
Implementing Actions
Tijs van der Storm

ii

c© 2003 Tijs van der Storm

Cover image taken from: Franciszka Themerson, The Way it Walks, Gaberboc-
chus/Turret, London, 1988. Subscriptum:

When a person does something voluntarily, in the sense that he does
it on purpose or is trying to do it, his action certainly reflects some
quality or qualities of mind, since (it is more than a verbal point to
say) he is in some degree minding what he is doing.
Gilbert Ryle, The Concept of Mind, p. 74.

iii

Implementing Actions
Tijs van der Storm

Universiteit van Amsterdam
Faculteit der Natuurwetenschappen, Wiskunde en Informatica (FNWI)
Afstudeerrichting: Programmatuur
Afstudeerdocent: Prof.dr. P. Klint

iv

v

. Think of the tools in a tool-box: there is a hammer, pliers, a
saw, a screw-driver, a rule, a glue-pot, glue, nails and screws.—The
functions of words are as diverse as the functions of these objects.
(And in both cases there are similarities.)

Of course, what confuses us is the uniform appearance of words
when we hear them spoken or meet them in script and print. For
their application is not presented to us so clearly. [...]

. What we call “descriptions” are instruments for particular
uses. Think of a machine-drawing, a cross-section, an elevation with
measurements, which an engineer has before him. Thinking of a
description as a word-picture of the facts has something misleading
about it: one tends to think only of such pictures as hang on our
walls: which seem simply to portray how a thing looks, what it is
like. (These pictures are as it were idle.)

Ludwig Wittgenstein, Philosophical Investigations

vi

Foreword

When I arrived at Paul Klint’s office to initiate a graduation project, I had no
idea what the subject of my thesis should be. I asked Paul if he had any ideas.
When he mentioned Action Semantics and described it as a user friendly formal-
ism to define programming languages I became enthusiastic. Being interested in
programming languages in general and Asf+Sdf in specific, Action Semantics
seemed perfect. It was decided to start the development of an interpreter for
Action Notation. If this turned out to be easy, the implementation of a compiler
would be the next step. Eventually the result comprised three interpreters and
three compilers. My enthusiasm had become almost relentless. Friends of mine
reminded me that I had called this thesis’ subject “the best possible”,—I must
surely have been drunk. Nevertheless I enjoyed working on Action Semantics
very much and this is partly due to the support I received from a number of
people.

First of all I want to thank Paul Klint for proposing the subject of this thesis.
He was always available to monitor the direction of my work, even when I kept
failing his mild deadlines. Paul was also the one who now and then reminded
me to pace down a little. Without him this thesis would never have arrived
at the final stage. Finally it was through him that I received the invitation
of Peter Mosses (the founding father of Action Semantics) to take part in a
workshop on Action Semantics in Kopenhagen. Participating in the workshop
was very stimulating and I thank both Peter and Paul for the opportunity and
confidence.

Jurgen Vinju was always there when I had problems with or questions about
the Asf+Sdf Meta-Environment. This was both useful as well as inspiring. We
also had discussions about science in the large (including the humanities) and
software engineering in particular,—this put things in perspective again.

Finally I want to thank Susanna, my love, who has been a constant source
of support. She never complained when I worked a night through and always
showed genuine interest when I tried to explain Action Semantics. Thank you.

viii

Contents

1 Introduction 1

2 Introducing Action Semantics 3
2.1 Introduction . 3
2.2 Background of Action Semantics 3

2.2.1 The new Proposal: AN2 4
2.3 Action Semantics for Pico− . 5

2.3.1 Structure of the Specification of Pico− 5
2.3.2 Expressions . 7
2.3.3 Statements . 8
2.3.4 Declarations . 10
2.3.5 Programs . 10

2.4 Example Pico− Program . 11

3 AN2 Tools: Overview 13
3.1 Introduction . 13
3.2 Action Semantics for Dummies 14
3.3 Execution by Term Rewriting . 15

3.3.1 Kernel AN2 in Asf+Sdf 16
3.3.2 Action Rewriting in C . 17
3.3.3 Comparing evalan and acr 18

3.4 Compilation to Java and C . 19
3.4.1 Action Functors . 19
3.4.2 Enactables . 20
3.4.3 Comparing acc and ajc 21

3.5 Action Intermediate Language 21
3.5.1 AIL Runtime Environment 23
3.5.2 Mapping AN-K to AIL . 24
3.5.3 Simple Optimization of AIL 25
3.5.4 Assessing avm . 25

3.6 Conclusions and Discussion . 26
3.6.1 Discussion . 27
3.6.2 Conclusions . 28
3.6.3 Future Work . 29

x CONTENTS

4 Rewriting Actions 31
4.1 Introduction . 31
4.2 Implementing MSOS in Asf+Sdf 32

4.2.1 Crash Course in Modular SOS 32
4.2.2 Functional Implementation 33
4.2.3 Modularity of evalan . 35

4.3 Term Rewriting Actions in C . 37
4.3.1 Preliminaries . 37
4.3.2 Design of acr . 37
4.3.3 Extension of acr . 39

5 Compilation of Actions 41
5.1 Introduction . 41
5.2 Layered Compilation . 41

5.2.1 acc as an Example . 41
5.2.2 Some Notes about Genericity 46

5.3 ACC Internals . 47
5.3.1 Overview . 47
5.3.2 Reflection: Lightning . 48

5.4 Java Runtime Architecture . 50
5.4.1 Overview . 50
5.4.2 Data Notation . 51
5.4.3 Reflection: Enactables . 51
5.4.4 Multi Threading . 53
5.4.5 Issues Concerning Java as a Target 54

6 AIL Internals 55
6.1 Introduction . 55
6.2 Generic Scaffolding for Virtual Machines 56

6.2.1 Preliminaries . 56
6.2.2 AIL Definitions . 57
6.2.3 Bytecode Generation . 57
6.2.4 Interpretation . 58
6.2.5 Compilation for Free . 58

6.3 Using AIL: an Example . 60
6.3.1 Overview . 61
6.3.2 AIL Signature . 61
6.3.3 Generated Code . 62

6.4 AIL for Actions . 64
6.4.1 Overview . 64
6.4.2 Translating AN2 to AIL 65

7 Conclusions 71
7.1 Questions Answered . 71
7.2 Discussion: What Use Is It Anyway? 74
7.3 Future Work . 75

Appendix 77

Bibliography 78

List of Figures

2.1 Import structure of the Pico− specification 6
2.2 Data Flow Diagram for unfold 9

3.1 Recursive Fibonacci in AN-K . 15
3.2 Interaction of term rewriting tools 16
3.3 Compilation of AN-K to Java resp. C 19
3.4 Compilation of Actions to AIL 22
3.5 Transfer graph relating stacks and registers 24
3.6 Recursive Fibonacci in AIL . 26
3.7 Execution times in seconds for Recursive Fibonacci executed us-

ing evalan and acr. 28
3.8 Execution times in seconds for Recursive Fibonacci executed us-

ing acc, ajc and avm . 29

4.1 Interaction of term rewriting tools 31
4.2 Fragment of Kernel AN2 specification in Asf+Sdf 34
4.3 Adding complex numbers to evalan 36
4.4 Top level reduce algorithm with scheduling 38

5.1 Compilation of AN-K to Java resp. C 41

6.1 Compilation of Actions to AIL 55
6.2 Interaction of AIL tools for RPN 61
6.3 Example looping action in AIL 67
6.4 Control Flow of Example Action with Input 3 68
6.5 ‘Tail-recursive’ Version of the Example Action in AIL 69

xii LIST OF FIGURES

List of Tables

2.1 Kernel AN2 . 5

3.1 Subset of AIL Instructions . 23

4.1 Basic Label Categories . 32

6.1 Translating Kernel AN2 to AIL 65

7.1 Size Metrics for AN2 Components 72
7.2 Assessment of approaches to executing Actions. 73

xiv LIST OF TABLES

Chapter 1

Introduction

To introduce this thesis, let’s highlight some position statements taken from a
paper What Use Is Formal Semantics? [35] by Peter Mosses. The paper can be
seen as a practical assessment of the various semantical formalisms that exist.
Mosses states that in contrast to formal syntax, formal semantics is “almost
never used in practical applications”. The fact is surprising since formal seman-
tics is practised widely in the theoretical realm of computer science as well as in
education. The reason seems to be the lack of user-friendliness of most seman-
tic frameworks. Mosses concludes that user-friendliness of semantic frameworks
encourages practical use of formal semantics. Among user-friendly features are:
modularity, compositionality and readability. For example, neither denotational
nor Structured Operational Semantics (SOS) is modular. Operational Seman-
tics in general is not compositional; denotational semantics is compositional but
is very unreadable (large λ-terms) and original computational concepts are hard
to recover. Mosses states that Action Semantics might be a good candidate for
practical use, since it combines all these features. Now the question emerges:
“Well, is Action Semantics really usable in practical applications?”

That is the question this thesis tries to answer.
To answer this question we have to elaborate a little on the meaning of

use, because the possible uses of semantics are manifold. One can think of
prototyping a new language, documenting an existing language in a precise way
or proving properties about the language using the semantics. In this thesis
we are concerned with the generation of compilers and interpreters from Action
Semantic descriptions. At the same time we concentrate on the practical use of
Action Semantics as a formal framework for the definition of Domain Specific
Languages (DSLs) [10, 11, 12, 13]. All the other uses of Action Semantics stand,
of course, unaffected.

In a nutshell, the key questions are:

• Is the new Action Notation a good starting point to generate interpreters
and compilers from language descriptions?

• What are the options of carrying out the task of generating a compiler or
interpreter? Which strategies lead to the most practical solutions?

• How can the generated tools be embedded in existing software environ-
ments?

2 Introduction

During the design and implementation of the tools we focussed on a number of
aspects that we deemed important ‘side effects’ of our research question:

• Deployment: generated tools should be as deployable as possible. First
this means that the tools should be platform independent. Secondly con-
nection to other software (e.g. user interfaces, file systems, databases etc.)
must be possible without much effort.

• Engineering: the compilers and interpreters should be relatively main-
tainable. Due to the possible changes in the Action Notation and Data
Notation it should be easy to change or adapt the tools.

• Performance: last but not least, the tools derived from semantic descrip-
tions should be reasonably efficient.

Organisation

Some notes about the organization of this thesis are in order. The next chapter
provides an introduction to the new Action Notation (AN2) and how it can be
used to define a small programming language. Chapter 3 is a revised version of
a paper that has appeared in the proceedings of AS2002,—a workshop held in
Kopenhagen in July 2002 as part of FLoC’02 [40]. The chapter surveys the tools
that have been developed and presents some performance results. The chapters
that follow can be seen as in depth discussions of the subjects covered in chapter
3. Chapter 4 dives into the technology of the two term rewriting approaches to
executing actions. It also provides a mild introduction to the theory of Modular
SOS. Then, in Chapter 5 the architecture of two compilers is described: acc
for compiling actions to C, and ajc which compiles action to Java. Chapter 6
deals with the compilation of actions to an intermediate bytecode format and
the involved machinery. Finally, the last chapter presents some conclusions.

Chapter 2

Introducing Action
Semantics

2.1 Introduction

This chapter provides some background to the practice of giving an action se-
mantics to a (simple) programming language, using Asf+Sdf. At the same
time the basic concepts of action semantics and the new Action Notation (AN2)
are explained. The toy language Pico−, a subset of the well known language
Pico, is used as an illustrating vehicle. First we present a global overview of
Action Semantics and the new Action Notation (AN2) and discuss some differ-
ences between the new AN2 and the old AN1. The second part of this chapter
is dedicated to the action semantic description of Pico−.

2.2 Background of Action Semantics

Action Semantics evolved from the need for a readable, yet formal, framework
for describing programming language semantics that was able to scale up to the
definition of real-life programming languages [29]. It particularly provided so-
lutions to a number of problems encountered with other semantics formalisms.
The most popular styles are operational semantics (small step and big step)
and denotational semantics. Action Semantics promises to be the best of both
worlds: a compositional semantics with a straightforward operational meaning.
As such it can be characterized as a hybrid approach to semantics. Furthermore,
Action Semantics particularly addressed pragmatic problems encountered with
denotational semantics. First of all, (prototype) implementations of program-
ming languages based on denotational semantics suffer from lack of performance.
In denotational semantics an abstract syntax tree is transformed into one big
lambda term the reduction of which is very costly. A related problem is that
original concepts of computation (such as storage updates) are hard to discern
in such lambda terms, which is an obstacle to analysis and optimization. Action
Semantics solves this problem by using concise, englishlike denotations which
capture precisely these concepts of computation: actions. This Action Nota-
tion thus enables better optimization opportunities when generating compilers

4 Introducing Action Semantics

and interpreters [9, 38, 8]. Another important pragmatic advantage of Action
Notation is its modularity, which encourages reuse and separation of concerns.

For the first version of action notation (AN1) unified algebras were used
to define abstract syntax and data operations [28]. Its semantics was defined
using regular SOS. Unified algebras also provided a formalism to write so called
Action Semantic Descriptions (ASDs) to define programming languages. In the
new proposed version of action notation (AN2), unified algebras are left behind.
The semantics of AN2 is defined in a new flavour of Structural Operational
Semantics: Modular SOS. This specification is presented in Casl which also al-
lows the definition of mixfix abstract syntax. The difference between MSOS and
conventional SOS lies in the fact that a labelled transition relation is defined be-
tween (abstract) syntax and computed values only; auxiliary structures (stores,
environments, etc.) are located on the labels of the transition relation. These
labels form arrows of a category. Two transitions are allowed to be adjacent,
when the two labels can be composed. The advantage of this way of dealing
with additional constructs is a high degree of modularity. When a language
changes, the MSOS specification can be modified accordingly without having to
reformulate every transition rule. We will dive a bit deeper into the theory of
MSOS when discussing the derivation of an interpreter in Asf+Sdf from the
specification of AN2 in MSOS.

2.2.1 The new Proposal: AN2

Although AN2 has not yet emerged from the stadium of proposal, it is suffi-
ciently rich to allow the description of most highlevel languages. Unlike the
older version of Action Notation (AN1) AN2 can be vertically divided in two
layers: Full AN2 and Kernel AN2 (AN-K). Full AN2 is defined by reduction
to AN-K. The kernel of AN2 is a lot smaller than Full AN2 and is defined in
Modular SOS. As a result the semantics of AN-K is a lot simpler and easier to
deal with than that of AN1 [27]. The facets that divided AN1 in a horizontal
way are still present in AN2, albeit slightly different.

1. Data and Control flow: functional computation, selection, exceptions.

2. Declarative: flow of bindings and scoping.

3. Reflective: actions as data, closure.

4. Imperative: effects on storage.

5. Interactive: processes and communication.

A difference with AN1 is that bindings are now included in the sort of individual
data values (the sort Datum). That means that binding a token to a value is
performed using data operations. Similarly, actions themselves are subsort of
Datum without the use of an abstraction operator.

The central concept of Action Semantics is the action. Actions can be atomic
or combined using prefix or infix combinators. If an action is performed it
may terminate. Atomic actions always terminate in one execution step, while
a combined action may take more steps if it terminates at all. If an action
terminates, it either terminates normally, exceptionally or failing. Actions that
terminate normally give data (given data). If an action terminates exceptionally,

2.3 Action Semantics for Pico− 5

Data- and Controlflow

provide d giving constant data
copy copying given data
A1 then A2 functional composition
A1 and then A2 sequential composition
A1 and A2 interleaving
indivisibly A2 anti-interleaving
raise raising an exception
A1 exceptionally A2 exceptional composition
A1 and exceptionally A2 exceptional sequential composition
give o computing dataoperations
check q testing datapredicates
fail abandoning an action
A1 otherwise A2 alternative composition
select (A1 or ... or An) nondeterministic choice
choose natural arbitrary choice

Scopes and Bindings

give current bindings current bindings as data
A1 hence A2 scoping of bindings

Reflection

enact performance of a given action
Storage

create allocating and initializing a cell
destroy deallocating a cell
update updating a cell
inspect inspecting a cell

Interactive processes

activate activating a new agent
deactivate deactivating an agent
give current agent current agent as data
send sending a message to an agent
receive receiving a message from an agent
give current time current time as data

Table 2.1: Kernel AN2

the action is said to raise data (raised data). The termination mode of an action
is called its outcome. Finally, all actions take given data as input. The complete
kernel of AN is displayed in Table 2.1. For the full AN abbreviations we refer
to the Appendix.

2.3 Action Semantics for Pico−

2.3.1 Structure of the Specification of Pico−

Pico− is a small language similar to While. It features integer expressions,
static (single) scoping, assignment, while statements, and if statements. The
only difference to ‘full’ Pico is the absence of string expressions. String ex-
pressions have been excluded because of a number of small pragmatic issues
that have to be solved which are irrelevant to the purpose of this chapter. The
specification of Pico− consists of eleven modules defining both syntax and se-

6 Introducing Action Semantics

Pico-Run

Pico-Execute Pico-DeclarePico-Program

Pico-EvaluatePico-Stats

Pico-Trans

Pico-Decls

Pico-Exps

Pico-Lex AN2

Pico-Types

Figure 2.1: Import structure of the Pico− specification

mantics. They are displayed in Figure 2.1. The solid boxes form the syntactic
modules, while the dashed boxes represent the modules containing the semantic
equations. The circled node AN2 represents all modules of evalan, the ac-
tion interpreter. Module Pico-Trans defines functions which translate various
lowlevel Pico−-sorts (integers, identifiers) to their action semantic counterparts.

Note that the definition of Pico− is not composed in the way as advocated
in [14]. In that approach, there is one module for each syntactic construct,
semantic entity, semantic function and semantic equation. The high degree of
modularity thus obtained allows programming languages to be defined just by
composing the appropriate modules. Although reuse of specifications has many
benefits, it is irrelevant for the purpose of this chapter. We have therefore
chosen to divide the definition of Pico− according to the different facets of the
language (lexical, functional, imperative and declarative).

In the following, the syntax of Pico− will be clear from the semantic equa-
tions that will be discussed. Furthermore, uppercase identifiers occurring in the
semantic equations denote variables.

2.3 Action Semantics for Pico− 7

2.3.2 Expressions

Expressions in Pico− consist of integer expressions and identifiers referring to
variables. For syntactic sorts of this kind a semantic function is declared in Sdf:

"evaluate" "[[" EXP "]]" -> Action

This function maps any (Pico−) expression to the sort containing all actions.
There are three kinds of expressions in Pico−: constant integer expressions,
variable references and arithmetic expressions. The semantics of the first kind
is the simplest: just provide the constant after translating it to an AN2 integer.

[ev-n] evaluate[[Int]] = provide integer of[[Int]]

Thus, evaluating a constant integer n means the same as the action provide n.
The translation function integer of[[]] is defined in the aforementioned mod-
ule Pico-Trans. It can be seen as a casting operator. There is one other casting
operator, token of[[]], which maps Pico−-identifiers to AN2 tokens.

The second kind of expressions are variable references. Their semantics is
defined as follows:

[ev-i] evaluate[[Id]] = inspect the cell bound to
token of[[Id]]

The meaning of the right hand side of this equation is perfectly clear due to the
use of Full AN2 syntax. The same action reduced to AN-K looks like:

give current bindings and provide token of[[Id]] then
give bound_ then give the cell_ then inspect

Action combinators all associate to the left, so there is no need for any parenthe-
ses in this action. The first combinator is and . An action A1 and A2 executes
A1 and A2 independently, and concatenates their results if they both terminate
normally. The other combinator is then , which is used to pass data. For an ac-
tion A1 then A2, the given data of A1 is taken by action A2. So, operationally,
this action reads: get the active set of bindings, and provide token id, then
retrieve the bound value, check that the given data is a cell and finally retrieve
the value stored at the given cell.

The last kind of expressions are arithmetic expressions. We only describe
the action semantics of + since (unsurprisingly) the semantics of − looks quite
the same.

[ev-p] evaluate[[Exp1 + Exp2]] =
evaluate[[Exp1]] and evaluate[[Exp2]] then
give (the int #1 + the int #2)

In this equation, the denotational character of action semantics becomes ap-
parent. The semantics of a composite expression is totally defined in terms of
the semantics of its parts. The part after then is again Full AN2 syntax. It
merely checks that the given data is a tuple of two integers and then performs
the addition.

8 Introducing Action Semantics

2.3.3 Statements

As opposed to expressions, statements are executed instead of evaluated. This
motivates a new semantic function:

"execute" "[[" SERIES "]]" -> Action

For convenience this function is defined on series of one or more statements.
Statements include assignment, if-then-else and while. Since booleans are absent
from Pico− we need a function to guard if- and while-statements:

"truth" "of" "[[" EXP "]]" -> Action

This function maps (integer) expressions to actions which evaluate to either true
or false.

The simplest statement is the assignment statement. Its semantics is defined
as:

[ex-as] execute[[Id := Exp]] =
give the cell bound to token of[[Id]] and
evaluate[[Exp]] then update

The kernel action constant update takes cell-value tuple and replaces the content
of the cell with the given value.

To execute an if-statement the guard expression is first converted to a truth
value. Depending on this value the appropriate series of statements is executed.

[ex-if] execute[[if Exp then Series1 else Series2 fi]] =
truth of[[Exp]] then infallibly select (
(given true then execute[[Series1]]) or
(given false then execute[[Series2]]))

The action prefix infallibly is a Full AN construct which ensures that the argu-
ment action will never fail. That is, if the select action should fail, an exception
is raised. Although a select (A1 or ...or An) action denotes non-deterministic
choice, the use of the two given guards makes it into a deterministic choice.

The semantics of the while construct looks very similar, except that the
choice action is surrounded by unfolding and the succeeding branch continues
with unfold to reenact the loop.

[ex-wh] execute[[while Exp do Series od]] =
unfolding (
truth of[[Exp]] then infallibly select (
(given true then execute[[Series]]

and then unfold) or
(given false then skip))

)

The and then combinator is used for sequential composition to make this an
imperative loop. The Full AN2 constructs unfolding and unfold have an
interesting reduction semantics.

unfolding(A) = give current bindings and
(provide ("unf", A) then

give binding_) then
give overriding_ hence A

2.3 Action Semantics for Pico− 9

This kernel action overrides the current bindings (locally) with a binding from
the special token unf to the argument action A and then executes A itself in
the context of these new bindings. The reduced version of unfold is slightly

give the data_

give current bindings

give provide_

normal d

give _hence_

give _then_

normal (provide d)

normal (provide d, provide b hence A)

give the action [,,,]give provide_

give bound_

give current bindings provide "unf"

normal b normal "unf"

normal (b, "unf")

normal Anormal b

normal (provide b) normal A

normal (provide b, A)

normal (provide b hence A)

enact

normal (provide d then (provide b hence A))

Figure 2.2: Data Flow Diagram for unfold

more complex. A new action is gradually constructed using reflection. This
constructed action contains the original action bound to token unf.

unfold = give the data_ then
give provide_ and
(give current bindings then

give provide_ and
(give current bindings and

provide "unf" then
give bound_ then
give the action[taking () giving bindings]_) then

give _hence_) then
give _then_ then
enact

Let A be the unfolding action containing unfold, d the data given to unfold and
b the active bindings. The action that eventually gets enacted is built up as
displayed in Figure 2.2. In the end, it is unfolding(A) that is enacted again,
this time with other data given to it.

10 Introducing Action Semantics

To complete the semantical description of statements, a definition for a series
of statements is needed:

[ex-sq] execute[[Stat ; Stat+]] =
execute[[Stat]] and then execute[[Stat+]]

Since statements do not return values, the sequential composition combinator
and then is used.

2.3.4 Declarations

Declarations in Pico− consist of an identifier and a type (natural) and are
located at the beginning of a program. There is thus only one global scope.
The following functions are used to map declarations to actions:

"declare" "[[" DECLS "]]" -> Action
"declare" "[[" ID-TYPES "]]" -> Action

The sort ID-TYPES contains lists of terms of the form id : type separated by
commas.

[dec1] declare[[declare Id-Types;]] = declare[[Id-Types]]
[dec2] declare[[]] = provide no bindings
[dec3] declare[[Id : Type, Id-Types]] =

provide nothing then create
then bind (token of[[Id]], the cell)
and declare[[Id-Types]] then give disjoint union

The first equation defines the semantics of a Pico− declaration section to be
just the same as the semantics of the declarations contained in it. Equation
[dec2] is the base case of the recursion over lists of Id : Type pairs. The real
work is done in the last equation. First the special data constant nothing is
provided, indicating that the variable Id is uninitialised. Then a cell is allocated
containing this value. The cell given by create is bound to the token of Id.
Finally, the resulting binding is disjointly united with the bindings produced by
the tail of the list. Note that no scoping constructs are used; the only concept
we are dealing with here are bindings as data. Should the single scope character
of Pico− change, these equations would not have to be modified.

2.3.5 Programs

The scope of declared variables is determined at the level of the program. The
semantic function for programs combines the functions for statements and dec-
larations. It is declared as:

"run" "[[" PROGRAM "]]" -> Action

There is only one simple equation for this function:

[run] run[[begin Decls Series end]] =
declare[[Decls]] hence execute[[Series]]

The action combinator hence makes the bindings given by declare[[Decls]]
available to the body of the program.

2.4 Example Pico− Program 11

2.4 Example Pico− Program

Now that an action semantic description of Pico− is available, we can translate
Pico− programs to actions. Consider the following program P , which computes
the 5th Fibonacci number in j:

begin
declare
n: natural,
i: natural,
j: natural,
k: natural;

n := 5; i := 1;
j := 0; k := 0;
while n - k do
j := i + j;
i := j - i;
k := k + 1

od
end

The evaluation of run[[P]] produces the following action:

provide ”nothing” then create then (provide ”n” and give the cell then
give binding) and (provide ”nothing” then create then (provide ”i” and
give the cell then give binding) and (provide ”nothing” then create then
(provide ”j” and give the cell then give binding) and (provide ”nothing”
then create then (provide ”k” and give the cell then give binding) and
provide no bindings then give disjoint union) then give disjoint union)
then give disjoint union) then give disjoint union hence (give current
bindings and provide ”n” then give bound then give the cell and provide
5 then update and then (give current bindings and provide ”i” then
give bound then give the cell and provide 1 then update and then (give
current bindings and provide ”j” then give bound then give the cell and
provide 0 then update and then (give current bindings and provide ”k”
then give bound then give the cell and provide 0 then update and then
(give current bindings and (provide (”unf”, give current bindings and
provide ”n” then give bound then give the cell then inspect and (give
current bindings and provide ”k” then give bound then give the cell
then inspect) then (give #1 then give the int and (give #2 then give
the int) then give −) then (give the int and provide 0 then (check
> exceptionally fail and copy)) then provide true otherwise provide false
then (select (give the data then give tupleToList and (provide true then
give tupleToList) then (check = exceptionally fail and copy) then (give
current bindings and provide ”j” then give bound then give the cell and
(give current bindings and provide ”i” then give bound then give the cell
then inspect and (give current bindings and provide ”j” then give bound
then give the cell then inspect) then (give #1 then give the int and
(give #2 then give the int) then give +)) then update and then (give
current bindings and provide ”i” then give bound then give the cell and
(give current bindings and provide ”j” then give bound then give the cell
then inspect and (give current bindings and provide ”i” then give bound
then give the cell then inspect) then (give #1 then give the int and

12 Introducing Action Semantics

(give #2 then give the int) then give −)) then update and then (give
current bindings and provide ”k” then give bound then give the cell and
(give current bindings and provide ”k” then give bound then give the cell
then inspect and provide 1 then (give #1 then give the int and (give
#2 then give the int) then give +)) then update))) and then (give
the data then give provide and (give current bindings then give provide
and (give current bindings and provide ”unf” then give bound then give
the action[taking () giving bindings]) then give hence) then give then
then enact) or give the data then give tupleToList and (provide false
then give tupleToList) then (check = exceptionally fail and copy) then
provide ()) otherwise (provide () then raise))) then give binding) then
give overriding hence (give current bindings and provide ”n” then give
bound then give the cell then inspect and (give current bindings and
provide ”k” then give bound then give the cell then inspect) then (give
#1 then give the int and (give #2 then give the int) then give −)
then (give the int and provide 0 then (check > exceptionally fail and
copy)) then provide true otherwise provide false then (select (give the
data then give tupleToList and (provide true then give tupleToList)
then (check = exceptionally fail and copy) then (give current bindings
and provide ”j” then give bound then give the cell and (give current
bindings and provide ”i” then give bound then give the cell then inspect
and (give current bindings and provide ”j” then give bound then give the
cell then inspect) then (give #1 then give the int and (give #2 then
give the int) then give +)) then update and then (give current bindings
and provide ”i” then give bound then give the cell and (give current
bindings and provide ”j” then give bound then give the cell then inspect
and (give current bindings and provide ”i” then give bound then give
the cell then inspect) then (give #1 then give the int and (give #2
then give the int) then give −)) then update and then (give current
bindings and provide ”k” then give bound then give the cell and (give
current bindings and provide ”k” then give bound then give the cell
then inspect and provide 1 then (give #1 then give the int and (give
#2 then give the int) then give +)) then update))) and then (give
the data then give provide and (give current bindings then give provide
and (give current bindings and provide ”unf” then give bound then give
the action[taking () giving bindings]) then give hence) then give then
then enact) or give the data then give tupleToList and (provide false
then give tupleToList) then (check = exceptionally fail and copy) then
provide ()) otherwise (provide () then raise))))))))

How to execute this action is surveyed in the next chapter.

Chapter 3

AN2 Tools: Overview

An earlier version of this chapter has been published as [40] in [34].

3.1 Introduction

Action Semantics is a formal, readable and modular formalism for the definition
of programming languages. As such it greatly improves the maintainability and
reuse of language definitions. However, given such pragmatic advantages over
other semantic formalisms, we would like to be able to use the languages de-
fined using action semantics. In this chapter we explore strategies for executing
actions. These strategies comprise: execution by term rewriting, compilation
to Java and C, and using an intermediate language. We have focussed on the
following issues:

Generality The tools to execute actions should support the full kernel of AN2.
This includes the interacting facet as well as reflection.

Self-containment Compiled actions should be a self-contained black box which
can be subject to reflection (as provided by AN2).

Deployability It should be an easy job to embed actions, either interpreted or
compiled, into existing software environments.

Extendibility Users should be able to extend interpreters or specialize com-
piled actions to their needs. Furthermore, the specifications of the com-
pilers and interpreters themselves should be maintainable enough to allow
(future) extensions or changes.

Portability There should be no restriction as to the platforms that are sup-
ported by the interpreters and compilers.

Efficiency Although not a primary goal, the performance of executing actions
should be reasonable.

From these desiderata one can deduce that we deem the software engineering
aspects of executing actions most important. This is a natural consequence of
our view that action semantics is not only a formalism to define the mathemat-
ical semantics of programming languages, but also a language to define domain
specific languages.

14 AN2 Tools: Overview

Organization First we give a very short introduction to the new Action No-
tation and discuss some distinctive features. In Section 3.3 we describe the term
rewriting strategy which is divided in two parts. First we use the Asf+Sdf
Meta-Environment to derive a term rewriting system from the Modular SOS
definition of the kernel of AN2 (AN-K). The second part discusses the pros
and cons of reimplementing this term rewriting system by hand in C. In the
next section we discuss a way to compile actions to C and Java. Section 3.5
describes the intermediate language approach. We conclude with assessment of
the strategies presented, and a discussion of related work.

3.2 Action Semantics for Dummies

In this section1 we give a short introduction to the new Action Notation [24, 32].
The central concept of action semantics is the action. An action is a compu-

tational entity that takes tuples of data and gives tuples of data. Actions can be
primitive (e.g. computing a data operation, updating a cell) or combined using
combinators that capture the various flows of data and control. For example: the
then combinator is used for functional composition. This means that in action
A1 then A2 the data given by A1 is passed as input to A2. Other combina-
tors exist for sequential composition, interleaved composition, non-deterministic
choice etc. Actions are able to terminate in three ways: normal, exceptional or
failing. Normal and exceptional termination is accompanied by a data value
(given resp. raised data). Combinators such as exceptionally and otherwise
can be used to trap non-normal termination. For example: the action raise
exceptionally provide () will terminate normally and give the empty tuple as
result.

Action Semantics is divided over a number of so called facets which capture
different ways of information processing. For instance, the functional facet con-
sists of all actions having to do with information flow without side effects. Side
effects are covered in the imperative facet. One of the distinctive differences be-
tween the AN1 and AN2 is that for the latter the facet responsible for the flow
of bindings is included in the functional facet. That is, bindings have become a
subsort of Datum (the sort of individual values) and can be processed as such by
actions. There is only one basic combinator that deals with bindings: hence.
Consider the action A1 hence A2. If A1 terminates normally with bindings
as a result, these bindings become available in A2. The primitive action give
current bindings returns the current set of bindings as data. It is then possible
to obtain bound values using specific data operations.

Although facets were present in AN1, AN2 additionally distinguishes two
levels of notation: Full AN2 and Kernel AN2 (AN-K). The semantics of Full
AN2 is defined in terms of AN-K. As a consequence, AN-K is the only level tool
support has to deal with to obtain full generality. Many familiar constructs from
AN1 are now defined in terms of AN-K actions using reflection. Reflection in
this case amounts to the dynamic construction of actions using combinators, as
opposed to inspection of actions (like reflection in Java). The concept is simple,
yet very powerful. The idea is that the sort of actions is subsort of Datum and
consequently all action combinators are data operations. Consider for example

1This section repeats material from Chapter 2.

3.3 Execution by Term Rewriting 15

give current bindings and (provide ("unf", copy and provide 0 then (check
= exceptionally fail) then provide 1 otherwise (copy and provide 1 then
(check = exceptionally fail) then provide 1) otherwise (copy and provide
2 then give - then (give the data then give provide and (give current
bindings then give provide and (give current bindings and provide "unf"
then give bound then give the action [taking () giving bindings]) then give
hence) then give then then enact) and (copy and provide 1 then give -
then (give the data then give provide and (give current bindings then give
provide and (give current bindings and provide "unf" then give bound then
give the action [taking () giving bindings]) then give hence) then give
then then enact)) then give +)) then give binding) then give overriding
hence (copy and provide 0 then (check = exceptionally fail) then provide 1
otherwise (copy and provide 1 then (check = exceptionally fail) then provide
1) otherwise (copy and provide 2 then give - then (give the data then give
provide and (give current bindings then give provide and (give current
bindings and provide "unf" then give bound then give the action [taking ()
giving bindings]) then give hence) then give then then enact) and (copy
and provide 1 then give - then (give the data then give provide and (give
current bindings then give provide and (give current bindings and provide
"unf" then give bound then give the action [taking () giving bindings]) then
give hence) then give then then enact)) then give +))

Figure 3.1: Recursive Fibonacci in AN-K

the following Full AN2 action which computes the Fibonacci number for a given
integer:

unfolding(
(copy and provide 0 then (check _=_ exceptionally fail) then provide 1)
otherwise
(copy and provide 1 then (check _=_ exceptionally fail) then provide 1)
otherwise
((copy and provide 2 then give _-_ then unfold) and
(copy and provide 1 then give _-_ then unfold) then give _+_)

)

The same action reduced to AN-K is displayed in Figure 3.1. Note how the
behaviour of unfolding and unfold is mimicked by binding the special token
“unf” and employing reflection to inline the unfolded body.

We will use the AN-K action displayed in Figure 3.1 to assess the runtime
performance of the tools presented here as a running example. Furthermore, it
gives a good impression of what kind of input we are dealing with here. As we
require full support of the kernel of AN2, all tools presented here are able to
execute this action in its kernel form without any knowledge of the higher level
constructs behind it.

3.3 Execution by Term Rewriting

In this section we will review two term rewriting approaches to the problem of
executing actions. In the first approach we used the Asf+Sdf-formalism [23,
5] to specify the semantics for the kernel using conditional equations which
are very close to the Modular SOS transitions of AN2 [32]. An interpreter is
obtained by viewing these equations as rewrite rules. The second approach is a
reimplementation in C of the derived term rewriting system.

In Figure 3.2 the interactions between the various translators and inter-
preters are displayed using T-diagrams [15]. The primary input is a program P
written in language L. This program is translated to a kernel action by some
specification in Asf+Sdf. The resulting kernel action can be executed directly

16 AN2 Tools: Overview

AN−K

P

AN−K

evalan

AN−K AST
implode

P

AST

acr

C

C

ASTAN−KLL

P

Asf+Sdf

Asf+Sdf

Figure 3.2: Interaction of term rewriting tools

by evalan, the Action Notation interpreter implemented using Asf+Sdf. Sec-
ondly, an implosion step converts an AN-K parse tree to an abstract syntax
tree (AST)2. The resulting AST can then be executed by the action rewriter
acr which is implemented in C.

3.3.1 Kernel AN2 in Asf+Sdf

Since the semantics of Kernel AN2 is defined operationally, Asf+Sdf is a useful
tool for specifying it. The marriage of Sdf to Asf enables one to write con-
ditional equations on terms using concrete syntax. Directing these equations
gives rise to a (derived) term rewriting system, which can be compiled to an
efficient standalone tool. The interpreter evalan is such a specification. The
specification of evalan consists of roughly eighty modules defining both syntax
and semantics of data and actions. To actually see how the Modular SOS tran-
sition relations are translated to Asf+Sdf, let’s compare one of the relations
defining the then combinator in Casl and Asf+Sdf. If the left hand operand
to then has terminated normally, the following transition rule applies:

α′ = α[d1/data] ∧A2
α′

−→ A′
2

normal d1 then A2
α−→ normal d1 then A′

2

The transition declares that d1 is known during the one-step execution of A2

in the data field of label α′ . In Asf+Sdf this transition is defined in one
(conditional) equation:

2This step is provided for by a tool accompanying Asf+Sdf: implodePT. Since this tool is
provided as is, the implementation language (C) is in fact irrelevant.

3.3 Execution by Term Rewriting 17

[sos4] s’ = s[d1/data],
s’ |- A2 = <A2’, s’’>
===
s |- normal d1 then A2 = <normal d1 then A2’, s/s’’>

Since Asf+Sdf has no notion of truth and we want our specification to be
executable, assertions are replaced with equations that faithfully represent the
intended semantics of the Casl specification. The concept of a Modular SOS
label (an arrow of a category) is mimicked by passing a state (an object of a
category) throughout the evaluation of · ` · and an operator ·/· which prohibits
the observation of local changes. The equation assigns a new state s′ updated
with d1 in the data field of s which is passed to the one step execution of A2.
This results in a residual and a (possibly modified) state s′′. The result of the
equation is a tuple of the original action with A′

2 substituted for A2 and the
observable fields of the new state.

The transitive closure of the one step equations is defined as usual. Since we
use the ·/· operator in appropriate places, bindings and transients are local to
one step execution equations. The transitive closure thus only allows observable
information to be observed.

The interpretation function to perform an action A with input d is now
defined as follows:

perform(A, d) = ε `+ normal d then (normal no bindings hence A)

In this equation ε denotes the initial state.

3.3.2 Action Rewriting in C

Although Asf+Sdf provides a useful framework for specifying the semantics of
Kernel AN there are some drawbacks. Since term rewriting is the only compu-
tational device Asf+Sdf (currently) supports, even the most primitive opera-
tions are to be specified using equations. For instance addition of two integers
is computed in a term rewriting fashion. Of course we would like to use native
support to compute integer operations to speed up execution. The same holds
for updating of stores, rotating the schedule and so on. Furthermore, Asf+-
Sdf’s capabilities seemed far too general for our purposes: since signatures are
described by production rules in Sdf we had to devise concrete syntax for all
auxiliary structures such as stores, bindings, finite maps etc. Disambiguation
of all these sorts—using syntactic sugar—hindered a perspicuous implementa-
tion even more. Finally, we thought we could improve upon the performance
of evalan. These considerations taken together, led to the decision to reimple-
ment the term rewriting system by hand in C. Having a valuable prototype in
Asf+Sdf and the ATerm library [7] to implement a data notation, this was not
a hard job.

Acr takes an Abstract Syntax Tree as input. The algorithm traverses the
tree in a Modular SOS fashion: the traversal is directed by combinators, until
a subtree can be collapsed. The tree thus decreases in depth in a bottom up
fashion, while traversing it top down for each step. The main difference between
acr and evalan is that acr employs term rewriting only to reduce combined
actions. All primitive actions (including data operations and predicates) are

18 AN2 Tools: Overview

hardcoded in C. Especially for interacting actions the performance gain is ex-
pected to be more than marginal since no matching is involved in rotating the
schedule (and this is likely to occur very often).

3.3.3 Comparing evalan and acr

Since both acr and evalan traverse the action tree for each computational step,
the complexity of the reduction algorithm should be roughly the same. How-
ever, primitive actions such as updating a cell have complexity O(1) in acr.
The complexity of primitive actions in evalan depends on the data structures
involved. For example, updating a cell in evalan will cost O(n) in the worst
case, where n is the number of allocated cells. This is due to the fact that finite
maps in Asf+Sdf are essentially lists of tuples. To assess the influence of these
primitive actions more concretely, we compared the performance the of the Fi-
bonacci action presented earlier and an iterative version. The results show that
acr is on average two times as fast as evalan for the recursive algorithm. Since
no imperative actions are used and bindings are implemented using bounded
balanced trees [1] both in acr and evalan this can only be accounted for by
the arithmetic operations and the more complex matching of terms in evalan.
For the iterative Fibonacci algorithm we see that for larger values of n (≈ 100)
evalan takes considerably more time than acr and this difference is growing
fast. Again term rewriting of arithmetic is probably the cause of this.

Remark The fact that acr traverses the tree and constructs new ones on the
way up for each step, could have been avoided by using a different tree represen-
tation. (Abstract) Syntax trees resulting from Asf+Sdf related components
are always represented by ATerms which allow no destructive updates (copy-
on-write semantics). Using a tree representation that would allow destructive
updates on subterms, an executing agent could have been represented by a cur-
sor walking over the tree, collapsing and creating trees only locally. However,
there is one ’small’ problem to this approach: syntax trees would need an enor-
mous amount of memory compared to the corresponding ATerm, since ATerms
are maximally shared. Precisely this problem of explosion in size has been one
of the reasons for making ATerms maximally shared [7].

Assessment While experiments show that acr is generally faster than evalan,
the handcoded approach has a number of disadvantages. First, acr uses a fixed
length representation for integers. Thus, integer values are restricted to the size
native to the machine acr is running on. A related problem is that the used
data notation of acr is hard to extend by the user. For evalan one has the full
algebraic power of Asf+Sdf available to extend the interpreter with arbitrary
data types. This is achieved using an interface mechanism. If a user specifies
his own data constructors and data operations one can extend the interpreter
by complying to this interface and adding his equations to the equations of
the evalan specification. Using the interface the interpreter can “know” about
foreign data constructs. The meaning of the data operations is specified using
the generic result function which is used by evalan to execute give o ac-
tions. Depending on the importance of full generality and extendibility it might
not be such a good idea at all to reimplement the term rewriting system by

3.4 Compilation to Java and C 19

hand. Moreover, acr has been designed to primarily optimize non-functional
aspects such as scheduling and store updates, so for purely functional actions
the performance penalty induced by evalan is expected to be relatively small
and constant (as is corroborated by the comparison of recursive Fibonacci).

3.4 Compilation to Java and C

P

C

P

AN−K
acc

Asf+Sdf

AN−K C

P

ajc
java

P

AN−K javaAN−K

Asf+Sdf

Figure 3.3: Compilation of AN-K to Java resp. C

In this section we describe ways to compile actions to Java and C. In Figure
3.3 the compilers acc and ajc are depicted using T-diagrams. Both compilers
are implemented using Asf+Sdf. As before, we only consider kernel notation,
with the exception of unfoldings which are detected by ajc. For the compilation
to C we restrict ourselves to single threaded actions. We require our compiled
actions to be self-contained and compositional. Self-containment allows for easy
deployment of actions, while compositionality ensures the possibility of (off line)
reflection. To achieve these requirements, we introduce Action Functors in C and
Enactables in Java. Both are interfaces (signatures) to which compiled actions
should comply. Since we require that reflection is supported, this opens the way
to separate compilation of actions (even from different source languages) and
then combining them into one. Furthermore, in Java, an action implementing
the Enactable interface can also implement the standard Serializable interface,
which makes it possible to store actions on file or send it over a network con-
nection.

First we describe acc, the action to C compiler. We then compare this
compiler to ajc, the java compiler.

3.4.1 Action Functors

An Action Functor in C is a type definition describing a function that represents
an action, that is, a function that transforms data and bindings into data, while
perhaps referencing cells. Its definition in C is as follows:

typedef AN Data (∗ACCFunctor)(AN Data,AN Data);

The acc runtime library defines all Kernel AN2 primitive actions in such a way
that they obey this function type. The compiler translates an action tree by
mapping each subtree to an Action Functor. So for example Ai0 then Ai1 at
position i in the tree is compiled to:

20 AN2 Tools: Overview

AN Data actioni(AN Data data, AN Data bindings) {
register AN Data temp = actioni0(data, bindings);
return actioni1(temp, bindings);

}

One would expect that this way of compiling actions to C would result in ineffi-
cient code, since the number of function calls is more or less equal to the number
of nodes in the action tree. However, we have experimented with different com-
pilation schemes (such as using intermediate variables in one big function, or
exploiting the runtime stack) but they, suprisingly, all turned out to be slower
than the compilation scheme presented here. This is probably due to sophisti-
cated optimizations of GCC which break down in the latter cases.

To cope with exception handling and (non deterministic) choice we use a
choice point library which allows non-local jumps at a very high level [26]. To
illustrate this, the code for Ai0 exceptionally Ai1 looks like this:

AN Data actioni(AN Data data, AN Data bindings) {
if (!ACC try())

return actioni0(data, bindings);
else {

register AN Data temp = ACC catch exception();
return actioni1(temp, bindings);

}
}

Here ACC try returns 0 when setting the choice point and returns 1 when
actioni0 raised an exception or failure. In the else branch ACC catch exception
returns the raised data in case of an exception and rethrows a failure otherwise.
When an exception or failure occurs all registers and local variables are restored.

Now, the hard part is, of course, reflection. To accomplish real reflection
in a portable way, we employed Paolo Bonzini’s GNU Lightning. Lightning
has been designed to implement fast just-in-time compilers, and has been used
as such in GNU Smalltalk. It provides a set of macros that define a generic
assembly language. These macros allow a programmer to build ordinary C
functions at runtime for a number of platforms (i386, Sparc and PowerPC).
Data operations defined on action operands are implemented by this runtime
assembler, specialized for Action Functors. Since any action may be operand
to, e.g. then we have to ensure that all actions present in the runtime have
the function type defined earlier. Currently, acc does not yet detect unfoldings
to prevent reflection at runtime, but a memotable prohibits the construction of
an action for each pass through a loop.

3.4.2 Enactables

Enactables are the Java equivalent of Action Functors. Enactables are classes
that implement the Enactable interface. This interface declares one method
enact, accepting Data and Bindings and returning Data. Enactables can be
embedded in Action classes which are subject to reflection. The compilation to
Java proceeds much in the same way as for acc, except that ajc generates a class

3.5 Action Intermediate Language 21

implementing the Enactable interface for the top action, and private methods for
each subaction. Provided actions are compiled to an inner class implementing
the Enactable interface. The action data operations receive Action instances
that are constructed from Enactables. This way it is easy to combine compiled
actions with hand written Java classes. Another difference is the implementation
of the data notation. Since the subclass concept resembles the subsort relation
in AN2, implementation of the basic data types was straightforward. Runtime
type checks are performed using standard casting operators of Java. The Data
Notation is implemented using the Factory design pattern [18] to allow future
changes3 to the representation of values.

3.4.3 Comparing acc and ajc

Since acc and ajc compile actions almost in the same way, the comparison in
performance between C-compiled actions and Java-compiled actions does not
say us much about the compiler, but more about the difference between C and
Java as a target. Generally speaking, the recursive fibonacci action compiled
to C executes approximately 2.5 times faster than the same action compiled to
Java. For the iterative version this factor is close to 5.

Assessment It is obvious that actions compiled to C are more efficient than
actions compiled to Java. However, the actions in Java have a number of impor-
tant pragmatic advantages. It is our view that these advantages outweigh the
performance penalty by far. This is motivated by the following observations:

• First of all the slogan “compile once, run anywhere” applies here.

• The use of the Enactable interface allows the combination of compiled
actions with arbitrary Java code. This is also possible for actions compiled
to C but the process is more tricky and less type safe.

• For extension or specialization of compiled actions one has the complete
Java runtime library at one’s disposal.

• Java classes are mobile. E.g. sending compiled actions over a network
connection using serialization should pose no problem.

• Object Orientation alleviates the burden of changing and/or maintaining
the ajc runtime library. Since the java runtime library contains a host
of standard data structures the supported data notation can be extended
uniformly.

3.5 Action Intermediate Language

It is evident that the way action trees are reduced in the term rewriting paradigm
is a source of inefficiency. The compilation to C remedies most of this, but at
the cost of full generality: multi threading is not supported. Another drawback
is that compiled actions are not mobile in a dynamic way. Combination of two
compiled actions always involves writing a glue function which uses the reflection

3For example, an implementation based on ATerms would allow communication between
actions compiled to Java and actions compiled to C.

22 AN2 Tools: Overview

AN−K AIL
an2ail

P

AIL AIL B−AIL
bail

PP

AN−K C
ailcc

C

B−AIL B−AIL

Asf+Sdf B−AIL

C

avm

C

Figure 3.4: Compilation of Actions to AIL

operations of the acc runtime and (re)compiling the result. In this section we
discuss the intermediate language approach to compilation of actions. Using
Action Intermediate Language (AIL) we obtain full generality and performance
comparable to that of actions compiled to C.

The interaction of the tools involved in the compilation of actions to AIL
is depicted in Figure 3.4. We assume that P is available as a Kernel AN2
action. This action is first translated to an AIL parse tree (an2ail) which
is then converted to a binary representation by the independent tool bail.
The resulting object can be executed by the Action Virtual Machine (avm) or
compiled to C.

Speed is achieved by translating the action tree to a sequence of instructions.
The advantages are obvious. For example, in case of an exception, we can now
jump to the appropriate handler instead of stepwise proliferating the exception
up the action tree. One execution step now corresponds to incrementing an
instruction pointer, instead of traversing a very large tree. Action Intermediate
Language (AIL) has primarily been designed to remedy the efficiency problems
of the term rewriting approach. Of course, since a number of SOS steps are col-
lapsed into one jump, the behaviour of multi threaded actions can significantly
differ. We expect, however, that it is possible to achieve correct operational
behaviour modulo exceptional/alternative flow for multi threaded actions by
inserting appropriate yield points in AIL byte code.

Action Intermediate Language can be seen as a typed assembly language of
the stack based kind. AIL instructions can accept one (optional) parameter. If
a parameter is present it must be an integer (indicating a non-datum constant
value), a label, an ATerm (representing a datum or a data sort) or AIL code
itself. The last argument type allows for reflection. Labels are translated to
offsets by the bytecode compiler to ensure compositionality for AIL bytecode.
Again, we use ATerms for the representation of data. One of the reasons to
use ATerms for AIL bytecode lies in the efficient IO capabilities of the ATerm
library. ATerms can be written to file while retaining maximal sharing. So we
get serialization of all data (including actions provided as data) for free. The
standalone tool bail takes an AIL parsetree as input and then builds an array
of bytes, mapping instructions to opcodes and serializing data to binary ATerm
format within the stream. The resulting byte stream is converted to a BLOB
(Binary Large OBject) ATerm and written on file.

A part of the instruction set of AIL is displayed in Table 3.1. Data opera-

3.5 Action Intermediate Language 23

Aspect Instructions
Given Data Flow prov, push, drop, copy, merge
Raised Data Flow eprov, epush, edrop, ecopy, emerge
Argument Data Flow publish, unpublish, epublish
Scope Data Flow enter, leave, scope
Normal Control Flow frame, goto, return, enact
Escaping Control Flow trye, tryf, raise, throw, fail, catch

Table 3.1: Subset of AIL Instructions

tions, predicates and primitive instructions more or less correspond directly to
Kernel AN2 primitive actions and are not listed in the table. A difference is that
typed primitive instructions do not check their arguments for type correctness.
This is dealt with by the special instruction cast. The data flow instructions
all operate on a number of stacks the function of which is explained in the next
section. Control flow instructions are able to change the instruction pointer.
The instruction goto l just does this. If a frame needs to be allocated, the in-
struction frame can be used. The label argument to this instruction denotes a
return address. The instructions trye and tryf install a handler at the program
point specified by the argument label.

3.5.1 AIL Runtime Environment

The runtime environment for AIL programs consists of a store, a schedule and
a code region. When a program is run, an AIL Control Block (ACB) is created
for agent “main”. ACBs contain all necessary data structures that are local
to a thread (or agent). At runtime, new ACBs may be added to the schedule
by the activate instruction. ACBs consist of two registers and a number of
stacks. The first register is used for normal data flow (nreg) and the second for
exceptional data flow (ereg). Each register has an associated stack (nresult resp.
eresult) that is used for saving computed values. All primitive instructions not
merely concerned with flow of data, take arguments from the registers and return
values in the registers. If a sequence of instructions needs the same argument,
the register is first saved on the argument stack and copied back into the register
when needed. The third kind of stack is used for binding flow: the scope stack.
Bindings can be transferred to and from the normal flow component. Finally,
ACBs contain a context stack and a frame stack. The context stack is used
for exception and failure handling. Contexts contain snapshots (shallow copies)
of the result stacks, argument stack and scope stack, used for restoring the
environment after an exception has occurred. Furthermore, a context contains
a reference to the frame in which it was saved and a continuation address. The
frame stack is used to save the return address when AIL code is enacted. To
elucidate the way data may flow at runtime, the basic data flow instructions are
depicted in Figure 3.5.

24 AN2 Tools: Overview

prov

��

eprov

��
nreg

push

��

publish

""FFFFFFFFFFFFFFFFF

enter

{{wwwwwwwwwwwwwwwww
ereg

epublish

||xx
xx

xx
xx

xx
xx

xx
xx

x

epush

��
scope

scope

;;wwwwwwwwwwwwwwwww

leave

��

nresult

merge

OO

drop

��

arg

copy

bbFFFFFFFFFFFFFFFFF

ecopy

<<xxxxxxxxxxxxxxxxx

unpublish

��

eresult

emerge

OO

edrop

��

Figure 3.5: Transfer graph relating stacks and registers

3.5.2 Mapping AN-K to AIL

Let’s look at how the basic action combinators are translated to AIL. The
normal data flow and binding flow translations are rather obvious. The following
four sequences represent the then, and then, and hence combinators ([[A]]
denotes the translation of a sub action of a combinator).

[[A1]]
publish;
[[A2]]
unpublish;

[[A1]]
push;
copy;
[[A2]]
merge;

[[A1]]
cast bindings(<term>);
enter;
copy;
[[A2]]
leave;

In the first sequence A1 executes and leaves its result in nreg. This result is
published onto the argument stack. Then A2 executes, probably using the pub-
lished value. Finally the published data is withdrawn. In the second sequence,
after A1 has finished the value in nreg is pushed onto the result stack. Then the
published value (incoming data) is copied from the argument stack back into
nreg. So, when A2 executes it receives the same input as A1. Finally the merge
instruction prepends the top of the result stack to the data in nreg. The third
sequence involves scoping. Since hence is the only typed combinator we have to
ensure that the data given by A1 is of the proper type. The cast instruction
leaves nreg as it is when the data is of the argument type, i.c. bindings, and
throws an exception otherwise. If A1 returned bindings they are pushed onto
the scope stack, making them the current set of bindings. Then the published
data is copied and after A2 has finished, the current scope is left.

To see how exceptional control flow is mimicked in AIL, the translation
of the and exceptionally combinator is an interesting case. An action A1

and exceptionally A2 terminates exceptionally if both subactions terminate
exceptionally. This exception is accompanied by the concatenation of the raised

3.5 Action Intermediate Language 25

data values of the subactions. In AIL this is achieved by guarding the righthand
action with a trye block and throwing an exception with concatenated data in
the handling part. Thus, A1 and exceptionally A2 is mapped to:

trye l1; // install handler at l1
[[A1]]

catch l2; // branch to l2
l1: epush; // push raised data onto eresult

trye l3; // install another handler
[[A2]]

catch l4;
l3: emerge; // merge raised data

throw; // throw exception
l4: edrop; // pop datum of first exception
l2: ...

Recall that emerge prepends the top of eresult to the data in ereg (the data
raised by A2). Note also that the catch instruction just pops the context stack
and branches to the argument label.

The output of an2ail for the fibonacci action presented earlier is displayed
in Figure 3.64. Note that no reflection is present since unfolding and unfold
are detected by the compiler.

3.5.3 Simple Optimization of AIL

The reason to separate the type checking from the actual computation of data
operations is that if the type is statically known, the cast instruction can be
left out. The use of registers in combination with stacks allows a number of
simple optimizations of AIL code that reduce the number of stack operations
considerably.

publish; i; unpublish; = i;

update; push; copy; i; merge; = update; copy; i;

copy; copy; = copy;

copy; prov term; = prov term;

The first rule states that if only instruction i uses the published data (which
still resides in nreg after publish), the data need not be pushed onto the ar-
gument stack at all. In the second equation, the merging of data can be left
out, since update (if terminating normally) returns the empty tuple. The third
equation is obvious. Finally, for an instruction that never uses the data given
to it, the published data does not have to be copied into nreg.

3.5.4 Assessing avm

Experiments with the recursive fibonacci action show that interpreting bytecode
is slightly slower than the action compiled to C but this difference is growing

4Labels are preceded by an @ in this listing.

26 AN2 Tools: Overview

{
frame @l2;

@l1:
tryf @l11;
tryf @l101;
copy;
push;
prov int(0);
merge;
publish;
trye @l100002;
cast [〈appl(〈term〉)〉,〈appl(〈term〉)〉];
eq;
catch @l100003;

@l100002:
fail;

@l100003:
unpublish;
prov int(1);
catch @l102;

@l101:
copy;
push;
prov int(1);
merge;
publish;
trye @l100102;
cast [〈appl(〈term〉)〉,〈appl(〈term〉)〉];
eq;
catch @l100103;

@l100102:
fail;

@l100103:
unpublish;
prov int(1);

@l102:
catch @l12;

@l11:

copy;
push;
prov int(2);
merge;
publish;
cast [int(〈term〉),int(〈term〉)];
sub;
unpublish;
publish;
frame @l101001;
goto @l1;

@l101001:
unpublish;
push;
copy;
push;
prov int(1);
merge;
publish;
cast [int(〈term〉),int(〈term〉)];
sub;
unpublish;
publish;
frame @l101011;
goto @l1;

@l101011:
unpublish;
merge;
publish;
cast [int(〈term〉),int(〈term〉)];
add;
unpublish;

@l12:
return;

@l2:
return;

}

Figure 3.6: Recursive Fibonacci in AIL

for large values of n. We have not yet tested the additional compilation to C
(ailcc), since this is not fully operational yet.

The pragmatic advantages of the intermediate language approach are ob-
vious. Actions are compiled to a single object which is mobile, compositional
and self contained. Offline combination of different actions is straightforward
using the reflection primitives of AIL;—the result is just another binary object
file. This is an improvement with respect to actions compiled to C where one
has to recompile the separate compiled actions if one wants offline combination.
Another pragmatic advantage is the extendibility of avm. Although this cannot
be done dynamically or on request, avm is designed in such a way that exten-
sion consists only of adding instructions to the instruction set and defining their
semantics in C. No changes to bail or ailcc have to be made.

3.6 Conclusions and Discussion

In this final section we compare our work to previously conducted research in
this area and present some conclusions.

3.6 Conclusions and Discussion 27

3.6.1 Discussion

The generation of interpreters and compilers from action semantic descriptions
has a long history (cf. [8, 42, 38]). For the new Action Notation however,
this field of research has only just begun. In this chapter we have presented
some strategies for interpreting and compiling actions in ways that have not
been explored before. Our approach differs in a number of aspects from the
previously conducted research in this field.

The first and foremost difference is the central role of the algebraic specifi-
cation formalism Asf+Sdf. The Action Semantic Description (ASD) tools [42]
used Asf+Sdf to generate term rewriting systems from an ASD, a formalism
on its own. That is, the ASD tools operated by first parsing an ASD and then
generating a number of Asf+Sdf modules which could be used to check and
execute the language defined. In our approach, however, Asf+Sdf itself is
used as action semantic description formalism. Syntax is defined in Sdf, which
is then rewritten to action terms by the Asf component. This approach has
a number of important advantages. First, since Sdf is a declarative formalism
that allows the full class of context-free grammars, the syntax of a language is
easily specified and need not be molded into the class of LR or LALR grammars.
This has the additional advantage that grammars can be designed in a modular
way, since only full context-free grammars are closed under union. Furthermore,
the compositionality of action notation and the algebraically defined data no-
tation make Asf a perfect formalism for mapping syntax to semantics. This
can be done using concrete syntax which makes action semantic descriptions
all the more readable. Finally, a specification can easily be used outside the
Meta-Environment by reusing the standalone components of Asf+Sdf. In this
paper we have described an interpreter of actions which is independent of the
language defined: the interpreter is only defined for Kernel AN2. The composi-
tion of a language specification and the interpreter yields an interpreter for the
language defined.

Previous efforts to execute actions were primarily focussed on performance
issues relative to hand written compilers and interpreters. The execution speed
of, e.g., Oasis [38], depends largely on thorough analysis of actions, involving
for example binding time analysis, and on restricting the set of action combi-
nators and primitives that are supported. While not disregarding the issue of
performance, we take the opposite route, by stating that support for the full
kernel of AN2 is the primary goal. This includes the interacting facet and reflec-
tion. Of course, we probably have to pay for this in terms of execution speed,
but since bindings have become data and loops are defined using reflection in
Kernel AN2, this may turn out to be unavoidable without the analysis of Full
AN2 constructs. In the framework we have presented compilation and/or in-
terpretation can always be preceeded by numerous analysis and optimization
phases if this turns out to be desirable. A related design decision is to strive
for portability. Therefore the option of compiling to native code has never even
been considered.

A third difference with existing approaches is our focus on using actions in
the real world. Put differently, we see action semantics not only as a formalism to
mathematically define an programming language’s semantics, but possibly also
as a way to define Domain Specific Languages [10, 11, 12, 13]. This poses the
question how to connect generated interpreters or compiled actions to existing

28 AN2 Tools: Overview

0

100

200

300

400

500

600

700

0 2 4 6 8 10 12 14 16 18 20

s

n

evalan(fib-rec)
acr(fib-rec)

Figure 3.7: Execution times in seconds for Recursive Fibonacci executed using
evalan and acr.

software environments. One solution to this has been provided by the Asf+-
Sdf Meta-Environment itself: compiled specifications can be connected to the
Toolbus coordination architecture [3]. A second solution, addressed in this
paper, is compilation of actions to a Java class definition. By letting this class
implement the Enactable interface, a compiled action can be combined with
handcoded “enactables” using reflection as provided by AN2.

3.6.2 Conclusions

We have presented a number of interpreters and compilers to put action se-
mantic descriptions to use. From the experiments we have performed some
conclusions can be drawn. First of all, if performance is important, the term
rewriting approaches will not do. The difference in execution time between the
term rewriting approach and the compiled actions (C, Java and AIL) is indeed
dramatic. This conclusion can be drawn immediately from the plots displayed in
Figure 3.7 and Figure 3.85. The reason why one would still want to use evalan
lies in the fact that it can be augmented with arbitrary algebraic data types. Ad-
ditionally, the tight integration with the Asf+Sdf Meta-Environment allows
for the interactive specification as well as testing of programming languages.
The interpreter evalan might best be used during the process of designing a
language.

Compiling actions has numerous advantages over interpretation. The result-
ing objects are faster and easier to embed in existing software environments.

5All tests have been executed on an AMD Athlon XP1800+ running Linux.

3.6 Conclusions and Discussion 29

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10 12 14 16 18 20

s

n

acc(fib-rec)
ajc(fib-rec)

avm(fib-rec)

Figure 3.8: Execution times in seconds for Recursive Fibonacci executed using
acc, ajc and avm

The compilers can be instructed to map certain (primitive) actions to user pro-
vided native code. This way it is possible to let actions really connect to the
real world. We conclude that, if performance is not the main objective, the
compilation to Java has the best credits for defining domain specific languages,
since it combines Object Orientation with deployability and mobility.

3.6.3 Future Work

First of all we will have to test the tools presented here with interacting actions
as input. Since we have only assessed the performance of a very small action in
this paper, the question whether the interpreters and compilers will scale up to
larger actions is an urgent one. We are currently working on the migration of
the JOOS action semantics [44] to Asf+Sdf.

Although it is explicitly not our intention to compete with commercial com-
pilers, more benchmarking should enable us to assess the performance penalties
of the various strategies more accurately. There is reason to assume that there
is room for improvement, especially for the compilers. Restricting the composi-
tionality requirement to apply only to the top action is an option we will have
to explore. But this is probably hardly possible without a thorough analysis of
actions. These analyses should take both Full AN2 constructs and Kernel AN2
constructs into account. The problem is, that, whereas it is easier to analyse
Full AN2 constructs only, a user is still permitted to use Kernel AN2 in his
language definitions. As a consequence any agressive optimization that does
not take both levels into account may lead to loss of information. For example,
algebraic simplification of Kernel AN2 actions might destroy the link between

30 AN2 Tools: Overview

some kernel subactions and their Full AN2 origins (e.g. unfolding). An im-
portant step to more efficient compilation (especially to C and Java) would be
the availability of a staticness condition. It would then be possible to eliminate
all bindings and possibly many type checks.

Apart from the issue of performance, we plan to center our future work
around increased usability and deployability of actions. This work includes
making the interpreters as well as compilers extendible, connecting all tools to
the Toolbus coordination architecture [3], and targeting the .NET intermediate
language [25].

Chapter 4

Rewriting Actions

4.1 Introduction

AN−K

P

AN−K

evalan

AN−K AST
implode

P

AST

acr

C

C

ASTAN−KLL

P

Asf+Sdf

Asf+Sdf

Figure 4.1: Interaction of term rewriting tools

This chapter is devoted to exploring the links between the Modular SOS (MSOS)
semantics of Kernel AN2 (AN-K) and the interpreters which use term rewriting
to execute actions. To recapture, the T-Diagram from Chapter 3 is displayed
in Figure 4.1. It is assumed there exists a translation from a language L to a
term over the kernel of AN2 (AN-K). First, this term can be executed directly
by evalan, the interpreter defined in Asf+Sdf. Second, the action can be
imploded to an Abstract Syntax Tree (AST) and then be executed by acr, the
action rewriter implemented in C. The chapter is organized as follows. First we
present a short introduction to Modular SOS and comment on how this can be
implemented in Asf+Sdf. Then some issues of modularity and data notation
are discussed. Finally we describe acr and propose a solution to the problem
of extending acr.

32 Rewriting Actions

4.2 Implementing MSOS in Asf+Sdf

4.2.1 Crash Course in Modular SOS

In Modular SOS (MSOS) all state information is located on the labels of a
labeled transition system. That is, a label determines the state before and after
a transition. The structure of a label is a that of category. We take the definition
of a category from [31]:

Definition 1 A category consists of a set of arrows α ∈ A and a set of objects
o ∈ |A|, together with total operations pre, post : A → |A|, id : |A| → A, and a
partial composition operation · ; · : A× A → A, such that:

• α1;α2 is defined iff post(α1) = pre(α2), and then pre(α1;α2) = pre(α1)
and post(α1;α2) = post(α2);

• · ; · is associative, that is α1; (α2;α3) = (α1;α2);α3 when defined;

• id(pre(α));α = α = α; id(post(α));

• pre(id(o)) = o = post(id(o)).

The operations pre(α) and post(α) designate the source and target of arrow α
respectively. The set of identity arrows id(o), which is a subset of A, is desig-
nated by IA or I if A is clear from the context. We let variables ι range over
I, and variables α range over arbitrary categories A. An Arrow Labelled Tran-
sition System (ALTS) is a labelled transition system (Γ, T, A,→) where A is a
category, Γ is the set of configurations, and T ⊂ Γ the set of terminal config-
urations. Unlike in conventional SOS, configurations consist only of (abstract)
syntax and computed values (value added syntax). Two transitions may be
adjacent iff the composition of the their respective labels is defined.

Category A |A| A I ⊆ A ·;·
Discrete(Env) ρ ρ ρ ρ; ρ = ρ
Pairs(Store) s (s1, s2) (s, s) (s1, s); (s, s2) = (s1, s2)
Monoid(Act∗, conc, []) single a∗ [] a∗1; a

∗
2 = conc(a∗1, a

∗
2)

Table 4.1: Basic Label Categories

For the definition of programming languages in MSOS the basic label cate-
gories that interest us here are listed in table 4.1. They model fundamental ways
of processing information. For example environments in the Discrete(Env) cat-
egory are only allowed to be inspected. On the other hand, stores in category
Pairs(Store) can also be updated, and the steps contained in Monoid(Act∗-
, conc, []) do nothing but occur. The comparison to conventional SOS is instruc-
tive: taking labels in Discrete(Env) gives rise to a relative conventional SOS
relation ρ ` e → e′. Taking labels in Pairs(Store) corresponds to an unlabelled
transition system in which configurations have the form (e, s). Finally, the ac-
tions forming Monoid(Act∗, conc, []) are the labels of transition rules which are
often used in process algebras (e.g. ACP [2]), with the empty sequence [] as the
silent step τ .

4.2 Implementing MSOS in Asf+Sdf 33

The basic label categories listed in table 4.1 will be the components of our
arbitrary label category except for the last one which is not used in the MSOS
definition of AN2. The access of the different components is achieved with label
transformers which allow the independent inspection and update of components
of arbitrary label categories. Let get : A×Index → Univ and set : A×Index×
Univ → A be operations that respectively retrieve and update components of
some universe Univ of labels at index i ∈ Index in arbitrary category A. So,
get(α, i) retrieves the category component u ∈ Univ at index i ∈ Index and
set(α, i, u) returns a category with u as component at index i. For the definition
of these transformers we refer to [31]. It is sufficient to see the arbitrary label
as a total map A : Index → Univ which itself obeys the laws of a category.

In this section we will only use three label components. These components
consist of the categories Discrete(Env) at index data, Pairs(Store) at index
storage, and finally Pairs(Cells) at index cells. We let Cells range over sets
of cells, indicating the cells that ever have been allocated (but possibly deal-
located). Furthermore we define for the latter two categories: getpre(α, i) = s
and setpost(α, i, s′′) = set(α, i, (s, s′′)), if get(α, i) = (s, s′). To illustrate the
implementation of MSOS transition rules in Asf+Sdf We will use a fragment
of the MSOS specification of Kernel AN2. This fragment is displayed below1:

provide d
ι−→ normal d (4.1)

A1
α−→ A′

1

A1 then A2
α−→ A′

1 then A2

(4.2)

α′ = set(α, data, d1) ∧A2
α′

−→ A′
2

normal d1 then A2
α−→ normal d1 then A′

2

(4.3)

normal d1 then t2
ι−→ t2 (4.4)

getpre(ι, storage) = s ∧ getpre(ι, cells) = cs ∧
get(ι, data) = sv ∧ ¬(c ∈ cs) ∧

α = setpost(setpost(ι, storage, s[sv/c]), cells, (cs ∪ c))

create
α−→ normal c

(4.5)

4.2.2 Functional Implementation

Instead of asserting under what ‘label circumstances’ two configurations are in
the transition relation, we are interested in computing the target object (state)
of a label category and the target configuration given a source configuration and
a source object (its input state). It is assumed that s is a ground term and that
from this a ground object o ∈ |A| will result (or non termination). We could
have used the “list-of-successes” approach to non determinism as advocated in
[20]. Failure is then represented as the empty list of results. There are two
problems with this approach. First, in AN2 failure is hardwired in the language
as the terminal configuration “failed”. Secondly, to be useful, computing a list
of successes requires a lazy language, and Asf+Sdf is not such a language. The
only non-deterministic construct in AN2 is the select(A1 or ... or An) action.
It performs any of the Ai first and, on failure of the selected action, performs

1Our syntax differs slightly from the one used in [32] from which these definitions are taken.

34 Rewriting Actions

[sos1] s |- provide d = <normal d, s>

[sos2] s@data = d

===

s |- copy = <normal d, s>

[sos3] s |- A1 = <A1’, s’>

===

s |- A1 then A2 = <A1’ then A2, s’>

[sos4] s’ = s[d1/data], s’ |- A2 = <A2’, s’’>

===

s |- normal d1 then A2 = <normal d1 then A2’, s / s’’>

[sos5] s |- normal d1 then t2 = <t2, s>

[sos60] s@storage = st, s@cells = cs,

s@data = sv, storable(sv) = true,

c = new-cell(cs), cs’ = insert(c, cs),

s’ = s[st[sv/c]/storage][cs’/cells]

===

s |- create = <normal c, s’>

Figure 4.2: Fragment of Kernel AN2 specification in Asf+Sdf

any of the remaining choices. If the selected Ai does not fail no other choices
are performed2. To implement the semantics in Asf+Sdf (instead of defining
it) we will use the function · ` · : |A| × Action → Action × |A|. This function
should obey the following constraint:

Constraint 1 (Soundness) For each computed state s′ from an input state s
there should be an arbitrary label category α for which the following holds:

s ` A = 〈A′, s′〉 ⇒ A
α−→ A′ ∧ pre(α) = s ∧ post(α) = s′

The implementation of the MSOS rules listed earlier is displayed in Figure 4.2.
Note that the equations that return the incoming state s correspond to rules
of the form c

ι→ c′. The auxiliary operator ·/· : |A| × |A| → |A| (in equation
[sos4]) is used to address the problem of enforcing that one transition rule may
change one component of a structure without changing, or even knowing about,
the rest? For the two label categories that we used, this operator is defined on
|A| by ρ1/ρ2 = ρ1 and s1/s2 = s2 (where ρ ∈ Env and s ∈ Store). The idea
of this operator is to let changeable states change and fixed states remain the
same. An example may clarify why this operator is needed. Consider the action
normal 1 then copy and let ε = [] (the empty map). Then we get:

ε ` normal 1 then copy = 〈normal 1 then normal 1, []〉

In absence of this operator the result of this step would have been:

〈normal 1 then normal 1, [][1/data]〉

which is a violation of constraint 1.
2This scheme is also known as “don’t care choice”.

4.2 Implementing MSOS in Asf+Sdf 35

4.2.3 Modularity of evalan

Modular SOS has been designed to achieve better modularity for SOS descrip-
tions of programming languages. That is, transition rules for different facets of
a language can be defined independently, without knowing of each other. This
has an important advantage, especially when a language is in design stadium.
Modules can be changed according to need, without having to reformulate all
the other rules. But there are other modularity issues, more related to soft-
ware engineering aspects. These issues have more relevancy for implementation
than specification, but implementation is what we are doing here. One of the
drawbacks of composing modules in exactly the same way as the MSOS spec-
ification in Casl is that (abstract) syntax is defined alongside the semantical
rules. This entanglement makes it impossible to use the syntax for different
purposes without including all semantical information with it. So, the actual
implementation of evalan is divided over two threads of modules in such a way
that the syntactic modules are available without the equations that define the
meaning of the constructs defined therein.

Another problem that had to be addressed is to make the addition of arbi-
trary data types, operations and predicates as natural as possible. The seman-
tics of AN-K does not contain any axioms for data notation (except for bindings
and tuples). The Data Notation is a parameter of Action Notation. Since pass-
ing functions around by name is restricted to prefix functions in Asf+Sdf, this
feature had to be mimicked. The syntax of data operations and predicates is
defined in Sdf as:

"_" DataOpInfix "_" -> DataOp
DataOpPrefix "_" -> DataOp
"_" DataPredInfix "_" -> DataPred
DataPredPrefix "_" -> DataPred

The *Infix and *Prefix sorts are left unspecified. In AN data operations are
enacted by the primitive action give o and predicates are asserted by check q.
The equations that implement their meaning use two auxiliary functions:

result DataOp Data -> Data
holds DataPred Data -> Boolean

Although these functions seem to be defined on all values included in sort Data,
they have a default meaning indicating that this is not so:

[default-result] result o d = nothing
[default-holds] holds q d = false

These equations fire when all others fail. Nothing is the ‘undefined datum’. As-
sume that we would like to have complex numbers added to our Pico− language
definition from chapter 2. The module defining complex numbers is displayed in
figure 4.3. The first rule defines a complex number as a pair of Reals. The sort
Complex is then injected (not included, see below) into the sort of individual
data values. Finally, two infix data operations are declared and a sortname.
In the equations section of this module the meaning of the data operations is
expressed using the aforementioned result function. The first equation extends
the meaning of the standard ascription data operation the . The matching
constraint induced by variable C, ensures that these equations do not fire when

36 Rewriting Actions

module Complex

imports Real Data-Interface

exports sorts Complex

context-free syntax

Real # Real -> Complex

Complex -> Datum

"c+" -> DataOpInfix

"c*" -> DataOpInfix

"complex" -> SortName

variables "C"[0-9\’]* -> Complex [abcd]* -> Real

equations

[1] result the complex_ C = C

[2] result _c+_ (<a,b>,<c,d>) = <a+c,b+d>

[3] result _c*_ (<a,b>,<c,d>) = <a*c-b*d,a*d+b*c>

[4] storable(C) = true

[5] bindable(C) = true

Figure 4.3: Adding complex numbers to evalan

called with data arguments other than complex numbers. Finally, the last two
equations express that complex numbers are both storable and bindable. These
two predicates, storable and bindable, are needed because Asf+Sdf is not a
subsorted formalism. The use of injections (“invisible functions”) can only rem-
edy this in a limited way. The problem can best be explained using an example.
Let’s pretend we can use an injection to express a sort inclusion. The following
productions are relevant here:

Integer -> Storable
Integer -> Bindable
Bindable -> Datum
Storable -> Datum
Datum -> Data

This is perfectly valid in formalisms such as Casl and Maude, and it is valid in
Sdf but one gets unexpected results if these rules are interpreted as declaring a
sort inclusion. Intuitively it is no more than reasonable to consider integers bind-
able as well as storable, and it is required that both storables and bindables are
“included” in the sort Datum. Consider the action term provide 1 then create.
The parser derived from the syntax specification of Action Notation will report
ambiguities when it tries to parse the example action. One can shuffle around
these injections to resolve the ambiguities but none of the solutions are natural
or satisfying. The problem is similar to the one encountered in single inheritance
languages such as Java, which introduces interfaces to solve the problem. Our
solution is similar to the interface approach as well, since asserting storable for
a sort S will also apply to the sorts S′ injected into it, just as classes in Java
inherit the implemented interfaces from their super classes.

4.3 Term Rewriting Actions in C 37

4.3 Term Rewriting Actions in C

4.3.1 Preliminaries

As mentioned in chapter 3 the implementation of a term rewriting system for
actions in C was greatly alleviated by our prototype in Asf+Sdf. Before we
dive into the implementation aspects of acr, we list here the crucial differences
between acr and evalan:

• acr takes abstract syntax trees (ASTs) as input, whereas evalan operates
on concrete syntax trees. Both kinds of trees are represented internally by
Annotated Terms (ATerms) [7]. The abstract syntax trees are obtained
by “imploding” concrete syntax trees, which is a language independent
transformation that removes layout, injections, production annotation and
so on. The obvious advantage is that parse trees obtained from action
semantic descriptions of programming languages in Asf+Sdf can be fed
into acr with only one intermediate step, while retaining maximal sharing.

• In acr imperative actions are really imperative, and storage is really
global, i.e. accessible to all agents. This means that storage (or any other
object of category Pairs) is not passed as an argument to the functions
that implement the meaning of each action sort.

• The supported Data Notation is implemented using ATerms as well. It is in
fact the same library of data operations that is used in the AIL approach
(see Chapter 6). There is however one difference: Action datums (and
reflection functions) operate on ASTs in acr whereas the AIL tools use a
bytecode representation.

4.3.2 Design of acr

To process imploded parse trees representing arbitrary actions, a method is
needed to decompose and construct action terms. One way to do this is to
explicitly code the structure of the AST into the functions that implement the
semantics of a particular action. However, if the structure of Action Notation
changes, many functions may have to be modified to comply to the new abstract
syntax. Therefore, we employed a tool developed at CWI, called apigen [22]
which generates a C interface from an Sdf grammar definition based on the
ATerm library. Thus, the grammar of AN as part of evalan is efficiently reused
for generating the syntactic interface of acr. The fact that ASTs are internally
represented by ATerms is now (almost) completely hidden from the implemen-
tation of acr.

The semantical functions for the different sorts of actions are hierarchically
structured according to the sort structure of the grammar of AN. So the top level
function for one execution step accepts the most general sort as a parameter,
an Action. It is then decided whether to deal with an action constant, an
action combinator or a special action. This proceeds until a concrete action
constructor matches the argument and the appropriate action is taken. These
action handlers all have the following form:

static ANK Action ACR handle〈Sort〉(ANK Action action,
AN Data data, AN Data bindings);

38 Rewriting Actions

An action handler thus accepts three parameters: the action term itself, the
given data and the current bindings. The function returns a reduced action.
The fact that no data or bindings are returned effectively captures the desired
semantics of a Discrete category, which ensures that data and bindings are
local and must not be changed (they are read only values). There are no other
parameters, since they are supposed to be objects of a Pairs category; these
objects are global and may change. To achieve this in a purely functional
style, the action handlers should have returned a tuple of a reduct and a set
of changeable states (i.e. storage, cells, schedule etc.). It should be noted that
these action handlers model a one-step execution of an action, so it should be
relatively easy to add tracing and stepping facilities to acr to alleviate debugging
of executing actions.

ANK Action reduce(ANK Action action, AN Data data, AN Data
bindings) {

register ACRAgent agent;
register ANK Action reduct;
ACR init schedule(&schedule, ACR main agent());

loop: {
agent = ACR schedule get current(schedule);
if (ACR is main(agent)) {

reduct = ACR handleAction(action,data,bindings);
action = reduct;

}
else {

reduct = ACR agent get action(agent);
reduct = ACR handleAction(reduct,data,bindings);
ACR agent set action(&agent,reduct);
ACR schedule update current(&schedule, agent);

}
if (ANK isValidTerminated((ANK Terminated)reduct))

ACR schedule remove(&schedule,agent);
if (ACR schedule is empty(schedule))

return action;
ACR schedule rotate(&schedule);
goto loop;

}
}

Figure 4.4: Top level reduce algorithm with scheduling

The full evaluation of an action is enacted by the top reduce function which also
copes with scheduling of agents. The scheduling policy of reduce slightly differs
from the one in the Modular SOS definition of Kernel AN2. The algorithm,
as displayed in Figure 4.4, terminates when there are no executing agents left.
The MSOS specification, on the other hand, terminates when agent main (the
input action) has terminated. This is in contrast to the informal introduction
to AN2 where the authors state that “Action performance by agents is fair :
the performance of every action that has not terminated eventually proceeds”
[24]. We chose the fairness approach since it seems the most reasonable and is
applied in many other programming languages as well (e.g. Java).

4.3 Term Rewriting Actions in C 39

4.3.3 Extension of acr

In this section we present a solution to making acr extensible with user defined
primitive actions. The current implementation of acr is only an interpreter of
predefined actions and data operations, so this section can be seen as future
work. The extensibility plan presented here would enable acr to be used in real
software environments in a generic and portable way. The idea is to link acr to
the Scheme interpreter Guile [19] which is available as a library. This embedded
interpreter can be used to evaluate arbitrary functions defined in Scheme. A
user can thus define functions in Scheme of a certain signature which can be
called on request during the rewriting of an action by acr.

Consider one would like to add a write primitive to Pico− which prints
a message to the console. While such a primitive is almost too simple to be
absent, extending acr with it would mean adding an action handler to acr and
recompiling the interpreter. This is clearly not a desirable state of affairs. How
can this be done in a flexible and user driven way? Let us sketch a trajectory
of steps to accomplish the goal of adding write to AN-K using the embedded
Scheme interpreter. We will leave the details of extending the Pico− language
aside, since it is trivial. First we have to define a new primitive action write
which takes a datum and gives the empty tuple. In Sdf this would look like:

"write" -> ActionConst {cons("user-action:write")}
%% [taking datum, giving ()]

The crucial thing here is the cons(tructor) annotation “user-action:write”. These
cons attributes are used by the parse tree implosion tool to give names to
production rules. Imploding the parse tree of “write” will result in an AST
const("user-action:write"). The function symbol const is a consequence
of the Sdf production: ActionConst -> Action {cons("const")}. Since the
abstract syntax for write is not part of the standard Action Notation, we have to
add one conditional to acr that detects the use of the pattern user-action:*.
If such a pattern is used the second half of the matching term is used to call the
appropriate Scheme function. So acr assumes that the user has provided for a
scheme function:

(define (write data bindings) ...)

This kind of user defined functions in Scheme can be loaded dynamically by
acr. After acr data is converted to scheme data, the function is called, and the
result is converted back to valid acr data.

40 Rewriting Actions

Chapter 5

Compilation of Actions

5.1 Introduction

P

C

P

AN−K
acc

Asf+Sdf

AN−K C

P

ajc
java

P

AN−K javaAN−K

Asf+Sdf

Figure 5.1: Compilation of AN-K to Java resp. C

In this section we want to discuss the architecture of acc and ajc. Our pre-
sentation, however, is based on the compilation to C. Again we display the
T-diagrams from chapter 3 as a reference in Figure 5.1. The compilers accept
a parsetree over Kernel AN2 syntax and respectively produce Java and C code.
The compilers are specified entirely in Asf+Sdf in a layered fashion according
to the structure of the source language (i.e. AN2). The layered compilation of
actions has a number of advantages. First, an action term is compilable using
only the lowest level of representation. Second, the addition of direct compila-
tion of Full AN2 constructs is very easy. Thus, it is possible to add optimizations
without having to change the compiler for Kernel AN. First we will dive into
the specification of the action to C compiler (acc). Then we will address in
what sense the presented compilation scheme is generic. The final two sections
contain descriptions of the runtime environments of acc and ajc.

5.2 Layered Compilation

5.2.1 acc as an Example

The compilation of actions to C involves five functions which are declared as
follows:

42 Compilation of Actions

fa-to-identifier(Action,Environment) -> ID
fa-to-expression(Action,Expression,Expression,Environment) ->
Expression

fa-to-default-expression(Action,Environment) -> Expression
fa-to-decls(Action,Environment) -> ExternalDefinitions
fa-to-function(Action,FunctionBody,Environment) ->
FunctionDefinition

The fa- prefix indicates that these functions are meant to be applied to Full AN2
constructs. The functions can be seen as a family of functions parameterized by
the layer they are defined for;—in this case the level of Full AN2 (fa). The sort
Environment is used to pass additional data used for generation of identifiers
etc. These functions are specialized for Kernel Actions in a different module and
prefixed with ka-. Let us refer to these function as the “kernel functions”. In
that module, there are five default equations for the Full AN2 functions. These
default equations all obey the following pattern:

[default] fa-to〈Sort〉(A,env) = ka-to〈Sort〉(A,env)

The kernel functions have default equations as well.

[default-k1] n = env.pos
===
ka-to-identifier(A, env) = make-id(A, n)

[default-k2] ka-to-expression(A,exp1,exp2,env) =
pa-to-expression(A,exp1,exp2,env)

[default-k3] ka-to-decls(A,env) =

The default identifier for an action is an identifier (e.g. “action”) together with
the position in the action tree. The position of an action is kept track of in the
generic environment. The function make-id constructs a valid C identifier. If
the default equation for ka-to-expression fires, we are dealing with a primitive
action, so the appropriate function is called. Default declarations for an action A
are assumed to be empty, since this equation only fires for primitive actions and
they are predefined by the runtime library of acc. The fact that only primitive
actions make the last two equations fire, is a consequence of the equations that
will follow: they are only defined on combined actions.

The translation of actions to (default) expressions can be specified without
default equations.

[kde] ka-to-default-expression(A,env) =
fa-to-expression(A,data-parameter(),

bindings-parameter(),env)

[ke1] ka-to-expression(A1 Ai A2,exp1,exp2,env) =
fa-to-identifier(A1 Ai A2,env)(exp1,exp2)

[ke2] ka-to-expression(Ap A,exp1,exp2,env) =
fa-to-identifier(A Ap,env)(exp1,exp2)

5.2 Layered Compilation 43

The first equation compiles any action (including primitive actions) to a so
called default expression. This is simply a convenience function which maps
an action to a C expression with the default arguments for given data and
bindings. These identifiers are produced by the function data-parameter and
bindings-parameter. If these arguments are supplied the second two equations
apply. These equations are only defined for combined actions and construct a
function call using the the Full AN2 function fa-to-identifier. To clarify
why these last two equations are only defined for combined actions, we can best
take an example action and follow the process of compiling that action. Take
A to be the action provide d. This action does not take any input. Evaluation
of a-to-default-expression(A,env) leads to the following trace:

fa-to-default-expression(provide d,env) ⇒
ka-to-default-expression(provide d,env) ⇒
fa-to-expression(provide d,data,bindings,env) ⇒
ka-to-expression(provide d,data,bindings,env) ⇒
pa-to-expression(provide d,data,bindings,env) ⇒
an-data-to-c-data(d)

The function pa-to-expression maps actions of the form provide d to d with
d converted to an appropriate C expression. The point is, that if the regular
equations of ka-to-expression were defined on primitive actions as well, A
would have been compiled to a function call which is sheerly redundant. The
same applies to the primitive action copy for which pa-to-expression returns
the identifier “data” (which resulted from evaluating data-parameter).

There is one more generic function which has not yet been described. This
function takes an action, a list of statements and an environment and then
produces a function definition.

[kf] ka-to-function(A, decls stats, env) =
static data-type() fa-to-identifier(A,env)(

data-type() data-parameter(),
bindings-type() bindings-parameter())

{
decls
stats

}

A C signature is produced using the same identifier function as is used in the
equations which map actions to expression to guarantee that actions at some
position in the tree get the same identifier both in declaration and invocation.
The discussion of these preliminaries may seem very abstract for the moment
but they become perfectly clear if we turn our attention to the compilation
of combined actions to C function declarations. All the functions described
this far are used in the following equation which compiles actions of the form
A1 then A2:

[kd1] env1 env2 = split-environment(env)
===
ka-to-decls(A1 then A2, env) =

fa-to-decls(A1, env1)
fa-to-function(A1 then A2,

44 Compilation of Actions

data-type() d1 = fa-to-default-expression(A1,env1);
data-type() d2 = fa-to-expression(A1,d1,

bindings-parameter(),env2);
return d2;,

env)
fa-to-decls(A2, env2)

The condition of this equation splits the current environment into two new en-
vironments. In this environment there is, at this level, only one component:
a position integer. When an environment is split, the new environments con-
tain fresh positions. This way unique identifiers for any action are guaran-
teed. The declarations for A1 and A2 are produced using fa-to-decls be-
fore and after the actual function definition of A1 then A2. The body of this
function contains three statements. The first statement computes A1 using
fa-to-default-expression. This means that this action gets data and bind-
ings from the arguments of the defined function (see fa-to-function). In the
second statement the result of A1 is input to A2, thus capturing the semantics
of then . Finally, the result of A2 is returned. Note that all functions in the
righthand side are Full AN2 functions which in the current setting call the kernel
functions (via the default equations presented above).

Overriding Default Behaviour

To prevent the use of reflection in the case of unfolding A actions, we will now
override the default (i.e. kernel) behaviour of the compiler. This is accomplished
by providing (non-default) equations for the fa- family of functions. These
functions until now have only default equations which evaluate to the ka- family
semantics.

First we have to extend the environment which is used to pass additional
information down the action tree during compilation. This is done in a safe
way such that the kernel functions do not know about the extension, but pass
it down anyway. The environment is extended with a field referenced by index
“unf” which contains a tuple of an action and boolean. The action is the action
within unfolding ,—the boolean indicates whether this action is tail-recursive.
By tail-recursive we mean in this context: the result of unfold is not used within
unfolding.

Now we can define the compilation of unfolding A. The first equation deals
with the non-tail-recursive case:

[] is-unfolding(A) = true, get-unfolding(A) = A’,
is-tail-recursive(A) = false,
n = env.pos, n’ = n + 2,
env1 = env.unf := <A’, n’, false>,
env2 = env1.pos := n’
===
fa-to-decls(A, env) =
fa-to-decls(A’, env2)
fa-to-function(A,
return fa-to-default-expression(A’, env2);,env)

First the unfolding action is retrieved in variable A′ and it is checked that
A′ is not tail recursive. Then A′ is saved in the environment together with a

5.2 Layered Compilation 45

fresh position n′. Finally the result consists of the declarations for A′ and a
declaration for unfolding A′. This last declaration consists of an invocation
of A′. Note that we do not have to change the function which deals with the
compilation to an invocation of the unfolding action because both declarations
and expressions are compiled using the identifier generated from the position in
the tree.

For this case, the compilation of unfold also needs special attention:

[] is-unfold(A) = true,
<A’,n,false> = env.unf,
env’ = env.pos := n
===
fa-to-expression(A, exp1, exp2, env) =

fa-to-expression(A’, exp1, exp2, env’)

If A is the action constant unfold we retrieve the corresponding action from
the environment (at the same time checking that it is not tail-recursive). Since
we need the expression corresponding to the position of A′, the expression is
produced using the previously saved position. Note that the result of this equa-
tion is equal to the result of fa-to-default-expression in the equation for
unfolding A, modulo the data and bindings parameters. For unfold no declara-
tions have to be generated, so an additional equation is needed which produces
empty declarations for unfold.

If an unfolding action turns out to be tail-recursive, slightly more machinery
is needed. We will therefore present no equations, but describe the translation
informally. The idea can be explained as follows. Since the result of unfold will
not be used, unfold can jump to the start of the loop. Note that by “jump” we
mean a non-local jump, since all actions are compiled to functions. The action
unfolding A at term position p is compiled to:

ACCData unfoldingp(ACCData data, ACCData bindings) {
loop: if (!ACC_unfolding(&data, &bindings))

return [[Ap0]](data, bindings);
goto loop:

}

The loop terminates when the return statement really returns something (i.e.
after an iteration without unfold). The compilation of unfolding has much
resemblance to the compilation of exception handling and non-deterministic
choice. ACC unfolding returns 0 when setting a choice point. Then Ap0 is
executed. Unfold will fail and jump to the corresponding choice point. Unfold
is compiled to:

return ACC_unfold(data,bindings);

The procedure ACC unfold saves the arguments on a stack and fails, thus jump-
ing to the last ACC unfolding. At that point, the data and bindings are up-
dated with the top of the stack, and 1 is returned. Then the loop is reenacted.

Earlier we remarked that this way of coping with tail-recursive unfoldings
uses techniques similar to exception handling. To reenforce this point, we will
now describe the compilation of unfolding A to Java for the tail-recursive case.
The Java-compiled version of unfolding A actually uses standard exception
handling mechanisms.

46 Compilation of Actions

private Data unfoldingp(Data data, Data bindings) {
while (true) {
try { return [[Ap0]](data, bindings); }
catch (Unfold unf) {
data = unf.getData();
bindings = unf.getBindings();

}
}

}

Now unfold boils down to just throwing a new Unfold exception:

throw new Unfold(data, bindings);

5.2.2 Some Notes about Genericity

This subsection discusses the generalization of the compilation scheme. The
layered compilation scheme presented above evolved from the need to separate
the compilation of Kernel AN2 and Full AN2 and to allow further optimiza-
tions to be added without having to change the complete compiler. In fact the
compilation scheme can be viewed in an abstract way and be reused to target
more languages. In fact, we have done this for the compilation of AN2 to AIL
(Chapter 6): it is specified in exactly the same way as the compilation to Java
and C.

To abstract away from source and target language let us consider an example
of an unspecified layered function. Let the following Asf+Sdf module be a
template for declaring a layered family of functions:

module Function
imports basic/Integers
exports
context-free syntax
f(X) -> Y
f(Integer,X) -> Y
> -> Integer
⊥ -> Integer

equations
[default] f(n,x) = f(n− 1, x) when n != ⊥
[actual] f(x) = f(>, x)
[bottom] ⊥ = 0
[top] > = 〈highest level〉

The module Function declares one function f but it could just as well declare
many different functions that should be “layered”. Function f accepts a vector
X of parameters which are left unspecified in this example; we call this function
the actual function. The result sort is Y . Next the function f is overloaded with
an additional argument of sort Integer which is used to designate a level1.
Finally two tokens are declared which denote the top (highest) level and the
bottom (lowest) level. To let the default versions of the overloaded version of f

1One could use terms that are more informative then just integers by defining a function
pred(X)→ X for a sort X which contains names of levels.

5.3 ACC Internals 47

reduce to the same functions one level below, the first default equation is given.
Note that the default tag is crucial here, since the equation should only fire
if there are no normal equations defining the overloaded f for level n (defined
elsewhere). The meaning of the actual function f is defined to be equal to the
meaning of the overloaded function evaluated for the top level; this is stated
in the second equation. The meaning of > and ⊥ is specified in the last two
equations. If the function f is to be divided over l levels, > should evaluate to
l − 1. We can then produce modules Mi (∀i : 0 ≤ i < l) such that:

• Mi imports Mi−1

• M0 imports Function

• each Mi provides equations for f(i, x)

• all equations in Mi (0 < i < l) are normal (non-default); equations in M0

should be exhaustive (i.e. may be default)

• any recursion on f is performed using the actual function f ; that is, the
overloaded f is never directly evaluated.

There is one aspect of dividing a function over a number of levels that we have
only mentioned yet. This is the extension of the signature of f in higher levels.
In our compilers one of the arguments in X is an environment which contains
additional information used to compile actions. In essence, this environment
contains (extra) arguments to f . For the compilation of Full AN2 constructs,
this environment is extended; that is, f gets more input. However, by hiding
these arguments in one (environment) argument, we can extend the signature
of f without having to change the specifications of lower levels (i.c. the kernel
compiler).

The advantages of layering a function over a number of levels are that every
level can be used in isolation, and, if a level is added, we only need to produce
Ml and increase the value for >.

5.3 ACC Internals

5.3.1 Overview

The runtime system used by acc-compiled actions consists of a Data Notation,
non-local jump primitives and a reflection interface. The reflection interface is
discussed in more detail in the next subsection.

The Data Notation is implemented using the ATerm Library [7, 6]. This
implementation of a Data Notation is the same as is used by acr and avm (see
Chapter 6). The main advantage of using the ATerm library lies in the fact that
ATerms are garbage collected. This way no static liveness analysis for variables
is needed. Secondly, since AN2 is mostly a functional language, the copy-on-
write semantics of ATerm modification fits the semantics of Data Operations
very neatly.

Non-local jumps are needed to implement exception handling, non-determin-
istic choice and tail-recursive unfoldings. All three uses are based on the same

48 Compilation of Actions

choice point library [26]. The runtime library defines some additional wrap-
around functions to distinguish exceptions, failures and unfolds, and to be able
to pass data with thrown exceptions and unfolds.

The interacting facet is not supported by acc. This is our one exception
to the requirement of supporting the full kernel of AN2. One would think that
executing agents could have been mimicked by using threads as provided by the
operating system. The reason that we have done not so is a consequence of the
use of ATerms: the garbage collection algorithm of the ATerm library cannot
cope with threads, since it uses the runtime stack to detect whether some term
is referenced or not.

5.3.2 Reflection: Lightning

Constructive reflection in a language like C seems to be a great challenge. It
would have been if there would not have existed a platform independent just-in-
time assembler: GNU Lightning [4]. Lightning consists of a number of header
files containing macros to define ordinary C functions at runtime. These macros
are abstract in the sense that their interface is platform independent. Using the
macros, however, results in real assembly for Sparc, i386 and PPC platforms.
An example may illustrate how Lightning can be used to achieve AN2 reflection
at the level of C. The following listing describes how the data operation give
then is performed.

ACCFunctor ACC jit then(ACCFunctor a1, ACCFunctor a2) {
char ∗start, ∗end; int data offset, bindings offset;
ACCFunctor f;
f = (ACCFunctor)(jit set ip(cur ip).pptr);

5 start = jit get ip().ptr;
jit prolog(2);
data offset = jit arg p();
bindings offset = jit arg p();
jit getarg p(JIT V0, data offset); /∗ v0 = data ∗/

10 jit getarg p(JIT V1, bindings offset); /∗ v1 = bindings ∗/
jit prepare(2);
jit pusharg p(JIT V1);
jit pusharg p(JIT V0);
jit finish(a1);

15 jit retval(JIT V2); /∗ v2 = a1(data,bindings) ∗/
jit prepare(2);
jit pusharg p(JIT V1);
jit pusharg p(JIT V2);
jit finish(a2);

20 jit retval(JIT RET); /∗ ret = a2(v2,bindings) ∗/
jit ret();
cur ip = jit get ip().ptr;
jit flush code(start,cur ip);
return f;

}

Recall that the type ACCFunctor is a functiontype that accepts data and bind-
ings as input and returns data as a result. This kind of functions are input to

5.3 ACC Internals 49

ACC jit then. All identifiers starting with “jit” (both lowercase and uppercase)
are part of Lightning. The first statement sets the internal instruction pointer
to the memory region pointed to by cur ip. The instruction pointer is cast
to a function pointer returning a pointer and is then stored in f. The start of
the function is saved in start. Then the real just-in-time compilation starts.
A standard prologue for a function accepting two arguments is produced by
jit prolog(2). The offsets of the arguments are saved in two local variables.
At line 9 and 10 these offsets are used to store the arguments in general purpose
registers V0 and V1. Now that the arguments data and bindings are available
we have to call the first argument a1 with this input. Lines 11–14 perform this
function call. At line 15 the result is stored in register V2. The next func-
tion call (lines 16–19) gets V2 as data input instead of V0, thus capturing the
functional composition semantics of then . Then the result of a2 is put in the
return register RET so that the result of performing a2 is also the result of
the composition. Finally, the instruction buffer is flushed, making the function
available in f. The resulting function f can be invoked just like any other C
function.

Some Issues

Currently there is no garbage collection of jitted actions. Actions as data are
embedded in ATermBlobs. This should enable the automatic garbage collec-
tion of reflective actions but the problem is that all just-in-time compilations
are performed in one region of memory (which should never be destroyed). A
possible solution is to allocate a separate region of memory and copy the jitted
function into it. This way overflow of the instruction buffer used by Lightning
is prevented and functions can be garbage collected2.

Another problem is a consequence of AN2 itself: constructive reflection is
used abundantly in mapping Full AN2 actions to Kernel AN2 actions. On
the kernel level, even simple unfolding actions heavily use reflection. When
unfolding actions are directly compiled this problem is solved. However, when,
for example, a closure with a specific input should be enacted, reflection is used.
This is a consequence of the semantics of enact : it states that the action is en-
acted with no input and no bindings. To provide input, the action should first
be composed with an input providing action using, e.g., give then . Reflection
at runtime thus results in a jitted function for each time a closure is enacted.
The current implementation memoizes jitted functions to prevent that multiple
jits of the same function do not occur, but this only prohibits just-in-time com-
pilation when the input to the closure is the same. Further research is needed,
considering how to directly compile closures and enactments to avoid this kind
of runtime reflection (just as has been done for unfolding and unfold).

2This is a consequence of the use of ATermBlobs. When an ATermBlob is collected, the
memory it contains is freed.

50 Compilation of Actions

5.4 Java Runtime Architecture

5.4.1 Overview

An action is compiled to a function in C. In Java actions are compiled to pri-
vate methods of a public class which extends the class AbstractEnactable,—
a base class which implements the Enactable interface. Reflective actions
(actions provided as data) are compiled to a private inner class extending
AbstractEnactable. Exception handling and non-deterministic choice is im-
plemented using the standard exception handling mechanisms of Java. Two
special exception classes are defined: Exceptional and Failure which are re-
spectively caught by the translation of A1 exceptionally A2 and A1 otherwise
A2. For the sequential exceptional combinator and exceptionally the same
trick is used as in acc and avm (see Chapter 6): nested try...catch ensure
concatenation of two exceptional results.

Storage and schedule are modeled by two Singleton [18] classes which are
globally accessible. The schedule class takes care of sending and receiving mes-
sages. The actual parallel execution of agents (containing references to Actions)
is implemented using the standard Thread/Runnable facility offered by the Java
runtime. The classes Store and Schedule respectively implement the interfaces
Storing and Scheduling to anticipate future changes. These interfaces have
the following signatures:

public interface Storing {
public Cell create(Storable storable);
public Empty destroy(Cell cell) throws Exceptional;
public Empty update(Cell cell, Storable o)

throws Exceptional;
public Storable inspect(Cell cell) throws Exceptional;

}

From this interface one can see that all actions pertaining to the imperative
facet are all located in the same class. This propagates the orthogonality of
the different facets of AN2 to the level of the Java implementation. Following
this path of separation of concerns, the same can be said of the Scheduling
interface:

public interface Scheduling {
public Empty send(Agent agent, Message message,

MessageTag messageTag) throws Exceptional;
public Message receive(MessageTag messageTag)

throws Exceptional;
public Agent activate(Action action);
public Empty deactivate(Agent agent) throws Exceptional;
public Agent currentAgent();
public Int currentTime();
public Int chooseNatural();
}

All identifiers in the interfaces starting with an uppercase letter are interfaces
from the Data Notation that we have implemented in Java, which is the subject
of the following subsection.

5.4 Java Runtime Architecture 51

5.4.2 Data Notation

Java interfaces provide a nice way to enforce certain features of classes without
having to fall back on inheritance. In this subsection we describe (a part of)
the structure of the Data Notation in Java which heavily relies on interfaces.
The Data Notation provides classes representing some standard data types,
and actions themselves. The actual implementation of the classes is hidden
via the well-known Abstract Factory pattern [18]. All data operations and
predicates (functions) have now become methods in the classes they are defined
for. To create data the factory is the starting point. Currently there is only one
factory implementation based on the standard Java classes. The translation
of a subsorted Data Notation is first presented in a generic style. The next
subsection, which discusses reflection, serves as an example.

Every sort S is mapped to an interface which extends the interface of its
(primary) super sort. If S has more super sorts their respective interfaces are
also extended. These super sorts are referred to as features3. For all data
operations and predicates defined for sort S a method is added.

public interface 〈Sort〉 extends 〈SuperSort〉, 〈Features〉 {
public 〈Sort〉 〈Data Operation〉;
public boolean 〈Data Predicate〉;
...

}

Implementations for S extend the implementation of their super sort and imple-
ment interface defined for S. Implementations are always based on some value
which is hidden from the outside world. The implementation of data operations
should be strictly functional (no update of local state) and return an object
which obeys interface S. For data operations and predicates to have access to
the internal representation a protected method get〈V alue〉Value() should be
implemented. Generically, such an implementation is an instantiation of the
following template:

class 〈Sort〉Impl extends 〈SuperSort〉 implements 〈Sort〉 {
private 〈V alue〉 value;
protected 〈V alue〉 get〈V alue〉Value() { return value; };
public 〈Sort〉Impl(Factory factory, 〈V alue〉 value) {
super(factory);
this.value = value;

}
// Implementations of the interface

}

Implementation classes are not publicly available. The creation of objects is
deferred to the Factory.

5.4.3 Reflection: Enactables

Informally, an action can be defined as something that can be enacted. Apart
from the enactable character however, actions of different kinds are also sorts

3Recall the example: Int ∈ Datum, Int ∈ Storable, Int ∈ Bindable. The last two
supersorts are presumed to be features.

52 Compilation of Actions

of data. That is, they are part of an inheritance hierarchy in Java. Classes
which implement the Enactable interface serve as values for Actions. Thus,
an action is an object which contains an Enactable.

public interface Action extends Datum, Runnable {
public Data enact() throws Exceptional, Failed, Unfold;
public Action then(Action action);
// ... other data operations

}

Since actions are included in the sort of Datum, this interface extends the in-
terface Datum. Furthermore, an action can serve as part of an executing agent
so the class Runnable is also included. Actions can thus be used to instantiate
threads (agents). The concrete implementation (ActionImpl) extends the con-
crete Datum implementation (DatumImpl) and implements the Action interface.
It is declared as follows:

class ActionImpl extends DatumImpl implements Action {
private Enactable value;
protected Enactable enactableValue() { return value; }
public Action then(Action action) {
return new Then(factory,enactable,action.enactableValue());

}
...

}

The reflection methods declared in the Action interface above, construct sub-
classes of ActionImpl with specific local Enactables. Take for example the
concrete class Then:

class Then extends AbstractInfixCombinator {
private class _Then implements Enactable {
public Data enact(Data data, Bindings bindings)
throws Exceptional, Failed, Unfold {
return enactable2.enact(enactable1.enact(data,bindings),

bindings);
}

}
public Then(PureFactory factory,Enactable e1,Enactable e2) {
super(factory, e1, e2);
enactable = new _Then();
}
}

This class extends an abstract class AbstractInfixCombinator (a subclass of
ActionImpl) which declares two protected Enactable fields. These model the
respective lefthand and righthand argument of an infix action combinator. Class
Then contains an inner class which implements the Enactable interface. This
inner class can thus serve as a value for an action. The implementation of the
method enact captures the semantics of the then combinator. Finally when a
Then object is constructed the result is an Action object which can be enacted
just like any other Action descendant.

5.4 Java Runtime Architecture 53

5.4.4 Multi Threading

Although the multi threading features of AN2 are implemented using the stan-
dard thread facility of Java, it is completely hidden in the class Schedule (an
implementation of the Scheduling interface). It is instructive to have a look
at the implementation of activate and deactivate, both defined in Schedule.
Activate is implemented as follows:

public synchronized Agent activate(Action action) {
Agent agent = factory.makeAgent();
Thread thread = new Thread(action);
agents.put(agent, thread);
threads.put(thread,agent);
buffers.put(agent, new TaggedBuffers(factory));
thread.start();
return agent;

}

The activate method takes an action as an argument. As we have seen,
Actions implement the Runnable interface. So Actions can be used to initialize
new Java threads. The resulting thread is put in a table with a fresh agent (pro-
duced using the data factory) as key. To retrieve an agent corresponding to a
specific thread, another table contains the pair in reverse. Together the agents
and threads tables form a bijective map. Then a new entry in the buffers
table is created containing a tagged buffers structure. The class TaggedBuffers
consists of a hashtable, with MessageTags as keys and queues of Messages as
values. Such a buffer is used for sending (enqueuing) and receiving (dequeuing)
messages. Finally the thread is started and the agent is returned.

The action deactivate is used to destroy the thread corresponding to a given
agent:

public synchronized Empty deactivate(Agent agent)
throws Exceptional {

if (agents.containsKey(agent)) {
Thread thread = (Thread)(agents.get(agent));
thread.interrupt();
agents.remove(agent);
thread.remove(thread);
buffers.remove(agent);
return factory.makeEmpty();

}
throw new Exceptional(factory.makeEmpty());

}

The argument agent is looked up in the agents table and if a thread is found, it
is interrupted. The agent is removed from the agents and buffers tables and
the empty tuple is returned. If the agent does not exist an exception is thrown.

Currently, no attempt is made to influence the scheduling policy of the Java
Virtual Machine. It is however possible to let the compiler insert Thread.yield()
statements at appropriate points in the code. A second possibility is to have
these statements in the implementation of all primitive actions, however, they
then cannot be disabled if one would like to. Finally the scheduling policy can

54 Compilation of Actions

be dealt with in a central way, by having one separate thread responsible for
scheduling. This thread has maximum priority and then is able to assign time
slices to other threads (the running agents).

5.4.5 Issues Concerning Java as a Target

One of the advantages of using Java as a target over C is that Java is (almost)
statically typed. This is especially rewarding when one chooses to compile
Java to native code using GCJ, the GNU Java Compiler, which sometimes
achieves even better results than ordinary C. However, our Data Notation in
Java uses multiple inheritance for interfaces and this is not supported by GCJ.
Multiple inheritance is a problem in another aspect of the Data Notation as
well. The straightforward translation of subsorted algebraic specifications to
an object oriented language should benefit from multiple inheritance. Thus it
seems valuable to assess other target languages that compare well with Java with
respect to other features. One such language is Sather [39]. Sather is an Eiffel-
like object oriented language which supports multiple subtyping and inheritance,
efficient compilation to C and a very high level concurrency interface. Compiling
actions to Sather should be as easy as compiling actions to Java , if not easier.
Alas, this language is not very heavily maintained.

Another language which is interesting as a target for compiling actions is
Erlang [16]. Erlang is developed by Ericsson, is heavily used and maintained
and is available in the public domain. It can be characterised as a functional,
declarative language with enhanced support for concurrent processes and com-
munication. One problem however with Erlang is that memory (storage) is local
to processes, while in Action Semantics storage is global and accessible by all
threads.

Chapter 6

AIL Internals

6.1 Introduction

AN−K AIL
an2ail

P

AIL AIL B−AIL
bail

PP

AN−K C
ailcc

C

B−AIL B−AIL

Asf+Sdf B−AIL

C

avm

C

Figure 6.1: Compilation of Actions to AIL

One approach to executing actions is to transform an action to another inter-
mediate format which is subsequently executed by an interpreter. In Chapter
3 we introduced a way to execute actions by compiling it to AIL. Until now,
AIL stood for “Action Intermediate Language”. In this chapter we show that
AIL can also be understood as “Abstract Intermediate Language”. During the
design of the action virtual machine (avm), it became clear that the use of AIL
was not restricted to the execution and compilation of actions. At the same
time, pragmatic considerations motivated thorough reengineering of the way
AIL was deployed. As the instruction set of AIL changed, the interpreter and
byte code generator had to be both changed. The possibility to factor out most
of the Action Semantic dependencies led to better software engineering prac-
tices and wider applicability. As such it can be seen as an exercise in software
reuse. To acknowledge these considerations, this chapter is divided in two parts.
The first part elaborates the generic parts of the AIL approach: we discuss the
architecture behind AIL and present an example of how to use AIL. The sec-
ond part describes how the AIL tools are used to produce an interpreter and
compiler for AN. To connect this chapter to Chapter 3 we again display the
T-Diagram in Figure 6.1. Recall that bail assembles symbolic AIL to binary
AIL (B-AIL). The resulting object file can be executed by the virtual machine
avm or be compiled to C with ailcc.

56 AIL Internals

6.2 Generic Scaffolding for Virtual Machines

6.2.1 Preliminaries

The problem that AIL addresses can be stated as follows.

How to minimize programming efforts for prototyping virtual ma-
chine interpreters?

This problem domain can be split in the following subdomains:

• A program P in language L should be mapped to an arbitrary sequence
of instructions IP which represents the semantics of P . IP can be seen as
an assembly language representation over AL. The language AL consists
of generic syntax A for instruction sequences statically restricted by a
signature of the set of valid instructions defined for L.

• The instruction sequence IP should preferably be stored in some binary,
non-symbolic form BP .

• A virtual machine ML implemented in some language should be able to
execute BP .

Taken together we need a compiler which compiles P into assembly IP which is
then assembled into BP and finally executed by ML. We assume that the com-
pilation step is provided for by the user, specified in Asf+Sdf. The assembly
language A is AIL; its grammar is generically specified in Sdf. AIL instructions
should obey some rules. An instruction mnemonic is a sequence of alphanumeric
characters. Each instruction can optionally have one parameter. This parame-
ter can be a natural number (e.g. designating a register), a label (for branching
instructions), a textual representation of an ATerm (e.g. constant values), or a
complete sequence of instructions enclosed by curly braces (reflection). Finally,
labels can be used to refer to positions in the sequence. Using ATerms as the
primary datastructure is crucial since it allows serialization of constant data
values into binary format.

Our solution to the problem of minimizing programming efforts for proto-
typing virtual machines consists of a number of generic components which are
parametrized by definitions provided by the user. The first component we will
discuss is a bytecode compiler (assembler) which translates AIL mnemonics to
bytecode: bail. The ensuing binary objectcode can be subject to the following
tools:

• Interpreter: a virtual machine partially generated by genailapi

• Compiler: a compiler to C partially generated genailapi

• Disassembler: completely generated by genailapi

The interpreter and compiler both depend on semantic information provided by
the user and are therefore partially generated. The semantics of each instruction
is the only thing the user will have to provide. This is done by implementing
a number of C macros for which the signatures are generated. We will call
these macros the implementing macros. The interpreter and compiler use the
implementing macros to execute bytecode. The signature of each instruction is
derived from AIL definitions, which are the subject of the next subsection.

6.2 Generic Scaffolding for Virtual Machines 57

6.2.2 AIL Definitions

AIL definitions are used to define instruction sets for a particular purpose. They
consist of a list of instructions. Each instruction can optionally be followed by
an argument pattern (one of “term”, “number”, “label”, “code”). An AIL defi-
nition is the syntactic reference for a subset of instructions which are parseable
by the grammar of (generic) AIL. It contains sufficient information to build the
binary structure of an AIL program and to decompose it. Therefore the Appli-
cation Programming Interface (API) as generated by genailapi takes an AIL
definition as input. From the signatures contained in the definition four entities
are generated: a virtual machine architecture, a list of instruction prototypes,
a compiler and a disassembler. Recall that the bytecode compiler bail is a
separate tool, and is also parameterized by an AIL definition. Since the binary
objectcode output by bail conforms to the AIL definition, it is guaranteed to
be accepted by the virtual machine and other generated tools.

6.2.3 Bytecode Generation

The assembler bail takes an AIL program P and and AIL definition S as input.
P is assumed to be a parsetree over the AIL grammar as produced by a user
provided L-to-AIL mapping. The parsetree S is a term of sort AIL-Definition.
Both input objects are thus parsetree representations over two grammars: AIL
and AIL-Definition. To access these parsetrees in a parsetree format indepen-
dent way in C, we used a tool developed at CWI, called apigen [22]. Parsetrees
produced by Asf+Sdf Meta-Environment components are always represented
by ATerms, so we can use the ATerm library to manipulate trees of any kind.
Apigen generates an Abstract Programming Interface (API) to manipulate those
trees without knowing that ATerms are the internal representation of them. This
API is generated from Sdf definitions. Both for AIL and AIL-Definition syntax,
we have generated an API which is used by bail and genailapi.

But what is the binary format (ABF) of an AIL program? The assembler
proceeds in a number of steps. First the AIL Definition argument is traversed
and each instruction is mapped to an integer; that is, an opcode table is built.
Then the AIL program is traversed and for each AIL statement appropriate
action is taken. If the statement is a label, its position is saved1. Otherwise,
if the statement contains an instruction, the signature is checked by looking up
the instruction in the AIL definition. The program aborts if there is an error. If
the statement is valid, the opcode corresponding to the instruction is appended
to a binary buffer. If the instruction is followed by an argument, the argument
is serialized to the binary buffer. This means that integers take up four bytes in
the stream. ATerms are serialized with the ATwriteToBinaryString primitive
provided by the ATerm library. If a label’s definition has already occurred the
distance to the saved location is written to the stream. Labels thus correspond to
relative byte offsets. If the definition of the label has not yet been encountered,
a zero integer is appended to the stream. This kind of labels is resolved in a
separate pass. Finally, the argument can consist of AIL code itself. In that case
the byte compilation procedure is called recursively and the resulting bytecode
program is appended to the stream.

1Note that label definitions in AIL are assumed to be just statements, but that they never
take up space in bytecode.

58 AIL Internals

6.2.4 Interpretation

As is mentioned above, the interpreter is partially generated by genailapi.
By “partially” we mean that everything that is unrelated to the semantics of
instruction is automatically derived from the AIL Definition. The interpreter
that results is a so-called threaded virtual machine. This means that instruction
branching is implemented using absolute addresses stored in an opcode table,
instead of one while-loop containing a case statement which compares each byte
of the instruction stream with some value. There are two main advantages
of this approach. The first is speed: threaded virtual machines are generally
much faster since no comparisons are needed. The second advantage is that
multi-threading is much easier to implement. There is, however, one drawback:
to implement a threaded interpreter in C, without falling back on some inline
assembly, a GCC extension is used. Since GCC is available on many platforms,
this is not a very high price to pay.

Operationally, the generated, threaded interpreter proceeds as follows. Let
the array opcodes contain a reference to a label doi for each opcode i. So we
have for all i: opcodes[i] = &&doi. The unary operator && is the aforementioned
GCC extension and converts any label to a pointer to type void. Now the
interpreter is defined as follows:

#define interpreter(x,program) {
int_start: goto *opcodes[*program++];
∀ i ∈ range(opcodes) :
do_i: 〈semantics of instruction with opcode i〉

goto *opcodes[*program++];
int_end:

}

The interpreter starts by branching to the label associated with the first instruc-
tion opcode. Then for each kind of instruction, the following is generated. For
instructions without arguments, just the implementing macro is invoked. If an
argument is present, it is read from the byte stream (*program) according to
its type and input to the implementing macro. If this argument is a label, the
offset is converted to an absolute instruction location (pointer) using the cur-
rent program position before it is input to the implementing macro. The size
occupied by an argument in the bytestream is skipped. After the instruction
dependent code has executed, the interpreter proceeds with the next instruc-
tion. The last label (end) of the should be used for termination. In the set
of valid AIL instructions there should be one instruction which denotes termi-
nation. The implementing macro for this instruction can then branch to end.
Thus, there is no support for implicit termination in AIL.

6.2.5 Compilation for Free

In this subsection we turn our attention to the (partially) generated compiler.
The prototype macros that are to be filled in by the user, are used both by
the interpreter and the compiler. We assume that these macros are properly
implemented. Since the signatures of instructions are known from the AIL
Definition, we can compile an AIL program to a C program that essentially
consists of a sequence of invocations of the implementing macros.

6.2 Generic Scaffolding for Virtual Machines 59

Just as the interpreter, a compiled AIL program consists of a macro. This
macro again accepts the unspecified “x” argument and a location to an AIL
bytestream. This location, together with the interpreter appended to the se-
quence of compiled instructions, is used for executing reflective code. We will
return to this subject later. The result of compiling an AIL program looks as
follows:

#define compiled(x,pc) {
declare_opcodes();
cmp_start:
〈instructions compiled to C〉

cmp_end:
interpreter(x,pc);

}

The complete instruction sequence is surrounded by cmp start and cmp end
labels which are used to distinguish static labels from dynamically produced
labels.

The compilation of instructions is quite simple. For each kind of instruction
we discuss the mapping to an equivalent in C. In the following we assume that
pos designates the global position in the bytestream that is being compiled.
This means, that pos is incremented with every byte that is consumed from the
bytecode, even those in code that is argument to an instruction. We also assume
that positions can be labels in C2. The compilation is specified as follows:

f 7→ ‘pos‘ : f(x); (6.1)
f(n) 7→ ‘pos‘ : f(x,‘n‘); (6.2)
f(t) 7→ ‘pos‘ : f(x, parse(‘unparse(t)‘)); (6.3)
f(l) 7→ ‘pos‘ : f(x, &&(‘pos + l‘)); (6.4)

f(c) 7→
goto l2;
l1 : ‘compile(c)‘
l2 : ‘pos‘ : f(x, &&l1);

(6.5)

In the left column the various kinds of instructions are listed: instructions
without arguments, and instructions with an argument of type integer, term,
label and code respectively. The right column lists the C equivalent of the
corresponding AIL instruction f . The expressions within ‘ (backquotes) are
evaluated by the compiler. For example: ‘n‘ will result in an integer literal in
C.

The first mapping is the most simple: an instruction f without arguments
results in the invocation of the implementing macro “f” with the unspecified
argument “x”. This argument “x” can be anything since macros are used to
implement the semantics of an instruction. The argument “x” derives from the
the toplevel macro in which the list of statements is embedded3. When the argu-
ment to f is an integer it is appended the list of arguments of the implementing
macro. For ATerm arguments we first unparse the binary ATerm present in
the stream to Textual ATerm Format (taf, [7]). Converting an ATerm to taf

2In the implementation these positions are translated into identifiers.
3Just as for the interpreter described above.

60 AIL Internals

results in a textual representation with sharing. Thus, the argument is com-
piled to a function call which reads the ATerm from the textual representation
(parse). Since byte offsets cannot be used in C, relative labels (offsets) are made
absolute using the current position (pos) in the stream. This label always ex-
ist, since every instruction is labeled by its position in the stream. For code
arguments, a goto statement is generated which jumps over the compiled code
argument which is labeled by a new label l1. The implementing macro gets this
label (converted to a pointer) as an argument.

A Note on Reflection

In the interpreter code arguments are just AIL programs. That is, streams
of bytes embedded in an ABF structure. It is up to the designer of language
L what to do with such objects. However, when a binary AIL program is
compiled we encounter a problem, since reflective arguments are themselves
compiled to C. A code argument to an instruction will be a label pointer in
compiled mode (see the last mapping above). It is up to the language designer
what to do with this pointer. On the other hand, when some instruction, in one
way or another, constructs an instruction sequence (bytecode) which should
eventually be executed, it is not possible to compile this dynamically. This
problem is solved by appending the interpreter as defined above, to the sequence
of compiled instructions. Static code arguments are compiled and passed via
label pointers,—dynamically created programs are interpreted via the included
interpreter. Consider, for example, an AIL instruction exec which receives
code in some way other than via code arguments (e.g. through an evaluation
stack). Let’s assume that both encodings are referenced via a pointer p4. This
instruction can determine whether to branch to compiled code or to start the
interpreter, by checking p as follows:

if (&&cmp_start < p ≤ &&cmp_end)
goto *p;

else {
pc = p;
goto *opcodes[*pc++];

}

Labels can be disambiguated along the same line. Within the interpreter labels
are made absolute using pc before passing it to the implementing macros. So by
comparing this pointer with &&cmp_start and &&cmp_end we again know how
to perform the jump.

6.3 Using AIL: an Example

The concepts and tools presented in the previous section are illustrated by
defining a simple interpreter for arithmetic expressions in reverse polish notation
(RPN).

6.3 Using AIL: an Example 61

foo.rpn RPN−to−AIL foo.ail bail foo.abf

rpn−calcRPN.def rpn.c
rpn−impl.h

Produced by user

User fills in semantics
of individual instructions

rpn.h

foo.c

output of foo

User provides auxiliar
code for, e.g. stacks.

genailapi −n rpn

Figure 6.2: Interaction of AIL tools for RPN

6.3.1 Overview

To define an interpreter for reversed polish notation (RPN) using AIL a number
of steps can be distinguished. These are depicted in Figure 6.2. First, a transla-
tion is needed from the RPN language to AIL. This step will not be elaborated
any further in this section since it is trivial. Second, an AIL Definition should
be present containing the allowed instructions together with their signatures.
From this AIL Definition some C files are generated using genailapi. One of
these files is to be modified by the user: rpn-impl.h. This file contains macro
prototypes5 for each instruction declared in the AIL Definition RPN.def. The
semantics of each instruction can be specified in the bodies of these macros.
The final step consists of writing a program (rpn-calc) that actually invokes
the interpreter and contains all RPN specific machinery (such as an evaluation
stack). A program foo.rpn in RPN notation can now be converted to an AIL
program foo.ail. Using bail foo.ail is assembled to bytecode which is to be
evaluated by rpn-calc. There is one aspect of Figure 6.2 that we have not yet
mentioned. The program rpn-calc can also invoke the generated compiler. By
doing this foo.abf is compiled to foo.c.

6.3.2 AIL Signature

For the bytecode compiler bail to know what kind of instructions are allowed,
the signature of valid AIL instructions for RPN is defined as follows:

definition RPN {
push <term>;
add;
sub;
mul;
div;
output;

}

The only instruction that takes an argument is the push instruction which is
used to evaluate constant values. The argument pattern <term> indicates that

4I.e. a void* pointer or an ABF pointer.
5Macro prototypes are just empty C preprocessor macros with the right number of param-

eters.

62 AIL Internals

the argument can be any ATerm. This a very liberal constraint but more specific
patterns could have been used just as easily.

6.3.3 Generated Code

The first part of the generated RPN API consists of a C header file (rpn.h)
containing function declarations and macro definitions. The generation of these
C entities depend solely on the AIL signature for RPN defined above.

#define RPN push opcode 0
#define RPN add opcode 1
#define RPN sub opcode 2
#define RPN mul opcode 3
#define RPN div opcode 4
#define RPN output opcode 5

#define RPN num of instructions 6
#define RPN lowest opcode 0
#define RPN highest opcode 5

#define RPN DECLARE RPN OPCODE TABLE() \
static void ∗RPN opcode labels[] = {\

[RPN push opcode] &&do push,\
[RPN add opcode] &&do add,\
[RPN sub opcode] &&do sub,\
[RPN mul opcode] &&do mul,\
[RPN div opcode] &&do div,\
[RPN output opcode] &&do output\

}

#define RPN goto op(op) goto ∗(RPN opcode labels[(op)])

Since AIL programs are converted to a binary representation, an opcode table is
needed. These opcodes are mapped directly to ordinary C labels. This mapping
can be declared by invoking the macro RPN DECLARE RPN OPCODE TABLE(). The
use of && is a GCC extension and is used to convert any label to a void pointer.
The declaration is encapsulated in a macro definition since labels can only be
used in the scope where they are defined. To branch to a specific AIL instruction
handler the second macro RPN goto op can be used. Note that the actual way
of branching to an instruction handler is hidden from the user of this API.

#define RPN interpreter(x,abf) {\
RPN start: RPN goto op(∗abf);\
do push:\

abf skip byte(abf);\
{\

ATerm d = abf get aterm(abf);\
abf skip aterm(abf);\
RPN perform push(x, d);\

}\
RPN goto op(∗abf);\

6.3 Using AIL: an Example 63

do add:\
abf skip byte(abf);\
RPN perform add(x);\
RPN goto op(∗abf);\

do sub:\
abf skip byte(abf);\
RPN perform sub(x);\
RPN goto op(∗abf);\

do mul:\
abf skip byte(abf);\
RPN perform mul(x);\
RPN goto op(∗abf);\

do div:\
abf skip byte(abf);\
RPN perform div(x);\
RPN goto op(∗abf);\

do output:\
abf skip byte(abf);\
RPN perform output(x);\
RPN goto op(∗abf);\

RPN end: ;\
}

To further hide the branching mechanism an interpreter macro is generated
which uses RPN goto op macro. This macro receives one unspecified argument
x and a Abstract Binary Format structure which is the basis of AIL bytecode.
Calling the interpreter defines the labels used in the opcode table. Since the
signature of all AIL instructions is known from the RPN definition, any ac-
tion pertaining to accessing the bytecode is generated. Thus, for the push
instruction, we know that an ATerm follows the instruction byte, which is
argument to the macro RPN perform push. This macro is declared empty in
rpn-impl.h, and should be modified by the user. Interpretation continues after
RPN perform push has finished.

The last declarations of rpn.h are function prototypes for the RPN compiler
and disassembler:

char ∗RPN getStringForOpcode(int op);
void RPN disassemble(FILE ∗f, AIL ByteCode bc);
void RPN compile(FILE ∗f, AIL ByteCode bc);

The definitions of these function are generated in rpn.c. The compile function
for RPN simply constructs a C macro which contains the invocations of all
instructions in the AIL bytecode argument. Per instruction, a label, a macro
invocation and possibly an argument is printed. The function that compiles one
instruction is defined as follows:

static void RPN compile instruction(FILE ∗f, ABF ∗abf, int
∗line) {

char op = abf get byte(∗abf);
fprintf(f, "l%d: RPN perform %s", ∗line,

RPN getStringForOpcode(op));

64 AIL Internals

∗line += abf byte offset(∗abf);
abf skip byte(∗abf);
switch (op) {

case RPN push opcode: {
int len; char ∗s =

ATwriteToSharedString(abf get aterm(∗abf),&len);
s = escape quotes(s);
fprintf(f,"(x,

ATreadFromSharedString(\"%s\",%d));\\",s,len);
∗line += abf aterm offset(∗abf);
abf skip aterm(∗abf);
break;

}
default: fprintf(f,"(x);\\");
}
fprintf(f, "\n");

}

As can be seen from this listing, for default instructions (no arguments) only
the performing macro is invoked. For RPN there is only one instruction which
accepts an argument: push. The argument is available in binary form in the
bytestream *abf and is converted to a string containing the taf respresentation.
At runtime this string is parsed to reconstruct the ATerm. The result is input
to the macro which implements the semantics of push.

6.4 AIL for Actions

6.4.1 Overview

One might argue that Action Notation is a low level functional language with
side effects. This motivates the interpretation of actions as terms in a functional
language. The compilation of actions to e.g. ML or Haskell thus seems obvious.
The problem lies in the fact that actions are not just terms, but very large
terms. The interpreter evalan and acr can handle these terms due to the
maximal sharing in the representation by ATerms. In this section we elaborate a
different approach by discarding the tree structure of actions altogether. Actions
are serialized to a sequence of instructions which can be executed in the same
way trees are reduced. Due to the SOS (small-step) nature of the semantics of
AN2 reduction of terms is very costly in time. On the other hand the use of
ATerms makes reduction very efficient in space. The AIL approach presented
in this section is efficient in time, but in some circumstances (reflection) very
expensive in space.

First the translation of some Full AN2 constructs to AIL is discussed. Then
we describe the runtime architecture of avm in more detail than has been done in
the overview chapter. Finally we discuss some implementation issues concerning
special AIL instructions.

6.4 AIL for Actions 65

A1 then A2 7→ [[A1]] publish; [[A2]] unpublish;

A1 and then A2 7→ [[A1]] push; copy; [[A2]] merge;

A1 and A2 7→ [[A1]] push; copy; [[A2]] merge;

indivisibly A 7→ lock; [[A]] unlock;

A1 exceptionally A2 7→

trye l1;

[[A1]]
catch l2:

l1: epublish;

[[A2]]
unpublish;

l2:

A1 and exceptionally A2 7→

trye l1;

[[A1]]
catch l2:

l1: epush;

copy;

trye l3;

[[A2]]
catch l4;

l3: emerge;

throw;

l4: edrop;

l2:

A1 otherwise A2 7→

tryf l1;

[[A1]]
catch l2:

l1: copy;

[[A2]]
l2:

A1 hence A2 7→ [[A1]] enter; [[A2]] leave;

Table 6.1: Translating Kernel AN2 to AIL

6.4.2 Translating AN2 to AIL

The compilation of actions to AIL instruction sequences is implemented in
Asf+Sdf in the very same way actions are compiled to C and Java. We
will therefore not discuss the structure of this compiler. Moreover, since the
reduction of Kernel actions has been discussed in the overview chapter (chapter
3), we here just list the translations of Kernel combinators in Table 6.1 as a
reference. Instead, this subsection is devoted to describing the translation of
some Full AN2 constructs. More specifically, we discuss the translation of the
unfolding A and unfold actions, just as we did in chapter on acc and ajc
(chapter 5). Again, we will distinguish the tail-recursive case from the non-
tail-recursive case but we will see that some unexpected problems surface when
tail-recursive actions are compiled to AIL in a straightforward way.

We start with the equations for unfolding A and unfold in the non-tail-

66 AIL Internals

recursive case.

[fs1] is-unfolding(A) = true, get-unfolding(A) = A’,

is-tail-recursive(A’) = false,

env.pos = n, n’ = n * 10,

lab1 = make-label(n), lab2 = make-label(n+1),

env1 = env.unf := <lab1,false>,

env2 = env1.pos := n’

===

fa-to-stats(A, env) =

frame lab2;

lab1: fa-to-stats(A’, env2)

return;

lab2:

The first condition holds if A is the Kernel reduced form of unfolding A′.
Since actions are reduced using an inner most reduction strategy we cannot use
matching in the lefthand side of the equation6. The unfolded action is assigned
to variable A′. If A′ is not tail recursive, two new labels are generated using
the position is the tree (env.pos). Next, the environment is updated at index
unf with a tuple containing the first label and a boolean indicating A′ is not
tail recursive. After the position update of the environment with n′, the AIL
representation is produced containing the reduction of A′. The first instruction
allocates a new frame with return address at lab2. Then the equivalent of A′ is
executed. Since lab1 has been passed down the action tree via the environment,
the reduction of unfold can use this information. Unfold first allocates yet again
a new frame, then branches to lab1 at the start of unfolding A. In the case
that unfold in A′ is not executed, control will eventually arrive at the return
statement which is why the frame stack will be unwinded.

[fs2] is-unfold(A) = true, env.unf = <lab, false>,

env.pos = n, lab’ = make-label(n)

===

fa-to-stats(A, env) =

frame lab’;

goto lab;

lab’:

To make the idea more clear let’s consider the following action:

unfolding (copy and provide 0 then check _>_
and then (copy and provide 1) then give _-_ then unfold
exceptionally provide ())

This action loops until the given integer input becomes zero and then provides
the empty tuple. Let’s assume that this action is not tail-recursive. The trans-
lation to AIL using the above equations for unfolding A and unfold is depicted
in Figure 6.37. The crucial point of this action is the reachability of the catch
instruction and the last unpublish instruction. They ensure that the data stack
as well as the exceptional context stack are unwinded. The frame instruction at

6If we would like to match fa-to-stats(unfolding A,env), some sort of narrowing would
have been needed.

7Irrelevant instructions, such as type checks, are left out.

6.4 AIL for Actions 67

frame l2;
l1: trye l3;

copy;
push;
prov int(0);
merge;
publish;
gt;

unpublish;
push;
copy;
push;
prov int(1);

merge;
merge;
publish;
sub;

unpublish;
publish;
frame l4;
goto l1;

l4: unpublish;
catch l5;

l3: prov [];
l5: return;
l2:

Figure 6.3: Example looping action in AIL

the beginning ensures that the last return that is executed returns to label l2
which is the end of the loop. But before return jumps to l2 the the destination
is label l4. This happens n times (where n is the number of iterations) due to
the allocation of frames preceding the goto instruction.

A control flow diagram is displayed in Figure 6.4. In this figure the input
is assumed to be 3. The labels of edges denote the number of jumps. Label
“2,1,0” corresponds to the consecutive values of the loop counter. Label “0,1,2”
designates the undoing of stack operations that occurred during the decreasing
of the loop value. Both the data stack and the context stack are popped. As
can be seen from the control flow diagram, four frames are allocated and return
is four times executed.

It is, however, obvious that the example action is tail recursive, so it should
be possible to eliminate the instructions concerning the unwinding of stacks.
Recall that by tail recursive we mean: the result of unfold is not used. If
unfolding A is tail recursive, the frame instruction can be left out and action
A is just prefixed with a label to be able to return to it with a goto instruction.

[fs1] is-unfolding(A) = true, get-unfolding(A) = A’,

is-tail-recursive(A’) = true, env.pos = n,

n’ = n * 10, lab1 = make-label(n),

env1 = env.unf := <lab1,true>,

env2 = env1.pos := n’

===

fa-to-stats(A, env) = lab1: fa-to-stats(A’, env2)

Now unfold becomes a jump to the label associated to unfolding A.

[fs2] is-unfold(A) = true,

env.unf = <lab, true>,

env.pos = n

===

fa-to-stats(A, env) = goto lab;

The example action, which is tail recursive, compiled using the last two equa-
tions, is listed in Figure 6.5. There are two problems with this compilation: first

68 AIL Internals

frame l2;

l1: trye l3;

frame l4;

goto l1;

l4:

catch l5;

l3:

l5: return;

l2:

3

0,1,2

0,1,2

2,1,0

Figure 6.4: Control Flow of Example Action with Input 3

the value computed by the substraction is lost and second, the catch instruc-
tion is never reached (resulting in a corrupt context stack). The cause of the
first problem is the copy instruction at the beginning which copies the original
value (and not the decreased one) into the normal register. This can be solved
by moving copy before label l1. It is however not clear how to do this for
every case, since the copying may occur later and is needed when entering the
loop. Another solution is the following: instead of using publish to make the
decreased value available (just before the goto instruction) use an instruction
that replaces the top of data stack with the value in the normal register. The
input to the loop is replaced by the input to unfold. This way no unpublish
instructions are needed (and thus no frame allocation), and the copy instruction
is unaffected.

A possible solution to the second problem would be a trye-like instruc-
tion that does not save the context if an identical context8 has already been
saved. Then, the catch instruction would be redundant, and the only context
that needs to be dropped will be dropped when the loop terminates,—that is,
in case of an exception. Further research is needed to formulate the precise
circumstances in which such a special trye instruction could be used9.

8Identity is defined by equality of the handler labels.
9Suggestion: if unfold only occurs in the lefthand of the exceptionally combinator, and

exceptionally occurs within an unfolding and is as close to unfold as possible (i.e. contains
no other exceptional combinations).

6.4 AIL for Actions 69

l1: trye l11;
copy;
push;
prov int(0);
merge;
publish;
gt;

unpublish;
push;
copy;
push;

prov int(1);
merge;
merge;
publish;
sub;

unpublish;
goto l1;

catch l12;
l11: prov [];
l12:

Figure 6.5: ‘Tail-recursive’ Version of the Example Action in AIL

70 AIL Internals

Chapter 7

Conclusions

This chapter serves to present some conclusions. First we try to answer our
research questions along three lines: use, engineering and implementation. At
the same time we attempt to compare the various tools qua estimated imple-
mentation effort and usage scope. Then Section 7.2 puts the issue of the use of
Action Semantics based tool generation in a wider context. Finally we present
some future work.

7.1 Questions Answered

We have presented a number of tools for executing and compiling actions. Dur-
ing the design and implementation we have focussed mostly on software engi-
neering aspects and the use in practical applications. It turned that the new
Action Notation is a good starting point to generate interpreters and compilers
for semantical descriptions of new programming languages, if performance is not
the primary concern. There is however, one big proviso. The reduction of Full
AN2 constructs to Kernel AN2 may be a great way of simplifying the semantics
of AN2, but in some cases it puts a too great burden on the implementation
of interpeters and compilers. Ironically, due to the reduction step a problem
returns that AN2 was supposed to solve: computational concepts are hard to
recover from the semantical representation of a program. For example, when
looking at the reduction of unfolding A, it is hard to discern the concept of
a loop from the (reflective) kernel representation. This state of affairs becomes
even worse when one applies optimizations such as partial evaluation over the
functional facet. Two additional technical points need to be emphasized in this
context: the burden of bindings and the frequency of reflection. Since bindings
are essentially finite maps and obey operations like disjoint union and overrid-
ing, the implementation can only be efficient when all bindings are eliminated
at compile time. Binding elimination is, however, aggravated by the aforemen-
tioned problem of the reduction of Full AN2 to Kernel AN2. The problem with
reflection has also to do with the reduction. Although we have implemented re-
flection in all of our tools, it should be said that it is not a cheap method for e.g.
implementing loops or closures. Further research will be aimed at eliminating
all of these unwanted cases of reflection. This means compiling more Full AN2
constructs like closure A directly.

72 Conclusions

Component LoC/NoE/NoP Notes

AN2 91 NoP both Kernel and Full
evalan 125 NoE includes reduction Full to Kernel
DN2 43 NoE
ATerm DN 896 LoC
acr 1181 LoC
acc Runtime 1007 LoC
acc 99 NoE
AIL 20 NoP
avm Runtime 640 LoC
avm Arch 1003 LoC partially generated by genailapi

avm 34 LoC
ailcc 14 LoC
an2ail 75 NoE
ABF 105 LoC
bail 1056 LoC includes genailapi

AJC Runtime 275 LoC
AJC DN 786 LoC
ajc 104 NoE

Table 7.1: Size Metrics for AN2 Components

In Table 7.1 we have listed size metrics for every component involved. For
components that have been implemented in C or Java, the numbers denote
lines of code (LoC). For syntax modules the metric is expressed in number of
productions (NoP). Finally, Asf+Sdf specifications are measured in number
of equations (NoE)1. It should be clear that these statistics should not be taken
for granted; a lot of code is generated. Some notes are therefore in order to
assess the effort. For example, the effort for avm and ailcc seems impressively
small in LoC, but one should realise it includes the effort for bail, ABF, the
ATerm Data Notation and the avm-Runtime. On the other hand, we want to
emphasize, that changes to the AIL instruction set are easy to make and that
the AIL framework (including avm Architecture in this case) does not depend
on Action Notation per se. It can be reused for other goals. In addition to
this: the ATerm Data Notation is not only used by avm and ailcc, but also
by acc and acr. A different kind of reuse was possible in the context of the
Asf+Sdf modules ajc, acc and AN2 to AIL. Although these modules do not
so much as share code (except the AN2 syntax), their structure is practically
the same: they all apply the scheme of ‘layering’ of the compilation function.
Further research is needed to investigate the possibilities of further generalizing
this architectural concept to allow the easy addition of other targets.

To answer the questions of the Introduction, Table 7.2 displays a quali-
tative comparison between the various tools that we have implemented. The
advantages of evalan are manifold from the language designer’s perspective.
Asf+Sdf is easily extensible and modular, which makes it a perfect match
with AN2. One can define prototype languages in an iterative, incremental ap-
proach. Since evalan can be connected to the Asf+Sdf Meta-environment

1Note that these specifications contain little or no syntax since we have separated semantics
and syntax in all cases.

7.1 Questions Answered 73

Full Kernel Data Notation Performance Ease of Use
evalan √

Asf+Sdf −− ++
acr √ ATerms − +
avm √ ATerms ++ −
acc × ATerms ++ +
ajc √ Classes + ++

Table 7.2: Assessment of approaches to executing Actions.

it should be possible to have an environment specialized for Action Semantics
Language Definition. We think that evalan is at its best when testing language
definitions during the design phase of a language. Is is however too slow for real
applications.

The term rewriter acr is two times faster but is again very close to the
MSOS semantics of AN2. Since ATerms are used to represent abstract syntax
of actions reflection is no problem. Using an embedded language like Guile [19],
users can extend the interpreter in an adhoc way for any specific application.
The Data Notation however, cannot be easily extended. We think acr is a
better solution in a more stable phase of the language design cycle. We aim to
integrate acr with the language independent debugger TIDE [37]. This should
allow the debugging of programs on the level of the source language (abstracting
away from the underlying action representation).

The AIL approach is interesting in that it translates a tree representation
of an action to a sequential form. The speedup achieved with this approach is
indeed substantial. However, there is a space tradeoff. Since reflection is still
supported the construction of a new action using a combinator involves copying
the streams of the argument actions; there is no sharing between sequences of
instructions. Nevertheless the copying is needed to achieve generality: with it,
dynamically constructed actions are still self-contained and can for instance be
sent over a network connection without further ado. The drawbacks of the AIL
approach are primarily concerned with use. First an action should be compiled
to AIL which is subsequently byte compiled to a binary stream. This stream is
then executed. The relation to the orignal action of source program is hard to
establish and extension with new primitives or data operations is possible only
with knowledge of how the AIL tools work.

With respect to extension the compiler to Java, ajc, provides a more user
friendly interface. It should be possible to let a user annotate certain action
primitives with a token which can be detected by ajc, and then compile that
very action to a Java method call which is provided for by the user. This
way the management of extensions is deferred to the moment of compiling the
Java sources. The action to C compiler acc can deal with this in the same
way. Furthermore the use of the Enactable interface allows the combination of
actions with user defined semantics. Also, the platform independence of Java
makes actions easily deployed. Platform indepedence is a sligthly more involved
issue for acc and avm. Due to the use of the abstract JIT compiler Lightning,
acc can only be used on Intel, Sun or PowerPC platforms,—that is, if reflection
is used. In the case of avm there is only one dependency, which is the GNU C
compiler (gcc) since instruction dispatch is implemented using computed gotos.

74 Conclusions

There is one important thing to note about the way actions are compiled
to C and Java. Every combined action is compiled to a function resp. method
declaration. This may not be the most efficient way of compiling actions, but
is has a great pragmatic advantage: the origin of the original action is easy to
establish. In fact it should be possible to even reconstruct the original action
from the C/Java source code. Maintaining position information could eventu-
ally lead to informative error messages that contain the location in the source
language code.

As can be seen, most tools heavily rely on the ATerm library. This might
seem restrictive, but we deem that for the purpose of generating interpreters and
compilers the Data Notation should not be a parameter of the Action Notation
but should be provided in full strength. This allows communication between the
tools and the interpreters become far easier to implement. The definition of AN2
states that bindings are data; so any implementation should have some structure
that can address this problem. Using the ATerm library we have implemented
bindings with bounded balanced trees to allow fast retrieval of bound values,
while retaining transparency. Unless one is able to eliminate all bindings at
compile time, bindings as data will be needed. Finally the interpretation of
Actions themselves as data values is easy to integrate via ATerms, especially in
the tree based approaches (acr and evalan). To allow further communication
between different tools we are planning to implement a Java Data Notation
using ATerms as well. The use of the Abstract Factory patterns alleviates the
effort of doing this.

As a conclusion ajc and acr look the most promising from the user perspec-
tive and from the perspective of scope of use. The tools ajc and acr combine
reasonable performance with easy extension and safety.

7.2 Discussion: What Use Is It Anyway?

There is an inherent ambiguity in the word use. The meaning of use swerves
between the meaning of application and benefit. Both meanings should be ac-
counted for. In this thesis we have certainly demonstrated that compilers and
interpreters of Action Notation can be used in the first meaning of the word.
The second meaning, however is not so clear. Unfortunately the benefit es-
pecially applies when considering the definition of Domain Specific Languages
(DSLs). We do not aim to compete with handcrafted compilers. Therefore, the
issue of DSLs naturally arises. However Action Semantics is designed without
any particular language in mind. One could say AN2 is aimed at being the most
general language there is. The problem we thus encounter is the contradictio in
terminis in the sentence “using Action Semantics to define DSLs”, since DSLs
are never general, but highly specific (what’s in a name?). So, as to the benefit
of using Action Semantics to define DSLs, one could say the use of AN2 lies in
the language architecture that one somehow obtains for free: scoping, control
flow, exception handling, a store concept etc. However, the benefit depends
on the way one is able to communicate to the outside world from within this
language architecture. So the main problem is one of integration. That is the
reason we have tried to concentrate on extensibility and communication.

7.3 Future Work 75

7.3 Future Work

In this section some future work is discussed.
First we want to build a specialized Meta-Environment which connects a

number of tools developed for this thesis. It is therefore needed that the tools
can be connected to the Toolbus coordination architecture.

A different thread of future research is the elimination of the burdens of
bindings and reflection. We want to investigate if it is possible to automatically
arrive at more efficient implementations, although this is not a high priority.
One of the options to achieve this is the definition of a type system for the Data
Notation that is general enough to cope with most requirements.

Thirdly, it can be fruitful to generalize our compilation schemes and investi-
gate whether it is possible to construct a generic compiler which is parameterized
by the target language. It would then be easy to add new targets, like the .NET
intermediate language (CIL) or C#. Different targets are of interest since the
Java language is for some applications too restrictive. For example, Java has
no parameterized types which prohibits the typing of cells and bindings. This
is, by the way, a problem of all the tools that we have developed.

As a vision, future work will concentrate on trying to assess Action Notation
as a kind of architectural pattern language which can be instantiated for specific
domains. This amounts to make Action Notation domain independent. We
aim to arrive at a certain kind of pluggable architecture which can be used to
generate families of compilers or interpreters. The Feature Description Language
(FDL) [11] can be used to describe the configuration of these families. On the
basis of user requirements2 a specialized interpreter or compiler can then be
generated.

2Such language features might include: arbitrary precision arithmetic, side effects, non-
deterministic choice, SQL access etc.

76 Conclusions

Appendix

Kernel AN2

The following table lists the complete kernel of AN2.

provide d giving constant data
copy copying given data
A1 then A2 functional composition
A1 and then A2 sequential composition
A1 and A2 interleaving
indivisibly A2 anti-interleaving
raise raising an exception
A1 exceptionally A2 exceptional composition
A1 and exceptionally A2 exceptional sequential composition
give o computing dataoperations
check q testing datapredicates
fail abandoning an action
A1 otherwise A2 alternative composition
select (A1 or ... or An) nondeterministic choice
choose natural arbitrary choice
give current bindings current bindings as data
A1 hence A2 scoping of bindings
enact performance of a given action
create allocating and initializing a cell
destroy deallocating a cell
update updating a cell
inspect inspecting a cell
activate activating a new agent
deactivate deactivating an agent
give current agent current agent as data
send sending a message to an agent
receive receiving a message from an agent
give current time current time as data

Full AN2

The Full AN2 level introduces the two new sorts Y ielder and Enquirer which
obey the follwing syntax:

Data | DataOp -> Yielder

78 Conclusions

DataOp Yielder -> Yielder
"(" {Yielder ","}2+ ")" -> Yielder
DataPred -> Enquirer
DataPred Yielder -> Enquirer

Yielders allow applicative composition of data operations. Enquirers allow data
predicates to be applied to yielders.

the s, a s, an s projection of input to sort s
it equal to the datum
give Y perform the action corresponding to yielder Y
A Y function composition of action A and yielder Y
given Y test input to be equal to Y
when E test the holding of an enquirer
skip neutral action (do nothing)
err raise an exception with the empty tuple as data
tentatively A execute A and fail when A raises an exception
infallibly A execute A and raise an exception on failure of A
give (current bindings) give current bindings
bound to Y a yielder that retrieves the binding for Y
closure Y a yielder ensuring static bindings for Y
bind produce a binding
furthermore A overriding non-local bindings
A1 moreover A2 overriding local bindings
A1 before A2 accumulating bindings
recursively A recursively overriding bindings
unfolding A allowing self-reference of A
unfold perform action self-reference
stored in Y a yielder that dereferences the cell yielded by Y
give (current agent) give current agent
give (current time) give current time
patiently A repeating a failing action

Bibliography

[1] Stephen Adams. Implementing sets efficiently in a functional language.
Technical report, University of Southampton Department of Electronics,
1992.

[2] J.C.M. Baeten and C. Verhoef. Concrete process algebra. Computing
Science 3, Eindhoven University of Technology, January 1995.

[3] J.A. Bergstra and P. Klint. The discrete time ToolBus – a software coordi-
nation architecture. Science of Computer Programming, 31(2-3):205–229,
July 1998.

[4] P. Bonzini. GNU Lightning. http://www.gnu.org/software/lightning/.

[5] M.G.J. van den Brand, A. van Deursen, J. Heering, H.A. de Jong, M. de
Jonge, T. Kuipers, P. Klint, L. Moonen, P.A. Olivier, J. Scheerder, J.J.
Vinju, E. Visser, and J. Visser. The ASF+SDF Meta-Environment: a
Component-Based Language Development Environment. In R. Wilhelm,
editor, Compiler Construction (CC ’01), volume 2027 of Lecture Notes in
Computer Science, pages 365–370. Springer-Verlag, 2001.

[6] M.G.J. van den Brand, H.A. de Jong, P. Klint, and P. Olivier. Annotated
terms for efficient data exchange. Xootic Magazine, 9(2):20–30, November
2001. http://www.win.tue.nl/xootic.

[7] M.G.J. van den Brand, H.A. de Jong, P. Klint, and P.A. Olivier. Efficient
annotated terms. Software, Practice and Experience, 30(3):259–291, 2000.

[8] Deryck F. Brown, Hermano Perrelli de Moura, and David A. Watt. Actress:
an action semantics directed compiler generator. In Proc. 4th Intl. Conf. on
Compiler Construction (CC ’92), volume 641 of Lecture Notes in Computer
Science, pages 95–109. Springer-Verlag, 1992.

[9] Hermano Perrelli de Moura. Action Notation Transformations. PhD thesis,
University of Glasgow, 1993.

[10] A. van Deursen and P. Klint. Little languages: Little maintenance. Journal
of Software Maintenance, 10:75–92, 1998.

[11] A. van Deursen and P. Klint. Domain-specific language design requires
feature descriptions. Journal of Computing and Information Technology,
10(1):1–18, March 2002.

80 BIBLIOGRAPHY

[12] A. van Deursen, P. Klint, and J. Visser. Domain-specific languages: An
annotated bibliography. ACM SIGPLAN Notice, 35(6):26–36, June 2000.

[13] A. van Deursen, P. Klint, and J. Visser. Domain-specific Languages, vol-
ume 28, pages 53–68. Marcel Dekker, Inc. New York, 2002.

[14] Kyung-Goo Doh and Peter D. Mosses. Composing programming languages
by combining action-semantics modules. Science of Computer Program-
ming, 47(1):3–36, April 2003.

[15] Jay Earley and Howard Sturgis. A formalism for translator interactions.
Communications of the ACM, 13(10):607–617, 1970.

[16] Erlang website. http://www.erlang.org/.

[17] J. Field, J. Heering, and T. B. Dinesh. Equations as a uniform framework
for partial evaluation and abstract interpretation. ACM Computing Surveys
(CSUR), 30(3es):2, 1998.

[18] E. Gamma, Helm R., R. Johnson, and J. Vlissides. Design Patterns: El-
ements of Reusable Object-Oriented Software. Professional Computing Se-
ries. Addison-Wesley, Reading, Massachusetts, USA, 1994.

[19] GNU Guile website. http://www.gnu.org/software/guile/guile.html.

[20] P. H. Hartel. LETOS – a lightweight execution tool for operational se-
mantics. Software—practice and experience, 29(15):1379–1416, Sep 1999.
http:// www.ecs.soton.ac.uk/ ~phh/ letos.html.

[21] J. Heering and P. Klint. Semantics of programming languages: A tool-
oriented approach. ACM SIGPLAN Notice, 35(3):39–48, March 2000.

[22] H.A. de Jong and P.A. Olivier. Generation of abstract programming inter-
faces from syntax definitions. SEN 12, CWI, 2002.

[23] P. Klint. A meta-environment for generating programming environments.
ACM Transactions on Software Engineering and Methodology, 2(2):176–
201, April 1993.

[24] Søren B. Lassen, Peter D. Mosses, and David A. Watt. An introduction
to AN-2, the proposed new version of Action Notation. In Mosses and
de Moura [36], pages 19–36.

[25] Serge Lidin. Inside Microsoft .NET IL Assembler. Microsoft, 2002. Archi-
tectural Reference.

[26] Pierre-Etienne Moreau. A choice-point library for backtrack programming.
In Implementation Technology for Programming Languages based on Logic,
pages 16–31, 1998.

[27] Peter D. Mosses. Action Semantics, volume 26 of Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 1992.

[28] Peter D. Mosses. Unified algebras and abstract syntax. Technical Report
94-5, BRICS, 1994.

BIBLIOGRAPHY 81

[29] Peter D. Mosses. Theory and practice of action semantics. Technical Report
96-53, BRICS, 1996.

[30] Peter D. Mosses. CASL: a guided tour of its design. Technical Report
98-43, BRICS, 1998.

[31] Peter D. Mosses. Foundations of modular SOS. Technical Report 99-54,
BRICS, 1999.

[32] Peter D. Mosses. AN-2: Revised action notation–syntax and semantics,
2000. http://www.brics.dk/ pdm/papers/Mosses-AN-2-Semantics/.

[33] Peter D. Mosses. CASL and action semantics. In Mosses and de Moura
[36].

[34] Peter D. Mosses, editor. AS2002, Kopenhagen, Denmark, 2002. BRICS,
Dept. of Computer Science, Univ. of Aarhus.

[35] Peter D. Mosses. What use is formal semantics? preliminary version, May
2002.

[36] Peter D. Mosses and Hermano Perrelli de Moura, editors. AS2000, Recife,
Brazil, 2000. BRICS, Dept. of Computer Science, Univ. of Aarhus.

[37] P.A. Olivier. A Framework for Debugging Heterogeneous Applications. PhD
thesis, University of Amsterdam, 2000.

[38] Peter Ørbæk. Oasis: an optimizing action-based compiler generator. In
Proc. 5th Intl. Conf. on Compiler Construction (CC ’94), volume 786 of
Lecture Notes in Compute Science, pages 1–15. Springer-Verlag, 1994.

[39] GNU Sather website. http://www.gnu.org/software/sather/.

[40] T. van der Storm. AN2 tools. In Peter D. Mosses, editor, Proc. 4th Intl.
Workshop on Action Semantics (AS2002), pages 23–43, 2002.

[41] David Stoutamire and Stephen Omohundro. Sather – language specifica-
tion. http://www.gnu.org/software/sather/.

[42] Arie van Deursen and Peter D. Mosses. ASD: The action semantic descrip-
tion tools. In Proc. 5th Intl. Conf. on Algebraic Methodology and Software
Technology (AMAST’96), volume 1101 of Lecture Notes in Computer Sci-
ence, pages 579–582. Springer-Verlag, 1996.

[43] Eelco Visser. Syntax Definition for Language Prototyping. PhD thesis,
University of Amsterdam, Amsterdam, 1997.

[44] David A. Watt. JOOS action semantics. draft version 2.0, 2000.
http://www.dcs.gla.ac.uk/ daw/publications/JOOS2.ps.

