
Multimedia Framework

for Augmented Reality Applications

in Ubiquitous Environments

Andrej van der Zee

Waseda University

Department of Information and Computer Science

School of Science and Engineering

Supervisor: Prof. Tatsuo Nakajima

University of Amsterdam

Natural Science, Mathematics and Computer Science

Supervisor: Prof. Dr. Paul Klint

Spring, 2003

0

Andrej van der Zee
Oosterpark 79
1092AV Amsterdam
The Netherlands
Phone : +31-(0)6-54391387
Fax : +31-(0)20-6652273
E-mail : mavdzee@yahoo.co.uk

i

Acknowledgements

During my studies in Computer Science at the University of Amsterdam I became inter-
ested in the topic of ubiquitous computing. Basically, ubiquitous computing is a futuristic
vision whereby physical and cyber spaces are seamlessly integrated, providing support to
users in the performance of their daily tasks. The subject is still in its initial stages and
therefore mainly studied at various research departments. However, although ubiquitous
environments are far from commercially ready, the subject is gaining popularity around the
world, especially in Japan.

In recognition of this I decided to write my master’s thesis on the subject of ubiquitous
computing. But where could I find a supporting and stimulating environment for this? My
quest led me to Waseda University, Tokyo, a prestigious university well known in Japan and
Asia. At the Distributed Computing Laboratory (DCL) at Waseda University, founded in
1999, ubiquitous computing is the main topic of research. After lodging my application, I
was finally accepted as a member of the DCL from April 2002 until March 2003. The result
of the research is this thesis, which is used for my graduation paper for my master’s degree
in Computer Science at the University of Amsterdam.

There are two people to whom I owe great gratitude for the realization of this master’s
thesis. First, my supervisor at the University of Amsterdam, Prof. Dr. Paul Klint, for
his kindness and helpfulness in bringing me onto the right track. Second, my supervisor
at Waseda University, Prof. Tatsuo Nakajima, for having a gaikokujin join his research
department and his support in developing and exploring this field of study; also, I would like
to thank him for giving me the valuable experience of presenting the research work at the
International Conference on Real-Time Embedded Computing Systems and Applications in
Tainain, Taiwan, in February 2003.

In addition, I want to thank all my Japanese colleagues at the DCL for their inspiring
conversations, my family for their infinite support and, last but not least, my girlfriend Miho
Tanaka for surpassing my wildest expectations about my stay in Japan.

Finally, I owe a special word to the financial contributors that made it possible to live
and work in Japan for the last year: Waseda University Scholarship, Stichting Bekker la
Bastide Fonds, Schuurman Schimmel van Outeren Stichting, Fundatie van de Vrijvrouwe
van Renswoude te ’s-Gravenhage, and Stichting Dr. Hendrik Muller’s Vaderlandsch Fonds.

Andrej van der Zee
Amsterdam/Tokyo, Spring 2003

ii

Contents

Acknowledgements i

List of Figures vii

1 Introduction 1

1.1 Ubiquitous Computing . 1

1.2 Augmented Reality for Ubiquitous Environments 1

1.3 Problems of Overall Research Project . 3

1.4 Proposed Middleware . 3

1.5 Assignment and Research Question . 4

1.6 Structure . 4

2 Architecture 7

2.1 Multimedia Components . 7

2.1.1 CORBA Interface . 8

2.1.2 Multimedia Objects . 8

2.2 Data Streams . 9

2.2.1 Basic Streams . 10

2.2.2 Cyclic Streams . 10

2.2.3 Broadcasting Streams . 10

2.2.4 Distributed Streams . 10

2.2.5 Competing Streams . 11

2.3 Multimedia Data . 11

3 Design and Implementation 13

3.1 Framework Size . 13

3.2 Multimedia Components . 14

3.2.1 CORBA Interface . 14

3.2.2 Multimedia Objects . 17

iii

iv CONTENTS

3.2.3 Remote Method Invocation . 21

3.3 Object Interaction . 22

3.3.1 Communication . 22

3.3.2 Synchronization . 23

3.4 Data Streams . 23

3.4.1 Basic Streams . 24

3.4.2 Cyclic Streams . 24

3.4.3 Broadcasting Streams . 25

3.4.4 Distributed Streams . 25

3.4.5 Competing Streams . 27

3.5 Multimedia Data . 28

4 Usage 31

4.1 Object Implementation . 31

4.2 Component Composition . 32

4.3 Component Execution . 33

4.4 Stream Configuration . 33

5 Framework in Operation 35

5.1 Augmented Reality Class Library . 35

5.1.1 Extended Data Type . 35

5.1.2 Detectors . 35

5.1.3 Sensors . 36

5.1.4 Renderers . 36

5.2 Applications . 37

5.2.1 Follow-Me Application . 37

5.2.2 Mobile Augmented Reality . 38

6 Evaluation 39

6.1 Data Discard . 39

6.2 Stream Priority . 40

6.3 Distributed Augmented Reality . 40

7 Discussion 43

7.1 Strengths . 43

7.2 Weaknesses . 44

7.3 Future Work . 44

8 Summary 45

CONTENTS v

A CORBA Basics 47

A.1 Intoduction . 47

A.2 Naming Service . 48

A.3 Example . 48

B Object Execution 51

B.1 Sources . 51

B.2 Filters . 52

B.3 Sinks . 53

Index 55

Bibliography 57

vi CONTENTS

List of Figures

1.1 Augmented Reality. 2

1.2 Middleware architecture. 3

2.1 General component. 7

2.2 Example component. 7

2.3 A source, filter and sink object. 9

2.4 Basic stream. 10

2.5 Cyclic stream. 10

2.6 Broadcasting stream. 10

2.7 Distributed stream. 10

2.8 Competing streams. 11

3.1 UML class diagram for multimedia components. 14

3.2 UML class diagram for CORBA interface. 15

3.3 UML class diagram for multimedia objects. 18

3.4 Object execution for sources, filters and sinks. 20

3.5 UML sequence diagram for remote method invocation. 21

3.6 UML collaboration diagram for object interaction. 22

3.7 Stream tables for a basic stream. 24

3.8 Stream tables for a cyclic stream. 24

3.9 Stream tables for a broadcasting stream. 25

3.10 UML class diagram for TCP servers and clients. 27

3.11 Stream tables for a distributed stream. 27

3.12 UML class diagram for multimedia data. 29

5.1 Augmented reality class library. 36

5.2 Augmented reality application. 37

5.3 Mobile augmented reality application. 38

5.4 PDA view. 38

vii

viii LIST OF FIGURES

6.1 Data discard for increasing consuming time. 39

6.2 Competing streams. 40

6.3 Received items for varying priority stream b. 40

6.4 Three distributed streams. 41

6.5 Processing time for 2000 frames. 41

A.1 Subset of Object Request Broker. 47

Chapter 1

Introduction

Augmented reality is an important technology for the realization of ubiquitous environments.
The complexities inherent to such environments make it difficult to develop augmented reality
applications. The DCL research department proposes middleware to tackle these difficulties
in order to simplify the development of such applications.

1.1 Ubiquitous Computing

In the vision of ubiquitous or pervasive computing [15, 16, 27], physical spaces such as home
and office environments will be augmented with numerous integrated devices. User inter-
action with such environment becomes more seamless and assists users perform their daily
activities. Various sensors capture contextual information and make the environments smart.
For example, location sensors attached to objects or persons identify and record the location
of the object or person, and sound recorders analyze the mood of a person. Such dynamic
contextual information conveyed by sensors is used by ubiquitous software to give the user
the right service at the right time.

Further examples of applications for ubiquitous environments could be a mobile user interface
for controlling appliances in a home environment where the interface is shown on the nearest
display to the user. Future home environments have numerous interaction devices such as
desktop computers, televisions, PDAs, cellular phones and game controllers connected to
a network. The application logic combines dynamic contextual information (user location)
with static contextual information (device location and characteristics) from data repositories
to reflect context change: as the user moves through the physical space, the nearest input
and output device is selected. A simplified version of this example application is built by
the DCL research department (Section 5.2.1).

1.2 Augmented Reality for Ubiquitous Environments

One of the purposes of ubiquitous computing is the integration of the real world with cyber
space. One technique for achieving this objective is augmented reality [13, 14] whereby the
human-computer interaction becomes more seamless. Traditionally, users instruct computers
explicitly to perform a certain task. Using augmented reality, users will be able to interact

1

2 Chapter 1. Introduction

with the real world, which is augmented with computer-generated information to facilitate
performing their daily tasks. Augmented reality differs from virtual reality where users
interact with an environment that is computer-generated as a whole.

Augmented reality is realized by superimposing digital information on video images capturing
the real world. Objects in the real world contain visual markers that are recognized by
the augmented reality software and superimposed by computer synthetic information. The
resulting images are shown on a display (see Figure 1.1). The software uses contextual
information in order to provide a context-specific augmentation. This technique enables
the user to interact with the real world instead of with the computer directly. Several freely
available libraries for rapid development of augmented reality applications already exist such
as the ARToolkit[13] and TRIP[11].

Augmented Reality
Software Mr. van der Zee

Figure 1.1: Augmented Reality.

A practical example of this can be had by considering the following application of augmented
reality in a ubiquitous environment. A student stands in front of the bulletin board in the
entrance hall of his university. He takes his PDA equipped with a camera in his hand and
directs the camera to the bulletin board. The board has an attached visual marker that is
captured by the camera. The PDA streams the video images together with the student’s
ID to a nearby high-performance computer that runs the augmented reality application.
The application performs video analysis on the received images and recognizes the visual
marker. It accesses a database and finds today’s schedule for that student. The schedule is
superimposed on the video images and streamed back to the PDA for display. Consequently,
the student sees the bulletin board augmented with his schedule for that day on its display.
In this example, the contextual information used for the generation of ad-hoc information is
the current time and the student ID.

Consider another example of an augmented reality application in a ubiquitous environment.
A refrigerator with an attached visual marker is captured by a nearby camera. The camera
sends the images to a high-performance machine running the augmented reality application.
The application recognizes the marker and superimposes the images with textual information
about the number of bottles inside the refrigerator. When a user with a cellular phone moves
to a place nearby the refrigerator, the superimposed images are sent to the cellular phone
for display. Consequently, the user sees how many bottles are inside without opening the
refrigerator. In this example, the contextual information is user’s location and the number
of bottles inside the refrigerator. This example application is built by the DCL research
department (Section 5.2.2).

Other research departments that study augmented reality in ubiquitous environments use
wearable hardware to make the interaction with the augmented real world more attractive.
For example, the UbiCom[6] research program at Delft University of Technology uses a wear-
able terminal and a lightweight see-through display. In the display the user can see virtual
information that augments reality, projected over and properly integrated with the real world.
The wearable system contains a radio link that connects the user to the ubiquitous comput-
ing resources and the Internet. A camera captures the user’s environment. Camera images
are sent to the backbone and matched to a 3-D description of the real world to determine
the user’s position and to answer questions of the user that relate to the environment.

1.3. Problems of Overall Research Project 3

1.3 Problems of Overall Research Project

Complexities inherent in ubiquitous environments make building applications very difficult.
Ubiquitous environments contain numerous low- and high-performance appliances connected
to a network. Portable devices such as PDAs and cellular phones are not powerful enough
for expensive augmented reality computation, but they are important candidates for the
realization of ubiquitous environments using augmented reality features. Therefore, it is
necessary to decompose and distribute applications such that heavy computation is assigned
to high-performance machines.

Besides the distribution of applications, augmented reality software has to provide a context-
specific augmentation of the real world. Augmented reality in ubiquitous environments
facilitates the integration of physical and cyber space, aiming for the assistance of its users
in the performance of their daily activities. Therefore, context-specific augmentations are
necessary and applications have to become context-aware.

Distribution and context-awareness require considerable effort and skill from the developer.
Middleware is needed to tackle these complexities. Our research department proposes such
middleware. Its objective is to simplify and accelerate the development of augmented reality
applications in ubiquitous environments.

1.4 Proposed Middleware

The DCL research department proposes a middleware based on the Common Object Request
Broker Architecture (CORBA)[29, 30] depicted in Figure 1.2. The middleware consists of
three parts, which will be explained briefly: the multimedia framework , the communication
infrastructure and the application composer .

context
DB

camera
object

display
object

context
policy

m
ul

tim
ed

ia
fr

am
ew

or
tk

in
fr

as
tr

uc
tu

re
co

m
m

un
ic

at
io

n
co

m
po

se
r

ap
pl

ic
at

io
n

object
display
object

CORBA
interface

CORBA
interface

camera
object

CORBA
interface

CONFIGURATION MANAGER

camera

object
proxy proxy

object
proxy
object

display

registerregister register

manage managemanage

set

augreal
object

augreal

augreal

Figure 1.2: Middleware architecture.

The multimedia framework is used for building multimedia components. A component is
composed of multimedia objects and a CORBA interface. Clients configure streams between

4 Chapter 1. Introduction

multimedia objects through the CORBA interface. For example, in Figure 1.2, a data stream
is configured from a camera object to a display object through an augmented reality object.
Typically, in ubiquitous environments multiple components providing the same service run
on different computers at the same time. Consequently, the application has a choice between
different components providing identical services.

The CORBA-based communication infrastructure consists of a configuration manager that
manages proxy objects . A proxy object holds a reference to a multimedia object and can be
updated by the ’most appropriate’ reference according to current context. The configura-
tion manager has access to the context database that stores dynamic and static contextual
information such as what multimedia components are running, device characteristics and
user location. The manager uses this information to determine the most appropriate ob-
ject reference held by its registered proxy objects and updates the references when needed.
In addition, when a reference managed by a proxy object is updated all the affected data
streams are reconfigured by the communication infrastructure.

The application composer coordinates the entire application. Developers create proxy objects
specifying services rather than explicit object references and register the proxy objects with
the configuration manager. Developers configure data streams between multimedia objects
and specify policies to control automatic reconfiguration in response to context change. For
example, a developer might define a location policy as ”use service S nearest to object A” or
”use service S in host Y or Z” and a performance policy as ”use service S on ’light’ loaded
host” or ”use service S on any host”. Because the references managed by proxy objects are
automatically updated by the communication infrastructure according to context policy, the
application always uses the most appropriate object transparently.

1.5 Assignment and Research Question

The DCL research group is concerned with the realization of the middleware outlined in
the last section. The objective of the middleware is the simplification of the development of
augmented reality applications in ubiquitous environments. My task in the overall project
is the design and implementation of the multimedia framework.

This paper focuses mainly on my contribution and motivates design decisions and tradeoffs,
but also discusses how the framework fits into the overall picture. Moreover, this paper
attempts to answer in which extend this particular solution, with the emphasis on the mul-
timedia framework, realizes its objective.

1.6 Structure

This master’s thesis discusses the multimedia framework that is part of a middleware that
aims for fast and easy development of augmented reality applications in ubiquitous envi-
ronments. This introduction outlines the need for such a software infrastructure, describes
how the multimedia framework fits into the broader scheme of things and states the research
question this paper attempts to answer.

The middleware described in the introduction imposes certain requirements on the multi-
media framework. Additionally, the objective of the middleware, fast and easy development
of augmented reality ubiquitous applications, makes necessary a comprehensive and easy to
use multimedia framework. Chapter 2 describes the requirements and the architecture of the

1.6. Structure 5

framework. The actual design and implementation, and the decisions and tradeoffs involved,
are discussed in Chapter 3.

The multimedia framework is designed for fast and easy usage while maintaining flexibility
and extensibility. How the framework is used to build multimedia components and objects
is the topic of Chapter 4. Using the framework, the DCL research department developed
an augmented reality class library and two sample applications using the library. Both, the
library and the sample applications, are described in Chapter 5.

The middleware and the multimedia framework are evaluated by performing tests on custom
applications and analyzing the results. This evaluation is the subject of Chapter 6, while
the discussion is covered in Chapter 7 and the paper is concluded in Chapter 8.

6 Chapter 1. Introduction

Chapter 2

Architecture

Ubiquitous environments contain many kinds of devices connected in a network where low-
performance computers such as PDAs and cellular phones are too slow for augmented reality
processing. In order to run augmented reality applications on such low-performance devices
the applications must be decomposed and distributed in such a way that heavy computation
is assigned to more powerful computers.

To help the developer with the decomposition and distribution of augmented reality ap-
plications, a component-based multimedia framework was decided on. Developers build
applications by composing multimedia components and configuring data streams within and
between components.

This chapter reveals the characteristics of multimedia components and pictures how multi-
media data is streamed within or between components in more detail.

2.1 Multimedia Components

A multimedia component is composed of a CORBA interface1 and multimedia objects (Figure
2.1). Clients configure streams between multimedia objects by invoking the appropriate
operations in the CORBA interface. For example, a component might contain three objects:
a camera object for capturing images of the real world, an augmented reality object for
superimposing digital images at specific locations within a video frame, and a display object
for showing video images on the screen. Through the CORBA interface, a stream can be
configured as depicted in Figure 2.2.

objects
multimdia

CORBA interface

Figure 2.1: General component.

image
camera
object reality

object

display
object

CORBA interface

image’augmented

Figure 2.2: Example component.

1CORBA is explained briefly in Appendix A.

7

8 Chapter 2. Architecture

Components provide services to other components. Services are implemented by means
of multimedia objects. Components can utilize services provided by other components by
streaming multimedia data to the object implementing the service, possibly receiving the
manipulated data for further processing afterwards.

Multimedia components are self-describing entities and register themselves at the CORBA
Naming Service under a user-specified name. Clients can query the Naming Service for
available components and obtain CORBA object references to registered components from
the Naming Service.

2.1.1 CORBA Interface

A multimedia component can be remotely accessed through its CORBA interface. After
a CORBA component registers itself at the Naming Service, a client retrieves a CORBA
object reference to the component, in the remainder of this paper called CORBA compo-
nent reference for brevity, by specifying the component’s name. A client uses the CORBA
component reference in order to:

• query for the characteristics of the component as a whole, such as component’s name
and the multimedia objects it contains, or

• query for the characteristics of an individual multimedia object, such as object type
and stream information, or

• configure an individual multimedia object for a data stream, or

• create and connect specialized objects for configuring a distributed stream between
two objects contained by remote components, or

• change the state of an individual multimedia object contained by the component, such
as resolution or frame size of a camera object.

The CORBA interface is identical for all components except for changing the state of indi-
vidual multimedia objects. Object state is dependent on the characteristics of that object
resulting in different CORBA interfaces. The identical part is referred to as the standard
CORBA interface.

2.1.2 Multimedia Objects

Components contain multimedia objects that implement specific services for other compo-
nents. Services or multimedia objects need only to be developed once and can be reused in
any component. New components are developed with little effort by composing them from
existing objects. The framework distinguishes three types of objects which will be introduced
next.

Multimedia data is streamed from data producers to data consumers through data manip-
ulators, similar to the VuSystem[5]. Data producers typically are controllers for video or
audio capture hardware or media storage hardware. In this paper they are called sources .
Data manipulators perform operations on the multimedia data that flows through them.
Data manipulators get their data from sources or other data manipulators and stream the

2.2. Data Streams 9

in−
port

out−
port

type
input

data
pulate
mani− type

output
in−

port
type
input

data
produce out−

port

output
type

data
consume

Figure 2.3: A source, filter and sink object.

modified data to a consumer or another manipulator. Here they are called filters . Data con-
sumers are multimedia objects that eventually consume the data. Data consumers typically
are controllers for media playback or storage devices. In this paper they are called sinks .

Furthermore, a multimedia object is categorized as an input and/or output object. An input
object has an inport for managing a single buffer for each inflowing data stream and has
specified input type. An output object has an outport for managing stream information for
the redirection of outflowing data and has a specified output type. For example, a filter
is both an input and an output object, meaning it is capable of respectively receiving and
sending data. Clearly, a source is an output-only and a sink is an input-only object. See
Figure 2.3 for the different categories of multimedia objects this framework distinguishes.

Within component scope, an object is uniquely identified by its object identifier . The object
identifier is used to access one specific object within a component. Within the global scope, a
tuple consisting of a CORBA component reference and an object identifier is used to specify
one specific object. Such tuples are called universal object identifiers . For example, a client
may access one specific object by invoking an operation on the CORBA component reference,
passing the object identifier as an input parameter.

All multimedia objects run in separate threads. Priority values are assigned as a criteria
for preemption as multiple threads are competing for the CPU simultaneously. In this
way, the underlying operating system decides which thread utilizes most CPU cycles during
execution. For example, a developer of a multimedia component may assign higher priorities
to multimedia objects that perform important calculations. Furthermore, a multimedia
object is not scheduled for the CPU until it has received data in one of its input buffers.
Consequently, data items function as scheduling tokens for object execution and idle objects
do not waist any CPU cycles.

2.2 Data Streams

The central concept of this framework is the streaming of data between multimedia objects.
A data stream has one beginning and one or more end points. The beginning is represented
by a source that produces the data and the ending by a sink that consumes the data. Usually,
a stream contains one or more filters between the data producer and data consumer. For two
consecutive objects in the stream, the input and output type need to match. The standard
CORBA interface provides functionality for the configuration of data streams.

Four types of streams that need support from the framework are distinguished: basic, cyclic,
broadcasting and distributed streams. These types can be combined to configure more com-
plex stream types. Next, each type of stream will be construed, followed by an introduction
to competing streams.

10 Chapter 2. Architecture

CORBA interface

Figure 2.4: Basic stream.

CORBA interface

Figure 2.5: Cyclic stream.

CORBA interface

Figure 2.6: Broadcasting stream.

CORBA
interface

CORBA
interface

CORBA
interface

Figure 2.7: Distributed stream.

2.2.1 Basic Streams

In a basic stream, multimedia data flows from a source to a sink through zero or more
different filters. Figure 2.4 shows an example of a basic stream with one filter. Basic stream
types are the most elementary.

2.2.2 Cyclic Streams

A cyclic stream is a basic stream where the data flows more than one time through one of
its participating filters. Figure 2.5 shows an example of a cyclic stream. Before data reaches
the sink, it flows two times through the filter.

2.2.3 Broadcasting Streams

In a broadcasting stream, multimedia data is multiplied in one of its output objects and
broadcasted to more than one input object. Figure 2.6 illustrates how a filter multiplies its
inflowing data and broadcasts the data to three different sinks. Alternatively, three basic
streams could be configured through the same filter, resulting in three copies of the same
data being identically processed by the filter. Clearly, broadcasting eliminates redundant
data processing resulting in more efficient data streams.

2.2.4 Distributed Streams

In a distributed stream, multimedia data flows through objects belonging to different com-
ponents, possibly running on remote machines. Data is streamed between the components
before it reaches remote objects. Figure 2.7 illustrates a distributed stream, where all the
objects are contained by different components. Such streams are required for the distribution
of augmented reality applications.

2.3. Multimedia Data 11

2.2.5 Competing Streams

When a multimedia object utilizes a service provided by a filter, it sends its multimedia data
to the filter first and receives the manipulated data for further processing afterwards. The
providing object exports its service to a theoretically unlimited number of utilizing objects.
This implies that a filter requires the ability to be configurable for multiple streams at the
same time.

CORBA
interface

phone
cellular

phone
cellular

PDA1

PDA2 PDA2

PDA1

Figure 2.8: Competing streams.

For example, a typical augmented reality filter might analyze video frames for the detection
of visual markers and add marker information to the video data structure. Its input type
might be video data and its output type might be video data with marker information. Such
augmented reality objects perform heavy calculations and for that reason would be executed
on a high-performance machine. Low-performance clients, such as PDAs and cellular phones,
might utilize the augmented reality service by configuring a data stream as depicted in Figure
2.8.

As multiple streams might compete for the same service at the same time, clients may want
to distinguish more important from less important streams. Therefore clients are allowed to
assign priority values to streams. In this approach, streams with higher priority values have
higher throughput.

2.3 Multimedia Data

Multimedia data is produced by a source and afterwards forwarded to objects next in the
stream until the data arrives in its configured sink that consumes the data. When two con-
secutive objects in a stream belong to remote components, data is transmitted between the
components before it reaches its target object. Therefore data needs support for the encod-
ing into a byte stream and decoding from a byte stream. Clearly, encoding and decoding are
inverse functions (i.e. decode(encode(d)) = d for all data items d).

Another issue involved when dealing with streams between objects is the potential of over-
flowing buffers. Consider a basic stream that consists of one source and one sink and the
source generates 10 data items per second. Consequently, approximately every 100 millisec-
onds one data item arrives in the inport belonging to the sink. If the sink consumes one
data item in more then 100 milliseconds, it simply can not keep up with the inflowing data
rate. Consequently, its input buffer will overflow causing the container component to crash.
More generally, if an input object receives data items at a faster rate than can be processed,
its buffers will overflow and execution will be aborted.

When dealing with real-time media, the above issue of buffer overflow causes another side
effect. Suppose we have infinite resources and buffers can grow for ever. Now consider the
example component in Figure 2.2 where the camera object captures one video frame every 100

12 Chapter 2. Architecture

milliseconds. If the augmented reality object processes video frames in periods of longer than
100 milliseconds, the superimposed images can never arrive in time for playback. Besides
the increasing memory consumption of the executing component, the result is playback of
obsolete video frames in slow-motion. An easier way to understand this is to realize that the
original time difference between two consecutive captured video frames is 100 milliseconds.
But after the frames have been processed by the augmented reality object, the time difference
is increased to the processing time of one video frame.

Discarding obsolete data prevents buffers from overflowing and assures playback of up-to-
date frames at the price of data-loss. An input object can decide whether a data item is
obsolete by comparing the original time difference between the processed item and the next
candidate in its input buffer with the processing time of the last item, i.e. the time difference
between the last and current fetch. If the former is smaller than the latter, the candidate
is obsolete and therefore to be discarded. The next data item in the input buffer is checked
until the condition is satisfied. Clearly, to record the original time difference between two
consecutive data items, multimedia data requires timestamp support from the framework.

Another requirement is related to broadcasting streams. Before data is broadcast, it must
be multiplied. Therefore multimedia data needs cloning support from our framework. In
addition, another important issue is generality. New data types might be added to the
framework or developers might add their own custom data types. Therefore structure of the
multimedia data should be designed in a general and extensible way.

Chapter 3

Design and Implementation

The multimedia framework, described in the previous chapter, is designed for easy usage
and fast development of multimedia components and objects. For this purpose, abstractions
are defined as C++ classes that are to be extended by developers. How the abstractions are
realized is the topic of Section 3.2.

Typical component configurations contain multiple objects executed in separate threads that
stream multimedia data between them. Section 3.3 unravels how objects contained by one
component communicate and synchronize for the exchange of data.

The central concept of the multimedia framework is the streaming of data. In an applica-
tion, developers configure streams between multimedia objects, possibly contained by remote
components. Data streams are the subject of Section 3.4.

Multimedia data requires basic support from the framework for correct streaming. In addi-
tion, developers might want to add more complex, custom data types. How the framework
addresses these issues is clarified in Section 3.5.

3.1 Framework Size

The multimedia framework consists of CORBA IDL1 definitions of the component’s interface
and C++ classes for the implementation. To give the reader an idea about the size of the
framework, the following metrics were found:

• CORBA IDL. The IDL code counts 83 lines, 4 files, 1 module, 3 interfaces, 15
operations and 4 exceptions.

• C++. The C++ code consists of 25 classes implemented in 2943 lines of code. Ex-
cluding (copy-) constructors, the classes make up for 134 methods of which 38 are
virtual, 6 are static and 3 are template methods.

1CORBA IDL is briefly explained in A.

13

14 Chapter 3. Design and Implementation

3.2 Multimedia Components

The C++ class MComponent implements an abstraction of a multimedia component (Figure
3.12). The class is composed of one CORBA interface, implemented by MInterface, and
zero or more multimedia objects, derivations of MObject.

MComponent

-m_IdObjectMap : std::map<IFACE::ObjectId, MObject*>

-m_Interface : MInterface

-m_strName : std::string

+MComponent(in strName:std::string) : MComponent

+addObject(in pObject:MObject*) : IFACE::ObjectId

+removeObject(in id:IFACE::ObjectId) : bool

+getObject(in id:IFACE::ObjectId) : MObject*

+start()

for all pObject in m_IdObjectMap do
 pObject->start()
m_Interface.start()

MInterface

-m_pOwner : MComponent*

+start()

MObject

-m_pContainer : MComponent*

+start()

0..*

Figure 3.1: UML class diagram for multimedia components.

Many CORBA related issues, such as object incarnation and registration at the CORBA
Naming Service, are identical for all components. There is no reason for the component
developer to re-invent the wheel. Instead, the MInterface class hides most CORBA related
complexities so developers can focus on object implementation and component composition
instead.

A developer composes a component by deriving from MComponent and adding multimedia
objects through the addObject method. Internally, the component assigns a unique ob-
ject identifier to the object and stores the pair [ObjectId, MObject*] in a STL-map data
structure. A requirement is that objects can be remotely accessed through the CORBA
interface. Therefore, the framework deals with object identifiers rather than C++ pointers
to the objects. C++ pointers are not valid outside the process where they are created and
consequently cannot be used in remote components.

A developer starts the component by invoking start on an instance of the class. As a
result, all objects contained by the component, and the component’s interface, are executed
in separate threads. The interface registers the component at the CORBA Naming Service
under the name passed as an argument to the MComponent constructor. After registration,
the component is up and running, waiting for incoming CORBA requests.

3.2.1 CORBA Interface

In Section 2.1.1 the CORBA interface was described to be partially identical for all compo-
nents. As component developers are responsible for designing and implementing the variable

2All classes that are part of the framework are preceded by an M for multimedia. In addition, the class

diagrams are strongly reduced for clarity.

3.2. Multimedia Components 15

part, the CORBA interface is partitioned into three parts: the component interface, the
stream interface and the state interface. The stream interface is identical for all components
and provides functionality for stream configuration. The state interface is component spe-
cific depending on the multimedia objects it contains and therefore the responsibility of the
developer. The component interface is primarily added to provide one single CORBA object
reference to identify one component. The component interface is the implementation of the
CORBA component reference introduced in Section 2.1.1.

All interfaces are part of the module IFACE written in CORBA IDL[3, 4]. The IDL interface
definitions are implemented by C++ classes with corresponding names with an _i suffix as
depicted in the UML class diagram in Figure 3.2. Referring to the diagram, MInterface
is a composition of the three classes implementing the CORBA interface. It hides CORBA
related issues such as activation of a POA manager, incarnation of CORBA objects repre-
senting the three interfaces and registration of its component at the CORBA Naming Service
under a user-specified name. Following, the three CORBA interfaces are listed and briefly
explained individually.

MInterface

-m_pOwner : MComponent*

+getComponent() : MComponent*

MCompIface_i

-m_pInterface : MInterface*

+getStreamIface() : IFACE::MStreamIface

+getStateIface() : IFACE::MStateIface

+isInput(in id:IFACE::ObjectId) : IFACE::Boolean

+isOutput(in id:IFACE::ObjectId) : IFACE::Boolean

+getInputType(in id:IFACE::ObjectId) : IFACE::DataType

+getOutputType(in id:IFACE::ObjectId) : IFACE::DataType

MStreamIface_i

-m_pInterface : MInterface*

+createTCPServer(out info:IFACE::SocketInfo) : IFACE::ObjectId

+createTCPClient(in info:IFACE::SocketInfo) : IFACE::ObjectId

+configureStream(in id:IFACE::ObjectId, info:IFACE::StreamInfo)

+startStream(in oid:IFACE::ObjectId, sid:IFACE::StreamId)

+stopStream(in oid:IFACE::ObjectId, sid:IFACE::StreamId)

MStateIface_i

-m_pInterface : MInterface*

+setResolution(in id:IFACE::ObjectId, in res:IFACE::Resolution) : CORBA::Boolean

+getResolution(in id:IFACE::ObjectId) : IFACE::Resolution

Figure 3.2: UML class diagram for CORBA interface.

Component Interface

The component interface MCompIface provides one single CORBA object reference to clients.
A CORBA object reference to MCompIface is the implementation of the CORBA component
reference described in Section 2.1.1 and is used for registration at the CORBA Naming
Service. The interface defines operations for acquiring CORBA object references to the
other interfaces. In addition, the interface provides operations to query individual objects
contained by the component and to query the component as a whole. The interface is
identical for all components. Here follows the CORBA IDL code3:

1. module IFACE
2. {
3. interface MCompIface

4. {

3Detailed definitions of data types and exceptions are omitted for brevity.

16 Chapter 3. Design and Implementation

5. MStreamIface
6. getStreamIface();

7.
8. MStateIface
9. getStateIface();

10.
11. ObjectIds

12. getObjects();
13.

14. boolean
15. isInput(in ObjectId nTarget)
16. raises(InvalidObjectId);

17.
18. boolean

19. isOutput(in ObjectId nTarget)
20. raises(InvalidObjectId);
21.

22. DataType
23. getInputType(in ObjectId nTarget)

24. raises(InvalidObjectId);
25.

26. DataType
27. getOutputType(in ObjectId nTarget)
28. raises(InvalidObjectId);

29. };
30. };

Clients obtain CORBA object references to the stream and state interface by invoking
getStreamIface and getStateIface respectively (line 5 to 9). Clients query for the multi-
media objects contained by the component through the getObjectIds operation that returns
a sequence of object identifiers (line 11 to 12).

The remaining four operations query individual objects contained by the component. The
object identifier of the target object is passed as an argument. The operations isInput

and isOutput return a boolean value that determines the object’s type (line 14 to 20).
The operations getInputType and getOutputType return the input and output data type
of the target object (line 22 to 28). All four operations throw an InvalidObjectId if the
component does not contain an object with the identifier passed as an argument.

Stream Interface

The stream interface MStreamIface provides operations for configuring streams between
objects. The stream interface is identical for all components. Here follows the CORBA IDL
code:

1. module IFACE

2. {
3. interface MStreamIface
4. {

5. ObjectId
6. createTCPServer(out SocketInfo info)

7. raises(SocketException);
8.
9. ObjectId

10. createTCPClient(in SocketInfo info)
11. raises(SocketException);

12.
13. void

14. configureStream(in ObjectId nTarget, in StreamInfo info)
15. raises(InvalidObjectId, InvalidStreamInfo);
16.

17. void
18. startStream(in ObjectId nSource, in StreamId nStreamId)

19. raises(InvalidObjectId);
20.

3.2. Multimedia Components 17

21. void
22. stopStream(in ObjectId nSource, in StreamId nStreamId)

23. raises(InvalidObjectId);
24. };
25. };

Clients configure a distributed stream by creating specialized TCP objects which are auto-
matically connected. The operations createTCPServer and createTCPClient create such
objects (line 5 to 11). The SocketInfo structure holds connection specific information, i.e.
IP host address and port number. The framework treats TCP objects as regular multimedia
objects and assigns them an object identifier upon creation. The object identifier is returned
to the client for later use. Distributed streams are covered in Section 3.4.4.

Clients prepare a multimedia object for streaming by invoking the operation configureStream

(line 13 to 15). The StreamInfo structure holds stream specific information such as stream
identifier, destination object and stream priority. Clients start and stop a stream by invok-
ing startStream and stopStream respectively. These operations require an object identifier
referring to a source object and the stream identifier of the stream passed as arguments (line
17 to 23). Data streams are covered in detail in Section 3.4.

State Interface

The state interface MStateIface provides operations for accessing object specific characteris-
tics. The state interface varies from component to component, depending on the multimedia
objects it contains. Component developers are responsible for the design and implementation
of the interface. Here follows an example IDL:

1. module IFACE
2. {
3. struct Resolution {

4. unsigned short nHorizonal;
5. unsigned short nVertical;

6. };
7.
8. interface MStateIface

9. {
10. Resolution

11. getResolution(in ObjectId nTarget)
12. raises(InvalidObjectId);

13.
14. bool
15. setResolution(in ObjectId nTarget, in Resolution res)

16. raises(InvalidObjectId);
17. };

18. };

This interface applies to multimedia objects for accessing its resolution, for example a
camera or display object. The object identifier passed as an argument to the operations
getResolution and setResolution must refer to an object supporting the interface. If not,
an InvalidObjectId exception is thrown.

3.2.2 Multimedia Objects

The multimedia framework provides direct support for sources, filters and sinks by means
of the classes MSource, MFilter and MSink respectively. An object developer extends these
classes and implements the provided (pure) virtual methods to add custom behavior. Once
an object is developed it can be reused in any other component. Hence, new components

18 Chapter 3. Design and Implementation

qpthr::QpThread

+start()

#Main()

MObject

-m_pContainer : MComponent*

-m_nObjectId : IFACE::ObjectId

-m_nPrio : MObject::Priority

+MObject(in input:IFACE::DataType, in output:IFACE::DataType) : MObject

+configureStream(in info:IFACE::StreamInfo)

+getPriority() : MObject::Priority

+setPriority(in prio:MObject::Priority)

+isInput() : CORBA::Boolean

+isOutput() : CORBA::Boolean

+getInputType() : IFACE::DataType

+getOutputType() : IFACE::DataType

MOutport

-m_Streamtable : std::map<MStreamId, IFACE::ObjectId>

+send(in pData:MData*)

+addStreamtableEntry(in info:IFACE::StreamInfo)

MInport

-m_IdBufferMap : std::map<MStreamId, MBuffer*>

+receice(in pData:MData*)

+fetch() : MData*

+inputAvailable() : bool

+createBuffer(in info:IFACE::StreamInfo)

MBuffer

-m_DataItems : std::queue<MData*>

-m_nPriority : IFACE::Priority

+add(MData*:MData*)

+remove() : MData*

+empty() : bool

MSource

-m_ConfiguredStreams : std::list<IFACE::StreamId>

#Main()

#initialize() : bool

#produce() : MData*

#finalize()

+isInput() : CORBA::Boolean

+isOutput() : CORBA::Boolean

+startStream(in id:IFACE::StreamId)

+stopStream(in id:IFACE::StreamId)

MFilter

#Main()

#initialize() : bool

#process(in pData:MData*) : MData*

#finalize()

#dataArrived()

+isInput() : CORBA::Boolean

+isOutput() : CORBA::Boolean

MSink

#Main()

#initialize() : bool

#consume(in pData:MData*)

#finalize()

#dataArrived()

+isInput() : CORBA::Boolean

+isOutput() : CORBA::Boolean

0..*0..*

Figure 3.3: UML class diagram for multimedia objects.

can be composed from existing objects with little effort. Figure 3.3 depicts inheritance and
composition relations among the classes that contribute to MSource, MFilter and MSink. In
the remainder of this section all classes will be explained in a top-down manner.

Base Class

All multimedia objects share the same base class MObject. This class derives from QpThread

that is part of the object-orientated QpThread library, a C++ wrapper for Posix threads,
providing basic thread functionality. The class QpThread declares the protected virtual
method Main that is executed in a separate thread after start is invoked on a multimedia
object. Object behavior varies for sources, filters and sinks. Therefore, the Main method is
implemented by the corresponding class.

Multimedia objects have an input and output data type. When clients configure a stream, the
input and output types of two consecutive objects in the stream must match. The methods

3.2. Multimedia Components 19

getInputType and getOutputType return the object’s input and output type initialized in
the object’s constructor.

Before starting a stream, a client must prepare all objects involved in that stream. A client
can prepare an object for a data steam by invoking the method configureStream. The
method requires one argument that is a structure holding stream specific information such
as stream identifier, destination object and stream priority. Data streams are covered in
detail in Section 3.4.

Priority values can be assigned to objects as a criteria for preemption since multiple objects
may compete for the CPU simultaneously. By assigning priority values, the underlying oper-
ating system decides which thread utilizes most CPU cycles during execution. The methods
getPriority and setPriority get and set the priority value of an object respectively.

Inports and Outports

As described in Section 2.1.2, multimedia objects are categorized as input and/or output
objects. An output object has an outport for sending multimedia data to input objects and
an input object has an inport for receiving data from output objects. Naturally, matching
input and output types are required.

Outports are implemented by the MOutport class. An outport manages a stream table that
holds tuples of type [MStreamId, IFACE::ObjectId] meaning that data belonging to the
stream with id MStreamId is sent to the local object with id ObjectId. Stream table entries
are added through the addStreamtableEntry method. Its only parameter is a structure
holding stream specific information such as stream identifier, destination object and stream
priority. There are no methods for deleting entries from the stream table; the framework
deletes obsolete entries automatically after a certain period of inactivity. Clients need only
to send a stopStream message to the source to stop a data stream instead of notifying all
involved objects. As a result, data items for the respective stream are no longer produced
and stream table entries will not be referenced and finally removed. This reduces the number
of CORBA messages sent over the network.

Inports are implemented by the MInport class. An inport manages one separate buffer for
each configured stream. Each stream identifier has an associated buffer stored in the STL-
map data structure that holds tuples of type [MStreamId, MBuffer*]. When a data item is
received, it is added to the buffer identified by the MStreamId variable. Buffers are created
through the createBuffermethod. Its only parameter is a structure holding stream specific
information such as stream identifier, destination object and stream priority. There are no
methods for deleting buffers from inports. Buffers are automatically deleted after a certain
period of inactivity rather than explicitly deleted by the client. Motivation for automatic
cleanup is identical to the motivation for the removal of entries from stream tables.

The MBuffer class is more than just a wrapped STL container class. The class implements
an algorithm for the discard of obsolete data items. In short, the algorithm decides whether
the next data item in the buffer is obsolete by comparing the elapsed time between the last
and current fetch with the difference in timestamps between the last fetched item and the
next item in the buffer. If the former is larger than the latter, the data item is discarded
and the next item is checked until the condition is satisfied or the buffer is empty.

An alternative to the one-to-one relationship between input buffers and data streams would
be one single input buffer for all configured data streams. Two problems with this approach
were found. First, the recording of the time difference between two consecutive data items

20 Chapter 3. Design and Implementation

belonging to one stream becomes unfeasible. Second, for the implementation of stream
priority, the framework needs to know which streams are configured for the object when a
data item is fetched from the inport.

Sources, Filters and Sinks

Multimedia object developers derive from MSource, MFilter and MSink to implement sources,
filters and sinks respectively. The classes provide virtual methods that are to be implemented
in derivations in order to add custom behavior. The framework implements a different Main
method for MSource, MFilter and MSink, that is executed in a separate thread. Inside Main,
the virtual methods are invoked internally. Hence, execution is temporarily transferred out-
side the framework to the developer’s code.

MFilter

MOutport

MSink

MOutportMInport

MSource

MInport

3. send

4. send

1. initialize
3. consume
4. finalize

2. produce
4. finalize

1. initialize

1. initialize
3. process
5. finalize

2. fetch

2. fetch

Figure 3.4: Object execution for sources, filters and sinks.

Object execution, realized by invoking start on a multimedia object and resulting in a call
to Main, is represented by the UML collaboration diagrams depicted in Figure 3.44. For
example, the MFilter::Main method executes the following sequence until object execution
is explicitly stopped:

1. Initializing. The virtual method initialize is invoked and execution is temporarily
transferred outside the framework to developer’s code for object initialization.

2. Data Fetching.

(a) If object execution is explicitly stopped, goto 5.

(b) If data is available, a data item is fetched from one of its input buffers by invoking
fetch on its inport. Otherwise, the execution thread is put to sleep until it is
notified upon data arrival.

3. Data Processing. The pure virtual method process is invoked and execution is
transferred outside the framework. Developer’s code processes the data passed as
input parameter and returns the result.

4Source code for object execution with explanation can be found in Appendix B.

3.2. Multimedia Components 21

4. Data Sending. The filter calls send on its outport passing the processed data as an
argument. The outport is responsible for sending the data to its target object. Goto
2.

5. Finalizing. The virtual method finalize is invoked and execution is temporarily
transferred outside the framework to developer’s code for object finalization.

Stream identifiers are used as entries in stream tables managed in outports. When data
arrives in an outport, the identifier that is sent as part of the data is extracted and a lookup
in the stream table produces the identifier of the target object. In addition, stream identifiers
are used in inports for identifying buffers. When data arrives in an inport, the identifier is
extracted from the data and used as a buffer identifier. Motivation for stream identifiers is
explained in Section 3.4. Sources manage a list of configured stream identifiers and produce
data items for each stream. Consequently, adding and removing a stream identifier from
the list is semantically equivalent to starting and stopping a data stream. The methods
startStream and stopStream are designed for this purpose and require a stream identifier
as an input parameter.

3.2.3 Remote Method Invocation

The alert reader might have noticed that some operations in the CORBA interface have
an identical name to a method declared in one of the classes MObject, MSource, MFilter
or MSink. Such CORBA operations require an object identifier as an argument that is
used to acquire a C++ pointer from the container component. If such an object exists,
the method is invoked and the result is returned by the CORBA operation. Otherwise, an
InvalidObjectId exception is thrown.

MObjectMComponent

getInputType(2)

getObject(2)

getInputType()

getComponent()

MCompIface_i

Figure 3.5: UML sequence diagram for remote method invocation.

For example, consider the method invocation getInputType on the CORBA component
interface in Figure 3.5. The object identifier 2 is passed as an argument to the method.
The interface obtains a reference to its component and calls getObject on this reference,
providing the object identifier as an argument. As a result, the C++ pointer referring to
the multimedia object is returned. The pointer to the object is used to get the input type
of the object and the result is finally returned to the client.

22 Chapter 3. Design and Implementation

3.3 Object Interaction

In this section the interaction of multimedia objects contained by one component will be
described. Since all objects run in separate threads and different objects may access the
same data structures simultaneously, concurrency need to be accounted for. Moreover, the
threads have to be synchronized in order to avoid busy waiting and overflowing buffers. To
explain how multimedia objects address these issues, the example component depicted in
Figure 2.2 is explored.

MOutport

M
ai

n
M

ai
n

M
ai

n

1.2 send

1.1 produce

1.3 receive

2.4 receive

Camera

CAMERA

AUGMENTED REALITY

DISPLAY

2.2 process

2.3 send MOutportMInport Superimposer

3.2 finalize

MInport Display

2.1 fetch

3.1 fetch

Figure 3.6: UML collaboration diagram for object interaction.

In the example, data is streamed from a camera to a display object through an augmented
reality object. The camera object is a source that produces data by capturing images from a
video device. The augmented reality object is a filter that processes data by super imposing
digital images. The display object is a sink that consumes the data by showing the video
images onto the screen. All objects execute their own Main method in a separate thread.
Figure 3.6 shows the execution sequence of the three main methods (the initialize and
finalize methods are omitted for clarity) and how they communicate.

3.3.1 Communication

The sequences 1, 2 and 3 are executed in parallel. Sequence 1 produces video frames (1.1)
and sends them to the outport belonging to the camera object (1.2). In turn, the outport
calls receive on the inport owned by the augmented reality object (1.3). Consequently, video
frames are added to the input buffer for that stream managed in the inport. At the same
time the augmented reality object might access the same input buffer by calling fetch on
its inport (2.1). To avoid race conditions, the input buffer guarantees mutual exclusion. The
operations receive (2.4) and fetch (3.1) synchronize access to the input buffer belonging
to the camera object in the same way.

3.4. Data Streams 23

3.3.2 Synchronization

Suppose the augmented reality object processes video images at a faster rate then it receives
images in its input buffer. Then, after processing one image, it will find an empty buffer
when fetching the next data item. To avoid busy waiting, the thread is put to sleep until
it is notified by the camera thread when it receives data in its inport (1.3). In this way,
multimedia data functions as a scheduling token for multimedia objects.

On the other hand, if the augmented reality object receives data faster than it can process,
its buffers will overflow and the container component eventually will crash. It was explained
in Section 2.3 that the discarding of obsolete data items solves the problem of overflowing
buffers. When fetch is called on an inport belonging to an input object (2.1/3.1), obsolete
data items are deleted from input buffers before the next data item is returned.

3.4 Data Streams

Filters can be configured for multiple streams at the same time (see Section 2.2.5). As a
result, data items belonging to different streams might have different destinations. So how
does a filter know where to send each data item? Clearly, setting up direct connections
between multimedia objects does not resolve the issue.

One solution would be to add a routing list containing universal object identifiers to each
data item, defining the streaming route. A source would add such a list to each data item it
produces and send it as part of the data structure. When a data item arrives in the outport
belonging to an output object, the head is removed from the routing list and the data is sent
to the corresponding object. Hence, the routing list would be empty when it arrives in the
sink. However, three problems were found with this particular solution:

1. An intermediate filter might want to broadcast its outflowing data to more than one
target object. This implies a simple routing list would not be sufficient and a more
complex data structure such as a routing tree is needed to solve the issue.

2. Adding a routing tree consisting of universal object identifiers to each produced data
item results in a much larger data structure sent over the network.

3. Clients may want to assign priorities to competing streams. This implies that data
needs to be identified to be part of one specific stream. Routing trees do not provide
help for the identification of streams.

To circumvent these three problems, the framework uses unique stream identifiers instead of
routing lists. If a source is configured for a stream, the framework adds the stream identifier
to the multimedia data structure after it is produced. When the data item arrives in the
outport belonging to an output object, the stream identifier is extracted from the data.
The outport uses the identifier for a lookup in its stream table and finds the target object
identifier for sending the data.

This solution is extended for cyclic and broadcasting streams. In the remainder of this sec-
tion, stream identifiers with respect to data streams will be clarified by illustrative examples
of each type of stream supported by the framework (see Section 2.2).

24 Chapter 3. Design and Implementation

a
sid

a
sid oid oid

2 3

<<1>> <<2>>
aa

CORBA interface

<<3>>

Figure 3.7: Stream tables for a basic stream.

3.4.1 Basic Streams

The solution outlined above does not need any extension for the basic stream type. By way
of illustration, consider the example basic stream in Figure 3.7. The source <<1>> adds the
stream identifier a to each produced data item. When arriving in its outport, the stream
identifier is extracted from the data and a lookup in its stream table produces the target
object identifier <<2>>. The outport retrieves a pointer to the actual object from its container
component providing the object identifier, and calls receive on the inport belonging to that
object. The filter <<2>> is notified that data has arrived in its input buffer and retrieves the
data item for processing. After processing, the data item is handled by its outport in the
same way as for the source.

3.4.2 Cyclic Streams

For the cyclic stream type the solution for data streaming needs an extension. Suppose that
a filter is visited by the same stream twice. Then the stream table would contain two entries
for the same stream identifier. But how would the filter know which entry to use when
data is to be sent by its outport? To solve the issue, redefinition of a stream identifier as
a tuple of type [IFACE::StreamId, IFACE::SubStreamId]5 is necessary. The sub-stream
identifier is initialized to zero in the source. Now, before data is sent by an outport belonging
to an output object, the sub-stream identifier is incremented by one. In this way, filters can
distinguish data items that visit the object for the second time.

oidsid
a:0 2

oidsid

a:2
a:1

3
2

a:1

a:2

a:3

<<2>><<1>>

CORBA interface

<<3>>

Figure 3.8: Stream tables for a cyclic stream.

For illustration, consider the example cyclic stream in Figure 3.8. The source <<1>> initializes
the sub-stream identifier zero. When data arrives in its outport, a lookup in the stream table
with identifier [a,0] produces the object identifier <<2>>. Before the data is sent to the
inport belonging to the target object, the sub-stream identifier is incremented. Hence, after
data is processed by the filter <<2>> for the first time, a lookup in its stream table with
value [a,1] will produce object identifier <<2>> again, referring to itself. Before sending the

5Such tuples plus utility methods are implemented by the MStreamId class used in stream tables and as

buffer identifiers.

3.4. Data Streams 25

data to its own inport, the sub-stream identifier is incremented again. Consequently, when
data arrives in the inport belonging to the filter for the second time, the identifier will equal
[a,2] and a lookup will produce object identifier <<3>>. Clearly, this breaks the cycle and
data is finally sent to the sink, after incrementing the sub-stream identifier one more time.

3.4.3 Broadcasting Streams

The solutions for data streaming needs another extension for the broadcasting stream type.
A naive, but correct approach is to treat each branch in a broadcasting stream as a basic
stream. A source object produces one data item for each stream and adds a unique stream
identifier to the data structure. The problem with this approach is that copies of the same
data will be identically processed by filters (see Section 2.2.3).

A more efficient approach is to bundle basic streams into one before it is broadcasted. After
the broadcast, the streams are unbundled and go their own way. Therefore, a list of stream
identifiers is added to the data structure after it is produced by the source. Each element in
the list would be the identifier of one bundled stream. When data arrives in the outport of
an output object, the list is extracted from the data and partitioned into parts for different
destination objects. Consequently, each partition resembles one branch in the broadcasting
stream. For each partition the data is cloned and sent to the corresponding destination
object.

<<4>>

<<3>>
<a:2>

<b:2>

<<1>>
oidsid

a:0 2
b:0 2

CORBA interface

oidsid
<<2>>

3
4

a:1
b:1

<a:1,b:1>

Figure 3.9: Stream tables for a broadcasting stream.

For the purpose of illustration, consider the example broadcasting stream in Figure 3.8. After
data is produced by source <<1>>, the framework adds the list of configured stream identifiers,
[a,0] and [b,0], to the data structure. In the outport of the source, the partitioning of the
list results in one partition since both stream identifiers share the same destination object.
The streams are bundled and just one copy of the data is sent to filter <<2>> for processing.
When the data arrives in the outport of the filter, the partitioning of the list results in the
two partitions, because both stream identifiers in the list have different destination objects.
Consequently, data is cloned and each item is assigned one partition before it is sent.

3.4.4 Distributed Streams

The solution for data streaming does not need an extension for distributed streams. However,
there are other design issues that have to be addressed when transmitting data between
components. When using the Internet Protocol (IP), there is a choice between two levels
of service: streams6 and datagrams. Next will be a discussion which service best suites the

6Note that streams as a level of service and data streams used in the multimedia framework are two

different concepts.

26 Chapter 3. Design and Implementation

purposes discussed here and how the service is incorporated into the framework.

Streams vs Datagrams

A stream socket establishes and maintains two-way byte stream connections and guarantees
that data is not lost, duplicated or reordered at the price of slow startup and resource
consumption. Stream sockets are implemented by TCP/IP connections. In contrast, a
datagram socket does not establish and maintain connections but provides an unsequenced
and unreliable service. That is, data packages may get lost, duplicated or arrive out-of-order.
On the other hand, the service is relatively inexpensive in terms of resources and also fast
because no connections are established and maintained. Datagrams are implemented by
UDP connections.

The stream service automatically partitions large data segments on the sender side and little
effort is required to reassemble the data segment on the receiver side because the service
guarantees in-order data arrival without loss and duplication. Datagrams have a maximum
size much smaller than the data items sent between components. On the sender side, data
must be divided into packages that fit into a datagram by the programmer. On the receiver
side, the data has to be reassembled accounting for package loss, duplication and out-of-
order arrival. Luckily, RTP[8] libraries implemented on top of UDP have been developed
to alleviate these matters. Still, relatively speaking, much more effort is required from the
programmer.

Components typically run on platforms with varying performance. In case of the stream
service, the slowest participant in the TCP/IP connection sets the pace of data transmission
automatically. In case of the datagram service, the sender and receiver have to synchronize
the transmission speed of datagrams because of its connectionless nature. Low-performance
receivers may not be able to process datagrams as fast as they are sent by high-performance
senders. The RTP library provides sender and receiver reports that are automatically ex-
changed between participants. The reports include all necessary information, but program-
mers have to account for complex algorithms for adjusting the transmission speed to reflect
network behavior.

Components may suddenly become unavailable due to system or network failure. In the
case of the stream service, both participating components need to be restarted to recover
from the failure. In the case of the datagram service the non-failing component can continue
executing since no connections are broken.

After experimenting with RTP it was decided to switch to TCP/IP mainly because of its
simple usage. The framework is still in its early stages and it was found that complex issues
such as synchronizing senders and receivers can be incorporated in the framework in a later
stage. Also, it was found that TCP/IP is sufficient in terms of efficiency for data items
roughly not exceeding 200 KB on a 100 Mbps network, enough for transmitting medium-
sized video images.

TCP Servers and TCP Clients

For the implementation of inter-component data streaming the framework provides two types
of specialized multimedia objects: TCP servers and TCP clients. One TCP client is con-
nected to one TCP server by a two-way byte stream. A TCP client encodes multimedia data
into a byte stream and sends it to its connected TCP server that decodes the byte stream
into the data object (of course decode(encode(d)) = d for all data items d).

3.4. Data Streams 27

MTCPServer

-m_nPortNumber : unsigned int

#initialize() : bool

#produce() : MData*

#finalize()

+getSocketInfo() : IFACE::SocketInfo

MTCPClient

+MTCPClient(in info:IFACE::SocketInfo) : MTCPClient

#initialize() : bool

#consume(in pData:MData*)

#finalize()

MSource MSink

Figure 3.10: UML class diagram for TCP servers and clients.

Consider the UML class diagrams in Figure 3.10. MTCPServer derives from MSource and
MTCPClient from MSink. Consequently, TCP servers and clients are classified as output and
input object respectively. Semantically it is not strange at all to derive MTCPServer from
MSource, since from the component’s point of view data is produced by receiving it from
another component. Analog reasoning applies to the MTCPClient class.

In its constructor MTCPServer creates a socket for a specific port number. After object
execution, the initialize method is executed first and halts, waiting for an incoming con-
nection. The port number and the IP host address of the server are passed to the MTCPClient
constructor. After object execution, its initialize method establishes a connection using
the provided socket information. From there on, data is streamed over TCP/IP between the
objects. Since a TCP object derives from MSource or MSink, the framework treats them as
regular multimedia objects. Consequently, TCP objects can be configured for local streams.

Example Distributed Stream

By way of illustration, consider the example distributed stream in Figure 3.11. The TCP
client <<2>> in the left component is configured for one inflowing data stream and receives
data from the source <<1>>. In its consume method, the object encodes data items into a
byte stream and sends the byte stream to the TCP server <<1>> in the right component over
TCP/IP. In its produce method, the TCP server receives the byte stream and decodes it into
a multimedia data object. Afterwards, it sends the data to the sink <<2>> that consumes
the stream.

<<1>>
oidsid

a:0 2

<<2>>

<a:1>

CORBA interface

TCP/IP

CORBA interface

<<1>>
oidsid

<<2>>

2a:1 <a:2>

Figure 3.11: Stream tables for a distributed stream.

3.4.5 Competing Streams

In this subsection it will be explained how stream identifiers contribute to the implementation
of stream priorities for competing streams. As said before, every input object manages one
input buffer for each configured stream in its inport. In addition, each input buffer is assigned

28 Chapter 3. Design and Implementation

a priority value upon creation that is equal to the priority value of the stream it belongs to.
When an input object fetches a data item from its inport, it applies a selection algorithm
for choosing the input buffer based on the priority values. In this way, buffers with higher
priorities are more likely to be chosen for delivering the next data item. If not designed
carefully, the selection algorithm might cause buffer starvation - buffers with low priority
might never be selected - resulting in overflowing buffers.

In case of broadcasting streams where several streams may be bundled into one, one buffer
for each stream in the bundle is created rather than one buffer for the bundled stream as
a whole. When data arrives in the inport belonging to an input object, the data is placed
in the input buffer with highest priority among the bundled streams. The reason for this
approach is that streams are dynamical by nature. Hence, changes in broadcasting streams
are reflected without additional effort. Suppose one of the streams in a bundled stream
is stopped, then buffers corresponding to the remaining streams are still available and can
be used immediately. If one buffer for the bundled stream as a whole is used, changing a
broadcasting stream would imply creating a new buffer.

3.5 Multimedia Data

When designing a multimedia data type several issues need to be addressed. These issues
described in Sections 2.3 and 3.4 lead to the following requirements:

• encoding into a byte stream and decoding from a byte stream for sending data over
the network,

• timestamping for the discard of obsolete data in input buffers,

• cloning for broadcasting streams,

• managing a list of stream identifier for the implementation of data streams,

• generality and extensibility for custom data types.

Putting these requirements together the base class for multimedia data in Figure 3.12 was
decided on. The framework deals with pointers to the base class exclusively. Developers
can design custom data types by extending the base class adding custom data members and
overriding the necessary abstract methods.

Functionality for time stamping and stream identifiers is completely handled by the base class
and does not require any effort from developers of new data types. In contrast, encoding
and decoding of custom data types requires some additional effort. The base class handles
the serialization of the base members but has no knowledge of custom data members added
in derivations. To assure correct serialization a developer requires to override both methods
encode and decode and call the base class method in its first statement before serializing
its own data members.

3.5. Multimedia Data 29

MData

-m_nTimestamp : struct timeval

-m_StreamIds : std::vector<MStreamId>

+setTimestamp(in tv:struct timeval)

+getTimestamp() : struct timeval

+getNumberOfStreamIds() : unsigned short

+getStreamId(in nIndex:unsigned short) : MStreamId

+addStreamId(in id:MStreamId)

+clearStreamIds()

+encode(os:std::ostream) : std::ostream

+decode(is:std::istream) : std::istream

+clone() : MData*

+getType() : IFACE::DataType

MVideoData

-m_pRawData : unsigned char*

-m_nWidth : unsigned int

-m_nHeight : unsigned int

+encode(os:std::ostream) : std::ostream

+decode(is:std::istream) : std::istream

+clone() : MVideoData*

+getType() : IFACE::DataType MData::encode(os);
os << m_nWidth << ’ ’;
os << m_nHeigth << ’ ’;
os.write(m_pRawData, 3*m_nWidth*m_nHeight);
return os;

Figure 3.12: UML class diagram for multimedia data.

In addition, cloning of multimedia data cannot be handled by the base class by any means.
Remember the framework deals with pointers to MData exclusively. When data is multiplied
in response to a broadcast, the framework has no knowledge about the type of data and
consequently cannot decide which copy constructor to call for. A variation of the Prototype
Design Pattern[1] circumvents a direct call to the constructor by invoking the pure virtual
method clone on the data object. Derivations of the method simply return a copy of itself
by calling its own copy constructor.

30 Chapter 3. Design and Implementation

Chapter 4

Usage

The multimedia framework, described in the previous chapters, is designed for easy usage
and fast development of multimedia components and objects. To clarify how this aim is
realized this chapter describes a step-by-step method for building components by using the
example depicted in Figure 2.2. The steps involved are object implementation, component
composition, component execution and stream configuration. This method can be used as a
general guideline for building more complex configurations.

4.1 Object Implementation

Multimedia objects are implemented by deriving from MSource, MFilter or MSink and over-
riding the corresponding virtual methods for implementing custom behavior. Source code
for the augmented reality object in Figure 2.2 might look something like this:

1. #include "mmf.hh"
2.

3. class AugReal :
4. public MFilter

5. {
6. public:
7.

8. AugReal(unsigned int nXPos, unsigned int nYPos, const string& strImage);
9

10. protected:
11.

12. virtual bool initialize();
13. virtual MData* process(MData* pData);
14.

15. private:
16.

17. unsigned int m_nXPos, m_nYPos;
18. string m_strImage;
19. MRGBImage m_Image;

20. };
21.

22. AugReal::
23. AugReal(unsigned int nXPos, unsigned int nYPos, const string& strImage):

24. MFilter(VIDEO_DATA, VIDEO_DATA),
25. m_nXPos(nXPos),
26. m_nYPos(nYPos),

27. m_strImage(strImage)
28. { }

29.
30. bool

31

32 Chapter 4. Usage

31. AugReal::
32. initialize()

33. {
34. bool bSuccess = true;
35. // read m_strImage from database

36. return bSuccess;
37. }

38.
39. MData*

40. AugReal::
41. process(MData* pData)
42. {

43. MVideoData* pVideoData = dynamic_cast<MVideoData*>(pData);
44. // superimpose m_Image onto video frame

45. return pVideoData;
46. }

In the constructor the input and output type are passed to the MFilter base class. In
addition, the position for superimposing the digital image and the name of the image are
initialized (line 22 to 28).

The class overrides the two virtual methods initialize and process from the MFilter

base class. In the initialize method, the image that is superimposed onto video frames
is read from a database. The method returns a boolean value to the framework denoting
whether it was completed successfully or not (line 30 to 37).

In the process method, first the input parameter is downcasted to the expected data type
and thereafter the digital image is superimposed onto the video frame. Finally, the resulting
image is returned to the framework (line 39 to 46).

4.2 Component Composition

One way to compose a component is to derive from the MComponent class. In its constructor,
multimedia objects are created and added to the component. Source code for the example
component in Figure 2.2 might look something like this:

1. #include "mmf.hh"
2. #include "camobj.hh"

3. #include "augobj.hh"
4. #include "disobj.hh"
5.

6. class MyComponent :
7. public MComponent

8. {
9. public:

10.
11. MyComponent(const string& strName);
12.

13. private:
14.

15. Camera* m_pCamera;
16. AugReal* m_pAugReal;
17. Display* m_pDisplay;

18. };
19.

20. MyComponent::
21. MyComponent(const string& strName):

22. MComponent(strName)
23. {
24. m_pCamera = new Camera;

25. m_pAugReal = new AugReal;
26. m_pDisplay = new Display;

27.
28. addObject(m_pCamera);

4.3. Component Execution 33

29. addObject(m_pAugReal);
30. addObject(m_pDisplay);

31. }

The constructor takes a string argument that is passed to the MComponent base class for
registration at the CORBA Naming Service. In its body, the multimedia objects are created
first and added to the component thereafter (line 20 to 31).

The multimedia objects that are added to the component are developed in earlier stages
of the development process. In general, objects can be reused in any component, clearly
reducing development time and costs.

4.3 Component Execution

For the execution of a component a multimedia environment is initialized first. I.e. a local
CORBA Object Request Broker is created, the QpThread library is initialized and the service
level for debug logging is set. Afterwards, the component can be created and started. Source
code for the execution of the example component in Figure 2.2 might look something like
this:

1. #include "mmf.hh"
2. #include "mycomp.hh"
3.

4. int
5. main(int argn, char** argc)

6. {
7. if(argn != 2) {
8. cerr << "Usage: main <name>" << endl;

9. return -1;
10. }

11
12. try {

13. MInit init(argn, argc);
14. MyComponent mycomp(argc[1]);
15. mycomp.start();

16. }
17. catch(const MCorbaExc& exc) {

18. cerr << exc << endl;
19. }
20. }

A user executes the component by running main from the command line. The method
requires the component’s name as an argument and therefore correct usage is checked (line 7
to 10). If successful, the multimedia environment is initialized, the component is created on
the stack and executed by invoking start (line 13 to 15). The creation of an Object Request
Broker or component registration at the CORBA Naming Service might fail resulting in a
MCorbaExc exception (line 17).

Generally speaking, identical components can be executed on different machines at the same
time. The user has to provide a different name for each component to avoid name clashes at
the CORBA Naming Service, resulting in a MCorbaExc. Like multimedia objects, components
need to be developed only once, clearly decreasing development time and costs.

4.4 Stream Configuration

For the configuration of a stream between multimedia objects a client obtains the involved
CORBA component references from the CORBA Naming Service. Object identifiers of the

34 Chapter 4. Usage

multimedia objects contained by the components are acquired by invoking the appropriate
method on a CORBA component reference. Together they form universal object identifiers
used for the configuration of a stream by means of the MStream utility class. This class is
an implementation of the Facade Design Pattern[1] and provides an abstraction to low-level
operations defined in the CORBA stream interface. Source code for the configured stream
in the example component in Figure 2.2 might look something like this:

1. #include "mmf.hh"

2.
3. int
4. main(int argn, char** argc)

5. {
6. try {

7. MORB::init(argn, argv);
8.
9. IFACE::MCompIface_var pCompIface = MNaming::resolve<IFACE::MCompIface>("some name");

10. if(CORBA::is_nil(pCompIface)) {
11. cerr << "Component not registered at CORBA Naming Service" << endl;

12. return -1;
13. }

14.
15. MStream stream(MRandom::generate(0, UINT_MAX), MStream::NORMAL);
16. stream.setSource(pCompIface, 1);

17. stream.addFilter(pCompIface, 2);
18. stream.setSink(pCompIface, 3);

19. assert(stream.check());
20. stream.start();
21. }

22. catch(const MCorbaExc& exc) {
23. cerr << exc << endl;

24. return -1;
25. }

26. catch(const MStreamExc& exc) {
27. cerr << exc << endl;
28. return -1;

29. }
30.

31. return 0;
32. }

For accessing the CORBA Naming Service a local Object Request Broker is initialized (line
7). The CORBA component reference is obtained by invoking the static method resolve on
the MNaming utility class and the result is checked for failure; if no component is registered
under the provided name, the method returns a nil-reference (line 9 to 13).

An MStream object is created by passing a unique stream identifier and a priority value as
arguments to its constructor (line 15). The stream is configured by invoking the appropriate
methods on the MStream object passing the universal object identifiers1 as parameters (line 16
to 18). The stream configuration is checked for the validity of the universal object identifiers,
i.e. for correct type of objects and matching input and output types (line 19). Finally, the
stream is started (line 20).

Two types of exceptions can be thrown by the framework: MCorbaExc and MStreamExc (line
22 to 29). The former indicates initialization failure of the CORBA Object Request Broker,
or communication failure with the CORBA Naming Service or individual components. The
latter indicates a malformed stream and should not be thrown if the assertion in line 19 is
satisfied.

1Note that in this example the object identifiers are known a priori.

Chapter 5

Framework in Operation

Reusing multimedia objects simplifies and accelerates the development of new components.
Many augmented reality features, such as detecting visual markers and superimposing digital
images, are common in most applications. The DCL research department developed an
augmented reality class library that implements such common services. The class library is
introduced briefly in Section 5.1.

Augmented reality applications are developed relatively easy by reusing multimedia objects
from the class library. Section 5.2 shows how the library is used. This is illustrated by
describing two example applications that are built using the DCL middleware, one of them
reusing objects from the library.

5.1 Augmented Reality Class Library

The augmented reality class library is developed on top of the multimedia framework as
depicted in Figure 5.1. It contains 12 classes with a total of 58 methods, excluding (copy-)
constructors. The library provides support for extended data types, visual marker detectors,
location sensors and image renderers which will be explained briefly in the next sections.

5.1.1 Extended Data Type

Augmented reality applications use marker information intensively. The MRVideoData class
is a specialization of MVideoData, provided by the multimedia framework, which adds marker
information to its base class. To address the differences among marker information used by
third-party libraries the class holds a pointer to the abstract base class MRMarkerInfo that
defines a general interface. An MRVideoData object is configured with a concrete derivation
of the abstract class (Strategy Design Pattern[1]). Currently, the augmented reality library
supports two concrete types of marker information, one based on TRIP and one based the
ARToolkit.

5.1.2 Detectors

For the detection of visual markers in video frames the augmented reality library defines the
MRDetector class that is a derivation from MFilter, provided by the multimedia framework.

35

36 Chapter 5. Framework in Operation

Multimedia Framework

MVideoData MFilter

Mixed Reality Class Library

MRRendererMRSensorMRDetectorMRVdeoData

MRMarkerInfo

ARTMarkerInfo

MRProcessor ARTRenderer

OpenGLDrawerRenderingStategy

OnScreenRenderer OffScreenRenderer

Figure 5.1: Augmented reality class library.

Third-party libraries differ in marker detecting algorithms. To address such differences an
MRDetector object is configured with a concrete derivation from MRProcessor which defines
a general interface (Strategy Design Pattern[1]). Currently, concrete processors based on
TRIP (ARToolkit) expect video data configured with TRIP (ARToolkit) marker informa-
tion. These restrictions are the result of the marker specific characteristics of the detection
algorithms. At present, adapting the detection algorithm for more general marker informa-
tion is studied and might be incorporated in the near future.

5.1.3 Sensors

Sensors measure the physical location of visual markers and therefore are very similar to
detectors. The location of an object with an attached marker is conveyed by the sensors
and sent to the context database. The communication infrastructure uses the information
for automatic reconfiguration of the application in response to context change.

5.1.4 Renderers

For superimposing digital images onto video frames the library provides one concrete renderer
class ARTkRenderer based on the ARToolkit. The class only renders video images configured
with marker information based on the ARToolkit. Therefore, marker information is converted
when needed. The reason for this ad-hoc approach is that the TRIP library does not support
rendering functionality. Still TRIP detectors are used because marker location sensors are
much more accurate.

An ARTkRenderer object is configured with a concrete rendering strategy (Strategy Design
Pattern[1]). Currently, the library provides support for on screen and off screen rendering
and uses OpenGL for superimposing 3D images onto video frames.

5.2. Applications 37

5.2 Applications

Figure 5.2 illustrates how augmented reality objects from the library are configured and
connected in an application. In the example, a visual marker is attached to a person. The
camera object captures video frames and sends the data contained in a MRVideoData object
to the detector. The detector object spots the marker and adds the information to the video
data structure before sending it to the renderer object. The renderer object superimposes
information about the person onto the video frame and sends the result to the display. The
display object presents the video image on the screen.

CORBA interface

camera
object

ARTk

object
detector

CORBA interface

MRVideoData

MRMarkerInfo

MRVideoData

CORBA interface

ARTk

object
renderer

CORBA interface

display
object

visual
marker

MRVideoData
info

info

Figure 5.2: Augmented reality application.

The multimedia objects are distributed over different components running on remote ma-
chines. The detection of visual markers and the rendering of images are heavy calculations.
For that reason the respective components are likely to run on high-performance machines.
In another configuration, the detector and rendering object might be contained by one com-
ponent removing communication overhead between the components. Next, two applications
that are built using the DCL middleware will be described.

5.2.1 Follow-Me Application

The first application is the follow-me application1. A room is equipped with a camera
connected to a computer running a camera component and several displays connected to
computers running display components. As a user moves through the room, his or her
location is sensed by an infrared sensor. According to the user’s whereabouts, the nearest
display is chosen for showing the captured images.

Detailed descriptions about the application is beyond the scope of this paper. In short
though, the middleware controls the application and is notified of location change. It has
access to the context database that stores the physical location of the displays in the room.
If the distance to the current display becomes larger than the distance to another display in
the room, the stream is reconfigured to use the nearest display.

The application uses proxy objects instead of direct references, i.e. universal object iden-
tifiers, to display objects. Such proxy objects hold a reference to the actual object and is
updated when needed. Hence, the application uses the nearest display transparently.

1This application is typical for ubiquitous computing environments. It does not use any augmented reality

features.

38 Chapter 5. Framework in Operation

5.2.2 Mobile Augmented Reality

The second application is a mobile augmented reality application. Consider Figure 5.3. The
Compaq iPAQ H3800 PDA in the picture is equipped with a wireless LAN and an RFID tag
attached to it. The TOSHIBA IT refrigerator named Feminity contains sensors that let us
know how many bottles are inside. When the user comes near the refrigerator, the RFID
reader recognizes the RFID tag attached to the PDA. The RFID reader sends the location
to the context database.

Figure 5.3: Mobile augmented reality application.

Figure 5.4: PDA view.

In addition, the refrigerator has an attached tag that is superimposed by a digital image
representing the number of bottles in the refrigerator. After the RFID reader sends the
PDA’s location to the context database, the communication infrastructure is notified and
a stream is configured to show the superimposed images on the PDA. Augmented reality
components for detecting visual markers and superimposing digital images run on a nearby,
powerful machine. Video frames captured by the camera are streamed to the PDA through
the augmented reality objects. The result is shown in Figure 5.4.

Chapter 6

Evaluation

Development work needs serious testing. For the evaluation of this framework three test
cases were examined. The first covers metrics for the discard of obsolete data, the second
measures the priority algorithm applied on two competing streams and the third evaluates
a distributed augmented reality application. This chapter reports the results.

6.1 Data Discard

Input buffers decide whether data items are obsolete and therefore discarded. The elapsed
time between two consecutive fetches is compared with the difference in timestamps of the
involved data items. If the former is larger than the latter, the data item is discarded and
a next item is checked until the condition is satisfied. Section 2.3 provides a more detailed
description of the algorithm.

100 300200 400 500

60

50

70

80

90

100

0

consuming time in msec

da
ta

 d
is

ca
rd

 in
 %

Figure 6.1: Data discard for increasing consuming time.

Consider one component containing a camera and display object. The camera object pro-
duces one video frame approximately every 100 milliseconds and sends each frame to the
input buffer managed by the display object. If the display object consumes one video frame
in less than 100 milliseconds, no frames are discarded. On the other hand, if we increase the

39

40 Chapter 6. Evaluation

consumer time to values far larger than the 100 milliseconds, more and more video frames
are discarded. The test results plotted in Figure 6.1 show how the number of discarded
frames increases when the consuming time becomes longer.

6.2 Stream Priority

Stream priorities are implemented by assigning priority values to input buffers. When an
input object is configured for multiple streams and data is waiting, the object has a choice
of selecting data items from one of its non-empty input buffers. The priority algorithm
assures that buffers with higher priority have a larger chance for selection. More specifically,
the algorithm adds all the priority values of the non-empty buffers and generates a random
positive integer smaller than the cumulative value. Each input buffer is assigned a unique
hit-range as large as its configured priority value within the bounds of the cumulative value.
Consequently, the generated integer falls within one of the hit-ranges and the corresponding
input buffer is selected for delivering the next data item.

proc.

prod.
B

A
prod.

count.

count.
A

B

CORBA interface

b b

a a

Figure 6.2: Competing streams.

0

20

40

60

80

100

re
ce

iv
ed

 it
em

s i
n

%

1 3 5 7 9 11

stream b
stream a

priority value for stream b

Figure 6.3: Received items for varying priority
stream b.

Consider the competing streams in Figure 6.2. The producer objects deliver data at full
speed such that both the input buffers belonging to the processor object are non-empty
at all times. The processor halts execution after it has forwarded 10,000 data items to the
counter objects. The counter objects record the number of data items that have been received
and print the result to standard output. These numbers will differ for varying priority values
assigned to the streams. Figure 6.3 depicts the results for a fixed priority value of 5 assigned
to stream a and a varying priority value for stream b laid out on the x-axis. The y-axis
shows the number of data items received by the counter objects A and B in percentages of
the total number of processed items.

6.3 Distributed Augmented Reality

The distribution of multimedia objects among components has a large influence on the
efficiency of configured streams. Objects performing important calculations are typically
contained by components running on high-performance machines. Hence, the processing
time of data items is reduced and less data items are discarded.

6.3. Distributed Augmented Reality 41

Detector
MR MR

Renderer

Camera

Display

Detector
MR MR

Renderer

512 MBytes RAM
1.9 GHz Processor, 866 MHz Processor,

256 MBytes RAM

CORBA interface CORBA interface

Figure 6.4: Three distributed streams.

0

200

400

600

800

160x120 320x240 640x480
resolution

se
co

nd
s

workstation
none

laptop

Figure 6.5: Processing time for 2000 frames.

Consider the stream configurations depicted in Figure 6.4 where the left component runs on
a high-performance desktop computer and the right component on a low-performance laptop
computer. The augmented reality objects for the detection of visual markers and rendering
digital images are identical for both components. To evaluate the merits of distribution
we measured the performance of three streams; one stream not configured for augmented
reality, one utilizing the augmented reality objects contained by the left component and one
utilizing the augmented reality objects contained by the right component. The graph in
Figure 6.5 shows the time required to display 2000 video frames on the laptop computer
when the camera object captures approximately 30 frames per second. The result shows
that assigning components containing multimedia objects that perform heavy calculations
to high-performance machines increases the throughput of data items considerably.

42 Chapter 6. Evaluation

Chapter 7

Discussion

The augmented reality class library and the example applications, described in Chapter 5,
demonstrated the effectiveness of the DCL middleware and the multimedia framework in
particular. However, a number of issues still need to be addressed. This chapter discusses
the strengths and weaknesses of the current design, and concludes with some suggestions for
future experimental and conceptual work.

7.1 Strengths

The multimedia framework provides flexibility to our middleware for the implementation of
context-awareness. The CORBA interface defines operations for the reconfiguration of data
streams and universal object identifiers managed in proxy objects are easily updated when
needed.

Graphical user interfaces can be developed to provide easy means to clients for the (re-)
configuration of a set of available components. Because components are designed as self-
describing software entities and register themselves at the CORBA Naming Service, clients
can retrieve all available components at any time and query for the characteristics of internal
objects. In addition, stream information of internal objects can be retrieved and updated.
This dynamic information can be used for the construction of an up-to-date graphical user
interface representing the configuration of a set of available components.

Reusability of multimedia components and objects simplifies and accelerates the development
of augmented reality applications. Off-the-shell objects can be reused in the composition of
new components and developed components can be executed on multiple machines at the
same time. In addition, multiple components can be configured for one application in order
to provide higher-level services. Basically, reusability reduces the required skills and effort
from application developers.

Distribution makes it possible to run augmented reality applications on low-performance
devices such as PDAs and cellular phones. The component-based design of the multime-
dia framework enables the developer to assign heavy computation to components that run
on high-performance machines. Low-performance devices run light-weight components and
delegate heavy computation to stronger machines.

43

44 Chapter 7. Discussion

7.2 Weaknesses

The DCL middleware assumes multimedia objects are stateless. Though, when a change of
context occurs and universal object identifiers managed by proxy objects are updated, this
might be a misplaced assumption. In this case, object state has to move from the old to
the new object to maintain the same configuration. We found that objects that interface to
hardware devices usually have state.

Distributed streams maintain direct TCP/IP connections for data transmission. When a
component crashes, all connected components have to be restarted and reconfigured to re-
store the old configuration. In addition, TCP/IP connections consume resources and have
a slow start-up time. Other data streaming protocols such as RTP, implemented on top of
UDP, solve these problems but are very hard to implement.

7.3 Future Work

In future versions, our framework will need support for the transition of objects state to re-
store the original configuration of a set of components. In addition, RTP has to be considered
as a new protocol for data transmission between multimedia components.

Besides extra development work there is a need for exploring new conceptual avenues. It
would be very useful to study topics that deal with similar or related issues under a different
name such as smart environments, support systems and behavioral context. An in-depth
study of such topics provides different views and might help in finding inspiring directions
for this middleware.

Chapter 8

Summary

In this master’s thesis the multimedia framework that is part of a middleware aiming for
fast and easy development of augmented reality applications in ubiquitous environments was
described. In this chapter will be the final discussion on how the aim is realized and the
merits of this particular solution.

Developers compose an application by specifying services that are implemented by objects
contained by multimedia components. Developers use proxy objects that manage a universal
object identifier. The middleware automatically updates the identifier referring to an object
providing an identical service that is considered the most appropriate object according to
current context. Reasoning about the most appropriate object is hidden from the developer
by the communication infrastructure. Developers control such reasoning by specifying con-
text policies for the application as a whole. Consequently, developers are not responsible for
implementing complex issues involved with context-awareness directly into the application.

The multimedia framework provides a component abstraction as a C++ class. Developers
derive from the class and add multimedia objects through its methods. The abstraction
hides complex CORBA related features, such as object incarnation and registration with
the CORBA Naming Service, which are common for all components. Consequently, the
abstraction enables the developer to focus on component composition instead. Moreover,
the abstraction defines a standard CORBA interface that is identical for all components
resulting in easy usage.

In addition, the framework defines multimedia object abstractions as C++ classes. Ob-
ject developers specialize these classes and override the appropriate virtual methods for the
implementation of custom behavior. Developers configure data streams by invoking meth-
ods through the standard CORBA interface belonging to the container component. The
abstractions hide details about how the data is streamed between multimedia objects. In
addition, the abstractions provide and hide basic functionality such that multimedia objects
can be reused in any component without modification. Clearly, reusability speeds up the
development of components.

Taken together, hiding context-awareness and providing abstractions for multimedia compo-
nents and object, provide the developer with the necessary tools for composing augmented
reality applications in ubiquitous environments in a relatively fast and easy manner. In ad-
dition, the design of the multimedia framework has proved to be effective and easy to use by
DCL’s middleware developers for implementing automatic reconfiguration of applications in
response to context change.

45

46 Chapter 8. Summary

Appendix A

CORBA Basics

This appendix provides a minimal introduction to the Common Object Request Broker
Architecture (CORBA) to enable the reader to understand the contents of this master’s
thesis.

A.1 Intoduction

CORBA is a combination of client-server computing and object-orientated programming.
A user-developed client can request for services implemented by a CORBA object. The
Object Request Broker (ORB) is the mechanism for handling the interactions from a user-
developed client to a CORBA object. The ORB is responsible for finding an object to handle
the request, passing the request’s parameters to the object, invoking the object’s method,
and returning the results to the client. Figure A.1 shows a subset of the ORB architecture.

STUBS
IDL

ORB CORE

OBJ
REF

operation()

in args

out args + return value

OBJECT
(SERVANT)

CLIENT

IDL
SKELETONS

Figure A.1: Subset of Object Request Broker.

When a client invokes an operation on a CORBA object it does not have to be aware where
the object implementing the operation is located. The client invokes the operation through
a CORBA object reference that is used as if it was a reference to a local object.

When developing CORBA objects, the programmer is responsible for writing the interface
in CORBA Interface Definition Language (CORBA IDL). These IDL definitions are trans-
formed to the target programming language, in this thesis C++, by a CORBA IDL compiler.

47

48 Appendix A. CORBA Basics

The compiler generates IDL stubs and skeletons that serve as ’glue’ between the client and
server application, respectively, and the ORB. Programmers derive from the generated skele-
tons for the implementation of CORBA objects.

A.2 Naming Service

The Naming Service is a standard service for CORBA applications. The Naming Service
allows to associate abstract names with CORBA objects and allows clients to find those
objects by looking up the corresponding names.

Its role is to allow a name to be bound to an object and to allow that object to be found
subsequently by resolving the name within the Naming Service. A server that holds an object
reference can register it with the Naming Service, giving it a name that can be used by other
components of the system to subsequently find the object. Even though every object in an
ORB has a unique reference ID, i.e. a CORBA object reference, from a clients’ point of
view, it is much easier if there is some directory listing of CORBA objects, so that the client
could use a descriptive name to access the object.

A.3 Example

The following example illustrates how a CORBA object is developed. The example object
manages a data structure with long values. Clients insert and remove values to/from the
data structure through the operations defined in the CORBA interface. The example IDL
defines one interface called Numbers with two operations for insertion and removal of long
values.

interface Numbers {
void insert(in long n);

boolean remove(in long n);
};

After compilation of the IDL interface, stubs and skeletons are created for the Numbers

interface. The CORBA object implementation is a derivation of the generated skeleton,
which declares pure virtual methods with the same names as the operations defined in the
interface. The CORBA object implementation in C++ might look something like this:

Numbers_i::Numbers_i()

{
clearNumbers();

}

void

Numbers_i::insert(long n)
{

addNumber(n);
}

Boolean
Numbers_i::remove(long n)

{
bool bSuccess = removeNumber(n);

return bSuccess;
}

A.3. Example 49

A client application is linked with the IDL stubs and a client-side ORB. The client has to
obtain a reference to the CORBA object it wants to access, for example through the Naming
Service, and invokes methods on this reference. As a result, the ORB finds the target object,
passes the method’s parameters to the object, invokes the object’s method, and returns the
result to the client. On the server-side, the CORBA object implementation is linked with
the skeleton and a server-side ORB.

50 Appendix A. CORBA Basics

Appendix B

Object Execution

This appendix provides the source code for object execution of sources, filters and sinks
respectively. Upon object execution, the Main method is executed in a separate thread. All
types of objects execute a while-loop until a client explicitly stops object execution. Next,
a listing of the Main method source code and a brief explanation is given for each type of
object.

B.1 Sources

1. void

2. MSource::
3. Main()
4. {

5. LOG_DEBUG1("<Object#%d> Entering MSource::Main()", this->getId());
6.

7. bool bSuccess = initialize();
8. setStopped(!bSuccess);
9.

10. while(!isStopped())
11. {

12. m_TimerMutex.Lock();
13. if(m_nTimer > 0)

14. m_TimerCond.Wait(calcTimeout(), false);
15. while(!isConfiguredForStreaming())
16. m_TimerCond.Wait();

17. fixStreamIds();
18. m_TimerMutex.Unlock();

19.
20. MData* pData = produce();
21. setStreamIds(pData);

22. setTimestamp(pData);
23. getOutport()->send(pData);

24. }
25.

26. finalize();
27.
28. LOG_DEBUG1("<Object#%d> Leaving MSource::Main()", this->getId());

29. }

A source is initialized by a call to the virtual method initialize on itself. Consequently,
execution is temporarily transferred outside the framework to the developer’s code (line 7).
The method returns whether it has executed successfully, i.e. whether the object is initialized
properly or not. If not, the object is stopped by the framework and will never execute its
main-loop (line 8).

51

52 Appendix B. Object Execution

Sources have a member variable m_TimerMutex that guarantees mutual exclusion on its
configured stream identifiers for which the source generates data items. The variable has a
built-in timer that allows the thread to be put to sleep for a specified time interval. The
timer interval is stored in the member variable m_nTimer and is initialized in the object’s
constructor. The timer interval is used to control the generation rate of data items by sources.
For example, if a developer wants to generate 10 data items per second, the m_nTimer is
to be set to 100 milliseconds. The framework guarantees data items will be generated
approximately every 100 millisecond by calling the calcTimeoutmethod. If no timer interval
is set by the developer, the source produces data items at maximum speed (line 13 to 14).

If the source is not configured for streaming, the Main thread is put to sleep by a call to
Wait on its conditional variable. After a client configures the object for streaming, the Main

thread is notified and resumes execution (line 15 to 16). Before unlocking the conditional
variable, the configured stream identifiers are fixed since after unlocking another thread may
change the configuration (line 17).

After unlocking the conditional variable, the pure virtual method produce is invoked and
execution is temporarily transferred outside the framework to the developer’s code that
produces a data item (line 20). Then, the fixed stream identifiers and a timestamp are
added to the data structure (line 21 to 22) before the data is sent to the source’s outport
(line 23). The outport is responsible for forwarding the data to its destination object,
therefore consulting its stream table.

A source is finalized by a call to the virtual method finalize on itself. Consequently,
execution is temporarily transferred outside the framework to the developer’s code (line 26).

B.2 Filters

1. void

2. MFilter::
3. Main()
4. {

5. LOG_DEBUG1("<Object#%d> Entering MFilter::Main()", this->getId());
6.

7. bool bSuccess = initialize();
8. setStopped(!bSuccess);

9.
10. while(!isStopped())
11. {

12. while(!getInport()->isDataAvailable())
13. m_InputCond.Wait();

14.
15. assert(getInport()->isDataAvailable());
16. MData* pData = getInport()->fetch();

17. if(pData != 0) {
18. process(pData);

19. getOutport()->send(pData);
20. }

21. }
22.
23. finalize();

24.
25. LOG_DEBUG1("<Object#%d> Leaving MFilter::Main()", this->getId());

26. }

A filter is initialized by a call to the virtual method initialize on itself. Consequently,
execution is temporarily transferred outside the framework to the developer’s code (line 7).
The method returns whether it has executed successfully, i.e. whether the object is initialized

B.3. Sinks 53

properly or not. If not, the object is stopped by the framework and will never execute its
main-loop (line 8).

Filters have a conditional member variable m_InputCond that is used for synchronizing the
Main thread with other threads belonging to output objects. When there is no data available
in one of its input buffers, the Main thread is put to sleep until it receives data from another
(output) thread. When data arrives, the Main thread is notified and resumes execution (line
12 to 13).

After being assured data is waiting, the data is fetched from its inport (line 15 to 16). Then,
if the data is valid, the pure virtual method process is invoked and execution is temporarily
transferred outside the framework to the developer’s code that processes the data (line 17
to 18). Finally, the processed data is send to the filter’s outport that is responsible for
forwarding the data to its destination object, therefore consulting its stream table (line 19).
Note that the condition in line 17 will fail if and only if the data that arrived in its input
buffer is obsolete and therefore discarded.

A filter is finalized by a call to the virtual method finalize on itself. Consequently, execu-
tion is temporarily transferred outside the framework to the developer’s code (line 23).

B.3 Sinks

1. void

2. MSink::
3. Main()
4. {

5. LOG_DEBUG1("<Object#%d> Entering MSink::Main()", this->getId());
6.

7. bool bSuccess = initialize();
8. setStopped(!bSuccess);
9.

10. while(!isStopped())
11. {

12. while(!getInport()->isDataAvailable())
13. m_InputCond.Wait();

14.
15. assert(getInport()->isDataAvailable());
16. MData* pData = getInport()->fetch();

17. if(pData != 0) {
18. consume(pData);

19. if(m_bDelete)
20. delete pData;
21. }

22. }
23.

24. finalize();
25.

26. LOG_DEBUG1("<Object#%d> Leaving MSink::Main()", this->getId());
27. }

Sinks behave identically to filters until line 16. From there on, the pure virtual method
consume is invoked and execution is temporarily transferred outside the framework to the
developer’s code that consumes the data (line 18). Finally, if the member variable m_bDelete
is set by the object developer in the sink’s constructor, the framework deletes the data from
memory. Otherwise, the object developer himself is responsible for releasing the data (line
19 to 20).

A sink is finalized by a call to the virtual method finalize on itself. Consequently, execution
is temporarily transferred outside the framework to the developer’s code (line 24).

54 Appendix B. Object Execution

Index

application composer, 3
augmented reality, 1
augmented reality class library, 35

basic stream, 10, 24
broadcasting stream, 10, 25

communication infrastructure, 3
competing stream, 11, 27
component, 7
component interface, 15
configuration manager, 4
context database, 4
CORBA, 47
CORBA component reference, 8
CORBA IDL, 47
CORBA interface, 7, 8, 14
CORBA Naming Service, 48
CORBA ORB, 47
cyclic stream, 10, 24

data, 11, 28
data discard, 12, 39
data streams, 9, 23
distributed stream, 10, 25

filter, 9, 20, 52

IDL, 47
inport, 9, 19
input object, 9
input type, 9
Interface Definition Language, 47

location policy, 4

middleware, 3
multimedia component, 7, 14
multimedia data, 11, 28
multimedia framework, 3
multimedia object, 7, 8, 17

Naming Service, 48

object, 7, 8
object identifier, 9
Object Request Broker, 47
ORB, 47
outport, 9, 19
output object, 9
output type, 9

performance policy, 4
pervasive computing, 1
proposed middleware, 3
proxy object, 4

service, 8
sink, 9, 20, 53
source, 8, 20, 51
standard CORBA interface, 8
state interface, 17
stream identifier, 23
stream interface, 16
stream priority, 11, 27, 40
streams, 9, 23

TCP client, 26
TCP server, 26

ubiquitous computing, 1
universal object identifier, 9

55

56 INDEX

Bibliography

[1] Erich Gamma, Richard Helm, Ralph Johnson, John Flissides: Design Patterns, Elements
of Reusable Object-Orientated Software, Addison-Wesley Publishing Company (1995),
ISBN 0-201-63361-2.

[2] Bjarne Stroustrup: The C+ Programming Language - Special Edition, Addison-Wesley
Publishing Company (2001), ISBN: 0-201-70073-5.

[3] Michi Henning, Steve Vinoski: Advanced CORBA Programming with C++, Addison-
Wesley Publishing Company (1999), ISBN 0-201-37927-9.

[4] Sai-Lai Lo, David Ridoch, Duncan Grisby: The omniORB version 3.0 User’s Guide,
AT&T Laboratories Cambridge (2002).

[5] Christopher J. Lindblad, David L. Tennenhouse: The VuSystem: A Programming System
for Compute-Intensive Multimedia, Massachusetts Institute of Technology, Cambridge
MA 02139.

[6] prof. dr. ir R. L. Lagendijk: http://www.ubicom.tudelft.nl/

[7] Martin Bauer, Bernd Bruegge, et al.: Design of a Component-Based Augmented Reality
Framework, Technische Universitat Munchen.

[8] Schulzrinne, Casner, Frederick, Jacobson: RTP: A Transport Protocol for Real-Time
Applications, Columbia University.

[9] Tatsuo Nakajima: Experiences with Building Middleware for Audio and Visual Net-
worked Home Appliances on Commodity Software Department of Information and Com-
puter Science, Waseda University.

[10] Andrew P. Black, Jie Huang, et al.: Infopipes: an Abstraction for Multimedia Streaming,
Department of Compter Science & Engineering, Oregon Health & Science University,
. . .

[11] Diego Lopez de Ipina, Paulo R.S. Mendonca, Andy Hopper: TRIP: a Low-Cost Vision-
Based Location System for Ubiquitous Computing, Laboratory for Communications En-
gineering, University of Cambridge, UK; Fallside Laboratory, University of Cambridge,
UK; AT&T Laboratories Cambridge, UK

[12] G.D. Abowd, E.D. Mynatt, “Charting Past, Present, and Future Research in Ubiquitous
Computing”, ACM Transaction on Computer-Human Interaction, 2000.

[13] ARToolkit, http://www.hitl.washington.edu/people/
grof/SharedSpace/Download/ARToolKitPC.htm.

57

58 BIBLIOGRAPHY

[14] R.T. Azuma, “A Survey of Augmented Reality”, Presence: Teleoperators and Virtual
Environments Vol.6, No.4, 1997.

[15] M. Weiser, “The Computer for the 21st Century”, Scientific American, Vol. 265, No.3,
1991.

[16] G.Banavar, J.Beck, E.Gluzberg, J.Munson, J.Sussman, D.Zukowski, “Challenges: An
Application Model for Pervasive Computing”, In Proceedings of the Six Annual Inter-
national Conference on Mobile Computing and Networking, 2000.

Design of a Component-Based Augmented Reality Framework, The Second IEEE and
ACM International Symposium on Augmented Reality, 2001.

[17] G.S.Blair, et. al., “The Design and Implementation of Open ORB 2”, IEEE Distributed
Systems Online, Vol.2, No.6, 2001.

[18] Andrew T. Campbell, Herman G. De Meer, Michael E. Kounavis, Kazuho Miki, John
B. Vicente, Daniel Villela, “A Survey of Programmable Networks”, ACM SIGCOMM
Computer Communications Review, Vol.29, No.2, 1999.

[19] A.K.Dey, G.D.Abowd, D.Salber, “A Conceptual Framework and a Toolkit for Support-
ing the Rapid Prototyping of Context-Aware Applications”, Human-Computer Interac-
tion, Vol.16, No.2-4, 2001.

[20] Nathaniel I. Durlach and Anne S. Mavor. “Virutal Reality : Scientific and Technological
Challenges” National Academy Press (1995). ISBN 0-309-05135-5

[21] N. Gershenfeld, “When Things Start to Think”, Owl Books, 2000.

[22] Steven Feiner, Blair MacIntyre, and Doree seligmann. “Knowledge-based Augmented
Reality”, Communications of the ACM 36, 7 (July 1993) , 52-62

[23] Andy Hopper, “Sentient Computing”, In the Clifford Paterson Lecture, volume 358,
pages 2349-2358, Phil. Trans. R. Soc. Lond., September 1999

[24] Anantha R. Kancherla, Jannick P. Rolland, Donna L. Wright, and Grigore Burdea.
“A Novel Virtual Reality Tool for Teaching Dynamic 3D Anatomy”, Proceedings of
Computer Vision, Virtual Reality, and Robotics in Medcine ’95 (CVRMed ’95) April
1995.

[25] Diego Lopez de Ipina and Sai-Lai Lo, “LocALE: a Location-Aware Lifecycle Envi-
ronment for Ubiquitous Computing”, In Proceedings of the 15th IEEE International
Conference on Information Networking (ICOIN-15), 2001.

[26] T.Nakajima, “System Software for Audio and Visual Networked Home Appliances on
Commodity Operating Systems”, In Proceedings of the IFIP/ACM International Con-
ference on Distributed Systems Platforms, 2001.

[27] T.Nakajima, H.Ishikawa, E.Tokunaga, F. Stajano, “Technology Challenges for Building
Internet-Scale Ubiquitous Computing”, In Proceedings of the Seventh IEEE Interna-
tional Workshop on Object-oriented Real-time Dependable Systems, 2002.

[28] T.Nakajima, “Experiences with Building Middleware for Audio and Visual Netwoked
Home Appliances on Commodity Software”, ACM Multimedia 2002.

BIBLIOGRAPHY 59

[29] OMG, “The Common Object Request Broker Architecture: Architecture and Specifi-
cation”, October 1999

[30] OMG, “Final Adopted Specification for Fault Tolerant CORBA”, OMG Technical Com-
mittee Document ptc/00-04-04, Object Management Group (March 2000).

[31] C.Pinhanez, “The Everywhere Display Projector: A Device to Create Ubiquitous
Graphical Interfaces”, In Proceedings of Ubicomp’01, 2001.

[32] K.Raatikainen, H.B.Christensen, T.Nakajima, “Applications Requirements for Middle-
ware for Mobile and Pervasive Systems”, Mobile Computing and Communications Re-
view, Octorber, 2002.

[33] Jun Rekimoto, “Augmented Interaction: Interacting with the real world through a
computer” , HCI International, 1995.

[34] Mihran Tuceryan , Douglas S. Greer, Ross T, et. al., “Calibration Requirements and
Procedures for Augmented Reality”, IEEE Transactions on VIsualization and Computer
Graphics 1, 3 (September 1995), 255-273

