
GTL,

a Grammar Transformation Language

for SDF specifications

E. P. Schatborn

September 2005

Master’s Thesis in Computer Science
Programming Research Group
Faculty of Science
University of Amsterdam
Supervisor: prof. dr. P. Klint

Acknowledgements

When I first started work on this thesis, I still thought that writing one or two pages
a day was very little. I was very wrong.

At first, what precious pages that were written, were labeled ‘very concise’ by my
supervisor prof. dr. Paul Klint. He might have used the word ‘extremely’, I’m not sure.
Of course, I did not agree, but I worked on explaining things a bit more. The next time
I handed in those pages, they had grown in number, but in my opinion gave no more
information than they previously had.

“very good, stretch to 10 pages”, read the comment on what I was handed back. I was
horrified. I had gone from three to six pages, giving no extra information whatsoever, and
now I had to stretch it to ten? So, I gave more explanations, and restructured the text
even more, ending up with I think sixteen pages.

None of them are part of the thesis anymore.
I’d like to think I got the message in the end. Eventually I understood that you must

take the reader by the hand, and guide him or her through the text. I don’t think I’ve
succeeded in that respect, but I have learned a lot. I’d like to thank Paul for his patience
with me, and for leaving his door open.

Whenever I had a problem with the meta environment, I would email Jurgen Vinju.
Somehow he always found time to answer, even though he is at the final stages of his
promotion. For this I am grateful.

Working at the WCW was fun, there were a lot of friends there, working on their
own theses. Jette Bunders, Martijn Brekhof, Marius Olsthoorn, Nadeem de Vree, Bouke
Huurnink are but a few. Apart from going to lunch, there were always one or two of them
ready to go get some coffee, or have a game of pingpong. I saw most of them graduate,
although some are still there.

Thoughout my studies, there were always my parents Wouter and Thida, helping me
where they could, both with money and the occasional Kick in the Ass. Both were very
much needed, although the latter was always less appealing than the former. I thank them
both for their enormous patience and support.

Every once in a while I still meet up with three friends from way back. Eugene Tuinstra,
Jelle Kok and Remco de Boer. They graduated years ago, and every time I see them they
ask me: “Don’t you think its about time . . . ”.

Well, my friends . . . the time has come.

Contents

1 Introduction 11

2 Case Study 15

2.1 Introduction . 15

2.2 FST . 16

2.3 Approach . 16

2.4 Retracing the Manual Steps . 16

2.4.1 “first a one-to-one translation from YACC to SDF” 17

2.4.2 “replaced terminal identifiers (‘RETURN’) by literal symbols
(‘"return"’)” . 17

2.4.3 “renamed non-terminals from dash separated to CamelCase” 19

2.4.4 “imported lexical definition of C comments from the CPP grammar” 19

2.4.5 “then added follow restrictions on identifiers and some unary oper-
ators” . 19

2.4.6 “fixed an ambiguity in the lexical syntax, ‘IS*?’ was produced,
changed to ‘IS*’.” . 21

2.4.7 “re-factored all right-associative lists using SDF2 list syntax” 22

2.4.8 “renamed all non-terminals from ‘LogicalAndExpression’ up-to
and not including ‘UnaryExpression’ to ‘LogicalOrExpression’” . 23

2.4.9 “added lexical restriction on ‘D+’” 26

2.4.10 “removed ‘UnaryOperator’ non-terminal by inlining the alternative
operators” . 26

2.4.11 “removed ‘AssignmentOperator’ non-terminal by inlining the alter-
natives” . 27

2.4.12 “renamed ‘LogicalOrExpression’ to ‘BasicExpression’” 28

2.4.13 “renamed ‘PostfixExpression’ to ‘PrimaryExpression’ and re-
moved the trivial injection” . 28

2.4.14 “folded empty and non-empty use of ‘ArgumentList’ in
‘PrimaryExpression’” . 29

2.4.15 “Introduced separate lexical non-terminals for each type of con-
stant: ‘IntegerConstant’, ‘HexadecimalConstant’, ‘Character-
Constant’ and ‘FloatingPointConstant’” 29

5

6 CONTENTS

2.4.16 “Removed production ‘[0] D+ IS* -> IntegerConstant’ because
‘D’ includes ‘[0]’ and the production ‘D+ IS* -> IntegerConstant’
exists too” . 31

2.5 Unlisted Transformations Encountered . 31
2.5.1 Problems encountered during step 2.4.1 31

2.5.2 Problems encountered during step 2.4.2 31
2.5.3 All sorts that ended in ‘‘Expr’’ were changed to end in ‘‘Expression’’ 32

2.5.4 The sort ‘‘Constant’’ was unfolded, eliminating it from the grammar 32
2.5.5 The sort ‘‘ConditionalExpression’’ was renamed to

‘ConstantExpression’ . 33

2.6 Conclusions . 33

3 A Grammar Transformation Language 35

3.1 Introduction . 35
3.2 Types . 35

3.3 Patterns . 36
3.3.1 Generic Pattern Operators . 36

3.3.2 The ‘exactly one’ Pattern . 38
3.3.3 The ‘zero or more’ Pattern . 39

3.3.4 Type-Specific Pattern Operators . 39
3.3.5 Typed Patterns . 40

3.3.6 Complex Pattern Examples . 41
3.4 Variables . 42

3.4.1 Variable Declarations . 43

3.4.2 The Variable Pattern . 43
3.4.3 The Reset Variable Pattern . 45

3.4.4 Variables within a Set-Pattern . 45
3.4.5 Complex Variable Declarations . 47

3.5 Arguments . 48
3.6 User-Defined Patterns . 48

3.6.1 Pattern Declarations . 49
3.6.2 Pattern Declarations with Arguments 49

3.7 Functions . 50
3.7.1 Function Declarations . 51

3.7.2 The Function Pattern . 52
3.8 Selection . 53

3.8.1 Producing a Selection . 53

3.8.2 Operations on Selections . 55
3.8.3 Selection Operators . 56

3.9 Expressions . 59
3.9.1 Logical Operators . 59

3.9.2 Equivalence Operators . 60
3.9.3 Matching Operators . 63

3.9.4 Operator Precedence . 66

CONTENTS 7

3.10 Statements . 66
3.10.1 Expressions as Statements . 67
3.10.2 Sequences . 67

3.10.3 Conditional Statements . 68
3.11 Imports . 71

3.11.1 Import Declarations . 71
3.12 Sections . 72

3.12.1 The ‘patterns’ Section . 72
3.12.2 The ‘variables’ Section . 72
3.12.3 The ‘imports’ Section . 73

3.12.4 The ‘functions’ Section . 73
3.13 Modules . 74

3.13.1 Programs . 74
3.13.2 Libraries . 75

3.13.3 Importing Modules . 75
3.14 Declaration Scope . 76

3.14.1 Inheritence . 76

3.15 Grammar Equivalance . 76
3.15.1 Structural Equivalence . 76

3.15.2 Structural Equivalence Modulo Renaming 77
3.16 Grammar Merging . 77

3.16.1 Merging Identical Types . 77
3.16.2 Merging Different Types . 77

4 Implementation 79
4.1 Introduction . 79
4.2 Choosing A Programming Language . 79

4.3 Overview . 80
4.3.1 SDF Specific Features Used . 80

4.4 The Environment group . 80
4.4.1 The Bucket Interface . 81

4.4.2 The Pool Interface . 81
4.4.3 The Environment Interface . 82

4.5 The Pattern Matching group . 82

4.5.1 The Matching Kernel Interface . 82
4.5.2 The Pattern Matching Interface . 82

4.5.3 Pattern Ambiguities . 84
4.5.4 The Pattern Structure . 84

4.5.5 More Pattern Ambiguities . 87
4.5.6 The ‘Unknown’ type . 87
4.5.7 The Lexical Pattern . 88

4.6 The Types group . 89
4.6.1 A Type-Definition Example . 89

4.6.2 More Pattern Ambiguities . 90

8 CONTENTS

4.7 The Evaluator group . 91
4.7.1 Four Sections . 91

4.7.2 Statements . 92
4.7.3 Programs and Libraries . 92

4.8 The GTL Interpreter . 92

4.9 Deviations from SDF standards . 93

5 The Case Study in GTL 95
5.1 Introduction . 95

5.2 Approach . 95

5.3 Retracing the Previous Case Study . 95
5.3.1 “first a one-to-one translation from YACC to SDF” 96

5.3.2 “replaced terminal identifiers (‘RETURN’) by literal symbols
(‘"return"’)” . 96

5.3.3 “renamed non-terminals from dash separated to CamelCase” 96

5.3.4 “imported lexical definition of C comments from the CPP grammar” 97

5.3.5 “then added follow restrictions on identifiers and some unary oper-
ators” . 97

5.3.6 “fixed an ambiguity in the lexical syntax, ‘IS*?’ was produced,
changed to ‘IS*’” . 97

5.3.7 “re-factored all right-associative lists using SDF2 list syntax” 98
5.3.8 “renamed all non-terminals from ‘LogicalAndExpression’ up-to

and not including ‘UnaryExpression’ to ‘LogicalOrExpression’” . 99

5.3.9 “added lexical restriction on ‘D+’” 99

5.3.10 “removed ‘UnaryOperator’ non-terminal by inlining the alternative
operators” . 100

5.3.11 “removed ‘AssignmentOperator’ non-terminal by inlining the alter-
natives” . 100

5.3.12 “renamed ‘LogicalOrExpression’ to ‘BasicExpression’” 101
5.3.13 “renamed ‘PostfixExpression’ to ‘PrimaryExpression’ and re-

moved the trivial injection” . 101

5.3.14 “folded empty and non-empty use of ‘ArgumentList’ in
‘PrimaryExpression’” . 101

5.3.15 “Introduced separate lexical non-terminals for each type of constant:
‘IntegerConstant’, ‘HexadecimalConstant’, ‘CharacterConstant’
and ‘FloatingPointConstant’” . 102

5.3.16 “Removed production ‘[0] D+ IS* -> IntegerConstant’ because
‘D’ includes ‘[0]’ and the production ‘D+ IS* -> IntegerConstant’
exists too” . 103

5.4 Unlisted Transformations Encountered . 103

5.4.1 Problems encountered during step 2.4.1 103
5.4.2 Problems encountered during step 2.4.2 103

5.4.3 All sorts that ended in ‘‘Expr’’ were changed to end in ‘‘Expression’’104

5.4.4 The sort ‘‘Constant’’ was unfolded, eliminating it from the grammar 104

CONTENTS 9

5.4.5 The sort ‘‘ConditionalExpression’’ was renamed to
‘ConstantExpression’ . 105

5.5 Conclusions . 105

6 Conclusion 107
6.1 The Core . 107
6.2 The Language . 108
6.3 The Implementation . 109
6.4 Using GTL . 109
6.5 Future Work . 109

A Diagrams 111
A.1 Pattern Structure . 111
A.2 GTL Implementation Interfaces . 112
A.3 GTL Implementation Dependency Graph 113

B Implementing FST in GTL 115
B.1 Introduction . 115
B.2 The Transformation Framework . 115

B.2.1 Primitives . 116
B.2.2 Combinators . 117
B.2.3 Constraints . 118
B.2.4 Symbolic Operands . 119

B.3 The Operator Suite . 120
B.3.1 Refactoring . 120
B.3.2 Construction . 121
B.3.3 Destruction . 122

C Example of a GTL Program 125
C.1 ‘&toCamelCase’ . 125

D Indices 127
GTL Constructs . 128
Index . 130

E Nomenclature 131

10 CONTENTS

Chapter 1

Introduction

SDF, or Syntax Definition Formalism, provides a solid method for creating specifications
of languages, which can be used to create a parser for that language. In combination with
ASF, or Algebraic Specification Formalism, an interpreter or a compiler can be created
with little effort, giving the user the ability to create a (programming) language easily.

SDF has been around for a while now. In that time, a growing number of languages,
data-representations, protocols and other entities that are regulated by some sort of gram-
mar have been implemented in SDF. Most of these grammars are built from scratch or
based on earlier versions using traditional editors like emacs, nedit or vi. Adapting these
grammars, whether for re-engineering, recovery or other purposes, is done using the same
tools.

The traditional editors treat an SDF grammar as text. They are not aware of the
semantic properties of the language, and have no functionality to aid in an adaptation
on that level. They provide functions like search/replace, or undo/redo, or even a syntax
highlighter.

An SDF grammar is more than text. A simple SDF parser knows the difference between
sorts and unquoted literals, or between productions and aliases, which largely have the
same syntax. It would be beneficial to the adaptation process if this informations can be
used. We would then, for instance, be able to search/replace only constructs of a certain
type, like sorts. If the programmer wants to change the name of a sort in the grammar,
it would be nice not to have the unquoted literals with the same text, if any, be replaced
also.

What is needed is an editor that pays full attention to the engineering aspects of
grammars. The editor needs to be grammar-aware [9].

Beyond Editors

Adapting grammars that are based on earlier versions would also benefit from grammar
aware software. Using traditional editors, the programmer would copy the original text
and adapt it manually. The digital link between versions is lost, since there is no way to
get from one version to the other, other than to re-adapt the grammars. If, for instance,
a problem is found in the specification of an early version that is also present in the later

11

12 CHAPTER 1. INTRODUCTION

ones, it would be nessesary to update all versions manually, making long-term maintenance
difficult.

An example of a language where many versions have to be maintained is COBOL,
which has many different dialects with the same language base. The basics of the COBOL
language stay the same between dialects, but each dialect introduces differences.

A grammar aware adaptation, or transformation, language would enable a programmer
to automate the process of creating a new version of a grammar. If a change is made in
the original, the programmer will, in most cases, only have to re-run the transformation
process to get the updated, newer version.

There are many more functions that can be envisioned to be useful in adapting SDF
grammars. What is needed, is a grammar aware transformation language that can address
these issues and serve as a powerful tool for adapting SDF grammars.

Adaptation of Grammars

Grammar adaptation was previously described in [7], in which a number of operators
for grammar development, grammar maintenance, grammar reengineering and grammar
recovery were given. The paper describes these operators independant of a specification
language.

An existing transformation language called FST, a Framework for SDF Transforma-
tion, implements the operators presented in [7] for the transformation of SDF grammars.
It was described by Ralph Lämmel and Guido Wachsmuth in [5]. A prototype implemen-
tation was created that is based on an older version of SDF. It is no longer up to date,
and cannot be used with the current version of SDF.

There is another implementation of the framework also called FST which is part of the
GDK or Grammar Deployment Kit. The GDK introduces a new specification language
with a BNF-like notation called LLL, which is also pronounced as “L-Cube”. The GDK
contains tools to transform SDF to LLL and back. The language FST that is part of the
GDK can be used to perform transformations on LLL specifications. The GDK is more
up to date, but SDF specific notations and semantics are lost in the translation from SDF
to LLL, since SDF is more expressive than LLL.

In both versions of FST, each adaptation has to be implemented literally, by removing
productions and then adding new ones which have to be provided by the programmer. The
resulting script can then be used to adapt the grammar, and grammars derived from it,
assuming the productions referenced are still part of the derived grammars. This means
that scripts created with either version of FST are very much grammar dependant in
that they can only be used with the grammar they were intended to transform, possibly
including derived grammars.

Although useful, both versions of FST lack the functionality needed for a more generic
approach in grammar adaptation. Creating tranformations based on information gathered
from the specification for instance, is not possible in either language. Also, creating generic
transformations that can be used to transform any grammar is not possible.

13

An SDF Specific Grammar Adaptation Language

In this thesis, we will attempt to create a scripting language for the adaptation of SDF
grammars that adresses the issues described, as wel as others. The goal is to create a
language that is flexible enough to enable a programmer to fully adapt an SDF spec-
ification, whether for re-engineering, recovery or other purposes. The language should
allow for the creation of scripts that are grammar-independant in the sense that they can
be applied to any grammar, given the correct input. Examples range from renaming all
dash-separated sorts to camelcase (see section 2.4.3, p.19), to comparing two versions of
the same grammar and compiling a (sub)grammar of the parts they have in common.

The Approach of this Thesis

To discover the issues that need to be addressed in creating an SDF specific grammar
adaptation language, we will re-implement an adaptation previously done without the use
of adaptation tools (chapter 2, p.15) In this case study each of the steps taken will be
analyzed and where possible implemented in FST to discover what functionality is needed
in a grammar adaptation language, both for the direct adaptation of the case and for
a more generic approach to allow for scripts that can be used on different and not just
derived grammars.

Using the results of the case study, we will design a new language for adapting SDF
grammars (chapter 3, p.35). This language should be extensible so that it can be adapted
to work with future versions of the SDF language. It should also be flexible enough to
allow the easy recreation of the case study (chapter 5, p.95), and more (appendix C,
p.125).

Our aim is to provide a working interpreter of a language (chapter 4, p.79) implement-
ing the designed framework.

Appendices

There are several appendices:
• appendix A, p.111 provides an overview of the diagrams presented in chapter 4, p.79,

as well as a depandancy graph of the implementation of the interpreter in its current state.
• appendix B, p.115 provides an implementation of the functions of FST in GTL.
• appendix C, p.125 shows an example program in GTL.
• appendix D, p.127 gives an index for the thesis, mostly for chapter 3, p.35.
• appendix E, p.131 lists the abbreviations used in this thesis, providing a small

description for each of them.

14 CHAPTER 1. INTRODUCTION

Chapter 2

Case Study

2.1 Introduction

Before we can create a new transformation language for SDF, we need to know what
functionality is useful and what functionality is required to perform transformations on
SDF grammars. We will do this by retracing the individual transformations steps taken
in an earlier, manual adaptation of a grammar. The chosen grammar transformation is
the adaptation of a C grammar in LEX+YACC to an SDF grammar. This specification
was originally converted and adapted to an SDF specification by Jurgen Vinju and Hayco
de Jong. The transformation steps that were taken were listed in comments at the top of
the resulting SDF specification.

To retrace the original adaptation of the C grammar, each transformation step as listed
in the resulting original SDF specification will be copied and analyzed. In some cases, the
transformation may lend itself to be implemented in FST1, but since the interpreter for the
language works with an older version of SDF we cannot test the scripts. Implementing the
scripts in FST will still provide feedback as to the approach of the language and how the
functionality it provides could be used to create a new grammar transformation language
for SDF. For some steps, an implementation will also be given in a hypothetical version
of FST. This hypothetical version of FST will be called hFST in the remainder of this
thesis.

Implementing some of the adaptations in hFST will show functionality that is nonex-
istant in FST but that is needed to automate the transformation. The resulting hFST
scripts can provide us with additional functionality that could be useful in the design of
the new transformation language for SDF.

In analyzing the transformation steps in this case study, we will be looking at repetition
and order of statements. We hope to end up with a primitive set of transformations or
underlying transformation steps which will serve as a basis for the design of the grammar
transformation language. The concepts that result from this case study will be used to
create a new SDF transformation language called GTL. With this language, we should
then be able to define scripts comparable to the hFST scripts presented here, and execute

1In this chapter, FST implies the SDF specific version [5], not the version part of the GDK.

15

16 CHAPTER 2. CASE STUDY

them.

2.2 FST

In this chapter, FST implies the version as implemented in SDF [5]. It implements most
of the operators presented in [7], and only works on sorts and sort definitions, as well
as modules. SDF specific notations and semantics like aliases or priorities can only be
added or removed as syntax that is part of an encompassing module. This also needs to
be addressed in the design of the new transformation language.

The operators present in FST work within a focus. This focus can be a module or list
of modules, or a sort or list of sorts. Any operator used in a focus will only change the
productions within that focus.

FST implements a number of conditions for checking the state of the grammar. For
example, one can find out if a module is empty, or if a sort is defined or not. The language
provides operators for comparing two (sub)grammars. The covers operator for instance,
will check whether two SDF grammars are structurally equal. There are also operators for
checking whether a grammar is a subgrammar of another.

In FST, comments start with ‘%%’, just like in SDF. Variables or user-defined functions
are not part of the language.

2.3 Approach

In this case study we will use the ANSI-c specification in LEX+YACC from the April
30, 1985 draft of the proposed standard2. This specification has been converted to an
SDF specification by Jurgen Vinju and Hayco de Jong. We will retrace their steps both
manually and by implementing some of the transformations in FST, as well as hFST, a
hypothetical version of FST.

The parts of the case study that can be done by a computer will be executed on a
system running RedHat 9 or Fedora Core 3, both GNU/linux based operating systems.
The XT toolkit is a bundle of tools for for building program transformation systems. It
contains a tool named ‘yacc2sdf’ which can transform a YACC specification to a primitive
SDF specification. This is the only tool from the XT toolkit that is used in this case study.

The source code of the prototype implementation of FST in ASF+SDF will be used to
recover the semantics specific to SDF as expressed by the various operators and functions
part of FST.

2.4 Retracing the Manual Steps

The original SDF specification listed in its header the various steps taken. They are
reproduced here one by one. For each step, an explanation of the transformation is
presented, and a recount is given on their reproduction.

2http://www.lysator.liu.se/c/ANSI-C-grammar-y.html

2.4. RETRACING THE MANUAL STEPS 17

2.4.1 “first a one-to-one translation from YACC to SDF”

The first step we take is to use use the ‘yacc2sdf’ transformer provided with XT for the
trivial translation. The various commands are not explained here. They are listed to help
the reader recreate the case study should that be desired.

• parse -l yacc \

-I -i ANSI-C-grammar.yacc \

-o ANSI-C-grammar.yacc.ast

• yacc2sdf -b -i ANSI-C-grammar.yacc.ast \

-o ANSI-C-grammar.def.ast

• ast2abox -i ANSI-C-grammar.def.ast \

-o ANSI-C-grammar.def.abox \

-p ~/local/share/gb/sdf.2.1/sdf.cons.pp

• abox2text -i ANSI-C-grammar.def.abox \

-o ANSI-C-grammar.def

The following command takes an SDF definition file (‘*.def’) and extracts the SDF
module files (’*.sdf’) from it. It is not strictly nessesary for the translation process.

• unpack-sdf ANSI-C-grammar.def

These commands do not take care of the ‘.l’ lexical file, which defines the various
keywords and operators of ANSI-c.

2.4.2 “replaced terminal identifiers (‘RETURN’) by literal symbols
(‘"return"’)”

The terminal identifiers and operators (tokens) present at the beginning of the YACC
grammar file were translated to empty SDF productions and put in a separate module
named ‘Lexical’ within the resulting SDF specification.

Most of the tokens represent keywords in ANSI-c, some represent operators. Their
literal representations are listed in the lexical file (‘*.l’). They were not included in the
‘yacc2sdf’ transformer simply because LEX is not the same as YACC. A different tool
should be created (say ‘lex2sdf’) to transform the LEX file to SDF ‘lexical syntax’.

Since FST can only parse SDF the literal representations will have to be taken from
the LEX file and then added. By hand, we would copy the literals from the LEX file to
the representing production in the ‘Lexicals’ module. Specifying these transformations
in FST would, in the case of the ‘RETURN’ identifier, amount to applying the following
script:

18 CHAPTER 2. CASE STUDY

FST
1 focus on module Lexical

2 do

3 (

4 include "return" in RETURN; %% add production: "return" -> RETURN

5 exclude from RETURN; %% remove production: -> RETURN

6 unfold RETURN; %% substitute all sorts RETURN with its

7 %% single defining term ("return")

8 eliminate RETURN; %% remove all definitions of RETURN

9);

To repeat this for all the identifiers we will have to copy/paste this script for each,
replacing the literal and the sort name. For instance, transforming the ‘CONTINUE’ and
‘BREAK’ identifiers:

FST
1 focus on module Lexical

2 do

3 (

4 include "continue" in CONTINUE; %% add production: "continue" -> CONTINUE

5 exclude from CONTINUE; %% remove production: -> CONTINUE

6 unfold CONTINUE; %% substitute all sorts CONTINUE with its

7 %% single defining term ("continue")

8 eliminate CONTINUE; %% remove all definitions of CONTINUE

9

10 include "break" in BREAK; %% add production: "break" -> BREAK

11 exclude from BREAK; %% remove production: -> BREAK

12 unfold BREAK; %% substitute all sorts BREAK with its

13 %% single defining term ("break")

14 eliminate BREAK; %% remove all definitions of BREAK

15

16 %% ...

17);

As can be seen, each identifier can be transformed by calling four operators (include,
exclude, unfold and eliminate) in order. If we had variables and functions with arguments,
we could write something like the following function, where variable names start with a
dollar-sign (‘$’) and function names with an ampersand (‘&’). Note that the declaration
of the arguments to the function contains type references (Sort, Literal).

hFST
1 function &replace_id(Sort $S, Literal $L) (

2 include $L in $S; %% add production: "return" -> $S

3 exclude from $S; %% remove production: -> $S

4 unfold $S; %% substitute all sorts $S with its

5 %% single defining term ($L)

6 eliminate $S; %% remove all definitions of $S

7);

2.4. RETRACING THE MANUAL STEPS 19

The previous scripts could then be implemented as follows:
hFST

1 focus on module Lexical

2 do

3 (

4 &replace_id(RETURN,"return");

5 &replace_id(CONTINUE,"continue");

6 &replace_id(BREAK,"break");

7 · · ·
8);

2.4.3 “renamed non-terminals from dash separated to CamelCase”

The ‘yacc2sdf’ script already took care of this. Apparently we are working with a different
version than the one used for the original transformation. It is not known which version-,
or even if the same script- was used.

This item does show however, that in transforming an SDF specification it might be
useful to be able to (partially) rename sorts, using the old name as a basis. For instance
from ‘This-sort-name’ to ‘ThisSortName’. A mechanism would be needed to match the
relevant parts of a name, and then insert the match into a new name.

2.4.4 “imported lexical definition of C comments from the CPP gram-
mar”

The definition of C comments is missing from the SDF grammar generated by the
‘yacc2sdf’ script, since it is part of the LEX file but has no tokens in the YACC file. We
will need to add it.

Fortunately, all productions defining comments are in the ‘Comments’ SDF module in
the CPP specification. The modules ‘CommentsAsLayout’ and ‘LineCommentsAsLayout’
which define comments as part of the layout of the CPP language, can be directly included
without alteration into the ANSI-c specification.

Although not strictly nessesary in this case, this item shows that it can be useful to
be able to select parts of one specification and insert them into another.

2.4.5 “then added follow restrictions on identifiers and some unary op-
erators”

Follow restrictions in SDF are used to disambiguate lexical syntax. For instance, the sort
‘Identifier’ in ANSI-c is defined as follows:

SDF
1 lexical syntax

2 · · ·
3 [0-9] -> D

4 [a-zA-Z_] -> L

5 L (L | D)* -> Identifier

6 · · ·

20 CHAPTER 2. CASE STUDY

This makes the string ‘Apple’ a valid identifier. However, cutting up the string into ‘App’
and ‘le’ does not mean that either part is not a valid identifier. To prevent ‘Apple’ from
being parsed as five adjacent, single character identifiers, a follow restriction is added
which states that an identifier cannot be followed by a character that is allowed to be part
of that identifier. The follow restriction for ‘Identifier’:

SDF
1 lexical restrictions

2 Identifier -/- [0-9a-zA-Z_]

Since the SDF specification generated by the ‘yacc2sdf’ program does not include
follow restrictions, they need to be added where nessesary.

The following restrictions, in which the regular expression ‘[0-9a-zA-Z_]’ represents
the original definition of the sort ‘Identifier’ (‘(L |D)’), were added to the original
specification:

SDF
159 lexical restrictions

160

161 Identifier -/- [0-9a-zA-Z_] %% (L | D)

162 D+ -/- [0-9]

SDF
179 context-free restrictions

180

181 LAYOUT? -/- [\ \t\011\n\r\012]

SDF
220 context-free restrictions

221 "&" -/- [\&]

222 "-" -/- [\-]

223 "+" -/- [\+]

Performing this transformation by hand means identifying and adding the restrictions.
This can be a difficult task, since some problems stemming from the lack of restrictions
can be complex, occurring only in specific situations.

FST does not provide a means for manipulating restrictions, but an extension to the
‘include’ operator can be added to hFST that would allow it to take other SDF constructs
than productions. It could look like this:

FST
1 focus on module Generated

2 do

3 (

4 include lexical restriction Identifier -/- [0-9a-zA-Z_];

5 include lexical restriction D+ -/- [0-9];

6 include context-free restriction LAYOUT? -/- [\ \t\011\n\r\012];

7 · · ·
8);

2.4. RETRACING THE MANUAL STEPS 21

2.4.6 “fixed an ambiguity in the lexical syntax, ‘IS*?’ was produced,
changed to ‘IS*’.”

This ambiguity isn’t generated by the ‘yacc2sdf’ script we used. Nor by the manual
addition of the lexical syntax from the LEX file. It seems in the original specification
the definition of ‘IS’ was changed from ‘[uUlL]* -> IS’ to ‘[uUlL] -> IS’, changing
all symbols ‘IS’ in other productions to ‘IS*’ to compensate. There are a few symbols
‘IS?’ that would change into ‘IS*?’ if ‘IS’ were to be replaced by ‘IS*’ based on syntax.
Correcting this is easy, just replace all occurrences of ‘IS*?’ with ‘IS*’.

If we wanted to correct this using FST we would have to exclude the ambiguous
definitions and include their correct version. Of course, FST must be able to work on
ambiguous grammars for this to work. The ‘preserve’ operator allows us to replace the
symbol with the restriction that the old and the new definition must be equivalent. For
example:

FST
1 focus on module Generated

2 do

3 (

4 preserve [0] [xX] H+ IS*? in HexadecimalConstant as [0] [xX] H+ IS* ;

5 preserve D+ IS*? in IntegerConstant as D+ IS* ;

6 · · ·
7);

In FST one can use patterns to more generically select from a grammar. The pat-
tern ‘...’ represents ‘zero or more’ symbols, and the pattern ‘.’ represents ‘exactly one’
symbol. For example:

FST
1 exclude ... IS*? ... from HexadecimalConstant;

will remove all productions that define ‘IS*?’ as part of the definition for the sort ‘Hex-
adecimalConstant’. However, using the patterns with the ‘preserve’ operator is not
possible, unless the symbols matched by the patterns (‘...’) can be stored and retrieved
so that they can be reintroduced in the ‘as’ part of the ‘preserve’ operator.

The following hFST function (see 2.4.2) will remove all occurrences of ‘IS*?’ from
the grammar. It starts with three variable declarations, specifying a type as well as a
pattern. ‘$S’ represents the sort defined by ‘$P1 IS*? $P2’, where ‘$P1’ and ‘$P2’ each
represent a symbol with the pattern ‘...’. A new operator ‘for each’ is introduced that
will execute a statement for each production matching its argument ‘sort $S defining

$P1 IS*? $P2’.
hFST

1 function &disambiguate() (

2 var Sort $S:.;

3 var Symbol $P1:...;

4 var Symbol $P2:...;

5

6 for each sort $S defining $P1 IS*? $P2

7 do preserve $P1 IS*? $P2 in $S as $P1 IS* $P2 ;

8);

22 CHAPTER 2. CASE STUDY

The empty variables ‘$S’, ‘$P1’ and ‘$P2’ are matched by the ‘for each’ operator using
their given pattern, and they store the result. They are subsequently used with the
‘preserve’ operator to remove the ambiguous definition and introduce the unambiguous
one for the sort ‘$S’. Once the operation is concluded, the next match is made and
processed until there are no more matches left.

2.4.7 “re-factored all right-associative lists using SDF2 list syntax”

Traditionally, right associative lists are defined recursively as follows; using the definition
for the comma-separated list ‘ArgumentExprList’ as an example:

SDF
90 context-free syntax

91 AssignmentExpr -> ArgumentExprList

92 ArgumentExprList "," AssignmentExpr -> ArgumentExprList

In SDF2 an extended notation was introduced that has the same semantics, but is easier
to read as well as maintain. The previous example in SDF2 notation looks like this:

SDF
1 context-free syntax

2 { AssignmentExpr "," }+ -> ArgumentExprList

We found the following sorts that define right-associative comma-separated lists:

ArgumentExprList StructDeclaratorList InitDeclaratorList

ParameterIdentifierList IdentifierList ParameterTypeList

ParameterList InitializerList EnumeratorList

StatementList

Space-separated right-associative lists, which are also defined recursively, can be re-
factored to use the Kleene Plus (‘+’), which signifies ‘one or more’. For example the
definition for ‘StructDeclarationList’ after the trivial transformation looks like this:

SDF
239 context-free syntax

240 StructDeclaration -> StructDeclarationList

241 StructDeclarationList StructDeclaration -> StructDeclarationList

It can be written as follows in SDF2 syntax:
SDF

1 context-free syntax

2 StructDeclaration+ -> StructDeclarationList

There are three space-separated list definitions in the grammar: StructDeclarationList,
TypeSpecifierList and DeclarationList.

In the original specification all the lists in the grammar were manually re-factored.
In FST this can be established by excluding the two productions defining the list and
including a single production which defines the same list using SDF2 notation. For the
given examples this would amount to the following FST scripts:
for the comma-separated ‘ArgumentExprList’ example:

2.4. RETRACING THE MANUAL STEPS 23

FST
1 include { AssignmentExpr "," }+ in ArgumentExprList;

2 exclude AssignmentExpr from ArgumentExprList;

3 exclude ArgumentExprList "," AssignmentExpr from ArgumentExprList;

for the space-separated ‘StructDeclarationList’ example:

FST
1 include StructDeclaration+ in StructDeclarationList;

2 exclude StructDeclaration from StructDeclarationList;

3 exclude StructDeclarationList StructDeclaration from StructDeclarationList;

To create a more generic script for this type of transformation we would need to match
two productions per sort. In the next hFST script a boolean ‘and’ operator is introduced
for this purpose. We also need to check that the two productions we’re matching are the
only productions defining the list. We do this by first matching and removing them, after
which we check that there are no more productions defining the sort, i.e. the two matched
productions were the only ones. If that check succeeds we add the new list notation, if it
fails we fail the entire ‘for each’ cycle, restoring the state of the grammar to what it was
before the ‘for each’ loop started.

The following code transforms all comma-separated right-assiciative lists in a grammar.

hFST
1 focus on module Generated

2 do

3 (

4 var Sort $S:.;

5 var Symbol $S1:.;

6

7 for each (sort $S defining $S1 and sort $S defining $S "," $S1)

8 do

9 (

10 exclude $S1 from $S;

11 exclude $S "," $S1 from $S;

12 if not defined sort $S then

13 include { $S1 "," }+ in $S;

14 else fail;

15);

16);

2.4.8 “renamed all non-terminals from ‘LogicalAndExpression’ up-to and
not including ‘UnaryExpression’ to ‘LogicalOrExpression’”

The item goes on to state that:
“This was a single injection chain with left recursive binary operators. Each non-terminal
up the chain introduced a higher priority. The priorities are now expressed using context-
free priorities to cope with the disappearance of the non-terminals. All trivial productions

24 CHAPTER 2. CASE STUDY

from ‘LogicalOrExpression’ to ‘LogicalOrExpression’ that were introduced by the pre-
vious actions have been removed to fix the obvious circularity.”

The following sorts were renamed to ‘LogicalOrExpression’:

CastExpr RelationalExpr InclusiveOrExpr

MultiplicativeExpr EqualityExpr LogicalAndExpr

AdditiveExpr AndExpr

ShiftExpr ExclusiveOrExpr

The last sort in the list, ‘LogicalAndExpr’, is used in the definition of ‘LogicalOrExpr’.
The sort ‘InclusiveOrExpr’ is used in the definition of ‘LogicalAndExpr’ and so on, with
‘CastExpr’, which is used in the definition of ‘MultiplicativeExpr’, being at the bottom.

The definition of each of the sorts has the following layout, using the sorts
‘LogicalAndExpr’ and ‘LogicalOrExpr’ as an example:

SDF
153 context-free syntax

154 InclusiveOrExpr -> LogicalAndExpr

155 LogicalAndExpr "&&" InclusiveOrExpr -> LogicalAndExpr

156

157 context-free syntax

158 LogicalAndExpr -> LogicalOrExpr

159 LogicalOrExpr "||" LogicalAndExpr -> LogicalOrExpr

Renaming the sort ‘LogicalAndExpr’ to ‘LogicalOrExpr’ will result in the following
set of productions:

SDF
153 context-free syntax

154 InclusiveOrExpr -> LogicalOrExpr

155 LogicalOrExpr "&&" InclusiveOrExpr -> LogicalOrExpr

156

157 context-free syntax

158 LogicalOrExpr -> LogicalOrExpr

159 LogicalOrExpr "||" LogicalOrExpr -> LogicalOrExpr {left}

Note that the definition of ‘LogicalOrExpr’ has changed with the renaming. An
associativity attribute is also added. The trivial injection:

SDF
158 LogicalOrExpr -> LogicalOrExpr

has to be removed.

To preserve the priorities between the productions we must now add SDF2 type
context-free priorities. In the example ‘LogicalAndExpr’ has a higher priority than
‘LogicalOrExpr’. This is represented in SDF2 by adding the following context-free prior-
ity:

2.4. RETRACING THE MANUAL STEPS 25

SDF
1 context-free priorities

2 LogicalOrExpr "&&" InclusiveOrExpr -> LogicalOrExpr {left}

3 >

4 LogicalOrExpr "||" LogicalOrExpr -> LogicalOrExpr {left}

Since this is a clear set of steps that have to be taken for each sort in the list, we can
create a generic hFST script that takes such a sort as an argument. The script will then
rename the sort to ‘LogicalOrExpr’, remove the trivial injection and add the relevant
context-free priority. If we call this script for each of the sorts in the list we will have
transformed the injection-chain.

hFST
1 function &Rename_With_Priority(Sort $S:.) (

2 var Symbol $Y1:.;

3 var Symbol $Y2:.;

4 var Literal $L1:.;

5 var Literal $L2:.;

6 var Group $G1:.;

7 var Group $G2:.;

8

9 %% create the first group for the priorities ...

10 for each sort $Y1 defining $Y1 $L1 $S do (

11 include $S $L2 $Y2 -> $S in $G1;

12 include attribute {left} in $Y1;

13);

14

15 %% create the second group for the priorities ...

16 for each sort $S defining $S $L2 $Y2 do (

17 include $Y1 $L1 $S -> $Y1 in $G2;

18 include attribute {left} in $S;

19);

20

21 %% include the context-free priority ...

22 include context-free priorities $G1 > $G2;

23

24 %% rename the sort ...

25 rename $S to LogicalOrExpr;

26

27 %% remove the trivial injection ...

28 exclude LogicalOrExpr from LogicalOrExpr;

29);

The separate creation of the groups to be used in the priority grammar is nessesary
because there might be more than one production defining the given sort, or the sort using
the given sort in its definition.

The first ‘include’ statement used in the for each loops adds a production to a group,
not a grammar. The SDF2 syntax of groups is implied. The second ‘include’ statement

26 CHAPTER 2. CASE STUDY

in the loops include an attribute defining left-associativity in the definition of the sort in
question.

The last ‘include’ statement in the function adds a priority grammar containing the
two groups created to the focus. After this, the sort is renamed and the trivial injection
is removed.

2.4.9 “added lexical restriction on ‘D+’”

Adding follow restrictions to a sort was discussed in 2.4.5. This lexical restriction was
already listed there as part of the additions made to the original specification. It was also
part of the example hFST script.

2.4.10 “removed ‘UnaryOperator’ non-terminal by inlining the alterna-
tive operators”

This resembles the transformation made in 2.4.2, where terminal identifiers were unfolded
and eliminated. The difference is that ‘UnaryOperator’ represents more than one literal.
These are the productions defining ‘UnaryOperator’:

SDF
101 context-free syntax

102 "&" -> UnaryOperator

103 "*" -> UnaryOperator

104 "+" -> UnaryOperator

105 "-" -> UnaryOperator

106 "~" -> UnaryOperator

107 "!" -> UnaryOperator

We need to add a copy of each production encorporating the sort ‘UnaryOperator’,
per literal defining it. Take for instance the production:

SDF
97 UnaryOperator CastExpr -> UnaryExpr

The FST ‘unfold’ operator expects only a single literal meaning we cannot use it. To
unfold ‘UnaryOperator’, we have to include six new productions defining ‘UnaryExpr’,
namely the following:

SDF
1 "&" CastExpr -> UnaryExpr

2 "*" CastExpr -> UnaryExpr

3 "+" CastExpr -> UnaryExpr

4 "-" CastExpr -> UnaryExpr

5 "~" CastExpr -> UnaryExpr

6 "!" CastExpr -> UnaryExpr

Then we can remove the original production.

The FST script would look like this:

2.4. RETRACING THE MANUAL STEPS 27

FST
1 focus on module Generated

2 do

3 (

4 include "&" CastExpr in UnaryExpr;

5 include "*" CastExpr in UnaryExpr;

6 include "+" CastExpr in UnaryExpr;

7 include "-" CastExpr in UnaryExpr;

8 include "~" CastExpr in UnaryExpr;

9 include "!" CastExpr in UnaryExpr;

10

11 exclude UnaryOperator CastExpr from UnaryExpr;

12);

2.4.11 “removed ‘AssignmentOperator’ non-terminal by inlining the al-
ternatives”

This item needs the same functionality as the previous one where ‘UnaryOperator’, which
was defined by multiple literals, was unfolded. The sort ‘AssignmentOperator’ is defined
by the following productions:

SDF
169 context-free syntax

170 "=" -> AssignmentOperator

171 "*=" -> AssignmentOperator

172 "/=" -> AssignmentOperator

173 "%=" -> AssignmentOperator

174 "+=" -> AssignmentOperator

175 "-=" -> AssignmentOperator

176 "<<=" -> AssignmentOperator

177 ">>=" -> AssignmentOperator

178 "&=" -> AssignmentOperator

179 "^=" -> AssignmentOperator

180 "|=" -> AssignmentOperator

The FST code required to do this transformation is the same as in 2.4.10, but using a
diferent sort.

A more generic function unfolding any sort defined by multiple literals would use the
hFST ‘for each’ operator introduced in 2.4.6. It takes the terminal sort as an argument:

hFST
1 function &unfold_many(Sort $S:.) (

2 var Symbol $Y1:...;

3 var Symbol $Y2:...;

4

5 for each sort $S1 defining $Y1 $S $Y2

6 do

7 (

8 var Literal $L:.;

9

28 CHAPTER 2. CASE STUDY

10 for each sort $S defining $L

11 do include $Y1 $L $Y2 in $S1;

12

13 exclude $Y1 $S $Y2 from $S1;

14);

15);

The first ‘for each’ loop matches all the productions encorporating the given terminal
sort ‘$S’ one by one. The second ‘for each’ loop includes a new production for each
literal defining the given terminal sort ‘$S’. In the case of ‘AssignmentOperator’ these
are ‘=’, ‘*=’, ‘/=’, ‘%=’, ‘+=’, After that the original production is excluded from the
grammar.

Using this function we can now unfold the non-terminals ‘UnaryOperator’ and
‘AssignmentOperator’. The hFST code, not including the definition of the function, looks
like this:

hFST
1 focus on module Generated

2 do

3 (

4 &unfold_many(UnaryOperator);

5 &unfold_many(AssignmentOperator);

6);

2.4.12 “renamed ‘LogicalOrExpression’ to ‘BasicExpression’”

This comes down to renaming a sort. All productions defining ‘LogicalOrExpr’ must be
changed to define ‘BasicExpr’ instead. Also, all productions referencing ‘LogicalOrExpr’
must be made to reference ‘BasicExpr’ instead.

FST includes the ‘rename’ refactoring operator for this purpose:
FST

1 focus on module Generated

2 do rename LogicalOrExpr to BasicExpr;

Note that in the original specification all sorts that ended in ‘Expr’ were changed to
end in ‘Expression’, hence the difference between the original explanation and this one.
This ‘Expr’ transformation is not listed in the summary of the original specification and
it will be addressed in 2.5.

2.4.13 “renamed ‘PostfixExpression’ to ‘PrimaryExpression’ and removed
the trivial injection”

The first part of this transformation is the same as in 2.4.12. However, one of the produc-
tions prior to renaming reads as follows:

SDF
79 context-free syntax

80 PrimaryExpr -> PostfixExpr

2.4. RETRACING THE MANUAL STEPS 29

If we rename ‘PostfixExpr’ to ‘PrimaryExpr’ we would end up with:
SDF

79 context-free syntax

80 PrimaryExpr -> PrimaryExpr

which introduces a loop. This production needs to be removed. The resulting FST script
looks like this:

FST
1 focus on module Generated

2 do

3 (

4 rename PostfixExpr to PrimaryExpr;

5 exclude PrimaryExpr from PrimaryExpr;

6);

2.4.14 “folded empty and non-empty use of ‘ArgumentList’ in
‘PrimaryExpression’”

In 2.4.7 the right-associative list defining ‘ArgumentExprList’ was refactored to SDF2
syntax. The resulting definition is as follows:

SDF
1 context-free syntax

2 { AssignmentExpr "," }+ -> ArgumentExprList

Since ‘ArgumentExprList’ is only ever used in the definition of ‘PrimaryExpr’ (formerly
‘PostfixExpr’, see 2.4.13) we can change this definition to

SDF
1 context-free syntax

2 { AssignmentExpr "," }* -> ArgumentExprList

and remove the empty use of ‘ArgumentExprList’ from the definition of ‘PrimaryExpr’.
The hFST script looks like this:

hFST
1 focus on module Generated

2 do

3 (

4 preserve { AssignmentExpr "," }+ in ArgumentExprList

5 as { AssignmentExpr "," }*;

6 exclude PrimaryExpr "(" ")" from PrimaryExpr;

7);

2.4.15 “Introduced separate lexical non-terminals for each type of con-
stant: ‘IntegerConstant’, ‘HexadecimalConstant’, ‘CharacterCons-
tant’ and ‘FloatingPointConstant’”

From the LEX specification we manually added among others the following productions
defining the sort ‘Constant’:

30 CHAPTER 2. CASE STUDY

SDF
1 lexical syntax

2 [0] [xX] H+ IS* -> Constant %% HexadecimalConstant

3 [0] D+ IS* -> Constant %% IntegerConstant

4 D+ IS* -> Constant %% IntegerConstant

5 [\’] ([\\]~[] | ~[\\\’])+ [\’] -> Constant %% CharacterConstant

6

7 D+ E FS? -> Constant %% FloatingPointConstant

8 D* [\.] D+ E? FS? -> Constant %% FloatingPointConstant

9 D+ [\.] D* E? FS? -> Constant %% FloatingPointConstant

They are however different types of constants. We appended these as a comment to each
production.

We can express this transformation by folding each definition to their respective con-
stant type, which also maintains an injection of that type into the sort ‘Constant’. The
FST script for this transformation; note the specific focus on the sort ‘Constant’:

FST
1 focus on sort Constant

2 do

3 (

4 fold [0] [xX] H+ IS* to HexadecimalConstant;

5 fold [0] D+ IS* to IntegerConstant;

6 fold D+ IS* to IntegerConstant;

7 fold [\’] ([\\]~[] | ~[\\\’])+ [\’] to CharacterConstant;

8

9 fold D+ E FS? to FloatingPointConstant;

10 fold D* [\.] D+ E? FS? to FloatingPointConstant;

11 fold D+ [\.] D* E? FS? to FloatingPointConstant;

12);

This script results in the following productions:

SDF
1 lexical syntax

2 [0] [xX] H+ IS* -> HexadecimalConstant

3 [0] D+ IS* -> IntegerConstant

4 D+ IS* -> IntegerConstant

5 [\’] ([\\]~[] | ~[\\\’])+ [\’] -> CharacterConstant

6

7 D+ E FS? -> FloatingPointConstant

8 D* [\.] D+ E? FS? -> FloatingPointConstant

9 D+ [\.] D* E? FS? -> FloatingPointConstant

SDF
10 HexadecimalConstant -> Constant

11 IntegerConstant -> Constant

12 CharacterConstant -> Constant

13 FloatingPointConstant -> Constant

2.5. UNLISTED TRANSFORMATIONS ENCOUNTERED 31

In the original specification the sort ‘Constant’ was subsequently unfolded, eliminating
it from the grammar. This transformation is unlisted in its summary and will be adressed
in 2.5.

2.4.16 “Removed production ‘[0] D+ IS* -> IntegerConstant’ because
‘D’ includes ‘[0]’ and the production ‘D+ IS* -> IntegerConstant’
exists too”

The sort ‘D’ is defined as
SDF

1 [0-9] -> D

and as such includes the character ‘0’. The production:

SDF
1 [0] D+ IS* -> IntegerConstant

is no longer nessessary since it is covered by the production:

SDF
1 D+ IS* -> IntegerConstant

In FST its removal is expressed by a simple exclusion:

FST
1 focus on module Generated

2 do exclude [0] D+ IS* from IntegerConstant;

2.5 Unlisted Transformations Encountered

There are a number of transformations that were done for the original specification but
that were not listed in its summary.

2.5.1 Problems encountered during step 2.4.1

The trivial transformation did not introduce any sort declarations, these had to be added
by hand, since FST cannot handle sort declarations directly. Indirectly, sort declarations
are added every time a new sort definition is introduced, and removed when all definitions
for a sort are removed.

2.5.2 Problems encountered during step 2.4.2

The following changes were made in accordance with the transformations done for the
original specification.

• The ‘RANGE’ lexical definition was missing but the sort is never used so we removed
the (empty) definition.

32 CHAPTER 2. CASE STUDY

• The ‘ELIPSIS’ lexical definition was missing, the sort is used in two productions
defining ‘ParameterIdentifierList’ and ‘ParameterTypeList’. An elipsis is de-
picted by three dots (‘. . . ’) signifying a continuance of a pattern. We added the
lexical syntax to the (empty) definition.

• The ‘TYPENAME’ lexical definition was missing, the sort is used in ‘TypeSpecifier’.
We removed the (empty) lexical definition and the ‘TypeSpecifier’ injection.

• The ‘IDENTIFIER’ lexical definition is missing but can be extracted. One of the LEX
definitions returns a function call to ‘check_type()’, which is defined in the same
LEX file. That function always returns ‘IDENTIFIER’. We have taken the lexical
definition returning the function call to be the lexical definition of ‘IDENTIFIER’.

• The sort ‘IDENTIFIER’ was neither unfolded nor eliminated in the original specifica-
tion, instead it was renamed to ‘Identifier’.

2.5.3 All sorts that ended in ‘‘Expr’’ were changed to end in ‘‘Expression’’

This is a renaming operation, however, as with item 2.4.3 where all dash-separated sorts
were renamed to CamelCase, we need to be able to match parts of a sort-name itself to
be able to create a new name based on the old. In this case, using ‘for each’, we need
to match all sorts ending in ‘Expr’, storing the part before it to rename the sort using a
new ending ‘Expression’.

2.5.4 The sort ‘‘Constant’’ was unfolded, eliminating it from the gram-
mar

This is an unfolding operation for multiple definitions of a sort, and was described in
2.4.10. However, the hFST function given only works with literals being the terminal
part. If we change that to type ‘Symbol’ we can unfold sorts as well as literals, giving
us the ability to unfold the sort ‘Constant’ using the function. The hFST function for
unfolding multiple definitions of a sort:

hFST
1 function &unfold_many(Sort $S:.) (

2 var Symbol $Y1:...;

3 var Symbol $Y2:...;

4

5 for each sort $S1 defining $Y1 $S $Y2

6 do

7 (

8 var Symbol $L:.;

9

10 for each sort $S defining $L

11 do include $Y1 $L $Y2 in $S1;

12 exclude $Y1 $S $Y2 from $S1;

13);

14);

2.6. CONCLUSIONS 33

Using the created function on the sort ‘Constant’:
hFST

1 focus on module Generated

2 do &unfold_many(Constant);

An explanation for the script can be found at 2.4.10.

2.5.5 The sort ‘‘ConditionalExpression’’ was renamed to
‘ConstantExpression’

This is a straightforward renaming:
FST

1 rename ConditionalExpression to ConstantExpression;

2.6 Conclusions

The implementations of the various steps in this case study provide a number of issues
with their possible solutions that need to be addressed in the new transformation lan-
guage. Most of the constructs part of FST should be part of the new language, possibly
extended to provide a semantics that can transform any and all parts of an SDF2 specifi-
cation. These include the functions for including/excluding SDF constructs, the condition
checking etcetera.

Most of the steps in the case study can be implemented literally in FST. But imple-
menting transformations that have to be repeated many times using the same operations
but different input comes down to a lot of copy-paste work, which is time consuming.

One way of making this easier is to introduce functions, which can be seen in step 2.4.2.
The hFST script created to handle this step creates a function that holds the statements
that need to be evaluated per item. To feed the function with the relevant information
we need variables, which are typed to prevent inproper use of a function. The repetition
still exists but has become less expansive since only the function-call has to be repeated.

Another way of dealing with repetition is by introducing repetitive control-structures,
i.e. loops. The hFST script in step 2.4.6 introduces a for each statement which takes a
list of constructs and evaluates a group of statements for each item in the list. Again,
variables are nessesary to hold the current item for evaluation. This statement is also used
in steps 2.4.7, 2.4.8 and 2.4.11. It could also have been used in step 2.4.2 by creating a
list of tuples to use as input for the function.

In FST, any transformation that fails will also fail the compound statement containing
the transformation and so forth. The if control-structure which is part of FST can be used
to ensure continued evaluation of the script even though a test failed. It is incorporated
in the hFST script for step 2.4.7.

What a number of steps show is that the ability to include or exclude SDF2 constructs
other than productions or sorts is needed. Steps 2.4.4 and 2.4.5 deal with import- and
restriction- grammars respectively, and step 2.4.8 adds a specific attribute to a production.
The SDF2 constructs that are added in the aforementioned steps cannot be added using

34 CHAPTER 2. CASE STUDY

FST. In the hFST scripts for those steps this is solved by extending the semantics of
include and exclude. The new transformation language must address this issue.

Step 2.4.6 shows the use of FST patterns to transform all productions for
‘HexadecimalConstant’ containing the symbol ‘IS*?’. These patterns are also used with
the variables in the hFST script for the step. Since a variable as used in step 2.4.2 does
not have a pattern specification, it is not known if a variable is allowed to contain “exactly
one” or “zero or more” of a certain type. To allow for this the variable declarations in
this hFST script include a pattern-, as well as type- specification. Using variables with
patterns also allows the programmer to specify a kind of sub-type, i.e. “all productions
defining a specific sort” as a type-constraint instead of using a test each time the content
of the variable changes.

Chapter 3

A Grammar Transformation
Language

3.1 Introduction

Using the conclusions of the case study, we have created an SDF grammar transformation
language incorporating the concepts introduced in the hypothetical FST programs.

GTL encompasses strong typing, variables, user patterns and functions to give the user
full control over the transformation process. Through modularization the user is capable
of setting up libraries of functions to be included in any GTL program.

These features combined provide a means for users to define just about any transfor-
mation. For instance, the operators of FST can largely be implemented as functions in
a GTL library (see appendix B, p.115). Programs can be created for menial tasks such
as listing all productions in a specification adhering to a certain pattern, or restructuring
them so that productions defining identical sorts are grouped together. More complicated
tasks can also be implemented, such as extracting all productions and declarations re-
quired for the definition of a given sort, and then generating a new specification for that
definition.

In this chapter we will start by explaining the type- and pattern- systems at the root
of the language. Then we will discuss variables, which are a special kind of pattern. Lastly
we will elaborate on the composition of a GTL program and its sections.

3.2 Types

All GTL constructs have an associated type. GTL Types are representations of the con-
structs that are part of the SDF2 specification, like symbols or aliases. They have the
same name as the sort of the SDF construct, meaning that a symbol is represented by the
type Symbol in GTL.

A GTL type represents the most basic pattern of a construct and can only match that
pattern. Any correct specification in SDF2 can be matched with a GTL type.

35

36 CHAPTER 3. A GRAMMAR TRANSFORMATION LANGUAGE

3.3 Patterns

A GTL pattern is an instantiation of a type which can be used to match an SDF construct
of the same type. This means that a pattern of type Symbol can be used to match an SDF
symbol. Since each type is a direct representation of an SDF construct, type-patterns can
only match such a construct literally.

GTL incorporates patterns and pattern operators for matching for instance ‘exactly
one’ or a sequence of SDF constructs. These facilitate matching multiply occurring- or
unidentified- constructs and allow the programmer to create a pattern for matching a
subset of a type. For instance ‘all Productions defining a certain Sort’, where the exact
definition is not specified. See section 3.3.3, p.39 for a GTL notation of this pattern.

Pattern matching is recursive. This means that if any subpattern of a pattern fails,
the entire pattern fails. For instance, the type Symbols is part of the definition of
a Production, this means that if a symbol does not match, the pattern match of the
encompassing Production will also not match. For a sequence pattern this means that if
a pattern in the sequence does not match, the sequence does not match.

First, the pattern operators are explained. Then two patterns are introduced that are
taken directly from the FST notation, namely the ‘exactly one’ pattern and the ‘zero or
more’ pattern.

3.3.1 Generic Pattern Operators

Most of the GTL Pattern Operators have the same semantics and notation as some of the
operators for symbols in SDF2. There are the Sequence-, the Alternative-, the Option-
and the Repetition- operators [6, section 2.5].

The operators described here are generic in the sense that they operate on GTL
patterns of any type using the same semantics.

The Sequence Operator

The Sequence Operator in SDF [6, sec. 2.5.2] is defined as a grouping of symbols, delimited
by ‘(’ and ‘)’. This is treated as syntax by GTL patterns of type Symbol, to allow literal
matching.

To be able to match groupings of SDF constructs of any type, GTL implements the
Sequence operator expressed by parenthesis enclosed in angle brackets containing a semi-
colon delimited list of patterns:

<(〈pattern 〉; 〈pattern 〉; . . .)>

All patterns contained in the GTL sequence must have the same type. This is also
the type of the sequence itself. Each successive pattern in a pattern sequence must be
matched in the same order to a list of constructs for the sequence to match.

The following pattern can match a list of exactly two SDF productions, using patterns
‘"GTL" -> GTLName’ and ‘"SDF" -> SDFName’:

3.3. PATTERNS 37

GTL pattern: SDF sequence:

1 <("GTL" -> GTLName ;

2 "SDF" -> SDFName)>
matches

1 "GTL" -> GTLName

2 "SDF" -> SDFName

but rejects
1 "GTL" -> GTLName

2 "too" -> Bad

3 "SDF" -> SDFName

The Set Operator

In SDF, a choice between two symbols at a single position can be expressed either by
defining two productions containing either choice, or by using the alternative operator (‘|’)
[6, sec. 2.5.4]. For instance ‘true|false’ represents that either a ‘true’ symbol or a ‘false’
symbol may occur at a single position.

To be able to match a single SDF construct agains any of a list of patterns, GTL
incorporates the Set operator expressed by braces enclosed in angle brackets containing a
comma-delimited list of patterns:

<{〈pattern 〉, 〈pattern 〉, . . . }>

A given SDF construct is tried against every pattern in the list. This implies that all
the patterns in the set are required to be of the same GTL type, namely the same type as
the SDF construct the pattern set is matched against. If it matches at least one of the
patterns in the set, the match is successful, if it matches none of the patterns, the match
fails.

The following pattern can match a single production that matches either pattern
‘"GTL" -> GTLName’ or ‘"SDF" -> SDFName’:

GTL pattern: SDF construct (either of):

1 <{ "GTL" -> GTLName ,

2 "SDF" -> SDFName }>
matches

• "GTL" -> GTLName

• "SDF" -> SDFName

The Option- and Repetition-Operators

In SDF, the Option operator ‘?’ [6, sec. 2.5.1] describes an optional part in a syntax rule.
For instance, ‘GTL?’ defines no- or exactly one- occurrence of the sort ‘GTL’. The SDF
Repetition operators ‘*’ (zero or more) and ‘+’ (one or more) [6, sec. 2.5.3] express that a
symbol should occur several times. For example the SDF symbol ‘GTL*’ expresses that
either symbols ‘’, ‘GTL’ or ‘GTL GTL . . .’ can occur at that position. Repetition operators
allow for the creation of flat lists. They are sometimes referred to as lists because of this.

These operators and their semantics are copied in GTL as GTL pattern operators, with
the restriction that they can only be used with GTL sequence- or set-operators. This is
mainly to distinguish them from the syntactical representation of their SDF counterparts
for symbols, otherwise it would not be possible to know whether the pattern ‘GTL*’ refers
to an SDF symbol ‘GTL*’ literally, or a list of zero or more SDF symbols ‘GTL’.

38 CHAPTER 3. A GRAMMAR TRANSFORMATION LANGUAGE

An example of matching the same pattern one or more times:
GTL pattern: SDF constructs (either of):

1 <("GTL"*)>+ matches

• "GTL"*

• "GTL"* "GTL"*

• "GTL"* "GTL"* "GTL"* . . .

. . .

3.3.2 The ‘exactly one’ Pattern

The GTL pattern ‘.’ can be used to match exactly one undefined SDF construct of a given
type. GTL maintains the semantics as defined for this pattern in the language FST [5].

Whenever an SDF construct of any type is to be matched using a GTL pattern, we can
also use ‘.’ to signify that it doesn’t matter what the construct defines, but that exactly
one construct of that type must be matched.

The SDF production:

SDF
1 "This" "is" An -> Example

can either be matched directly, using the pattern:

GTL
1 "This" "is" An -> Example

or indirectly using the pattern:

GTL
1 .

Both patterns are of type Production.

The ‘.’ pattern can also be used as a pattern of type Symbol, part of the Production

pattern in the example, to match exactly one Symbol:

GTL
1 "This" . An -> Example

This pattern will match all SDF productions defining the sort ‘Example’ to represent a
sequence of three symbols starting with ‘This’ and ending with ‘An’, with exactly one un-
specified symbol in between. This pattern will match the original production by matching
‘"is"’ with ‘.’. It will also match in the following cases, where the emphasized parts of
the SDF productions are the constructs that are matched with the pattern ‘.’:

GTL pattern: SDF constructs (either of):

1 "This" . An -> Example matches

• "This" "was" An -> Example

• "This" "will be" An -> Example

• "This" MightBe An -> Example

. . .

3.3. PATTERNS 39

3.3.3 The ‘zero or more’ Pattern

The pattern ‘...’ is copied from the language FST and is maintained for legibility. It
works much the same way as the ‘.’ pattern, except that it can match zero or more SDF
constructs of a given GTL type. It is semantically identical to the GTL pattern ‘<(.)>*’,
which represents “any construct of a certain type (‘.’), repeated zero or more times”.

An example using the ‘...’ pattern as part of a production pattern:

GTL pattern: SDF construct (either of):

1 ... -> Prod matches

• -> Prod

• "This" Is A "Match" -> Prod

• So "is this" -> Prod

. . .

3.3.4 Type-Specific Pattern Operators

Type-Specific Pattern Operators are pattern operators that provide matching capabilities
specific to a certain type. For instance the ‘any repetition’ operator taken from the FST
language is a Symbol type-specific pattern operator for matching the SDF option- and
repetition-operators part of a symbol. It cannot be used with any other type.

We introduce the Lexical operator which provides lexical construction for the types
Sort and Literal.

The ‘any repetition’ Operator

To be able to match an SDF symbol with an unknown repetition operator, GTL provides
the any repetition operator ‘_’. It is used solely with Symbol patterns in the same way as
the option- or repetition- operators it can match. It also matches if neither option- nor
repetition- operator is part of the symbol. GTL maintains the semantics as defined for
this operator in the language FST [5].

It is provided so that the programmer can match symbols regardless of option- or
repetition- operators. The following example shows a literal match, which rejects the
presence of a repetition operator:

GTL pattern: SDF production:

1 Try "this" -> Match matches Try "this" -> Match

but rejects Try "this"+ -> Match

Using the ‘any repetition’ operator, we can match the following productions:

GTL pattern: SDF production (any of):

1 Try "this"_ -> Match matches

• Try "this" -> Match

• Try "this"? -> Match

• Try "this"* -> Match

• Try "this"+ -> Match

40 CHAPTER 3. A GRAMMAR TRANSFORMATION LANGUAGE

The Lexical Operator

The Lexical operator provides lexical -matching and -construction for the lexical types
Sort, Literal and ModuleId. This allows the programmer to automate the transforma-
tions that were implied by the case study. In step 2.4.3, p.19 non-terminal sorts had to
be renamed from dash separated to CamelCase, and in step 2.5.3, p.32, all sorts ending
in ‘Expr’ had to be renamed to end in ‘Expression’.

The lexical operator is expressed by square brackets enclosed in angle brackets con-
taining a sequence of lexical patterns:

<[〈lexical pattern 〉 〈lexical pattern 〉 . . .]>

A lexical pattern can be a quoted literal, a character class or a construct of the same
type that the lexical operator represents in its context. As stated this can be either a
Sort, a Literal or a ModuleId.

A lexical pattern can also be any GTL construct that has a lexical operator as a pattern,
or one of the lexical constructs as a type, meaning it can be used recursively. This allows
for the use of GTL -patterns, -variables and -functions within a lexical operator.

To allow for lexical matching or construction, the same constructs that are used in
lexical syntax productions in an SDF2 specification are also allowed within the GTL
lexical operator. These are character classes and quoted literals. Character classes can
only be used for matching, not for construction. Quoted literals can be used both for
matching and construction.

The following patterns of type Sort can match the sort ‘MyExample’:
GTL

1 • <["My" "Example"]>

2 • <["My" Example]> %% where ‘Example’ is an SDF sortname

3 • <["My" .]>

4 • <["My" "E" "x" "a" "m" "p" "l" "e"]>

5 • <["My" "E" [a-z]+ "e"]>

6 • <[[A-Za-z]+]>

When used in assignment, the lexical operator can not contain any GTL patterns
other than initialized variables, functions or literals, and of course SDF lexical constructs
depending on the type of the assignment.

Of the previous example, only the following can be used to construct a new Sort
‘MyExample’:

GTL
1 • <["My" "Example"]>

2 • <["My" Example]> %% where ‘Example’ is an SDF sortname

3 • <["My" "E" "x" "a" "m" "p" "l" "e"]>

3.3.5 Typed Patterns

The GTL patterns introduced in section 3.3.1, p.36 are type-less. They can be used with an
SDF construct of any type. For most patterns, the type of the pattern can be ascertained
from the pattern itself. For instance, the pattern:

3.3. PATTERNS 41

GTL
1 sorts ...

is obviously a pattern of type Grammar, in this case a sorts grammar. In other cases the
type of the pattern can be discovered by looking at previous declarations in the program
(see section 3.4.1, p.43, section 3.7.1, p.51, . . .).

Sometimes however, the type of a pattern needs to be made explicit. For instance for
the GTL functions that can take type-less arguments, like ‘select’ (see section 3.9.3, p.64),
or ‘extract’ (see section 3.9.3, p.64). These functions can select or extract any SDF
construct type from an SDF specification, so for some patterns, like the ‘exactly one’
pattern, it needs to be made explicit which type is intended.

Assigning a type to a pattern can be done by adding a type specification to the pattern
as follows:

〈type 〉 : 〈pattern 〉

The following is an example of using a typed pattern to match a single ‘Literal’:

GTL pattern: SDF construct (either of):

1 Literal: . matches
• "one"

• "two"

• "three"

3.3.6 Complex Pattern Examples

The GTL pattern operators offer a versatile way of matching SDF constructs. A number
of relatively complex patterns and their posssible matches are presented here.

The following example is a pattern to match a sequence of symbols, in this case literals.
The pattern states that the SDF sequence has to begin with ‘"one"’, followed by zero or
more times either ‘"two"’ or ‘"three"’.

GTL pattern: SDF construct (either of):

1 <("one"; <{ "two", "three" }>*)> matches

• "one"

• "one" "two"

• "one" "three"

• "one" "three" "two"

. . .

The following example is a slightly more confusing pattern stating that the SDF se-
quence of symbols can start with ‘"one"’ followed by ‘"two"’, or start directly with ‘"two"’.
This then has to be followed by zero or more ‘Three’.

42 CHAPTER 3. A GRAMMAR TRANSFORMATION LANGUAGE

GTL pattern: SDF construct (either of):

1 <(<("one")>?; "two"?; <(Three)>*)> matches

• "two"?

• "one" "two"?

• "two"? Three Three

• "one" "two"? Three Three

. . .

Using the ‘.’ pattern we can match any symbol. Notice the recurrence of ‘"two"’
between matching sequences in the following example:

GTL pattern: SDF construct (either of):

1 <(<(.)>?; "two"; <(. .)>?)> matches

• "two"

• Geit "two"

• "two" "Kees" "Poes"

• Teun "two" "Geit" Three

. . .

The following is a pattern for an SDF lexical syntax grammar. Note that this pattern
will only match lexical syntax grammars that only contain productions defining the sort
‘Prod’. If the grammar contains other productions the match will fail.

GTL pattern: SDF construct (either of):

1 lexical syntax

2 <(... -> Prod)>+
matches

• lexical syntax

-> Prod

• lexical syntax

"Zomaar" "iets" -> Prod

Whatever "you" Want -> Prod

. . .

but rejects

1 • lexical syntax

2 "This one" Is OK -> Prod

3 "This" One "is" NOT -> TooBad

4 . . .

3.4 Variables

Variables are special GTL patterns for storing and retrieving SDF constructs. As pat-
terns, they provide a way to extract information from a given SDF specification or con-
struct by storing the construct(s) that are matched. The stored constructs can then be
used in another match, or as input to subsequent GTL functions or operators, or as output
of the GTL program or function being written.

Variables are declared in the ‘variables’ section of a GTL program.

3.4. VARIABLES 43

3.4.1 Variable Declarations

Variable Declarations are part of a GTL ‘variables’ section (see section 3.12.2, p.72).
They must provide a name, a type and a pattern for the type. They can only be declared
once, and have the following layout:

〈type 〉 〈name 〉 [:〈pattern 〉] [:= 〈SDF construct 〉];

Note that the pattern specification is also optional. If the pattern specification is not
part of the declaration then the ‘exactly one’ pattern (‘.’) is assumed to be the pattern
for the variable.

The following is an example of a simple declaration of a variable:

GTL
1 Grammar MyGrammar: . ;

‘MyGrammar’ is the variable name, its type is Grammar, and its pattern is ‘.’, conforming
to the pattern of its type.

If we leave out the pattern specification, the ‘exactly one’ pattern (‘.’) is assumed to
be the pattern for the variable. This means that the following declaration declares the
same variable as the previous:

GTL
1 Grammar MyGrammar;

A variable can also be initialized in its declaration, using the matching operator ‘:=’
(see section 3.9.3, p.63). A variable initialization part of a declaration may not contain
references to itself.

Initializing the variable using a declaration with an assignment match:

GTL
1 Grammar MyGrammar:. := context-free syntax

2 "MyLiteral" -> MySort;

The variable declaration information is the same as in the previous example. An SDF
context-free syntax Grammar, conforming to the pattern ‘.’ of the variable, is assigned as
content.

3.4.2 The Variable Pattern

A Variable pattern allows the programmer to either add content to a variable storage in
the environment through matching, or use the existing content of a variable as a pattern
to match against.

A variable pattern consists of a name enclosed in angle brackets or chevrons as follows:

<〈name 〉>

44 CHAPTER 3. A GRAMMAR TRANSFORMATION LANGUAGE

Non-empty variables are said to be initialized. If a variable that is used as a pattern
is uninitialized, it is assigned content by matching its pattern to the SDF construct at
the position of the reference. If the variable is already initialized, then its content is used
as if it were the pattern at the current position in the parent pattern, and matching is
resumed.

An SDF construct mixed with initialized variables can be fully reduced to a “pure”
SDF construct by replacing the initialized variables with their respective content. Such a
mixed SDF construct is called an extended SDF construct .

Example

The following example shows how variables can be used to match two SDF constructs that
have to be identical. Let’s match the following SDF production:

SDF
1 Three Three -> Example

against the GTL pattern:

GTL
1 <MyVar> <MyVar> -> Example

where ‘<MyVar>’ represents a variable named ‘MyVar’ of type Symbol and pattern ‘.’. How
to declare such a variable will be explained in section 3.12.2, p.72.

The match is made from left to right. Since the variable is uninitialized, its pattern ‘.’
is used to match the first SDF construct, ‘Three’. The match is successful and the SDF
construct ‘Three’ is stored with the variable information in the GTL environment.

The second pattern is the same as the first, however, the variable was just matched and
initialized. Since it already has content, namely the ‘Three’ construct from the first match,
this content is used as a pattern, meaning the second SDF construct is now required to
match the GTL pattern ‘Three’. This is also successful.

The remainder of the GTL pattern and SDF production are identical (‘-> Example’),
and so they match. The entire pattern has now been successfully matched with the SDF
production.

Some more matches using this pattern:

GTL pattern: The variable ‘MyVar’ is of type Symbol and

1 <MyVar> <MyVar> -> Example has pattern ‘.’.

SDF construct (either of): post-match variable content:

matches
• "any" "any" -> Example

• Geit Geit -> Example

. . .

MyVar

• "any"

• Geit

. . .

3.4. VARIABLES 45

3.4.3 The Reset Variable Pattern

Since initialized variables cannot be assigned new content, appending content to a variable
presents a problem. To this end the Reset Variable pattern is introduced. This pattern
clears the content of the variable after matching but before assignment. This implies that
a variable can be assigned its own content, which is nessesary if the programmer wants to
append to it. This will be explained further in section 3.9.3, p.63.

A reset variable pattern consists of a name enclosed in angle brackets or chevrons as
follows:

>〈name 〉<

When the reset variable pattern is used for matching, the pattern of the variable is
always used, never its content. After the pattern has matched the given SDF construct,
the variable is cleared and subsequently assigned the matched part of the construct. This
order is nessesary to allow the already initialized variable to be used in the extended SDF
construct which is matched against. Note that a variable reset pattern can not be part of
an extended SDF construct.

In the following example, assume the variable ‘MyVar’ has been declared and initialized
with type Symbol, pattern ‘...’, and content ‘"one"’:

GTL pattern: The variable ‘MyVar’ is of type Symbol and

1 >MyVar< has pattern ‘...’, content ‘"one"’

SDF construct (either of): post-match variable content:

matches
• "two"

• <MyVar> "two"

MyVar

• "two"

• "one" "two"

In the first example the reset variable pattern is matched against the symbol ‘"two"’.
Since a variable reset pattern only uses its pattern, which is ‘...’, for matching, the
variable is successfully matched and then cleared, after which it is reinitialized with the
matched symbol ‘"two"’.

The second example is more complex. Again, the pattern of the variable (‘...’) is used
for matching. In matching, the variable reference ‘MyVar’ in the extended SDF construct
was expanded to its content ‘"one"’. The pattern ‘...’ of the variable matches both
symbols ‘"one"’ and ‘"two"’ of the expanded SDF construct. The variable content is
then cleared and will be assigned the matched constructs, namely ‘"one" "two"’.

3.4.4 Variables within a Set-Pattern

As stated in section 3.3.1, p.37, a GTL set-pattern will match a given SDF construct
if one of its child patterns does. These child patterns can be overlapping making other
matches inconsequential. This is not a problem, since only one of the child patterns has
to match. If the set contains variables however, the situation changes, since a matching
SDF construct is no longer discarded, but stored.

46 CHAPTER 3. A GRAMMAR TRANSFORMATION LANGUAGE

If a variable in the set is the only pattern to match a given SDF construct, it will be
handled correctly. In the following example the variable ‘MyVar’ is of type Symbol and has
pattern ‘"one"’.

GTL pattern: The variable ‘MyVar’ is of type Symbol and

1 <{ <MyVar>, "two" }> has pattern ‘"one"’.

SDF construct (either of): post-match variable content:

matches
• "one"

• "two"

MyVar

• "one"

• 〈empty 〉

The construct ‘"one"’ can only be matched by the variable, and will be stored ac-
cordingly. The construct ‘"two"’ can only be matched directly by the pattern ‘"two"’,
implying that the variable is never matched and therefore will not be given content; it will
remain empty.

If however the variable ‘MyVar’ in the set were to be asigned the pattern ‘"two"’, and
the set is subsequently matched against the SDF construct ‘"two"’, it is unclear which
of the two child patterns in the set will be used to match the construct, since both can
match it.

The following pattern is such a set. This example shows behaviour not part of the
GTL pattern semantics, it is provided merely to explain the issue.

GTL pattern: The variable ‘MyVar’ is of type Symbol and

1 <{ <MyVar>, "two" }> has pattern ‘"two"’.

SDF construct (either of): post-match variable content:

matches • "two"
MyVar

• "two" or 〈empty 〉

The variable has pattern ‘"two"’, which is the same pattern as the second child in the
set. When this set is matched against the SDF construct ‘"two"’, both child patterns can
match it. Which one of the two patterns in the set is used decides whether the variable is
initialized or not.

To correct this non-deterministic behaviour, all variable references within a set-pattern
will always be matched against the given SDF constructs by default. This means that
regardless of which child pattern was used to match the entire set-pattern, all the variables
referenced in the set and matching the SDF construct will be initialized.

For example, the following set-pattern contains two variables with different names but
identical type and pattern:

3.4. VARIABLES 47

GTL pattern: Both variables ‘OneVar’ and ‘TwoVar’ are

1 <{ <EenVar>, <TweeVar> }> of type Symbol and have pattern ‘.’.

SDF construct (either of): post-match GTL variable content:

matches • "one"

• "two"

OneVar

• "one"

• "two"

TwoVar

• "one"

• "two"

Any SDF construct of type Symbol will be matched by both variables. Both will be
initialized as per the semantics just described.

3.4.5 Complex Variable Declarations

The SDF constructs used in an assignment match are extended SDF constructs, meaning
that they can contain initialized variable references. For instance:

GTL
1 Grammar MyGrammar:. := context-free syntax

2 "MyLiteral" -> MySort;

3 Module MyModule:. := module MyModule

4 exports

5 sorts MySort

6 <MyGrammar>;

defines two variables, ‘MyGrammar’ and ‘MyModule’. ‘MyModule’ is initialized using an SDF
construct including a reference to the ‘MyGrammar’ variable. After matching, ‘MyModule’
is initialized as follows:

SDF
1 module MyModule

2 exports

3 sorts MySort

4 context-free syntax

5 "MyLiteral" -> MySort

The order of the declarations is not important, so long as any referenced variables are
declared and initialized in the same scope (see section 3.14, p.76).

Creating a small SDF definition by adding a variable declaration:

GTL
1 Grammar MyGrammar:. := context-free syntax "MyLiteral" -> MySort;

2 Module MyModule:. := module MyModule exports sorts MySort <MyGrammar>;

3 Definition MySpec:. := definition <MyModule>;

After assignment the ‘MySpec’ variable will contain the fully expanded definition:

48 CHAPTER 3. A GRAMMAR TRANSFORMATION LANGUAGE

SDF
1 definition

2 module MyModule

3 exports

4 sorts MySort

5 context-free syntax

6 "MyLiteral" -> MySort

3.5 Arguments

User-defined patterns, functions or programs can all take Arguments which can be used
to provide additional imput. This input is subsequently available as an initialised vari-
able. An Argument Declaration is nothing more than an uninitialized variable declaration.
When the user-defined pattern, function or program is invoked, the initialization of the
argument variables must be provided with the invocation.

Argument declarations are part of pattern-, function- or program- declarations, which
will be described in section 3.6.2, p.49, section 3.7.1, p.51 and section 3.13.1, p.74 respec-
tively. They do not appear anywhere else.

An argument declaration has the following layout:

〈type 〉 〈name 〉 [:〈pattern 〉]

Note that the pattern specification is optional. If the pattern specification is not part
of the declaration then the ‘exactly one’ pattern (‘.’) is assumed to be the pattern for the
argument.

An example declaration of an argument ‘MyArg’ of type Production and pattern
‘... -> Boek’:

GTL
1 Production MyArg:... -> Boek

This means that the argument defined by this declaration must be a production defining
the sort ‘Boek’. In the subsequent user-defined pattern, function or program, this argument
will be available as an initialized variable with the name ‘MyArg’.

3.6 User-Defined Patterns

In GTL, the programmer can define new patterns that can then be used for matching.
This allows the programmer to keep the code readable by using descriptive names for the
defined patterns. It also makes the code more maintainable, since changing a user defined
pattern is easier than searching and replacing all occurences of a pattern or sequence of
patterns.

3.6. USER-DEFINED PATTERNS 49

3.6.1 Pattern Declarations

Pattern Declarations are made in a GTL ‘patterns’ section (see section 3.12.1, p.72). A
pattern declaration has to provide a name, type and pattern. The name can be interpreted
as an alias for the provided pattern, and must start with a ‘#’ to identify it as a user-
defined pattern. The type reference is used to force the subsequent pattern to match only
SDF constructs of the given type. This means the pattern given in the declaration has to
adhere to the type-pattern for the declaration to be type-correct.

A pattern declaration has the following layout:

〈type 〉 〈name 〉 = 〈pattern 〉

A simple pattern declaration looks like this:

GTL
1 Grammar #all_aliases = aliases ...

where ‘#all_aliases’ is the pattern name, its type is Grammar and the pattern it repre-
sents is ‘aliases ...’, which is of type Grammar as required.

This pattern will match at least in the following cases:

GTL pattern: SDF construct (either of):

1 #all_aliases matches

• aliases

• aliases

"Any" -> OldAlias

"My" -> Favourite

• aliases

. . .

User defined patterns are not allowed to reference themselves, but they can be used
in the declaration of other patterns. An example of this is the definition of the
‘#all_grammars pattern in figure 3.1, p.50.

GTL
1 Grammar #all_grammars = <{ #all_aliases, #all_restrictions, #all_priorities,

2 #all_sorts, #all_imports, #all_syntax }>

Note that the requirement that all child patterns in the set are of type Grammar (see
section 3.3.1, p.37) applies.

Also note that, as with variable declarations, the order of the declarations is not
important. However, any user-defined pattern used in the declaration of a new pattern
must be declared in the same scope (see section 3.14, p.76).

3.6.2 Pattern Declarations with Arguments

A GTL pattern declaration can define arguments. This allows for the creation of more
dynamic user patterns, and is especially useful for gathering specific information.

Such a pattern declaration looks like this:

50 CHAPTER 3. A GRAMMAR TRANSFORMATION LANGUAGE

GTL
1 Grammar #all_aliases = aliases ... ;

2 Grammar #all_restrictions = <{ restrictions ..., lexical restrictions ...,

3 context-free restrictions ... }> ;

4 Grammar #all_priorities = <{ priorities ..., lexical priorities ...,

5 context-free priorities ... }> ;

6 Grammar #all_sorts = sorts ... ;

7 Grammar #all_imports = imports ... ;

8 Grammar #all_syntax = <{ syntax ..., lexical syntax ...,

9 context-free syntax ... }> ;

10 Grammar #all_grammars = <{ #all_aliases, #all_restrictions, #all_priorities,

11 #all_sorts, #all_imports, #all_syntax }> ;

12 Section #all_sections = <{ exports ..., hiddens ... }> ;

13 Module #all_modules = module ... ;

Figure 3.1: An example ‘patterns’ section

〈type 〉 〈name 〉(〈argumentdeclarationlist 〉) = 〈pattern 〉

The variables declared as arguments can then be used as part of the pattern.
In FST , the pattern ‘definition of . . .’ was defined to specifically focus on a pro-

duction defining a given sort. This pattern can easily be created in GTL using the patterns
that have been defined so far.

The following declaration defines the ‘#definition_of’ user pattern:
GTL

1 Production #definition_of(Sort S: .) = ... -> <S> ;

The variable declaration ‘Sort S:.’, defined as an argument of the user pattern, declares a
variable named ‘S’, with type Sort and pattern ‘.’. The pattern defined by this declaration
is ‘... -> <S>’, which matches any production defining a sort stored in the variable ‘S’.

The following pattern will match any SDF context-free syntax grammar containing at
least one production defining the sort ‘Three’:

GTL pattern: SDF construct (either of):

1 context-free syntax

2 <(...;

3 #definition_of(Three);

4 ...;)>

matches

• context-free syntax

"one" "two" -> Three

• context-free syntax

"Any" Old -> Prod

"one" "two" -> Three

"My" Favourite -> Prod

3.7 Functions

GTL implements user defined Functions, providing an easy way for the programmer to
implement a series of transformations that can be used more than once. In the case study

3.7. FUNCTIONS 51

the need for this functionality was evident in step 2.4.2, p.18 and subsequent transfor-
mations in step 2.4.6, p.21 and step 2.4.11, p.27. The hypothetical declarations of a
function in step 2.4.2, p.18 and step 2.4.11, p.27 also showed that we need to be able to
pass arguments to functions.

Functions in GTL can return an SDF construct as the result value of a function-call.
This will enable them to be used as patterns with the same semantics as an initialized
variable reference. That means the output of a function can be used for matching or
assignment.

3.7.1 Function Declarations

Functions are declared in the ‘functions’ section (see section 3.12.4, p.73). A Function
Declaration must provide a name, a return -type and -pattern, followed by a comma-
delimited list of zero or more argument declarations, and finally the function body. Func-
tion names must begin with an ampersand (‘&’). The function body consists of zero or
more GTL sections declaring the variables, patterns, imports and (sub-) functions that are
part of the body. The GTL sections are followed by a begin . . . end compound statement
enclosing a list of semi-colon delimited statements to be evaluated when the function is
called.

A function declaration has the following layout:

〈type 〉 〈name 〉(〈argumentdeclarationlist 〉) [:〈pattern 〉] {

〈sections 〉
begin

〈statement 〉;
〈statement 〉;
. . .

end;

}

Note that the pattern specification is optional. If the pattern specification is not part
of the declaration then the ‘exactly one’ pattern (‘.’) is assumed to be the pattern for the
function.

In the following example we use a matching operator as a statement. The opera-
tor was already introduced as part of variable declarations with an assignment (see sec-
tion 3.4.1, p.43).

To keep it simple, no sections are included, they will we discussed in section 3.12, p.72.
GTL

1 Production &MyFunction(Symbol A1:.):... -> Boek {

2 begin

3 <MyFunction> := <A1> -> Boek;

4 end;

5 }

This declaration defines a function called ‘MyFunction’ with a return type Production

and pattern ‘... -> Boek’. This means that any production returned by this function
must match that pattern.

52 CHAPTER 3. A GRAMMAR TRANSFORMATION LANGUAGE

The declaration defines one argument to the function, namely ‘A1’ which is of type
Symbol and has pattern ‘.’, meaning that any single symbol will do. Before the statements
are evaluated, the argument ‘A1’ is declared as a variable and initialized with the value
passed as an argument at invocation.

GTL has no ‘return’ statement as in C or Java. In GTL the function name, in this case
‘MyFunction’, is declared as a variable whose content after evaluation of the statements
will represent the return value of the function. This implies that the return value of a
function can only be an SDF construct.

The begin . . . end compound statement defines a single assignment match, where
the return variable ‘MyFunction’ is assigned a production ‘<A1> -> Boek’. The variable
‘<A1>’ was initialized by the argument passed to the function, it will represent the definition
of the sort ‘Boek’.

If we were to call the function with the Symbol ‘"Dit"’ as an argument, the argument
variable ‘<A1>’ would be initialized to that value. The return variable ‘<MyFunction>’
would be assigned a production ‘"Dit" -> Boek’, which represents the result of the func-
tion. That production could then be used in another statement.

3.7.2 The Function Pattern

A Function Pattern consists of the name of the function followed by a comma-delimited
list of arguments which will be passed to it.

〈name 〉(〈argumentdeclarationlist 〉)

In the previous section an example function declaration for the function ‘MyFunction’
was given. We will now create a pattern for that function.

The variable declaration:
GTL

1 Production P:. := &MyFunction("Dit")

will initialize the variable ‘P’ of type Production and pattern ‘.’ to the production
‘"Dit" -> Boek’, which is the return value of the invocation of the function ‘MyFunction’,
as explained in the previous section (section 3.7.1, p.51).

Since the result of a function is guaranteed to be an SDF construct, it can be used as
a pattern to be matched against as well as a value to be assigned.

As such, the following variable declaration is also correct:
GTL

1 Production P:&MyFunction("Dit")

The variable ‘P’ of type Production is declared with the result of the function call
‘&MyFunction("Dit")’, namely the production ‘"Dit" -> Boek’, as a pattern. The
variable is not initialized. Note that the return type of the function must be the same as
the type of the variable being declared.

The same variable is declared as if the declaration were as follows:
GTL

1 Production P:"Dit" -> Boek

3.8. SELECTION 53

3.8 Selection

In the previous sections we explained various GTL patterns and how they can be used to
match specific SDF constructs.

To be able to work on portions of an SDF grammar construct, whilst maintaining the
whole grammar, GTL encorporates the concept of a focus as introduced in FST, extending
it to include all SDF types instead of only sorts and modules. In GTL, we speak of a
Selection, which holds both the part of the SDF construct that is operated on, which is
called the Focus, as well as the remaining part of the SDF construct, which is called the
Remainder .

In GTL, the concept of a selection is largely hidden from the programmer, primarily
to make a program more legible. In effect, all SDF constructs produced by operations in
GTL are part of a selection. The content of variables, the SDF construct produced by a
function-call and even the output of a GTL program is part of a selection.

A selection has no syntactic representation in GTL but can be manipulated using
vairous operators. It will be represented as follows in the various examples and explana-
tions in this thesis:

〈 focus remainder 〉

Most operators and expressions operate on the focus, but some imply changes to the
remainder as well. The semantics of using a selection within an expression will be discussed
per operator introduced in section 3.9, p.59 about expressions.

In this section, we will discuss the impact of the produced results being a selection.
The semantics of pattern matching as has already been discussed in section 3.3, p.36
is revisited with selections in mind. We will also introduce a number of operators that
specifically target a selection.

3.8.1 Producing a Selection

The semantics of the patterns in pattern matching as discussed so far have to be fine-tuned
to account for their operating on- and producing- a selection. Their primary semantics
are the same since they operate only on the focus, but it needs to be clear what actually
happens to the remainder.

An SDF construct is said to be held “in focus” if the selection holds that construct in
the focus. An SDF construct is said to be held “out of focus” if the selection holds that
construct in the remainder.

Primitive Patterns

The examples given in section 3.3, p.36 on patterns deal only with success or failure of
a match. However, when used as part of an operation the result of a match, namely the
matched SDF construct, will likely be used. This result is a selection.

Matching with simple patterns was introduced in section 3.3, p.36, and deals with
patterns without variable- or function- patterns. A selection that is produced after a

54 CHAPTER 3. A GRAMMAR TRANSFORMATION LANGUAGE

successful match using a simple pattern holds the matched SDF construct in focus. The
remainder is empty because the pattern is either a full match or no match at all.In the
latter case a result will not be produced.

Extending one of the examples given on page 38 to show the produced selection we
get:

GTL pattern:

1 "This" . An -> Example matches

SDF construct: resulting selection

• "This" "was" An -> Example

• "This" "will be" An -> Example

• "This" MightBe An -> Example

. . .

• 〈"This" "was" An -> Example 〉
• 〈"This" "will be" An -> Example 〉
• 〈"This" MightBe An -> Example 〉
. . .

Variable Patterns

Using an initialized variable reference in a pattern implies that the stored construct is
used as a pattern. Since a variable stores a selection, only the construct in focus is used
as a pattern, and the remainder is ignored. The same semantics apply to the initialized
variable pattern being used as part of an extended SDF construct; it will be expanded
to the construct held in focus. Apart from this, pattern matching using the initialized
variable pattern is the same as explained in section 3.4.2, p.43.

Using an uninitialized variable reference in a pattern implies that the pattern of the
variable is used for matching (see section 3.4.2, p.43), and that the matched construct will
be stored. The matched construct will be stored in focus in the resulting selection.

The following is an example using an uninitialized variable pattern, note that the
variable content is now represented by a selection:

GTL pattern: The variable ‘MyVar’ is of type Symbol and

1 . <MyVar> ... -> Example has pattern ‘.’.

SDF construct: post-match variable content:

matches "one" "two" "three" -> Example
MyVar

〈"two" 〉

Function Patterns

A function pattern used within a pattern will be expanded to its result if the function-call
is successful. This result is a selection. The semantics are the same as if an initialized
variable had been used; only the focus will be used and the remainder will be discarded.
Other than this, the semantics of the function pattern as explained in section 3.7.2, p.52
are the same.

3.8. SELECTION 55

3.8.2 Operations on Selections

Selections provide a way to focus on a specific part of an SDF grammar construct. Apart
from creating a selection as discussed in the previous section, we also need to be able to
“undo” the selection to retrieve the whole grammar. This is called imploding a selection.
To do this we need to merge two SDF grammar contructs, namely the focus and the
remainder of a selection. The specific semantics of merging two SDF grammar constructs
is explained in section 3.16, p.77.

In the following sections a “plus” infix operator (‘+’) is used to signify a merge between
two SDF grammar constructs. The semantics of merging two SDF constructs is explained
in section 3.16, p.77.

Creating a Selection

As explained at the beginning of section 3.8, p.53, every SDF construct produced by an
operation in GTL is in fact a selection. There is one operator however that is specifically
intended to create a selection using a given pattern and SDF construct: the ‘select’
operator. Its use is explained in section 3.9.3, p.64.

Imploding a Selection

As stated, a selection can be “undone” by imploding it. The result will be a new selection
with the merged focus and remainder in focus.

It has the following semantics:

〈 focus1 remainder1 〉 → 〈 focus1+remainder1 〉

Narrowing a Selection

Narrowing a selection means selecting a part of the construct in focus, and making that
the new focus of the selection. The remainder, those constructs which were part of the
original focus but are now part of the new remainder, will need to be merged to the
original remainder that was already present in the selection. Narrowing a selection is
basically moving some of the SDF constructs from the focus to the remainder, creating a
selection with a smaller focus and a bigger remainder.

The semantics are as follows; we start with a selection:

〈 focus1 remainder1 〉

We want to narrow the selection by selecting from the original as follows; note that
‘select’ works only on the focus:

select 〈pattern 〉 from 〈 focus1 remainder1 〉 → 〈 focus2 remainder2 〉

56 CHAPTER 3. A GRAMMAR TRANSFORMATION LANGUAGE

If we implode new selection, the focus of the original will be the result. This means
that the remainder of the original has disappeared, which is not what we want. We have
to merge the original remainder with the remainder of the new selection to get to the
following result:

〈 focus2 remainder1+remainder2 〉

This represents the new narrowed selection.

Widening a Selection

Widening a selection works much in the same way as narrowing, only now we are selecting
from the remainder, after which we merge the produced focus with the original focus.
Narrowing a selection is basically moving some of the SDF constructs from the remainder
to the focus, creating a selection with a bigger focus and a smaller remainder.

The semantics are as follows; we start with a selection:

〈 focus1 remainder1 〉

We want to widen the selection by selecting from the original. The ‘select’ operator
works only on the focus, so to select from the remainder we use the ‘remainder’ operator
which will return the remainder of its argument in focus. The operation looks like this:

select 〈pattern 〉 from remainder(〈 focus1 remainder1 〉) → 〈 focus2 remainder2 〉

If we implode new selection, the remainder of the original will be in focus of the resulting
selection. This means that the focus of the original has disappeared, which is not what
we want. We have to merge the original focus with the focus of the new selection to get
to the following result:

〈 focus1+focus2 remainder2 〉

This represents the new widened selection.

3.8.3 Selection Operators

Sometimes it can be useful to operate on the remainder of a selection instead of the focus,
or to drop either the focus or remainder part of a selection. To facilitate this we introduce
a number of selection operators.

A “plus” infix operator (‘+’) is used to signify a merge between two SDF grammar
constructs. The semantics of merging two SDF constructs is explained in section 3.16, p.77.

3.8. SELECTION 57

The Focus Operator

The focus operator takes a selection as an argument. It returns a new selection containing
the focus of that argument, without the remainder. It is depicted by the keyword ‘focus’,
and has the following layout:

focus(〈selection 〉)

Its semantics explained:

focus(〈 focus remainder 〉) → 〈 focus 〉

The Remainder Operator

The remainder operator takes a selection as an argument. It returns a new selection con-
taining the remainder of the argument in focus. It is depicted by the keyword ‘remainder’,
and has the following layout:

remainder(〈selection 〉)

Its semantics explained:

remainder(〈 focus remainder 〉) → 〈 remainder 〉

The Invert Operator

The invert operator takes a selection as an argument. It returns a new selection containing
the inverted selection of that argument. The focus of the argument is now the remainder
and the remainder of the argument is now the focus. It is depicted by the keyword
‘invert’, and has the following layout:

invert(〈selection 〉)

Its semantics explained:

invert(〈 focus remainder 〉) → 〈 remainder focus 〉

The Implode Operator

The implode operator takes a minimum of one selection as an argument. It returns a new
selection containing the merged focus and remainder of its arguments as a focus, with the
remainder empty. It is depicted by the keyword ‘implode’, and has the following layout:

implode(〈selection 〉, 〈selection 〉, . . .)

Its semantics explained for a single argument:

58 CHAPTER 3. A GRAMMAR TRANSFORMATION LANGUAGE

implode(〈 focus remainder 〉) → 〈 focus+remainder 〉

If there is more than one argument all the foci and remainder of it arguments are
merged together and produced as the new focus in the result.

Its semantics explained for a single argument:

implode(〈 focus1 remainder1 〉 , 〈 focus2 remainder2 〉 , . . .) →
〈 focus1+remainder1+focus2+remainder2+ . . . 〉

The Merge Operator

The merge operator takes a minimum of two selections as arguments. It returns a new
selection containing the merged foci of its arguments as the new focus and the merged
remainders of its arguments as the new remainder. It is depicted by the keyword ‘merge’,
and has the following layout:

merge(〈selection 〉 , 〈selection 〉, . . .)

The selections offered as arguments do not have to be of the same type, however, not
all combinations of types can be merged, so care should be taken in using this operator.
The semantics of merging two SDF constructs is covered in section 3.16, p.77.

The merge of two selections explained:

merge(〈 focus1 remainder1 〉 , 〈 focus2 remainder2 〉) →
〈 focus1+focus2 remainder1+remainder2 〉

If there are more than two arguments, the resulting selection of the merge of the first
two selections is merged with the third argument, after which the result is merged with
the fourth argument and soforth until there are no more arguments left.

The Narrow Operator

The narrow operator takes a selection and a pattern as arguments. It returns a new
selection containing the narrowed focus as the new focus and the merged remainders of
the match and the original as the new remainder. It is depicted by the keyword ‘narrow’,
and has the following layout:

narrow 〈selection 〉 using 〈pattern 〉

The selection and the pattern do not have to be of the same type. This means that in
some cases the pattern must be typed (see section 3.3.5, p.40) to avoid ambiguities.

It is implemented as:

merge(select 〈pattern 〉 from focus(〈selection 〉),
invert(remainder(〈selection 〉)));

3.9. EXPRESSIONS 59

The Widen Operator

The widen operator takes two selections as arguments. It returns a new selection con-
taining the widend foci of its arguments as the new focus and the widend remainders of
its arguments as the new remainder. It is depicted by the keyword ‘widen’, and has the
following layout:

widen 〈selection 〉 using 〈pattern 〉

The selection and the pattern do not have to be of the same type. This means that in
some cases the pattern must be typed (see section 3.3.5, p.40) to avoid ambiguities.

it is implemented as:

merge(select 〈pattern 〉 from remainder(〈selection 〉), focus(〈selection 〉));

3.9 Expressions

GTL Expressions are used for condition testing. An expression can either succeed or fail,
this is called the result condition. The result condition can be influenced using the logical
operators And, Or and Not.

Certain operators used in expressions can also return a selection, called the result value.
For instance equivalence operators, which can be used to test for existance or equivalence
of portions of a grammar, generate a result value if they are successful.

Expressions can be used in conditional statements (see section 3.10.3, p.68), as state-
ments directly (see section 3.10.2, p.67), or in an assignment match statement (see sec-
tion 3.9.3, p.63).

3.9.1 Logical Operators

GTL defines three logical operators to aid in testing for specific conditions. They are the
and -, or - and not - operators. These operators result only in success or failure.

Any operator that produces a return value will have this value discarded if it is used
in conjunction with a logical operator.

The and- and or- operators combine the failure- or success- result conditions of two
expressions. The not operator changes the result condition of a single expression.

The And Operator

The And operator has the following layout:

〈expression 〉 && 〈expression 〉

Its evaluation succeeds if both expressions are successfully evaluated, and fails other-
wise.

60 CHAPTER 3. A GRAMMAR TRANSFORMATION LANGUAGE

The Or Operator

The Or operator has the following layout:

〈expression 〉 || 〈expression 〉

Its evaluation succeeds if at least one of the expressions is successfully evaluated, and
fails otherwise.

The Not Operator

The Not operator ‘not’ has the following layout:

not(〈expression 〉)

Its evaluation succeeds if the evaluation of its argument expression fails, and fails
otherwise.

3.9.2 Equivalence Operators

The Equivalence Operators are a class of operators used for comparing SDF grammars.

The Equals Operator

The Equals operator is used to compare two SDF constructs. Its evaluation succeeds if
the constructs are structurally equal, producing the SDF grammar construct in focus as a
result value. The equals operator is right-associative, and is depicted by the symbol ‘==’.
It has the following layout:

〈extended SDF construct 〉 == 〈extended SDF construct 〉

The constructs on either side of the operator are extended SDF constructs, meaning
they are allowed to reference initialized variables, which will be expanded before compar-
ison. They must be of the same type.

In the following uses of the equals operator, the ‘MyVar’ variable is predeclared with
type Symbol and pattern ‘.’. It is either initialized or uninitialized as depicted in the
column on the right:

statement: post-evaluation variable content:

successful: 1 "one" == "one";

,, :
1 . . .

2 "one" "two" "drie" -> Test ==

3 <MyVar> "two" "drie" -> Test;

MyVar

1 "one"

2 "one"

3 "one"

3.9. EXPRESSIONS 61

The Subgrammar Operators

The Subgrammar operators test whether an SDF grammar construct is structurally equiv-
alent to- or a subgrammar of- the other. If its evaluation is successful, the matched part
of the grammar encompassing the other is produced in focus and the remainder of that
grammar is produced out of focus as a result value. The subgrammar operators are left-
associative, and they are depicted by the symbols ‘(=’ and ‘=)’.

The subgrammar operators test for structural equivalence modulo renaming (see sec-
tion 3.15.2, p.77) of one grammar and a (sub)grammar. The SDF constructs do not have
to be of the same type. They have the following layout:

〈SDF (sub)grammar construct 〉 (= 〈SDF grammar construct 〉

If the grammar on the left-hand side is structurally equal to-, or a subgrammar of-, the
grammar on the right-hand side, the evaluation of this operator is successful. In that case,
the subgrammar of the right-hand side that the left-hand side matches with is produced in
focus of the resulting selection. The remainder of that grammar is produced out of focus
of the resulting selection.

The other operator works in the same way, but with the left-hand side and right-hand
side reversed.

〈SDF grammar construct 〉 =) 〈SDF (sub)grammar construct 〉

The constructs on either side of the operator are extended SDF constructs, meaning
that they are allowed to reference initialized variables, which will be expanded before
comparison.

The following example shows uses of the subgrammar operators; the ‘MyVar’ variable
is predeclared with type Symbol and pattern ‘.’. It is either initialized or uninitialized as
depicted in the column on the right:

statement: post-evaluation variable content:

successful:
1 "one" (= "one";

2 "one" =) "one";

,, :

1 . . .

2 "one" "two" "drie" -> Modulo

3 (=

4 <MyVar> "two" "drie" -> Renaming;

MyVar

1 "one"

2 "one"

3 "one"

4 "one"

The following is a more complex example where two SDF context-free grammars are
compared:

62 CHAPTER 3. A GRAMMAR TRANSFORMATION LANGUAGE

GTL statement resulting selection

1 context-free syntax

2 "one" Two -> Many

3 "two" -> Two

4 (=

5 context-free syntax

6 "three" -> Three

7 "one" Deux -> Beaucoup

8 "two" -> Deux

〈

context-free syntax

"one" Deux -> Beaucoup

"two" -> Deux

context-free syntax

"three" -> Three

〉

Using structural equivalence modulo renaming, the SDF grammar on the left-hand
side of the operator is a subgrammar of the one on the right, when renaming the sorts
‘Two’ to ‘Deux’ and ‘Many’ to ‘Beaucoup’.

The Covers Operator

The Covers operator is depicted by the symbol ‘(=)’, and provides a way of testing whether
two SDF grammars are structurally equivalent modulo renaming (see section 3.15.2, p.77).

It is not obvious which of the two arguments should be used as a result value, the one
on the left, or the one on the right. They can differ in the sort names they employ, so
it is not an arbitrary choice. Since both constructs are provided by the programmer as
arguments to the operator, they are assumed to be reproducible by the programmer as
well. Since this is the case, this operator does not produce a result value.

The operator has the following layout:

〈SDF grammar construct 〉 (=) 〈SDF grammar construct 〉

The constructs on either side of the operator are extended SDF constructs, meaning
they are allowed to reference initialized variables, which will be expanded before compar-
ison. The SDF constructs on either side must be of the same type.

The covers operator has identical semantics to the following GTL expression:
GTL

1 <C1> (= <C2> && <C1> =) <C2>

where ‘C1’ and ‘C2’ are variables of the same type containing the SDF constructs to be
compared.

An example of a successful use of the covers operator:
GTL

1 context-free syntax

2 AB -> S

3 "a" -> A

4 "b" -> B

5 (=)

6 context-free syntax

7 CD -> T

8 "a" -> C

9 "b" -> D

3.9. EXPRESSIONS 63

3.9.3 Matching Operators

These are the operators that require a pattern to be given as an argument. They use the
pattern to match all or parts of an SDF construct to perform a function.

The Matching Operator

The Matching operator is depicted by the symbol ‘:=’ and allows GTL patterns to be
matched against SDF constructs. It is right-associative, and has the following layout:

〈pattern 〉 := 〈extended SDF construct 〉

The extended SDF construct and the pattern must be of the same type. The left-hand side
of the operator is a GTL pattern. It is used to match the extended SDF construct on the
right-hand side. If the match is successful, any uninitialized variables that are part of the
pattern are initialized with their matched SDF constructs (see section 3.4.2, p.43). The
entire extended SDF construct which was matched against is produced as a result value.
If the match fails, any uninitialized variables part of the pattern remain uninitialized, and
no result value is produced.

The initialization of variables referenced in the pattern is a side effect which is not
present in the other expression operators. In this, the use of an assignment operator
resembles a statement, except that it can succeed or fail.

The most simple use of a matching operator is the initialization of a single variable.
For example, assuming that a variable ‘MyVar’ has been declared with type Symbol and
pattern ‘.’:

GTL statement: post-evaluation variable content:

1 . . .

2 <MyVar> := "one";

3 . . .

MyVar

1 〈empty 〉
2 "one"

3 "one"

After evaluation the variable ‘MyVar’ is initialized with value ‘"one"’.

The left-hand side of a matching operator can be any GTL pattern. Assume the same
uninitialized variable ‘MyVar’ as before:

GTL statement: post-evaluation variable content:

1 . . .

2 <MyVar> . -> . := "one" "two" -> Many;

3 . . .

MyVar

1 〈empty 〉
2 "one"

3 "one"

Matching the Production pattern on the left-hand side to the SDF production on the
right-hand side results in the variable ‘MyVar’ having been initialized to hold ‘"one"’.

A pattern without variables can also be used to match against, implying that the
match has no side-effects and simply acts as an expression to be used for testing:

64 CHAPTER 3. A GRAMMAR TRANSFORMATION LANGUAGE

statement:

successful: 1 ... -> . := "one" "two" -> Many;

unsuccessful: 1 "two" . -> . := "one" "two" -> Many;

The Select Operator

The Select operator allows a GTL pattern to be used to gather all matching SDF constructs
that are part of a given grammar construct into the focus of a selection. All constructs not
matching the pattern will be put in the remainder. It is depicted by the keyword ‘select’
and a GTL pattern, followed by the keyword ‘from’ and an extended SDF construct.

It has the following layout:

select 〈pattern 〉 from 〈extended SDF construct 〉

The GTL pattern is used to match each of the sub-constructs of the extended SDF con-
struct. The selection and the pattern do not have to be of the same type. This means that
in some cases the pattern must be typed (see section 3.3.5, p.40) to avoid ambiguities.

A select operator fails if no matches were found, producing no result value. If it is
successful, it will produce a selection.

The following is an example of a selection from a context-free grammar:

GTL statement resulting selection

1 select . -> .

2 from context-free syntax

3 "one" "two" -> Many

4 "one" -> Many

〈

context-free syntax

"one" -> Many

context-free syntax

"one" "two" -> Many

〉

The Extract Operator

The extract operator works just like the select operator, but differs in it’s result value.
Where the select operator returns a selection of the same type as the selection given as an
argument, the extract operator returns a list of constructs of the same type as the pattern.

It has the following layout:

extract 〈pattern 〉 from 〈extended SDF construct 〉

The selection and the pattern do not have to be of the same type. This means that in
some cases the pattern must be typed (see section 3.3.5, p.40) to avoid ambiguities.

The following is an example of an extraction from a context-free grammar, the resulting
selection is of the same type as the given pattern:

GTL statement resulting selection

1 extract . -> .

2 from context-free syntax

3 "one" "two" -> Many

4 "one" -> Many

〈

"one" -> Many "one" "two" -> Many
〉

3.9. EXPRESSIONS 65

The Remove Operator

This operator will remove all SDF constructs matching the given pattern from the focus
of the selection.

It has the following layout:

remove 〈pattern 〉 from 〈selection 〉

The semantics is the same as the following GTL statement:

merge(remainder(select 〈pattern 〉 from 〈selection 〉),
invert(remainder(〈selection〉));

A select is used to single out the intended constructs. This means that the selection
and the pattern do not have to be of the same type. In some cases the pattern must be
typed (see section 3.3.5, p.40) to avoid ambiguities.

The following is an example of the removal of a production from a context-free gram-
mar:

GTL statement resulting selection

1 remove . -> .

2 from context-free syntax

3 "one" "two" -> Many

4 "one" -> Many

〈

context-free syntax

"one" "two" -> Many

〉

The Insert Operator

This operator will insert the given SDF construct into the focus.
It has the following layout:

insert 〈extended SDF construct 〉 into 〈selection 〉

The semantics is the same as the following GTL statement:

merge(〈extended SDF construct 〉, 〈selection 〉);

A merge is used to insert the construct into the selection. This means that the selection
and the extended SDF construct do not have to be of the same type (see section 3.16, p.77).

The following is an example of the insertion of a production into a context-free gram-
mar:

GTL statement resulting selection

1 insert "three" -> More

2 into context-free syntax

3 "one" "two" -> Many

4 "one" -> Many

〈 context-free syntax

"one" "two" -> Many

"one" -> Many

"three" -> More

〉

66 CHAPTER 3. A GRAMMAR TRANSFORMATION LANGUAGE

The Replace Operator

This operator will replace all SDF constructs in focus that match the given pattern. The
given SDF construct will serve as a replacement. The given SDF construct can be a
function call using the match of the pattern as an argument, so one can interpret this as
“apply function . . . to all . . . in 〈selection 〉”.

replace 〈pattern 〉 with 〈extended SDF construct 〉 in 〈selection 〉

The matched construct will be replaced at the position it was encountered. The pattern
and the SDF construct must be of the same type. Note that an uninitialized variable used
in the pattern is reset for each match made. This variable is initialized in a match and
can be used as part of the extended SDF construct.

The following is an example of the replacement of a production in a context-free
grammar:

GTL statement resulting selection

1 replace "one" -> Many

2 with "three" -> More

3 in context-free syntax

4 "one" "two" -> Many

5 "one" -> Many

〈

context-free syntax

"one" "two" -> Many

"three" -> More

〉

3.9.4 Operator Precedence

The precedence between the operators is as follows:

‘(=)’, ‘=)’, ‘(=’ before ‘==’, ‘:=’ before ‘&&’, ‘||’

A deviation from this can be forced by using a simple compound statement (see sec-
tion 3.10.2, p.67).

3.10 Statements

Traditionally, statements do not return results and are executed solely for their side effects,
like for example variable initialization. Since GTL is a language based mainly on pattern
matching, which can fail if there is no match, traditional statements like the assignment
statement can influence the program execution. This is why it was introduced as the
matching operator to be used in expressions.

GTL allows expressions to be used as statements, so that an assignment using the
matching operator does not always have to be enveloped by a conditional statement. This
however implies that some statement types can fail, meaning that they are conditional by
themselves.

The consequences of this will be explained per statement type in this section.

3.10. STATEMENTS 67

3.10.1 Expressions as Statements

GTL allows expressions to be used as statements directly. Any result value produced by
such an expression is discarded, however, the result condition is not. This means that
certain statements can fail and as such influence the program execution path.

The primary reason for allowing expressions to be used as statements are assignment
statements. If an assignment were not an expression but a statement which can not fail,
its correct function could not be guaranteed.

An assignment is simply a pattern match, since the assigned SDF construct has to
adhere to the pattern of the variable it is assigned to. Such a match can fail, implying
that none of the uninitialized variables referenced in the pattern, if any, will have been
initialized. If the assignment cannot fail, then that would mean that any subsequent
statement using these variables will not have the correct input. To be able to guarantee
the correct initialization of variables, statements are allowed to fail, so that subsequent
statements are never reached.

To catch a possible failure of an expression or statement, the programmer can use
a conditional statement like the ‘if’ statement. This way the programmer can provide
statements to handle such a failure.

The following assignment fails, since the pattern of the variable does not match the
SDF construct assigned to it. Assume the variable ‘MyVar’ has been declared using type
Production and pattern ‘. -> Many’:

GTL
1 <MyVar> := "one" "two" -> Many

The pattern of the variable will only match productions defined by a single symbol,
yet the SDF construct assigned to the variable is defined by two symbols.

3.10.2 Sequences

Multiple statements can be grouped together using a Compound statement. If any of the
statements contained in such a group fails, the compound statement also fails, discarding
any side effects achieved by the evaluation of the statements in the group.

There are two types of compound statement. One can only be used as a statement,
and the other can only be used in program and function declarations.

The Simple Compound Statement

The simple compound statement is expressed by a semi-colon delimited list of statements
enclosed in braces:

{

〈statement 〉;
〈statement 〉;
. . .

}

68 CHAPTER 3. A GRAMMAR TRANSFORMATION LANGUAGE

No new declarations can be made in this statement, it serves only as a grouping of
statements. This statement is intended to be used in conditional statements, but can be
used anywhere where a statement is allowed.

The simple compound statement can have both a result condition and a result value.
The result condition is the same as if all the enclosed statements were evaluated as a series
of expressions concatenated using the and operator (see section 3.9.1, p.59). If any one
enclosed statement fails the entire compound statement fails.

If the result condition is “success”, the result value as produced by the last statement
in the group will be produced as the result value for the compound statement.

The following example shows two compound statements containing conditional state-
ments which will succeed and fail respectively. Assume the variable ‘MyVar’ has been
declared using type Symbol and pattern ‘.’:

GTL statement: post-evaluation results:

1 {

2 <MyVar> := "one";

3 <MyVar> == "one";

4 }

<MyVar>:

1 〈empty 〉
2 "one"

3 "one"

4 "one"

condition:
success
value:
"one"

1 {

2 <MyVar> := "one";

3 not(<MyVar> == "one");

4 }

<MyVar>:

1 〈empty 〉
2 "one"

3 "one"

4 "one"

condition:
failure
value:
〈none 〉

The begin . . . end Compound Statement

This compound statement is expressed by a semi-colon delimited list of statements enclosed
in the keywords ‘begin’ and ‘end’:

begin

〈statement 〉;
〈statement 〉;
. . .

end

It may be used in program (see section 3.13.1, p.74) or function (see section 3.7.1, p.51)
declarations, but nowhere else.

The begin . . . end statement implies a new scope, including a possible result value. It
is part of a program- or function- declaration, where the various GTL sections preceeding
a begin . . . end statement are used to populate the new scope with variables, patterns,
etc.

3.10.3 Conditional Statements

A Conditional statement is used to influence program evaluation. It has no side effects
in that it does not change the execution environment, only the execution path.

3.10. STATEMENTS 69

The If Statement

The GTL if statement is used for the conditional evaluation of statements. As a statement
it cannot fail, and as such the evaluation of statements following the ‘if’ statement will
continue regardless of the results.

It has the following layout:

if 〈expression 〉 then 〈statement 〉 [else 〈statement 〉]

When an ‘if’ statement is encountered, the expression directly following the keyword
‘if’ is evaluated as a condition. Only the result condition is taken into account, a pos-
sible result value is discarded. If the result condition after evaluation is “success”, the
statement following the keyword ‘then’ is evaluated, otherwise the statement following
the keyword ‘else’ (if it is present) is evaluated.

Including an ‘else’ part with the ‘if’ statement is optional. If it is not present and
the result condition after evaluation is “failure”, nothing is done.

The following example shows an ‘if’ statement whose result condition is “success”:

GTL statement: post-evaluation variable content:

1 if "one" == "one" then

2 <MyVar> := "one";

3 else

4 <MyVar> := "two";

5 . . .

<MyVar>

1 〈empty 〉
2 "one"

3 [not evaluated]
4 [not evaluated]
5 "one"

The following example shows an ‘if’ statement whose result condition is “failure”:

GTL statement: post-evaluation variable content:

1 if "one" == "two" then

2 <MyVar> := "one";

3 else

4 <MyVar> := "two";

5 . . .

<MyVar>

1 〈empty 〉
2 [not evaluated]
3 〈empty 〉
4 "two"

5 "two"

The Case Statement

The Case statement can be used to match a given SDF construct to a set of patterns
connected to statements. If one of the patterns is a match the statement connected to the
matching pattern is evaluated. Its result -condition and -value (if any) will be produced
as the result -condition and -value of the case statement.

A ‘case’ statement starts with the keyword ‘case’ followed by an extended SDF con-
struct which will be used to match against. This is foloowed by the keyword ‘of’ after
which a comma-delimited list of patterns with statements must be given. The patterns
must be of the same type as that of the extended SDF construct.

The ‘case’ statement has the following layout:

70 CHAPTER 3. A GRAMMAR TRANSFORMATION LANGUAGE

case 〈extended SDF construct 〉 of

〈pattern 〉:〈statement 〉,
〈pattern 〉:〈statement 〉,
. . .

default:〈statement〉;

There is one additional match called the default match, it is depicted by the keyword
‘default’, and it must be the last item in the set of patterns. If none of the supplied
patterns match and a default match is present, it is evaluated.

An example of a ‘case’ statement is part of the GTL function ‘&toCamelCase’ which
is presented in appendix ??, p.??. The ‘case’ statement in question is used to convert
a lower case letter to upper case. The variable named ‘S’ represents a character. It must
be converted to uppercase, and assigned to another variable named ‘ToUpper’.

GTL
28 <ToUpper> := case <S>: { a:A; b:B; c:C; d:D; e:E; f:F;

29 g:G; h:H; i:I; j:J; k:K; l:L;

30 m:M; n:N; o:O; p:P; q:Q; r:R;

31 s:S; t:T; u:U; v:V; w:W; x:X;

32 y:Y; z:Z; default:<S> };

The ‘case’ statement tries to match the content of the variable ‘S’ to each of the
patterns supplied. These patterns represent the entire lower case alphabet. If any of the
patterns is a match, the connected statement, which represents the upper case version of
the matched letter, is produced as a result value to the case statement. This result value
is assigned to the variable ‘ToUpper’ using a matching operator.

The default match is supplied to catch any other than lower case letters. The content
of the variable ‘S’ is then produced as a result value, meaning that any characters other
than lower case letters are produced unchanged. This is useful if the character is already
an upper case letter.

The Foreach Statement

The Foreach statement is used to evaluate a statement for every match made within
a given SDF grammar construct. The statements starts with the keyword ‘foreach’,
followed by an uninitalized variable declaration. Next, the keyword ‘in’ and an extended
SDF construct must be supplied. The keyword ‘do’ preceeds the statement to be evaluated
if a match is made. The foreach statement has the following layout:

foreach 〈variable declaration 〉 in 〈SDF grammar construct 〉 do 〈statement 〉

In the evaluation of the foreach statement the uninitialized variable will be used as a
pattern. It is matched against all SDF constructs part of the supplied grammar construct.
A successful match is used to initialize the variable, after which the statement is evaluated.
When the statement has been evaluated, the next match is made and used to initialize

3.11. IMPORTS 71

the variable. The statement is evaluated once more and so on, until the evaluation of the
statement fails, or there are no more matches to be made.

If the evaluation of the statement fails, the foreach statement fails. It will produce
neither result -condition nor -value.

In the following example of a foreach statement, assume that the variable ‘Output’ has
been declared uninitialized with type QLiteral and pattern ‘...’.

GTL
1 foreach QLiteral MyVar:<(.)> in <("one" "two" -> Many)> do

2 >Output< := <Output> <MyVar>;

The foreach statement will evaluate its statement two times, once with the variable ‘MyVar’
initialized to hold ‘"one"’, and once initialized to hold ‘"two"’ in that order. The matching
statement that is evaluated per match appends the content of the variable ‘MyVar’ to the
content of the variable ‘Output’. When no more matches are found the foreach statement
is finished, and the variable ‘Output’ holds ‘"one" "two"’ as content.

Altering the contents of a variable referenced in the ‘in’ part of the statement during
evaluation is allowed, but does not change the SDF construct initially passed to the state-
ment. This means that all matches will be made using the original content of the variable,
not the altered one. The foreach statements part of the scripts in section 5.3.7, p.98, sec-
tion 5.3.8, p.99 and section 5.3.11, p.100 make use of these semantics.

3.11 Imports

GTL supports modularization through imports. Any GTL library or program is considered
a module (see section 3.13, p.74). It can be imported by another module, or import other
modules itself. Through imports the various sections defined in the imported module are
added to the importing one.

Importing a GTL program is allowed; it is treated as if it were a library. This will be
described in section 3.13.3, p.75.

3.11.1 Import Declarations

Imports are declared in the ‘imports’ section (see section 3.12.3, p.73). An import decla-
ration must provide the filename of the module to be imported, without extension.

A filename can be preceeded by a series of directory references, the path, to identify the
location of the file in the filesystem. This path is relative to the location of the program
mocule being evaluated.

An import declaration has the following layout:

imports 〈relative path 〉/〈modulename 〉

The following example shows an import of the module ‘ANSI-c.gtl’ from the directory
‘language/syntax’:

GTL
1 imports language/syntax/ANSI-c

72 CHAPTER 3. A GRAMMAR TRANSFORMATION LANGUAGE

Importing ‘strings.gtl’ from the directory ‘libraries’:

GTL
1 imports libraries/strings

3.12 Sections

There are four different types of GTL sections: ‘patterns’, ‘variables’, ‘imports’ and
‘functions’. They can be used in programs, libraries an functions. The different sections
will be discussed here.

3.12.1 The ‘patterns’ Section

The ‘patterns’ section allows the programmer to create named patterns that can be used
as aliases within any other pattern specification. The ‘patterns’ section has the following
layout:

patterns

〈pattern declaration 〉;
〈pattern declaration 〉;
. . .

It starts with the keyword ‘patterns’ followed by a semi-colon delimited list of pattern
declarations.

Pattern declarations were discussed in section 3.6.1, p.49. In the following, part of an
example which was also used in that section is implemented in a ‘patterns’ section:

GTL
1 patterns

2 Grammar #all_aliases = aliases ... ;

3 Grammar #all_restrictions = <{ restrictions ..., lexical restrictions ...,

4 context-free restrictions ... }> ;

5 . . .

6 Section #all_sections = <{ exports ..., hiddens ... }> ;

7 Module #all_modules = module ... ;

3.12.2 The ‘variables’ Section

Variables as declared in the ‘variables’ section are used in matching and assignment
statements. The ‘variables’ section has the following layout:

variables

〈variable declaration 〉;
〈variable declaration 〉;
. . .

3.12. SECTIONS 73

It starts with the keyword ‘variables’ followed by a semi-colon delimited list of variable
declarations. Variable declarations were discussed in section 3.4.1, p.43.

An example ‘variables’ section with variable declarations taken from section 3.4.5, p.47
looks like this:

GTL
1 variables

2 Grammar MyGrammar:. := context-free syntax

3 "MyLiteral" -> MySort;

4 Module MyModule:. := module MyModule

5 exports

6 sorts MySort

7 <MyGrammar>;

3.12.3 The ‘imports’ Section

Imports are declared in the ‘imports’ section and are used for modularization of the
program. The section has the following layout:

imports

〈import declaration 〉,
〈import declaration 〉,
. . . ;

It starts with the keyword ‘imports’ followed by a comma-delimited list of import decla-
rations. Import declarations were discussed in section 3.11.1, p.71.

3.12.4 The ‘functions’ Section

Functions are declared in the ‘functions’ section (see section 3.12.4, p.73). It has the
following layout:

functions

〈function declaration 〉;
〈function declaration 〉;
. . .

It starts with the keyword ‘functions’, and is followed by a semi-colon delimited list of
function declarations. Function declarations were discussed in section 3.7.1, p.51.

Using the example function declaration from that section, we create an example func-
tions section:

GTL
1 functions

2 Production &MyFunction(Symbol A1:.):... -> Boek {

3 begin

4 <MyFunction> := <A1> -> Boek;

5 end;

6 };

74 CHAPTER 3. A GRAMMAR TRANSFORMATION LANGUAGE

3.13 Modules

A module is a text file containing a GTL program- or library- declaration. A module with
the extension ‘.gtp’ contains a program declaration, and a module with the extension
‘.gtl’ contains a library declaration.

The distinction between programs and libraries lies only in the fact that programs
can be directly executed and libraries cannot. This implies that the top module that
is executed must contain a program declaration, since it declares a primary function.
Program declarations are discussed in the next section.

3.13.1 Programs

A program module contains a Program Declaration. A program declaration is almost the
same as a function declaration, preceded by the keyword ‘program’. This function is called
a Primary Function. A primary function declaration has the same syntax as a normal
function declaration (see section 3.7.1, p.51). In effect, a GTL program is almost the same
as a function (see section 3.7, p.50). The difference is that the statements of a primary
function are executed immediately upon program execution, and that the arguments it
requires are passed to it through command-line options or through a unix pipe, specifically
<STDIN>. The return value of a program function is passed to the pipe <STDOUT>. See
section 4.8, p.92 for a more thorough explanation.

As with functions, the name of the primary function, or program, is declared as a
variable before execution of the statements. After execution, its contents constitute the
result value of the program. The result value must adhere to the declared pattern of the
program.

A GTL program has the following layout, differing from the layout of a function
declaration only by the addition of the keyword ‘program’:

program

〈type 〉 〈name 〉(〈argumentdeclarationlist 〉) [:〈pattern 〉];
〈sections 〉
begin

〈statementlist 〉;
end;

Note that the pattern specification is optional. If the pattern specification is not part
of the declaration then the ‘exactly one’ pattern (‘.’) is assumed to be the pattern for the
program.

An example of a GTL program:

3.13. MODULES 75

GTL
1 program

2 Module &MakeModule():.;

3

4 patterns

5 Module #all_modules = module ... ;

6

7 variables

8 Grammar MyGrammar:. :=

9 context-free syntax

10 "MyLiteral" -> MySort;

11 Module MyModule:#all_modules :=

12 module MyModule

13 exports

14 sorts MySort

15 <MyGrammar>;

16

17 begin

18 <MakeModule> := <MyModule>;

19 end;

3.13.2 Libraries

A GTL library can contain all GTL sections except the ‘variables’ section, meaning
variables cannot be exported.

A library declaration is a list of sections, preceded by the keyword ‘library’. It has
the following layout:

library 〈name 〉
〈sections 〉

Note that a library declaration does not define type, pattern or arguments, since it can
neither receive nor return them.

3.13.3 Importing Modules

GTL implements modularization through import declarations in the ‘imports’ section
(see section 3.12.3, p.73). Both programs and libraries can be imported from any module.

Importing a library means that all the sections defined in that library will be added
to the section declarations in the importing module, making them available for use from
within that module.

Importing a program works largely in the same way. The sections defined as part of
the primary function will be added to the section declarations in the importing module.
Also, the primary function as declared in the imported program is treated as if it were a
‘regular’ function. It is also made available in the importing module. This was done to
allow programs to take advantage of the primary functionality provided by other programs.

76 CHAPTER 3. A GRAMMAR TRANSFORMATION LANGUAGE

3.14 Declaration Scope

A scope is the frame of execution where a declaration is valid. All variables, patterns,
imports and functions are part of a scope.

The Program Scope

A program has the primary scope. All the declarations made in the various sections part
of a program declaration are added to that scope. The declared patterns and variables,
either declared in the program declaration or imported, are valid to be used in the begin
. . . end statement part of the program declaration, as are the functions.

The Function Scope

Each function declaration gets its own scope, just like a program, so that all declarations
made within are valid for that function.

3.14.1 Inheritence

Certain declarations are inherited by a function from its parent scope, which is either the
scope of a program or of another function.

These declarations are patterns and functions. Patterns as well as functions declared
in the parent scope or higher can also be used in the current scope. It has the same effect
as if the patterns and functions were declared in a library and imported in each scope.

Variables cannot be inherited, but they can be passed to a function using its arguments.

3.15 Grammar Equivalance

Grammars are said to be equivalent if they can produce the same strings as output.
Proving two grammars equivalent is undecidable [8], but a different type of equivalence,
namely structural equivalence can be used. This method for grammar comparisin was also
used in the FST [5].

3.15.1 Structural Equivalence

With structural equivalence, two grammars must provide the same definition; the same
sorts with the same names and each sort must be defined using the same terms. A more
formal description can be found in [7].

Structural equivalence does not cover all the grammars that can produce the same
output. The following two SDF grammars can parse the same string for the sort ‘S’, namely
‘ab’. They are equivalent, but they are not structurally equivalent, since a definition for
the sort ‘B’ does not exist in the grammar on the right, and the definition for the sort ‘S’
is different:

3.16. GRAMMAR MERGING 77

1 context-free syntax

2 AB -> S

3 "a" -> A

4 "b" -> B

1 context-free syntax

2 A "b" -> S

3 "a" -> A

4

3.15.2 Structural Equivalence Modulo Renaming

With structural equivalence modulo renaming the sort names do not have to be identical,
as long as they are defined using the same terms (modulo renaming), and they are used
in the same terms defining other sorts.

The following two SDF grammars are structurally equivalent modulo renaming:

1 context-free syntax

2 AB -> S

3 "a" -> A

4 "b" -> B

1 context-free syntax

2 CD -> T

3 "a" -> C

4 "b" -> D

They can both parse the same string ‘ab’, the grammar on the left using the sort ‘S’
and the grammar on the right using the sort ‘T’.

3.16 Grammar Merging

The basic functionality behind imploding, narrowing and widening a selection as discussed
in section 3.8.2, p.55 is the merging of grammars. In the examples this was expressed by
a “plus” infix operator (‘+’). The implementation of SDF construct merging is covered
in section 4.5.2, p.82.

3.16.1 Merging Identical Types

In a selection both the focus and the remainder are of the same type. A merge of two
identical types is rather straigthforward, though the semantics differ for each type. The
relevant semantics include:

allow/disallow doubles
There may be no modules with the same name, but a production may contain infinite
references to the same sort/literal/etc.

ordered/unordered
The order in which grammars appear in a section does not matter, but the order in

which symbols appear in a production does.

3.16.2 Merging Different Types

Merging two different types is possible only when one of the types is a sub-type of the
other, that is, when one of the types is used in the definition of the other. A production
can be merged with a context-free syntax grammar by merging the production with the

78 CHAPTER 3. A GRAMMAR TRANSFORMATION LANGUAGE

productions present in the grammar. However, production can not be merged with a sorts
grammar, since neither is defined using the other.

Allowing the ‘merge’ operator to take arguments of differing types prevents the pro-
grammer from having to program a series of matches to get to the intended types, then
do the merge and then recreate the original structure using the constructs matched before
the merge.

Checking whether a merge between differing types is possible, only has to be done
once. The arguments to a merge, whether used directly with the ‘merge’ operator, or
implicitly as part of one of the other selection operators, are typed. This can be used to
warn the programmer at compile time about ‘incompatible’ types, like a production and
a sorts grammar.

Chapter 4

Implementation

4.1 Introduction

In implementing GTL a few goals were kept in mind. The maintainability and flexibility
of the implementation being the most important ones. The case study shows that for GTL
to remain usable with a changing specification of SDF the implementation needs to be
easily adaptable and extensible. This means we must use a programming language with
the features and functions that will aid the reaching of these goals.

We will start by explaining the choice of the programming language for the imple-
mentation of GTL. Then an overview of the implementation is given, after which the
implementation is discussed.

4.2 Choosing A Programming Language

The choice of a programming language for implementing an SDF transformation language
was an obvious one. The ASF+SDF meta-environment was developed for creating lan-
guages and implementing transformations on those languages, including interpreters or
compilers. This, and more, makes it a good choice for implementation of GTL.

The specification of SDF is already implemented in SDF and is provided with the
ASF+SDF distrubution, so creating a parser for SDF is not nessesary. Also, any new
version of the SDF specification will be part of a new distribution as well, meaning that
the maintainer of GTL only has to adapt the GTL implementation, not implement the
changes in the new SDF specification.

The distrubution also includes various libraries whose functions can be used in the im-
plementation of GTL. These include functions for matching and testing character classes,
which are part of the SDF as well as the GTL language.

The modularization capabilities present in SDF also help to create a maintainable
interpreter. Modules in SDF can be parameterized, allowing the functionality expressed
in one module to be used as part of multiple sorts. Sorts, like modules, can also be pa-
rameterized, allowing for the creation of a more legible and maintainable implementation.
These SDF features are heavily relied upon in the implementation of GTL.

79

80 CHAPTER 4. IMPLEMENTATION

There are also downsides to using the ASF+SDF meta-environment. The GTL pattern
system is intended to be very closely modeled after the SDF constructs it is intended
to match. This means that any ‘literal’ patterns, that is those patterns that have the
exact same syntax as their SDF counterparts, will introduce ambiguities between the SDF
constructs and the GTL patterns in the parser. Creating a well defined specification of
GTL employing the various disambiguation techniques that SDF provides should overcome
most if not all of these problems.

Another downside has to do with the maintainability of the implementation. If the
SDF specification changes, the implementation will have to be adapted. However, since
the implementation is done in SDF itself, it must first be adapted to use the new SDF
syntax and possibly semantics. This is not a problem as long as the new SDF specification
is backward compatible with the old. If this is not the case however, it could mean that the
implementation of GTL will need a lot of work to update it to the new SDF specification.

These downsides can be overcome, at least to a high degree. The benefits of using the
ASF+SDF meta-environment for the implementation of GTL in our opinion still outweigh
the downsides mentioned.

4.3 Overview

The implementation of GTL is split into four groups of modules. The Environment group
contains the definition of the GTL environment. The Pattern Matching group is the
matching kernel and it contains the untyped GTL pattern definitions. The Types group
contains a number of modules each defining the pattern -syntax and -semantics specific
to a GTL type. Lastly the Evaluator group contains the specification of the GTL syntax
and semantics.

4.3.1 SDF Specific Features Used

GTL is defined in SDF2, and makes use of various features such as like module- and sort-
parameterization. Module parameterization allows for the definition of generic modules,
so that we can create one set of modules for pattern matching which will be imported
once for each type.

The operations defined in these modules are independent of a specific type, which is
important since we want the generic GTL patterns like the ‘exactly one’ pattern (‘.’) to
be able to represent any SDF construct. We need to avoid ambiguities however, so, to
distinguish between identical patterns for different GTL types we will use parameterized
sorts, which increases readability of the source and avoid name clashes between different
instances of the same module defining the patterns.

4.4 The Environment group

This group defines the environment and the functionality needed to store and retrieve
data from it. The environment structure is devided into four sections, the ‘variables’-,

4.4. THE ENVIRONMENT GROUP 81

«interface»
Pool

+ lookup()
+ store()
+ createPool()
+ destroyPool()
+ ...()

«interface»
Bucket

+ createBucket()
+ destroyBucket()
+ getName()
+ getContent()
+ setContent()
+ ...()

There are four sections to
the environment:
Variables, Patterns,
Functions and Imports,
each is a pool of buckets.

«interface»
Environment
+ getVariable()
+ setVariable()
+ getPattern()
+ setPattern()
+ getFunction()
+ setFunction()
+ getImport()
+ setImport()
+ ...()

Environment

Pattern MatchingEvaluator

GTL Type

Diagram: Environment Page 1

Figure 4.1: The Environment Interfaces

‘patterns’-, ‘functions’- and ‘imports’- sections, to hold the stored items.

The individual items are stored in buckets, which in turn are stored in a pool of buckets.
Each section is a simple list of pools. Each time a scope is added a pool is created and
appended for each section. When a scope is destroyed the last pool in the list will be
destroyed.

The bucket and pool structures are defined in two parameterized modules, ‘Bucket’
and ‘Pool’. The parameter provides an ID for the structures which is used as a parameter
to the sorts defining the bucket and the pool. This is done to avoid ambiguities and to
allow for multiple distinguishable instances.

4.4.1 The Bucket Interface

The ‘Bucket’ module defines the storage of a single item. A bucket is a parameter-
ized sort ‘Bucket[[TypeID]]’ and contains three constructs, the given ‘TypeID’, a sort
‘Name[[TypeID]]’ and a sort ‘Content[[TypeID]]’. The last two sorts should be defined
by the importing module. A number of functions are also provided to set and retrieve
the name or content of a bucket, as well as create a new bucket and test whether it has
content. By leaving the name- and content- sorts to be defined by the importing module,
the specification of a bucket is truly independent of its name and content, and can be
reused for all the sections in the environment structure.

4.4.2 The Pool Interface

The ‘Pool’ module imports the ‘Bucket’ module passing along its parameter ‘TypeID’. It
can store a list of buckets. A pool contains two constructs, the given ID and a list of
buckets of the type. A number of functions are provided to lookup in-, remove from- or

82 CHAPTER 4. IMPLEMENTATION

add a bucket to- the list, as well as create a new pool. Some functions from the ‘Bucket’
module are overloaded to work on a pool as well by implicitly performing a lookup in the
pool. As with the bucket structure, a pool is independent of its content and can be reused
for all the sections in the environment structure.

4.4.3 The Environment Interface

The environment structure is defined in the ‘Environment’ module. It imports the ‘Pool’
module to represent a single scope. Each section is a list of scopes.

The ‘Environment’ module also defines the ID’s and name syntax needed for the
definition of the pools and buckets that make up the sections in the environment. It is
nessesary to provide the name syntax to be able to provide the lookup- and store- functions
for the environment structure. Since we import the ‘Pool’ module four times, once for
each section, we need a way to keep them apart. The semantics for these lookup- and
store- functions are specific to each section, since some of the stored items can be inherited
between scopes, and others cannot. For instance, variables and imports are looked up only
in the top scope, while functions and patterns are looked for in the entire list of scopes
because they are inherited.

A number of functions are provided to take care of appending-, creating- or destroying-
a scope.

4.5 The Pattern Matching group

The GTL patterns that are type-independent are defined in the pattern matching group.
For example the sequence- and set- patterns and the GTL repetition operators. This
group also provides functions and sort declarations to allow for the addition of new types.

There are two separate interfaces, one is used solely by modules that define new types,
and the other provides a type-independent interface to be used in the evaluator. The
former is parameterized with the information needed to add a type, like the type identifier
and the construct it represents. The latter is not parameterized and encompasses all the
types and type-less GTL patterns.

4.5.1 The Matching Kernel Interface

This interface defines and implements three basic functions ‘match’, ‘select’ and ‘merge’.
They handle the semantics of all GTL patterns, including the types created by implement-
ing the functions in the Pattern Matching interface. They are the core functions that are
used by the evaluator and the matching functions.

4.5.2 The Pattern Matching Interface

This interface provides three functions ‘matchSingle’, ‘selectSingle’ and ‘mergeSingle’
to handle single type-specific patterns. They are implemented only by type defining mod-
ules. Default rules are provided that will fail them, so an importing module that defines

4.5. THE PATTERN MATCHING GROUP 83

��� ��� ��� 	
�����
����� � ����������� ����� ���
�! #"�$ %�&�')(*,+�- .�/ 0
�!1�.,- .�%�$ ')(*�+�- .�/ 0
�! �.�2 +�.�')(*,+�- .�/ 0
�3(1�')(*�+�- .�$ 4�*�/ 0
�3(1�5 $.,2 67- 8�1�/ 0
�3(1�9� ;:�$ <�/ 0
��., ;:�$ <�/ 0
�!"=:�:�.,*�>)/ 0
?A@ @ @ B C

«datatype»
GTL Pattern Specification

Environment

Pattern Matching

9EDF"�- 8�"�$ 4�2

«interface»
Matching Kernel
+ match()
+ select()
+ merge()
+ ...()

GTL Type

Diagram: Pattern Matching Page 1

Figure 4.2: The Pattern Matching Interfaces

a new type will need to redefine them to supply the correct semantics. This way, the
semantics of a new type can be added by simply providing rewrite rules to handle these
functions for the type.

The three ‘ Single’ functions are recusive in the sense that they call their namesake
functions for the types used in their definition. The functions for type Production call
the same function for Symbol and Attributes. These types are part of the definition of
a Production. If these calls are successful, the calling function will handle the relevant
semantics and return its results.

For ‘selectSingle’, the results of the recusive calls to the sub-types will be used to
built two new constructs of the same type as the current function, one is the focus and the
other is the remainder. These are used to create a selection wich is returned as a result.
For ‘matchSingle’, the result is either a match or not, if it is a match, the entire construct
is returned as the result. Both functions use the same matching engine, which returns a
selection as a result. In the case of matchSingle, the remainder of the resulting selection
is empty, and the focus contains the entire matched construct.

For ‘mergeSingle’, the handling is different. The function for each type can only
merge two constructs of the same type, again using recursion. Merging two different types
is handled by the pattern matching module. Merging two different types is done by taking
one construct and trying to merge it with each of the children of the other, top-down left
to right. The first type-match made will induce the merge, after which the merged result
is used to create the new construct. If no merge is induced, the next child of the original
construct will be handled in the same manner. If the one construct in the function call
does not appear as a child in the other, the two constructs are swapped and the merge
is retried. If this still does not produce a merge, for instance when merging a production
with a sorts grammar, the merge fails.

84 CHAPTER 4. IMPLEMENTATION

Apart from single constructs, we also need to be able to match lists. There are two
types of lists in SDF, flat lists which are defined using SDF -repetition operators and
-list operator, and recursive lists which represent the definition of a list by referencing
themselves. An example of the latter list type is the SDF type grammar. To keep as
much as possible of the kernel code unique, five functions independent of the list type
were created that represent the list operations needed. The pattern matching group only
defines the default rules which will fail the match. Each type defining module importing
the group must define these functions to correctly handle lists of its type.

Some of the types in GTL are made up of characters, for instance the types Sort and
ModuleId. A type-specific GTL pattern, the lexical pattern, was introduced to provide
the ability to match and alter parts of these types. Since this pattern can be used for
more than one type, the basic syntax and semantics are part of the pattern matching
group. The modules providing this pattern are imported only by the types that need it.
These modules are made part of the pattern matching group even though they are not
fully type-independent.

4.5.3 Pattern Ambiguities

For the definitions of the types, simply injecting all the SDF constructs into a single sort
would create a lot of ambiguities, because some types are injected into others. This makes
it impossible to decide which type is actually intended. A literal for instance is injected
into the symbol type, so when parsing a literal, the parser does not know which type is
intended, symbol or literal.

To circumvent this in cases where the intended type is known, each type is declared
using a parameterized sort. One parameterized sort for the type-pattern and one for the
construct it represents. This avoids most of the ambiguity problems, since we can now
specify which pattern type can match which SDF construct directly.

The pattern matching operators of GTL can take any type to operate on, so in parsing
them, the injection problem persists. This can be solved by preferring some types over
others in parsing, using the ‘prefer’ and ‘avoid’ attributes.

4.5.4 The Pattern Structure

To separate the types, all sorts that define a pattern are parameterized, having the textual
representation and the represented SDF construct of the type as a parameter.

Some of the patterns can be used in more than one GTL construct. A variable for
instance can be part of a pattern but also part of an extended SDF construct. Thus, the
variable pattern needs to be defined separate so that it can be included in the definition
of both the GTL pattern structure and the extended SDF structure.

We also need to be able to restrict specific GTL patterns in their use. For instance an
extended SDF construct may not include the GTL option- or repetition- operators, since
these can not be reduced to an SDF construct.

A structure of sort injections is set up here to allow specific patterns to be restricted
to certain GTL constructs, and to avoid the ambiguities discussed.

4.5. THE PATTERN MATCHING GROUP 85

1

1..*

11..*

11..*

1..*

1

VariablePatternVariable[[<TypeID>]]

Function[[<TypeID>]] FunctionPattern

«Module Parameter»
TypeID

Type[[<TypeID>]]

Pattern

Pattern[[<TypeID>]]SDF[[<TypeID>]]

GTL[[<TypeID>]]
Sequence Pattern `<(···)>'
Set Pattern `<{ ··· }>'
Option `?'
Repetition `*' or `+'

Value

«Module Parameter»
Constructs

«Module Parameter»
Construct

Typed Patterns

Diagram: Typed Patterns Page 1

Figure 4.3: The Typed Patterns Structure

The Typed Patterns Structure is defined in a separate module named ‘Constructs’,
see appendix A.3, p.113.

The Typed Pattern Structure

The following list describes the sorts that hold the definitions for a single type. Their
structure is depicted in the top section of figure 4.3.

‘Pattern[[〈TypeID 〉]]’
At the core of the pattern structure is the sort ‘Pattern[[〈TypeID 〉]]’. It will

encompass all the patterns for a single type.

‘GTL[[〈TypeID 〉]]’
The sort ‘GTL[[〈TypeID 〉]]’ holds the definitions for the GTL sequence-, set-, option-
and repetition- operators. Notice that the lexical- and ‘any repetition’- operators are
missing, this is because they are type-dependent.

‘SDF[[〈TypeID 〉]]’
The sort ‘SDF[[〈TypeID 〉]]’ will hold the pattern which is used to match its repre-

sented SDF construct. It is declared here but not defined, since it is type-specific. Its
definition must be provided by the importing modules defining the type.

‘Variable[[〈TypeID 〉]]’ and ‘Function[[〈TypeID 〉]]’
The variable- and function- patterns are held in the sorts ‘Variable[[〈TypeID 〉]]’

and ‘Function[[〈TypeID 〉]]’ respectively. These are defined exactly the same for
each type, so no external definition is needed. They are defined separate from the

86 CHAPTER 4. IMPLEMENTATION

other sorts because they are allowed to be used in patterns as well as extended SDF
constructs.

‘Type[[〈TypeID 〉]]’
The sort ‘Type[[〈TypeID 〉]]’ will hold the textual representation of the type for

reference in declarations in a GTL program. It is defined by the ‘TypeID’ parameter
given to the kernel modules.

The Encompassing Pattern Sorts

There are four sorts without parameter. They hold the definitions of for all the types
through injection. They are shown outside of the box in figure 4.3.

‘Pattern’
This sort will hold the sorts ‘Pattern[[〈TypeID 〉]]’ for all types, and is used in the

specification in places where a pattern of any type is allowed.

‘VariablePattern’
This sort will hold the sorts ‘Variable[[〈TypeID 〉]]’ for all types, and is used in the
specification of the Unknown type, where it is not known which type is intended. This
will be discussed later.

‘FunctionPattern’
This sort will hold the sorts ‘Function[[〈TypeID 〉]]’ for all types, and is used in the
specification of the Unknown type, where it is not known which type is intended. This
will be discussed later.

‘Value’
This sort holds all the different SDF constructs introduced by the modules defining

the GTL types. It is never used for matching since that would introduce ambiguities.
It is however used for the declaration of type-less functions. The function to reduce
an extended SDF construct is one such function.

The Module Parameters

At the bottom of figure 4.3 the three module parameters that are required to create a new
type are given. They are the following:

‘TypeID’
a type identifier, which is a quoted literal representing the textual name of a type.

It is used as a parameter to the sorts that hold the definitions of the patterns for the
type. It also represents the type in a GTL program as part of declarations.

‘Construct’
the SDF construct the type represents. It is used primarily as the type of a variable

in the rewrite rules describing the semantics of the patterns.

‘Constructs’
a parameter representing a list of the same construct to handle the type-specific lists.
This parameter is included to allow the handling and representation of different types
of lists, namely flat- and recursive- lists. It is used in the same way as the ‘Construct’
parameter.

4.5. THE PATTERN MATCHING GROUP 87

4.5.5 More Pattern Ambiguities

The GTL specific patterns do not infer a type from their syntax. For instance the ‘.’
and ‘...’ patterns, but also variables and functions. This means that a large pattern
that does not contain a recognisable pattern of a type does not infer a type from its
syntax either. The pattern ‘<(...; .)>’ is such a pattern which can be matched
againts any type. If the type of the SDF construct being matched is known from syntax,
this does not present a problem. But using extended SDF constructs allows us to use
initialized variables. The variable pattern syntax does not infer type, so when we match
an initialized variable against a type-less pattern, it can not be discerned from syntax
which type semantics should be used for matching.

The solution is to parse these patterns using a single, but hidden type that has prefer-
ence over all other types in parsing. It is called the ‘Unknown’ type. Its semantics are that
its rewrite rules try to extract the intended type from the pattern and SDF constructs.
This is done by retrieving the types of the variables and functions present in both. When
the type is extracted the appropriate rules can be used to evaluate the match.

In matching, we always need a pattern as well as an SDF construct. As stated the
pattern can be type-less, meaning a type for the pattern cannot always be extracted from
it. For the extended SDF construct this is different, since the only GTL patterns it may
contain are variables and functions. The types for both of these can be retrieved from the
environment, since they must be declared with a type. If an extended SDF construct does
not contain any GTL variables or functions, it respresents an SDF construct directly and
its type can be inferred from syntax, taking into account the preference between the various
types. So, the type of an extended SDF construct can always be ascertained, implying
that for a match the intended type can also always be discovered, albeit sometimes after
parsing it using the ‘Unknown’ type by retrieving the type of a referenced variable or
function.

4.5.6 The ‘Unknown’ type

Sometimes the type of a pattern can not be extracted from the sub-patterns because it
is made up solely of type-less GTL patterns. The pattern ‘<(...; .)>’ is such a
pattern. To allow matching of these patterns they are typed to a hidden type, called
the Unknown type. Like all public types, this type imports the type-independent GTL
patterns. However, the ‘exactly one’ and ‘zero or more’ patterns are also defined for this
type. The semantics for these are that they can be matched to any type. So, a pattern of
type Unknown can be matched to any other type. It does not represent an SDF construct,
and as such can not be used in an extended SDF construct because it cannot be reduced.

The Unknown type was added to avoid ambiguities when parsing the type-less GTL
patterns, see 4.5.5, p.87.

Since it does not represent an SDF construct, it is defined in the Pattern Matching
group. It must be declared and defined separately because it does not contain an type-
specific pattern.

88 CHAPTER 4. IMPLEMENTATION

"Unknown"

Pattern[["Unknown"]]
Undefined `.'
Multiply Undefined `...'

GTL[["Unknown"]]
Sequence Pattern `<(···)>'
Set Pattern `<{ ··· }>'
Option `?'
Repetition `*' or `+'

VariablePattern

FunctionPattern

The Unknown "Type"

This "type" is a partial
implementation of a Pattern
Structure, with the exception the
it has no variable- or function-
patterns of its own since it does
not represent an SDF construct.

Pattern

Type[["Unknown"]]

Diagram: Unknown Type Page 1

Figure 4.4: The Unknown Type Structure

The ‘Unknown’ Type Structure

The definitions of the type are parameterized in the same way as typed patterns, using
the type identifier ‘"Unkown"’. The structure is shown in figure 4.4

The sort ‘Pattern[["Unknown"]]’ contains definitions for the ‘exactly one’ and ‘zero or
more’ patterns. The sort ‘SDF[["Unknown"]]’ does not exist and the type has no variable
or function patterns of its own because the type does not represent an SDF construct. It
does contain the encompassing pattern sorts for variables and functions, since it needs to
be able to match them all to ascertain their type for subsequent matching.

Other than these changes, the structure is the same as the one for typed patterns.

To see how the ‘Unknown’ Type Structure interacts with the Typed Pattern Structure
a diagram of the two together is provided in appendix A.1, p.111.

The ‘Unknown’ Type Structure is defined in a separate module named ‘Unknown’, see
appendix A.3, p.113.

4.5.7 The Lexical Pattern

This pattern can be used to match parts of the SDF types that are made up of characters,
like literals and sorts. Since the pattern is implemented by more than one type, it is defined
separately to be included by those types that require it. The syntax and semantics of this
pattern and its supporting functions are defined in two modules, ‘CharMatching’ and
‘CharSupport’, see appendix A.3, p.113.

4.6. THE TYPES GROUP 89

Environment

«datatype»
SDF Specification

����� � ���	�
����	� ���� � ������
� ��� � �	� � � ����� ���	���	� ���
 !�"�#� � ����� $�� �	�����#� � ����� % % %

Types

&('�)#* +#)�, -#. /!)�, , 0#. 1324)�, 5#6#7 1#8

9�: ;�< =�> ? @	A"=�B
C�D	EFD�G�H!I

JLKNM�O P�Q�RTS U�V�W X�Y Z
J\[]X�W X"P#O RTS U�V�W X�Y Z
JLKNX�^ V"X"RTS U�V�W X�Y Z
J`_ _ _ Y Z

«interface»
SDF Library

+ charclass operators()
+ boolean operators()

a _ _ b

a

a a _ _ b

c S M"V�^ M�Ked]f�g�h�X�[Ni�M"V�X a

Figure 4.5: The Types Interfaces

4.6 The Types group

The types group contains the type-defining modules. For each type, an number of sort
definitions have to be provided, as well as rewrite rules to handle the matching of a single
instance of the type to the SDF construct it represents.

Each module imports the pattern matching modules from the pattern matching group
at least once, supplying an SDF construct and type identifier string as parameters. The
module must provide a parameterized sort ‘SDF[[〈typeid 〉]]’ that defines the pattern
equivalent of the SDF construct it represents.

To facilitate the handling of lists of each type, the rewrite rules for five additional
functions need to be defined. Since there are only two types of lists involved, namely flat-
and recursive- lists, these are defined in separate modules where they can be imported
into the module defining the type. Since there is only one type that employs a recursive
specification, the grammar type, only the module defining the functions to handle flat lists
is actually implemented. This module is called ‘Matching’, see the figure in appendix A.3,
p.113. It is this module that eventually imports the modules from the Pattern Matching
group.

In figure 4.5, p.89, the interfaces part of- and included in- the Types group are shown.
The interface to the SDF library is a simplification representing a group of modules im-
ported and used by various types. These include the syntax and semantics for booleans
and various functions that operate on SDF character classes.

4.6.1 A Type-Definition Example

In this example, the type Production is defined and implemented.

The SDF sort ‘Production’ is represented in GTL by the parameterized sort
‘SDF[["Production"]]’. The SDF definition of a production is as follows:

SDF
1 Symbol* "->" Symbol Attributes -> Production

90 CHAPTER 4. IMPLEMENTATION

The corresponding GTL type-pattern definition ‘SDF[["Production"]]’ is defined simi-
larly, using only GTL type-patterns.

SDF
1 Pattern[["Symbol"]]* "->" Pattern[["Symbol"]] Pattern[["Attributes"]] ->

2 SDF[["Production"]]

Using the sort ‘Pattern[[〈TypeID 〉]]’ in the definition of the pattern allows the pro-
grammer to use GTL patterns as part of the pattern for a Production.

Rewrite rules specific to this type have to be defined for the functions ‘matchSingle’,
‘selectSingle’ and ‘mergeSingle’. In this case, each of these functions calls the pattern
matching functions of its sub-patterns for the types Symbol and Attributes to handle
their matching. This means that the module defining this type-pattern will have to import
the modules defining the Symbol and Attributes types.

To facilitate the matching of (flat) lists of this type the ‘Matching’ module is imported
using the parameters ‘Production’ and ‘"Production"’ as the SDF construct and type-id
representation. The ‘Matching’ module defines the nessesary list functions and imports
the required modules from the Pattern Matching group.

4.6.2 More Pattern Ambiguities

As stated before, injections pose a problem in parsing. This is no different with pattern
definitions. Take for instance one of the definitions for the SDF type symbol:

SDF
1 Literal -> Symbol

The definition of the sort ‘SDF[["Symbol"]]’ for this injection would look like this:

SDF
1 Pattern[["Literal"]] -> SDF[["Symbol"]]

However, this will create problems when matching a literal represented by a symbol against
the pattern ‘.’, which is a part of the sort ‘Pattern[["Literal"]]’ as well as the sort
‘Pattern[["Symbol"]]’. It cannot be ascertained which of the two types is intended.

To avoid this problem, the definition of the sort ‘SDF[["Symbol"]]’ for this injection
looks like this:

SDF
1 SDF[["Literal"]] -> SDF[["Symbol"]]

where only the single representation for the literal type is injected, which does not contain
the pattern ‘.’. So, when matching a literal represented by a symbol against the pattern
‘.’, it is now clear that the type Symbol is intended, since the ‘.’ pattern is not part of
the definition of the sort ‘SDF[["Literal"]]’.

4.7. THE EVALUATOR GROUP 91

«interface»
Variables

+ createVariable()
+ getType()
+ getPattern()
+ getValue()
+ setValue()
+ ...()

«interface»
Patterns

+ getType()
+ getPattern()
+ ...()

«interface»
Imports

+ getEnvironment()
+ ...()

«interface»
Arguments
+ parse()
+ ...()

«interface»
Functions

+ eval()
+ getType()
+ getImports()
+ getEnvironment()
+ getStatements()
+ ...()

GTL Type

Pattern Matching Environment

The program interface
is the top module.

«interface»
Statements
+ eval()
+ ...()

«interface»
Program

+ eval()
+ getImports()
+ ...()

Evaluator

Diagram: Evaluator Page 1

Figure 4.6: The Evaluator Interfaces

4.7 The Evaluator group

This group contains the modules that declare and define the syntax and semantics of the
GTL language. There are seven interfaces that introduce the various constructs. These
are shown in figure 4.6, p.91.

Four of the interfaces, the functions-, patterns-, imports-, and variables- interfaces,
introduce the pattern-, declaration- and section- semantics of their name-sake GTL con-
structs.

The interface for arguments was created because arguments are used in both patterns
and functions, it is prudent to implement them only once.

The interface for GTL statements is used only in functions. It provides the semantics
of the various GTL operators and statements.

Lastly, the program interface provides the functions for evaluating a GTL program.
It does not use the arguments interface directly even though it can have them. This is
because a GTL program is implemented as a function. A GTL program is also called the
primary function.

4.7.1 Four Sections

There are four sections to a GTL -program or -library, the functions-, patterns-, imports-,
and variables- sections. Each is implemented in its own module that contains the defini-

92 CHAPTER 4. IMPLEMENTATION

tions and declarations for the GTL construct. See the Evaluator cluster in the dependency
graph in appendix A.3, p.113.

The Sections and Declarations Modules

Since the four GTL constructs all have their declarations done in sections, and these
sections are handled in the same way, the functionality for evaluating them has been put
in two separate modules, Sections and Declarations. Both modules are parameterized
and take a GTL construct identifier as an argument. This argument is used as a parameter
to the sorts defining the section- and declaration- syntax for the section. These sorts are
declared in these modules, but must be defined by the importing module. The semantics
for the evaluation of a declaration must also be defined in the importing module. The
Declarations module only contains a function to evaluate a list of declarations, as does
the Sections module for a list of GTL sections.

The Four Section Modules

The four modules that define a section also define the syntax and semantics for the pattern
and the declaration of the GTL construct. Only the Imports module does not define a
pattern, since there is none for the construct. The other three provide rewrite rules that
extend the three matching functions ‘match’, ‘select’ and ‘merge’ for the pattern they
introduce. They also provide functionality to simplify the interaction with the GTL
environment.

4.7.2 Statements

The GTL statements and operators are defined in the Statements module. A function
‘Eval(〈statement 〉)’ is declared and defined to handle their evaluation.

Expressing their semantics is a simple matter of projecting them onto the basic match-
ing functions. In most cases, only one rewrite rule is needed to handle a GTL statement
or operator.

4.7.3 Programs and Libraries

The Programmodule defines the GTL program and library. Two functions ‘Eval(〈program 〉)’
and ‘Eval(〈library 〉)’ are declared and defined to handle their evaluation.

In both cases the environment is filled with the declarations made in the program or
library. The difference is that a program is treated as a special function which is always
evaluated. A library merely adds declarations to the environment.

4.8 The GTL Interpreter

The GTL interpreter is intended to be used as any unix scripting language. This means
that the first line of any GTL program can start with:

4.9. DEVIATIONS FROM SDF STANDARDS 93

GTL
1 #!\usr\local\bin\gtli ...

where ‘gtli’ is the filename of the GTL interpreter.
There are a number of options that can be given to the interpreter. Apart from the

name of the GTL program to be interpreted, its arguments and its input, these include
providing root-directories pointing to where the GTL libraries reside. Other options, like
controlling the format of the output, can be envisioned but are not implemented as yet.

The interpreter has been implemented and tested with a rudimetary GTL program,
but because of problems encountered in the implementation (see section 6.3, p.109), it was
not finished.

4.9 Deviations from SDF standards

There are a number of issues in the implementation where the semantics deviate from the
official semantics of SDF.
• Currently, there is no checking whether two modules of the same name exist in the
grammar being transformed. The merge function will correctly merge two modules of the
same name, but it has to be called explicitly. Two modules of the same name can be put
into a specification by manually assigning them to a Definition. For instance:

GTL
1 variables

2 Module M1:module A

3 sorts S

4 exports

5 lexical syntax

6 "S" -> S;

7 Module M2:module A

8 sorts S

9 exports

10 lexical syntax

11 "K" -> S;

12 Definition D := definition

13 <M1>

14 <M2>;

This behaviour is not according to the SDF specification, which states that all module
names must be unique.
• Sortnames in SDF must start with a capital letter. In GTL, a sortname is allowed to
start with a lower case letter, which does not conform to the SDF specification. However,
there is no active checking for this in the ASF implementation either. This was left in
because the only way to correct the behaviour would be to disallow the use of uninitialized
variables of type Sort. The other types do not have this problem. Checking for this would
break the modularization of the implementation, since it would have to be implemented
in the generic functions for the lexical pattern. These generic functions are used by all
the types that can be used in a lexical pattern.

94 CHAPTER 4. IMPLEMENTATION

However, there is a way around this. When the programmer wishes to match the
beginning and end of a capitalized sortname, the end part might start with a lowercase
letter. Currently, this can be assigned to a variable of type Sort. The way around this
is to match the lower case parts of a sortname using ‘Literals’ instead of sorts. These
‘Literals’ can be used to create a new sort-name by employing a lexical pattern.

Chapter 5

The Case Study in GTL

5.1 Introduction

In chapter 2, p.15 a case study was performed to find out what kind of functionality
is needed in an SDF transformation language. The study was previously performed by
Jurgen Vinju and Hayco de Jong, and the recreation tried to implement the various
transformations in FST as well as a hypothetical version of FST, referred to as hFST.

In this chapter these implementations in hFST will be used as a template for imple-
menting the transformations from the case study in GTL. The aim is to show that GTL
covers all the added functionality as introduced in the hFST scripts, as well as some added
functionality.

5.2 Approach

Each step in the case study is recreated in GTL. The headers for the steps bear the same
name as in chapter 2, p.15, to facilitate a comparisin. All transformations are implemented
as functions named ‘Step〈n 〉’ where n is the number of the section describing the step.
These functions are intended to be part of the same GTL program and as such can reference
each other at will.

The transformations that are very similar to their hFST counterparts will not be
explained, apart from inline comments.

Some of the functions used in the hFST programs are not present in GTL and have to
be expressed using other statements. As such some of the GTL functions can be somewhat
more complex.

5.3 Retracing the Previous Case Study

Each of the transformation steps described in the previous case study is listed here. A
recount is given on the implementation of each of the FST or hFST scripts that were
devised as part of those steps.

95

96 CHAPTER 5. THE CASE STUDY IN GTL

5.3.1 “first a one-to-one translation from YACC to SDF”

Since this transformation is automated using the yacc2sdf transformer provided with XT
there is no difference with the step taken in section 2.4.1, p.17.

5.3.2 “replaced terminal identifiers (‘RETURN’) by literal symbols
(‘"return"’)”

A function was created in hFST that takes a sortname and literal as arguments. The empty
definition for the sort is removed, after which all references to the sort in definitions are
replaced by the literal. The function can then be called for all the terminal identifiers
that need to be replaced.

GTL
1 functions

2 Definition &Replace_ID(Definition D, Sort S, Literal L) {

3 variables

4 Symbol S1;

5 Symbol S2, S3:...;

6 %% remove the empty production defining <S>

7 Definition D’ := remove Production: -> <S> from <D>;

8 begin

9 %% check that no more defining productions exist

10 not(<(.)>+ := extract Production:... -> <S> from <D’>);

11 %% for each production containing the sort <S> unfold it.

12 foreach Production P:<S1> <#S> <S2> -> <S3> in <D’> do {

13 <D’> := replace Production:<P>

14 with Production:<S1> <#L> <S2> -> <S3> in <D’>;

15 };

16 <Replace_ID> := <D’>;

17 end;

18 };

19

20 Definition &Step2(Definition D) {

21 begin

22 <D> := &Replace_ID(<D>, RETURN, "return");

23 <D> := &Replace_ID(<D>, CONTINUE, "continue");

24 <D> := &Replace_ID(<D>, BREAK, "break");

25 %% the remaining terminal identifiers are not listed

26 %% ...

27 <Step2> := <D>;

28 end;

29 };

5.3.3 “renamed non-terminals from dash separated to CamelCase”

Since this step was already performed by the ‘yacc2sdf’ transformer, no implementation
in hFST was given. However, it was concluded that the functionality is desirable in GTL,

5.3. RETRACING THE PREVIOUS CASE STUDY 97

and as such the lexical pattern for matching/creating a sort was added. An implementation
for this transformation can be found in appendix ??, p.??.

5.3.4 “imported lexical definition of C comments from the CPP gram-
mar”

No implementation in hFST was given for this step since it involved a simple inclusion of
existing SDF modules.

5.3.5 “then added follow restrictions on identifiers and some unary op-
erators”

The transformation implemented in GTL:

GTL
1 functions

2 Definition &Step5(Definition D) {

3 begin

4 <D> := insert lexical restriction

5 Identifier -/- [0-9a-zA-Z_]

6 D+ -/- [0-9]

7 into <D>;

8 <D> := insert context-free restriction

9 LAYOUT? -/- [\ \t\011\n\r\012]

10 into <D>;

11 <D> := insert context-free restriction

12 "&" -/- [\&]

13 "-" -/- [\-]

14 "+" -/- [\+]

15 into <D>;

16 <Step5> := <D>;

17 end;

18 };

5.3.6 “fixed an ambiguity in the lexical syntax, ‘IS*?’ was produced,
changed to ‘IS*’”

Since the function ‘&Preserve’ does not exist in GTL ‘replace’ is used. Note that a
‘foreach’-loop is not nessesary since the pattern used in the replace statement will match
all the productions containing ‘IS*?’ one at a time. Replacement continues until no more
matches exist.

The transformation implemented in GTL:

GTL
1 functions

2 Definition &Step6(Definition D) {

3 variables

4 Symbol S;

5 Symbol S’, S’’:...; %% used for matching any symbols surrounding IS*?

98 CHAPTER 5. THE CASE STUDY IN GTL

6 begin

7 %% for each Production containing IS*? replace IS*? with IS* ...

8 <D> := replace Production:<S’> IS*? <S’’> -> <S>

9 with Production:<S’> IS* <S’’> -> <S> in <D>;

10 <Step6> := <D>;

11 end;

12 };

5.3.7 “re-factored all right-associative lists using SDF2 list syntax”

The function for transforming all comma-separated right-associative lists in a definition:

GTL
1 functions

2 Definition &Step7(Definition D) {

3 variables

4 Symbol S, S’;

5 begin

6 %% for each recursive definition of a comma-separated

7 %% right-associative list ...

8 foreach Production P:<S> "," <S’> -> <S> in <D> do {

9 <D> := remove Production:<P> from <D>;

10 <D> := remove Production:<S’> -> <S> from <D>;

11

12 if not(extract Production:... -> <S> from <D>) then {

13 %% there are no more productions defining <S>

14 <D> := insert { <S’> "," }+ -> <S> into <D>;

15 } else

16 %% there were more productions defining <S>

17 %% we cannot be sure about the transformation so fail

18 fail;

19 };

20 <Step7> := <D>;

21 end;

22 };

The ‘foreach’ loop will iterate over all the productions recursively defining a comma-
separated list. If one such production is found, it is removed together with the production
defining a single item in the list.

The ‘if’ statement test whether the list defining productions were the only productions
for the sort. If so, a new production defining the list in SDF2 syntax is inserted into the
definition. If there are other defining productions for the sort, we can not be sure that the
changes we make keep the original semantics. In this case fail the ‘if’-statement through
the use of the ‘fail’ statement on line 18. This will in turn fail the current iteration of
the ‘foreach’ loop, discarding any changes made in this iteration so far. The ‘foreach’
loop will continue with the next iteration, if any.

5.3. RETRACING THE PREVIOUS CASE STUDY 99

5.3.8 “renamed all non-terminals from ‘LogicalAndExpression’ up-to and
not including ‘UnaryExpression’ to ‘LogicalOrExpression’”

This is almost a literal implementation of the hFST script in GTL. The inclusion of the
attribute in the production was done here by replacing the original production with a new
one based on the old.

GTL
1 functions

2 Definition &Step8(Definition D, Sort S) {

3 variables

4 Symbol Y1, Y2;

5 Literal L1, L2;

6 Group G1, G2;

7 begin

8 %% create the first group of priorities...

9 foreach Production P:<Y1> <L1> <S> -> <Y1> in <D> do {

10 <G1> := include Production:<S> <L2> <Y2> -> <S> in <G1>;

11 <D> := replace Production:<P>

12 with Production:<Y1> <L1> <S> -> <Y1> {left} in <G1>;

13 };

14

15 %% create the second group of priorities...

16 foreach Production P:<S> <L2> <Y2> -> <S> in <D> do {

17 <G2> := include Production:<Y1> <L1> <S> -> <Y1> in <G2>;

18 <D> := replace Production:<P>

19 with Production:<S> <L2> <Y2> -> <S> {left} in <G1>;

20 };

21

22 %% include the context-free priority ...

23 <D> := include Grammar:

24 context-free priorities

25 <G1> > <G2>

26 in <D>;

27

28 %% rename the sort ...

29 <D> := replace Sort:<S> with Sort:LogicalOrExpr in <D>;

30

31 %% remove the trivial injection ...

32 <D> := exclude Production:LogicalOrExpr -> LogicalOrExpr from <D>;

33

34 <Step8> := <D>;

35 end;

36 };

5.3.9 “added lexical restriction on ‘D+’”

This step was implemented as part of step 5. It is the first insert in the function.

100 CHAPTER 5. THE CASE STUDY IN GTL

5.3.10 “removed ‘UnaryOperator’ non-terminal by inlining the alterna-
tive operators”

The implementation of the hFST script:

GTL
1 functions

2 Definition &Step10(Definition D) {

3 <D> := insert Production:<("&" CastExpr -> UnaryExpr;

4 "*" CastExpr -> UnaryExpr;

5 "+" CastExpr -> UnaryExpr;

6 "-" CastExpr -> UnaryExpr;

7 "~" CastExpr -> UnaryExpr;

8 "!" CastExpr -> UnaryExpr)> into <D>;

9 <D> := remove Production:UnaryOperator CastExpr -> UnaryExpr from <D>;

10 <Step10> := <D>;

11 };

Note that the productions are inserted as a list of productions, this implies that they
will be grouped together in the resulting definition.

5.3.11 “removed ‘AssignmentOperator’ non-terminal by inlining the al-
ternatives”

Since this type of transformation was done “manually” as part of step 10, a generic
‘&Unfold_Many’ function was created in hFST to take care of both transformations.

Here is its implementation in GTL:

GTL
1 functions

2 Definition &Unfold_Many(Definition D, Sort S) {

3 variables

4 Sort S’;

5 Symbol S1,S2,S3:...;

6

7 begin

8 %% for each definition using the sort <S> ...

9 foreach Production P1:>S1< <S> >S2< -> >S’< in <D> do {

10 %% remove the production ...

11 <D> := remove Production:<P1> from <D>;

12 %% add a production for each definition of the sort <S>

13 %% for the sort <S’>

14 foreach Production P2:>S3< -> <S> in <D> do {

15 <D> := insert Production:<S1> <S3> <S2> -> <S’> into <D>;

16 };

17 };

18 %% after unfold, remove all productions defining <S>

19 <D> := remove Production:... -> <S> from <D>;

20 <Unfold_Many> := <D>;

21 end;

5.3. RETRACING THE PREVIOUS CASE STUDY 101

22 };

23

24 Definition &Step11(Definition D) {

25 begin

26 <D> := &Unfold_Many(<D>, UnaryOperator);

27 <D> := &Unfold_Many(<D>, AssignmentOperator);

28 <Step11> := <D>;

29 end;

30 };

5.3.12 “renamed ‘LogicalOrExpression’ to ‘BasicExpression’”
GTL

1 functions

2 Definition &Step12(Definition D) {

3 begin

4 <D> := replace Sort:LogicalOrExpr with Sort:BasicExpr in <D>;

5 <Step12> := <D>;

6 end;

7 };

5.3.13 “renamed ‘PostfixExpression’ to ‘PrimaryExpression’ and removed
the trivial injection”

GTL
1 functions

2 Definition &Step13(Definition D) {

3 begin

4 <D> := replace Sort:PostfixExpr with Sort:PrimaryExpr in <D>;

5 <D> := remove Production:PrimaryExpr -> PrimaryExpr from <D>;

6 <Step13> := <D>;

7 end;

8 };

5.3.14 “folded empty and non-empty use of ‘ArgumentList’ in
‘PrimaryExpression’”

GTL
1 functions

2 Definition &Step14(Definition D) {

3 begin

4 <D> := replace Production:{ AssignmentExpr "," }+ -> ArgumentExprList

5 with Production:{ AssignmentExpr "," }* -> ArgumentExprList

6 in <D>;

7 <D> := remove Production:PrimaryExpr "(" ")" -> PrimaryExpr from <D>;

8 <Step14> := <D>;

9 end;

10 };

102 CHAPTER 5. THE CASE STUDY IN GTL

5.3.15 “Introduced separate lexical non-terminals for each type of con-
stant: ‘IntegerConstant’, ‘HexadecimalConstant’, ‘CharacterConstant’
and ‘FloatingPointConstant’”

GTL
1 functions

2 Definition &Step15(Definition D) {

3 begin

4 <D> := remove Production:<{

5 [0] [xX] H+ IS* -> Constant, %% Hexadecimal

6 [0] D+ IS* -> Constant, %% Integer

7 D+ IS* -> Constant, %% Integer

8 [\’] ([\\]~[] | ~[\\\’])+ [\’] -> Constant, %% Character

9 D+ E FS? -> Constant, %% FloatingPoint

10 D* [\.] D+ E? FS? -> Constant, %% FloatingPoint

11 D+ [\.] D* E? FS? -> Constant %% FloatingPoint

12 }> from <D>;

13

14 <D> := insert Grammar:

15 lexical syntax

16 [0] [xX] H+ IS* -> HexadecimalConstant

17 [0] D+ IS* -> IntegerConstant

18 D+ IS* -> IntegerConstant

19 [\’] ([\\]~[] | ~[\\\’])+ [\’] -> CharacterConstant

20 D+ E FS? -> FloatingPointConstant

21 D* [\.] D+ E? FS? -> FloatingPointConstant

22 D+ [\.] D* E? FS? -> FloatingPointConstant

23 into <D>;

24

25 <D> := insert Grammar:

26 context-free syntax

27 HexadecimalConstant -> Constant

28 IntegerConstant -> Constant

29 CharacterConstant -> Constant

30 FloatingPointConstant -> Constant

31 into <D>;

32

33 <Step15> := <D>;

34 end;

35 };

The ‘remove’ uses a set-pattern so that wherever the productions may reside in the
original definition they are each removed. Both ‘insert’ statements insert a grammar
into the definition. This is to keep the productions together as well as introduce the first
insertion as a lexical syntax grammar instead of the default context-free syntax

grammar.

5.4. UNLISTED TRANSFORMATIONS ENCOUNTERED 103

5.3.16 “Removed production ‘[0] D+ IS* -> IntegerConstant’ because
‘D’ includes ‘[0]’ and the production ‘D+ IS* -> IntegerConstant’
exists too”

This transformation is a simple removal of a production.

GTL
1 functions

2 Definition &Step16(Definition D) {

3 begin

4 <Step16> := remove Production:[0] D+ IS* -> IntegerConstant from <D>;

5 end;

6 };

5.4 Unlisted Transformations Encountered

This section provides scripts in GTL for the transformations not listed in the original
adaptation of the C grammar.

5.4.1 Problems encountered during step 2.4.1

The following is a generic script to add sort declarations for all the defined sorts in a
grammar. It assumes that no sort declarations are present.

GTL
1 functions

2 Definition &Unlisted1(Definition D) {

3 variables

4 Symbol S;

5 Grammar SG;

6

7 begin

8 %% process each defined sort

9 foreach Production:... -> <S> in <D> do

10 if not(select <S> from <SG>) then

11 insert <S> into <SG>;

12 else

13 ; %% otherwise do nothing since the sort is already declared

14

15 %% now add the sort declarations to the definition

16 <Unlisted1> := insert <SG> into <D>;

17 end;

18 };

5.4.2 Problems encountered during step 2.4.2

The following script deals with each of the listed transformations:

104 CHAPTER 5. THE CASE STUDY IN GTL

GTL
1 functions

2 Definition &Unlisted2(Definition D) {

3

4 begin

5 <D> := remove -> RANGE from <D>;

6

7 <D> := replace -> ELIPSIS with "..." -> ELIPSIS in <D>;

8

9 <D> := remove -> TYPENAME from <D>;

10 <D> := remove TYPENAME -> TypeSpecifier from <D>;

11

12 <D> := replace -> IDENTIFIER with L (L | D)* -> IDENTIFIER in <D>:

13

14 <D> := replace Sort:IDENTIFIER with Sort:Identifier in <D>;

15 end;

16 };

5.4.3 All sorts that ended in ‘‘Expr’’ were changed to end in ‘‘Expression’’

Since the part of the sort-names that needs to be replaced is known, this transformation
can be handled by a single ‘replace’-statement.

First a sort is matched with ‘<[<S1> "Expr"]>’. Since the variable ‘S1’ has type
Sort and pattern ‘...’ the whole pattern will match all sorts ending in ‘Expr’. The part
of the sort-name before ‘Expr’ is stored in the variable ‘S1’.

Any match is replaced by a new sort-name formed by the contents of the variable ‘S1’
followed by a new ending, namely ‘Expression’.

GTL
1 functions

2 Definition &Unlisted3(Definition D) {

3 variables

4 Sort S1:...;

5 begin

6 <Unlisted3> := replace Sort:<[<S1> "Expr"]>

7 with Sort:<[<S1> "Expression"]> in <D>;

8 end;

9 };

5.4.4 The sort ‘‘Constant’’ was unfolded, eliminating it from the gram-
mar

For this unfolding transformation the ‘&Unfold_Many’ function part of step 11 is used.

GTL
1 functions

2 Definition &Unlisted4(Definition D) {

3 begin

4 <Unlisted4> := &Unfold_Many(<D>, Constant);

5.5. CONCLUSIONS 105

5 end;

6 };

5.4.5 The sort ‘‘ConditionalExpression’’ was renamed to
‘ConstantExpression’

GTL
1 functions

2 Definition &Unlisted5(Definition D) {

3 begin

4 <Unlisted5> := replace Sort:ConditionalExpression

5 with Sort:ConstantExpression

6 in <D>;

7 end;

8 };

5.5 Conclusions

The conclusions drawn from the implementation of the case study in hFST were used to
create GTL.

The implementation of those transformations in GTL show that the extended func-
tionality of GTL opens up possibilities for more generic scripting solutions through the
use of functions, variables and patterns. The ‘&Unfold_Many’ function which can unfold
a sort that has more than one definition is an example of that.

However, there is a down side. Since GTL is less restrictive in the sense that is performs
almost no implicit grammar consistancy checking. Tests like grammar equivalence and
others are available in GTL, but they have to be envoked manually by the programmer
as part of the script. FST functions like ‘preserve’ check whether a definition introduced
as a replacement for another is structurally equal to that other definition. In GTL that
check would have to be done explicitely as part of the script. However, most, if not all, of
the FST functions can be implemented in GTL with the checks in place. Some of these
implementations can be viewed in appendix B, p.115. The implementation for ‘&Preserve’
is at section B.3.1, p.120.

GTL syntax tries to adhere as closely as possible to the syntax of SDF in that both
the SDF constructs and GTL patterns represent or match SDF constructs directly. As
such, the language GTL focusses more on the syntax of SDF specifications, whereas FST
focusses more on the semantics side by providing functions like ‘definition of . . .’, and
allowing the programmer to focus on a sort, which implicitly includes its declaration and
all its definitions.

It is up to the programmer which approach of the two is preferred, however, ap-
pendix B, p.115 shows that it is for the most part possible to implement FST in GTL,
after which the programmer could decide to use those functions in building transforma-
tions.

106 CHAPTER 5. THE CASE STUDY IN GTL

Chapter 6

Conclusion

When work was started on GTL many months ago, a number of goals were already stated
even before FST or the GDK were studied or the case study was performed. The primary
goals were to create a language that would be capable of transforming any and all parts
of an SDF specification through a clear interface, while maximizing the maintainability
of both the scripts in GTL as well as the language GTL itself. The former should of
course be a basic premise for any language, and the latter is nessesary to allow GTL to be
adapted to future versions of SDF. The fact that the implementation of FST, which was
specifically targeted to SDF, is no longer valid for the current version of SDF amplifies
this.

The GDK is an implementation of the same principles as used in the implementation
of FST. The transformation language part of the kit is also called FST. However, it
employs its own specification language called LLL. Although an SDF specification can
be transformed into it for use with the GDK, a lot of the SDF specific constructs and
semantics is lost in that process. It is because of this that we focussed primarily on the
FST tailored to SDF for the case study. In the following, any reference to FST implies
this SDF specific implementation.

6.1 The Core

It was decided that the best language to use to implement GTL would be ASF+SDF itself.
This is primarily because the specification of SDF is maintained in SDF itself, but also
because creating languages is, in effect, what ASF+SDF is intended for.

For the setup of the core of GTL we looked at FST. FST employs a separate traversal
of an SDF specification for most of its functions. This has the advantage that new functions
to be added to the language have little dependancy upon the rest of the implementation,
apart from the primitive functions. The disadvantage is that a change in the specification
of SDF implies a possible change in the traversal of an SDF grammar, meaning that all
functions employing a traversal would need to be adapted.

Looking at the implementation of FST it was apparent that maintainability of the GTL
sources means creating a clear devide between the semantics and syntax of SDF, and the

107

108 CHAPTER 6. CONCLUSION

syntax and semantics of GTL. To this end, each SDF construct is implemented in it’s
own module which encompasses its definition as well as the semantics needed to traverse
it. This implies that a moderate change to the specification of SDF would nessesitate an
adaptation only to the module defining the construct in question, as well as the modules
defining its parent constructs. The resulting specification tree closely resembles the tree
structure of the current version of SDF, version 2. See appendix A.3, p.113.

With the minimization of traversals in the implementation of GTL in mind, a set of
primitive functions was envisioned that can be used as a basis for others. Since most if
not all of the functionality needed in GTL revolves around selecting, matching or merging
grammars, these are the functions that are created to do all the traversing of a specification.
They should be the only ones to have to be defined in each of the modules declaring and
defining an SDF construct. All of the other functions can be expressed using some or all
of these primitive functions.

Having these three as the only functions also implied that we needed a generic way
of selecting a specific SDF construct, whether for matching or to focus on it for further
action. Using patterns was the obvious solution.

Each module defining an SDF construct creates a pattern for it to be used in GTL
pattern matching. This pattern should mimic the SDF definition to the letter. We now
have a tree of patterns which can match an SDF specification in the same way the SDF
specification itself can. The difference is that we can now introduce patterns specific to
GTL to specify things like “exactly one” or “one of these”, which can be used as any of
the SDF constructs. Variables typed to a specific SDF construct could now be part of a
pattern, as was shown to be required in the case study.

On the basis of this core, the GTL language was built.

6.2 The Language

The core is flexible enough to have allowed us to implement an extended version of FST,
but then the resulting scripts would lose out in maintainability. What the case study
showed was that we needed a more modular language, including functions and libraries
of functions. The language also needs to be more removed from the semantics of SDF as
was already concluded.

To make GTL easy to program its syntax was kept as close as possible to the syntax
of SDF. The pattern matching engine already implies this since it closely mimics the
specification of SDF, but the layout of a GTL program or library was envisioned to do
the same. A GTL program contains a number of sections where the declarations of the
variables, patterns and functions reside. The section containing the actual transformations
was modeled after the language pascal, using a begin . . . end statement. To ensure that
the GTL constructs cannot be mistaken for an SDF construct each of them was given a
syntax that would not be recognized by the SDF specification. Functions must start with
an ampersand, variables are placed within angle brackets, and user defined patterns start
with a hash-sign (‘#’).

The semantics of the various GTL constructs are not much different from most other

6.3. THE IMPLEMENTATION 109

languages. Functions can be called directly of be used as a pattern or an SDF construct
depending on where it is referenced, just like variables and user defined patterns. There
is a difference however in that a function in GTL can fail. This is because for instance a
select statement does not actually select anything simply because its pattern is not part
of the specification being matched against. It was decided that a failure in one of the
statements would fail the encompassing function, which would in turn fail the function-
call andsoforth, just like in FST. This implied that any function can also be used as a
condition check. An if-statement can be used as a try-catch block to ensure continued
evaluation of a program.

6.3 The Implementation

Due to unforseen and unintended problems with the ASF+SDF meta-environment, we
were not able to achieve a fully working version of a GTL interpreter. It was too late to
redesign the implementation to circumvent these problems, although that would probably
have solved the issue in exchange for losing some of the modularity and maintainability of
the implementation. A few very specific and low level programs in GTL were evalutated
successfully however, and we are confident that a full implementation can be achieved.
This does imply however that all of the examples of GTL programs and functions are
untested. They should be looked on as reference implementations.

6.4 Using GTL

The re-implementation of the case study in GTL shows that the functionality deemed
nessesary in the previous case study is part of GTL. It also shows that the case study itself
is not a very good example of the capabilities of GTL, since most of the transformations
are very specific to the case study. A few however, like the ‘&Unfold_Many’ function, can
be used with any SDF specification. They show more of the generic transformations that
GTL is capable of.

Most of the functionality present in GTL was rarely used in the case study. Things like
the case-statement or the lexical pattern were not even nessesary, but this is mostly because
they are intended to be useful for more generic transformations, i.e. transformations
that can be performed on any SDF specification. The ‘&toCamelCase’ function given in
appendix C, p.125 is an example of such a transformation on sorts.

6.5 Future Work

Allowing patterns as arguments

This would expand the functionality that can be expressed by user defined functions.
Functions can be created that employ selection using a given pattern.

This would mean that for instance internal functions ‘narrow’ and ‘widen’, which take
a pattern as an argument, could be implemented as a used defined function.

110 CHAPTER 6. CONCLUSION

Function Overloading

Allow functions to be redefined using different arguments. This will allow the creation of
a function that can for instance operate on either a Production or a Module.

Error Reporting

GTL improves a lot on the functionality of FST, but there remain a few things that would
be desirable to implement. First of all is good error reporting, not only from the language
itself but also reporting specific to the script, which would have to be supplied by the
programmer.

User Interface Generation

Since with GTL the input and output of a program is specified with pattern and type, it
is easy to create a user interface for the script. The standard output would be an SDF
construct of the same type and pattern as the primary function, and the input is based
on the arguments given to the same function.

Transforming both SDF and ASF

In the long term, extending GTL to also be able to transform ASF rewrite rules would
open up a whole new set of possibilities. Changes made in a specification could be used to
determine which rewrite rules are affected and need to be adapted. Also, when selecting
a subtree to copy and merge into another specification, relevant rewrite rules could also
be incoporated in the merge. A lot of work on the semantics of this has yet to be done
however, but using the same syntactic approach as with GTL at this stage, the actual
functionality could be left to be implemented in GTL itself as with the implementation of
FST.

Appendix A

Diagrams

A.1 Pattern Structure

1..*

11..*

11..*

1

1..*

GTL[[<TypeID>]]
Sequence Pattern `<(···)>'
Set Pattern `<{ ··· }>'
Option `?'
Repetition `*' or `+'

SDF[[<TypeID>]]

«Module Parameter»
Construct

«Module Parameter»
TypeID

Type[[<TypeID>]]

Typed Patterns

Value

«Module Parameter»
Constructs

Pattern

Pattern[[<TypeID>]]

VariablePatternVariable[[<TypeID>]]

FunctionPatternFunction[[<TypeID>]]

Type[["Unknown"]]

"Unknown"

Pattern[["Unknown"]]
Undefined `.'
Multiply Undefined `...'

GTL[["Unknown"]]
Sequence Pattern `<(···)>'
Set Pattern `<{ ··· }>'
Option `?'
Repetition `*' or `+'

The Unknown "Type"

This "type" is a partial
implementation of a Pattern
Structure, with the exception the
it has no variable- or function-
patterns of its own since it does
not represent an SDF construct.1

Diagram: Pattern Structure Page 1

111

112 APPENDIX A. DIAGRAMS

A.2 GTL Implementation Interfaces

«interface»
Environment
+ getVariable()
+ setVariable()
+ getPattern()
+ setPattern()
+ getFunction()
+ setFunction()
+ getImport()
+ setImport()
+ ...()

Pattern Matching

«datatype»
GTL Pattern Specification

��� ��� ��� � 	�
���
����� � ����������� ����� ���
� �"!�# $�%�&(')�*�+ ,�- .
� /�,�+ ,0$�# &(')0*�+ ,�- .
� �",01 *�,�&(')�*�+ ,�- .
� ' /�&(')�*�+ ,0# 20)�- .
� ' /�3 # ,�1 45+ 6�/�- .
� ' /�75�98:# ;0- .
��,��98:# ;�- .
��!<8�8=,�)�>?- .
@BA A A C D «interface»

Bucket
+ createBucket()
+ destroyBucket()
+ getName()
+ getContent()
+ setContent()
+ ...()

There are four sections to
the environment:
Variables, Patterns,
Functions and Imports,
each is a pool of buckets.

Environment

E"F�G H F�I�J K?FML�G N�G?O
J P=N�G(Q R?G:S H F�H J H T�F�U
V T�W?X0Y G5U Z5G�L0J H T�F�U
[O T0W?X�L�J H T�F�U \ \ \

«interface»
Pool

+ lookup()
+ store()
+ createPool()
+ destroyPool()
+ ...()

«datatype»
SDF Specification

Types

«interface»
SDF Library

+ charclass operators()
+ boolean operators()

��� ��� ��� � 	�
���
]_^�`a^Mb:c �

@ed9f=g h�i0j�k l�m?n opC D
@ qro?n o�h0g j�k l�m?n o?C D
@ed9o?s m�o�j�k l�m?n o?C D
@BA A A C D

«interface»
Statements
+ eval()
+ ...()

«interface»
Program

+ eval()
+ getImports()
+ ...()

«interface»
Variables

+ createVariable()
+ getType()
+ getPattern()
+ getValue()
+ setValue()
+ ...()

«interface»
Patterns

+ getType()
+ getPattern()
+ ...()

«interface»
Functions

+ eval()
+ getType()
+ getImports()
+ getEnvironment()
+ getStatements()
+ ...()

«interface»
Imports

+ getEnvironment()
+ ...()

«interface»
Arguments
+ parse()
+ ...()

Evaluator

The program interface
is the top module.

«interface»
Matching Kernel
+ match()
+ select()
+ merge()
+ ...()

t A A u

t

t t A A u

v k f�mps f?dxwzy{s |�}�~�q��?f=m�o t

A.3. GTL IMPLEMENTATION DEPENDENCY GRAPH 113

A.3 GTL Implementation Dependency Graph

Environment

Types

Pattern Matching

Evaluator

GTL

Selection

Program

Environment

GTLCore Kernel

Pool

Bucket

SDF
Library

SDF
Specification

Lookahead

CharClass

Matching

Group

Production

SyntaxSS

Grammar

SortSS

Symbol

AliasSS PrioritySSRestrictionSS

ModuleId

CharMatching

Renaming

Constructs

ImportSS

ModuleName

SectionSS

ModuleSS

SDFSS

Attribute

Sort

Literal

Character

UnKnown

RealCoreCharSupport

Variables

SectionsStatements

Patterns

Arguments

Functions

Imports

DeclarationsGTLCore

114 APPENDIX A. DIAGRAMS

Appendix B

Implementing FST in GTL

B.1 Introduction

Implementing FST in GTL is not that hard in most cases. However, we need to take
care to mimic the semantics of FST as closely as possible, given the difference in the
implementation of the focus and other changes.

The implementation given here is complete in that it represents the framework as
implemented in GTL. This framework however does not provide functions to deal with SDF
specific constructs like priorities, restrictions or modularization. These are not provided
here either, since that would amount to extending the FST, which is exactly what GTL
was created to do. This implementation shows that the functionality as provided by FST
can be expressed in GTL as well.

B.2 The Transformation Framework

The functions described in this chapter mimic the original framework, rather than the
implementation of FST. This framework is described in [7]. Since FST is also based on
this framework, most of the relevant functions will be incorporated.

There are a few points where the FST implementation in GTL differs from the de-
scribed framework.

Focus
The focus as described in the framework is a global one. All functions operate within
that focus. There can only be one focus at a time. In GTL, each (extended) SDF
construct has a focus, which is part of the selection it represents. There is no global
focus, so it has to be presented as an argument to all functions. This means that all
the functions must take care to preserve the focus, unless they were intended to change
it.

Function Overloading
FST has overloaded functions, which can work on either sorts or modules, like the

‘&Add’ and ‘&Sub’ functions. GTL does not provide this functionality yet (see sec-

115

116 APPENDIX B. IMPLEMENTING FST IN GTL

tion 6.5, p.110). In this implementation we will adhere to the original framework and
ignore modules, although separate functions could be created to rectify this.

Pattern Arguments
GTL functions can only accept SDF constructs as arguments. In the case of the

‘&Focus’ operator, this means that it can only focus on literal constructs, not use
patterns, since these cannot be passed to the function (see section 6.5, p.109).

B.2.1 Primitives

These are the primitive functions, all other functions are based on these.

GTL
1 functions

2 Definition &Id(Definition F) {

3 begin

4 %% id merely returns the given selection

5 <Id> := <F>;

6 end;

7 };

8

9 Definition &Fail(Definition F) {

10 begin

11 %% this constraint will fail

12 "true" == "false";

13 %% no result value is needed since this position will never be reached,

14 %% in FST, the result value is undefined

15 end;

16 };

17

18 Definition &Reset(Definition F) {

19 begin

20 %% reset undoes the selection, the focus will be empty, the remainder will

21 %% contain the entire definition

22 <Reset> := invert(implode(<F>));

23 end;

24 };

25

26 Definition &Add(Definition F, Production P) {

27 begin

28 %% insert will add the given production to the focus of <F>

29 <Add> := insert <P> into <F>;

30 end;

31 };

32

33 Definition &Sub(Definition F, Production P) {

34 begin

35 %% this will remove the given production from the selection <F>

36 %% <P> must be in the focus of <F>

37 <Sub> := remove <P> from <F>;

38 end;

B.2. THE TRANSFORMATION FRAMEWORK 117

39 };

40

41 Definition &Substitute(Definition F, Sort N, Sort N’) {

42 begin

43 %% the GTL function replace does the same, for all possible

44 %% instances of <N>

45 <Substitute> := replace <N> with <N’> in <F>;

46 end;

47 };

48

49 Definition &Replace(Definition F, Symbol P, Symbol P’) {

50 begin

51 %% in FST, this function replaces one phrase with another.

52 %% A phrase is a sequence of symbols part of a production.

53 %% The GTL replace function can be used in the same way.

54 <Replace> := replace <P> with <P’> in <F>;

55 end;

56 };

B.2.2 Combinators

The FST combinators like the conditional (‘if’) and the sequential composition are already
part of GTL, albeit in a different form.

The FST ‘focus’ operator wil be expressed using the GTL widen operator. Note that,
since GTL patterns cannot be given as arguments, this operator does not adhere to the
FST implementation. In cases where a pattern is required, a GTL operator must be used.

The ‘!’ operator will be given the name ‘&Effectively’, since the exclamation mark
cannot be part of a function name.

GTL
1 functions

2 Definition &Focus(Definition F, Sort N:<(.)>+) {

3 begin

4 %% first reset the current focus

5 <F> := &Reset(<F>);

6 %% for each sort in the given list, widen the focus with its defining

7 %% productions

8 foreach Sort S in <N> do {

9 <F> := widen <F> using Production:... -> <S>;

10 };

11 <Focus> := <F>;

12 end;

13 };

14

15 Definition &Effectively(Definition F, Definition F’) {

16 begin

17 %% <F’> holds the result of a function-call. It is this result that must

18 %% be different from <F>.

19 not(<F> == <F’>);

118 APPENDIX B. IMPLEMENTING FST IN GTL

20 %% <F> and <F’> differ. Reproduce <F’> as the result

21 <Effectively> := <F’>;

22 end;

23 };

B.2.3 Constraints

Since in GTL, functions must have a result value, the FST constraint functions are im-
plemented to take and return a definition. The definition given as an argument is used in
some cases, like with the functions ‘&Defined’ and ‘&Used’. The return value of each of
the constraint functions is never used by the programmer. Only the success or failure of
the function is of importance.

The FST function ‘not’ is already a part of GTL, and is not included here.

GTL
1 functions

2 Definition &Defined(Definition F, Sort N) {

3 begin

4 %% ‘extract’ will produce a list of productions defining <N>.

5 %% If the list has one or more members, the sort is "defined"

6 <(.)>+ == extract Production:... -> <N> from <F>;

7 <Defined> := <F>;

8 end;

9 };

10

11 Definition &Used(Definition F, Sort N) {

12 begin

13 %% ‘extract’ will produce a list of productions using <N> in their

14 %% definition. If the list has one or more members, the sort is "used"

15 <(.)>+ == extract Production:... <N> ... -> . from <F>;

16 <Used> := <F>;

17 end;

18 };

19

20 Definition &Bottom(Definition F, Sort N) {

21 begin

22 %% the ‘bottom’ constraint expressed using other constraints

23 not(&Defined(<N>)) && &Used(<N>);

24 <Bottom> := <F>;

25 end;

26 };

27

28 Definition &Top(Definition F, Sort N) {

29 begin

30 %% the ‘top’ constraint expressed using other constraints

31 &Defined(<N>) && not(&Used(<N>));

32 <Top> := <F>;

33 end;

34 };

B.2. THE TRANSFORMATION FRAMEWORK 119

35

36 Definition &Fresh(Definition F, Sort N) {

37 begin

38 %% the ‘fresh’ constraint expressed using other constraints

39 not(&Defined(<N>)) && not(&Used(<N>));

40 <Fresh> := <F>;

41 end;

42 };

43

44 Definition &Focused(Definition F, Sort N) {

45 begin

46 %% the ‘focused’ constraint expressed using other constraints

47 not(&Defined(<N>)) && &Used(<N>);

48 <Focused> := <F>;

49 end;

50 };

51

52 Definition &Covers(Definition F, Symbol P:... , Symbol P’:...) {

53 begin

54 %% the FST ‘covers’ function has a different semantics from the covers

55 %% operator ‘(=)’, part of GTL, so it is not used.

56 <P> =) <P’>;

57 <Covers> := <F>;

58 end;

59 };

60

61 Definition &Equiv(Definition F, Symbol P:... , Symbol P’:...) {

62 begin

63 %% the FST ‘equiv’ function has the same semantics as the GTL

64 %% operator ‘(=)’

65 <P> (=) <P’>;

66 <Covers> := <F>;

67 end;

68 };

B.2.4 Symbolic Operands

Symbolic operands in FST can be used as patterns with the FST ‘focus’ operator. These
are covered by using GTL patterns. A few are listed here using user-defined patterns.
Note that patterns cannot be used with the ‘&Focus’ function presented in this chapter.

In FST, only the operands ‘all sorts’ and ‘all modules’ were implemented. These
have been extended here with a few other operands.

GTL
1 patterns

2 Grammar #all_aliases = aliases ... ;

3 Grammar #all_restrictions = <{ restrictions ..., lexical restrictions ...,

4 context-free restrictions ... }> ;

5 Grammar #all_priorities = <{ priorities ..., lexical priorities ...,

120 APPENDIX B. IMPLEMENTING FST IN GTL

6 context-free priorities ... }> ;

7 Grammar #all_sorts = sorts ... ;

8 Grammar #all_imports = imports ... ;

9 Grammar #all_syntax = <{ syntax ..., lexical syntax ...,

10 context-free syntax ... }> ;

11 Grammar #all_grammars = <{ #all_aliases, #all_restrictions, #all_priorities,

12 #all_sorts, #all_imports, #all_syntax }> ;

13 Section #all_sections = <{ exports ..., hiddens ... }> ;

14 Module #all_modules = module ... ;

15

16 Production #definition_of(Sort S) = ... -> <S> ;

The symbolic operand ‘definition of’ must also be implemented as a function re-
turning the phrase used in the definition of its argument sort. It is used as such in the
function ‘&Unfold’ in section B.3.1, p.120.

GTL
1 functions

2 Symbol &Definition_Of(Definition F, Sort N) {

3 begin

4 %% The equality test with the dot pattern ensures that only one

5 %% definition of <N> can exist.

6 . == extract >Definition_Of< -> <N> from <F>;

7 end;

8 };

B.3 The Operator Suite

Here, the main functions of the operator suite are presented. They are expressed using the
primary functions already implemented. The implementation for each function mimics the
semantics as given in [7]. The functions are divided in three groups, namely refactoring,
construction and destruction.

B.3.1 Refactoring
GTL

1 functions

2 Definition &Preserve(Definition F, Symbol P:..., Symbol P’:...) {

3 %% original: preserve P in F as P’

4 begin

5 &Equiv(<F>, <P>, <P’>);

6 <Preserve> := &Effectively(<F>, &Replace(<F>, <P>, <P’>));

7 end;

8 };

9

10 Definition &Fold(Definition F, Symbol P:..., Sort N) {

11 %% original: fold P in F to N

12 begin

B.3. THE OPERATOR SUITE 121

13 <Fold> := &Preserve(&Introduce(<F>, <N>, <P>), <P>, <N>);

14 end;

15 };

16

17 Definition &Unfold(Definition F, Sort N) {

18 %% original: unfold N in F

19 begin

20 <Unfold> := &Preserve(<F>, <N>, &Definition_Of(<F>, <N>));

21 end;

22 };

23

24 Definition &Introduce(Definition F, Sort N, Symbol P:...) {

25 %% original: introduce N as P

26 begin

27 &Fresh(<F>, <N>);

28 <Introduce> := &Add(<F>, P -> N);

29 end;

30 };

31

32 Definition &Eliminate(Definition F, Sort N) {

33 %% original: eliminate N

34 begin

35 <Eliminate> := &Reject(<F>, <N>);

36 &Fresh(<Eliminate>, <N>);

37 end;

38 };

39

40 Definition &Rename(Definition F, Sort N, Sort N’) {

41 %% original: rename N to N’

42 begin

43 &Fresh(<F>, <N’>);

44 <Rename> := &Effectively(<F>, &Substitute(<F>, <N>, <N’>));

45 end;

46 };

B.3.2 Construction
GTL

1 functions

2 Definition &Generalise(Definition F, Symbol P:..., Symbol P’:...) {

3 %% original: generalise P in F to P’

4 begin

5 &Covers(<F>, <P’>, <P>);

6 <Generalise> := &Effectively(<F>, &Replace(<F>, <P>, <P’>));

7 end;

8 };

9

10 Definition &Include(Definition F, Symbol P:..., Sort N) {

11 %% original: include P for N

12 begin

122 APPENDIX B. IMPLEMENTING FST IN GTL

13 &Defined(<F>, <N>);

14 <Include> := &Effectively(<F>, &Add(<F>, <P> -> <N>));

15 end;

16 };

17

18 Definition &Resolve(Definition F, Sort N, Symbol P:...) {

19 %% original: resolve N as P

20 begin

21 &Bottom(<F>, <N>);

22 <Resolve> := &Add(<F>, <P> -> <N>);

23 end;

24 };

25

26 Definition &Unify(Definition F, Sort N, Sort N’) {

27 %% original: unify N to N’

28 begin

29 &Bottom(<F>, <N>);

30 not(&Fresh(<F>, <N’>));

31 <Unify> := &Replace(<F>, <N>, <N’>);

32 end;

33 };

B.3.3 Destruction
GTL

1 functions

2 Definition &Restrict(Definition F, Symbol P:..., Symbol P’:...) {

3 %% original: restrict P in F to P’

4 begin

5 &Covers(<F>, <P>, <P’>);

6 <Restrict> := &Effectively(<F>, &Replace(<F>, <P>, <P’>));

7 end;

8 };

9

10 Definition &Exclude(Definition F, Symbol P:..., Sort N) {

11 %% original: exclude P from N

12 begin

13 <Exclude> := &Effectively(&Sub(<F>, <P> -> <N>));

14 &Defined(<F>, <N>);

15 end;

16 };

17

18 Definition &Reject(Definition F) {

19 %% original: reject F

20 begin

21 <Reject> := &Reset(<F>);

22 end;

23 };

24

25 Definition &Separate(Definition F, Sort N, Sort N’) {

B.3. THE OPERATOR SUITE 123

26 %% original: separate N in F as N’

27 begin

28 &Fresh(<F>, <N’>);

29 <Separate> := &Effectively(<F>, &Replace(<F>, <N>, <N’>));

30 not(&Fresh(<F>, <N>));

31 end;

32 };

33

34 Definition &Delete(Definition F, Symbol P:...) {

35 %% original: delete P in F

36 begin

37 not(&Covers(<P>,));

38 <Delete> := &Effectively(<F>, &Replace(<F>, <P>,));

39 end;

40 };

41

124 APPENDIX B. IMPLEMENTING FST IN GTL

Appendix C

Example of a GTL Program

C.1 ‘&toCamelCase’

Here is a program that performs the transliteration from dash-separated to CamelCase
for a given sort.

GTL
1 program

2 Sort &ToCamelCase(Sort S) {

3 functions

4 Sort &Capitalize(Sort S) {

5 variables

6 Sort Head:<[[A-Za-z]]>;

7 Sort Tail:<[[A-Za-z]+]>;

8

9 begin

10 if <[<Head> <Tail>]> := <S>; then

11 <Capitalize> := <[&ToUpper(<Head>) &ToLower(<Tail>)]>;

12 else

13 <Capitalize> := &ToUpper(<S>);

14 end;

15 };

16

17 Sort &ToUpper(Sort S) {

18 variables

19 Sort Head:<[[A-Za-z]]>;

20 Sort Tail:<[[A-Za-z\-_]+]>;

21

22 begin

23 if <[<Head> <Tail>]> := <S>; then

24 %% the sort is longer than one character...

25 <ToUpper> := <[&ToUpper(<Head>) &ToUpper(<Tail>)]>;

26 else

27 %% the sort is one character long

28 <ToUpper> := case <S>: { a:A; b:B; c:C; d:D; e:E; f:F;

29 g:G; h:H; i:I; j:J; k:K; l:L;

125

126 APPENDIX C. EXAMPLE OF A GTL PROGRAM

30 m:M; n:N; o:O; p:P; q:Q; r:R;

31 s:S; t:T; u:U; v:V; w:W; x:X;

32 y:Y; z:Z; default:<S> };

33 end;

34 };

35

36 Sort &ToLower(Sort S) {

37 variables

38 Sort Head:<[[A-Za-z]]>;

39 Sort Tail:<[[A-Za-z\-_]+]>;

40

41 begin

42 if <[<Head> <Tail>]> := <S>; then

43 %% the sort is longer than one character...

44 <ToLower> := <[&ToLower(<Head>) &ToLower(<Tail>)]>;

45 else

46 %% the sort is one character long

47 <ToLower> := case <S>: { A:a; B:b; C:c; D:d; E:e; F:f;

48 G:g; H:h; I:i; J:j; K:k; L:l;

49 M:m; N:n; O:o; P:p; Q:q; R:r;

50 S:s; T:t; U:u; V:v; W:w; X:x;

51 Y:y; Z:z; default:<S> };

52 end;

53 };

54

55 variables

56 Sort Head:<[[A-Za-z]+]>;

57 Sort Tail:<[[A-Za-z\-_]+]>;

58

59 begin

60 %% match S to a \- or _ delimited Head and Tail

61 if <[<Head> [\-_]+ <Tail>]> := <S>; then

62 <ToCamelCase> := <[&Capitalize(<Head>) &ToCamelCase(<Tail>)]>;

63 else

64 <ToCamelCase> := &Capitalize(<S>);

65 end;

66 };

Appendix D

Indices

127

128 APPENDIX D. INDICES

GTL Constructs

keywords
begin, 68
case, 69
default, 70
do, 70
end, 68
focus, 57
foreach, 70
from, 64
functions, 51, 72, 73
if, 69
implode, 57
imports, 71–73, 75
invert, 57
in, 70
library, 75
merge, 58
narrow, 58
not, 60
of, 69
patterns, 49, 72
program, 74
remainder, 57
select, 64
variables, 42, 43, 72, 73, 75
widen, 59

operators
And, 59
any repetition, 39
Covers, 62
Equals, 60
focus, 57
implode, 57
invert, 57
Lexical, 40
Matching, 63
merge, 58
narrow, 58
Not, 60
Option, 37
Or, 60

remainder, 57
Repetition, 37
Select, 64
Sequence, 36
Set, 37
Subgrammar, 61
widen, 59

patterns
exactly one, 38
Function Pattern, 52
Reset Variable, 45
user-defined, 49
Variable, 43
zero or more, 39

statements
Case, 69
Compound, 67
Conditional, 68
Foreach, 70
if, 69

symbols
‘ (=)’, 62
‘ (= ’ and ‘=)’, 61
‘ *’, 37
‘ ...’, 39
‘ .’, 38
‘ :=’, 63
‘ <(...)>’, 36
‘ <[...]>’, 40
‘ <{ ... }>’, 37
‘ < 〈 name 〉 >’, 43
‘ ==’, 60
‘ > 〈 name 〉 <’, 45
‘ ?’, 37

‘ # 〈 name 〉 ’, 49
‘ &&’, 59
‘ & 〈 name 〉 ’, 52
‘ _’, 39
‘ ||’, 60
‘ not(...)’, 60

GTL CONSTRUCTS 129

‘ select’, 64
‘ ’, 57–59

130 APPENDIX D. INDICES

Index

A LEXical analyser generator, 131
ASF, 131
BNF, 131
EBNF, 131
FST, 132

GDK, 132
GTL, 132
LEX, 131
LLL, 132
Lightweight LL parsing, 132
SDF, 131
XT, 132
XT, transformation tools, 132
YACC, 131
hypothetical FST, 132

Algebraic Specification Formalism, 131
angle brackets, 43, 45

Argument Declaration, 48
Arguments, 48

Backus-Naur Form, 131

chevrons, 43, 45

Declaration Scope, 76
default match, 70

Equivalence Operators, 60
Expressions, 59
extended SDF construct, 44
Extended Backus-Naur Form, 131

Focus, 53
Framework for SDF Transformation, 132

function body, 51
Function Declaration, 51

Function names, 51
Functions, 50

Grammar Deployment Kit, 132
Grammar Equivalance, 76

Grammar Merging, 77
Grammar Transformation Language, 132

Imports, 71
Introduction, 35

library, 75
library declaration, 75
logical operators, 59

Meta-Environment, 131
Modules, 74

Pattern Declarations, 49
Pattern Operators, 36
Patterns, 36
Primary Function, 74
Program Declaration, 74

Remainder, 53
result condition, 59
result value, 59

Sections, 72
Selection, 53
Sequence Operator, 36
side effect, 63
Statements, 66
Syntax Definition Formalism, 131

Type-Specific Pattern Operators, 39
Types, 35

User-Defined Patterns, 48

Variable Declarations, 43
Variables, 42

Yet Another Compiler Compiler, 131

Appendix E

Nomenclature

ASF - Algebraic Specification Formalism; a language for rewriting terms parsed using an
SDF grammar.

SDF - Syntax Definition Formalism; a language for constructing grammars, based on EBNF
but differing in syntax and semantics.

ASF+SDF - Meta-Environment ; an interactive development environment for the automatic gen-
eration of interactive systems for manipulating programs, specifications, or other
texts written in a formal language. It can be found at:
http://www.cwi.nl/htbin/sen1/twiki/bin/view/SEN1/MetaEnvironment.

BNF/EBNF - Backus-Naur Form / Extended Backus-Naur Form; BNF is a formal notation for
specifying the production rules of a syntax devised by John Backus and Peter Naur.
EBNF is BNF augmented by the use of regular expressions on the right hand side
of productions.

LEX - A LEXical analyser generator ; helps write programs whose control flow is directed
by instances of regular expressions in the input stream. LEX is well suited for editor-
script type transformations and for segmenting input in preparation for a parsing
routine.

YACC - Yet Another Compiler Compiler ; provides a general tool for describing the input to
a computer program. The YACC user specifies the structures of his input, together
with code to be invoked as each such structure is recognized. YACC turns such a
specification into a subroutine that handles the input process.

LEX+YACC - LEX+YACC ; Since the parser generated by Yacc requires a lexical analyzer, it
is often used in combination with a lexical analyzer generator, in most cases the
Lex program. The IEEE POSIX P1003.2 standard defines the functionality and
requirements to both Lex and Yacc.

131

132 APPENDIX E. NOMENCLATURE

FST - Framework for SDF Transformation; a prototype implementation for SDF of the
grammar adaptation framework described in [7]. It cannot be downloaded, but it’s
homepage is: http://www.cs.vu.nl/grammarware/fst/

hFST - hypothetical FST ; a hypothetical language based on FST but employing additional
functionality lacking in FST to better handle the various transformations done in
the case study. The resulting scripts are not executable, since the language does
not actually exist. The language is used to find out what functionality is needed in
GTL.

GDK - Grammar Deployment Kit ; provides tool support for grammar deployment, the pro-
cess of turning a given grammar specification into a working parser. It is based on
firm grammar engineering methods.
The kit can be found at: http://gdk.sourceforge.net/

LLL - Lightweight LL parsing ; should be read as “L-Cube”. A simple EBNF-based gram-
mar format that is used in the GDK as the basic specification language. An SDF
specification can be transformed into an LLL specification so that the tools that
are part of the GDK can be used on it. Afterwards the LLL specification can be
transformed back into an SDF specification.

XT - XT, transformation tools; a bundle of tools for building program transformation
systems. The tools include parser generation, pretty-printing, abstract syntax tree
representation, tree transformation, and building and bundling of systems. The
toolkit can be found at:
http://www.program-transformation.org/Tools/WebHome

GTL - Grammar Transformation Language; The language described in this thesis. It pro-
vides basic functionality for transforming SDF specifications. It extends on FST in
that it provides modularization and functionality specifically geared towards SDF2.

Bibliography

[1] J. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers, The Syntax Definition For-
malism SDF — Reference Manual. SIGPLAN Notices, 24(11):43-75, 1989.

[2] E. Visser. Syntax Definition for Language Prototyping. PhD Thesis, University of
Amsterdam, September 1997.

[3] J. Rekers, Parser Generation for Interactive Environments., PhD thesis, University
of Amsterdam, 1992.

[4] M. Tomita, Efficient Parsing for Natural Languages. A Fast Algorithm for Practical
Systems., Kluwer Academic Publishers, 1985.

[5] R. Lämmel, G. Wachsmuth, Transformation of SDF syntax definitions in the
ASF+SDF environment, Electronic Notes in Theoretical Computer Science 44 No.2,
2001.

[6] M.G.J. van den Brand, P. Klint, ASF+SDF Meta-Environment User Manual, pre-
liminary revision 1.146, September 20, 2004.
http://www.cwi.nl/projects/MetaEnv/meta/doc/asfsdfmanual/user-manual.html

[7] R. Lämmel, Grammar Adaptation, In Proc. Formal Methods Europe (FME’01),
volume 2021 of LNCS, pages 550-570, Springer-Verlag, 2001.

[8] A. Aho & J. Ullman. Theory of parsing, Translation and Compiling, vol. 1 (Parsing)
in Automatic Computation, Prentice Hall, 1972, chap. 2.6.3, p199.

[9] P. Klint, R. Lämmel, C. Verhoef. Toward an Engineering Discipline for Grammar-
ware, ACM Transactions on Software Engineering and Methodology, Vol.14, No. 3,
July 2005, Pages 331-380.

133

