 1976 McCabe defined the cyclomatic complexity number metric. The metric 
measures the number of independent paths through a software module [McCabe 76].  
 
[McCabe 76] proposes an upper limit of 10 for cyclomatic complexity because higher 
values would indicate less manageable and testable modules. This upper limit is not 
based on empirical research, however multiple real world projects confirm that 
modules with higher cyclomatic complexity values often have more errors and are 
less understandable [McCabe 89]. 
 
Although cyclomatic complexity is widely used, critique on it exists. [Shepperd 88] 
claimed that it’s based on poor theoretical foundations and an inadequate model of 
software development. He also claimed that cyclomatic complexity is a proxy for, 
and often outperformed by, lines of code. 
 
A reason for the wide use of the cyclomatic complexity metric is that it can be easily 
computed by static analysis and it’s already widely used in the industry for quality 
control purposes [Fenton 99]. 

3.2.2.1 Evaluation 

The cyclomatic complexity metric is one of the oldest metrics and is still in use in 
research and practice today. There are however, as described earlier, mixed opinions 
about the metric. Explaining this metric to clients entails explaining the concept of 
control flow. With a few examples it’s possible to explain this metric to clients. The 
software metric can be calculated for both procedural and object oriented 
programming languages. Tools are available to determine the cyclomatic complexity. 
The cyclomatic complexity has been selected to be a part of the benchmarks. 

3.2.3 Object Oriented metrics 

The OO approach models the world in terms of objects. This extends procedural 
languages that are based on data fields and procedures. Traditional metrics such as 
cyclomatic complexity cannot measure OO concepts such as classes, inheritance and 
message passing [Chidamber 92]. 
 
New metrics have been developed to measure OO systems. One commonly used set 
of OO metrics is Chidamber and Kemerer’s suite of class level metrics: 
• Weighted Methods Per Class (WMC) 

WMC is the sum of the static complexity of the methods. When all static 
complexities are considered to be unity then WMC can be defined as the number 
of methods. 
 
The larger the number of methods the greater the impact on sub classes. Classes 
with many methods can be more application specific and therefore harder to 
reuse.  
 

• Depth of Inheritance Tree (DIT) 
When a class is deeply nested it inherits more from it’s ancestors. This can 
increase the complexity of the class. 

 
• Number of Children (NOC) 

Classes that have many children are hard to change because of the tight 
couplings with its children. 



 12 

 
• Coupling Between Objects (CBO) 

A high number of couplings with other classes is disadvantageous because when 
the interface of a class it is coupled to changes it needs to be modified as well. 

 
• Response For a Class (RFC) 

RFC is a measure of the interaction of a class with other classes.  
 
• Lack of Cohesion in Methods (LCOM) 

This metric calculates the usage of a class’s attributes in its methods. A class 
lacks cohesiveness when methods do not make use of its attributes. 

 
An empirical investigation in an academic environment reported five out of six of 
these metrics to be a useful predictor to class fault-proneness [Basili 96].  
 
An extensive report of the Chidamber and Kemerer’s metrics suite and other OO 
metrics can be found in [Archer 95]. 

3.2.3.1 Evaluation 

The object oriented metrics proposed by Chidamber and Kemerer are often referred 
to in literature. The metrics can be useful quality indicators, but there are some 
limitations. For example Coupling Between Objects counts couplings to classes in the 
same package, different packages and packages of external libraries all the same. 
Couplings with a lot of external packages are much worse then couplings to internal 
packages.  
 
The metrics are designed for the OO paradigm. The goal of this project is to use 
metrics to create benchmarks for a wide number of different programming 
languages. The OO metrics are therefore not selected. 

3.2.4 Duplicated code 

When code is duplicated it can become harder to make changes because one change 
must also be made in all copies. This takes more time and is also error prone as it’s 
easy to forget to make the change in multiple places.  
 
One way to measure duplicated code is by performing line based text matching 
[Baker 95]. Another way to measure duplicated code is by matching layout, 
expression and control flow metrics [Mayrand 96].   
 
A software system can have unique source code in multiple places that provide the 
same functionality. This is called conceptually duplicated code. The programmers of 
systems with conceptually duplicated code have programmed the same functionality 
multiple times and did not reuse or copy existing code. Conceptually duplicated code 
cannot be detected automatically and is therefore detected by inspections performed 
by humans. 

3.2.4.1 Evaluation 

Duplicated code is a topic that has got a lot of attention in scientific literature. The 
concept of duplicated code is simple: A lot of duplicated code unnecessary increases 
maintenance costs because the system is larger. This concept is easily explainable to 
clients. Duplicated code can be determined for all programming languages. There are 



 13 

even tools available (such as [Kettelerij 05]) that can detect duplicated code 
independent of the programming language.  

3.2.5 Dead code 

Dead code is code that is never executed. Having dead code increases the amount of 
code that needs to be maintained. The programmers that maintain the source code 
might not know whether the code is dead or still used. Dead code makes it harder to 
maintain the system’s source code. 
 
A reason for dead code to remain in the source code is that programmers are afraid 
that the system might break without it. A comprehensive unit test suite can give 
more assurance that the system doesn’t break without the dead code. Another 
reason for keeping dead code is that programmers want to be able to restore old 
code. Keeping old code should not be necessary because version control systems can 
easily restore old code.     

3.2.5.1 Evaluation 

The percentage of dead code in a software system is a useful indicator of the quality 
of the source code. A problem however is that developing a tool that can 
automatically determine which parts of the source code is dead is far from easy. One 
of the problems is that dynamic constructs in a programming language are hard to 
resolve.  
 
Another problem is that all entry points must be available. In practice the SIG does 
not always have access to the source code of external systems. These external 
systems can be entry points. If not all entry points are available source code can be 
detected as dead when it isn’t.   

3.2.6 Database metrics 

A lot of research has been focused on the measurement of source code of programs. 
However many information systems make extensive use of databases and therefore 
measuring the quality of the database structure is important as well. To measure the 
maintainability of a database three simple metrics have been proposed [Calero 01]:  
• Number of tables 
• Number of columns 
• Number of foreign keys 

3.2.6.1 Evaluation 

Software systems often make use of databases. A benchmark that can indicate the 
quality of the database structure would therefore be desirable. Research on the 
definition of software metrics for databases is however still in its infancy. The metrics 
proposed by [Calero 01] can be useful to compare and select from different database 
models designed for one problem domain but are not useful as indicators for quality 
to compare database schemas designed for different problem domains. The metrics 
can be used as an absolute size indicator such as total lines of code for source code. 
 



 14 

3.3 Conclusion 
In this chapter we defined selection criteria and applied them to a number of 
different metrics. Based on the selection we found the lines of code, cyclomatic 
complexity and code duplication metrics useful quality indicators of a software 
system’s source code. 
 



 15 

4 Benchmarks 
 
This chapter consists of two parts. The first section will answer the question “How to 
represent software metrics in a benchmark?”. To validate the proposed 
representations, the second section will answer the question “How to validate the 
results of the proposed benchmarks?”. 
 

4.1 Representing software metrics in benchmarks 
In this paragraph we propose three different ways to represent a benchmark using 
the metrics selected in the previous chapter. 

4.1.1 Ordered tables 

Some of the metrics discussed in the previous chapter measure properties at the 
module level. The module level means classes or methods in Object Oriented 
languages and units and procedures in procedural programming languages. A 
concrete example is McCabe’s cyclomatic complexity that is calculated per method in 
Java.  
 
In the benchmarks proposed here, systems are compared and not modules within 
one system. To use these module level metrics we need a way to lift the values of 
the module level to the system level. This lifting is called aggregating. There are a 
number of different aggregation functions such as average, median, sum, max and 
min. The sum is not useful because the size of an application would affect the 
measurement results. The max and min function would make the result based on 
only one module. In this research we use the average aggregation function to lift 
metric values to the system level. 
 
As defined in the introduction a benchmark is a comparison of an organization’s or 
product’s performance against its peers. In the benchmark presented here we use 
individual metrics as performance (quality) indicators and the comparison is 
presented by sorting the metric values. A system that has a high position in the table 
means that it’s the best in the benchmark and vice versa. A dummy example is 
presented below with four different systems named A, B, C and D: 
 

System name Metric value 
D 2 
A 8 
C 9 
B 14 

In this (dummy) benchmark system D scores best, A and C are in the middle and B is worst. 
 
Now we use the software metrics selected in the previous chapter, define the level of 
measurement, choose an aggregation function and determine how the metric results 
should be ordered: 



 16 

 
Benchmark Metric Level Aggregation 

function 
Order 

B1 Lines of code Method Average Ascending 
B2 Lines of code Class Average Ascending 
B3 Cyclomatic 

complexity 
Method Average Ascending 

B4 Cyclomatic 
complexity 

Method Percentage of 
methods below 
threshold * 

Ascending 

B5 Cyclomatic 
complexity, 
Lines of code 

Method Percentage of code 
below threshold * 

Ascending 

B6 Maintainability 
Index** 

System None Descending 

B7 Code duplication System Percentage of 
duplicated code 

Ascending 

* In [McCabe 76] the threshold value 10 is proposed to indicate modules that are of low quality  
** Maintainability index is a compound metric that is based on the averages of lines of code, cyclomatic 
complexity, Halstead volume and comment percentage [Coleman 94]. 
 
We expect that some of these benchmarks will result in highly similar results: 
• Lines of code at the method level (benchmark 1) and lines of code at the class 

level (benchmark 2) is expected to be identical because large methods would 
make a class large as well. 

• Cyclomatic complexity (benchmark 4) and cyclomatic complexity with lines of 
code (benchmark 5) are expected to be similar. 

 
These expectations will be investigated in chapter 6. 
 

4.1.2 Combined benchmark 

In the previous paragraph 7 different benchmarks are proposed. Multiple 
benchmarks are useful because they can give an indication of different aspects of 
quality. A system might for example have highly complex methods but does have a 
low percentage of duplicated coder. However it would be interesting if the results of 
the different benchmarks can be combined in one benchmark to get an overall view.  
 
The unit of measurement of each benchmark is different. Simply calculating the 
mean of all measurements is therefore not valid. To overcome this problem we can 
calculate the difference between the mean and each system and divide this by the 
standard deviation. Now we have one unit of measurement for all benchmarks that 
tells how many standard deviations a measurement is away from the mean. An 
average can be calculated for any combination of benchmarks. Which benchmarks 
should be combined will be investigated in chapter 6. 
 

4.1.3 Histograms 

In this paragraph we propose to use histograms as a representation that can 
compare the distribution of lines of code per class. To create the histogram all 
systems the lines of code per class measurements are partitioned in bin ranges. We 
use 11 bins each with a width of 50. We use relative frequencies instead of actual 



 17 

frequencies because the sizes of the systems measured this study vary. In a relative 
histogram the Y-axis runs from 0% to 100%. 
 
Our approach is to compare one system’s distribution against the benchmark. The 
benchmark is the average distribution of all other systems. 
 
A significant difference of the distribution of a software system and the benchmark 
does not directly tell that it’s worse or better then average. So it doesn’t exactly fit 
the definition of a benchmark. However a significant difference is interesting and 
does deserve attention of software assessors to determine the causes of the 
difference. In this way using measurement results of other systems that are 
analyzed helps in analyzing the current system.  
 
To quantify the difference between the benchmark and one system we adopted the 
Histogram Difference Measure (HDM) from [Cui 06]. HDM is calculated as follows: 
Given two histograms with the same number and bin widths: One system’s 
histogram and the benchmark histogram. Bin difference is the absolute difference 
between two bins (the system’s and the benchmark’s bin). Then histogram difference 
corresponds to the summation of bin differences. HDM is the normalized histogram 
difference. HDM has an interval of 0 to 1 where 0 indicates that it’s totally different 
and 1 indicates a perfect match. A perfect match in this case means that the system 
is equally distributed as the benchmark.  
 

4.2 Validation approach 
Software metrics are used for different goals. Some of these goals are for finding 
mod7ules that are likely to have errors [Menzies 02], finding modules that are hard 
to test and finding modules that are hard to understand and therefore hard to 
change [McCabe 76]. 

4.2.1 Literature approaches 

In this paragraph we discuss approaches used in literature to validate the use of 
software metrics. 

4.2.1.1 Interviewing developers 

This approach consists of running measurements on one or more systems. From 
these measurement some values are selected, for example the highest and lowest 
values. Interviews with developers of the software system are conducted to find if 
the opinion of the developers confirms the metric values such as in [McCabe 76] and 
[Chidamber 96]. 
 
This approach can be applied to compare metrics at the module level. The 
developers of a software system can state whether they find one module easier or 
harder to understand and modify then other modules. However, using interviews 
with developers to validate comparisons at the system level is harder. Asking 
developers whether they find the systems they maintain to be easy or hard to modify 
will not be useful: 
• A software system can be huge. A developer might only be an expert of a part of 

the system. The developer cannot state the quality of the whole system. 
• Research showed that a crucial factor in software maintenance is a stable 

maintenance team [SWEBOK 04]. Developers that have worked a long time on 



 18 

maintaining a system gain a lot of knowledge about it and will therefore find it 
easy to modify. 

• A software developer has only worked on a limited amount of different systems.  
A developer’s opinion about the quality of the system is affected by the systems 
the developer had worked on. It’s possible that all of them are quite good or bad 
but in the developer’s eyes some can be worse and some are better.  

 
We therefore conclude that interviewing developers is not suited for validating the 
proposed benchmarks. 

4.2.1.2 Correlating with discovered bugs 

Another approach is to compare the measurements with the amount of bugs 
reported such as in [Basili 96] and [Menzies 02]. 
 
This approach is applicable for one system or for all systems in one organization, but 
is far more difficult to do across different organizations. There are multiple reasons 
for this difficulty: 
• Different organizations record (or do not record at all) bug data in different ways 

that can make comparisons across organizations impossible. 
• Bugs can be detected at various stages such as during development, after 

development and when the system went in production. The duration of these 
stages can be different for each software system and therefore a comparison 
would be invalid. 

 
Furthermore the goal of our benchmarks is used to determine whether source code is 
maintainable and not about bugs/correctness. We therefore conclude that correlating 
discovered bugs is not suited for validating the proposed benchmarks. 

4.2.2 Our validation approach 

We need to validate if the proposed benchmarks give an accurate ordering of the 
software system’s source code quality. As validation approaches in literature are 
based on comparisons within one system we defined a new validation approach that 
is based on a comparison with judgments given by the assessors. 
 
The judgments of the assessors can be found in assessment documents. Per system 
assessed one document is written. An assessment document reports on the quality 
of different subjects of a software system, for example the architecture/design, 
source code, (unit) testing, documentation and tool usage. In our validation 
approach we only look at the judgments given about the quality of source code. The 
other subjects are outside the scope of this study. The judgments in the reports are 
written in natural language. As human language is ambiguous we rewrite the 
judgments in natural language to a fixed set of judgments: high quality, normal 
quality and low quality.  
 
Judgments of assessors of the SIG are based on the interpretation of measurement 
results. The metrics used by assessors are often the same as the metrics used in the 
benchmarks: Lines of Code, McCabe and Code duplication. The assessors do have 
more tools to determine the quality of the source code like focusing metrics on 
specific parts of a system and manually inspecting the source code.  
 
To give a judgment the assessors implicitly compare the measurements of the 
current system with measurements of other systems they have assessed. It’s 



 19 

possible that the benchmarks are more accurate then the judgments of assessors as 
one assessor didn’t assess all systems and might not remember values from previous 
assessments. 

4.3 Conclusion 
Three different ways to benchmark software systems have been proposed. The first 
one consists of ordered tables wherein the position of the software system in the 
table represents its quality against other software systems, the second one consists 
of using multiple benchmarks to create one combined benchmark and the third one 
uses histograms which can be visually inspected to find differences in the distribution 
of source code in software systems. 
 
By studying literature we found two approaches to validate software metrics. We 
found that these approaches are not applicable to validate the benchmarks proposed 
in this study. A new validation method has been proposed that is based on 
judgments of assessors that will be used to validate the proposed benchmarks. 



 20 

5 Benchmark Data Collector 
 
This chapter describes the goals and design of the benchmark data collector. First, 
the data that is collected is discussed. Second, we describe the design considerations 
that are made. 
 
The Software Improvement Group has built the System Analysis Toolkit (SAT) to 
analyze software systems. Among others it contains the implementation of software 
metrics such as lines of code, cyclomatic complexity and code duplication. The SAT is 
written in Java.   

5.1 Functionality 
The goal of this study is to benchmark software systems by use of metrics on source 
code. To achieve this goal two components must be available: 
• A filled database with metrics of software systems 
• A view of this database that shows the benchmark results 
 
This chapter deals with the first point by developing a tool that collects measurement 
data and stores it in one database. The second point is achieved by standard tools 
such as the MySQL console application for running SQL queries and Microsoft Excel 
for presenting the measurements in tables and charts. The development or selection 
of a full fledged presentation application is outside the scope of this project. 
 
Currently the Benchmark Data Collector can collect data for software systems 
programmed in Java and in COBOL. In the future this tool can be extended so it can 
be used for other programming languages as well. 

5.2 Design 

5.2.1 Entity Relationship (ER) model 

To describe the data that is stored the following E/R data model is created: 



 21 

 
E/R Diagram 

 
In this diagram four entities are defined. SOFTWARE_SYSTEM contains attributes to 
identify and categorize a software system. The attribute ownerName defines the 
company or organization that owns the system. The attribute maintainerName can 
be the same as the ownerName, but is different in case of outsourcing. Storing these 
attributes is relevant because it would be interesting to benchmark all systems 
developed by or for one owner or maintainer against each other. The system is 
categorized by it’s industryType (for example Finance, Public and Industry) and it’s 
technicalType (for example Standalone application, Web application and Mainframe).  
 
A software system can consist of multiple programming languages. In this data 
model measurement results are separated per programming language. For example 
one software system is programmed in C and ASM and has a SLOC of 10.000 for C 
and a SLOC of 5.000 for ASM. 
 
The MEASUREMENTS entity has two attributes: metricType and originType. The 
metricType attribute is used for storing the name of the metric, for example Lines of 
Code. The originType attribute stores the level of measurement, for example system 
level and method level. 
 

5.2.2 Class diagram 

The Benchmark Data Collector is written in Java. The following diagram gives an 
overview of the classes and their relations: 



 22 

 
Class diagram of Benchmark Data Collector 

5.2.3 Design considerations 

During the development we made a number of considerations are made that affects 
the design. The most important are described below: 

5.2.3.1 Re-using components of the SAT 

A goal when developing the Benchmark Data Collector was to minimize the amount 
of new source code that needs to be written. More source code would cost more time 
to develop and would require more time to maintain. To reduce the amount of new 
source code that needs to be written we chose to make use of components that are 
already available or used in SIG’s System Analysis Toolkit: 
• Software metrics: The software metrics available in the SAT. 
• Persistence: The Hibernate object/relational persistence service [Hibernate]. To 

simplify the interaction with Hibernate we use utility classes of the SAT. 
• File filters: To select which files are analyzed and which aren’t we use file filters 

of the Apache’s Jakarta Commons project [Jakarta]. 
• Input format: The input of the Benchmark Data Collector is a Spring configuration 

file [Spring]. See paragraph 5.2.3.2. 
 

5.2.3.2 Input: Flexibility by configuration or hard-coded 

The input of the benchmark data collector is a Spring XML configuration file. Spring is 
a Java framework that minimizes hard coded dependencies to increase 
modularization and testability [Spring]. Spring uses the Inversion of Control (also 
called Dependency Injection) pattern. 
 



 23 

 
A XML configuration file 

 
The XML configuration file of the benchmark data collector is used to define which 
code should be analyzed and enter information of the software system. A 
configuration file is made for each system that is analyzed.  
 
A question raised during the development was: Should it be possible to configure 
metrics in the XML configuration file? We first thought that it would make the tool 
more flexible because it would be possible to add more metrics and set different 
counting option. However we found that introducing these configuration options 
would introduce problems:  
• When there are configuration options it will be possible that metric values are 

calculated different per system. For example for one system the minimum clone 
size that is detected is configured at 10 lines and for other systems it’s 6 lines. 
These difference configurations would make comparisons invalid.  

• Configuring takes time from the user. Using the Benchmark Data Collector should 
take as less time as possible. 

 
The Benchmark Data Collector must promote standardization instead of 
configuration. We have therefore chosen to define which metrics and options are 
used in Java code using constants so it’s impossible for the user to use different 
metrics or options. 
 

5.3 Summary 
In this chapter we described the design of the Benchmark Data Collector. The 
Benchmark Data Collector collects measurements results from the source code for 
software systems written in Java or COBOL. 

 

 

<?xml version="1.0" encoding="UTF-8"?> 
<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" 
"http://www.springframework.org/dtd/spring-beans.dtd"> 
<beans> 
  <bean class="java.lang.String" id="rootDir"> 
    <constructor-arg><value>/home/julien/sources/A</value></constructor-arg> 
  </bean> 
 
  <bean class="org.apache.commons.io.filefilter.SuffixFileFilter" id="fileFilter"> 
    <constructor-arg><value>.java</value></constructor-arg> 
  </bean> 
 
  <bean class="software_improvers.model.benchmark.SoftwareSystem" id="softwareSystem"> 
    <property name="systemName"><value>System A</value></property> 
    <property name="ownerName"><value>Company A</value></property> 
    <property name="industryType"><value>Finance</value></property> 
  </bean> 
 
  <bean class="nl.sig.network.benchmark.JavaBenchmarkNetwork" id="network"> 
    <property name="softwareSystem"><ref bean="softwareSystem"/></property> 
    <property name="rootDir"><ref bean="rootDir"/></property> 
    <property name="fileFilter"><ref bean="fileFilter"/></property> 
  </bean> 
</beans> 

 



 24 

6 Case study 
 
In this case study we apply and validate the benchmarks defined in chapter 4. The 
Benchmark Data Collector tool described in chapter 5 is used to gather the 
measurement values.  
 

6.1 Participants 
The benchmark consists of 11 software systems written in Java. The functionality 
provided, the industry type and sizes of these systems are diverse. 
 
Software 
System 

Description Size in 
SLOC 

A An administrative application for a governmental 
organization. 

71.313 
 

B  Application B enables micro payments on internet sites. 79.610 
C Supports the organization in managing debits. The 

application contains batch jobs to automatically invoke 
actions, like sending letters.  

193.551 

D Administrative application for banking products used by 
regional offices. 

95.987 
 

E Administrative application for leases of cars 28.334 
F  Administrative application for an organization in the 

transport industry. 
1.393.551 

 
G A back-office application for processing postal items. 102.802 
H An interface application that provides clients information 

about the status of their ordered products. 
45.661 

I Administrative application that manages personal 
information for a governmental organization. 

20.167 

J This application is developed and used by the SIG for the 
analysis of software systems. 

72.743 

K An application built for the insurance industry. The 
application contains an advice module and supports the 
registration of information about persons. 

201.052 

6.2 Judgments by assessors 
As described in paragraph 4.2.2 we use the judgments of assessors to compare with 
the results of the benchmarks. The table below describes the judgments per software 
system: 
 
As the judgments are given in natural language it’s not quantifiable. The judgments 
in the reports can take up multiple sentences and the terms used vary by report. 
Examples of judgments are “this system is above average”, “better then we have 
ever seen” and “the system is overly complex”. We have simplified these sentences 
to either “good” denoted as “+” or “bad” denoted as “-”. The reports we studied 
didn’t judge any system as being average. 
 



 25 

 
Software 
system 

Judgment 

A + 
B + 
C - 
D - 
E + 
F - 
G ? 
H ? 
I + 
J + 
K - 

 
Two systems (G and H) have not been assessed (yet). The judgment of these 
systems is undefined. It’s not possible to validate these system’s places in the 
benchmark. We did however choose to keep them in, as it will affect the comparison 
of other systems. 

6.3 Benchmarks 
In appendix A we describe which parts of the software system are measured. First 
we present the results and afterwards we compare these results with the judgments 
given by assessors.  
 
The benchmarks measured here are described in paragraph 4.1.  



 26 

6.3.1 Ordered table

B1 Value 
E 4.77 
A 5.28 
J 5.67 
K 5.76 
H 6.15 
I 6.24 
B 7.94 
G 8.65 
F 9.00 
D 9.56 
C 13.55 
 
B2 Value 
E 4.77 
A 5.28 
J 5.67 
K 5.76 
H 6.15 
I 6.24 
B 7.94 
G 8.65 
F 9.00 
D 9.56 
C 13.55 
 

B3 Value 
J 54.25 
K 62.40 
E 67.62 
B 81.32 
I 82.31 
A 93.34 
G 96.89 
D 107.01 
C 182.08 
F 190.22 
H 206.61 
 
B4 Value 
J 99.89% 
K 99.51% 
E 99.33% 
H 99.03% 
A 98.69% 
F 97.98% 
G 97.96% 
B 97.72% 
I 97.37% 
C 93.99% 
D 91.56% 
 

B5 Value 
J 99.16% 
K 95.98% 
E 93.95% 
F 86.60% 
H 86.29% 
A 84.69% 
B 83.73% 
G 83.69% 
I 78.55% 
C 76.33% 
D 52.49% 
 
B6 Value 
E 161.88 
K 159.64 
A 158.14 
I 153.25 
B 149.19 
G 147.34 
D 146.86 
F 145.36 
H 143.85 
J 139.18 
C 125.71 
 

B7 Value 
J 3% 
E 3% 
I 5% 
B 5% 
G 9% 
K 10% 
F 16% 
H 18% 
A 18% 
D 20% 
C 29% 
 
 
 
 
 
 
 
 
 
 
 
 

 

6.3.1.1 Validation 

A limitation of the validation described here is that the number of systems analyzed 
here is rather small (11 software systems). It’s possible that with more systems the 
results would be different. 
 
The following table presents the judgments given by the assessors and the position 
in each benchmark. To compare the position a software system to a judgment we 
have simplified the positions in the benchmark to: 
+ = High (Top four systems) 
0 = Average (The three systems in the middle) 
- = Low (Bottom four systems) 
 
The systems denoted as “0” in the benchmarks are not comparable to the judgments 
because no system is judged as average. We have chosen to exclude these software 
systems because if only one or two systems are added the quality can jump from 
average to low or to high quality. 
 
To make the comparison easier the judgments of the assessors are repeated in the 
second column. When a system’s position in the benchmark confirms the judgment 
it’s colored green and it’s colored red when it’s contradicts the judgment. 



 27 

 
Software 
System 

Judgment B1 B2 B3 B4 B5 B6 B7 

A + + 0 + 0 0 + - 
B  + 0 + - - 0 0 + 
C - - - - - - - - 
D - - - - - - 0 - 
E + + + + + + + + 
F  - - - - 0 + - 0 
G ? - 0 0 0 - 0 0 
H ? 0 - 0 + 0 + - 
I + 0 0 0 - - + + 
J + + + + + + - + 
K - + + + + + + 0 

 
 
When we ignore the systems that are average (denoted as 0) there are the following 
differences: 
• Benchmark 1: System K 
• Benchmark 2: System K 
• Benchmark 3: System B, system K 
• Benchmark 4: System B, system I, system K 
• Benchmark 5: System F, system I, system K 
• Benchmark 6: System J, system K 
• Benchmark 7: System A 
 
Six out of seven benchmarks wrongly indicate system K as high quality. According to 
the assessors this system was over engineered. An over engineered software system 
can have many small and simple methods and classes and therefore score well in the 
benchmarks 1 to 6.  The absolute size and design complexity is considered to be too 
large for this system  
 
The developers of this system used a too named Checkstyle that automatically 
reports on overly large and complex classes and methods [Checkstyle].   
 
Another interesting result is that system J scores well on all benchmarks except on 
the Maintainability Index (B6). We found that this system has a poor result because 
it had the lowest comment percentage (4.5%). We believe that the comment 
percentage metric is questionable because code that is easily readable should not 
need lots of comments to clarify it [McConnell 04]. 
 
Based on these results benchmark 1, 2 (average lines of code of methods / classes) 
and 7 (code duplication percentage) confirm the judgments of assessors. 
 
A problem with comparing the judgments to the benchmarks is that one benchmark 
only measures one aspect of quality while the judgments given by the assessors 
measure all aspects. Therefore the differences and similarities found can be cause 
because other aspects were of a certain quality which happens to be the same as the 
benchmark. As the scales of comparison is only “+” and “-” there is always 50% 
chance that the results are similar. 
 



 28 

The validation would have been more precise if there would be a direct mapping to 
the aspect measured in the benchmark and the judgment of the assessors. Another 
improvement would be if the scales were more precise so that the chance of 
coincidental similarities would be lower. 
 
Next to these problems of the validation method it would be desirable to have a 
larger set of software systems. A problem is that the benchmarks proposed here are 
intended to be used by the SIG to help assessors in deciding whether the system is 
good or not. Gathering more data from software systems would mean this work 
should not be used because it would influence the assessors. By doing this we and 
up with a classic chicken and egg problem because for this validation approach we 
need the judgments of assessors and the assessors need benchmarks for making 
judgments.  
 

6.3.2 Combined benchmark 

In the previous paragraph we found benchmark 1, 2 and 7 to be closest to the 
judgments of assessors. Now we combine two of these, benchmark 1 (lines of code 
per method) and benchmark 7 (code duplication), to create one combined 
benchmark. Both benchmarks are equally weighted in the equation. A value above 
zero indicates above average quality and vice versa.  
 

 
 
Except from system K all values are similar to the judgments of the assessors.  



 29 

6.3.3 Histograms 

The following table presents the differences between the distribution of lines code for 
each system and the benchmark: 

System HDM 
A 0.95773 
B 0.94979 
C 0.87753 
D 0.81657 
E 0.92293 
F 0.81493 
G 0.93672 
H 0.76287 
I 0.88198 
J 0.84791 
K 0.90014 

Difference between the distribution of lines of code over classes. 
 
We took two entries from this table: System A because its highest value indicates a 
high similarity with the benchmark and system H because its lowest value indicates 
that it’s most different from the benchmark.  
 

 
The lines of code distribution of system A is equivalent to the benchmark. 

 



 30 

 
There is a significant difference between system H’s and the benchmark’s distribution. System H has fewer 

classes in the smallest bin range and therefore more classes in the higher bin ranges. 
 
The histograms clearly show that system A is equivalent to the benchmark and that 
system H is different. System H has fewer small classes and has a higher percent of 
its classes in the more bin. System H’s large classes are worth investigating as these 
classes might take up too much functionality.  
 
 



 31 

7 Conclusion 
 
In this study we explored the use of metrics as benchmarks for the source code 
quality of software systems. Based on the selection criteria, described in chapter 3, 
the lines of code, cyclomatic complexity and code duplication metrics were selected. 
These metrics were used to create representations of the benchmarks.  
 
Is benchmarking based on software metrics a good method to determine the source 
code quality of software systems? 
 
 
 



 32 

Appendix A: Measurement Guidelines 
 
To be able to make a fair comparison it’s needed to set clear guidelines about what 
should be measured or not.  

Parts to measure 

Source code that needs to be measured is all program source code that is 
maintained by the developers of the project. The following guidelines are defined: 
• Program source code is included. 
• Source code of external libraries is excluded. External means libraries that are 

from a third party, for example COTS or open source.  
• Source code of libraries made by the company it self should be included. 
• Generated code is excluded. However if the generated code is maintained by 

hand it should be included. 
• Unit test code should be excluded. The purpose of unit test code is different then 

for program code. Unit test code often has less control flow statements and can 
seriously affect the measurement results. Measuring qualities of unit test code 
should be measured separate from program code. Measuring unit tests is beyond 
the scope of this project. 

 
 
 
 



 33 

Bibliography 
 
[Jones 00] C. Jones. Software Assessments, Benchmarks and Best Practices, 
Addison-Wesley, 2000 
 
[McConnell 04] S. McConnell. Code Complete Second Edition, Microsoft Press, 2004 
 
[Mens 02] M. Mens, S. Demeyer. Future Trends in Software Evolution Metrics, ACM, 
2002 
 
[Baker 95] B.S. Baker. On Finding Duplication and Near-Duplication in Large 
Software Systems, Proceedings of the Second Working Conference on Reverse 
Engineering (WCRE ’95), 1995 
 
[Mayrand 96] J. Mayrand, C. Leblanc, E.M. Merlo. Experiment on the Automatic 
Detection of Function Clones in Software System Using Metrics, International 
Conference on Software Maintenance (ICSM '96), 1996 
 
[Veerman 03] N. Veerman.  Revitalizing Modifiability of Legacy Assets, Proceedings 
of the Seventh European Conference on Software Maintenance And Reengineering 
(CSMR’03), 2003 
 
[Brand 97] M.G.J. van den Brand, P. Klint, C. Verhoef. Re-engineering needs Generic 
Programming Language Technology, ACM, 1997 
 
[McCabe 76] T.J. McCabe, A Complexity Measure, Proceedings of the 2nd 
international conference on Software engineering, 1976 
 
[McCabe 89] T.J. McCabe, C.W. Butler. Design Complexity Measurement and Testing, 
Communications of the ACM, 1989 
 
[Shepperd 88] M. Shepperd. A critique of cyclomatic complexity as a software 
metric, Software Engineering Journal, 1988 
 
[Chidamber 91] S.R. Chidamber, C.F. Kemerer. Towards a metrics suite for object 
oriented design, International workshop on Principles of software evolution, 1991 
 
[Chidamber 94] S.R. Chidamber, C.F. Kemerer. A Metrics Suite for Object Oriented 
Design, IEEE, 1994 
 
[Basili 96] V.R. Basili, W.L. Melo. A Validation of Object-Oriented Design Metrics as 
Quality Indicators, IEEE Transactions on Software Engineering, 1996  
 
[NASA-1] NASA Software Assurance Technology Center, Software Metrics Research 
and Development. http://satc.gsfc.nasa.gov/metrics/. Last visited august 2006 
 
[NASA-2] NASA Independent Verification and Validation Facility, Metrics Data 
Program, http://mdp.ivv.nasa.gov/. Last visited august 2006 
 
[Rosenberg 97] J. Rosenberg, Some Misconceptions About Lines of Code, metrics, p. 
137, Fourth International Software Metrics Symposium (METRICS'97), 1997 



 34 

 
[Park 92] R.E. Park, Software Size Measurement: A Framework for Counting Source 
Statements, Software Engineering Institute (CMU/SEI-92-TR-020), 1992 
 
[Coleman 94] D. Coleman, D. Ash, B. Lowther, P. Oman, Using Metrics to Evaluate 
Software System Maintainability, Computer, vol. 27,  no. 8,  pp. 44-49,  Aug.,  1994 
 
[Archer 95] C. Archer. Measuring Object-Oriented Software Product, Software 
Engineering Institute (SEI-CM-28), 1995 
 
[Tian 95] J. Tian, M.V. Zelkowitz, Complexity Measure Evaluation and Selection, IEEE 
Transactions on Software Engineering, vol. 21,  no. 8,  pp. 641-650,  Aug., 1995. 
 
[SEI] Carnegy Mellon Software Engineering Institute: A taxonomy of quality 
measures. http://www.sei.cmu.edu/str/taxonomies/. 
 
[Calero 01] C. Calero, M. Piattini, M. Genero. A Case Study with Relational Database 
Metrics, ACS/IEEE International Conference on Computer Systems and Applications 
(AICCSA'01), 2001 
 
[Demeyer 99] S. Demeyer, S. Ducasse. Metrics, Do They Really Help?, LMO, 1999 
 
[Demeyer 01] S. Demeyer, T. Mens, M. Wermelinger. Towards a Software Evolution 
Benchmark, International workshop on principles of software evolution, 2001 
 
[French 99] V.A. French. Establishing Software Metric Thresholds. International 
Workshop on Software Measurement (IWSM’99), 1999 
 
[Ducasse 99] S. Ducasse, M. Rieger, S. Demeyer. A Language Independent Approach 
for Detecting Duplicated Code, icsm, p. 109,  15th IEEE International Conference on 
Software Maintenance (ICSM'99),  1999. 
 
[Gray 96] A.R. Gray, S.G. MacDonell. A comparison of techniques for developing 
predictive models of software metrics, Elsevier, 1996 
 
[Schneidewind 92] N.F. Scneidewind. Methodology For Validating Software Metrics, 
IEEE Transactions on Software Engineering, 1992 
 
[Samoladas 04] Samoladas, I., Stamelos, I., Angelis, L., and Oikonomou, Open 
source software development should strive for even greater code maintainability, 
Communications of the ACM 47, 10 (Oct. 2004), 83-87. 
 
[Kettelerij 05] R. Kettelerij, B.G. Prijn. Detection Of Duplicated Code In Large 
Software Systems, Graduation report University of Arnhem and Nijmegen, 2005 
 

This work describes the development of a language independent duplicated 
code detection tool. A major design goal of this tool is performance. This tool 
is used in this study to calculate code duplication. 
 

[Meijles 05] J. Meijles. Analysis of designers’ work, Master thesis University of 
Amsterdam, 2005 
 



 35 

[Fenton 99] N.E. Fenton, M. Neil. Software Metrics: successes, failures and new 
directions, Elsevier, 1999 
 
[Fenton 97] N.E. Fenton, S.L. Pfleeger. Software Metrics Second Edition, PWS 
Publishing Company, 1997 
 
[Menzies 02] T. Menzies, J.S. Fenton, Justin S. Di Stefano, M. Chapman, K. McGill. 
Metrics That Matter, Proceedings of the 27th Annual NASA Goddard/IEEE Software 
Engineering Workshop, 2002 
 
[Sim 03] Susan Elliott Sim, Steve Easterbrook, Richard C. Holt, "Using Benchmarking 
to Advance Research: A Challenge to Software Engineering," icse, p. 74, 25th 
International Conference on Software Engineering (ICSE'03), 2003. 
  
[Cui 06] Qingguang Cui, Matthew O. Ward, Elke A. Rundensteiner, Jing Yang, 
"Measuring Data Abstraction Quality in Multiresolution Visualization", To appear in 
IEEE Symposium on Information Visualization 2006 (InfoVis’06), 2006 
http://davis.wpi.edu/~xmdv/docs/infovis06_measure.pdf 
 
[SIG] Software Improvement Group, http://www.sig.nl 
 
[Checkstyle] Checkstyle, http://checkstyle.sourceforge.net 
 
[SWEBOK 04] Guide to the Software Engineering Body of Knowledge, 
http://www.swebok.org 
 
[Spring] Spring Framework, http://www.springframework.org 
 
[Hibernate] Hibernate, http://www.hibernate.org 
 
[Jakarta] The Apache Software Foundation, Jakarta Commons, 
http://jakarta.apache.org/commons 


