
Relational Approach to Program Slicing

Ivan Vankov

Master’s Thesis in Computer Science
Universiteit van Amsterdam

Faculty of Science
Supervisor: Prof. dr. Paul Klint

July 2005

Abstract

Program slicing is a well known technique for program analysis with a va-
riety of useful applications. This thesis investigates a new method for program
slicing based on relational representation of program facts and algorithms. A
core slicing algorithm is presented and it is shown that it can be applied to a
broad range of problems. A number of generalized routines are developed to
extract program facts from source code without being constrained by a par-
ticular programming language. The advantages of the proposed approach are
demonstrated by applying it to slicing Pico and Java programs.

1

Acknowledgements

I would like to thank Prof. dr. Paul Klint for introducing me to the subject
and guiding me throughout the whole project. He gave me a lot of freedom and
let me enjoy my graduation work from the start to the end. Jurgen Vinju from
the Interactive Software Development and Renovation Group at CWI assisted
me when I was stuck with various implementation obstacles.

Also I would like to express my gratitude to the administration of the Univer-
sity of Amsterdam and the Faculty of Science for opening the master program
in computer science to international students and supporting us in all possible
ways during these two unforgettable years.

Finally I would like to thank my collaborators at Madison Touche, who
tolerated me while I was engaged with my study.

2

Contents

1 Introduction 5
1.1 Program slicing . 5
1.2 The relational approach . 6
1.3 Problem statement . 7
1.4 Outline of this paper . 8

2 The slicing algorithm 9
2.1 Program analysis terminology . 9
2.2 Informal description . 10
2.3 Formal specification . 11
2.4 Extending the algorithm . 14
2.5 Variable scoping . 15
2.6 Interprocedural slicing . 15
2.7 From program slicing to fact extraction 17

3 Fact extraction 18
3.1 The challenge of fact extraction 18
3.2 Generalized fact extraction . 19
3.3 Implementation . 21
3.4 Evaluation . 24

4 A case study - Pico and Java slicing 26
4.1 Pico . 26
4.2 Java . 28

5 Summary 31
5.1 The relational approach in general 31
5.2 The prototype . 32
5.3 Future work . 32
5.4 Final conclusions . 33

A Implementation of the relational algorithm in RScript 36

B Fact extractor ASF+SDF speficiation modules 40

C Pico grammar and its mapping to the abstract syntax entities 42

D Java slicing example 45

3

List of Figures

1.1 Program slicing example . 6

2.1 Sample program and its PDG . 9
2.2 Reaching definitions . 10
2.3 Program slicing in action . 14
2.4 Sample procedural program . 16

3.1 Parse tree of a program . 19
3.2 Common procedural program entities 20
3.3 Implementation of the fact extractor 21
3.4 Program annotation . 22

4.1 Pico program slicing . 28
4.2 Java program slicing modifications summary 29

4

Chapter 1

Introduction

This thesis presents a new approach to program slicing based on relational rep-
resentation of program facts. Program slicing is a method to isolate parts of a
program which are responsible for certain behavior. It has various applications
in software understanding, constructing, measuring, verifying and refactoring
of programs. Research has shown that programmers identify slices when cod-
ing and debugging and it is a natural way of looking at program code. The
motivation of this graduation project was to propose a program slicing method
incorporating existing techniques, but featuring better versatility and applica-
bility.

1.1 Program slicing

The notion of program slicing was first introduced by Mark Weiser [1]. He
defined program slicing as reducing a program to a minimal form that produces a
desired subset of the behavior of the original program. A slice is an independent
executable program obtained by removing redundant statements with respect
of a given slicing criterion. A slicing criterion is defined by a statement and a
set of variables and it specifies the subset of the program which is responsible
for setting the values of the variables just before executing the statement. If we
identify statements by numbers and variables by name, a slicing criterion is a
pair 〈s, v〉, where i is the number of statement and v is the set of variables we
are interested in. Figure 1.1 illustrates slicing of a sample program1 for a given
slicing criterion.

Weiser’s definition of program slicing is a kind of static program analysis.
A static slice is constructed before the program is executed and it contains all
statements that may affect the values of the variables included in the slicing
criterion. Other authors (e.g. [2], [3]) suggested dynamic slicing where the slice
is sensitive to a particular program input. Weiser’s slicing is also considered
backward because it traces all program statements which may be executed prior
to a specified program point. In this thesis the term program slice will refer
to a static backward slice. We will use Weiser’s definition of a slicing criterion,

1All sample program in this paper are fragments of syntactically correct Java code, not
necessarily executable. Line numbers are used to identify program statements.

5

1.2 The relational approach

#1 int n = read();
#2 int fac = 1;
#3 int sum = 0;
#4 while(i <= n)

{
#5 fac = fac * i;
#6 sum = sum + 1;
#7 i = i + 1;

}
#8 write(fac);
#9 write(sum);

#1 int n = read();
#2 int fac = 1;

#4 while(i <= n)
{

#5 fac = fac * i;

#7 i = i + 1;
}

#8 write(fac);

(a) Original program (b) Slice on the value of fac at #8

Figure 1.1: Program slicing example

but it will consist of a statement identifier and a single variable - slices will be
constructed with respect to one variable per statement only.

Weiser proposed a simple algorithm for program slicing based on data flow
equations. He considered slicing of single block programs only and did not
mention how to handle more sophisticated program constructs. Ottenstein and
Ottenstein pointed out that program dependence graphs can be efficiently used
for slicing [4]; once a program is represented by its program dependence graph,
the slicing problem is simply a vertex reachability problem, which is easily
computable. Horwiz, Reps and Binkley extended the idea by introducing system
dependence graphs capable of interprocedural procedural slicing where the slice
can cross the procedure boundaries [10]. Other studies, such as [5] applied it for
object oriented slicing. Slicing programs based on non-imperative programming
paradigms, such as functional and logic programming, is also possible (see for
instance [6]). In this graduation work we will focus on slicing pure procedural
programs only, but some ideas will be presented how to extend the same method
for object oriented slicing.

1.2 The relational approach

The majority of studies dealing with program slicing are based on some kind
of graph representation of the program dependencies. The benefit of this ap-
proach is that control and data flow information is combined in a single data
structure making analysis easier to perform. The disadvantage is that program
and system dependencies graphs are too coarse and not suitable for some more
sophisticated tasks. Initially designed for compiler optimization they reduce the
various program dependencies to dependencies between statements only. Infor-
mation about relations between certain variables is discarded. The procedural
and object oriented structure of programs can not be expressed completely as
well, for example it is not possible to distinguish whether a statement is depen-
dent to a procedure definition or to a procedure call - they produce the same
kind of dependence. Some of these problems may be solved by annotating the
graphs with additional information and introducing special case treatment in
the slicing algorithm, however thus we will lose the main advantage of the ap-
proach - its simplicity. This is why researchers started looking for alternative

6

1.3 Problem statement

representations, which are able to accommodate a broader range of program
analysis problems. The relational representation of data is widely used in many
computer science fields, such as databases and knowledge engineering, so it was
a natural step to apply it for program facts representation.

The basic idea of the relational approach is to represent program facts as
relations and the slicing algorithm as a series of relational operations. It was
first proposed by Jackson [8], though he did not provide any evidence that the
method was successfully applied. Later Paul Klint elaborated it in [9] by giving
a precise list of algorithmic steps and showed its correctness by examples made
by hand. Their work set a solid base for solving more sophisticated slicing
problems and building an automatic program slicer.

Representing program facts as relations has several advantages. Firstly it
is very flexible because we can add as much information as we want and not
overwhelm the structure of the representation. Also we may introduce new
relations and thus implement new types of dependences without breaking the
existing model. Secondly, the relational model let us formulate questions about
the program as relational queries which is convenient and efficient. There is a
variety of programming languages specialized for querying relational data and
we may use one of them. Lastly, it is relatively easier to extract program facts
in the form of relations rather than constructing graphs - relation instances
may be generated consequently by several passes through the source code and
there is no need to maintain complex data structures. This property makes the
fact extraction suitable for implementation by means of a high level abstraction
tool which can save a lot of work. The disadvantage of the relational view of
programs is that it is less intuitive than graphs and it is virtually not possible
to comprehend program dependences just by a looking at the raw data. The
relational slicing algorithm is also not as straightforward as the simple graphs
traversals used in the alternative program dependence graph approach. One
of the challenges of my thesis is to show that the drawbacks of the relational
approach are compensated by its virtues.

1.3 Problem statement

The goal of this graduation work is to extend the existing relational algorithm
to cover more complex slicing problems and to develop a prototype capable
of automatic program slicing. This includes the selection of several program
constructs typical of procedural programming languages and adapting them to
the relation approach. It is not possible to cover all aspects of program slicing in
a single project, but there must be a clear proposal how to extend the method.
The developed techniques have to be verified that they are correct and complete.
A formal proof can hardly be derived for a subject as program slicing, where
most publications tend to use informal descriptions and there is no firm criteria
about correctness and completeness. Instead various case studies that show the
relevance of the proposed method have to be investigated. For this purpose we
need a prototypical program slicer that implements the given ideas and that
can be applied to a variety of sample programs. An important consideration
is that the proposed relational approach has to be language independent as
long as we deal with imperative kinds of programming. That is why neither the
theoretical slicing techniques, nor the prototype should be bound to a particular

7

1.4 Outline of this paper

programming language. The final solution must be as generic as possible and
has to highlight a clear path for its further development and application.

1.4 Outline of this paper

The rest of the paper describes in detail the ideas sketched above.
In Chapter 2 a basic relational algorithm is described and it is justified

that it can be applied to a variety of program entities without modification. A
crucial moment is the observation that with this approach the complexity of
slicing is transferred to the fact extraction phase.

Chapter 3 introduces the generic, language independent fact extractor and
elaborates on its applicability to various imperative programming languages.

Chapter 4 presents two case studies of applications of the relational ap-
proach - slicing Pico and Java programs. It gives concrete examples what
changes in the syntax definition of a language are needed to prepare it for
slicing.

In the last Chapter 5 the project is summarized and several conclusions are
drawn. It also makes proposals for further development of the presented ideas.

8

Chapter 2

The slicing algorithm

2.1 Program analysis terminology

Program slicing is a kind of program analysis and some conceptual program
analysis terms have to be introduced in order to describe formally the relational
slicing algorithm. Their definition can be found in any book about compilers
construction, such as [7]. The terms refer either to the control or the data flow
graph of a program. It is possible to combine both graphs in a single Program
Dependence Graph (PDG) [4]. Consider the program and its PDG in Figure 2.1.
The solid and dot lines show the control and data flow, respectively.

#1 bool x = false;
#2 int t = 0;
#3 for (int i = 1; i < 10; i++)

{
#4 if (x)
#5 t = t * i;

else
#6 t = t + i;
#7 x = true;

}

(a) (b)

Figure 2.1: Sample program and its PDG

A predecessor of a program statement s is any other statement that may be
executed just before s. Using the program graph notation the predecessors of a
node are all nodes with control flow connections directed to it. The predecessor
of statement #4 in Figure 2.1 is #3, while #7 has two predecessors - #5 and
#6.

Statement d dominates statement n if by any execution of the program d is

9

2.2 Informal description

executed before n. The graph meaning of domination is that every path from
the root of the control flow graph to n goes through d. In Figure 2.1 statement
#4 dominates #5, #6 and #7, but #5 does not dominate #7. .

A variable definition is a pair 〈s, v〉 and means that a value is assigned to
the variable v at statement s. The variable definitions of the sample program
are:

〈1, x〉, 〈2, t〉, 〈3, i〉, 〈5, t〉, 〈6, t〉, 〈7, x〉
A variable use is a pair 〈s, v〉 and means that the value of variable v is used

at statement s. The variable uses in our example are:

〈3, i〉, 〈4, x〉, 〈5, t〉, 〈5, i〉, 〈6, t〉, 〈6, i〉

A variable definition is killed at statement s if the value of the variable is
changed there.

The reaching definitions of a statement s are all variable definitions that may
be still valid (not killed) just before the execution of s. The reaching definitions
of the program in Figure 2.1 are shown in Figure 2.2.

Figure 2.2: Reaching definitions

2.2 Informal description

The idea of backward program slicing is intuitively recognized by every pro-
grammer. Generally it consists of tracing back the program fragments that
contribute to the values of the variables specified in the slicing criterion. If
we disregard conditional operators this means that we have to find all reaching
definitions of the slicing criterion that set some of its variables. Then for each
of the variables used in these definition statements we run the slicing process

10

2.3 Formal specification

again recursively. Finally all dependences are summed to form the desired pro-
gram slice. Conditional operator statements do not directly set any values but
they may change the order of execution and thus influence the final value of the
variables in question. That is why the dependeces to variables that determine
the outcome of a specific test of a conditional statement have to be included in
the slice if the possible execution paths may affect the slicing criterion variables
in a different way. For example in Figure 2.1 the value of x at statement #4
contributes indirectly to the value of t at statement #7 because it determines
whether t will be multiplied or incremented by i at statements #5 and #6,
respectively.

2.3 Formal specification

The exact algorithm presented in this chapter was first proposed in [8] and is
described in detail in [9]. It is able to produce backward slices given a criterion
〈s, v〉, where s is a statement identifier and v is a variable. The final slice
contains all variable uses that are important with regard to the slicing criterion.
This algorithm is applicable to single block procedural programs only and, for
example, there are no instructions how to do interprocedural or object oriented
slicing.

A relational approach to program slicing implies that the program facts have
to be represented as instances of relations. The following relations are required
for program slicing:

• The control flow relation (Pr) relates a statement to each of its predeces-
sors:

Pr : {〈si, sj〉 | si ∈ S, sj ∈ Psi},
where S is a set of all the statements used throughout the program and
Psi are the predecessors of statement si.

• The variable definition relation (Df):

Df : {〈si, v〉 | si ∈ S, v ∈ V dsi},

where V dsi is the set of variables defined at statement si.

• The variable uses relation (Us):

Us : {〈si, v〉 | si ∈ S, v ∈ V usi},

where V usi is the set of variables used at statement si.

• The unary relation Cr defines which statements are control flow state-
ments:

Cr : {〈si〉 | si ∈ Cs},
where Cs contains all control flow statements in the program.

Two additional variables are introduced to tie together control and data flow:

• The variable θ represents the outcome of a specific test of a conditional
statement. The conditional statement defines θ and all statements that
are control dependent on this conditional statement will use θ.

11

2.3 Formal specification

• The variable ε represents the potential execution dependence of a state-
ment on some conditional statement. The dependent statement defines
ε and an explicit (control) dependence is made between ε and the corre-
sponding θ.

Once program dependencies are available in the form of relations the computa-
tion of a program slice can proceed in 10 steps:

1. Compute the R1 relation that defines which variable definitions are undone
(killed) at each statement:

R1 = {〈si, 〈sj , v〉〉 | 〈si, v〉 ∈ Df, 〈sj , v〉 ∈ Df, si 6= sj}

2. Compute the reaching definitions relation R2 by the following system of
equations:

R
′
2 = {〈s, 〈s, v〉〉 | 〈s, v〉 ∈ Df}

R
′′
2 = {〈si, d〉 | 〈sj , si〉 ∈ Pr, 〈sj , d〉 ∈ R

′′′
2 }

R
′′′
2 = {〈s, d〉 | 〈s, d〉 : R

′
2 ∪ (R

′′
2 \R1)}

R2 = R
′′
2

This is a fixed point computation which recursively (because of the mutual
referring of R

′′
2 and R

′′′
2) accumulates all definitions which occur at (R

′
2)

or prior to a given statement (R
′′
2), but which has not been killed yet

(assured by R
′′′
2). The concise definition of the reaching definitions concept

distinctly demonstrates the elegance of the relational approach.

3. Compute the relation R3 that relates variable uses to their corresponding
definitions:

R3 = {〈〈si, v〉, 〈sj , v〉〉 | 〈si, v〉 ∈ Us, 〈si, 〈sj , v〉〉 ∈ R2}

4. Compute the relation R4 that connects a variable definition to the variable
uses in the same statement:

R4 ={〈〈si, v1〉, 〈si, v2〉〉 | 〈si, v1〉 ∈ Df, 〈si, v2〉 ∈ Us}
∪
{〈〈si, v〉, 〈si, ε〉 | 〈si, v〉 ∈ Df}
∪
{〈〈si, θ〉, 〈si, v〉 | si ∈ Cr, 〈si, v〉 ∈ Us}

Apart from the trivial case when a variable is assigned a value determined
by the value of another variable this relation also sets the dependence of
the variable being defined to ε, which stands for the potential execution of
the whole statement. Also, according to the definition of θ its value is de-
fined by the outcome of a specific test and all variables used in statements
whose execution is control dependent on the test are using it. Hence in
this case we have a dependence between a variable definition (θ) and the
variable uses in the same statement (the control statement) and we have
to add it to the relation R4.

12

2.3 Formal specification

5. Compute the dominators relation R5:

R
′
5 = {si | 〈si, sj〉 ∈ Pr} ∪ {sj | 〈si, sj〉 ∈ Pr}

R
′′
5 = {si | 〈si, sj〉 ∈ Pr} \ {sj | 〈si, sj〉 ∈ Pr}

R
′′′
5 = {〈si, sj〉 | 〈si, sj〉 ∈ Pr, si ∈ R

′′
5}

R5 = {〈si, sj〉 | si ∈ R
′
5, sj ∈ R

′
5 \ (R

′′
5 ∪ si),

{〈st, sj〉 ∈ R
′′′
5 ◦ {〈sk, sl〉 ∈ Pr, sk〈〉si, sl〈〉si}+}},

where + is the transitive closure operation. Here R
′
5 is the carrier of the

predecessors relation - it contains all statements identifiers appearing in
any of the relation components. R

′′
5 consists of only those statements that

have no predecessors and R
′′′
5 contains the Pr instances that are formed

by the statements in R
′′
5 . Finally R5 generates the dominator tuples using

the idea that a statement si dominates all other statements except for
the ones that can be reached from the root of the program (R

′′
5) without

passing through si.

6. Compute the control dominator relation R6 containing only control-flow
dominators:

R6 = {〈si, sj〉 | 〈si, sj〉 ∈ R5, si ∈ Cr}

7. Compute the relation R7 that links all ε variables to their corresponding
θs:

R7 = {〈〈si, ε〉, 〈sj, θ〉〉 | 〈sj , si〉 ∈ R6}
This relation expresses the control dependences of program statements to
their control-flow dominators. The idea is that control dependent state-
ments are executed (potential execution is indicated by ε) only if the
condition of the corresponding control-flow statement, represented by θ,
is evaluated to a certain value.

8. Compute the relation R8 that combine use and definition dependencies
with control dependencies:

R8 = R3 ∪R7

At this step R8 contains all possible dependences between variable uses
and variables definitions, both the trivial cases and the dependences formed
by control flow operators.

9. Compute R9 that contains dependencies of uses on uses:

R9 = (R8 ◦R4)?,

where ◦ stands for the composition operation and ? is the reflexive closure
operation. The composition links the variable uses dependent on certain
variable definitions with the variable uses, that the definitions, on their
part, are dependent on. The reflexive closure is needed to trace chain
dependences. As a result we have all dependences between variable uses
throughout the program and the computation of a program slice is now
trivial.

13

2.4 Extending the algorithm

10. The backward slice for a given slicing criterion (i, v) is the projection of
R9 for the slicing criterion:

Sl(si, v1) = {〈sj , v2〉 | 〈〈si, v1〉, 〈sj , v2〉〉 ∈ R9}

The execution of the algorithm is illustrated in Figure 2.3. The resulting
backward slice contains variables uses, among which is the execution variable
ε, which means that execution of the corresponding statement may contribute
to the final value of the variable specified in the slicing criterion. Complete
implementation of the slicing algorithm in RScript is included in Appendix
A. It is very close to the formal description given in this chapter due to the
relational orientation of RScript.

#1 n = 2;
#2 if (c > 10)
#3 t = n;

else
#4 n = t;
#5 z = n;

Us Df Pr Cr
〈2, c〉 〈1, n〉 〈1, 2〉 〈2〉
〈3, n〉 〈3, t〉 〈2, 3〉
〈4, t〉 〈4, n〉 〈2, 4〉
〈5, n〉 〈5, z〉 〈3, 5〉

〈4, 5〉

#1 n = 2;
#2 if (c > 10)

else
#4 n = t;
#5 z = n;

(a) Sample Program (b) Relational representation (c) Slice

R1 = {〈1, 〈4, n〉〉, 〈4, 〈1, n〉〉}
R2 = {〈4, 〈1, n〉〉, 〈3, 〈1, n〉〉, 〈2, 〈1, n〉〉, 〈5, 〈4, n〉〉, 〈5, 〈3, t〉〉, 〈5, 〈1, n〉〉}
R3 = {〈〈3, n〉, 〈1, n〉〉, 〈〈5, n〉, 〈1, n〉〉, 〈〈5, n〉, 〈4, n〉〉}
R4 = {〈〈3, t〉, 〈3, n〉〉, 〈〈4, n〉, 〈4, t〉〉, 〈〈5, z〉, 〈5, n〉〉, 〈〈1, n〉, 〈1, ε〉〉,

〈〈3, t〉, 〈3, ε〉〉, 〈〈4, n〉, 〈4, ε〉〉, 〈〈5, z〉, 〈5, ε〉〉, 〈〈2, θ〉, 〈2, c〉〉}
R5 = {〈2, 3〉, 〈2, 4〉, 〈2, 5〉, 〈1, 2〉, 〈1, 3〉, 〈1, 4〉, 〈1, 5〉}
R6 = {〈2, 3〉, 〈2, 4〉, 〈2, 5〉}
R7 = {〈〈5, ε〉, 〈2, θ〉〉, 〈〈4, ε〉, 〈2, θ〉〉, 〈〈3, ε〉, 〈2, θ〉〉}
R8 = {〈〈3, n〉, 〈1, n〉〉, 〈〈5, n〉, 〈1, n〉〉, 〈〈5, n〉, 〈4, n〉〉, 〈〈5, ε〉, 〈2, θ〉〉,

〈〈4, ε〉, 〈2, θ〉〉, 〈〈3, ε〉, 〈2, θ〉〉}
R9 = {〈〈3, ε〉, 〈2, c〉〉, 〈〈4, ε〉, 〈2, c〉〉, 〈〈5, ε〉, 〈2, c〉〉, 〈〈5, n〉, 〈4, ε〉〉,

〈〈5, n〉, 〈4, t〉〉, 〈〈5, n〉, 〈1, ε〉〉, 〈〈3, n〉, 〈1, ε〉〉, 〈〈5, n〉, 〈2, c〉〉}
Sl(5, z) = {〈4, ε〉, 〈4, t〉, 〈2, c〉, 〈1, ε〉}

(c) Algorithmic steps

Figure 2.3: Program slicing in action

2.4 Extending the algorithm

The relational algorithm described above is designed to slice single block pro-
grams only. It is not aware of complex program entities such as procedures and
classes. For example it is not possible to apply it directly for interprocedural
slicing. To enable such functionality and in order to keep the relational view

14

2.5 Variable scoping

of the problem we can add more information in the form of new relations con-
taining data about procedural calls, arguments and formal parameters, return
statements, etc. Then we will have to extend the algorithm with more rela-
tional operations that handle the new relations. The same will have to be done
to enable object oriented slicing (we need new relations for class inheritance and
polymorphism). Finally we will end up with such a complicated algorithm that
it will be extremely hard to verify it and make amendments to it. For the sake
of better understanding and efficient implementation one would like to keep the
process of slicing as simple and straightforward as possible.

The key question is whether we actually need to change the given ’core’
slicing algorithm to handle complex program entities. We know that all pro-
cedural programming languages eventually are mapped to a low-level language
that computers can understand. Such a machine language is fairly simple and
is generally also not aware of program entities others than variable definitions,
variable uses and control flow operators. In fact any procedural program can be
transformed to consist of a single block - this is what compilers do. The same
holds for object oriented programs. Hence it must be possible first to make
a syntax transformation of a program to eliminate complex entities and then
extract the relations we already know. Thus the interprocedural and object
oriented slicing information will be presented without introducing new relations
and the same slicing algorithm can be used.

Once we have decided that we are going to use the basic relations for slicing
any kind of procedural program we have to figure out how to represent the in-
formation needed for slicing various program entities in terms of these relations.
For example we can investigate the cases of variable scoping and interprocedural
slicing and see what additional relation instances are required.

2.5 Variable scoping

Variable scoping is a programming concept implemented in almost every imper-
ative language. It lets the programmers define a region of a program where a
variable is only valid and makes it possible to use the same identifiers for vari-
ables ocurring in different scopes. The slicing algorithm is not able to recognize
variable scopes as there is no relation describing them. The solution to this
problem is to include scoping information in the variable identification process.
It is sufficient to change the definition of a variable by adding the scope identifier.
Thus different variables with the same lexical identifier will but distinguished
by their scope identifiers. Nothing is changed in the relational slicing algorithm
itself, thought in some particular implementations, such as the RScript one, the
definition of the variable type needs to be modified.

2.6 Interprocedural slicing

There are actually two kinds of interprocedural slicing - slicing descending into
procedure (function) calls and slicing ascending from function definitions into
the contexts they are called [10]. Consider the following program fragment:

It is a obvious that a backward slicing process started from statement #5
for variable b must descend into the function calls at #4 and the resulting slice

15

2.6 Interprocedural slicing

int f(int x)
{
#1 return x;
}
void g()
{
#2 int a = 10;
#3 int b = a + 1;
#4 b = f(a);
#5 return b;
}

int f(int #6 x)
{
#1 return x;
}
void g()
{
#2 int a = 10;
#3 int b = a + 1;
#4 b = f(a);
#5 return b;
}

(a) (b)

Figure 2.4: Sample procedural program

must include statement #1 which contributes to the final value of b. On the
other hand a backward slicing starting from statement #1 must ascend into the
calling context of the function and the slice must include statement #2.

A function call makes two contributions to the control flow relation of a
program. First the end point statements of the function are added to the list
of predecessors of the statements calling it. Second the predecessors of the
statements calling a function have to be added to the predecessors of its first
statement. For example the predecessor relation for the program fragment listed
in Figure 2.4a must be:

Pr = {〈2, 3〉, 〈3, 1〉, 〈1, 4〉, 〈4, 5〉}
Function calls also have impact on the data flow of a program. The return

value of a function is actually a new variable which has to be included in the
data flow relations. We will refer to this variable as ’function variable’ and we
will treat it the same way as other variables with the exception that it will not
be included in the final slices. The function variable can be identified by the
name of the function and its arity, for example f/1, g/0. etc. For every function
call within a statement we assume that the statement is using the corresponding
function variable. The return statements of a function are defining its function
variable. In particular for the program listed in Figure 2.4a we have to add the
tuples 〈4, f/1〉 and 〈1, f/1〉 to the Us and Df relation respectively.

Another data flow relation issue is the mapping of arguments to formal
parameters. It can be regarded as a set of Df instances, one for each parameter.
However parameters first appear in function declaration part so that they do not
have associated statements. This problem can be overcome by adding ’virtual’
statements for each parameter. These statements are used in the slicing process
but may be excluded from the final slices. The modified version of the program
fragment of Figure 2.4a is shown in Figure 2.4b. With these modifications the
data flow relations have the following instances:

Df = {〈6, x〉, 〈1, f/1〉, 〈2, a〉, 〈3, b〉, 〈4, b〉, 〈5, g/1〉}
Us = {〈6, a〉, 〈1, x〉, 〈3, a〉, 〈4, a〉, 〈4, f/1〉, 〈5, b〉}

The Pr relation also has to be modified to include the virtual statements:

Pr = {〈2, 3〉, 〈3, 6〉, 〈6, 1〉, 〈1, 4〉, 〈4, 5〉}

16

2.7 From program slicing to fact extraction

The Cr relation will have no instances for this program:

Cr = {}

Now we can run the slicing algorithm to see how it works for interprocedu-
ral slicing. The parameter ’virtual’ statements and the function variables are
excluded from the slices:

Sl(1, x) = {〈2, ε〉, 〈4, a〉, 〈4, ε〉}
sl(5, b) = {〈4, ε〉, 〈4, a〉, 〈2, ε〉, 〈1, ε〉, 〈1, x〉}

2.7 From program slicing to fact extraction

We saw in the previous chapter that we can use the relational program slicing
algorithm for interprocedural slicing just by extracting the relevant instances of
the basic relations from the program. We can make the assumption that the
same approach can be applied to object oriented slicing, type-aware slicing, etc.
In order to slice object oriented programs we need to add more instances to the
Pr relation connecting each method call with the possible methods that could
have been called, taking into account inheritance and polymorphism issues.
Also we need to resolve class members references as in the case of OO slicing
the member variables can be access in a variety of ways. However this will not
require introducing any new relations. Type aware slicing requires to involve
the type of functions and variables in their identification and again does not
lead to extra relations, hence there is no need to change the core algorithm.

In turns out the core algorithm can slice any procedural program and the
only difficulty is to supply the desired relations. At this point of my graduation
work I realized its subject has shifted a bit from program slicing to fact extrac-
tion techniques. This is not accidentally - I deliberately tried to keep the slicing
algorithm universal and to encode all the language dependent complexities by
means of a few basic relations. I believe this approach makes program slicing
more understandable, easier to implement and most importantly it leads to a
general program slicing method which can be easily applied to any procedural
programming language. However it also poses a new problem which has not
been addressed quite well in the existing literature and it is still a major chal-
lenge in the field of program analysis - automated source code facts extraction.
The difficulty is that all complications due to variable scoping, function identifi-
cation, variations of control flow statements, now have to be worked out at this
preliminary phase. Fact extraction turns into a crucial part of the relational
program slicing approach.

17

Chapter 3

Fact extraction

3.1 The challenge of fact extraction

Extracting the desired relations from the source code of a program is not a trivial
task. We first need to parse the program, build a kind of efficient representation
and then operate on it. It can be a tedious and time consuming job to implement
a fact extractor using conventional tools as flex/bison and C/C++. That is
why I decided to use the ASF+SDF formalism, which is particularly suitable
for code transformation tasks [12]. SDF lets you describe the grammar of the
language in a flexible manner and automatically builds its parse tree. By ASF
you can define term rewriting functions that operate on the parse tree, including
traversal functions, which are very useful for fact extraction. I also used the
MetaEnvironment which provides a convenient interface to the ASF+SDF back
end [13].

According to Sloane and Holdsworth the process of fact extraction can be
generalized to three basic steps [11]. First the program is parsed and the parse
tree (Figure 3.1) is constructed. Then the tree is annotated with additional
information and finally the needed information is generated by traversing the
parse tree. This approach inspired me to develop a universal and versatile tech-
nique for fact extraction. I did not want to constrain my research by selecting
a certain programming language to experiment with. The relational algorithm
turned out to be language independent, so it was a logical consequence to let the
fact extractor have the same property. Another source of motivation was that
at the early stage of this project I tried to develop ad hoc solutions to extract
the desired relations from Pico1 and Java programs. Pico is a pretty simple lan-
guage and with a few tricks and changes to its grammar I managed to complete
the task. However when I had to deal with the much more complicated Java
language I came across serious problems. After a few weeks of digging into Java
1.5 grammar and probing various techniques I got completely lost in numerous
implementation details and realized that I need a more general method for fact
extraction.

1Pico is a toy language that I used in my experiments, it is further described in Section 4.1

18

3.2 Generalized fact extraction

Figure 3.1: Parse tree of a program

3.2 Generalized fact extraction

The main idea of generalized, language-independent fact extraction is that it
works with abstract language constructs, rather than concrete syntax. This is
possible because if we take a look at any of the widespread procedural languages
(in this project only such languages are considered) we will find out that they
all share the same kind of program constructs - functions, variable declarations,
a limited number of control flow operators, such as an if then else statement, for
loop, a pre and post conditional loop. Although these common constructs have
syntax specific to the given language they have the same semantics, hence they
have to generate the same kind of data and control flow relations. That is why
a fact extractor is able to abstract from concrete syntax and operate just on
program entities that are common to all procedural languages. For example in
order to generate the control flow relation Pr for a while do construct we need
only to know which part of it is the condition, where does the executable block
start and where it ends. Of course the fact extractor also has to be aware of the
general notion of a program statement so that it can distinguish the separate
statements in the execution block and compute the order in which they may be
executed. But it doesn’t need to ’know’ how exactly a loop with precondition
is defined in a specific language. The same idea can be applied for extracting
variable definitions. The fact extractor has to be aware only of the notions
of a variable definition and a variable and then it can descend into variable
definitions and search for any variable occurrences - if it finds any it has to add
them to the Df relation.

However if the fact extractor doesn’t take into account the syntax of a spe-
cific language, how is it going to operate on its abstract syntax tree? The
answer is - by means of traversal functions. The ASF formalism allows to define
traversal functions that can both accumulate information by traversing the tree
and transform it. A traversal function does not need to be defined to handle
all the syntax of a language, but it works just on certain ’points of interest’.

19

3.2 Generalized fact extraction

More details how to use traversal functions for source code transformation are
given in [14]. What we benefit from implementing the fact extractor by means
of traversal functions is that we can keep it abstract, operating just on the ab-
stract common procedural program entities. Then, when we decide to apply
it to a specific language, we just need to point out which part of its grammar
corresponds to which of the abstract entities.

The major difficulty of the generalized fact extraction approach is the selec-
tion of program entities which are typical for procedural languages. Naturally
not all of them have all the common entities, for example some scripting lan-
guages such as PHP lack the concept of variable declaration, instead the memory
for a variable is allocated the first time it is used. So we should take the union
of all procedural programming notions and then for a specific language use just
a relevant subset of it. Figure 3.2 shows a table of the program entities I have
selected for the fact extraction prototype. The list is by no means complete and
more entities have to be added, such as class denotations, a switch statement,
types and others.

Program General notion of a program
Begin Scope Beginning of a variable scope, it could be an open-

ing curly bracket, the beginning of a loop, function
definition, etc

End Scope End of variable scope
Variable The notion of a variable, including arrays, local

variables, class member fields, etc
Variable Id Variable identifier, usually terminal symbol in the

input language grammar
Variable Use Any context where a variable occurrence is con-

sidered to be a variable use
Variable Definition Any context where the first variable occurrence is

considered to be a variable definition
Function Id Function identifier
Function Definition Definition of a function, also a class method
Function Parameter Definition of a parameter used in a function defi-

nition
Function Call Function call, either a single statement or used

within expression
Function Argument Argument used in a function call
Statement General notion of a statement, could be any pro-

gram statement
Return Statement Statement that sets the return value of a function
If Statement If then else conditional statement
If Block The first block of a If then else statement that is

executed if the condition is satisfied
Else Block The second block of a If then else statement that

is executed if the condition is not satisfied
Do While Statement A loop with a pre condition
Do While Block The inner executable statements of a do while loop
For Statement For loop
For Block The inner executable statements of a for loop
While Do Statement A loop with a post-condition
While Do Block The inner executable statements of a while do loop

Figure 3.2: Common procedural program entities

20

3.3 Implementation

3.3 Implementation

The implementation of the generalized fact extractor consists of two parts -
a set of abstract algorithms and mappings of a target language grammar to
the generalized program entities. It is illustrated in Figure 3.3. There is one
mapping module for each language that we want to process - Pico and Java in
this particular case. The fact extraction algorithm works just with the abstract
syntax entities and the mapping serves to associate concrete syntax elements
to them. All the complexity is concentrated in the abstract algorithms, which
do not have to be changed for a specific language, instead we have to provide a
new mapping for it.

Figure 3.3: Implementation of the fact extractor

The fact extraction process is based on the parse-annotate-extract paradigm
proposed by Sloane and Holdsworth in [11]. The advantage of this approach
is that there is no need to maintain sophisticated data structures during the
extraction process which could be overwhelming when using the ASF+SDF
formalism. All the information specific to various language constructs is kept
in the form of annotations attached to the parse tree nodes.

The first step of the fact extraction is to parse the input language. We assume
the grammar of the language being processed is encoded in SDF. The choice
of SDF is important as it allows to make modifications to a grammar without
breaking its lookahead constraints and thus introducing ambiguous grammar
sections2. SDF also provides a way to manually resolve ambiguities, when it is
not possible to be done automatically.

Once the input program is parsed we have its parse tree representation. The
next step is to annotate the tree. Annotation is needed primary to resolve
ambiguities and cross references in the program, such as variable scopes and
function calls. The following annotations are currently implemented:

• A variable occurrence is annotated with an unique identifier - a pair of
its lexical identifier and the numeric id of the scope in which it is defined.

2Some parser generators require all ambiguities to be resolved with a certain number of
looks (lookaheads) in the incoming token string. SDF doesn’t have such a limitation.

21

3.3 Implementation

Variables are also annotated with the line numbers of the statements they
occur in.

• A statement is annotated with its line number - an integer value. Function
parameters also get a statement identifier, because they are treated as
’hidden’ assignment statements, where parameters are given the values of
arguments.

• A function definition is annotated with a unique function symbol - a pair
of the function lexical identifier and its arity.

• A function parameter is annotated with the list of possible arguments.
For example if there is a function:

void f(int a, int b)

and a set of calls to it:

f(10, x), f(y, x), f(x + y, z)

then a will be annotated with {y, x} and b with {x, z}.

An example of all annotations is shown in Figure 3.4

Figure 3.4: Program annotation

The final step of the fact extraction algorithm is to traverse the annotated
syntax tree and generate the desired facts, or relations in our case. It consists
of four modules:

• Extracting Us. This module generates relation instances for all variable
uses. Functions calls are also added - they use the return value of the
function, denoted by the function symbol. The variable uses in the list of
possible arguments attached to each function parameters are also included.
For example:

22

3.3 Implementation

void f(int #1 a)

{

#2 return a + 1;

}

#3 z = x;

#4 y = f(x + 1) * x;

generates the following relation:

Us = {〈1, x〉, 〈2, a〉, 〈3, x〉, 〈4, x〉, 〈4, f/1〉}

• Extracting Df . Except for the ordinary variable definitions (assign-
ments) Df relation are also generated by return statements (they de-
fine the return value of the corresponding function) and function param-
eters(they are define the value of the parameter variable). For example:

void f(int #1 a)

{

#2 return a + 1;

}

#3 z = x;

#4 y = f(x + 1) * x;

generates:

Df = {〈1, a〉, 〈2, f/1〉, 〈3, z〉, 〈4, y〉}

• Extracting Pr. The Pr relation is generated by a set of predefined con-
trol flow statements. All statements that are not explicitly described as
control flow are considered to be simple single line ones, such as assign-
ments or assertions. The control flow statements are treated according to
their specific behavior. The general strategy to handle a control flow state-
ment is first to ’catch’ the whole statement and then to process the block
which is being executed conditionally or in a loop. For each composite
statement there are a number of statements that are possible ’termina-
tions’ of this statement, for example in the following case:

#1 if (x < 10)

{

#2 z = 10;

}

else

#3 z = 20;

}

the terminations are #1 and #3, because these are the last statements
that can be executed within this composite statement. The termination

23

3.4 Evaluation

of a single line statement is the line number of the statement itself. The
set of termination statements are passed as a parameter to the top-down
traversal function that generates the predecessor relations. Such a travers-
ing must visit the statement in their correct execution order, except for the
control flow statements, which are processed in a special way. As already
explained the parameters of a function are treated as hidden assignment
statements, so they also have to be added to the desired set of relations
as predecessors of any function call. Also function calls are preceded by
the return statements of the corresponding function:

void int f(int #1 a, int #2 b)

{

#3 if (a)

#4 return b;

else

#5 return a;

}

#6# z = 10;

#7# x = z * f(10, z);

generates:

Pr = {〈1, 2〉, 〈2, 3〉, 〈3, 4〉, 〈3, 5〉, 〈6, 1〉, 〈4, 7〉, 〈5, 7〉}

• Extracting Cr. The relation is populated with the identifiers of all con-
trol flow statements.

More details about the implementation of the generalized fact extraction
algorithms are given in appendix B.

3.4 Evaluation

The biggest advantage of the fact extraction method proposed in this chapter is
its generality. It is not constrained to a particular programming language and it
is easy to understand and modify it due to its high level of abstraction. However
the tendency to abstract from details often leads to troubles when dealing with
real world problems. Some potential obstacles are:

Completeness. We have assumed that all procedural programming lan-
guages are based on the same concepts. However it may turn out that there is
variety of languages that do not fit in this model. For example Perl and Python
are thought to be procedural languages but they have some features typical of
functional programming. We can extend the model to cover them but there will
always be other examples that fall out of it. So we can not claim the fact ex-
tractor and, as a result, the slicing algorithm are totally language independent
and universal.

Extensibility. Ideally implementing a new type of language construct that
the fact extractor can handle will require just adding a new module. In reality

24

3.4 Evaluation

it is not so simple because the various fact extractor modules are tightly con-
nected to each other. For example the generation of the variable uses relation
is dependent on the annotation of control flow elements such as return state-
ments. That is why it can take significant amount of time and efforts to extend
the algorithm.

Correctness. The relevance of the generated relations is crucial for correct
program slicing. We assume that similar procedural language constructs have
similar semantics, hence they will produce the same relations. This is not nec-
essarily true. For example in some languages the variables declared in the body
of a loop are still available after its execution and in other languages - they are
not.

Some of these problems can be overcome by tweaking the input language
grammar so it fits better into the model. Changing grammars is not fatal as
long as it doesn’t change their properties from the point of view of program
slicing. It is not necessary to keep modified grammars equivalent to the their
original versions as only syntactically correct programs are going to be sliced.
In the next chapter we will see how we can make a language ’sliceable’ just by
making slight modifications to its grammar.

25

Chapter 4

A case study - Pico and
Java slicing

In order to show the advantages of the presented relational program slicing
approach we need to apply it to at least two languages. Ideally a case study
will include more languages that feature a variety of programming constructs,
but such a sophisticated experiment will require unacceptable amount of time
and effort. That is why I choose for my test a pair of languages that have little
in common and must be representative enough for the family of procedural
programming languages.

4.1 Pico

Pico is a toy language which was developed as a part of the ASF+SDF distri-
bution. Its syntax and semantics are very simple - it has just a few standard
control flow operators, three data types and the notion of variables. This func-
tionality is not sufficient for advanced slicing experiments and I had to extend it
by adding procedures and variable scopes. There is no wide accepted standard
for Pico so I was free to modify its syntax and semantics. Initially I developed
an ad hoc fact extractor for Pico but later I replaced it with the generalized
solution and a mapping of its grammar to the abstract syntax elements. I didn’t
need to do significant restructuring of Pico grammar to enable slicing it - this
is partly because it is very simple, but also because when I was extending it
I had in mind that I am going to slice this language later. However there are
a few examples that illustrate how I had to adapt Pico to the generalized fact
extractor and thereafter apply the relation slicing algorithm to it:

• Variable Scopes. Original Pico lacks variables scopes - variables can
be defined only in the beginning of the program and they are available
everywhere. Later I extended its grammar to support ’blocks’ that start
with a variable definition section and limit the variable scope. Blocks can
be nested within the program, they may also form the body of loops or
procedures. Below is a fragment from the Pico grammar that describes
their syntax:

...

26

4.1 Pico

"begin" -> BEGIN

"end" -> END

BEGIN DECLS SERIES END -> BLOCK

STATEMENT? -> SERIES

STATEMENT ";" SERIES -> SERIES

IFSTATEMENT -> STATEMENT

WHILEDOSTATEMENT -> STATEMENT

BLOCK -> STATEMENT

"function" FUNC-ID "(" FPARAMS ")" BLOCK -> FUNCTION

...

It is easy to distinguish the begin scope and end scope defined in Figure 3.2
- BEGIN end END, respectively. These two syntax elements denote the
beginning and end of a variable scope. However there is a problem with the
function declaration - function parameters must be available throughout
the function body and if we just map BEGIN and END the parameters
will fall out of the function body variable scope. So in the case of a function
declaration the scope must begin with the beginning of the declaration
itself. The following modification to the syntax of a Pico function solves
the problem:

"function" -> FSTART

FSTART -> BEGIN

BEGIN FUNC-ID "(" FPARAMS ")" "begin" DECLS SERIES END -> FUNCTION {prefer}

• Variable Definitions. We need to identify the syntax element that rep-
resents a context where a variable can be defined. Usually this is the left
hand side of an assignment statement. Pico defines it as follows:

VARIABLE ":=" EXP -> STATEMENT

It is obvious that we can not map VARIABLE to variable definition - not
any occurrence of a variable changes its value. We have to modify the
assignment statement:

LHS ":=" EXP -> STATEMENT

VARIABLE -> LHS

Now we can map LHS to variable definition.

Appendix C contains the complete grammar of Pico and directions how it is
mapped to the abstract syntax entities described in Figure 3.2. A major obser-
vation is that the modifications described above do not change Pico semantics
in any way. Only syntax is changed and it is done in a way that all programs
recognizable by the original grammar are recognized by the modified version as
well. A side effect is that the new grammar may also accept some illegal Pico
code but it is a not problem since we are slicing syntactically correct programs
only. A practical program slicer will have a syntax checker which is ran before
slicing begins.

The experiments with Pico showed that the program slice works in practice.
I managed to apply it to Pico without changing the core relational and fact

27

4.2 Java

extraction algorithms. I had to modify not more than 10 lines of code in the
Pico SDF grammar to adapt it for slicing - an incredibly lower amount of work
compared to developing a standalone Pico slicer. Figure 4.1 shows the result of
applying the relation approach to program slicing to a sample Pico program.

function f(i : natural)
begin

declare;
#3 return i + 1;

end
begin

declare
i : natural,
k : natural;

#5 k := 0;
#6 i := 0;
#7 while(i) do

begin
declare;

#9 k := f(i);
#10 i := i + 1;

end;
#11 write(k);
#12 write(i);

end
(a) Sample program

...
#3 return i + 1;
...
#6 i := 0;
#7 while(i) do
...
#10 i := i + 1;
...

(b) Sl(9, i)
...
#3 return i + 1;
...
#5 k := 0;
#6 i := 0;
#7 while(i) do
...
#9 k := f(i);
#10 i := i + 1;
...

(c) Sl(11, k)

Sl(3, i) = {〈10, i〉, 〈10, ε〉, 〈9, i〉, 〈9, ε〉, 〈6, ε〉, 〈7, i〉}
Sl(5, k) = {}
Sl(6, i) = {}
Sl(7, i) = {〈6, ε〉, 〈10, ε〉, 〈10, i〉}
Sl(9, i) = {〈6, ε〉, 〈10, ε〉, 〈10, i〉, 〈7, i〉, 〈3, ε〉, 〈3, i〉}
Sl(10, i) = {〈10, ε〉, 〈6, ε〉, 〈7, i〉}
Sl(11, k) = {〈5, ε〉, 〈9, ε〉, 〈9, i〉, 〈9, i〉, 〈3, i〉, 〈3, ε〉, 〈10, i〉, 〈10, ε〉, 〈6, ε〉, 〈7, i〉}
Sl(12, i) = {〈6, ε〉, 〈10, ε〉, 〈10, i〉, 〈7, i〉}

(d) All slices

Figure 4.1: Pico program slicing

4.2 Java

The case study of Pico program slicing showed that the method is correct, but
it is not convincing enough that it can be used in real world applications. That
is why I decided to do a second experiment with a widely used programming
language. The choice of Java was reasonable as it has may of the features of
modern imperative programming and at the same time it has a well defined
standard and its syntax and semantics are relatively simple compared to C++

28

4.2 Java

and Perl, for example. Also I was able to use an existing Java 1.5 SDF grammar
[15], defined in a clean and understandable way.

Java is a much more sophisticated programming language than Pico and
naturally its grammar requires more modifications to be adapted to the gener-
alized fact extractor. Figure 4.2 shows some quantitative information about the
amount of work I had to do to apply the relation program slicing to Java. It is
observable that the number of modifications is small compared to the total size
of the grammar and the changes are concentrated in specific parts of the gram-
mar. We may confidently assume that implementing a complete Java program
slicer will require an amount of effort consistent with the presented results.

Number of lines
Original grammar 1863
Modified grammar 1890
Percentage differnece relative to the original version 1.45%
Number of non-terminal symbols
Original grammar 165
Modified grammar 179
Percentage differnece relative to the original version 8.48%
Number of rules
Original grammar 525
Modified grammar 541
Percentage differnece relative to the original version 3.05%
Number of common rules in the original
and the modified version 489
Relative to the original version 93.14%

Figure 4.2: Java program slicing modifications summary

The modifications to the Java grammar are similar to the Pico ones. For
example I had to modify the block statement to have a distinct beginning and
ending used to denote variable scopes:

"{" BlockStm* "}" -> Block

was changed to:

"{" -> BlockStart

"}" -> BlockEnd

BlockStart BlockStm* BlockEnd -> Block

Many of the modifications were just renaming certain parts of the grammar
so that they can be mapped to the abstract syntax entities. For example the
syntax of method invocations should have an explicit argument symbol:

MethodId "(" {Expr ","}* ")" -> MethodInvocation

was changed to

MethodId "(" {Argument ","}* ")" -> MethodInvocation

Expr -> Argument

29

4.2 Java

There were also other kinds of changes but none of them required more than
a few lines of additional SDF code. Once the fact extractor was adapted to
Java I developed a variety of test cases to see how the relational program slicing
algorithm works with this language. All experiments confirmed the correctness
of the method. Appendix D contains the source code and results of one of the
experiments.

30

Chapter 5

Summary

The goal of my graduation work was to thoroughly study the basic relational
approach proposed in [8] and [9] and give ideas how it could be extended to
cover more aspects of program slicing. I also had to develop a prototype which
shows that the proposed methods are viable and can be applied in practice. In
the course of my work several unexpected obstacles appeared, some of them
due to the intrinsic properties of the subject and some due to implementation
problems. I tried to find answers to the most challenging questions and to
suggest solutions for the rest. In this chapter there is a brief summary of the
achievements of this project, its deficiencies and failures and finally there is a
judgment whether how successful it was.

5.1 The relational approach in general

The relational approach to program slicing turned to have several positive prop-
erties. In my opinion the most valuable result is the observation that the core
slicing algorithm is powerful enough to solve complex slicing problems. That
let us keep it relatively simple and concise, it is easy to understand and analyze
and, due to its generality, it is not constrained by a particular programming
language. The advantages of such a solution are clear - it allows building an
efficient and versatile program slicer. However we have to take into account that
the method is designed for slicing imperative programming languages only. In
fact not even any kind of imperative programming slicing is supported, but just
slicing in the sense of Weiser’s definition. I believe this limitation is acceptable
as the general idea of slicing is too broad and any reasonable project in this area
has to put some constraints on its applicability.

The second important result is that it turned out that most of the complexity
of the relational approach to program slicing is concentrated in the fact extrac-
tion phase. In order to keep the fact extractor consistent with the generality
of the core algorithms I had to find a way to abstract from any concrete pro-
gramming language details. This ambitious goal was significantly simplified by
the decision to focus on the imperative programming paradigm only. The basic
idea of generalized fact extraction was that all imperative languages share a set
of common programming concepts and, in general, have similar syntax and se-
mantics. This assumption is intuitively supported by the observation that once

31

5.2 The prototype

programmers have mastered some of the popular imperative languages, they can
quickly learn others just by associating the new language constructs to the ones
they already know. Defining the fact extraction algorithm by means of abstract
program entities makes it very easy to map it to any existing programming
language that fits in the model. Given the indisputable language independence
of the core slicing algorithm, this flexibility of the fact extractor leads to one
of the goals of the whole program slicer - to be as general and universal as
possible. Two case studies were investigated to demonstrate empirically the de-
sired properties and they succeeded. However a deeper research of the existing
imperative programming languages shows that not all of their constructs have
corresponding counterparts in the suggested abstract syntax. We can extend
the fact extractor by supporting more constructs but this requires changing the
abstract algorithms and questions its generality. Hence we have to admit that
the fact extraction, and as a result the relational approach to program slicing,
is universal as long as it is applied to a limited range of programming languages
sharing certain common features.

5.2 The prototype

An integral part of this graduation work is the development of an application
that is capable of demonstrating the ideas discussed in the theoretical part. The
prototype is of utmost importance as it is not possible to derive a formal proof
of the correctness of the proposed algorithms and the only way to show their
correctness is by example. It is also important because some of the challenges
of the relational approach remained hidden or underestimated until it had to be
put in practice.

The prototype consists of two parts - an implementation of the core slicing
algorithm and a fact extractor. Both of them fully implement the ideas described
in this paper. Numerous experiments showed that the implementations are
correct. There is just one major flaw in the design of the fact extractor prototype
- it is not straightforward to add support of new program constructs which are
currently not implemented. The reason is that the abstract syntax entities are
not implemented in a modular fashion, but they are tightly connected to each
other. I did not manage to come out with a working solution to this problem
and it remained as a major item in the future developments list described in
the next section.

5.3 Future work

The subject of program slicing is quite vast and a single project is not able to
give answers to all the questions that may be raised. On the other hand the
relational approach attacks the problem from a new perspective and in most
cases it can not make use of the results already obtained in other studies. That
is why I had to limit the scope of my graduation work to some of the most
important aspects of program slicing and just indicate what else has to be done.

A complete program slicing solution should be able to process constructs
used by modern imperative programming languages. One of the major tasks
is to add support for object oriented programming. The definition of object

32

5.4 Final conclusions

oriented slices has already been given in various resources, such as [5]. In chapter
2 we argued that there will be no need to modify the core relational algorithm
to enable object oriented slicing, nor to introduce new types of relations. Only
the fact extractor needs to be modified by extending the list of abstract program
entities and updating the corresponding algorithms.

Another important amendment is the support of type aware slicing. Cur-
rently the fact extraction algorithms neglects variable types which makes it
impossible to slice correctly programs making use of advanced programming
concept as function overloading 1. Such a modification will not require funda-
mental changes of the presented methods and can be easily accommodated by
including the type information in the process of variable identification. However
there are also programming concepts like variable aliases and pointers which can
hardly fit into the existing model. Their implementation will probably require
fundamental restructuring of the relational approach to program slicing and has
not been considered in this project.

Apart from extending the functionality the project can also be advanced by
enhancing the architecture of its implementation. One of the most significant
problems that needs to be solved is to loosen the connections between the fact
extraction modules and make it possible to modify each of them independently.
Thus the project can be easily facilitated to cover a broader range of existing
imperative programming languages.

One of the shortcomings of the relational approach to program slicing (and
to program analysis in general) is that the relational representation of data is
not intuitive and it is hard to comprehend and analyze the intermediate results
of the slicing process, such as program facts and the relations generated at
various step of the algorithm. It is therefore necessary to develop a number of
tools for visualization of relational data in a more understandable format. A
visualization tool is also needed to associate the final slice with the source code
where it has been extracted from. These supplementary utilities are essential
if large programs are going to be sliced because in this case the complexity of
information presented in terms of raw relations will be overwhelming.

5.4 Final conclusions

I think this graduation project was successful because it managed to fulfill the
main goals that were set initially. The basic idea of the relational approach to
program slicing was extended and it was shown it is applicable to a broad range
of slicing problems. An efficient solution was developed for the fact extraction
challenge without significantly sacrificing the generality of the proposed method.
Finally two realistic case studies were conducted which clearly demonstrated
how the theoretical ideas work in practice. As a result the relational approach
proved to be viable solution to the problem slicing dilemma. I believe the project
has accumulated enough knowledge and experience to set the foundation of a
further, more sophisticated study of the subject.

1Function overloading is a programming concept that allows programmers to define two or
more functions that differ only by the types of their arguments.

33

Bibliography

[1] M. Weiser. Program slicing. In Proceeding of the Fifth International Con-
ference on Software Engineering, pages 439-449, May 1981.

[2] H. Agrawal and J. Horgan. Dynamic program slicing. Technical Report
SERC-TR-56-P, Purdue University, 1989.

[3] R. Gupta, M.L. Soffa, and J. Horward. Hybrid Slicing: Integrating dynamic
information with static analysis. ACM Transactions of Software Engineer-
ing Methodology, pages 370-397, 1997.

[4] K. Ottenstein and L. Ottenstein. The program dependence graph in
software development environments. In Proceedings of the ACM SIG-
SOFT/SIGPLAN Software Engineering Symposium on Practical Software
Development Environments, pages 177-184, May 1984.

[5] D. Liang and M.J. Harrold. Slicing Object Using System Dependence
Graph. Proceedings of the International Conference on Software Mainte-
nance, pages 358-367, November 1998.

[6] G. Szilagy, T. Gyimothy, and J. Maluszynski. Slicing of Constraint Logic
Programs. Proceedings of the Fourth International Workshop on Auto-
mated Debugging, August 2000.

[7] A.V. Aho, R. Sethi, and Jeffrey D. Ullman. Compilers: Principles, Tech-
niques, and Tools. Addison-Wesley, Reading, MA, 1986.

[8] D. Jackson and E.J. Rollins. A New Model of Program Dependences for Re-
verse Engineering. Proceedings of the Second ACM SIGSOFT Symposium
on the Foundations of Software Engineer, pages 2-10, 1994.

[9] P. Klint. A Tutorial Introduction to RScript. Centrum voor Wiskunde en
Informatica, draft 2005.

[10] S. Horwiz, Th. Reps, and D. Binkley. Interprocedural slicing using depen-
dence graphs. ACM Transactions on Programming Languages and Systems
12, 1, pages 26-60, January 1990.

[11] A.M. Sloane, J. Holdsworth. Beyond Traditional Program Slicing. In Pro-
ceedings of the International Symposium on Software Testing and Analysis,
ACM Press. pages 180-186, January 1996.

34

BIBLIOGRAPHY

[12] M.G.J. van den Brand, J. Heering, P. Klint, and P. Olivier. Compiling
language definitions: the ASF+SDF compiler. ACM Transactions on Pro-
gramming Languages and Systems 24, 4, pages 334-368, April 2002

[13] M.G.J. van den Brand, A. van Deursen, J. Heering, H.A. de Jong, M.
de Jonge, T. Kuipers, P. Klint, L. Moonen, P. Olivier, J. Scheerder,
J. Vinju, E. Visser, and J. Visser. The ASF+SDF meta-environment:
a component-based language development environment. Computational
Complexity, pages 365-370, 2001.

[14] M.G.J. van den Brand, P. Klint, and J.J. Vinju. Term Rewriting with
Traversal Functions, ACM Transactions on Software Engineering Method-
ology 12, 2, pages 152-190, April 2003.

[15] Java-front 0.5, Stratego – Strategies for Program Transformation. Released
October 2004. http://www.program-transformation.org/Stratego/

JavaFrontRelease05

35

Appendix A

Implementation of the relational algorithm in RScript

type stm = int

type var = <str, str>

type def = <stm, var>

type use = <stm, var>

type slice_el = <stm, str>

type slice = bag[slice_el]

%%Computer unique elements of a bag, that is a - set

bag[&T] U(bag[&T] V) = {X | &T X : V}

%%Compute transitive closure

rel[&T, &T] closure(rel[&T, &T] set) = {<X, Y> |

<&T X, &T Y> : set*, X != Y}

%%Compute statement predecessors set

bag[stm] predecessor(rel[stm, stm] P, stm S) = P[-, S]

%%Compute statement successors set

bag[stm] successor(rel[stm, stm] P, stm S) = P[S, -]

rel[stm, def] KILL = {}

%%Compute the variable definitions that are reachable by

%%each statement and may affect its execution

rel[stm, def] reaching-definitions(rel[stm, var] DEFS,

rel[stm, stm] PRED) = IN

where

bag[stm] STATEMENT = carrier(PRED)

rel[stm, def] DEF = {<S, <S, V>> | <stm S, var V> : DEFS}

equations

initial

rel[stm, def] IN init {}

rel[stm, def] OUT init DEF

satisfy

IN = {<S, D> |

int S : STATEMENT,

stm P : predecessor(PRED, S),

def D : OUT[P]}

OUT = {<S, D> |

36

Implementation of the relational algorithm in RScript

int S : STATEMENT,

def D : DEF[S] union (IN[S] \ KILL[S])}

end equations

end where

%%Compute all pairs of a statement dominating another one

rel[stm, stm] dominators(rel[stm, stm] PRED) = DOMINATES

where

bag[stm] STATEMENTS = U(carrier(PRED))

bag[stm] ROOT = U(domain(PRED)) \ U(range(PRED))

rel[stm, stm] DOMINATES = {<S, S1> |

stm S : STATEMENTS,

stm S1 : STATEMENTS \ U(ROOT union {S}) \

range(reachX(ROOT, {S}, PRED))}

end where

%%Backward slicing, the slicing criterion is

%%(statement, variable)

slice BackwardSlice(

bag[stm] CTRL,

rel[stm, stm] PRED,

rel[stm, var] USES,

rel[stm, var] DEFS

stm Stat,

var Var

) = OUTPUT

where

%%Step 1, Compute R1

KILL = {<S1, <S2, V>> | <stm S1, var V> : DEFS,

<stm S2, V> : DEFS, S1 != S2}

%%Step 2, Compute R2

rel[stm, def] REACH = reaching-definitions(DEFS, PRED)

%%Step 3, Compute R3

rel[use, def] use-def = {<<S1, V>, < S2, V>> |

<stm S1, var V> : USES, <stm S2, V> : REACH[S1]}

%%Step 4, Compute R4

rel[def, use] def-use-per-stm =

{<<S, V1>, <S, V2>> | <stm S, var V1> : DEFS,

<S, var V2> : USES}

union

{<<S, V>, <S, <"EXEC", "EXEC">>> |

<stm S, var V> : DEFS}

union

{<<S, <"TEST", "TEST">>, <S, V>> |

stm S : CTRL,

<S, var V> : domainR(USES, {S})

}

%%Step 5, Compute R5

rel[stm, stm] dom = dominators(PRED)

%%Step 6, Compute R6

37

Implementation of the relational algorithm in RScript

rel[stm, stm] CONTROL-DOMINATOR = domainR(dominators(PRED),

CTRL)

%%Step 7, Compute R7

rel[def, use] control-dependence = { <<S2, <"EXEC", "EXEC">>,

<S1, <"TEST", "TEST">>> | <stm S1, stm S2> :

CONTROL-DOMINATOR}

%%Step 8, Compute R8

rel[use, def] use-control-def = use-def union

control-dependence

%%Step 9, Compute R9

rel[use, use] USE-USE =

closure(use-control-def o def-use-per-stm)

bag[stm] stms = U(carrier(PRED))

%%Final Step, Compute Sl(s, v)

slice OUTPUT = {<S, VSTR> | <Stat, Var> : USES,

use V : USE-USE[<Stat, Var>],

stm S : stms, S == first(V),

str VSTR <- second(second(V))}

end where

%%Compute backward slice starting from any variable in

%%a given statement

slice BackwardSliceStm(

bag[stm] CTRL,

rel[stm, stm] PRED,

rel[stm, var] USES,

rel[stm, var] DEFS,

stm Stat

) = OUTPUT

where

slice OUTPUT = { <S, VSTR> | <Stat, var V> : USES,

<stm S, str VSTR> :

BackwardSlice(CTRL, PRED, USES, DEFS, Stat, V)}

end where

%%Computer all backward slices in a program

bag[<stm, slice>] BackwardSliceAll(

bag[stm] CTRL,

rel[stm, stm] PRED,

rel[stm, var] USES,

rel[stm, var] DEFS

) = OUTPUT

where

bag[<stm, slice>] OUTPUT = {<S, Slice> |

stm S : U(carrier(PRED)), slice Slice <-

BackwardSliceStm(CTRL, PRED, USES, DEFS, S)}

end where

%%Statement predecessors

38

Implementation of the relational algorithm in RScript

rel[stm, stm] PREDS

%%Variable defitions

rel[stm, var] DEFS

%%Variable uses

rel[stm, var] USES

%%List of control statments

bag[stm] CTRLS

%%test

int Stat = 8

slice SLICE = BackwardSliceStm(CTRLS, PREDS, USES,

DEFS, Stat)

%%Get all slices

bag[<stm, slice>] SLICES = BackwardSliceAll(CTRLS, PREDS, USES,

DEFS)

39

Appendix B

Fact extractor ASF+SDF speficiation modules

Imported ASD+SDF graph

Standard modules which are distributed with MetaEnvironment have been ex-
cluded from the graph.

Generalized fact extraction modules

Module Description
VariableStack.sdf/asf Implements a variable stack used to resolve

naming conflicts when annotating variables
Annotate.sdf/asf Implements the annotations if statements,

variables and functions
ExtractDefs.sdf/asf Extracts variable definitions
ExtractUses.sdf/asf Extracts variable uses
ExtractPreds.sdf/asf Extracts predecessor relations
ExtractCtrls.sdf/asf Extract a list of control flow statements
FactsRStore.sdf/asf Auxiliary module that is used to store extracted

relations as RScript data.

40

Fact extractor ASF+SDF speficiation modules

Language specific modules

Module Description
Pico-Syntax.sdf Pico syntax
Java-15.sdf Java syntax
ExtractPicoFacts.sdf Mapping of Pico syntax to the abstract syntax

entities
ExtractJavaFacts.sdf Mapping of Java syntax to the abstract syntax

entities

41

Appendix C

Pico grammar and its mapping to the abstract syntax entities

Pico grammar

module languages/pico/syntax/Pico-Syntax

imports languages/pico/syntax/Pico-Identifiers

imports languages/pico/syntax/Pico-Types

imports basic/Integers

imports basic/Strings

hiddens

context-free start-symbols PROGRAM

exports

sorts PROGRAM DECLS ID-TYPE STATEMENT EXP BEGIN END VARIABLE

BLOCK LHS FUNCTION FPARAMS FPARAM FCALL FARGS FARG FUNC-ID

FSTART RETURN SERIES IFSTM IFBLOCK ELSEBLOCK FORSTATEMENT

FORBLOCK DOWHILESTATEMENT DOWHILEBLOCK WHILEDOSTATEMENT

WHILEDOBLOCK BREAK

PICO-ID STMDEL

lexical syntax

[a-z][a-z0-9]* -> PICO-ID

";" -> STMDEL

context-free syntax

"begin" -> BEGIN

"end" -> END

{FUNCTION ";"}* BLOCK -> PROGRAM

BEGIN DECLS SERIES END -> BLOCK

STATEMENT? -> SERIES

STATEMENT STMDEL SERIES -> SERIES

"declare" {ID-TYPE "," }*";" -> DECLS

VARIABLE ":" TYPE -> ID-TYPE

LHS ":=" EXP -> STATEMENT

42

Pico grammar and its mapping to the abstract syntax entities

VARIABLE -> LHS

"if" EXP "then" IFBLOCK ELSEBLOCK? -> IFSTM

IFSTM -> STATEMENT

BLOCK -> IFBLOCK

"else" BLOCK -> ELSEBLOCK

"for" PICO-ID ":=" EXP "to" EXP "do" FORBLOCK -> FORSTATEMENT

BLOCK -> FORBLOCK

FORSTATEMENT -> STATEMENT

"do" DOWHILEBLOCK "while" EXP -> DOWHILESTATEMENT

DOWHILESTATEMENT -> STATEMENT

BLOCK -> DOWHILEBLOCK

"while" EXP "do" WHILEDOBLOCK -> WHILEDOSTATEMENT

WHILEDOSTATEMENT -> STATEMENT

BLOCK -> WHILEDOBLOCK

BLOCK -> STATEMENT

FCALL -> STATEMENT

RETURN -> STATEMENT

BREAK -> STATEMENT

"return" EXP? -> RETURN

"break" NatCon? -> BREAK

"function" FUNC-ID "(" FPARAMS ")" "begin" -> FSTART

FSTART -> BEGIN

BEGIN DECLS SERIES END -> FUNCTION {prefer}

PICO-ID -> FUNC-ID

{FPARAM ","}* -> FPARAMS

ID-TYPE -> FPARAM

FUNC-ID "(" FARGS ")" -> FCALL

{FARG ","}* -> FARGS

EXP -> FARG

"" PICO-ID -> VARIABLE

FCALL -> EXP

VARIABLE -> EXP

NatCon -> EXP

StrCon -> EXP

EXP "+" EXP -> EXP {left}

EXP "-" EXP -> EXP {left}

EXP "||" EXP -> EXP {left}

"(" EXP ")" -> EXP {bracket}

context-free priorities

EXP "||" EXP -> EXP >

EXP "-" EXP -> EXP >

EXP "+" EXP -> EXP

43

Pico grammar and its mapping to the abstract syntax entities

Mapping of Pico grammar to the abstract syntax

Abstract Syntax Pico Syntax
Program PROGRAM
Begin Scope BEGIN
End Scope END
Variable VARIABLE
Variable Id PICO-ID
Variable Use EXP
Variable Definition LHS
Function Id FUNC-ID
Function Definition FUNCTION
Function Parameter FPARAM
Function Call FCALL
Function Argument FARG
Statement STATEMENT
Return Statement RETURN
If Statement IFSTM
If Block IFBLOCK
Else Block ELSEBLOCK
Do While Statement DOWHILESTATEMENT
Do While Block DOWHILEBLOCK
For Statement FORSTATEMENT
For Block FORBLOCK
While Do Statement WHILEDOSTATEMENT
While Do Block WHILEDOBLOCK

44

Appendix D

Java slicing example

Java source code

class BubbleSort

{

static private boolean compare(int x, int y)//#3, #4

{

return x > y;#5

}

static public void main(int[] a, int n)//#7, #8

{

int i;

int j;

int t;

i = 0;#12

while(i < n)//#13

{

j = i;#15

while (j < n)//#16

{

if (compare(a[i], a[j]))//#18

{

t = a[j];//#20

a[j] = a[i];//#21

a[i] = t;//#22

}

j = j + 1;//#23

}

System.out.println(a[i]);//#24

i = i + 1;//#25

}

}

45

Java slicing example

}

Extracted relations

USES = {<25, <"6", "i"> >, <24, <"6", "i"> >, <24, <"6", "a"> >,

<24, <"System.out.println", "1">>,<23, <"6", "j"> >,

<22, <"6", "t"> >,<22, <"6", "i"> >,<21, <"6", "i"> >,

<21, <"6", "a"> >,<21, <"6", "j"> >,<20, <"6", "j"> >,

<20, <"6", "a"> >,<18, <"6", "j"> >, <18, <"6", "a"> >,

<18, <"6", "i"> >, <18, <"compare", "2">>, <16, <"6", "n"> >,

<16, <"6", "j"> >, <15, <"6", "i"> >,<13, <"6", "n"> >,

<13, <"6", "i"> >, <5, <"2", "y"> >, <5, <"2", "x"> >,

<4, <"6", "a"> >,<4, <"6", "j"> >,<3, <"6", "a"> >,

<3, <"6", "i"> >}

DEFS = {<25, <"6", "i"> >,<23, <"6", "j"> >,<22, <"6", "a"> >,

<21, <"6", "a"> >,<20, <"6", "t"> >,<15, <"6", "j"> >,

<12, <"6", "i"> >,<8, <"6", "n">>,<7, <"6", "a">>,

<5, <"compare", "2"> >,<4, <"2", "y">>,<3, <"2", "x">>}

PREDS = {<7, 8>,<3, 4>,<4, 5>,<8, 9>,<9, 10>,<10, 11>,

<11, 12>,<12, 13>,<13, 15>,<15, 16>,<16, 18>,<18, 20>,

<20, 21>,<21, 22>,<5, 22>,<5, 18>,<18, 3>,<22, 23>,

<18, 23>,<23, 16>,<16, 24>, <23, 24>,<24, 25>, <25, 13>,

<13, 13>, <13, 25>, <25, 25>}

CTRLS = {18,16,13}

Slices

Sl(25, i)

static public void main(int[] a, int n)//#7, #8

{

i = 0;#12

while(i < n)//#13

{

i = i + 1;//#25

}

}

Sl(5, x)

class BubbleSort

{

static private boolean compare(int x, int y)//#3, #4

{

return x > y;#5

46

Java slicing example

}

static public void main(int[] a, int n)//#7, #8

{

i = 0;#12

while(i < n)//#13

{

j = i;#15

while (j < n)//#16

{

if (compare(a[i], a[j]))//#18

{

t = a[j];//#20

a[i] = t;//#22

}

j = j + 1;//#23

}

i = i + 1;//#25

}

}

An interesting effect in the last example is that statement #21 is excluded
from the slice Sl(5, x). This is not correct as setting any value of the array
can contribute to the value of x at statement #5. The reason is that in the
current fact extraction prototype arrays are treated as single variables and the
assignment #22 ’kills’ #21.

47

